source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(root, phonetic, compound):
global compound_regex
if not phonetic:
root = trim_phonetics(root)
if not compound:
root = trim_compounds(root)
return root
|
get_root
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root, phonetic, compound):\n global compound_regex\n if not phonetic:\n root = trim_phonetics(root)\n if not compound:\n root = trim_compounds(root)\n return root\n",
"role": "user"
},
{
"content": "get_root",
"role": "assistant"
}
] |
def x(root):
global all_markers
if root in all_markers or root in ['-', '_']:
return [[root]]
groups = []
for group in root.split('-'):
toks = [trim_phonetics(trim_compounds(tok)) for tok in group.split('_')
]
groups.append(toks)
return groups
|
get_group_tokens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root):\n global all_markers\n if root in all_markers or root in ['-', '_']:\n return [[root]]\n groups = []\n for group in root.split('-'):\n toks = [trim_phonetics(trim_compounds(tok)) for tok in group.split('_')\n ]\n groups.append(toks)\n return groups\n",
"role": "user"
},
{
"content": "get_group_tokens",
"role": "assistant"
}
] |
def x(words, join=True, joinstring=' '):
return Vabamorf.instance().fix_spelling(words, join, joinstring)
|
fix_spelling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(words, join=True, joinstring=' '):\n return Vabamorf.instance().fix_spelling(words, join, joinstring)\n",
"role": "user"
},
{
"content": "fix_spelling",
"role": "assistant"
}
] |
def x(lemma, form, partofspeech='', hint='', guess=True, phonetic=False):
return Vabamorf.instance().synthesize(lemma, form, partofspeech, hint,
guess, phonetic)
|
synthesize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lemma, form, partofspeech='', hint='', guess=True, phonetic=False):\n return Vabamorf.instance().synthesize(lemma, form, partofspeech, hint,\n guess, phonetic)\n",
"role": "user"
},
{
"content": "synthesize",
"role": "assistant"
}
] |
def x():
if not hasattr(Vabamorf, 'pid') or Vabamorf.pid != os.getpid():
Vabamorf.pid = os.getpid()
Vabamorf.morf = Vabamorf()
return Vabamorf.morf
|
instance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if not hasattr(Vabamorf, 'pid') or Vabamorf.pid != os.getpid():\n Vabamorf.pid = os.getpid()\n Vabamorf.morf = Vabamorf()\n return Vabamorf.morf\n",
"role": "user"
},
{
"content": "instance",
"role": "assistant"
}
] |
def x(self, words, **kwargs):
if isinstance(words, six.string_types):
words = words.split()
words = [convert(w) for w in words]
morfresults = self._morf.analyze(vm.StringVector(words), kwargs.get(
'disambiguate', True), kwargs.get('guess', True), True, kwargs.get(
'propername', True))
trim_phonetic = kwargs.get('phonetic', False)
trim_compound = kwargs.get('compound', True)
return [postprocess_result(mr, trim_phonetic, trim_compound) for mr in
morfresults]
|
analyze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, words, **kwargs):\n if isinstance(words, six.string_types):\n words = words.split()\n words = [convert(w) for w in words]\n morfresults = self._morf.analyze(vm.StringVector(words), kwargs.get(\n 'disambiguate', True), kwargs.get('guess', True), True, kwargs.get(\n 'propername', True))\n trim_phonetic = kwargs.get('phonetic', False)\n trim_compound = kwargs.get('compound', True)\n return [postprocess_result(mr, trim_phonetic, trim_compound) for mr in\n morfresults]\n",
"role": "user"
},
{
"content": "analyze",
"role": "assistant"
}
] |
def x(self, words):
words = vm.SentenceAnalysis([as_wordanalysis(w) for w in words])
disambiguated = self._morf.disambiguate(words)
return [postprocess_result(mr, False, True) for mr in disambiguated]
|
disambiguate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, words):\n words = vm.SentenceAnalysis([as_wordanalysis(w) for w in words])\n disambiguated = self._morf.disambiguate(words)\n return [postprocess_result(mr, False, True) for mr in disambiguated]\n",
"role": "user"
},
{
"content": "disambiguate",
"role": "assistant"
}
] |
def x(self, words, suggestions=True):
if isinstance(words, six.string_types):
words = words.split()
words = [convert(w) for w in words]
spellresults = self._morf.spellcheck(words, suggestions)
results = []
for spellresult in spellresults:
suggestions = [deconvert(s) for s in spellresult.suggestions]
result = {'text': deconvert(spellresult.word), 'spelling':
spellresult.spelling, 'suggestions': suggestions}
results.append(result)
return results
|
spellcheck
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, words, suggestions=True):\n if isinstance(words, six.string_types):\n words = words.split()\n words = [convert(w) for w in words]\n spellresults = self._morf.spellcheck(words, suggestions)\n results = []\n for spellresult in spellresults:\n suggestions = [deconvert(s) for s in spellresult.suggestions]\n result = {'text': deconvert(spellresult.word), 'spelling':\n spellresult.spelling, 'suggestions': suggestions}\n results.append(result)\n return results\n",
"role": "user"
},
{
"content": "spellcheck",
"role": "assistant"
}
] |
def x(self, words, join=True, joinstring=' '):
fixed_words = []
for word in self.spellcheck(words, suggestions=True):
if word['spelling']:
fixed_words.append(word['text'])
else:
suggestions = word['suggestions']
if len(suggestions) > 0:
fixed_words.append(suggestions[0])
else:
fixed_words.append(word['text'])
if join:
return joinstring.join(fixed_words)
else:
return fixed_words
|
fix_spelling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, words, join=True, joinstring=' '):\n fixed_words = []\n for word in self.spellcheck(words, suggestions=True):\n if word['spelling']:\n fixed_words.append(word['text'])\n else:\n suggestions = word['suggestions']\n if len(suggestions) > 0:\n fixed_words.append(suggestions[0])\n else:\n fixed_words.append(word['text'])\n if join:\n return joinstring.join(fixed_words)\n else:\n return fixed_words\n",
"role": "user"
},
{
"content": "fix_spelling",
"role": "assistant"
}
] |
def x(self, lemma, form, partofspeech='', hint='', guess=True, phonetic=False):
words = self._morf.synthesize(convert(lemma.strip()), convert(form.
strip()), convert(partofspeech.strip()), convert(hint.strip()),
guess, phonetic)
return [deconvert(w) for w in words]
|
synthesize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lemma, form, partofspeech='', hint='', guess=True, phonetic=False):\n words = self._morf.synthesize(convert(lemma.strip()), convert(form.\n strip()), convert(partofspeech.strip()), convert(hint.strip()),\n guess, phonetic)\n return [deconvert(w) for w in words]\n",
"role": "user"
},
{
"content": "synthesize",
"role": "assistant"
}
] |
def x(self, sentence):
for word in sentence:
for analysis in word[ANALYSIS]:
analysis[ROOT] = analysis[ROOT].replace('~', '')
analysis[ROOT] = re.sub('[?<\\]]([aioueöäõü])', '\\1', analysis
[ROOT])
return json.dumps({WORDS: sentence})
|
prepare_sentence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sentence):\n for word in sentence:\n for analysis in word[ANALYSIS]:\n analysis[ROOT] = analysis[ROOT].replace('~', '')\n analysis[ROOT] = re.sub('[?<\\\\]]([aioueöäõü])', '\\\\1', analysis\n [ROOT])\n return json.dumps({WORDS: sentence})\n",
"role": "user"
},
{
"content": "prepare_sentence",
"role": "assistant"
}
] |
def x(self, sentence):
max_index = 0
max_depth = 1
stack_of_indexes = [max_index]
for token in sentence:
if CLAUSE_ANNOT not in token:
token[CLAUSE_IDX] = stack_of_indexes[-1]
else:
for annotation in token[CLAUSE_ANNOT]:
if annotation == 'KIILU_ALGUS':
max_index += 1
stack_of_indexes.append(max_index)
if len(stack_of_indexes) > max_depth:
max_depth = len(stack_of_indexes)
token[CLAUSE_IDX] = stack_of_indexes[-1]
for annotation in token[CLAUSE_ANNOT]:
if annotation == 'KINDEL_PIIR':
max_index += 1
stack_of_indexes[-1] = max_index
elif annotation == 'KIILU_LOPP':
stack_of_indexes.pop()
return sentence
|
annotate_indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sentence):\n max_index = 0\n max_depth = 1\n stack_of_indexes = [max_index]\n for token in sentence:\n if CLAUSE_ANNOT not in token:\n token[CLAUSE_IDX] = stack_of_indexes[-1]\n else:\n for annotation in token[CLAUSE_ANNOT]:\n if annotation == 'KIILU_ALGUS':\n max_index += 1\n stack_of_indexes.append(max_index)\n if len(stack_of_indexes) > max_depth:\n max_depth = len(stack_of_indexes)\n token[CLAUSE_IDX] = stack_of_indexes[-1]\n for annotation in token[CLAUSE_ANNOT]:\n if annotation == 'KINDEL_PIIR':\n max_index += 1\n stack_of_indexes[-1] = max_index\n elif annotation == 'KIILU_LOPP':\n stack_of_indexes.pop()\n return sentence\n",
"role": "user"
},
{
"content": "annotate_indices",
"role": "assistant"
}
] |
def x(self, sentence):
annotations = []
for token in sentence:
data = {CLAUSE_IDX: token[CLAUSE_IDX]}
if CLAUSE_ANNOT in token:
if 'KINDEL_PIIR' in token[CLAUSE_ANNOT]:
data[CLAUSE_ANNOTATION] = CLAUSE_BOUNDARY
elif 'KIILU_ALGUS' in token[CLAUSE_ANNOT]:
data[CLAUSE_ANNOTATION] = EMBEDDED_CLAUSE_START
elif 'KIILU_LOPP' in token[CLAUSE_ANNOT]:
data[CLAUSE_ANNOTATION] = EMBEDDED_CLAUSE_END
annotations.append(data)
return annotations
|
rename_annotations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sentence):\n annotations = []\n for token in sentence:\n data = {CLAUSE_IDX: token[CLAUSE_IDX]}\n if CLAUSE_ANNOT in token:\n if 'KINDEL_PIIR' in token[CLAUSE_ANNOT]:\n data[CLAUSE_ANNOTATION] = CLAUSE_BOUNDARY\n elif 'KIILU_ALGUS' in token[CLAUSE_ANNOT]:\n data[CLAUSE_ANNOTATION] = EMBEDDED_CLAUSE_START\n elif 'KIILU_LOPP' in token[CLAUSE_ANNOT]:\n data[CLAUSE_ANNOTATION] = EMBEDDED_CLAUSE_END\n annotations.append(data)\n return annotations\n",
"role": "user"
},
{
"content": "rename_annotations",
"role": "assistant"
}
] |
def x(sec):
import time
if sec < 864000:
return time.strftime('%H:%M:%S', time.gmtime(sec))
else:
days = int(sec / 864000)
secs = sec % 864000
return str(days) + 'd, ' + time.strftime('%H:%M:%S', time.gmtime(secs))
|
