source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if not self.is_tagged(PARAGRAPHS): self.tokenize_paragraphs() return self.spans(PARAGRAPHS)
paragraph_spans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(PARAGRAPHS):\n self.tokenize_paragraphs()\n return self.spans(PARAGRAPHS)\n", "role": "user" }, { "content": "paragraph_spans", "role": "assistant" } ]
def x(self): if not self.is_tagged(PARAGRAPHS): self.tokenize_paragraphs() return self.starts(PARAGRAPHS)
paragraph_starts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(PARAGRAPHS):\n self.tokenize_paragraphs()\n return self.starts(PARAGRAPHS)\n", "role": "user" }, { "content": "paragraph_starts", "role": "assistant" } ]
def x(self): if not self.is_tagged(PARAGRAPHS): self.tokenize_paragraphs() return self.ends(PARAGRAPHS)
paragraph_ends
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(PARAGRAPHS):\n self.tokenize_paragraphs()\n return self.ends(PARAGRAPHS)\n", "role": "user" }, { "content": "paragraph_ends", "role": "assistant" } ]
def x(self): if not self.is_tagged(PARAGRAPHS): self.tokenize_paragraphs() tok = self.__sentence_tokenizer text = self.text dicts = [] for paragraph in self[PARAGRAPHS]: para_start, para_end = paragraph[START], paragraph[END] para_text = text[para_start:para_end] if not self.is_tagged(WORDS): spans = tok.span_tokenize(para_text) for start, end in spans: dicts.append({'start': start + para_start, 'end': end + para_start}) else: para_words = [w for w in self[WORDS] if w[START] >= para_start and w[END] <= para_end] para_word_texts = [w[TEXT] for w in para_words] try: sents = tok.sentences_from_tokens(para_word_texts) except AttributeError as e: raise i = 0 for sentence in sents: j = 0 firstToken = None lastToken = None while i < len(para_words): if para_words[i][TEXT] != sentence[j]: raise Exception('Error on aligning: ', para_word_texts, ' and ', sentence, ' at positions ', i, j) if j == 0: firstToken = para_words[i] if j == len(sentence) - 1: lastToken = para_words[i] i += 1 break j += 1 i += 1 sentenceDict = {'start': firstToken[START], 'end': lastToken[END]} dicts.append(sentenceDict) for sentence_attrib in ['sentences', 'sentence_texts', 'sentence_spans', 'sentence_starts', 'sentence_ends']: try: delattr(self, sentence_attrib) except AttributeError: pass self[SENTENCES] = dicts return self
tokenize_sentences
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(PARAGRAPHS):\n self.tokenize_paragraphs()\n tok = self.__sentence_tokenizer\n text = self.text\n dicts = []\n for paragraph in self[PARAGRAPHS]:\n para_start, para_end = paragraph[START], paragraph[END]\n para_text = text[para_start:para_end]\n if not self.is_tagged(WORDS):\n spans = tok.span_tokenize(para_text)\n for start, end in spans:\n dicts.append({'start': start + para_start, 'end': end +\n para_start})\n else:\n para_words = [w for w in self[WORDS] if w[START] >= para_start and\n w[END] <= para_end]\n para_word_texts = [w[TEXT] for w in para_words]\n try:\n sents = tok.sentences_from_tokens(para_word_texts)\n except AttributeError as e:\n raise\n i = 0\n for sentence in sents:\n j = 0\n firstToken = None\n lastToken = None\n while i < len(para_words):\n if para_words[i][TEXT] != sentence[j]:\n raise Exception('Error on aligning: ',\n para_word_texts, ' and ', sentence,\n ' at positions ', i, j)\n if j == 0:\n firstToken = para_words[i]\n if j == len(sentence) - 1:\n lastToken = para_words[i]\n i += 1\n break\n j += 1\n i += 1\n sentenceDict = {'start': firstToken[START], 'end':\n lastToken[END]}\n dicts.append(sentenceDict)\n for sentence_attrib in ['sentences', 'sentence_texts',\n 'sentence_spans', 'sentence_starts', 'sentence_ends']:\n try:\n delattr(self, sentence_attrib)\n except AttributeError:\n pass\n self[SENTENCES] = dicts\n return self\n", "role": "user" }, { "content": "tokenize_sentences", "role": "assistant" } ]
def x(self): if not self.is_tagged(SENTENCES): self.tokenize_sentences() return self.texts(SENTENCES)
sentence_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(SENTENCES):\n self.tokenize_sentences()\n return self.texts(SENTENCES)\n", "role": "user" }, { "content": "sentence_texts", "role": "assistant" } ]
def x(self): if not self.is_tagged(SENTENCES): self.tokenize_sentences() return self.spans(SENTENCES)
sentence_spans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(SENTENCES):\n self.tokenize_sentences()\n return self.spans(SENTENCES)\n", "role": "user" }, { "content": "sentence_spans", "role": "assistant" } ]
def x(self): if not self.is_tagged(SENTENCES): self.tokenize_sentences() return self.starts(SENTENCES)
sentence_starts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(SENTENCES):\n self.tokenize_sentences()\n return self.starts(SENTENCES)\n", "role": "user" }, { "content": "sentence_starts", "role": "assistant" } ]
def x(self): if not self.is_tagged(SENTENCES): self.tokenize_sentences() return self.ends(SENTENCES)
sentence_ends
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(SENTENCES):\n self.tokenize_sentences()\n return self.ends(SENTENCES)\n", "role": "user" }, { "content": "sentence_ends", "role": "assistant" } ]
def x(self): if not self.is_tagged(SENTENCES): self.tokenize_sentences() tok = self.__word_tokenizer text = self.text dicts = [] for sentence in self[SENTENCES]: sent_start, sent_end = sentence[START], sentence[END] sent_text = text[sent_start:sent_end] spans = tok.span_tokenize(sent_text) for start, end in spans: dicts.append({START: start + sent_start, END: end + sent_start, TEXT: sent_text[start:end]}) self[WORDS] = dicts return self
tokenize_words
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(SENTENCES):\n self.tokenize_sentences()\n tok = self.__word_tokenizer\n text = self.text\n dicts = []\n for sentence in self[SENTENCES]:\n sent_start, sent_end = sentence[START], sentence[END]\n sent_text = text[sent_start:sent_end]\n spans = tok.span_tokenize(sent_text)\n for start, end in spans:\n dicts.append({START: start + sent_start, END: end + sent_start,\n TEXT: sent_text[start:end]})\n self[WORDS] = dicts\n return self\n", "role": "user" }, { "content": "tokenize_words", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() sentences = self.divide(WORDS, SENTENCES) for sentence in sentences: texts = [word[TEXT] for word in sentence] all_analysis = vabamorf.analyze(texts, **self.__kwargs) for word, analysis in zip(sentence, all_analysis): word[ANALYSIS] = analysis[ANALYSIS] word[TEXT] = analysis[TEXT] return self
tag_analysis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n sentences = self.divide(WORDS, SENTENCES)\n for sentence in sentences:\n texts = [word[TEXT] for word in sentence]\n all_analysis = vabamorf.analyze(texts, **self.__kwargs)\n for word, analysis in zip(sentence, all_analysis):\n word[ANALYSIS] = analysis[ANALYSIS]\n word[TEXT] = analysis[TEXT]\n return self\n", "role": "user" }, { "content": "tag_analysis", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() return [word[TEXT] for word in self[WORDS]]
word_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n return [word[TEXT] for word in self[WORDS]]\n", "role": "user" }, { "content": "word_texts", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() return self.spans(WORDS)
word_spans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n return self.spans(WORDS)\n", "role": "user" }, { "content": "word_spans", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() return self.starts(WORDS)
word_starts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n return self.starts(WORDS)\n", "role": "user" }, { "content": "word_starts", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() return self.ends(WORDS)
word_ends
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n return self.ends(WORDS)\n", "role": "user" }, { "content": "word_ends", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return [word[ANALYSIS] for word in self.words]
analysis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return [word[ANALYSIS] for word in self.words]\n", "role": "user" }, { "content": "analysis", "role": "assistant" } ]
def x(self, element, sep='|'): return [self.__get_key(word[ANALYSIS], element, sep) for word in self.words ]
get_analysis_element
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, element, sep='|'):\n return [self.__get_key(word[ANALYSIS], element, sep) for word in self.words\n ]\n", "role": "user" }, { "content": "get_analysis_element", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(ROOT)
roots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return self.get_analysis_element(ROOT)\n", "role": "user" }, { "content": "roots", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(LEMMA)
lemmas
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return self.get_analysis_element(LEMMA)\n", "role": "user" }, { "content": "lemmas", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return [[an[LEMMA] for an in word[ANALYSIS]] for word in self[WORDS]]
lemma_lists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return [[an[LEMMA] for an in word[ANALYSIS]] for word in self[WORDS]]\n", "role": "user" }, { "content": "lemma_lists", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(ENDING)
endings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return self.get_analysis_element(ENDING)\n", "role": "user" }, { "content": "endings", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(FORM)
forms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return self.get_analysis_element(FORM)\n", "role": "user" }, { "content": "forms", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(POSTAG)
postags
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return self.get_analysis_element(POSTAG)\n", "role": "user" }, { "content": "postags", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return [POSTAG_DESCRIPTIONS.get(tag, '') for tag in self. get_analysis_element(POSTAG)]
postag_descriptions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return [POSTAG_DESCRIPTIONS.get(tag, '') for tag in self.\n get_analysis_element(POSTAG)]\n", "role": "user" }, { "content": "postag_descriptions", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() return self.get_analysis_element(ROOT_TOKENS)
root_tokens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n return self.get_analysis_element(ROOT_TOKENS)\n", "role": "user" }, { "content": "root_tokens", "role": "assistant" } ]
def x(self): descs = [] for postag, form in zip(self.postags, self.forms): desc = VERB_TYPES.get(form, '') if len(desc) == 0: toks = form.split(' ') if len(toks) == 2: plur_desc = PLURALITY.get(toks[0], None) case_desc = CASES.get(toks[1], None) toks = [] if plur_desc is not None: toks.append(plur_desc) if case_desc is not None: toks.append(case_desc) desc = ' '.join(toks) descs.append(desc) return descs
descriptions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n descs = []\n for postag, form in zip(self.postags, self.forms):\n desc = VERB_TYPES.get(form, '')\n if len(desc) == 0:\n toks = form.split(' ')\n if len(toks) == 2:\n plur_desc = PLURALITY.get(toks[0], None)\n case_desc = CASES.get(toks[1], None)\n toks = []\n if plur_desc is not None:\n toks.append(plur_desc)\n if case_desc is not None:\n toks.append(case_desc)\n desc = ' '.join(toks)\n descs.append(desc)\n return descs\n", "role": "user" }, { "content": "descriptions", "role": "assistant" } ]
def x(self): if not self.__syntactic_parser or not isinstance(self. __syntactic_parser, VISLCG3Parser): self.__syntactic_parser = VISLCG3Parser() return self.tag_syntax()
tag_syntax_vislcg3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.__syntactic_parser or not isinstance(self.\n __syntactic_parser, VISLCG3Parser):\n self.__syntactic_parser = VISLCG3Parser()\n return self.tag_syntax()\n", "role": "user" }, { "content": "tag_syntax_vislcg3", "role": "assistant" } ]
def x(self): if not self.__syntactic_parser or not isinstance(self. __syntactic_parser, MaltParser): self.__syntactic_parser = MaltParser() return self.tag_syntax()
tag_syntax_maltparser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.__syntactic_parser or not isinstance(self.\n __syntactic_parser, MaltParser):\n self.__syntactic_parser = MaltParser()\n return self.tag_syntax()\n", "role": "user" }, { "content": "tag_syntax_maltparser", "role": "assistant" } ]
def x(self): if self.__syntactic_parser is None: self.__syntactic_parser = load_default_syntactic_parser() if not self.is_tagged(ANALYSIS): if isinstance(self.__syntactic_parser, MaltParser): if 'disambiguate' not in self.__kwargs: self.__kwargs['disambiguate'] = True self.tag_analysis() elif isinstance(self.__syntactic_parser, VISLCG3Parser): if 'disambiguate' not in self.__kwargs: self.__kwargs['disambiguate'] = False self.tag_analysis() return self.__syntactic_parser.parse_text(self, **self.__kwargs)
tag_syntax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.__syntactic_parser is None:\n self.__syntactic_parser = load_default_syntactic_parser()\n if not self.is_tagged(ANALYSIS):\n if isinstance(self.__syntactic_parser, MaltParser):\n if 'disambiguate' not in self.__kwargs:\n self.__kwargs['disambiguate'] = True\n self.tag_analysis()\n elif isinstance(self.__syntactic_parser, VISLCG3Parser):\n if 'disambiguate' not in self.__kwargs:\n self.__kwargs['disambiguate'] = False\n self.tag_analysis()\n return self.__syntactic_parser.parse_text(self, **self.__kwargs)\n", "role": "user" }, { "content": "tag_syntax", "role": "assistant" } ]
def x(self, layer=None): if not layer and self.__syntactic_parser: if isinstance(self.__syntactic_parser, MaltParser): layer = LAYER_CONLL elif isinstance(self.__syntactic_parser, VISLCG3Parser): layer = LAYER_VISLCG3 if not layer and self.is_tagged(LAYER_CONLL): layer = LAYER_CONLL elif not layer and self.is_tagged(LAYER_VISLCG3): layer = LAYER_VISLCG3 if layer: if layer == LAYER_CONLL: if not self.is_tagged(layer): self.tag_syntax_maltparser() return self.syntax_trees_conll elif layer == LAYER_VISLCG3: if not self.is_tagged(layer): self.tag_syntax_vislcg3() return self.syntax_trees_vislcg3 else: raise ValueError('(!) Unexpected layer name: ' + str(layer)) else: raise ValueError('(!) Missing layer name! ')
syntax_trees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layer=None):\n if not layer and self.__syntactic_parser:\n if isinstance(self.__syntactic_parser, MaltParser):\n layer = LAYER_CONLL\n elif isinstance(self.__syntactic_parser, VISLCG3Parser):\n layer = LAYER_VISLCG3\n if not layer and self.is_tagged(LAYER_CONLL):\n layer = LAYER_CONLL\n elif not layer and self.is_tagged(LAYER_VISLCG3):\n layer = LAYER_VISLCG3\n if layer:\n if layer == LAYER_CONLL:\n if not self.is_tagged(layer):\n self.tag_syntax_maltparser()\n return self.syntax_trees_conll\n elif layer == LAYER_VISLCG3:\n if not self.is_tagged(layer):\n self.tag_syntax_vislcg3()\n return self.syntax_trees_vislcg3\n else:\n raise ValueError('(!) Unexpected layer name: ' + str(layer))\n else:\n raise ValueError('(!) Missing layer name! ')\n", "role": "user" }, { "content": "syntax_trees", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() if self.__ner_tagger is None: self.__ner_tagger = load_default_ner_tagger() self.__ner_tagger.tag_document(self) return self
tag_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n if self.__ner_tagger is None:\n self.__ner_tagger = load_default_ner_tagger()\n self.__ner_tagger.tag_document(self)\n return self\n", "role": "user" }, { "content": "tag_labels", "role": "assistant" } ]
def x(self): if not self.is_tagged(LABEL): self.tag_labels() return [word[LABEL] for word in self.words]
labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(LABEL):\n self.tag_labels()\n return [word[LABEL] for word in self.words]\n", "role": "user" }, { "content": "labels", "role": "assistant" } ]
def x(self): if not self.is_tagged(LABEL): self.tag_labels() nes = [] word_start = -1 labels = self.labels + ['O'] words = self.words label = 'O' for i, l in enumerate(labels): if l.startswith('B-') or l == 'O': if word_start != -1: nes.append({START: words[word_start][START], END: words[i - 1][END], LABEL: label}) if l.startswith('B-'): word_start = i label = l[2:] else: word_start = -1 self[NAMED_ENTITIES] = nes return self
tag_named_entities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(LABEL):\n self.tag_labels()\n nes = []\n word_start = -1\n labels = self.labels + ['O']\n words = self.words\n label = 'O'\n for i, l in enumerate(labels):\n if l.startswith('B-') or l == 'O':\n if word_start != -1:\n nes.append({START: words[word_start][START], END: words[i -\n 1][END], LABEL: label})\n if l.startswith('B-'):\n word_start = i\n label = l[2:]\n else:\n word_start = -1\n self[NAMED_ENTITIES] = nes\n return self\n", "role": "user" }, { "content": "tag_named_entities", "role": "assistant" } ]
def x(self): if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() phrases = self.split_by(NAMED_ENTITIES) return [' '.join(phrase.lemmas) for phrase in phrases]
named_entities
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(NAMED_ENTITIES):\n self.tag_named_entities()\n phrases = self.split_by(NAMED_ENTITIES)\n return [' '.join(phrase.lemmas) for phrase in phrases]\n", "role": "user" }, { "content": "named_entities", "role": "assistant" } ]
def x(self): if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() return self.texts(NAMED_ENTITIES)
named_entity_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(NAMED_ENTITIES):\n self.tag_named_entities()\n return self.texts(NAMED_ENTITIES)\n", "role": "user" }, { "content": "named_entity_texts", "role": "assistant" } ]
def x(self): if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() return self.spans(NAMED_ENTITIES)
named_entity_spans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(NAMED_ENTITIES):\n self.tag_named_entities()\n return self.spans(NAMED_ENTITIES)\n", "role": "user" }, { "content": "named_entity_spans", "role": "assistant" } ]
def x(self): if not self.is_tagged(NAMED_ENTITIES): self.tag_named_entities() return [ne[LABEL] for ne in self[NAMED_ENTITIES]]
named_entity_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(NAMED_ENTITIES):\n self.tag_named_entities()\n return [ne[LABEL] for ne in self[NAMED_ENTITIES]]\n", "role": "user" }, { "content": "named_entity_labels", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() if not self.is_tagged(TIMEXES): if self.__timex_tagger is None: self.__timex_tagger = load_default_timex_tagger() self.__timex_tagger.tag_document(self, **self.__kwargs) return self
tag_timexes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n if not self.is_tagged(TIMEXES):\n if self.__timex_tagger is None:\n self.__timex_tagger = load_default_timex_tagger()\n self.__timex_tagger.tag_document(self, **self.__kwargs)\n return self\n", "role": "user" }, { "content": "tag_timexes", "role": "assistant" } ]
def x(self): if not self.is_tagged(TIMEXES): self.tag_timexes() return self.starts(TIMEXES)
timex_starts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(TIMEXES):\n self.tag_timexes()\n return self.starts(TIMEXES)\n", "role": "user" }, { "content": "timex_starts", "role": "assistant" } ]
def x(self): if not self.is_tagged(TIMEXES): self.tag_timexes() return self.ends(TIMEXES)
timex_ends
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(TIMEXES):\n self.tag_timexes()\n return self.ends(TIMEXES)\n", "role": "user" }, { "content": "timex_ends", "role": "assistant" } ]
def x(self): if not self.is_tagged(TIMEXES): self.tag_timexes() return self.spans(TIMEXES)
timex_spans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(TIMEXES):\n self.tag_timexes()\n return self.spans(TIMEXES)\n", "role": "user" }, { "content": "timex_spans", "role": "assistant" } ]
def x(self): if not self.is_tagged(ANALYSIS): self.tag_analysis() if self.__clause_segmenter is None: self.__clause_segmenter = load_default_clausesegmenter() return self.__clause_segmenter.tag(self)
tag_clause_annotations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(ANALYSIS):\n self.tag_analysis()\n if self.__clause_segmenter is None:\n self.__clause_segmenter = load_default_clausesegmenter()\n return self.__clause_segmenter.tag(self)\n", "role": "user" }, { "content": "tag_clause_annotations", "role": "assistant" } ]
def x(self): if not self.is_tagged(CLAUSE_ANNOTATION): self.tag_clause_annotations() return [word.get(CLAUSE_ANNOTATION, None) for word in self[WORDS]]
clause_annotations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(CLAUSE_ANNOTATION):\n self.tag_clause_annotations()\n return [word.get(CLAUSE_ANNOTATION, None) for word in self[WORDS]]\n", "role": "user" }, { "content": "clause_annotations", "role": "assistant" } ]
def x(self): if not self.is_tagged(CLAUSE_ANNOTATION): self.tag_clause_annotations() return [word.get(CLAUSE_IDX, None) for word in self[WORDS]]
clause_indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(CLAUSE_ANNOTATION):\n self.tag_clause_annotations()\n return [word.get(CLAUSE_IDX, None) for word in self[WORDS]]\n", "role": "user" }, { "content": "clause_indices", "role": "assistant" } ]
def x(self): if not self.is_tagged(CLAUSE_ANNOTATION): self.tag_clause_annotations() def x(words): clauses = defaultdict(list) start = words[0][START] end = words[0][END] clause = words[0][CLAUSE_IDX] for word in words: if word[CLAUSE_IDX] != clause: clauses[clause].append((start, end)) start, clause = word[START], word[CLAUSE_IDX] end = word[END] clauses[clause].append((start, words[-1][END])) clauses = [(key, {START: [s for s, e in clause], END: [e for s, e in clause]}) for key, clause in clauses.items()] return [v for k, v in sorted(clauses)] clauses = [] sentences = self.divide() for sentence in sentences: clauses.extend(from_sentence(sentence)) self[CLAUSES] = clauses return self
tag_clauses
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(CLAUSE_ANNOTATION):\n self.tag_clause_annotations()\n\n def x(words):\n clauses = defaultdict(list)\n start = words[0][START]\n end = words[0][END]\n clause = words[0][CLAUSE_IDX]\n for word in words:\n if word[CLAUSE_IDX] != clause:\n clauses[clause].append((start, end))\n start, clause = word[START], word[CLAUSE_IDX]\n end = word[END]\n clauses[clause].append((start, words[-1][END]))\n clauses = [(key, {START: [s for s, e in clause], END: [e for s, e in\n clause]}) for key, clause in clauses.items()]\n return [v for k, v in sorted(clauses)]\n clauses = []\n sentences = self.divide()\n for sentence in sentences:\n clauses.extend(from_sentence(sentence))\n self[CLAUSES] = clauses\n return self\n", "role": "user" }, { "content": "tag_clauses", "role": "assistant" } ]
def x(self): if not self.is_tagged(CLAUSES): self.tag_clauses() return self.texts(CLAUSES)
clause_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(CLAUSES):\n self.tag_clauses()\n return self.texts(CLAUSES)\n", "role": "user" }, { "content": "clause_texts", "role": "assistant" } ]
def x(self): if not self.is_tagged(CLAUSES): self.tag_clauses() if self.__verbchain_detector is None: self.__verbchain_detector = load_default_verbchain_detector() sentences = self.divide() verbchains = [] for sentence in sentences: chains = self.__verbchain_detector.detectVerbChainsFromSent(sentence) for chain in chains: word_spans = [(sentence[idx][START], sentence[idx][END]) for idx in sorted(chain[PHRASE])] chain[START] = [span[0] for span in word_spans] chain[END] = [span[1] for span in word_spans] verbchains.extend(chains) self[VERB_CHAINS] = verbchains return self
tag_verb_chains
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(CLAUSES):\n self.tag_clauses()\n if self.__verbchain_detector is None:\n self.__verbchain_detector = load_default_verbchain_detector()\n sentences = self.divide()\n verbchains = []\n for sentence in sentences:\n chains = self.__verbchain_detector.detectVerbChainsFromSent(sentence)\n for chain in chains:\n word_spans = [(sentence[idx][START], sentence[idx][END]) for\n idx in sorted(chain[PHRASE])]\n chain[START] = [span[0] for span in word_spans]\n chain[END] = [span[1] for span in word_spans]\n verbchains.extend(chains)\n self[VERB_CHAINS] = verbchains\n return self\n", "role": "user" }, { "content": "tag_verb_chains", "role": "assistant" } ]
def x(self): if not self.is_tagged(VERB_CHAINS): self.tag_verb_chains() return self.texts(VERB_CHAINS)
verb_chain_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(VERB_CHAINS):\n self.tag_verb_chains()\n return self.texts(VERB_CHAINS)\n", "role": "user" }, { "content": "verb_chain_texts", "role": "assistant" } ]