format_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sec):\n import time\n if sec < 864000:\n return time.strftime('%H:%M:%S', time.gmtime(sec))\n else:\n days = int(sec / 864000)\n secs = sec % 864000\n return str(days) + 'd, ' + time.strftime('%H:%M:%S', time.gmtime(secs))\n",
"role": "user"
},
{
"content": "format_time",
"role": "assistant"
}
] |
def x(text, file_name, verbose=True):
if verbose:
print(' processing ' + file_name + ' ... ', end='')
start = timer()
text = text.tokenize_sentences()
all_sentences = len(text[SENTENCES])
end = timer()
if verbose:
print(' (tok time: ' + format_time(end - start) + ')', end='')
if all_sentences > max_sentences:
start = timer()
i = 0
spans = []
len_total = 0
while i < all_sentences:
startSent = text[SENTENCES][i]
endSent = text[SENTENCES][min(i + (max_sentences - 1),
all_sentences - 1)]
span = startSent[START], endSent[END]
len_total += span[1] - span[0]
spans.append(span)
i += max_sentences
text_spans = text.texts_from_spans(spans)
assert len(text.text
) >= len_total, '(!) Total spans_len must be =< than text_len: ' + str(
len_total) + '/' + str(len(text.text))
new_texts = []
for i, small_text in enumerate(text_spans):
newText = Text(small_text)
for key in text.keys():
if key != TEXT and key != SENTENCES and key != PARAGRAPHS:
newText[key] = text[key]
newText['_text_split_id'] = i
newText['_text_split_origin'] = str(spans[i])
newText['_text_split_file'] = file_name
new_texts.append(newText)
end = timer()
if verbose:
print(' (split time: ' + format_time(end - start) + ')', end='')
print(' (sents: ' + str(all_sentences) + ', new_texts:' + str(
len(new_texts)) + ')', end='')
print()
return new_texts
else:
if verbose:
print(' (sents: ' + str(all_sentences) + ', no_split)', end=' \n')
return [text]
|
split_Text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, file_name, verbose=True):\n if verbose:\n print(' processing ' + file_name + ' ... ', end='')\n start = timer()\n text = text.tokenize_sentences()\n all_sentences = len(text[SENTENCES])\n end = timer()\n if verbose:\n print(' (tok time: ' + format_time(end - start) + ')', end='')\n if all_sentences > max_sentences:\n start = timer()\n i = 0\n spans = []\n len_total = 0\n while i < all_sentences:\n startSent = text[SENTENCES][i]\n endSent = text[SENTENCES][min(i + (max_sentences - 1), \n all_sentences - 1)]\n span = startSent[START], endSent[END]\n len_total += span[1] - span[0]\n spans.append(span)\n i += max_sentences\n text_spans = text.texts_from_spans(spans)\n assert len(text.text\n ) >= len_total, '(!) Total spans_len must be =< than text_len: ' + str(\n len_total) + '/' + str(len(text.text))\n new_texts = []\n for i, small_text in enumerate(text_spans):\n newText = Text(small_text)\n for key in text.keys():\n if key != TEXT and key != SENTENCES and key != PARAGRAPHS:\n newText[key] = text[key]\n newText['_text_split_id'] = i\n newText['_text_split_origin'] = str(spans[i])\n newText['_text_split_file'] = file_name\n new_texts.append(newText)\n end = timer()\n if verbose:\n print(' (split time: ' + format_time(end - start) + ')', end='')\n print(' (sents: ' + str(all_sentences) + ', new_texts:' + str(\n len(new_texts)) + ')', end='')\n print()\n return new_texts\n else:\n if verbose:\n print(' (sents: ' + str(all_sentences) + ', no_split)', end=' \\n')\n return [text]\n",
"role": "user"
},
{
"content": "split_Text",
"role": "assistant"
}
] |
def x(text, old_file_name, out_dir, suffix='__split', verbose=True):
name = os.path.basename(old_file_name)
if '.' in name:
new_name = re.sub('\\.([^.]+)$', suffix + '.\\1', name)
else:
new_name = name + suffix
new_path = os.path.join(out_dir, new_name)
start = timer()
o_f = codecs.open(new_path, mode='wb', encoding='ascii')
o_f.write(json.dumps(text))
o_f.close()
end = timer()
timestamp = format_time(end - start)
if verbose:
print(' ==> ' + new_path + ' (file writing time: ' + timestamp + ')')
|
write_Text_into_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, old_file_name, out_dir, suffix='__split', verbose=True):\n name = os.path.basename(old_file_name)\n if '.' in name:\n new_name = re.sub('\\\\.([^.]+)$', suffix + '.\\\\1', name)\n else:\n new_name = name + suffix\n new_path = os.path.join(out_dir, new_name)\n start = timer()\n o_f = codecs.open(new_path, mode='wb', encoding='ascii')\n o_f.write(json.dumps(text))\n o_f.close()\n end = timer()\n timestamp = format_time(end - start)\n if verbose:\n print(' ==> ' + new_path + ' (file writing time: ' + timestamp + ')')\n",
"role": "user"
},
{
"content": "write_Text_into_file",
"role": "assistant"
}
] |
def x(root, prefix='', suffix='.xml', target=['artikkel'], encoding=None):
documents = []
for fnm in get_filenames(root, prefix, suffix):
path = os.path.join(root, fnm)
docs = parse_tei_corpus(path, target, encoding)
for doc in docs:
doc[FILE] = fnm
documents.extend(docs)
return documents
|
parse_tei_corpora
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root, prefix='', suffix='.xml', target=['artikkel'], encoding=None):\n documents = []\n for fnm in get_filenames(root, prefix, suffix):\n path = os.path.join(root, fnm)\n docs = parse_tei_corpus(path, target, encoding)\n for doc in docs:\n doc[FILE] = fnm\n documents.extend(docs)\n return documents\n",
"role": "user"
},
{
"content": "parse_tei_corpora",
"role": "assistant"
}
] |
def x(path, target=['artikkel'], encoding=None):
with open(path, 'rb') as f:
html_doc = f.read()
if encoding:
html_doc = html_doc.decode(encoding)
soup = BeautifulSoup(html_doc, 'html5lib')
title = soup.find_all('title')[0].string
documents = []
for div1 in soup.find_all('div1'):
documents.extend(parse_div(div1, dict(), target))
return tokenize_documents(documents)
|
parse_tei_corpus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, target=['artikkel'], encoding=None):\n with open(path, 'rb') as f:\n html_doc = f.read()\n if encoding:\n html_doc = html_doc.decode(encoding)\n soup = BeautifulSoup(html_doc, 'html5lib')\n title = soup.find_all('title')[0].string\n documents = []\n for div1 in soup.find_all('div1'):\n documents.extend(parse_div(div1, dict(), target))\n return tokenize_documents(documents)\n",
"role": "user"
},
{
"content": "parse_tei_corpus",
"role": "assistant"
}
] |
def x(soup, metadata, target):
documents = []
div_type = soup.get('type', None)
div_title = list(soup.children)[0].string.strip()
if div_type in target:
div_authors = soup.find_all('author')
document = {'type': div_type, 'title': div_title, 'paragraphs':
parse_paragraphs(soup)}
if len(div_authors) > 0:
div_author = div_authors[0].text.strip()
document['author'] = div_author
for k, v in metadata.items():
document[k] = v
documents.append(document)
else:
metadata[div_type] = div_title
subdiv_name = get_subdiv(soup.name)
subdivs = []
if subdiv_name is not None:
subdivs = soup.find_all(subdiv_name)
if len(subdivs) > 0:
for subdiv in subdivs:
documents.extend(parse_div(subdiv, deepcopy(metadata), target))
return documents
|
parse_div
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(soup, metadata, target):\n documents = []\n div_type = soup.get('type', None)\n div_title = list(soup.children)[0].string.strip()\n if div_type in target:\n div_authors = soup.find_all('author')\n document = {'type': div_type, 'title': div_title, 'paragraphs':\n parse_paragraphs(soup)}\n if len(div_authors) > 0:\n div_author = div_authors[0].text.strip()\n document['author'] = div_author\n for k, v in metadata.items():\n document[k] = v\n documents.append(document)\n else:\n metadata[div_type] = div_title\n subdiv_name = get_subdiv(soup.name)\n subdivs = []\n if subdiv_name is not None:\n subdivs = soup.find_all(subdiv_name)\n if len(subdivs) > 0:\n for subdiv in subdivs:\n documents.extend(parse_div(subdiv, deepcopy(metadata), target))\n return documents\n",
"role": "user"
},
{
"content": "parse_div",
"role": "assistant"
}
] |
def x(soup):
paragraphs = []
for para in soup.find_all('p'):
sentences = []
for sent in para.find_all('s'):
sentence = sent.text.strip()
if len(sentence) > 0:
sentences.append(sentence)
if len(sentences) > 0:
paragraphs.append({'sentences': sentences})
return paragraphs
|
parse_paragraphs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(soup):\n paragraphs = []\n for para in soup.find_all('p'):\n sentences = []\n for sent in para.find_all('s'):\n sentence = sent.text.strip()\n if len(sentence) > 0:\n sentences.append(sentence)\n if len(sentences) > 0:\n paragraphs.append({'sentences': sentences})\n return paragraphs\n",
"role": "user"
},
{
"content": "parse_paragraphs",
"role": "assistant"
}
] |
def x(docs):
sep = '\n\n'
texts = []
for doc in docs:
text = '\n\n'.join(['\n'.join(para[SENTENCES]) for para in doc[
PARAGRAPHS]])
doc[TEXT] = text
del doc[PARAGRAPHS]
texts.append(Text(doc))
return texts
|
tokenize_documents
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(docs):\n sep = '\\n\\n'\n texts = []\n for doc in docs:\n text = '\\n\\n'.join(['\\n'.join(para[SENTENCES]) for para in doc[\n PARAGRAPHS]])\n doc[TEXT] = text\n del doc[PARAGRAPHS]\n texts.append(Text(doc))\n return texts\n",
"role": "user"
},
{
"content": "tokenize_documents",
"role": "assistant"
}
] |
def x():
docs = read_json_corpus(DEFAULT_NER_DATASET)
trainer = NerTrainer(default_nersettings)
trainer.train(docs, DEFAULT_NER_MODEL_DIR)
|
train_default_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n docs = read_json_corpus(DEFAULT_NER_DATASET)\n trainer = NerTrainer(default_nersettings)\n trainer.train(docs, DEFAULT_NER_MODEL_DIR)\n",
"role": "user"
},
{
"content": "train_default_model",
"role": "assistant"
}
] |
def x(self, line):
assert isinstance(line, str)
try:
self._process.stdin.write(as_binary(line))
self._process.stdin.write(as_binary('\n'))
self._process.stdin.flush()
result = as_unicode(self._process.stdout.readline())
if result == '':
stderr = as_unicode(self._process.stderr.read())
raise Exception(
'EOF encountered while reading stream. Stderr is {0}.'.