def x(self): if not self.is_tagged(VERB_CHAINS): self.tag_verb_chains() return self.starts(VERB_CHAINS)
verb_chain_starts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(VERB_CHAINS):\n self.tag_verb_chains()\n return self.starts(VERB_CHAINS)\n", "role": "user" }, { "content": "verb_chain_starts", "role": "assistant" } ]
def x(self): if not self.is_tagged(VERB_CHAINS): self.tag_verb_chains() return self.ends(VERB_CHAINS)
verb_chain_ends
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(VERB_CHAINS):\n self.tag_verb_chains()\n return self.ends(VERB_CHAINS)\n", "role": "user" }, { "content": "verb_chain_ends", "role": "assistant" } ]
def x(self, **kwargs): global wordnet_tagger if wordnet_tagger is None: wordnet_tagger = WordnetTagger() self.__wordnet_tagger = wordnet_tagger if len(kwargs) > 0: return self.__wordnet_tagger.tag_text(self, **kwargs) return self.__wordnet_tagger.tag_text(self, **self.__kwargs)
tag_wordnet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n global wordnet_tagger\n if wordnet_tagger is None:\n wordnet_tagger = WordnetTagger()\n self.__wordnet_tagger = wordnet_tagger\n if len(kwargs) > 0:\n return self.__wordnet_tagger.tag_text(self, **kwargs)\n return self.__wordnet_tagger.tag_text(self, **self.__kwargs)\n", "role": "user" }, { "content": "tag_wordnet", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDNET): self.tag_wordnet() return [[a[WORDNET] for a in analysis] for analysis in self.analysis]
wordnet_annotations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDNET):\n self.tag_wordnet()\n return [[a[WORDNET] for a in analysis] for analysis in self.analysis]\n", "role": "user" }, { "content": "wordnet_annotations", "role": "assistant" } ]
def x(self): synsets = [] for wn_annots in self.wordnet_annotations: word_synsets = [] for wn_annot in wn_annots: for synset in wn_annot.get(SYNSETS, []): word_synsets.append(deepcopy(synset)) synsets.append(word_synsets) return synsets
synsets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n synsets = []\n for wn_annots in self.wordnet_annotations:\n word_synsets = []\n for wn_annot in wn_annots:\n for synset in wn_annot.get(SYNSETS, []):\n word_synsets.append(deepcopy(synset))\n synsets.append(word_synsets)\n return synsets\n", "role": "user" }, { "content": "synsets", "role": "assistant" } ]
def x(self): literals = [] for word_synsets in self.synsets: word_literals = set() for synset in word_synsets: for variant in synset.get(SYN_VARIANTS): if LITERAL in variant: word_literals.add(variant[LITERAL]) literals.append(list(sorted(word_literals))) return literals
word_literals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n literals = []\n for word_synsets in self.synsets:\n word_literals = set()\n for synset in word_synsets:\n for variant in synset.get(SYN_VARIANTS):\n if LITERAL in variant:\n word_literals.add(variant[LITERAL])\n literals.append(list(sorted(word_literals)))\n return literals\n", "role": "user" }, { "content": "word_literals", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() return [data[SPELLING] for data in vabamorf.spellcheck(self.word_texts, suggestions=False)]
spelling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n return [data[SPELLING] for data in vabamorf.spellcheck(self.word_texts,\n suggestions=False)]\n", "role": "user" }, { "content": "spelling", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() return [data[SUGGESTIONS] for data in vabamorf.spellcheck(self. word_texts, suggestions=True)]
spelling_suggestions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n return [data[SUGGESTIONS] for data in vabamorf.spellcheck(self.\n word_texts, suggestions=True)]\n", "role": "user" }, { "content": "spelling_suggestions", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() return vabamorf.spellcheck(self.word_texts, suggestions=True)
spellcheck_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n return vabamorf.spellcheck(self.word_texts, suggestions=True)\n", "role": "user" }, { "content": "spellcheck_results", "role": "assistant" } ]
def x(self): if not self.is_tagged(WORDS): self.tokenize_words() text = self.text fixed = vabamorf.fix_spelling(self.word_texts, join=False) spans = self.word_spans assert len(fixed) == len(spans) if len(spans) > 0: newtoks = [] lastend = 0 for fix, (start, end) in zip(fixed, spans): newtoks.append(text[lastend:start]) newtoks.append(fix) lastend = end newtoks.append(text[lastend:]) return Text(''.join(newtoks), **self.__kwargs) return self
fix_spelling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.is_tagged(WORDS):\n self.tokenize_words()\n text = self.text\n fixed = vabamorf.fix_spelling(self.word_texts, join=False)\n spans = self.word_spans\n assert len(fixed) == len(spans)\n if len(spans) > 0:\n newtoks = []\n lastend = 0\n for fix, (start, end) in zip(fixed, spans):\n newtoks.append(text[lastend:start])\n newtoks.append(fix)\n lastend = end\n newtoks.append(text[lastend:])\n return Text(''.join(newtoks), **self.__kwargs)\n return self\n", "role": "user" }, { "content": "fix_spelling", "role": "assistant" } ]
def x(self): return Text(self.__text_cleaner.clean(self[TEXT]), **self.__kwargs)
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return Text(self.__text_cleaner.clean(self[TEXT]), **self.__kwargs)\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(self, spans, sep=' '): N = len(spans) results = [{TEXT: text} for text in self.texts_from_spans(spans, sep=sep)] for elem in self: if isinstance(self[elem], list): splits = divide_by_spans(self[elem], spans, translate=True, sep=sep ) for idx in range(N): results[idx][elem] = splits[idx] return [Text(res) for res in results]
split_given_spans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, spans, sep=' '):\n N = len(spans)\n results = [{TEXT: text} for text in self.texts_from_spans(spans, sep=sep)]\n for elem in self:\n if isinstance(self[elem], list):\n splits = divide_by_spans(self[elem], spans, translate=True, sep=sep\n )\n for idx in range(N):\n results[idx][elem] = splits[idx]\n return [Text(res) for res in results]\n", "role": "user" }, { "content": "split_given_spans", "role": "assistant" } ]
def x(self, layer, sep=' '): if not self.is_tagged(layer): self.tag(layer) return self.split_given_spans(self.spans(layer), sep=sep)
split_by
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layer, sep=' '):\n if not self.is_tagged(layer):\n self.tag(layer)\n return self.split_given_spans(self.spans(layer), sep=sep)\n", "role": "user" }, { "content": "split_by", "role": "assistant" } ]
def x(self, regex_or_pattern, flags=re.U, gaps=True): text = self[TEXT] regex = regex_or_pattern if isinstance(regex, six.string_types): regex = re.compile(regex_or_pattern, flags=flags) last_end = 0 spans = [] if gaps: for mo in regex.finditer(text): start, end = mo.start(), mo.end() if start > last_end: spans.append((last_end, start)) last_end = end if last_end < len(text): spans.append((last_end, len(text))) else: spans = [(mo.start(), mo.end()) for mo in regex.finditer(text)] return self.split_given_spans(spans)
split_by_regex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, regex_or_pattern, flags=re.U, gaps=True):\n text = self[TEXT]\n regex = regex_or_pattern\n if isinstance(regex, six.string_types):\n regex = re.compile(regex_or_pattern, flags=flags)\n last_end = 0\n spans = []\n if gaps:\n for mo in regex.finditer(text):\n start, end = mo.start(), mo.end()\n if start > last_end:\n spans.append((last_end, start))\n last_end = end\n if last_end < len(text):\n spans.append((last_end, len(text)))\n else:\n spans = [(mo.start(), mo.end()) for mo in regex.finditer(text)]\n return self.split_given_spans(spans)\n", "role": "user" }, { "content": "split_by_regex", "role": "assistant" } ]
def x(self, layer=WORDS, by=SENTENCES): if not self.is_tagged(layer): self.tag(layer) if not self.is_tagged(by): self.tag(by) return divide(self[layer], self[by])
divide
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layer=WORDS, by=SENTENCES):\n if not self.is_tagged(layer):\n self.tag(layer)\n if not self.is_tagged(by):\n self.tag(by)\n return divide(self[layer], self[by])\n", "role": "user" }, { "content": "divide", "role": "assistant" } ]
def x(tags): current_classes = set() result = [] for pos, group in group_tags_at_same_position(tags): opening, closing = get_opening_closing_tags(group) closing_added = False if len(closing) > 0: closing_tag = Tag(pos, False, '') for tag in closing: current_classes.remove(tag.css_class) result.append(closing_tag) closing_added = True opening_added = False if len(opening) > 0: if not closing_added and len(current_classes) > 0: result.append(Tag(pos, False, '')) for tag in opening: current_classes.add(tag.css_class) opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) opening_added = True if closing_added and not opening_added and len(current_classes) > 0: opening_tag = Tag(pos, True, ' '.join(sorted(current_classes))) result.append(opening_tag) return result
create_tags_with_concatenated_css_classes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tags):\n current_classes = set()\n result = []\n for pos, group in group_tags_at_same_position(tags):\n opening, closing = get_opening_closing_tags(group)\n closing_added = False\n if len(closing) > 0:\n closing_tag = Tag(pos, False, '')\n for tag in closing:\n current_classes.remove(tag.css_class)\n result.append(closing_tag)\n closing_added = True\n opening_added = False\n if len(opening) > 0:\n if not closing_added and len(current_classes) > 0:\n result.append(Tag(pos, False, ''))\n for tag in opening:\n current_classes.add(tag.css_class)\n opening_tag = Tag(pos, True, ' '.join(sorted(current_classes)))\n result.append(opening_tag)\n opening_added = True\n if closing_added and not opening_added and len(current_classes) > 0:\n opening_tag = Tag(pos, True, ' '.join(sorted(current_classes)))\n result.append(opening_tag)\n return result\n", "role": "user" }, { "content": "create_tags_with_concatenated_css_classes", "role": "assistant" } ]
def x(matches): if len(matches) == 0: return matches matches.sort() N = len(matches) scores = [len(match) for match in matches] prev = [-1] * N for i in range(1, N): bestscore = -1 bestprev = -1 j = i while j >= 0: if matches[j].is_before(matches[i]): l = scores[j] + len(matches[i]) if l >= bestscore: bestscore = l bestprev = j else: l = scores[j] - len(matches[j]) + len(matches[i]) if l >= bestscore: bestscore = l bestprev = prev[j] j = j - 1 scores[i] = bestscore prev[i] = bestprev bestscore = max(scores) bestidx = len(scores) - scores[-1::-1].index(bestscore) - 1 keepidxs = [bestidx] bestidx = prev[bestidx] while bestidx != -1: keepidxs.append(bestidx) bestidx = prev[bestidx] return [matches[idx] for idx in reversed(keepidxs)]
resolve_using_maximal_coverage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(matches):\n if len(matches) == 0:\n return matches\n matches.sort()\n N = len(matches)\n scores = [len(match) for match in matches]\n prev = [-1] * N\n for i in range(1, N):\n bestscore = -1\n bestprev = -1\n j = i\n while j >= 0:\n if matches[j].is_before(matches[i]):\n l = scores[j] + len(matches[i])\n if l >= bestscore:\n bestscore = l\n bestprev = j\n else:\n l = scores[j] - len(matches[j]) + len(matches[i])\n if l >= bestscore:\n bestscore = l\n bestprev = prev[j]\n j = j - 1\n scores[i] = bestscore\n prev[i] = bestprev\n bestscore = max(scores)\n bestidx = len(scores) - scores[-1::-1].index(bestscore) - 1\n keepidxs = [bestidx]\n bestidx = prev[bestidx]\n while bestidx != -1:\n keepidxs.append(bestidx)\n bestidx = prev[bestidx]\n return [matches[idx] for idx in reversed(keepidxs)]\n", "role": "user" }, { "content": "resolve_using_maximal_coverage", "role": "assistant" } ]
def x(tokens, wordID1, wordID2, punctForbidden=True, commaForbidden=True, conjWordsForbidden=True): global _breakerJaNingEgaVoi, _breakerAgaKuidVaid, _breakerKomaLopus, _breakerPunktuats minWID = min(wordID1, wordID2) maxWID = max(wordID1, wordID2) insideCheckArea = False for i in range(len(tokens)): token = tokens[i] if token[WORD_ID] >= minWID: insideCheckArea = True if token[WORD_ID] >= maxWID: insideCheckArea = False if insideCheckArea: if punctForbidden and _breakerPunktuats.matches(token): return True if commaForbidden and _breakerKomaLopus.matches(token): return True if conjWordsForbidden and (_breakerAgaKuidVaid.matches(token) or _breakerJaNingEgaVoi.matches(token)): return True return False