format(stderr))
return result
except Exception:
self._process.terminate()
raise
|
process_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line):\n assert isinstance(line, str)\n try:\n self._process.stdin.write(as_binary(line))\n self._process.stdin.write(as_binary('\\n'))\n self._process.stdin.flush()\n result = as_unicode(self._process.stdout.readline())\n if result == '':\n stderr = as_unicode(self._process.stderr.read())\n raise Exception(\n 'EOF encountered while reading stream. Stderr is {0}.'.\n format(stderr))\n return result\n except Exception:\n self._process.terminate()\n raise\n",
"role": "user"
},
{
"content": "process_line",
"role": "assistant"
}
] |
def x(synset_idxes):
offsets = {}
current_seeked_offset_idx = 0
ordered_synset_idxes = sorted(synset_idxes)
with codecs.open(_SOI, 'rb', 'utf-8') as fin:
for line in fin:
split_line = line.split(':')
while current_seeked_offset_idx < len(ordered_synset_idxes
) and split_line[0] == str(ordered_synset_idxes[
current_seeked_offset_idx]):
offsets[synset_idxes[current_seeked_offset_idx]] = int(
split_line[1])
current_seeked_offset_idx += 1
if current_seeked_offset_idx >= len(synset_idxes):
break
return [offsets[synset_idx] for synset_idx in synset_idxes]
|
get_synset_offsets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(synset_idxes):\n offsets = {}\n current_seeked_offset_idx = 0\n ordered_synset_idxes = sorted(synset_idxes)\n with codecs.open(_SOI, 'rb', 'utf-8') as fin:\n for line in fin:\n split_line = line.split(':')\n while current_seeked_offset_idx < len(ordered_synset_idxes\n ) and split_line[0] == str(ordered_synset_idxes[\n current_seeked_offset_idx]):\n offsets[synset_idxes[current_seeked_offset_idx]] = int(\n split_line[1])\n current_seeked_offset_idx += 1\n if current_seeked_offset_idx >= len(synset_idxes):\n break\n return [offsets[synset_idx] for synset_idx in synset_idxes]\n",
"role": "user"
},
{
"content": "get_synset_offsets",
"role": "assistant"
}
] |
def x(synset_offsets):
global parser
if parser is None:
parser = Parser(_WN_FILE)
synsets = []
for offset in synset_offsets:
raw_synset = parser.parse_synset(offset)
synset = Synset(raw_synset)
SYNSETS_DICT[_get_key_from_raw_synset(raw_synset)] = synset
SYNSETS_DICT[synset.id] = synset
synsets.append(synset)
return synsets
|
get_synsets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(synset_offsets):\n global parser\n if parser is None:\n parser = Parser(_WN_FILE)\n synsets = []\n for offset in synset_offsets:\n raw_synset = parser.parse_synset(offset)\n synset = Synset(raw_synset)\n SYNSETS_DICT[_get_key_from_raw_synset(raw_synset)] = synset\n SYNSETS_DICT[synset.id] = synset\n synsets.append(synset)\n return synsets\n",
"role": "user"
},
{
"content": "get_synsets",
"role": "assistant"
}
] |
def x(raw_synset):
pos = raw_synset.pos
literal = raw_synset.variants[0].literal
sense = '%02d' % raw_synset.variants[0].sense
return '.'.join([literal, pos, sense])
|
get_key_from_raw_synset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raw_synset):\n pos = raw_synset.pos\n literal = raw_synset.variants[0].literal\n sense = '%02d' % raw_synset.variants[0].sense\n return '.'.join([literal, pos, sense])\n",
"role": "user"
},
{
"content": "get_key_from_raw_synset",
"role": "assistant"
}
] |
def x(synset_key):
if synset_key in SYNSETS_DICT:
return SYNSETS_DICT[synset_key]
def x(synset_key):
with codecs.open(_SENSE_FILE, 'rb', 'utf-8') as fin:
for line in fin:
split_line = line.split(':')
if split_line[0] == synset_key:
return int(split_line[1].strip())
return None
synset_idx = _get_synset_idx(synset_key)
if synset_idx == None:
return None
synset_offset = _get_synset_offsets([synset_idx])
synset = _get_synsets(synset_offset)
return synset[0]
|
synset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(synset_key):\n if synset_key in SYNSETS_DICT:\n return SYNSETS_DICT[synset_key]\n\n def x(synset_key):\n with codecs.open(_SENSE_FILE, 'rb', 'utf-8') as fin:\n for line in fin:\n split_line = line.split(':')\n if split_line[0] == synset_key:\n return int(split_line[1].strip())\n return None\n synset_idx = _get_synset_idx(synset_key)\n if synset_idx == None:\n return None\n synset_offset = _get_synset_offsets([synset_idx])\n synset = _get_synsets(synset_offset)\n return synset[0]\n",
"role": "user"
},
{
"content": "synset",
"role": "assistant"
}
] |
def x(lemma, pos=None):
def x(lemma, pos):
line_prefix_regexp = '%s:%s:(.*)' % (lemma, pos if pos else '\\w+')
line_prefix = re.compile(line_prefix_regexp)
idxes = []
with codecs.open(_LIT_POS_FILE, 'rb', 'utf-8') as fin:
for line in fin:
result = line_prefix.match(line)
if result:
res_indices = [int(x) for x in result.group(1).split(' ')]
idxes.extend(res_indices)
LEM_POS_2_SS_IDX[lemma][pos].extend(idxes)
return sorted(idxes)
synset_idxes = None
if lemma in LEM_POS_2_SS_IDX:
if pos in LEM_POS_2_SS_IDX[lemma]:
synset_idxes = LEM_POS_2_SS_IDX[lemma][pos]
else:
synset_idxes = [idx for pos in LEM_POS_2_SS_IDX[lemma] for idx in
LEM_POS_2_SS_IDX[lemma][pos]]
if not synset_idxes:
synset_idxes = _get_synset_idxes(lemma, pos)
if len(synset_idxes) == 0:
return []
stored_synsets = [SYNSETS_DICT[synset_idxes[i]] for i in range(len(
synset_idxes)) if synset_idxes[i] in SYNSETS_DICT]
unstored_synset_idxes = [synset_idxes[i] for i in range(len(
synset_idxes)) if synset_idxes[i] not in SYNSETS_DICT]
synset_offsets = _get_synset_offsets(unstored_synset_idxes)
synsets = _get_synsets(synset_offsets)
return stored_synsets + synsets
|
synsets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lemma, pos=None):\n\n def x(lemma, pos):\n line_prefix_regexp = '%s:%s:(.*)' % (lemma, pos if pos else '\\\\w+')\n line_prefix = re.compile(line_prefix_regexp)\n idxes = []\n with codecs.open(_LIT_POS_FILE, 'rb', 'utf-8') as fin:\n for line in fin:\n result = line_prefix.match(line)\n if result:\n res_indices = [int(x) for x in result.group(1).split(' ')]\n idxes.extend(res_indices)\n LEM_POS_2_SS_IDX[lemma][pos].extend(idxes)\n return sorted(idxes)\n synset_idxes = None\n if lemma in LEM_POS_2_SS_IDX:\n if pos in LEM_POS_2_SS_IDX[lemma]:\n synset_idxes = LEM_POS_2_SS_IDX[lemma][pos]\n else:\n synset_idxes = [idx for pos in LEM_POS_2_SS_IDX[lemma] for idx in\n LEM_POS_2_SS_IDX[lemma][pos]]\n if not synset_idxes:\n synset_idxes = _get_synset_idxes(lemma, pos)\n if len(synset_idxes) == 0:\n return []\n stored_synsets = [SYNSETS_DICT[synset_idxes[i]] for i in range(len(\n synset_idxes)) if synset_idxes[i] in SYNSETS_DICT]\n unstored_synset_idxes = [synset_idxes[i] for i in range(len(\n synset_idxes)) if synset_idxes[i] not in SYNSETS_DICT]\n synset_offsets = _get_synset_offsets(unstored_synset_idxes)\n synsets = _get_synsets(synset_offsets)\n return stored_synsets + synsets\n",
"role": "user"
},
{
"content": "synsets",
"role": "assistant"
}
] |
def x(pos=None):
def x(pos):
idxes = []
with codecs.open(_LIT_POS_FILE, 'rb', 'utf-8') as fin:
if pos == None:
for line in fin:
split_line = line.strip().split(':')
idxes.extend([int(x) for x in split_line[2].split()])
else:
for line in fin:
split_line = line.strip().split(':')
if split_line[1] == pos:
idxes.extend([int(x) for x in split_line[2].split()])
idxes = list(set(idxes))
idxes.sort()
return idxes
if pos in LOADED_POS:
return [SYNSETS_DICT[idx] for lemma in LEM_POS_2_SS_IDX for idx in
LEM_POS_2_SS_IDX[lemma][pos]]
else:
synset_idxes = _get_unique_synset_idxes(pos)
if len(synset_idxes) == 0:
return []
stored_synsets = [SYNSETS_DICT[synset_idxes[i]] for i in range(len(
synset_idxes)) if synset_idxes[i] in SYNSETS_DICT]
unstored_synset_idxes = [synset_idxes[i] for i in range(len(
synset_idxes)) if synset_idxes[i] not in SYNSETS_DICT]
synset_offsets = _get_synset_offsets(unstored_synset_idxes)
synsets = _get_synsets(synset_offsets)
for synset in synsets:
for variant in synset.get_variants():
LEM_POS_2_SS_IDX[variant.literal][synset.pos].append(synset.id)
LOADED_POS.add(pos)
return stored_synsets + synsets
|
all_synsets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pos=None):\n\n def x(pos):\n idxes = []\n with codecs.open(_LIT_POS_FILE, 'rb', 'utf-8') as fin:\n if pos == None:\n for line in fin:\n split_line = line.strip().split(':')\n idxes.extend([int(x) for x in split_line[2].split()])\n else:\n for line in fin:\n split_line = line.strip().split(':')\n if split_line[1] == pos:\n idxes.extend([int(x) for x in split_line[2].split()])\n idxes = list(set(idxes))\n idxes.sort()\n return idxes\n if pos in LOADED_POS:\n return [SYNSETS_DICT[idx] for lemma in LEM_POS_2_SS_IDX for idx in\n LEM_POS_2_SS_IDX[lemma][pos]]\n else:\n synset_idxes = _get_unique_synset_idxes(pos)\n if len(synset_idxes) == 0:\n return []\n stored_synsets = [SYNSETS_DICT[synset_idxes[i]] for i in range(len(\n synset_idxes)) if synset_idxes[i] in SYNSETS_DICT]\n unstored_synset_idxes = [synset_idxes[i] for i in range(len(\n synset_idxes)) if synset_idxes[i] not in SYNSETS_DICT]\n synset_offsets = _get_synset_offsets(unstored_synset_idxes)\n synsets = _get_synsets(synset_offsets)\n for synset in synsets:\n for variant in synset.get_variants():\n LEM_POS_2_SS_IDX[variant.literal][synset.pos].append(synset.id)\n LOADED_POS.add(pos)\n return stored_synsets + synsets\n",
"role": "user"
},
{
"content": "all_synsets",
"role": "assistant"
}
] |
def x(lemma_key):
if lemma_key in LEMMAS_DICT:
return LEMMAS_DICT[lemma_key]
split_lemma_key = lemma_key.split('.')
synset_key = '.'.join(split_lemma_key[:3])
lemma_literal = split_lemma_key[3]
lemma_obj = Lemma(synset_key, lemma_literal)
LEMMAS_DICT[lemma_key] = lemma_obj
return lemma_obj
|
lemma
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lemma_key):\n if lemma_key in LEMMAS_DICT:\n return LEMMAS_DICT[lemma_key]\n split_lemma_key = lemma_key.split('.')\n synset_key = '.'.join(split_lemma_key[:3])\n lemma_literal = split_lemma_key[3]\n lemma_obj = Lemma(synset_key, lemma_literal)\n LEMMAS_DICT[lemma_key] = lemma_obj\n return lemma_obj\n",
"role": "user"
},
{
"content": "lemma",
"role": "assistant"
}
] |
def x(lemma, pos=None):
lemma = lemma.lower()
return [lemma_obj for synset in synsets(lemma, pos) for lemma_obj in
synset.lemmas() if lemma_obj.name.lower() == lemma]
|
lemmas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lemma, pos=None):\n lemma = lemma.lower()\n return [lemma_obj for synset in synsets(lemma, pos) for lemma_obj in\n synset.lemmas() if lemma_obj.name.lower() == lemma]\n",
"role": "user"
},
{
"content": "lemmas",
"role": "assistant"
}
] |
def x(self, hypernyms):
hypernyms |= set(self.hypernyms())
for synset in self.hypernyms():
hypernyms |= synset._recursive_hypernyms(hypernyms)
return hypernyms
|
recursive_hypernyms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, hypernyms):\n hypernyms |= set(self.hypernyms())\n for synset in self.hypernyms():\n hypernyms |= synset._recursive_hypernyms(hypernyms)\n return hypernyms\n",
"role": "user"
},
{
"content": "recursive_hypernyms",
"role": "assistant"
}
] |
def x(self):
if 'min_depth' in self.__dict__:
return self.__dict__['min_depth']
min_depth = 0
hypernyms = self.hypernyms()
if hypernyms:
min_depth = 1 + min(h._min_depth() for h in hypernyms)
self.__dict__['min_depth'] = min_depth
return min_depth
|
min_depth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if 'min_depth' in self.__dict__:\n return self.__dict__['min_depth']\n min_depth = 0\n hypernyms = self.hypernyms()\n if hypernyms:\n min_depth = 1 + min(h._min_depth() for h in hypernyms)\n self.__dict__['min_depth'] = min_depth\n return min_depth\n",
"role": "user"
},
{
"content": "min_depth",
"role": "assistant"
}
] |
def x(self, relation):
results = []
for relation_candidate in self._raw_synset.internalLinks:
if relation_candidate.name == relation:
linked_synset = synset(_get_key_from_raw_synset(
relation_candidate.target_concept))
relation_candidate.target_concept = linked_synset._raw_synset
results.append(linked_synset)
return results
|
get_related_synsets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, relation):\n results = []\n for relation_candidate in self._raw_synset.internalLinks:\n if relation_candidate.name == relation:\n linked_synset = synset(_get_key_from_raw_synset(\n relation_candidate.target_concept))\n relation_candidate.target_concept = linked_synset._raw_synset\n results.append(linked_synset)\n return results\n",
"role": "user"
},
{
"content": "get_related_synsets",
"role": "assistant"
}
] |
def x(self, relation, depth=float('inf')):
ancestors = []
unvisited_ancestors = [(synset, 1) for synset in self.
get_related_synsets(relation)]
while len(unvisited_ancestors) > 0:
ancestor_depth = unvisited_ancestors.pop()
if ancestor_depth[1] > depth:
continue
unvisited_ancestors.extend([(synset, ancestor_depth[1] + 1) for
synset in ancestor_depth[0].get_related_synsets(relation)])
ancestors.append(ancestor_depth[0])
return list(set(ancestors))
|
closure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, relation, depth=float('inf')):\n ancestors = []\n unvisited_ancestors = [(synset, 1) for synset in self.\n get_related_synsets(relation)]\n while len(unvisited_ancestors) > 0:\n ancestor_depth = unvisited_ancestors.pop()\n if ancestor_depth[1] > depth:\n continue\n unvisited_ancestors.extend([(synset, ancestor_depth[1] + 1) for\n synset in ancestor_depth[0].get_related_synsets(relation)])\n ancestors.append(ancestor_depth[0])\n return list(set(ancestors))\n",
"role": "user"
},
{
"content": "closure",
"role": "assistant"
}
] |
def x(self):
visited = set()
hypernyms_next_level = set(self.hypernyms())
current_hypernyms = set(hypernyms_next_level)
while len(hypernyms_next_level) > 0:
current_hypernyms = set(hypernyms_next_level)
hypernyms_next_level = set()
for synset in current_hypernyms:
if synset in visited:
continue
visited.add(synset)
hypernyms_next_level |= set(synset.hypernyms())
return list(current_hypernyms)
|
root_hypernyms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n visited = set()\n hypernyms_next_level = set(self.hypernyms())\n current_hypernyms = set(hypernyms_next_level)\n while len(hypernyms_next_level) > 0:\n current_hypernyms = set(hypernyms_next_level)\n hypernyms_next_level = set()\n for synset in current_hypernyms:\n if synset in visited:\n continue\n visited.add(synset)\n hypernyms_next_level |= set(synset.hypernyms())\n return list(current_hypernyms)\n",
"role": "user"
},
{
"content": "root_hypernyms",
"role": "assistant"
}
] |
def x(self, synset):
if self._raw_synset.pos != synset._raw_synset.pos:
return None
depth = MAX_TAXONOMY_DEPTHS[self._raw_synset.pos]
distance = self._shortest_path_distance(synset)
if distance >= 0:
return -math.log((distance + 1) / (2.0 * depth))
else:
return None
|
lch_similarity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, synset):\n if self._raw_synset.pos != synset._raw_synset.pos:\n return None\n depth = MAX_TAXONOMY_DEPTHS[self._raw_synset.pos]\n distance = self._shortest_path_distance(synset)\n if distance >= 0:\n return -math.log((distance + 1) / (2.0 * depth))\n else:\n return None\n",
"role": "user"
},
{
"content": "lch_similarity",
"role": "assistant"
}
] |
def x(self, target_synset):
lchs = self.lowest_common_hypernyms(target_synset)
lcs_depth = lchs[0]._min_depth() if lchs and len(lchs) else None
self_depth = self._min_depth()
other_depth = target_synset._min_depth()
if lcs_depth is None or self_depth is None or other_depth is None:
return None
return 2.0 * lcs_depth / (self_depth + other_depth)
|
wup_similarity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, target_synset):\n lchs = self.lowest_common_hypernyms(target_synset)\n lcs_depth = lchs[0]._min_depth() if lchs and len(lchs) else None\n self_depth = self._min_depth()\n other_depth = target_synset._min_depth()\n if lcs_depth is None or self_depth is None or other_depth is None:\n return None\n return 2.0 * lcs_depth / (self_depth + other_depth)\n",
"role": "user"
},
{
"content": "wup_similarity",
"role": "assistant"
}
] |
def x(self):
return '\n'.join([variant.gloss for variant in self._raw_synset.
variants if variant.gloss])
|
definition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return '\\n'.join([variant.gloss for variant in self._raw_synset.\n variants if variant.gloss])\n",
"role": "user"
},
{
"content": "definition",
"role": "assistant"
}
] |
def x(self):
examples = []
for example in [variant.examples for variant in self._raw_synset.
variants if len(variant.examples)]:
examples.extend(example)
return examples
|
examples
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n examples = []\n for example in [variant.examples for variant in self._raw_synset.\n variants if len(variant.examples)]:\n examples.extend(example)\n return examples\n",
"role": "user"
},
{
"content": "examples",
"role": "assistant"
}
] |
def x(self):
return [lemma('%s.%s' % (self.name, variant.literal)) for variant in
self._raw_synset.variants]
|
lemmas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return [lemma('%s.%s' % (self.name, variant.literal)) for variant in\n self._raw_synset.variants]\n",
"role": "user"
},
{
"content": "lemmas",
"role": "assistant"
}
] |
def x(self, target_synset):
self_hypernyms = self._recursive_hypernyms(set())
other_hypernyms = target_synset._recursive_hypernyms(set())
common_hypernyms = self_hypernyms.intersection(other_hypernyms)
annot_common_hypernyms = [(hypernym, hypernym._min_depth()) for
hypernym in common_hypernyms]
annot_common_hypernyms.sort(key=lambda annot_hypernym: annot_hypernym[1
], reverse=True)
max_depth = annot_common_hypernyms[0][1] if len(annot_common_hypernyms
) > 0 else None
if max_depth != None:
return [annot_common_hypernym[0] for annot_common_hypernym in
annot_common_hypernyms if annot_common_hypernym[1] == max_depth]
else:
return None
|
lowest_common_hypernyms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, target_synset):\n self_hypernyms = self._recursive_hypernyms(set())\n other_hypernyms = target_synset._recursive_hypernyms(set())\n common_hypernyms = self_hypernyms.intersection(other_hypernyms)\n annot_common_hypernyms = [(hypernym, hypernym._min_depth()) for\n hypernym in common_hypernyms]\n annot_common_hypernyms.sort(key=lambda annot_hypernym: annot_hypernym[1\n ], reverse=True)\n max_depth = annot_common_hypernyms[0][1] if len(annot_common_hypernyms\n ) > 0 else None\n if max_depth != None:\n return [annot_common_hypernym[0] for annot_common_hypernym in\n annot_common_hypernyms if annot_common_hypernym[1] == max_depth]\n else:\n return None\n",
"role": "user"
},
{
"content": "lowest_common_hypernyms",
"role": "assistant"
}
] |
def x(self):
return synset('%s.%s.%s.%s' % (self.synset_literal, self.synset_pos,
self.synset_sense, self.literal))
|
synset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return synset('%s.%s.%s.%s' % (self.synset_literal, self.synset_pos,\n self.synset_sense, self.literal))\n",
"role": "user"
},
{
"content": "synset",
"role": "assistant"
}
] |
def x(vabamorf_json):
if not isinstance(vabamorf_json, dict):
raise Exception(' Expected dict as an input argument! ')
json_sentences = []
if 'paragraphs' in vabamorf_json:
for pr in vabamorf_json['paragraphs']:
if 'sentences' in pr:
for sent in pr['sentences']:
json_sentences.append(sent)
elif 'sentences' in vabamorf_json:
for sent in vabamorf_json['sentences']:
json_sentences.append(sent)
results = []
for sentJson in json_sentences:
results.append('<s>')
for wordJson in sentJson['words']:
if wordJson['text'] == '<s>' or wordJson['text'] == '</s>':
continue
wordStr = wordJson['text']
wordStr = _esc_double_quotes(wordStr)
results.append(wordStr)
for analysisJson in wordJson['analysis']:
root = analysisJson['root']
root = _esc_double_quotes(root)
ending = analysisJson[ENDING]
pos = analysisJson['partofspeech']
clitic = analysisJson['clitic']
form = analysisJson['form']
if pos == 'Z':
results.append(''.join([' ', root, ' //_Z_ //']))
else:
results.append(''.join([' ', root, '+', ending,
clitic, ' //', '_', pos, '_ ', form, ' //']))
if 'analysis' not in wordJson:
results.append(' ' + '####')
results.append('</s>')
return results
|
convert_vm_json_to_mrf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vabamorf_json):\n if not isinstance(vabamorf_json, dict):\n raise Exception(' Expected dict as an input argument! ')\n json_sentences = []\n if 'paragraphs' in vabamorf_json:\n for pr in vabamorf_json['paragraphs']:\n if 'sentences' in pr:\n for sent in pr['sentences']:\n json_sentences.append(sent)\n elif 'sentences' in vabamorf_json:\n for sent in vabamorf_json['sentences']:\n json_sentences.append(sent)\n results = []\n for sentJson in json_sentences:\n results.append('<s>')\n for wordJson in sentJson['words']:\n if wordJson['text'] == '<s>' or wordJson['text'] == '</s>':\n continue\n wordStr = wordJson['text']\n wordStr = _esc_double_quotes(wordStr)\n results.append(wordStr)\n for analysisJson in wordJson['analysis']:\n root = analysisJson['root']\n root = _esc_double_quotes(root)\n ending = analysisJson[ENDING]\n pos = analysisJson['partofspeech']\n clitic = analysisJson['clitic']\n form = analysisJson['form']\n if pos == 'Z':\n results.append(''.join([' ', root, ' //_Z_ //']))\n else:\n results.append(''.join([' ', root, '+', ending,\n clitic, ' //', '_', pos, '_ ', form, ' //']))\n if 'analysis' not in wordJson:\n results.append(' ' + '####')\n results.append('</s>')\n return results\n",
"role": "user"
},
{
"content": "convert_vm_json_to_mrf",
"role": "assistant"
}
] |
def x(text):
from estnltk.text import Text
if not isinstance(text, Text):
raise Exception(" Expected estnltk's Text as an input argument! ")
if not text.is_tagged(ANALYSIS):
kwargs = text.get_kwargs()
kwargs['vabamorf'] = True
kwargs['guess'] = True
kwargs['propername'] = False
kwargs['disambiguate'] = False
text.__kwargs = kwargs
text = text.tag_analysis()
results = []
for sentence in text.divide(layer=WORDS, by=SENTENCES):
results.append('<s>')
for i in range(len(sentence)):
wordJson = sentence[i]
wordStr = wordJson[TEXT]
wordStr = _esc_double_quotes(wordStr)
results.append(wordStr)
for analysisJson in wordJson[ANALYSIS]:
root = analysisJson[ROOT]
root = _esc_double_quotes(root)
ending = analysisJson[ENDING]
pos = analysisJson[POSTAG]
clitic = analysisJson[CLITIC]
form = analysisJson[FORM]
if pos == 'Z':
results.append(''.join([' ', root, ' //_Z_ //']))
else:
results.append(''.join([' ', root, '+', ending,
clitic, ' //', '_', pos, '_ ', form, ' //']))
if ANALYSIS not in wordJson:
results.append(' ' + '####')
results.append('</s>')
return results
|
convert_Text_to_mrf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n from estnltk.text import Text\n if not isinstance(text, Text):\n raise Exception(\" Expected estnltk's Text as an input argument! \")\n if not text.is_tagged(ANALYSIS):\n kwargs = text.get_kwargs()\n kwargs['vabamorf'] = True\n kwargs['guess'] = True\n kwargs['propername'] = False\n kwargs['disambiguate'] = False\n text.__kwargs = kwargs\n text = text.tag_analysis()\n results = []\n for sentence in text.divide(layer=WORDS, by=SENTENCES):\n results.append('<s>')\n for i in range(len(sentence)):\n wordJson = sentence[i]\n wordStr = wordJson[TEXT]\n wordStr = _esc_double_quotes(wordStr)\n results.append(wordStr)\n for analysisJson in wordJson[ANALYSIS]:\n root = analysisJson[ROOT]\n root = _esc_double_quotes(root)\n ending = analysisJson[ENDING]\n pos = analysisJson[POSTAG]\n clitic = analysisJson[CLITIC]\n form = analysisJson[FORM]\n if pos == 'Z':\n results.append(''.join([' ', root, ' //_Z_ //']))\n else:\n results.append(''.join([' ', root, '+', ending,\n clitic, ' //', '_', pos, '_ ', form, ' //']))\n if ANALYSIS not in wordJson:\n results.append(' ' + '####')\n results.append('</s>')\n return results\n",