isSeparatedByPossibleClauseBreakers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tokens, wordID1, wordID2, punctForbidden=True, commaForbidden=True,\n conjWordsForbidden=True):\n global _breakerJaNingEgaVoi, _breakerAgaKuidVaid, _breakerKomaLopus, _breakerPunktuats\n minWID = min(wordID1, wordID2)\n maxWID = max(wordID1, wordID2)\n insideCheckArea = False\n for i in range(len(tokens)):\n token = tokens[i]\n if token[WORD_ID] >= minWID:\n insideCheckArea = True\n if token[WORD_ID] >= maxWID:\n insideCheckArea = False\n if insideCheckArea:\n if punctForbidden and _breakerPunktuats.matches(token):\n return True\n if commaForbidden and _breakerKomaLopus.matches(token):\n return True\n if conjWordsForbidden and (_breakerAgaKuidVaid.matches(token) or\n _breakerJaNingEgaVoi.matches(token)):\n return True\n return False\n", "role": "user" }, { "content": "isSeparatedByPossibleClauseBreakers", "role": "assistant" } ]
def x(wordID, clauseTokens): jaNingEgaVoi = WordTemplate({ROOT: '^(ja|ning|ega|v[ōõ]i)$', POSTAG: '[DJ]'}) punktuatsioon = WordTemplate({POSTAG: 'Z'}) for i in range(len(clauseTokens)): token = clauseTokens[i] if token[WORD_ID] == wordID: if i + 1 == len(clauseTokens): return True else: for j in range(i + 1, len(clauseTokens)): token2 = clauseTokens[j] if not (jaNingEgaVoi.matches(token2) or punktuatsioon. matches(token2)): return False return True return False
isClauseFinal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wordID, clauseTokens):\n jaNingEgaVoi = WordTemplate({ROOT: '^(ja|ning|ega|v[ōõ]i)$', POSTAG:\n '[DJ]'})\n punktuatsioon = WordTemplate({POSTAG: 'Z'})\n for i in range(len(clauseTokens)):\n token = clauseTokens[i]\n if token[WORD_ID] == wordID:\n if i + 1 == len(clauseTokens):\n return True\n else:\n for j in range(i + 1, len(clauseTokens)):\n token2 = clauseTokens[j]\n if not (jaNingEgaVoi.matches(token2) or punktuatsioon.\n matches(token2)):\n return False\n return True\n return False\n", "role": "user" }, { "content": "isClauseFinal", "role": "assistant" } ]
def x(wordID, clauseTokens): koma = WordTemplate({ROOT: '^,+$', POSTAG: 'Z'}) for i in range(len(clauseTokens)): token = clauseTokens[i] if token[WORD_ID] == wordID: if re.match('^.*,$', token[TEXT]): return True elif i + 1 < len(clauseTokens) and koma.matches(clauseTokens[i + 1] ): return True break return False
isFollowedByComma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(wordID, clauseTokens):\n koma = WordTemplate({ROOT: '^,+$', POSTAG: 'Z'})\n for i in range(len(clauseTokens)):\n token = clauseTokens[i]\n if token[WORD_ID] == wordID:\n if re.match('^.*,$', token[TEXT]):\n return True\n elif i + 1 < len(clauseTokens) and koma.matches(clauseTokens[i + 1]\n ):\n return True\n break\n return False\n", "role": "user" }, { "content": "isFollowedByComma", "role": "assistant" } ]
def x(araVerb, otherVerb): global _verbAraAgreements for i in range(0, len(_verbAraAgreements), 2): araVerbTemplate = _verbAraAgreements[i] otherVerbTemplate = _verbAraAgreements[i + 1] matchingAraAnalyses = araVerbTemplate.matchingAnalyseIndexes(araVerb) if matchingAraAnalyses: matchingVerbAnalyses = otherVerbTemplate.matchingAnalyseIndexes( otherVerb) if matchingVerbAnalyses: return [matchingAraAnalyses, matchingVerbAnalyses] return []
canFormAraPhrase
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(araVerb, otherVerb):\n global _verbAraAgreements\n for i in range(0, len(_verbAraAgreements), 2):\n araVerbTemplate = _verbAraAgreements[i]\n otherVerbTemplate = _verbAraAgreements[i + 1]\n matchingAraAnalyses = araVerbTemplate.matchingAnalyseIndexes(araVerb)\n if matchingAraAnalyses:\n matchingVerbAnalyses = otherVerbTemplate.matchingAnalyseIndexes(\n otherVerb)\n if matchingVerbAnalyses:\n return [matchingAraAnalyses, matchingVerbAnalyses]\n return []\n", "role": "user" }, { "content": "canFormAraPhrase", "role": "assistant" } ]
def x(clauseTokens, clauseID, foundChains): verbOle = WordTemplate({ROOT: '^ole$', POSTAG: 'V'}) verbOleJarel1 = WordTemplate({POSTAG: 'V', FORM: '(nud)$'}) verbOleJarel2 = WordTemplate({POSTAG: 'V', FORM: '^(mas|tud)$'}) verbMata = WordTemplate({POSTAG: 'V', FORM: '^(mata)$'}) verbMaDa = WordTemplate({POSTAG: 'V', FORM: '^(da|ma)$'}) annotatedWords = [] for verbObj in foundChains: if verbObj[CLAUSE_IDX] != clauseID: continue if len(verbObj[PATTERN]) == 1 and re.match('^(ei|ära|ega)$', verbObj[PATTERN][0]): continue annotatedWords.extend(verbObj[PHRASE]) for verbObj in foundChains: if verbObj[CLAUSE_IDX] != clauseID: continue if verbObj[PATTERN][-1] == 'ole' and verbObj[OTHER_VERBS]: eiOlePattern = len(verbObj[PATTERN]) == 2 and verbObj[PATTERN][0 ] == 'ei' lastVerbWID = verbObj[PHRASE][-1] lastTokIndex = [i for i in range(len(clauseTokens)) if clauseTokens[i][WORD_ID] == lastVerbWID] lastTokIndex = lastTokIndex[0] expansion = None appliedRule = 0 if not _isClauseFinal(lastVerbWID, clauseTokens): maDaVerbsBetween = 0 oleInfFollowing = 0 for i in range(lastTokIndex + 1, len(clauseTokens)): token = clauseTokens[i] tokenWID = token[WORD_ID] if tokenWID in annotatedWords: break if verbMaDa.matches(token): maDaVerbsBetween += 1 if verbOleJarel1.matches(token) or verbOleJarel2.matches( token): if _isClauseFinal(tokenWID, clauseTokens ) and not _isSeparatedByPossibleClauseBreakers( clauseTokens, verbObj[PHRASE][-1], tokenWID, True, True, True): expansion = token elif verbOleJarel1.matches(token ) and eiOlePattern and i - lastTokIndex <= 2: expansion = token oleInfFollowing += 1 break elif verbMata.matches(token) and maDaVerbsBetween == 0: if _isClauseFinal(tokenWID, clauseTokens ) and not _isSeparatedByPossibleClauseBreakers( clauseTokens, verbObj[PHRASE][-1], tokenWID, True, True, True): expansion = token break oleInfFollowing += 1 if oleInfFollowing == 0 and not expansion: minWID = min(verbObj[PHRASE]) lastTokIndex = [i for i in range(len(clauseTokens)) if clauseTokens[i][WORD_ID] == minWID] lastTokIndex = lastTokIndex[0] token = clauseTokens[lastTokIndex - 1] if lastTokIndex - 1 > -1 and token[WORD_ID ] not in annotatedWords: if verbOleJarel1.matches(token ) or verbOleJarel2.matches(token): expansion = token appliedRule = 1 else: minWID = min(verbObj[PHRASE]) lastTokIndex = [i for i in range(len(clauseTokens)) if clauseTokens[i][WORD_ID] == minWID] if lastTokIndex: lastTokIndex = lastTokIndex[0] if lastTokIndex - 1 > -1 and clauseTokens[lastTokIndex - 1 ][WORD_ID] not in annotatedWords: token = clauseTokens[lastTokIndex - 1] if verbOleJarel1.matches(token ) or verbOleJarel2.matches(token): expansion = token if expansion: tokenWID = expansion[WORD_ID] verbObj[PHRASE].append(tokenWID) verbObj[ANALYSIS_IDS].append(_getMatchingAnalysisIDs( expansion, [verbOleJarel1, verbOleJarel2, verbMata])) if verbOle.matches(expansion): verbObj[PATTERN].append('ole') else: verbObj[PATTERN].append('verb') annotatedWords.append(tokenWID)
expandOlemaVerbChains
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clauseTokens, clauseID, foundChains):\n verbOle = WordTemplate({ROOT: '^ole$', POSTAG: 'V'})\n verbOleJarel1 = WordTemplate({POSTAG: 'V', FORM: '(nud)$'})\n verbOleJarel2 = WordTemplate({POSTAG: 'V', FORM: '^(mas|tud)$'})\n verbMata = WordTemplate({POSTAG: 'V', FORM: '^(mata)$'})\n verbMaDa = WordTemplate({POSTAG: 'V', FORM: '^(da|ma)$'})\n annotatedWords = []\n for verbObj in foundChains:\n if verbObj[CLAUSE_IDX] != clauseID:\n continue\n if len(verbObj[PATTERN]) == 1 and re.match('^(ei|ära|ega)$',\n verbObj[PATTERN][0]):\n continue\n annotatedWords.extend(verbObj[PHRASE])\n for verbObj in foundChains:\n if verbObj[CLAUSE_IDX] != clauseID:\n continue\n if verbObj[PATTERN][-1] == 'ole' and verbObj[OTHER_VERBS]:\n eiOlePattern = len(verbObj[PATTERN]) == 2 and verbObj[PATTERN][0\n ] == 'ei'\n lastVerbWID = verbObj[PHRASE][-1]\n lastTokIndex = [i for i in range(len(clauseTokens)) if \n clauseTokens[i][WORD_ID] == lastVerbWID]\n lastTokIndex = lastTokIndex[0]\n expansion = None\n appliedRule = 0\n if not _isClauseFinal(lastVerbWID, clauseTokens):\n maDaVerbsBetween = 0\n oleInfFollowing = 0\n for i in range(lastTokIndex + 1, len(clauseTokens)):\n token = clauseTokens[i]\n tokenWID = token[WORD_ID]\n if tokenWID in annotatedWords:\n break\n if verbMaDa.matches(token):\n maDaVerbsBetween += 1\n if verbOleJarel1.matches(token) or verbOleJarel2.matches(\n token):\n if _isClauseFinal(tokenWID, clauseTokens\n ) and not _isSeparatedByPossibleClauseBreakers(\n clauseTokens, verbObj[PHRASE][-1], tokenWID, \n True, True, True):\n expansion = token\n elif verbOleJarel1.matches(token\n ) and eiOlePattern and i - lastTokIndex <= 2:\n expansion = token\n oleInfFollowing += 1\n break\n elif verbMata.matches(token) and maDaVerbsBetween == 0:\n if _isClauseFinal(tokenWID, clauseTokens\n ) and not _isSeparatedByPossibleClauseBreakers(\n clauseTokens, verbObj[PHRASE][-1], tokenWID, \n True, True, True):\n expansion = token\n break\n oleInfFollowing += 1\n if oleInfFollowing == 0 and not expansion:\n minWID = min(verbObj[PHRASE])\n lastTokIndex = [i for i in range(len(clauseTokens)) if \n clauseTokens[i][WORD_ID] == minWID]\n lastTokIndex = lastTokIndex[0]\n token = clauseTokens[lastTokIndex - 1]\n if lastTokIndex - 1 > -1 and token[WORD_ID\n ] not in annotatedWords:\n if verbOleJarel1.matches(token\n ) or verbOleJarel2.matches(token):\n expansion = token\n appliedRule = 1\n else:\n minWID = min(verbObj[PHRASE])\n lastTokIndex = [i for i in range(len(clauseTokens)) if \n clauseTokens[i][WORD_ID] == minWID]\n if lastTokIndex:\n lastTokIndex = lastTokIndex[0]\n if lastTokIndex - 1 > -1 and clauseTokens[lastTokIndex - 1\n ][WORD_ID] not in annotatedWords:\n token = clauseTokens[lastTokIndex - 1]\n if verbOleJarel1.matches(token\n ) or verbOleJarel2.matches(token):\n expansion = token\n if expansion:\n tokenWID = expansion[WORD_ID]\n verbObj[PHRASE].append(tokenWID)\n verbObj[ANALYSIS_IDS].append(_getMatchingAnalysisIDs(\n expansion, [verbOleJarel1, verbOleJarel2, verbMata]))\n if verbOle.matches(expansion):\n verbObj[PATTERN].append('ole')\n else:\n verbObj[PATTERN].append('verb')\n annotatedWords.append(tokenWID)\n", "role": "user" }, { "content": "expandOlemaVerbChains", "role": "assistant" } ]
def x(infile): relations = dict() in_f = codecs.open(infile, mode='r', encoding='utf-8') for line in in_f: line = line.rstrip() if len(line) > 0 and not re.match('^#.+$', line): verb, forms = line.split('\t') relations[verb] = forms.split() in_f.close() return relations
loadVerbSubcatRelations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(infile):\n relations = dict()\n in_f = codecs.open(infile, mode='r', encoding='utf-8')\n for line in in_f:\n line = line.rstrip()\n if len(line) > 0 and not re.match('^#.+$', line):\n verb, forms = line.split('\\t')\n relations[verb] = forms.split()\n in_f.close()\n return relations\n", "role": "user" }, { "content": "loadVerbSubcatRelations", "role": "assistant" } ]
def x(verbObj, clauseTokens, clauseID): global _verbInfNonExpansible if verbObj[OTHER_VERBS] and verbObj[CLAUSE_IDX] == clauseID and re.match( '^(verb)$', verbObj[PATTERN][-1], re.I): lastToken = [token for token in clauseTokens if token[WORD_ID] == verbObj[PHRASE][-1]] if not lastToken: raise Exception(' Last token not found for ' + str(verbObj) + ' in ' + str(getJsonAsTextString(clauseTokens))) lastToken = lastToken[0] if not _verbInfNonExpansible.matches(lastToken): if len(verbObj[PATTERN]) >= 3 and verbObj[PATTERN][-2] == '&': return False return True return False
isVerbExpansible
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(verbObj, clauseTokens, clauseID):\n global _verbInfNonExpansible\n if verbObj[OTHER_VERBS] and verbObj[CLAUSE_IDX] == clauseID and re.match(\n '^(verb)$', verbObj[PATTERN][-1], re.I):\n lastToken = [token for token in clauseTokens if token[WORD_ID] ==\n verbObj[PHRASE][-1]]\n if not lastToken:\n raise Exception(' Last token not found for ' + str(verbObj) +\n ' in ' + str(getJsonAsTextString(clauseTokens)))\n lastToken = lastToken[0]\n if not _verbInfNonExpansible.matches(lastToken):\n if len(verbObj[PATTERN]) >= 3 and verbObj[PATTERN][-2] == '&':\n return False\n return True\n return False\n", "role": "user" }, { "content": "isVerbExpansible", "role": "assistant" } ]
def x(foundSubcatChain): markings = [] tokens = [] nonConjTokens = [] for marking, token in foundSubcatChain: markings.append(marking) tokens.append(token) if marking != '&': nonConjTokens.append(token) if len(markings) == 3 and markings[0] == markings[2] and markings[0 ] != '&' and markings[1] == '&': return tokens elif len(markings) > 3 and markings[0] == markings[2] and markings[0 ] != '&' and markings[1] == '&' and all([(m == '&') for m in markings[3:]]): return tokens[:3] elif len(nonConjTokens) > 0: return nonConjTokens[:1] return []
suitableVerbExpansion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(foundSubcatChain):\n markings = []\n tokens = []\n nonConjTokens = []\n for marking, token in foundSubcatChain:\n markings.append(marking)\n tokens.append(token)\n if marking != '&':\n nonConjTokens.append(token)\n if len(markings) == 3 and markings[0] == markings[2] and markings[0\n ] != '&' and markings[1] == '&':\n return tokens\n elif len(markings) > 3 and markings[0] == markings[2] and markings[0\n ] != '&' and markings[1] == '&' and all([(m == '&') for m in\n markings[3:]]):\n return tokens[:3]\n elif len(nonConjTokens) > 0:\n return nonConjTokens[:1]\n return []\n", "role": "user" }, { "content": "suitableVerbExpansion", "role": "assistant" } ]
def x(clauseTokens, clauseID, foundChains): verbTud = WordTemplate({POSTAG: 'V', FORM: '^(tud|dud)$'}) verb = WordTemplate({POSTAG: 'V'}) verbOlema = WordTemplate({POSTAG: 'V', ROOT: '^(ole)$'}) for verbObj in foundChains: if _isVerbExpansible(verbObj, clauseTokens, clauseID): lastVerbWID = verbObj[PHRASE][-1] lastToken = [token for token in clauseTokens if token[WORD_ID] == lastVerbWID] lastIndex = [i for i in range(len(clauseTokens)) if clauseTokens[i][WORD_ID] == lastVerbWID] lastToken = lastToken[0] lastIndex = lastIndex[0] mainVerb = [analysis[ROOT] for analysis in verb. matchingAnalyses(lastToken)] mainVerbLemma = mainVerb[0] if mainVerbLemma == 'saa': expansion = None if not _isClauseFinal(lastVerbWID, clauseTokens): for i in range(lastIndex + 1, len(clauseTokens)): token = clauseTokens[i] tokenWID = token[WORD_ID] if verbTud.matches(token) and _isClauseFinal(tokenWID, clauseTokens ) and not _isSeparatedByPossibleClauseBreakers( clauseTokens, verbObj[PHRASE][-1], tokenWID, True, True, False): expansion = token break elif lastIndex - 1 > -1: if verbTud.matches(clauseTokens[lastIndex - 1]): expansion = clauseTokens[lastIndex - 1] if expansion: tokenWID = expansion[WORD_ID] verbObj[PHRASE].append(tokenWID) verbObj[ANALYSIS_IDS].append(_getMatchingAnalysisIDs( expansion, verbTud)) if verbOlema.matches(expansion): verbObj[PATTERN].append('ole') else: verbObj[PATTERN].append('verb')
expandSaamaWithTud
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clauseTokens, clauseID, foundChains):\n verbTud = WordTemplate({POSTAG: 'V', FORM: '^(tud|dud)$'})\n verb = WordTemplate({POSTAG: 'V'})\n verbOlema = WordTemplate({POSTAG: 'V', ROOT: '^(ole)$'})\n for verbObj in foundChains:\n if _isVerbExpansible(verbObj, clauseTokens, clauseID):\n lastVerbWID = verbObj[PHRASE][-1]\n lastToken = [token for token in clauseTokens if token[WORD_ID] ==\n lastVerbWID]\n lastIndex = [i for i in range(len(clauseTokens)) if \n clauseTokens[i][WORD_ID] == lastVerbWID]\n lastToken = lastToken[0]\n lastIndex = lastIndex[0]\n mainVerb = [analysis[ROOT] for analysis in verb.\n matchingAnalyses(lastToken)]\n mainVerbLemma = mainVerb[0]\n if mainVerbLemma == 'saa':\n expansion = None\n if not _isClauseFinal(lastVerbWID, clauseTokens):\n for i in range(lastIndex + 1, len(clauseTokens)):\n token = clauseTokens[i]\n tokenWID = token[WORD_ID]\n if verbTud.matches(token) and _isClauseFinal(tokenWID,\n clauseTokens\n ) and not _isSeparatedByPossibleClauseBreakers(\n clauseTokens, verbObj[PHRASE][-1], tokenWID, \n True, True, False):\n expansion = token\n break\n elif lastIndex - 1 > -1:\n if verbTud.matches(clauseTokens[lastIndex - 1]):\n expansion = clauseTokens[lastIndex - 1]\n if expansion:\n tokenWID = expansion[WORD_ID]\n verbObj[PHRASE].append(tokenWID)\n verbObj[ANALYSIS_IDS].append(_getMatchingAnalysisIDs(\n expansion, verbTud))\n if verbOlema.matches(expansion):\n verbObj[PATTERN].append('ole')\n else:\n verbObj[PATTERN].append('verb')\n", "role": "user" }, { "content": "expandSaamaWithTud", "role": "assistant" } ]
def x(clauseTokens, clauseID, foundChains, verbSubcat, skipQuestionable= False, breakOnPunctuation=True): global _breakerJaNingEgaVoi, _breakerKomaLopus, _breakerPunktuats verb = WordTemplate({POSTAG: 'V'}) verbInf1 = WordTemplate({POSTAG: 'V', FORM: '^(da|ma|maks|mas|mast|mata)$'} ) verbOlema = WordTemplate({POSTAG: 'V', ROOT: '^(ole)$'}) sonaMitte = WordTemplate({ROOT: '^mitte$', POSTAG: 'D'}) annotatedWords = [] for verbObj in foundChains: if len(verbObj[PATTERN]) == 1 and re.match('^(ei|ära|ega)$', verbObj[PATTERN][0]): continue annotatedWords.extend(verbObj[PHRASE]) freeVerbsWIDs = [t[WORD_ID] for t in clauseTokens if verbInf1.matches(t ) and t[WORD_ID] not in annotatedWords] for verbObj in foundChains: if _isVerbExpansible(verbObj, clauseTokens, clauseID): lastToken = [token for token in clauseTokens if token[WORD_ID] == verbObj[PHRASE][-1]] lastIndex = [i for i in range(len(clauseTokens)) if clauseTokens[i][WORD_ID] == verbObj[PHRASE][-1]] lastToken = lastToken[0] lastIndex = lastIndex[0] mainVerb = [(analysis[ROOT], analysis[FORM]) for analysis in verb.matchingAnalyses(lastToken)] mainVerbLemma = mainVerb[0][0] mainVerbForm = mainVerb[0][1] positivePhrase = verbObj[POLARITY] == 'POS' egaPhrase = verbObj[PATTERN][0] == 'ega' if mainVerbLemma in verbSubcat: subcatForms = verbSubcat[mainVerbLemma] for subcatForm in subcatForms: foundSubcatChain = [] addingCompleted = False if re.match('^.+\\?$', subcatForm): if skipQuestionable: continue else: subcatForm = subcatForm.replace('?', '') j = lastIndex + 1 while j < len(clauseTokens): token = clauseTokens[j] tokenWID = token[WORD_ID] if tokenWID in annotatedWords: break if breakOnPunctuation and _breakerPunktuats.matches( token): break if _breakerJaNingEgaVoi.matches(token): foundSubcatChain.append(('&', token)) if verb.matches(token): tokenForms = [analysis[FORM] for analysis in verb.matchingAnalyses(token)] if subcatForm in tokenForms: foundSubcatChain.append((subcatForm, token)) if _breakerKomaLopus.matches(token): break j += 1 if not _suitableVerbExpansion(foundSubcatChain ) and not egaPhrase: minWid = min(verbObj[PHRASE]) j = lastIndex - 1 while j > -1: token = clauseTokens[j] tokenWID = token[WORD_ID] if (tokenWID in annotatedWords and tokenWID not in verbObj[PHRASE]): break if (_breakerKomaLopus.matches(token) or breakOnPunctuation and _breakerPunktuats. matches(token)): break if token[WORD_ID] + 1 < minWid: break if _breakerJaNingEgaVoi.matches(token): foundSubcatChain.append(('&', token)) if verb.matches(token): tokenForms = [analysis[FORM] for analysis in verb.matchingAnalyses(token)] if subcatForm in tokenForms: foundSubcatChain.append((subcatForm, token) ) j -= 1 suitablePhrase = _suitableVerbExpansion(foundSubcatChain) if suitablePhrase: for token in suitablePhrase: tokenWID = token[WORD_ID] verbObj[PHRASE].append(tokenWID) annotatedWords.append(tokenWID) if _breakerJaNingEgaVoi.matches(token): verbObj[PATTERN].append('&') verbObj[ANALYSIS_IDS].append( _getMatchingAnalysisIDs(token, _breakerJaNingEgaVoi)) elif len(suitablePhrase ) == 1 and verbOlema.matches(token): verbObj[PATTERN].append('ole') verbObj[ANALYSIS_IDS].append( _getMatchingAnalysisIDs(token, verbOlema)) freeVerbsWIDs.remove(tokenWID) else: verbObj[PATTERN].append('verb') analysisIDs = [i for i in range(len(token[ ANALYSIS])) if subcatForm == token[ ANALYSIS][i][FORM]] assert len(analysisIDs) > 0 verbObj[ANALYSIS_IDS].append(analysisIDs) freeVerbsWIDs.remove(tokenWID) if not freeVerbsWIDs: verbObj[OTHER_VERBS] = False addingCompleted = True if addingCompleted: break
expandVerbChainsBySubcat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clauseTokens, clauseID, foundChains, verbSubcat, skipQuestionable=\n False, breakOnPunctuation=True):\n global _breakerJaNingEgaVoi, _breakerKomaLopus, _breakerPunktuats\n verb = WordTemplate({POSTAG: 'V'})\n verbInf1 = WordTemplate({POSTAG: 'V', FORM: '^(da|ma|maks|mas|mast|mata)$'}\n )\n verbOlema = WordTemplate({POSTAG: 'V', ROOT: '^(ole)$'})\n sonaMitte = WordTemplate({ROOT: '^mitte$', POSTAG: 'D'})\n annotatedWords = []\n for verbObj in foundChains:\n if len(verbObj[PATTERN]) == 1 and re.match('^(ei|ära|ega)$',\n verbObj[PATTERN][0]):\n continue\n annotatedWords.extend(verbObj[PHRASE])\n freeVerbsWIDs = [t[WORD_ID] for t in clauseTokens if verbInf1.matches(t\n ) and t[WORD_ID] not in annotatedWords]\n for verbObj in foundChains:\n if _isVerbExpansible(verbObj, clauseTokens, clauseID):\n lastToken = [token for token in clauseTokens if token[WORD_ID] ==\n verbObj[PHRASE][-1]]\n lastIndex = [i for i in range(len(clauseTokens)) if \n clauseTokens[i][WORD_ID] == verbObj[PHRASE][-1]]\n lastToken = lastToken[0]\n lastIndex = lastIndex[0]\n mainVerb = [(analysis[ROOT], analysis[FORM]) for analysis in\n verb.matchingAnalyses(lastToken)]\n mainVerbLemma = mainVerb[0][0]\n mainVerbForm = mainVerb[0][1]\n positivePhrase = verbObj[POLARITY] == 'POS'\n egaPhrase = verbObj[PATTERN][0] == 'ega'\n if mainVerbLemma in verbSubcat:\n subcatForms = verbSubcat[mainVerbLemma]\n for subcatForm in subcatForms:\n foundSubcatChain = []\n addingCompleted = False\n if re.match('^.+\\\\?$', subcatForm):\n if skipQuestionable:\n continue\n else:\n subcatForm = subcatForm.replace('?', '')\n j = lastIndex + 1\n while j < len(clauseTokens):\n token = clauseTokens[j]\n tokenWID = token[WORD_ID]\n if tokenWID in annotatedWords:\n break\n if breakOnPunctuation and _breakerPunktuats.matches(\n token):\n break\n if _breakerJaNingEgaVoi.matches(token):\n foundSubcatChain.append(('&', token))\n if verb.matches(token):\n tokenForms = [analysis[FORM] for analysis in\n verb.matchingAnalyses(token)]\n if subcatForm in tokenForms:\n foundSubcatChain.append((subcatForm, token))\n if _breakerKomaLopus.matches(token):\n break\n j += 1\n if not _suitableVerbExpansion(foundSubcatChain\n ) and not egaPhrase:\n minWid = min(verbObj[PHRASE])\n j = lastIndex - 1\n while j > -1:\n token = clauseTokens[j]\n tokenWID = token[WORD_ID]\n if (tokenWID in annotatedWords and tokenWID not in\n verbObj[PHRASE]):\n break\n if (_breakerKomaLopus.matches(token) or \n breakOnPunctuation and _breakerPunktuats.\n matches(token)):\n break\n if token[WORD_ID] + 1 < minWid:\n break\n if _breakerJaNingEgaVoi.matches(token):\n foundSubcatChain.append(('&', token))\n if verb.matches(token):\n tokenForms = [analysis[FORM] for analysis in\n verb.matchingAnalyses(token)]\n if subcatForm in tokenForms:\n foundSubcatChain.append((subcatForm, token)\n )\n j -= 1\n suitablePhrase = _suitableVerbExpansion(foundSubcatChain)\n if suitablePhrase:\n for token in suitablePhrase:\n tokenWID = token[WORD_ID]\n verbObj[PHRASE].append(tokenWID)\n annotatedWords.append(tokenWID)\n if _breakerJaNingEgaVoi.matches(token):\n verbObj[PATTERN].append('&')\n verbObj[ANALYSIS_IDS].append(\n _getMatchingAnalysisIDs(token,\n _breakerJaNingEgaVoi))\n elif len(suitablePhrase\n ) == 1 and verbOlema.matches(token):\n verbObj[PATTERN].append('ole')\n verbObj[ANALYSIS_IDS].append(\n _getMatchingAnalysisIDs(token, verbOlema))\n freeVerbsWIDs.remove(tokenWID)\n else:\n verbObj[PATTERN].append('verb')\n analysisIDs = [i for i in range(len(token[\n ANALYSIS])) if subcatForm == token[\n ANALYSIS][i][FORM]]\n assert len(analysisIDs) > 0\n verbObj[ANALYSIS_IDS].append(analysisIDs)\n freeVerbsWIDs.remove(tokenWID)\n if not freeVerbsWIDs:\n verbObj[OTHER_VERBS] = False\n addingCompleted = True\n if addingCompleted:\n break\n", "role": "user" }, { "content": "expandVerbChainsBySubcat", "role": "assistant" } ]