"role": "user"
},
{
"content": "convert_Text_to_mrf",
"role": "assistant"
}
] |
def x(rulesFile):
rules = {}
in_f = codecs.open(rulesFile, mode='r', encoding='utf-8')
for line in in_f:
line = line.rstrip()
if line.startswith('¤'):
continue
parts = line.split('@')
if len(parts) < 4:
raise Exception(' Unexpected format of the line: ', line)
if parts[1] not in rules:
rules[parts[1]] = []
rules[parts[1]].append(parts[3])
in_f.close()
return rules
|
load_fs_mrf_to_syntax_mrf_translation_rules
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rulesFile):\n rules = {}\n in_f = codecs.open(rulesFile, mode='r', encoding='utf-8')\n for line in in_f:\n line = line.rstrip()\n if line.startswith('¤'):\n continue\n parts = line.split('@')\n if len(parts) < 4:\n raise Exception(' Unexpected format of the line: ', line)\n if parts[1] not in rules:\n rules[parts[1]] = []\n rules[parts[1]].append(parts[3])\n in_f.close()\n return rules\n",
"role": "user"
},
{
"content": "load_fs_mrf_to_syntax_mrf_translation_rules",
"role": "assistant"
}
] |
def x(line):
for [pattern, replacement] in _punctConversions:
lastline = line
line = re.sub(pattern, replacement, line)
if lastline != line:
break
return line
|
convert_punctuation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line):\n for [pattern, replacement] in _punctConversions:\n lastline = line\n line = re.sub(pattern, replacement, line)\n if lastline != line:\n break\n return line\n",
"role": "user"
},
{
"content": "convert_punctuation",
"role": "assistant"
}
] |
def x(mrf_lines, conversion_rules):
i = 0
while i < len(mrf_lines):
line = mrf_lines[i]
if line.startswith(' '):
if _punctOrAbbrev.search(line):
mrf_lines[i] = _convert_punctuation(line)
if '_Y_' not in line:
i += 1
continue
withFormMatch = _morfWithForm.search(line)
if withFormMatch:
root = withFormMatch.group(1)
pos = withFormMatch.group(2)
formStr = withFormMatch.group(3)
forms = formStr.split(',')
all_new_lines = []
for form in forms:
morphKey = pos + ' ' + form.strip()
if morphKey in conversion_rules:
newlines = [(' ' + root + ' //' + _esc_que_mark(
r) + ' //') for r in conversion_rules[morphKey]]
all_new_lines.extend(newlines)
if all_new_lines:
del mrf_lines[i]
for newline in all_new_lines:
mrf_lines.insert(i, newline)
i += len(newlines)
continue
else:
withoutFormMatch = _morfWithoutForm.search(line)
if withoutFormMatch:
root = withoutFormMatch.group(1)
pos = withoutFormMatch.group(2)
morphKey = pos
all_new_lines = []
if morphKey in conversion_rules:
newlines = [(' ' + root + ' //' + _esc_que_mark(
r) + ' //') for r in conversion_rules[morphKey]]
all_new_lines.extend(newlines)
if all_new_lines:
del mrf_lines[i]
for newline in all_new_lines:
mrf_lines.insert(i, newline)
i += len(newlines)
continue
i += 1
return mrf_lines
|
convert_mrf_to_syntax_mrf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mrf_lines, conversion_rules):\n i = 0\n while i < len(mrf_lines):\n line = mrf_lines[i]\n if line.startswith(' '):\n if _punctOrAbbrev.search(line):\n mrf_lines[i] = _convert_punctuation(line)\n if '_Y_' not in line:\n i += 1\n continue\n withFormMatch = _morfWithForm.search(line)\n if withFormMatch:\n root = withFormMatch.group(1)\n pos = withFormMatch.group(2)\n formStr = withFormMatch.group(3)\n forms = formStr.split(',')\n all_new_lines = []\n for form in forms:\n morphKey = pos + ' ' + form.strip()\n if morphKey in conversion_rules:\n newlines = [(' ' + root + ' //' + _esc_que_mark(\n r) + ' //') for r in conversion_rules[morphKey]]\n all_new_lines.extend(newlines)\n if all_new_lines:\n del mrf_lines[i]\n for newline in all_new_lines:\n mrf_lines.insert(i, newline)\n i += len(newlines)\n continue\n else:\n withoutFormMatch = _morfWithoutForm.search(line)\n if withoutFormMatch:\n root = withoutFormMatch.group(1)\n pos = withoutFormMatch.group(2)\n morphKey = pos\n all_new_lines = []\n if morphKey in conversion_rules:\n newlines = [(' ' + root + ' //' + _esc_que_mark(\n r) + ' //') for r in conversion_rules[morphKey]]\n all_new_lines.extend(newlines)\n if all_new_lines:\n del mrf_lines[i]\n for newline in all_new_lines:\n mrf_lines.insert(i, newline)\n i += len(newlines)\n continue\n i += 1\n return mrf_lines\n",
"role": "user"
},
{
"content": "convert_mrf_to_syntax_mrf",
"role": "assistant"
}
] |
def x(mrf_lines):
i = 0
while i < len(mrf_lines):
line = mrf_lines[i]
if '_P_' in line:
for [pattern, replacement] in _pronConversions:
lastline = line
line = re.sub(pattern, replacement, line)
if lastline != line:
mrf_lines[i] = line
break
i += 1
return mrf_lines
|
convert_pronouns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mrf_lines):\n i = 0\n while i < len(mrf_lines):\n line = mrf_lines[i]\n if '_P_' in line:\n for [pattern, replacement] in _pronConversions:\n lastline = line\n line = re.sub(pattern, replacement, line)\n if lastline != line:\n mrf_lines[i] = line\n break\n i += 1\n return mrf_lines\n",
"role": "user"
},
{
"content": "convert_pronouns",
"role": "assistant"
}
] |
def x(mrf_lines, allow_to_delete_all=True):
i = 0
seen_analyses = []
analyses_count = 0
to_delete = []
Kpre_index = -1
Kpost_index = -1
while i < len(mrf_lines):
line = mrf_lines[i]
if not line.startswith(' '):
if Kpre_index != -1 and Kpost_index != -1:
to_delete.append(Kpre_index)
elif Kpost_index != -1:
to_delete.append(Kpost_index)
if to_delete:
for k, j in enumerate(sorted(to_delete, reverse=True)):
if not allow_to_delete_all and analyses_count == len(
to_delete) and k == len(to_delete) - 1:
continue
del mrf_lines[j]
i -= 1
seen_analyses = []
analyses_count = 0
to_delete = []
Kpre_index = -1
Kpost_index = -1
elif line.startswith(' '):
analyses_count += 1
if line in seen_analyses:
to_delete.append(i)
else:
if re.search('/_K_\\s+pre\\s+//', line):
Kpre_index = i
elif re.search('/_K_\\s+post\\s+//', line):
Kpost_index = i
seen_analyses.append(line)
i += 1
return mrf_lines
|
remove_duplicate_analyses
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mrf_lines, allow_to_delete_all=True):\n i = 0\n seen_analyses = []\n analyses_count = 0\n to_delete = []\n Kpre_index = -1\n Kpost_index = -1\n while i < len(mrf_lines):\n line = mrf_lines[i]\n if not line.startswith(' '):\n if Kpre_index != -1 and Kpost_index != -1:\n to_delete.append(Kpre_index)\n elif Kpost_index != -1:\n to_delete.append(Kpost_index)\n if to_delete:\n for k, j in enumerate(sorted(to_delete, reverse=True)):\n if not allow_to_delete_all and analyses_count == len(\n to_delete) and k == len(to_delete) - 1:\n continue\n del mrf_lines[j]\n i -= 1\n seen_analyses = []\n analyses_count = 0\n to_delete = []\n Kpre_index = -1\n Kpost_index = -1\n elif line.startswith(' '):\n analyses_count += 1\n if line in seen_analyses:\n to_delete.append(i)\n else:\n if re.search('/_K_\\\\s+pre\\\\s+//', line):\n Kpre_index = i\n elif re.search('/_K_\\\\s+post\\\\s+//', line):\n Kpost_index = i\n seen_analyses.append(line)\n i += 1\n return mrf_lines\n",
"role": "user"
},
{
"content": "remove_duplicate_analyses",
"role": "assistant"
}
] |
def x(mrf_lines):
i = 0
cap = False
while i < len(mrf_lines):
line = mrf_lines[i]
if not line.startswith(' ') and len(line) > 0:
cap = line[0].isupper()
elif line.startswith(' '):
if cap:
line = re.sub('(//.+\\S)\\s+//', '\\1 #cap //', line)
if _morfFinV.search(line) and not _morfNotFinV.search(line):
line = re.sub('(//.+\\S)\\s+//', '\\1 #FinV //', line)
for [pattern, replacement] in _mrfHashTagConversions:
line = re.sub(pattern, replacement, line)
mrf_lines[i] = line
i += 1
return mrf_lines
|
add_hashtag_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mrf_lines):\n i = 0\n cap = False\n while i < len(mrf_lines):\n line = mrf_lines[i]\n if not line.startswith(' ') and len(line) > 0:\n cap = line[0].isupper()\n elif line.startswith(' '):\n if cap:\n line = re.sub('(//.+\\\\S)\\\\s+//', '\\\\1 #cap //', line)\n if _morfFinV.search(line) and not _morfNotFinV.search(line):\n line = re.sub('(//.+\\\\S)\\\\s+//', '\\\\1 #FinV //', line)\n for [pattern, replacement] in _mrfHashTagConversions:\n line = re.sub(pattern, replacement, line)\n mrf_lines[i] = line\n i += 1\n return mrf_lines\n",
"role": "user"
},
{
"content": "add_hashtag_info",
"role": "assistant"
}
] |
def x(subcat_lex_file):
rules = {}
nonSpacePattern = re.compile('^\\S+$')
posTagPattern = re.compile('_._')
in_f = codecs.open(subcat_lex_file, mode='r', encoding='utf-8')
lemma = ''
subcatRules = ''
for line in in_f:
line = line.rstrip()
if nonSpacePattern.match(line) and not posTagPattern.search(line):
lemma = line
elif posTagPattern.search(line):
subcatRules = line
if len(lemma) > 0 and len(subcatRules) > 0:
if lemma not in rules:
rules[lemma] = []
parts = subcatRules.split('&')
for part in parts:
part = part.strip()
rules[lemma].append(part)
lemma = ''
subcatRules = ''
in_f.close()
return rules
|
load_subcat_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(subcat_lex_file):\n rules = {}\n nonSpacePattern = re.compile('^\\\\S+$')\n posTagPattern = re.compile('_._')\n in_f = codecs.open(subcat_lex_file, mode='r', encoding='utf-8')\n lemma = ''\n subcatRules = ''\n for line in in_f:\n line = line.rstrip()\n if nonSpacePattern.match(line) and not posTagPattern.search(line):\n lemma = line\n elif posTagPattern.search(line):\n subcatRules = line\n if len(lemma) > 0 and len(subcatRules) > 0:\n if lemma not in rules:\n rules[lemma] = []\n parts = subcatRules.split('&')\n for part in parts:\n part = part.strip()\n rules[lemma].append(part)\n lemma = ''\n subcatRules = ''\n in_f.close()\n return rules\n",
"role": "user"
},
{
"content": "load_subcat_info",
"role": "assistant"
}
] |
def x(mrf_lines, subcat_rules):
i = 0
while i < len(mrf_lines):
line = mrf_lines[i]
if line.startswith(' '):
lemma_match = analysisLemmaPat.match(line)
if lemma_match:
lemma = lemma_match.group(1)
if lemma in subcat_rules:
analysis_match = analysisPat.search(line)
if not analysis_match:
raise Exception(
' Could not find analysis from the line:', line)
analysis = analysis_match.group(1)
for rule in subcat_rules[lemma]:
condition, addition = rule.split('>')
condition = condition.strip()
conditions = condition.split()
satisfied1 = [_check_condition(c, analysis) for c in
conditions]
if all(satisfied1):
additions = addition.split('|')
j = i
for a in additions:
line_copy = line if i == j else line[:]
items_to_add = a.split()
for item in items_to_add:
if not _check_condition(item, analysis):
line_copy = re.sub('(//.+\\S)\\s+//',
'\\1 ' + item + ' //', line_copy)
if j == i:
mrf_lines[i] = line_copy
else:
mrf_lines.insert(i, line_copy)
j += 1
i = j - 1
break
i += 1
return mrf_lines