def x(clauseTokens, clauseID, foundChains): verb = WordTemplate({POSTAG: 'V'}) verbOlema = WordTemplate({POSTAG: 'V', ROOT: '^(ole)$'}) verbSaama = WordTemplate({POSTAG: 'V', ROOT: '^(saa)$'}) verbEiAra = WordTemplate({ROOT: '^(ära|ei)$', FORM: 'neg.*', POSTAG: 'V'}) verbInf = WordTemplate({POSTAG: 'V', FORM: '^(da|des|ma|tama|ta|mas|mast|nud|tud|v|mata)$'}) regularVerbInf = WordTemplate({POSTAG: 'V', FORM: '^(da|ma|maks|mas|mast|mata)$'}) olemaVerbInf = WordTemplate({POSTAG: 'V', FORM: '^(nud|tud|da|ma|mas|mata)$'}) saamaVerbInf = WordTemplate({POSTAG: 'V', FORM: '^(tud|da|ma)$'}) sonaMitte = WordTemplate({ROOT: '^mitte$', POSTAG: 'D'}) annotatedWords = [] for verbObj in foundChains: if len(verbObj[PATTERN]) == 1 and re.match('^(ei|ära|ega)$', verbObj[PATTERN][0]): continue annotatedWords.extend(verbObj[PHRASE]) finVerbs = [t for t in clauseTokens if verb.matches(t) and not verbInf. matches(t)] negFinVerbs = [t for t in finVerbs if verbEiAra.matches(t)] looseNegVerbs = [t for t in negFinVerbs if t[WORD_ID] not in annotatedWords ] if len(negFinVerbs) == 0 and len(finVerbs) >= 2: return elif len(looseNegVerbs) > 0: return elif not looseNegVerbs and negFinVerbs and len(negFinVerbs) - len(finVerbs ) > 0: return rVerbFreeVerbs = None olemaFreeVerbs = None saamaFreeVerbs = None for verbObj in foundChains: if verbObj[CLAUSE_IDX] == clauseID and verbObj[OTHER_VERBS]: contextClear = False lastToken = [token for token in clauseTokens if token[WORD_ID] == verbObj[PHRASE][-1]] lastToken = lastToken[0] analyses = [lastToken[ANALYSIS][j] for j in range(len(lastToken [ANALYSIS])) if j in verbObj[ANALYSIS_IDS][-1]] mainVerb = [analysis[ROOT] for analysis in analyses] mainVerbLemma = mainVerb[0] if 'saa' == mainVerbLemma: if saamaFreeVerbs == None: saamaFreeVerbs = [t[WORD_ID] for t in clauseTokens if saamaVerbInf.matches(t) and t[WORD_ID] not in annotatedWords] if not saamaFreeVerbs: contextClear = True elif 'ole' == mainVerbLemma: if olemaFreeVerbs == None: olemaFreeVerbs = [t[WORD_ID] for t in clauseTokens if olemaVerbInf.matches(t) and t[WORD_ID] not in annotatedWords] if not olemaFreeVerbs: contextClear = True else: if rVerbFreeVerbs == None: rVerbFreeVerbs = [t[WORD_ID] for t in clauseTokens if regularVerbInf.matches(t) and t[WORD_ID] not in annotatedWords] if not rVerbFreeVerbs: contextClear = True if contextClear: verbObj[OTHER_VERBS] = False
determineVerbChainContextualAmbiguity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clauseTokens, clauseID, foundChains):\n verb = WordTemplate({POSTAG: 'V'})\n verbOlema = WordTemplate({POSTAG: 'V', ROOT: '^(ole)$'})\n verbSaama = WordTemplate({POSTAG: 'V', ROOT: '^(saa)$'})\n verbEiAra = WordTemplate({ROOT: '^(ära|ei)$', FORM: 'neg.*', POSTAG: 'V'})\n verbInf = WordTemplate({POSTAG: 'V', FORM:\n '^(da|des|ma|tama|ta|mas|mast|nud|tud|v|mata)$'})\n regularVerbInf = WordTemplate({POSTAG: 'V', FORM:\n '^(da|ma|maks|mas|mast|mata)$'})\n olemaVerbInf = WordTemplate({POSTAG: 'V', FORM:\n '^(nud|tud|da|ma|mas|mata)$'})\n saamaVerbInf = WordTemplate({POSTAG: 'V', FORM: '^(tud|da|ma)$'})\n sonaMitte = WordTemplate({ROOT: '^mitte$', POSTAG: 'D'})\n annotatedWords = []\n for verbObj in foundChains:\n if len(verbObj[PATTERN]) == 1 and re.match('^(ei|ära|ega)$',\n verbObj[PATTERN][0]):\n continue\n annotatedWords.extend(verbObj[PHRASE])\n finVerbs = [t for t in clauseTokens if verb.matches(t) and not verbInf.\n matches(t)]\n negFinVerbs = [t for t in finVerbs if verbEiAra.matches(t)]\n looseNegVerbs = [t for t in negFinVerbs if t[WORD_ID] not in annotatedWords\n ]\n if len(negFinVerbs) == 0 and len(finVerbs) >= 2:\n return\n elif len(looseNegVerbs) > 0:\n return\n elif not looseNegVerbs and negFinVerbs and len(negFinVerbs) - len(finVerbs\n ) > 0:\n return\n rVerbFreeVerbs = None\n olemaFreeVerbs = None\n saamaFreeVerbs = None\n for verbObj in foundChains:\n if verbObj[CLAUSE_IDX] == clauseID and verbObj[OTHER_VERBS]:\n contextClear = False\n lastToken = [token for token in clauseTokens if token[WORD_ID] ==\n verbObj[PHRASE][-1]]\n lastToken = lastToken[0]\n analyses = [lastToken[ANALYSIS][j] for j in range(len(lastToken\n [ANALYSIS])) if j in verbObj[ANALYSIS_IDS][-1]]\n mainVerb = [analysis[ROOT] for analysis in analyses]\n mainVerbLemma = mainVerb[0]\n if 'saa' == mainVerbLemma:\n if saamaFreeVerbs == None:\n saamaFreeVerbs = [t[WORD_ID] for t in clauseTokens if \n saamaVerbInf.matches(t) and t[WORD_ID] not in\n annotatedWords]\n if not saamaFreeVerbs:\n contextClear = True\n elif 'ole' == mainVerbLemma:\n if olemaFreeVerbs == None:\n olemaFreeVerbs = [t[WORD_ID] for t in clauseTokens if \n olemaVerbInf.matches(t) and t[WORD_ID] not in\n annotatedWords]\n if not olemaFreeVerbs:\n contextClear = True\n else:\n if rVerbFreeVerbs == None:\n rVerbFreeVerbs = [t[WORD_ID] for t in clauseTokens if \n regularVerbInf.matches(t) and t[WORD_ID] not in\n annotatedWords]\n if not rVerbFreeVerbs:\n contextClear = True\n if contextClear:\n verbObj[OTHER_VERBS] = False\n", "role": "user" }, { "content": "determineVerbChainContextualAmbiguity", "role": "assistant" } ]
def x(tokenJson, requiredWordTemplate, discardAnalyses=None): final_ids = set() if isinstance(requiredWordTemplate, list): for wt in requiredWordTemplate: ids = wt.matchingAnalyseIndexes(tokenJson) if ids: final_ids.update(ids) elif isinstance(requiredWordTemplate, WordTemplate): ids = requiredWordTemplate.matchingAnalyseIndexes(tokenJson) final_ids = set(ids) if discardAnalyses: if isinstance(discardAnalyses, WordTemplate): ids2 = discardAnalyses.matchingAnalyseIndexes(tokenJson) if ids2: final_ids = final_ids.difference(set(ids2)) else: raise Exception( ' The parameter discardAnalyses should be WordTemplate.') if len(final_ids) == 0: raise Exception(' Unable to find matching analyse IDs for: ' + str( tokenJson)) return list(final_ids)
getMatchingAnalysisIDs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tokenJson, requiredWordTemplate, discardAnalyses=None):\n final_ids = set()\n if isinstance(requiredWordTemplate, list):\n for wt in requiredWordTemplate:\n ids = wt.matchingAnalyseIndexes(tokenJson)\n if ids:\n final_ids.update(ids)\n elif isinstance(requiredWordTemplate, WordTemplate):\n ids = requiredWordTemplate.matchingAnalyseIndexes(tokenJson)\n final_ids = set(ids)\n if discardAnalyses:\n if isinstance(discardAnalyses, WordTemplate):\n ids2 = discardAnalyses.matchingAnalyseIndexes(tokenJson)\n if ids2:\n final_ids = final_ids.difference(set(ids2))\n else:\n raise Exception(\n ' The parameter discardAnalyses should be WordTemplate.')\n if len(final_ids) == 0:\n raise Exception(' Unable to find matching analyse IDs for: ' + str(\n tokenJson))\n return list(final_ids)\n", "role": "user" }, { "content": "getMatchingAnalysisIDs", "role": "assistant" } ]
def x(regex): if len(regex) == 0: return False try: re.compile(regex) return True except sre_constants.error: return False
is_valid_regex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(regex):\n if len(regex) == 0:\n return False\n try:\n re.compile(regex)\n return True\n except sre_constants.error:\n return False\n", "role": "user" }, { "content": "is_valid_regex", "role": "assistant" } ]
def x(elem1, elem2): if overlapping_right(elem1, elem2): elem1['end'] = elem2['start'] return elem1, elem2
delete_left
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(elem1, elem2):\n if overlapping_right(elem1, elem2):\n elem1['end'] = elem2['start']\n return elem1, elem2\n", "role": "user" }, { "content": "delete_left", "role": "assistant" } ]
def x(elem1, elem2): if overlapping_left(elem1, elem2): elem2['start'] = elem1['end'] return elem1, elem2
delete_right
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(elem1, elem2):\n if overlapping_left(elem1, elem2):\n elem2['start'] = elem1['end']\n return elem1, elem2\n", "role": "user" }, { "content": "delete_right", "role": "assistant" } ]
def x(layer): yielded = set() ri = layer[:] for i1, elem1 in enumerate(ri): for i2, elem2 in enumerate(ri): if i1 != i2 and elem1['start'] <= elem2['start'] < elem1['end']: inds = (i1, i2) if i1 < i2 else (i2, i1) if inds not in yielded and in_by_identity(layer, elem1 ) and in_by_identity(layer, elem2): yielded.add(inds) yield elem1, elem2
iterate_intersecting_pairs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(layer):\n yielded = set()\n ri = layer[:]\n for i1, elem1 in enumerate(ri):\n for i2, elem2 in enumerate(ri):\n if i1 != i2 and elem1['start'] <= elem2['start'] < elem1['end']:\n inds = (i1, i2) if i1 < i2 else (i2, i1)\n if inds not in yielded and in_by_identity(layer, elem1\n ) and in_by_identity(layer, elem2):\n yielded.add(inds)\n yield elem1, elem2\n", "role": "user" }, { "content": "iterate_intersecting_pairs", "role": "assistant" } ]
def x(self, text, **kwargs): all_return_types = ['text', 'labels', 'tokens', 'strings'] return_type = all_return_types[0] cutPhrases = True cutMaxThreshold = 3 annotate_text = True syntax_layer_name = LAYER_CONLL force_parsing = False for argName, argVal in kwargs.items(): if argName == 'cutPhrases': cutPhrases = bool(argVal) elif argName == 'force_parsing': force_parsing = bool(argVal) elif argName == 'syntax_layer': syntax_layer_name = argVal elif argName == 'cutMaxThreshold': cutMaxThreshold = int(argVal) elif argName == 'return_type': if argVal.lower() in all_return_types: return_type = argVal.lower() else: raise Exception(' Unexpected return type: ', argVal) else: raise Exception(' Unsupported argument given: ' + argName) if not syntax_layer_name in text or force_parsing: self.parser.parse_text(text) if isinstance(self.parser, MaltParser): syntax_layer_name = LAYER_CONLL elif isinstance(self.parser, VISLCG3Parser): syntax_layer_name = LAYER_VISLCG3 else: raise Exception(' (!) Unknown type of syntactic parser: ', self .parser) if not text.is_tagged(ANALYSIS): text = text.tag_analysis() all_np_labels = [] for sentence_text in text.split_by(SENTENCES): tokens = sentence_text[WORDS] syntax_layer = sentence_text[syntax_layer_name] np_labels = self._find_phrases(tokens, syntax_layer, cutPhrases, cutMaxThreshold) np_labels = [('O' if not l in ['B', 'I'] else l) for l in np_labels] all_np_labels.extend(np_labels) if annotate_text: self.annotateText(text, NOUN_CHUNKS, all_np_labels) if return_type == 'text': return text elif return_type == 'labels': return all_np_labels elif return_type == 'tokens': return self.get_phrases(text, all_np_labels) else: return self.get_phrase_texts(text, all_np_labels)
analyze_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, **kwargs):\n all_return_types = ['text', 'labels', 'tokens', 'strings']\n return_type = all_return_types[0]\n cutPhrases = True\n cutMaxThreshold = 3\n annotate_text = True\n syntax_layer_name = LAYER_CONLL\n force_parsing = False\n for argName, argVal in kwargs.items():\n if argName == 'cutPhrases':\n cutPhrases = bool(argVal)\n elif argName == 'force_parsing':\n force_parsing = bool(argVal)\n elif argName == 'syntax_layer':\n syntax_layer_name = argVal\n elif argName == 'cutMaxThreshold':\n cutMaxThreshold = int(argVal)\n elif argName == 'return_type':\n if argVal.lower() in all_return_types:\n return_type = argVal.lower()\n else:\n raise Exception(' Unexpected return type: ', argVal)\n else:\n raise Exception(' Unsupported argument given: ' + argName)\n if not syntax_layer_name in text or force_parsing:\n self.parser.parse_text(text)\n if isinstance(self.parser, MaltParser):\n syntax_layer_name = LAYER_CONLL\n elif isinstance(self.parser, VISLCG3Parser):\n syntax_layer_name = LAYER_VISLCG3\n else:\n raise Exception(' (!) Unknown type of syntactic parser: ', self\n .parser)\n if not text.is_tagged(ANALYSIS):\n text = text.tag_analysis()\n all_np_labels = []\n for sentence_text in text.split_by(SENTENCES):\n tokens = sentence_text[WORDS]\n syntax_layer = sentence_text[syntax_layer_name]\n np_labels = self._find_phrases(tokens, syntax_layer, cutPhrases,\n cutMaxThreshold)\n np_labels = [('O' if not l in ['B', 'I'] else l) for l in np_labels]\n all_np_labels.extend(np_labels)\n if annotate_text:\n self.annotateText(text, NOUN_CHUNKS, all_np_labels)\n if return_type == 'text':\n return text\n elif return_type == 'labels':\n return all_np_labels\n elif return_type == 'tokens':\n return self.get_phrases(text, all_np_labels)\n else:\n return self.get_phrase_texts(text, all_np_labels)\n", "role": "user" }, { "content": "analyze_text", "role": "assistant" } ]
def x(self, token, onlyFirst=True): if onlyFirst: return token[ANALYSIS][0][POSTAG] else: return [a[POSTAG] for a in token[ANALYSIS]]
getPOS
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, token, onlyFirst=True):\n if onlyFirst:\n return token[ANALYSIS][0][POSTAG]\n else:\n return [a[POSTAG] for a in token[ANALYSIS]]\n", "role": "user" }, { "content": "getPOS", "role": "assistant" } ]
def x(self, i, sentence, NPlabels): phrase = [] indices = [] if 0 <= i and i < len(sentence) and NPlabels[i] == 'B': phrase = [sentence[i]] indices = [i] j = i + 1 while j < len(sentence): if NPlabels[j] in ['B', '']: break else: phrase.append(sentence[j]) indices.append(j) j += 1 return phrase, indices
getPhrase
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i, sentence, NPlabels):\n phrase = []\n indices = []\n if 0 <= i and i < len(sentence) and NPlabels[i] == 'B':\n phrase = [sentence[i]]\n indices = [i]\n j = i + 1\n while j < len(sentence):\n if NPlabels[j] in ['B', '']:\n break\n else:\n phrase.append(sentence[j])\n indices.append(j)\n j += 1\n return phrase, indices\n", "role": "user" }, { "content": "getPhrase", "role": "assistant" } ]
def x(self, token1, token2): forms1 = set([a[FORM] for a in token1[ANALYSIS]]) forms2 = set([a[FORM] for a in token2[ANALYSIS]]) if len(forms1.intersection(forms2)) == 0: if 'sg g' in forms1: if 'sg ter' in forms2: return 'sg ter' elif 'sg es' in forms2: return 'sg es' elif 'sg ab' in forms2: return 'sg ab' elif 'sg kom' in forms2: return 'sg kom' elif 'pl g' in forms1: if 'pl ter' in forms2: return 'pl ter' elif 'pl es' in forms2: return 'pl es' elif 'pl ab' in forms2: return 'pl ab' elif 'pl kom' in forms2: return 'pl kom' return None else: return list(forms1.intersection(forms2))[0]
getCaseAgreement
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, token1, token2):\n forms1 = set([a[FORM] for a in token1[ANALYSIS]])\n forms2 = set([a[FORM] for a in token2[ANALYSIS]])\n if len(forms1.intersection(forms2)) == 0:\n if 'sg g' in forms1:\n if 'sg ter' in forms2:\n return 'sg ter'\n elif 'sg es' in forms2:\n return 'sg es'\n elif 'sg ab' in forms2:\n return 'sg ab'\n elif 'sg kom' in forms2:\n return 'sg kom'\n elif 'pl g' in forms1:\n if 'pl ter' in forms2:\n return 'pl ter'\n elif 'pl es' in forms2:\n return 'pl es'\n elif 'pl ab' in forms2:\n return 'pl ab'\n elif 'pl kom' in forms2:\n return 'pl kom'\n return None\n else:\n return list(forms1.intersection(forms2))[0]\n", "role": "user" }, { "content": "getCaseAgreement", "role": "assistant" } ]
def x(self, sentence, NPlabels, cutPhrases, cutMaxThreshold): for i in range(len(sentence)): if NPlabels[i] == 'B': phrase, indices = self._getPhrase(i, sentence, NPlabels) posTags = [self._getPOS(tok) for tok in phrase] if len(posTags) > 1 and len(set(posTags).difference(set(['Y'])) ) == 0: for k in indices: NPlabels[k] = '' if len(posTags) > 1 and posTags[0] == 'A': forms = [a[FORM] for a in phrase[0][ANALYSIS]] if 'nud' in forms or 'tud' in forms or 'dud' in forms: if i - 1 > -1 and (self._verbEi.matches(sentence[i - 1] ) or self._verbOle.matches(sentence[i - 1])): NPlabels[i] = '' if len(phrase) > 1 and set(posTags).issubset(set(['O', 'N'])): for k in indices: NPlabels[k] = '' if posTags.count('N') > 7: for k in range(len(indices)): ind = indices[k] pos = posTags[k] if pos == 'N' and (k == 0 or k > 0 and NPlabels[ind - 1 ] == ''): NPlabels[ind] = '' elif k > 0 and NPlabels[ind - 1] == '': NPlabels[ind] = 'B' elif k > 0 and NPlabels[ind - 1] != '': NPlabels[ind] = 'I' verbPartFollowedByTitle = -1 for j in range(len(phrase)): if self._verbPastParticle.matches(phrase[j]) and not phrase[j][ TEXT].istitle() and j + 1 < len(phrase) and phrase[j + 1][ TEXT].istitle(): verbPartFollowedByTitle = j if verbPartFollowedByTitle == 0: NPlabels[indices[verbPartFollowedByTitle]] = '' NPlabels[indices[verbPartFollowedByTitle] + 1] = 'B' if posTags[0] == 'C' and i + 1 > -1 and NPlabels[i - 1] == '': if self._k6ige.matches(sentence[i - 1]): NPlabels[i - 1] = 'B' NPlabels[i] = 'I' if posTags[0] == 'C' and len(posTags) == 2 and posTags[1 ] == 'H' and NPlabels[i] == 'B': NPlabels[i] = '' NPlabels[i + 1] = 'B' for i in range(len(sentence)): if NPlabels[i] == 'I': if i == 0 or i - 1 > -1 and NPlabels[i - 1] not in ['I', 'B']: NPlabels[i] = 'B' if cutPhrases and cutMaxThreshold > 0: NPheadPos = ['S', 'Y', 'H'] for i in range(len(sentence)): if NPlabels[i] == 'B': phrase, indices = self._getPhrase(i, sentence, NPlabels) posTags = [self._getPOS(tok) for tok in phrase] if len(phrase) > cutMaxThreshold: for j in range(len(phrase)): posTag = posTags[j] if posTag in NPheadPos: NPlabels[indices[j]] = 'B' else: NPlabels[indices[j]] = ''
apply_post_fixes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sentence, NPlabels, cutPhrases, cutMaxThreshold):\n for i in range(len(sentence)):\n if NPlabels[i] == 'B':\n phrase, indices = self._getPhrase(i, sentence, NPlabels)\n posTags = [self._getPOS(tok) for tok in phrase]\n if len(posTags) > 1 and len(set(posTags).difference(set(['Y']))\n ) == 0:\n for k in indices:\n NPlabels[k] = ''\n if len(posTags) > 1 and posTags[0] == 'A':\n forms = [a[FORM] for a in phrase[0][ANALYSIS]]\n if 'nud' in forms or 'tud' in forms or 'dud' in forms:\n if i - 1 > -1 and (self._verbEi.matches(sentence[i - 1]\n ) or self._verbOle.matches(sentence[i - 1])):\n NPlabels[i] = ''\n if len(phrase) > 1 and set(posTags).issubset(set(['O', 'N'])):\n for k in indices:\n NPlabels[k] = ''\n if posTags.count('N') > 7:\n for k in range(len(indices)):\n ind = indices[k]\n pos = posTags[k]\n if pos == 'N' and (k == 0 or k > 0 and NPlabels[ind - 1\n ] == ''):\n NPlabels[ind] = ''\n elif k > 0 and NPlabels[ind - 1] == '':\n NPlabels[ind] = 'B'\n elif k > 0 and NPlabels[ind - 1] != '':\n NPlabels[ind] = 'I'\n verbPartFollowedByTitle = -1\n for j in range(len(phrase)):\n if self._verbPastParticle.matches(phrase[j]) and not phrase[j][\n TEXT].istitle() and j + 1 < len(phrase) and phrase[j + 1][\n TEXT].istitle():\n verbPartFollowedByTitle = j\n if verbPartFollowedByTitle == 0:\n NPlabels[indices[verbPartFollowedByTitle]] = ''\n NPlabels[indices[verbPartFollowedByTitle] + 1] = 'B'\n if posTags[0] == 'C' and i + 1 > -1 and NPlabels[i - 1] == '':\n if self._k6ige.matches(sentence[i - 1]):\n NPlabels[i - 1] = 'B'\n NPlabels[i] = 'I'\n if posTags[0] == 'C' and len(posTags) == 2 and posTags[1\n ] == 'H' and NPlabels[i] == 'B':\n NPlabels[i] = ''\n NPlabels[i + 1] = 'B'\n for i in range(len(sentence)):\n if NPlabels[i] == 'I':\n if i == 0 or i - 1 > -1 and NPlabels[i - 1] not in ['I', 'B']:\n NPlabels[i] = 'B'\n if cutPhrases and cutMaxThreshold > 0:\n NPheadPos = ['S', 'Y', 'H']\n for i in range(len(sentence)):\n if NPlabels[i] == 'B':\n phrase, indices = self._getPhrase(i, sentence, NPlabels)\n posTags = [self._getPOS(tok) for tok in phrase]\n if len(phrase) > cutMaxThreshold:\n for j in range(len(phrase)):\n posTag = posTags[j]\n if posTag in NPheadPos:\n NPlabels[indices[j]] = 'B'\n else:\n NPlabels[indices[j]] = ''\n", "role": "user" }, { "content": "apply_post_fixes", "role": "assistant" } ]
def x(self, text, np_labels): input_words = [] if isinstance(text, Text): input_words = text.words elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], dict ) and TEXT in text[0]: input_words = text elif text: raise Exception('Unexpected input text:', text) if len(input_words) != len(np_labels): raise Exception(' (!) Number of words (' + str(len(input_words)) + ') does not match number of labels ' + str(len(np_labels))) phrases = [] for i, word in enumerate(input_words): label = np_labels[i] if label == 'B': phrases.append([]) if label in ['B', 'I']: phrases[-1].append(word) return phrases
get_phrases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, np_labels):\n input_words = []\n if isinstance(text, Text):\n input_words = text.words\n elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], dict\n ) and TEXT in text[0]:\n input_words = text\n elif text:\n raise Exception('Unexpected input text:', text)\n if len(input_words) != len(np_labels):\n raise Exception(' (!) Number of words (' + str(len(input_words)) +\n ') does not match number of labels ' + str(len(np_labels)))\n phrases = []\n for i, word in enumerate(input_words):\n label = np_labels[i]\n if label == 'B':\n phrases.append([])\n if label in ['B', 'I']:\n phrases[-1].append(word)\n return phrases\n", "role": "user" }, { "content": "get_phrases", "role": "assistant" } ]
def x(self, text, np_labels): phrases = self.get_phrases(text, np_labels) texts = [] for phrase in phrases: phrase_str = ' '.join([word[TEXT] for word in phrase]) texts.append(phrase_str) return texts
get_phrase_texts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, np_labels):\n phrases = self.get_phrases(text, np_labels)\n texts = []\n for phrase in phrases:\n phrase_str = ' '.join([word[TEXT] for word in phrase])\n texts.append(phrase_str)\n return texts\n", "role": "user" }, { "content": "get_phrase_texts", "role": "assistant" } ]
def x(self, text, layer, np_labels=None): input_words = None if isinstance(text, Text): input_words = text.words else: raise Exception(' Input text should be of type Text, but it is ', text) phrases = [] if not np_labels: np_labels = self.analyze_text(text, return_type='labels') if len(input_words) != len(np_labels): raise Exception(' (!) Number of words (' + str(len(input_words)) + ') does not match number of labels ' + str(len(np_labels))) phrases = self.get_phrases(text, np_labels) annotations = [] if phrases: for phrase in phrases: phrase_annotation = {} phrase_annotation[START] = phrase[0][START] phrase_annotation[END] = phrase[-1][END] phrase_annotation[TEXT] = ' '.join([word[TEXT] for word in phrase]) annotations.append(phrase_annotation) text[layer] = annotations return text
annotateText
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, layer, np_labels=None):\n input_words = None\n if isinstance(text, Text):\n input_words = text.words\n else:\n raise Exception(' Input text should be of type Text, but it is ', text)\n phrases = []\n if not np_labels:\n np_labels = self.analyze_text(text, return_type='labels')\n if len(input_words) != len(np_labels):\n raise Exception(' (!) Number of words (' + str(len(input_words)) +\n ') does not match number of labels ' + str(len(np_labels)))\n phrases = self.get_phrases(text, np_labels)\n annotations = []\n if phrases:\n for phrase in phrases:\n phrase_annotation = {}\n phrase_annotation[START] = phrase[0][START]\n phrase_annotation[END] = phrase[-1][END]\n phrase_annotation[TEXT] = ' '.join([word[TEXT] for word in phrase])\n annotations.append(phrase_annotation)\n text[layer] = annotations\n return text\n", "role": "user" }, { "content": "annotateText", "role": "assistant" } ]
def x(elements, by, translate=False, sep=' '): outer_spans = [spans(elem) for elem in by] return divide_by_spans(elements, outer_spans, translate=translate, sep=sep)
divide
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(elements, by, translate=False, sep=' '):\n outer_spans = [spans(elem) for elem in by]\n return divide_by_spans(elements, outer_spans, translate=translate, sep=sep)\n", "role": "user" }, { "content": "divide", "role": "assistant" } ]
def x(text, openDelim, closeDelim): openRE = re.compile(openDelim) closeRE = re.compile(closeDelim) spans = [] nest = 0 start = openRE.search(text, 0) if not start: return text end = closeRE.search(text, start.end()) next = start while end: next = openRE.search(text, next.end()) if not next: while nest: nest -= 1 end0 = closeRE.search(text, end.end()) if end0: end = end0 else: break spans.append((start.start(), end.end())) break while end.end() < next.start(): if nest: nest -= 1 last = end.end() end = closeRE.search(text, end.end()) if not end: if spans: span = spans[0][0], last else: span = start.start(), last spans = [span] break else: spans.append((start.start(), end.end())) start = next end = closeRE.search(text, next.end()) break if next != start: nest += 1 return dropSpans(spans, text)
dropNested