|
tag_subcat_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mrf_lines, subcat_rules):\n i = 0\n while i < len(mrf_lines):\n line = mrf_lines[i]\n if line.startswith(' '):\n lemma_match = analysisLemmaPat.match(line)\n if lemma_match:\n lemma = lemma_match.group(1)\n if lemma in subcat_rules:\n analysis_match = analysisPat.search(line)\n if not analysis_match:\n raise Exception(\n ' Could not find analysis from the line:', line)\n analysis = analysis_match.group(1)\n for rule in subcat_rules[lemma]:\n condition, addition = rule.split('>')\n condition = condition.strip()\n conditions = condition.split()\n satisfied1 = [_check_condition(c, analysis) for c in\n conditions]\n if all(satisfied1):\n additions = addition.split('|')\n j = i\n for a in additions:\n line_copy = line if i == j else line[:]\n items_to_add = a.split()\n for item in items_to_add:\n if not _check_condition(item, analysis):\n line_copy = re.sub('(//.+\\\\S)\\\\s+//', \n '\\\\1 ' + item + ' //', line_copy)\n if j == i:\n mrf_lines[i] = line_copy\n else:\n mrf_lines.insert(i, line_copy)\n j += 1\n i = j - 1\n break\n i += 1\n return mrf_lines\n",
"role": "user"
},
{
"content": "tag_subcat_info",
"role": "assistant"
}
] |
def x(mrf_lines):
i = 0
while i < len(mrf_lines):
line = mrf_lines[i]
if not line.startswith(' ') and len(line) > 0:
line = re.sub('^(\\S.*)([\n\r]*)$', '"<\\1>"\\2', line)
line = re.sub('<<(s|/s)>>', '<\\1>', line)
mrf_lines[i] = line
elif line.startswith(' '):
line = re.sub('#cap #cap', 'cap', line)
line = re.sub('#cap', 'cap', line)
line = re.sub('\\*\\*CLB', 'CLB', line)
line = re.sub('#Correct!', '<Correct!>', line)
line = re.sub('####', '', line)
line = re.sub('#(\\S+)', '<\\1>', line)
line = re.sub('\\$([,.;!?:<]+)', '\\1', line)
line = re.sub('_Y_\\s+\\? _Z_', '_Z_', line)
line = re.sub('_Y_\\s+\\?\\s+_Z_', '_Z_', line)
line = re.sub('_Y_\\s+_Z_', '_Z_', line)
line = re.sub('_Z_\\s+\\?', '_Z_', line)
line = re.sub('^\\s+(\\S+)(.*)\\+(\\S+)\\s*//_(\\S)_ (.*)//(.*)$',
' "\\1\\2" L\\3 \\4 \\5 \\6', line)
line = re.sub('^\\s+(\\S+)(.*)\\s+//_(\\S)_ (.*)//(.*)$',
' "\\1\\2" \\3 \\4 \\5', line)
mrf_lines[i] = line
i += 1
return mrf_lines
|
convert_to_cg3_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mrf_lines):\n i = 0\n while i < len(mrf_lines):\n line = mrf_lines[i]\n if not line.startswith(' ') and len(line) > 0:\n line = re.sub('^(\\\\S.*)([\\n\\r]*)$', '\"<\\\\1>\"\\\\2', line)\n line = re.sub('<<(s|/s)>>', '<\\\\1>', line)\n mrf_lines[i] = line\n elif line.startswith(' '):\n line = re.sub('#cap #cap', 'cap', line)\n line = re.sub('#cap', 'cap', line)\n line = re.sub('\\\\*\\\\*CLB', 'CLB', line)\n line = re.sub('#Correct!', '<Correct!>', line)\n line = re.sub('####', '', line)\n line = re.sub('#(\\\\S+)', '<\\\\1>', line)\n line = re.sub('\\\\$([,.;!?:<]+)', '\\\\1', line)\n line = re.sub('_Y_\\\\s+\\\\? _Z_', '_Z_', line)\n line = re.sub('_Y_\\\\s+\\\\?\\\\s+_Z_', '_Z_', line)\n line = re.sub('_Y_\\\\s+_Z_', '_Z_', line)\n line = re.sub('_Z_\\\\s+\\\\?', '_Z_', line)\n line = re.sub('^\\\\s+(\\\\S+)(.*)\\\\+(\\\\S+)\\\\s*//_(\\\\S)_ (.*)//(.*)$',\n ' \"\\\\1\\\\2\" L\\\\3 \\\\4 \\\\5 \\\\6', line)\n line = re.sub('^\\\\s+(\\\\S+)(.*)\\\\s+//_(\\\\S)_ (.*)//(.*)$',\n ' \"\\\\1\\\\2\" \\\\3 \\\\4 \\\\5', line)\n mrf_lines[i] = line\n i += 1\n return mrf_lines\n",
"role": "user"
},
{
"content": "convert_to_cg3_input",
"role": "assistant"
}
] |
def x(self, json_dict, **kwargs):
mrf_lines = convert_vm_json_to_mrf(json_dict)
return self.process_mrf_lines(mrf_lines, **kwargs)
|
process_vm_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, json_dict, **kwargs):\n mrf_lines = convert_vm_json_to_mrf(json_dict)\n return self.process_mrf_lines(mrf_lines, **kwargs)\n",
"role": "user"
},
{
"content": "process_vm_json",
"role": "assistant"
}
] |
def x(self, text, **kwargs):
mrf_lines = convert_Text_to_mrf(text)
return self.process_mrf_lines(mrf_lines, **kwargs)
|
process_Text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, **kwargs):\n mrf_lines = convert_Text_to_mrf(text)\n return self.process_mrf_lines(mrf_lines, **kwargs)\n",
"role": "user"
},
{
"content": "process_Text",
"role": "assistant"
}
] |
def x(self, mrf_lines, **kwargs):
converted1 = convert_mrf_to_syntax_mrf(mrf_lines, self.fs_to_synt_rules)
converted2 = convert_pronouns(converted1)
converted3 = remove_duplicate_analyses(converted2, allow_to_delete_all=
self.allow_to_remove_all)
converted4 = add_hashtag_info(converted3)
converted5 = tag_subcat_info(converted4, self.subcat_rules)
converted6 = remove_duplicate_analyses(converted5, allow_to_delete_all=
self.allow_to_remove_all)
converted7 = convert_to_cg3_input(converted6)
return converted7
|
process_mrf_lines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mrf_lines, **kwargs):\n converted1 = convert_mrf_to_syntax_mrf(mrf_lines, self.fs_to_synt_rules)\n converted2 = convert_pronouns(converted1)\n converted3 = remove_duplicate_analyses(converted2, allow_to_delete_all=\n self.allow_to_remove_all)\n converted4 = add_hashtag_info(converted3)\n converted5 = tag_subcat_info(converted4, self.subcat_rules)\n converted6 = remove_duplicate_analyses(converted5, allow_to_delete_all=\n self.allow_to_remove_all)\n converted7 = convert_to_cg3_input(converted6)\n return converted7\n",
"role": "user"
},
{
"content": "process_mrf_lines",
"role": "assistant"
}
] |
def x(src_dir='src', ending='.cpp'):
return [os.path.join(src_dir, fnm) for fnm in os.listdir(src_dir) if
fnm.endswith(ending)]
|
get_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src_dir='src', ending='.cpp'):\n return [os.path.join(src_dir, fnm) for fnm in os.listdir(src_dir) if\n fnm.endswith(ending)]\n",
"role": "user"
},
{
"content": "get_sources",
"role": "assistant"
}
] |
def x(color):
color = color.replace('-', '').lower()
if color == 'white':
return '\x1b[97m'
elif color in ['cyan', 'aqua']:
return '\x1b[96m'
elif color in ['purple', 'magneta', 'fuchsia']:
return '\x1b[95m'
elif color == 'blue':
return '\x1b[94m'
elif color in ['yellow', 'gold']:
return '\x1b[93m'
elif color in ['green', 'lime']:
return '\x1b[92m'
elif color == 'red':
return '\x1b[91m'
elif color in ['grey', 'gray', 'silver']:
return '\x1b[37m'
elif color in ['darkcyan', 'teal']:
return '\x1b[36m'
elif color in ['darkpurple', 'darkmagneta']:
return '\x1b[35m'
elif color in ['darkblue', 'navy']:
return '\x1b[34m'
elif color in ['darkyellow', 'olive']:
return '\x1b[33m'
elif color == 'darkgreen':
return '\x1b[32m'
elif color in ['darkred', 'maroon']:
return '\x1b[31m'
return None
|
get_ANSI_colored_font
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(color):\n color = color.replace('-', '').lower()\n if color == 'white':\n return '\\x1b[97m'\n elif color in ['cyan', 'aqua']:\n return '\\x1b[96m'\n elif color in ['purple', 'magneta', 'fuchsia']:\n return '\\x1b[95m'\n elif color == 'blue':\n return '\\x1b[94m'\n elif color in ['yellow', 'gold']:\n return '\\x1b[93m'\n elif color in ['green', 'lime']:\n return '\\x1b[92m'\n elif color == 'red':\n return '\\x1b[91m'\n elif color in ['grey', 'gray', 'silver']:\n return '\\x1b[37m'\n elif color in ['darkcyan', 'teal']:\n return '\\x1b[36m'\n elif color in ['darkpurple', 'darkmagneta']:\n return '\\x1b[35m'\n elif color in ['darkblue', 'navy']:\n return '\\x1b[34m'\n elif color in ['darkyellow', 'olive']:\n return '\\x1b[33m'\n elif color == 'darkgreen':\n return '\\x1b[32m'\n elif color in ['darkred', 'maroon']:\n return '\\x1b[31m'\n return None\n",
"role": "user"
},
{
"content": "get_ANSI_colored_font",
"role": "assistant"
}
] |
def x(text, layer, markup_settings, spansStartingFrom=None):
if not markup_settings or not isinstance(markup_settings, dict):
raise Exception(
'Error: markup_settings should be a dict containing markup specification;'
)
startTags = ''
endTags = ''
graphicFormatting = False
bracketing = False
if 'u' in markup_settings and markup_settings['u'
] or 'underline' in markup_settings and markup_settings['underline']:
startTags += '\x1b[4m'
endTags += '\x1b[0m'
graphicFormatting = True
colorName = markup_settings['c'] if 'c' in markup_settings else None
colorName = markup_settings['color'
] if 'color' in markup_settings else colorName
if colorName:
color = _get_ANSI_colored_font(colorName)
if color:
startTags += color
endTags += '\x1b[0m'
graphicFormatting = True
else:
raise Exception('Unknown color:', colorName)
if 'b' in markup_settings and markup_settings['b'
] or 'bracket' in markup_settings and markup_settings['bracket']:
startTags += '['
endTags = ']' + endTags
bracketing = True
if graphicFormatting and bracketing:
startTags2 = startTags.rstrip('[')
endTags = startTags2 + endTags
extractor = lambda t: texts_multi(t, layer)
if hasattr(layer, '__call__'):
extractor = layer
elif text.is_simple(layer):
extractor = lambda t: texts_simple(t, layer)
if not spansStartingFrom:
spansStartingFrom = {}
for elem in extractor(text):
if elem[START] not in spansStartingFrom:
spansStartingFrom[elem[START]] = []
span1 = [elem[START], elem[END], layer, startTags, endTags,
graphicFormatting, bracketing]
if not spansStartingFrom[elem[START]]:
spansStartingFrom[elem[START]].append(span1)
else:
inserted = False
for i in range(len(spansStartingFrom[elem[START]])):
span2 = spansStartingFrom[elem[START]][i]
if span1[1] > span2[1]:
spansStartingFrom[elem[START]].insert(i, span1)
inserted = True
break
elif span1[1] == span2[1] and span1[2] < span2[2]:
spansStartingFrom[elem[START]].insert(i, span1)
inserted = True
break
if not inserted:
spansStartingFrom[elem[START]].append(span1)
return spansStartingFrom
|
construct_start_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, layer, markup_settings, spansStartingFrom=None):\n if not markup_settings or not isinstance(markup_settings, dict):\n raise Exception(\n 'Error: markup_settings should be a dict containing markup specification;'\n )\n startTags = ''\n endTags = ''\n graphicFormatting = False\n bracketing = False\n if 'u' in markup_settings and markup_settings['u'\n ] or 'underline' in markup_settings and markup_settings['underline']:\n startTags += '\\x1b[4m'\n endTags += '\\x1b[0m'\n graphicFormatting = True\n colorName = markup_settings['c'] if 'c' in markup_settings else None\n colorName = markup_settings['color'\n ] if 'color' in markup_settings else colorName\n if colorName:\n color = _get_ANSI_colored_font(colorName)\n if color:\n startTags += color\n endTags += '\\x1b[0m'\n graphicFormatting = True\n else:\n raise Exception('Unknown color:', colorName)\n if 'b' in markup_settings and markup_settings['b'\n ] or 'bracket' in markup_settings and markup_settings['bracket']:\n startTags += '['\n endTags = ']' + endTags\n bracketing = True\n if graphicFormatting and bracketing:\n startTags2 = startTags.rstrip('[')\n endTags = startTags2 + endTags\n extractor = lambda t: texts_multi(t, layer)\n if hasattr(layer, '__call__'):\n extractor = layer\n elif text.is_simple(layer):\n extractor = lambda t: texts_simple(t, layer)\n if not spansStartingFrom:\n spansStartingFrom = {}\n for elem in extractor(text):\n if elem[START] not in spansStartingFrom:\n spansStartingFrom[elem[START]] = []\n span1 = [elem[START], elem[END], layer, startTags, endTags,\n graphicFormatting, bracketing]\n if not spansStartingFrom[elem[START]]:\n spansStartingFrom[elem[START]].append(span1)\n else:\n inserted = False\n for i in range(len(spansStartingFrom[elem[START]])):\n span2 = spansStartingFrom[elem[START]][i]\n if span1[1] > span2[1]:\n spansStartingFrom[elem[START]].insert(i, span1)\n inserted = True\n break\n elif span1[1] == span2[1] and span1[2] < span2[2]:\n spansStartingFrom[elem[START]].insert(i, span1)\n inserted = True\n break\n if not inserted:\n spansStartingFrom[elem[START]].append(span1)\n return spansStartingFrom\n",
"role": "user"
},
{
"content": "construct_start_index",
"role": "assistant"
}
] |
def x(spansStartingFrom):
endIndex = {}
for i in spansStartingFrom:
for span1 in spansStartingFrom[i]:
endSpan1 = [span1[4], span1[0], span1[2]]
endLoc1 = span1[1]
if endLoc1 not in endIndex:
endIndex[endLoc1] = []
endIndex[endLoc1].append(endSpan1)
else:
inserted = False
for i in range(len(endIndex[endLoc1])):
endSpan2 = endIndex[endLoc1][i]
if endSpan2[1] < endSpan1[1]:
endIndex[endLoc1].insert(i, endSpan1)
inserted = True
break
elif endSpan2[1] == endSpan1[1] and endSpan2[2] < endSpan1[
2]:
endIndex[endLoc1].insert(i, endSpan1)
inserted = True
break
if not inserted:
endIndex[endLoc1].append(endSpan1)
return endIndex
|
construct_end_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spansStartingFrom):\n endIndex = {}\n for i in spansStartingFrom:\n for span1 in spansStartingFrom[i]:\n endSpan1 = [span1[4], span1[0], span1[2]]\n endLoc1 = span1[1]\n if endLoc1 not in endIndex:\n endIndex[endLoc1] = []\n endIndex[endLoc1].append(endSpan1)\n else:\n inserted = False\n for i in range(len(endIndex[endLoc1])):\n endSpan2 = endIndex[endLoc1][i]\n if endSpan2[1] < endSpan1[1]:\n endIndex[endLoc1].insert(i, endSpan1)\n inserted = True\n break\n elif endSpan2[1] == endSpan1[1] and endSpan2[2] < endSpan1[\n 2]:\n endIndex[endLoc1].insert(i, endSpan1)\n inserted = True\n break\n if not inserted:\n endIndex[endLoc1].append(endSpan1)\n return endIndex\n",
"role": "user"
},
{
"content": "construct_end_index",
"role": "assistant"
}
] |
def x(spansStartingFrom):
for startIndex in sorted(spansStartingFrom.keys()):
for span1 in spansStartingFrom[startIndex]:
if not span1[5]:
continue
span1Start = span1[0]
span1End = span1[1]
for i in range(span1Start, span1End):
if i in spansStartingFrom:
for span2 in spansStartingFrom[i]:
span2Start = span2[0]
span2End = span2[1]
if span2 != span1 and span2[5]:
if span2End <= span1End:
if not span1[6]:
span2[4] += span1[3]
else:
wb = span1[3].rstrip('[')
span2[4] += wb
|
fix_overlapping_graphics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spansStartingFrom):\n for startIndex in sorted(spansStartingFrom.keys()):\n for span1 in spansStartingFrom[startIndex]:\n if not span1[5]:\n continue\n span1Start = span1[0]\n span1End = span1[1]\n for i in range(span1Start, span1End):\n if i in spansStartingFrom:\n for span2 in spansStartingFrom[i]:\n span2Start = span2[0]\n span2End = span2[1]\n if span2 != span1 and span2[5]:\n if span2End <= span1End:\n if not span1[6]:\n span2[4] += span1[3]\n else:\n wb = span1[3].rstrip('[')\n span2[4] += wb\n",
"role": "user"
},
{
"content": "fix_overlapping_graphics",
"role": "assistant"
}
] |
def x(text, layers, markup_settings=None):
if markup_settings and len(layers) != len(markup_settings):
raise Exception(
' Input arguments layers and markup_settings should be equal size lists.'
)
elif not markup_settings and len(layers) <= len(default_markup_settings):
markup_settings = default_markup_settings[0:len(layers)]
elif not markup_settings:
raise Exception(' Input argument markup_settings not defined.')
spansStartingFrom = {}
for i in range(len(layers)):
layer = layers[i]
settings = markup_settings[i]
spansStartingFrom = _construct_start_index(text, layer, settings,
spansStartingFrom)
_fix_overlapping_graphics(spansStartingFrom)
endTags = _construct_end_index(spansStartingFrom)
return_str = []
for i in range(len(text[TEXT])):
c = text[TEXT][i]
emptyTags = []
if i in endTags:
for tag in endTags[i]:
if tag[1] != i:
return_str.append(tag[0])
else:
emptyTags.append(tag)
if i in spansStartingFrom:
for span in spansStartingFrom[i]:
return_str.append(span[3])
if span[0] == span[1]:
for emptyEndTag in emptyTags:
if span[2] == emptyEndTag[2]:
return_str.append(emptyEndTag[0])
return_str.append(c)
if len(text[TEXT]) in spansStartingFrom:
for span in spansStartingFrom[len(text[TEXT])]:
return_str.append(span[3])
if len(text[TEXT]) in endTags:
for tag in endTags[len(text[TEXT])]:
return_str.append(tag[0])
if return_str and '\x1b' in return_str[-1] and not return_str[-1].endswith(
'\x1b[0m'):
return_str.append('\x1b[0m')
return ''.join(return_str)
|
preformat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, layers, markup_settings=None):\n if markup_settings and len(layers) != len(markup_settings):\n raise Exception(\n ' Input arguments layers and markup_settings should be equal size lists.'\n )\n elif not markup_settings and len(layers) <= len(default_markup_settings):\n markup_settings = default_markup_settings[0:len(layers)]\n elif not markup_settings:\n raise Exception(' Input argument markup_settings not defined.')\n spansStartingFrom = {}\n for i in range(len(layers)):\n layer = layers[i]\n settings = markup_settings[i]\n spansStartingFrom = _construct_start_index(text, layer, settings,\n spansStartingFrom)\n _fix_overlapping_graphics(spansStartingFrom)\n endTags = _construct_end_index(spansStartingFrom)\n return_str = []\n for i in range(len(text[TEXT])):\n c = text[TEXT][i]\n emptyTags = []\n if i in endTags:\n for tag in endTags[i]:\n if tag[1] != i:\n return_str.append(tag[0])\n else:\n emptyTags.append(tag)\n if i in spansStartingFrom:\n for span in spansStartingFrom[i]:\n return_str.append(span[3])\n if span[0] == span[1]:\n for emptyEndTag in emptyTags:\n if span[2] == emptyEndTag[2]:\n return_str.append(emptyEndTag[0])\n return_str.append(c)\n if len(text[TEXT]) in spansStartingFrom:\n for span in spansStartingFrom[len(text[TEXT])]:\n return_str.append(span[3])\n if len(text[TEXT]) in endTags:\n for tag in endTags[len(text[TEXT])]:\n return_str.append(tag[0])\n if return_str and '\\x1b' in return_str[-1] and not return_str[-1].endswith(\n '\\x1b[0m'):\n return_str.append('\\x1b[0m')\n return ''.join(return_str)\n",
"role": "user"
},
{
"content": "preformat",
"role": "assistant"
}
] |
def x(text, layers, markup_settings=None):
if markup_settings and len(layers) != len(markup_settings):
raise Exception(
' Input arguments layers and markup_settings should be equal size lists.'
)
elif not markup_settings and len(layers) <= len(default_markup_settings):
markup_settings = default_markup_settings[0:len(layers)]
elif not markup_settings:
raise Exception(' Input argument markup_settings not defined.')
print(_preformat(text, layers, markup_settings=markup_settings))
|
tprint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, layers, markup_settings=None):\n if markup_settings and len(layers) != len(markup_settings):\n raise Exception(\n ' Input arguments layers and markup_settings should be equal size lists.'\n )\n elif not markup_settings and len(layers) <= len(default_markup_settings):\n markup_settings = default_markup_settings[0:len(layers)]\n elif not markup_settings:\n raise Exception(' Input argument markup_settings not defined.')\n print(_preformat(text, layers, markup_settings=markup_settings))\n",
"role": "user"
},
{
"content": "tprint",
"role": "assistant"
}
] |
def x(aes_name, css_value):
css_prop = AES_CSS_MAP[aes_name]
if isinstance(css_value, list):
return get_mark_css_for_rules(aes_name, css_prop, css_value)
else:
return get_mark_simple_css(aes_name, css_prop, css_value)
|
get_mark_css
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(aes_name, css_value):\n css_prop = AES_CSS_MAP[aes_name]\n if isinstance(css_value, list):\n return get_mark_css_for_rules(aes_name, css_prop, css_value)\n else:\n return get_mark_simple_css(aes_name, css_prop, css_value)\n",
"role": "user"
},
{
"content": "get_mark_css",
"role": "assistant"
}
] |
def x(self, inputFile):
self.nomAdvWordTemplates = dict()
self.verbRules = dict()
self.verbToVinf = dict()
in_f = codecs.open(inputFile, mode='r', encoding='utf-8')
for line in in_f:
line = line.rstrip()
if len(line) > 0 and not re.match('^#.+$', line):
items = line.split('\t')
if len(items) == 3:
verb = items[0]
nounAdv = items[1]
vinf = items[2]
if nounAdv not in self.nomAdvWordTemplates:
root, pos, form = nounAdv.split(';')
if not root.startswith('^') and not root.endswith('$'):
root = '^' + root + '$'
constraints = {ROOT: root, POSTAG: pos}
if form:
constraints[FORM] = form
self.nomAdvWordTemplates[nounAdv] = WordTemplate(
constraints)
if verb not in self.verbRules:
self.verbRules[verb] = []
if verb not in self.verbToVinf:
self.verbToVinf[verb] = []
self.verbRules[verb].append((nounAdv, 'V_' + vinf))
if 'V_' + vinf not in self.verbToVinf[verb]:
self.verbToVinf[verb].append('V_' + vinf)
else:
raise Exception(
' Unexpected number of items in the input lexicon line: ' +
line)
in_f.close()
|
loadSubcatRelations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inputFile):\n self.nomAdvWordTemplates = dict()\n self.verbRules = dict()\n self.verbToVinf = dict()\n in_f = codecs.open(inputFile, mode='r', encoding='utf-8')\n for line in in_f:\n line = line.rstrip()\n if len(line) > 0 and not re.match('^#.+$', line):\n items = line.split('\\t')\n if len(items) == 3:\n verb = items[0]\n nounAdv = items[1]\n vinf = items[2]\n if nounAdv not in self.nomAdvWordTemplates:\n root, pos, form = nounAdv.split(';')\n if not root.startswith('^') and not root.endswith('$'):\n root = '^' + root + '$'\n constraints = {ROOT: root, POSTAG: pos}\n if form:\n constraints[FORM] = form\n self.nomAdvWordTemplates[nounAdv] = WordTemplate(\n constraints)\n if verb not in self.verbRules:\n self.verbRules[verb] = []\n if verb not in self.verbToVinf:\n self.verbToVinf[verb] = []\n self.verbRules[verb].append((nounAdv, 'V_' + vinf))\n if 'V_' + vinf not in self.verbToVinf[verb]:\n self.verbToVinf[verb].append('V_' + vinf)\n else:\n raise Exception(\n ' Unexpected number of items in the input lexicon line: ' +\n line)\n in_f.close()\n",
"role": "user"
},
{
"content": "loadSubcatRelations",
"role": "assistant"
}
] |
def x(self, token, verb, vinf):
if verb in self.verbRules:
for nounAdv, vinf1 in self.verbRules[verb]:
if vinf == vinf1 and self.nomAdvWordTemplates[nounAdv].matches(
token):
return _getMatchingAnalysisIDs(token, self.