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, openDelim, closeDelim):\n openRE = re.compile(openDelim)\n closeRE = re.compile(closeDelim)\n spans = []\n nest = 0\n start = openRE.search(text, 0)\n if not start:\n return text\n end = closeRE.search(text, start.end())\n next = start\n while end:\n next = openRE.search(text, next.end())\n if not next:\n while nest:\n nest -= 1\n end0 = closeRE.search(text, end.end())\n if end0:\n end = end0\n else:\n break\n spans.append((start.start(), end.end()))\n break\n while end.end() < next.start():\n if nest:\n nest -= 1\n last = end.end()\n end = closeRE.search(text, end.end())\n if not end:\n if spans:\n span = spans[0][0], last\n else:\n span = start.start(), last\n spans = [span]\n break\n else:\n spans.append((start.start(), end.end()))\n start = next\n end = closeRE.search(text, next.end())\n break\n if next != start:\n nest += 1\n return dropSpans(spans, text)\n", "role": "user" }, { "content": "dropNested", "role": "assistant" } ]
def x(spans, text): spans.sort() res = '' offset = 0 for s, e in spans: if offset <= s: if offset < s: res += text[offset:s] offset = e res += text[offset:] return res
dropSpans
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spans, text):\n spans.sort()\n res = ''\n offset = 0\n for s, e in spans:\n if offset <= s:\n if offset < s:\n res += text[offset:s]\n offset = e\n res += text[offset:]\n return res\n", "role": "user" }, { "content": "dropSpans", "role": "assistant" } ]
def x(text): text = bold_italic.sub('\\1', text) text = bold.sub('\\1', text) text = italic_quote.sub('"\\1"', text) text = italic.sub('"\\1"', text) text = quote_quote.sub('"\\1"', text) text = text.replace("'''", '').replace("''", '"') text = newlines.sub('\\n', text) text = bulletlist.sub('', text) spans = [] for m in comment.finditer(text): spans.append((m.start(), m.end())) for pattern in selfClosing_tag_patterns: for m in pattern.finditer(text): spans.append((m.start(), m.end())) for left, right in ignored_tag_patterns: for m in left.finditer(text): spans.append((m.start(), m.end())) for m in right.finditer(text): spans.append((m.start(), m.end())) text = dropSpans(spans, text) for tag in discardElements: text = dropNested(text, '<\\s*%s\\b[^>/]*>' % tag, '<\\s*/\\s*%s>' % tag) for pattern, placeholder in placeholder_tag_patterns: index = 1 for match in pattern.finditer(text): text = text.replace(match.group(), '%s_%d' % (placeholder, index)) index += 1 text = text.replace('<<', u'«').replace('>>', u'»') text = text.replace('\t', ' ') text = spaces.sub(' ', text) text = dots.sub('...', text) text = re.sub(u' (,:\\.\\)\\]»)', '\\1', text) text = re.sub(u'(\\[\\(«) ', '\\1', text) text = re.sub('\\n\\W+?\\n', '\n', text, flags=re.U) text = text.replace(',,', ',').replace(',.', '.') return text
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n text = bold_italic.sub('\\\\1', text)\n text = bold.sub('\\\\1', text)\n text = italic_quote.sub('\"\\\\1\"', text)\n text = italic.sub('\"\\\\1\"', text)\n text = quote_quote.sub('\"\\\\1\"', text)\n text = text.replace(\"'''\", '').replace(\"''\", '\"')\n text = newlines.sub('\\\\n', text)\n text = bulletlist.sub('', text)\n spans = []\n for m in comment.finditer(text):\n spans.append((m.start(), m.end()))\n for pattern in selfClosing_tag_patterns:\n for m in pattern.finditer(text):\n spans.append((m.start(), m.end()))\n for left, right in ignored_tag_patterns:\n for m in left.finditer(text):\n spans.append((m.start(), m.end()))\n for m in right.finditer(text):\n spans.append((m.start(), m.end()))\n text = dropSpans(spans, text)\n for tag in discardElements:\n text = dropNested(text, '<\\\\s*%s\\\\b[^>/]*>' % tag, '<\\\\s*/\\\\s*%s>' %\n tag)\n for pattern, placeholder in placeholder_tag_patterns:\n index = 1\n for match in pattern.finditer(text):\n text = text.replace(match.group(), '%s_%d' % (placeholder, index))\n index += 1\n text = text.replace('<<', u'«').replace('>>', u'»')\n text = text.replace('\\t', ' ')\n text = spaces.sub(' ', text)\n text = dots.sub('...', text)\n text = re.sub(u' (,:\\\\.\\\\)\\\\]»)', '\\\\1', text)\n text = re.sub(u'(\\\\[\\\\(«) ', '\\\\1', text)\n text = re.sub('\\\\n\\\\W+?\\\\n', '\\n', text, flags=re.U)\n text = text.replace(',,', ',').replace(',.', '.')\n return text\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(self, docs, **kwargs): use_vabamorf = kwargs.get('vabamorf', True) use_vabamorf_disambiguate = kwargs.get('disambiguate', True) use_pre_disambiguation = kwargs.get('pre_disambiguate', True) use_post_disambiguation = kwargs.get('post_disambiguate', True) kwargs = kwargs kwargs['disambiguate'] = False kwargs['guess'] = True kwargs['propername'] = True if not self.__isListOfLists(docs): if not self.__isListOfTexts(docs): raise Exception( "Unexpected input argument 'docs': should be a list of strings or Text-s;" ) collections = [docs] else: collections = docs for i in range(len(collections)): docs = [Text(doc, **kwargs) for doc in collections[i]] if use_vabamorf: docs = [doc.tag_analysis() for doc in docs] if use_pre_disambiguation: docs = self.pre_disambiguate(docs) if use_vabamorf_disambiguate: docs = self.__vabamorf_disambiguate(docs) collections[i] = docs if use_post_disambiguation: collections = self.post_disambiguate(collections) return collections if len(collections) > 1 else collections[0]
disambiguate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs, **kwargs):\n use_vabamorf = kwargs.get('vabamorf', True)\n use_vabamorf_disambiguate = kwargs.get('disambiguate', True)\n use_pre_disambiguation = kwargs.get('pre_disambiguate', True)\n use_post_disambiguation = kwargs.get('post_disambiguate', True)\n kwargs = kwargs\n kwargs['disambiguate'] = False\n kwargs['guess'] = True\n kwargs['propername'] = True\n if not self.__isListOfLists(docs):\n if not self.__isListOfTexts(docs):\n raise Exception(\n \"Unexpected input argument 'docs': should be a list of strings or Text-s;\"\n )\n collections = [docs]\n else:\n collections = docs\n for i in range(len(collections)):\n docs = [Text(doc, **kwargs) for doc in collections[i]]\n if use_vabamorf:\n docs = [doc.tag_analysis() for doc in docs]\n if use_pre_disambiguation:\n docs = self.pre_disambiguate(docs)\n if use_vabamorf_disambiguate:\n docs = self.__vabamorf_disambiguate(docs)\n collections[i] = docs\n if use_post_disambiguation:\n collections = self.post_disambiguate(collections)\n return collections if len(collections) > 1 else collections[0]\n", "role": "user" }, { "content": "disambiguate", "role": "assistant" } ]
def x(self, docs): return isinstance(docs, list) and all(isinstance(d, (basestring, Text)) for d in docs)
isListOfTexts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs):\n return isinstance(docs, list) and all(isinstance(d, (basestring, Text)) for\n d in docs)\n", "role": "user" }, { "content": "isListOfTexts", "role": "assistant" } ]
def x(self, docs): return isinstance(docs, list) and all(self.__isListOfTexts(ds) for ds in docs)
isListOfLists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs):\n return isinstance(docs, list) and all(self.__isListOfTexts(ds) for ds in\n docs)\n", "role": "user" }, { "content": "isListOfLists", "role": "assistant" } ]
def x(self, docs): lemmaFreq = dict() for doc in docs: for word in doc[WORDS]: uniqLemmas = set() for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H': uniqLemmas.add(analysis[ROOT]) for lemma in uniqLemmas: if lemma not in lemmaFreq: lemmaFreq[lemma] = 1 else: lemmaFreq[lemma] += 1 return lemmaFreq
create_proper_names_lexicon
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs):\n lemmaFreq = dict()\n for doc in docs:\n for word in doc[WORDS]:\n uniqLemmas = set()\n for analysis in word[ANALYSIS]:\n if analysis[POSTAG] == 'H':\n uniqLemmas.add(analysis[ROOT])\n for lemma in uniqLemmas:\n if lemma not in lemmaFreq:\n lemmaFreq[lemma] = 1\n else:\n lemmaFreq[lemma] += 1\n return lemmaFreq\n", "role": "user" }, { "content": "create_proper_names_lexicon", "role": "assistant" } ]
def x(self, docs, lexicon): for doc in docs: for word in doc[WORDS]: if len(word[ANALYSIS]) > 1: highestFreq = 0 properNameAnalyses = [] for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H': if analysis[ROOT] in lexicon: properNameAnalyses.append(analysis) if lexicon[analysis[ROOT]] > highestFreq: highestFreq = lexicon[analysis[ROOT]] else: raise Exception(' Unable to find lemma ', analysis[ROOT], ' from the lexicon. ') if highestFreq > 0: toDelete = [] for analysis in properNameAnalyses: if lexicon[analysis[ROOT]] < highestFreq: toDelete.append(analysis) for analysis in toDelete: word[ANALYSIS].remove(analysis)
disambiguate_proper_names_1
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs, lexicon):\n for doc in docs:\n for word in doc[WORDS]:\n if len(word[ANALYSIS]) > 1:\n highestFreq = 0\n properNameAnalyses = []\n for analysis in word[ANALYSIS]:\n if analysis[POSTAG] == 'H':\n if analysis[ROOT] in lexicon:\n properNameAnalyses.append(analysis)\n if lexicon[analysis[ROOT]] > highestFreq:\n highestFreq = lexicon[analysis[ROOT]]\n else:\n raise Exception(' Unable to find lemma ',\n analysis[ROOT], ' from the lexicon. ')\n if highestFreq > 0:\n toDelete = []\n for analysis in properNameAnalyses:\n if lexicon[analysis[ROOT]] < highestFreq:\n toDelete.append(analysis)\n for analysis in toDelete:\n word[ANALYSIS].remove(analysis)\n", "role": "user" }, { "content": "disambiguate_proper_names_1", "role": "assistant" } ]
def x(self, docs): certainNames = set() for doc in docs: for word in doc[WORDS]: if all([(a[POSTAG] == 'H') for a in word[ANALYSIS]]): for analysis in word[ANALYSIS]: certainNames.add(analysis[ROOT]) return certainNames
find_certain_proper_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs):\n certainNames = set()\n for doc in docs:\n for word in doc[WORDS]:\n if all([(a[POSTAG] == 'H') for a in word[ANALYSIS]]):\n for analysis in word[ANALYSIS]:\n certainNames.add(analysis[ROOT])\n return certainNames\n", "role": "user" }, { "content": "find_certain_proper_names", "role": "assistant" } ]
def x(self, docs): sentInitialNames = set() for doc in docs: for sentence in doc.divide(layer=WORDS, by=SENTENCES): sentencePos = 0 for i in range(len(sentence)): word = sentence[i] if all([(a[POSTAG] == 'Z') for a in word[ANALYSIS]] ) and not re.match('^[,;]+$', word[TEXT]): sentencePos = 0 continue if not re.match('^[1234567890]*$', word[TEXT] ) and not re.match( '^[1234567890]{1,2}.[1234567890]{1,2}.[1234567890]{4}$', word[TEXT]) and re.match('^[1234567890.()]*$', word[TEXT]): sentencePos = 0 continue if sentencePos == 0: h_postags = [(a[POSTAG] == 'H') for a in word[ANALYSIS]] if any(h_postags) and not all(h_postags): for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H': sentInitialNames.add(analysis[ROOT]) sentencePos += 1 return sentInitialNames
find_sentence_initial_proper_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs):\n sentInitialNames = set()\n for doc in docs:\n for sentence in doc.divide(layer=WORDS, by=SENTENCES):\n sentencePos = 0\n for i in range(len(sentence)):\n word = sentence[i]\n if all([(a[POSTAG] == 'Z') for a in word[ANALYSIS]]\n ) and not re.match('^[,;]+$', word[TEXT]):\n sentencePos = 0\n continue\n if not re.match('^[1234567890]*$', word[TEXT]\n ) and not re.match(\n '^[1234567890]{1,2}.[1234567890]{1,2}.[1234567890]{4}$',\n word[TEXT]) and re.match('^[1234567890.()]*$', word[TEXT]):\n sentencePos = 0\n continue\n if sentencePos == 0:\n h_postags = [(a[POSTAG] == 'H') for a in word[ANALYSIS]]\n if any(h_postags) and not all(h_postags):\n for analysis in word[ANALYSIS]:\n if analysis[POSTAG] == 'H':\n sentInitialNames.add(analysis[ROOT])\n sentencePos += 1\n return sentInitialNames\n", "role": "user" }, { "content": "find_sentence_initial_proper_names", "role": "assistant" } ]
def x(self, docs, lemma_set): for doc in docs: for word in doc[WORDS]: if len(word[ANALYSIS]) > 1: toDelete = [] for analysis in word[ANALYSIS]: if analysis[POSTAG] == 'H' and analysis[ROOT] in lemma_set: toDelete.append(analysis) if toDelete: for analysis in toDelete: word[ANALYSIS].remove(analysis)
remove_redundant_proper_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, docs, lemma_set):\n for doc in docs:\n for word in doc[WORDS]:\n if len(word[ANALYSIS]) > 1:\n toDelete = []\n for analysis in word[ANALYSIS]:\n if analysis[POSTAG] == 'H' and analysis[ROOT] in lemma_set:\n toDelete.append(analysis)\n if toDelete:\n for analysis in toDelete:\n word[ANALYSIS].remove(analysis)\n", "role": "user" }, { "content": "remove_redundant_proper_names", "role": "assistant" } ]