nomAdvWordTemplates[nounAdv])
return []
|
tokenMatchesNomAdvVinf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, token, verb, vinf):\n if verb in self.verbRules:\n for nounAdv, vinf1 in self.verbRules[verb]:\n if vinf == vinf1 and self.nomAdvWordTemplates[nounAdv].matches(\n token):\n return _getMatchingAnalysisIDs(token, self.\n nomAdvWordTemplates[nounAdv])\n return []\n",
"role": "user"
},
{
"content": "tokenMatchesNomAdvVinf",
"role": "assistant"
}
] |
def x(self, sentence, foundChains):
clauses = getClausesByClauseIDs(sentence)
allDetectedVerbChains = []
for clauseID in clauses:
clause = clauses[clauseID]
self.extendChainsInClause(clause, clauseID, foundChains)
|
extendChainsInSentence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sentence, foundChains):\n clauses = getClausesByClauseIDs(sentence)\n allDetectedVerbChains = []\n for clauseID in clauses:\n clause = clauses[clauseID]\n self.extendChainsInClause(clause, clauseID, foundChains)\n",
"role": "user"
},
{
"content": "extendChainsInSentence",
"role": "assistant"
}
] |
def x(self, headVerbRoot, headVerbWID, nomAdvWID, widToToken):
minWID = min(widToToken.keys())
nomAdvToken = widToToken[nomAdvWID]
isNom = self.wtNom.matches(nomAdvToken)
if headVerbWID + 1 == nomAdvWID:
return True
elif minWID == nomAdvWID:
return True
elif isNom and nomAdvWID - 1 in widToToken:
prevToken = widToToken[nomAdvWID - 1]
if self.wtNotSyntAttrib.matches(prevToken):
return True
elif self.wtNom.matches(prevToken):
if self.wtNomSemCase.matches(prevToken):
if not self.wtNomSemCase.matches(nomAdvToken):
return True
else:
analyses1 = self.wtNomSemCase.matchingAnalyses(prevToken)
analyses2 = self.wtNomSemCase.matchingAnalyses(nomAdvToken)
forms1 = set([a[FORM] for a in analyses1])
forms2 = set([a[FORM] for a in analyses2])
if len(forms1.intersection(forms2)) == 0:
return True
elif not isNom and headVerbRoot.startswith('ole '):
return True
return False
|
isLikelyNotPhrase
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, headVerbRoot, headVerbWID, nomAdvWID, widToToken):\n minWID = min(widToToken.keys())\n nomAdvToken = widToToken[nomAdvWID]\n isNom = self.wtNom.matches(nomAdvToken)\n if headVerbWID + 1 == nomAdvWID:\n return True\n elif minWID == nomAdvWID:\n return True\n elif isNom and nomAdvWID - 1 in widToToken:\n prevToken = widToToken[nomAdvWID - 1]\n if self.wtNotSyntAttrib.matches(prevToken):\n return True\n elif self.wtNom.matches(prevToken):\n if self.wtNomSemCase.matches(prevToken):\n if not self.wtNomSemCase.matches(nomAdvToken):\n return True\n else:\n analyses1 = self.wtNomSemCase.matchingAnalyses(prevToken)\n analyses2 = self.wtNomSemCase.matchingAnalyses(nomAdvToken)\n forms1 = set([a[FORM] for a in analyses1])\n forms2 = set([a[FORM] for a in analyses2])\n if len(forms1.intersection(forms2)) == 0:\n return True\n elif not isNom and headVerbRoot.startswith('ole '):\n return True\n return False\n",
"role": "user"
},
{
"content": "isLikelyNotPhrase",
"role": "assistant"
}
] |
def x(self, headVerbRoot, headVerbWID, suitableNomAdvExpansions,
expansionVerbs, widToToken):
if len(suitableNomAdvExpansions) == 1 and expansionVerbs:
suitableExpansionVerbs = [expVerb for expVerb in expansionVerbs if
expVerb[2] == suitableNomAdvExpansions[0][2]]
if len(suitableExpansionVerbs) == 1:
nomAdvWID = suitableNomAdvExpansions[0][0]
if self._isLikelyNotPhrase(headVerbRoot, headVerbWID, nomAdvWID,
widToToken):
return suitableExpansionVerbs[0]
return None
|
canBeExpanded
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, headVerbRoot, headVerbWID, suitableNomAdvExpansions,\n expansionVerbs, widToToken):\n if len(suitableNomAdvExpansions) == 1 and expansionVerbs:\n suitableExpansionVerbs = [expVerb for expVerb in expansionVerbs if \n expVerb[2] == suitableNomAdvExpansions[0][2]]\n if len(suitableExpansionVerbs) == 1:\n nomAdvWID = suitableNomAdvExpansions[0][0]\n if self._isLikelyNotPhrase(headVerbRoot, headVerbWID, nomAdvWID,\n widToToken):\n return suitableExpansionVerbs[0]\n return None\n",
"role": "user"
},
{
"content": "canBeExpanded",
"role": "assistant"
}
] |
def x(text):
textStart = 0
entries = re.split('\n=', text[textStart:])
stack = [[]]
intro = {}
sectionTitleRegEx = re.compile('={1,}.+={2,}')
section = {}
section['text'] = entries[0]
counts = []
counts.append(3)
sections = []
sections.append(section)
for i in entries[1:]:
section = {}
title = re.match(sectionTitleRegEx, i)
if title:
titleEnd = title.end()
title = title.group()
text = i[titleEnd:]
level = title.count('=')
section['title'] = title.strip('= ')
section['text'] = text
sections.append(section.copy())
counts.append(level)
for section in sections:
text = section['text']
if 'wikitable' in text or '</table>' in text.lower():
section['text'], section['tables'] = tableCollector(text)
section = relatedArticles(section)
if '<ref' in text:
section = reffinder(section)
if imageRegEx.search(text):
section = imageParser(section)
section['text'] = section['text'].strip()
if ExtLinkBracketedRegex.search(text):
section = addExternalLinks(section)
if '[[' in text:
section = addIntLinks(section)
el = 'external_links'
if el in section.keys():
text = section['text']
for link in section[el]:
label = link['label']
label = re.compile(re.escape(label))
m = label.search(text)
try:
link['start'] = m.start()
link['end'] = m.end()
except AttributeError:
print('Problem with external links start:end position!')
print(label)
print(text)
if counts:
assert len(counts) == len(sections)
n = len(sections)
pos = 0
levels = [counts[0]]
while pos < n:
count = counts[pos]
elem = sections[pos]
level = levels[-1]
if count == level:
stack[-1].append(elem)
elif count >= level:
stack.append([elem])
levels.append(count)
else:
group = stack.pop()
stack[-1][-1]['sections'] = group
levels.pop()
continue
pos += 1
while len(stack) > 1:
group = stack.pop()
stack[-1][-1]['sections'] = group
stack = stack[0]
return stack
|
sectionsParser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n textStart = 0\n entries = re.split('\\n=', text[textStart:])\n stack = [[]]\n intro = {}\n sectionTitleRegEx = re.compile('={1,}.+={2,}')\n section = {}\n section['text'] = entries[0]\n counts = []\n counts.append(3)\n sections = []\n sections.append(section)\n for i in entries[1:]:\n section = {}\n title = re.match(sectionTitleRegEx, i)\n if title:\n titleEnd = title.end()\n title = title.group()\n text = i[titleEnd:]\n level = title.count('=')\n section['title'] = title.strip('= ')\n section['text'] = text\n sections.append(section.copy())\n counts.append(level)\n for section in sections:\n text = section['text']\n if 'wikitable' in text or '</table>' in text.lower():\n section['text'], section['tables'] = tableCollector(text)\n section = relatedArticles(section)\n if '<ref' in text:\n section = reffinder(section)\n if imageRegEx.search(text):\n section = imageParser(section)\n section['text'] = section['text'].strip()\n if ExtLinkBracketedRegex.search(text):\n section = addExternalLinks(section)\n if '[[' in text:\n section = addIntLinks(section)\n el = 'external_links'\n if el in section.keys():\n text = section['text']\n for link in section[el]:\n label = link['label']\n label = re.compile(re.escape(label))\n m = label.search(text)\n try:\n link['start'] = m.start()\n link['end'] = m.end()\n except AttributeError:\n print('Problem with external links start:end position!')\n print(label)\n print(text)\n if counts:\n assert len(counts) == len(sections)\n n = len(sections)\n pos = 0\n levels = [counts[0]]\n while pos < n:\n count = counts[pos]\n elem = sections[pos]\n level = levels[-1]\n if count == level:\n stack[-1].append(elem)\n elif count >= level:\n stack.append([elem])\n levels.append(count)\n else:\n group = stack.pop()\n stack[-1][-1]['sections'] = group\n levels.pop()\n continue\n pos += 1\n while len(stack) > 1:\n group = stack.pop()\n stack[-1][-1]['sections'] = group\n stack = stack[0]\n return stack\n",
"role": "user"
},
{
"content": "sectionsParser",
"role": "assistant"
}
] |
def x(self, text):
return ''.join([c for c in text if c in self.alphabet])
|
clean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n return ''.join([c for c in text if c in self.alphabet])\n",
"role": "user"
},
{
"content": "clean",
"role": "assistant"
}
] |
def x(self, text):
return ''.join(sorted(set([c for c in text if c not in self.alphabet])))
|
invalid_characters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n return ''.join(sorted(set([c for c in text if c not in self.alphabet])))\n",
"role": "user"
},
{
"content": "invalid_characters",
"role": "assistant"
}
] |
def x(self, text, context_size=20):
result = defaultdict(list)
for idx, char in enumerate(text):
if char not in self.alphabet:
start = max(0, idx - context_size)
end = min(len(text), idx + context_size)
result[char].append(text[start:end])
return result
|
find_invalid_chars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, context_size=20):\n result = defaultdict(list)\n for idx, char in enumerate(text):\n if char not in self.alphabet:\n start = max(0, idx - context_size)\n end = min(len(text), idx + context_size)\n result[char].append(text[start:end])\n return result\n",
"role": "user"
},
{
"content": "find_invalid_chars",
"role": "assistant"
}
] |
def x(self, texts, context_size=10):
result = defaultdict(list)
for text in texts:
for char, examples in self.find_invalid_chars(text, context_size
).items():
result[char].extend(examples)
return result
|
compute_report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, context_size=10):\n result = defaultdict(list)\n for text in texts:\n for char, examples in self.find_invalid_chars(text, context_size\n ).items():\n result[char].extend(examples)\n return result\n",
"role": "user"
},
{
"content": "compute_report",
"role": "assistant"
}
] |
def x(self, texts, n_examples=10, context_size=10, f=sys.stdout):
result = list(self.compute_report(texts, context_size).items())
result.sort(key=lambda x: (len(x[1]), x[0]), reverse=True)
s = 'Analyzed {0} texts.\n'.format(len(texts))
if len(texts) == 0:
f.write(s)
return
if len(result) > 0:
s += 'Invalid characters and their counts:\n'
for c, examples in result:
s += '"{0}"\t{1}\n'.format(c, len(examples))
s += '\n'
for c, examples in result:
s += ('For character "{0}", found {1} occurrences.\nExamples:\n'
.format(c, len(examples)))
examples = sample(examples, min(len(examples), n_examples))
for idx, example in enumerate(examples):
s += 'example {0}: {1}\n'.format(idx + 1, example)
s += '\n'
f.write(s)
else:
f.write('All OK\n')
|
report
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texts, n_examples=10, context_size=10, f=sys.stdout):\n result = list(self.compute_report(texts, context_size).items())\n result.sort(key=lambda x: (len(x[1]), x[0]), reverse=True)\n s = 'Analyzed {0} texts.\\n'.format(len(texts))\n if len(texts) == 0:\n f.write(s)\n return\n if len(result) > 0:\n s += 'Invalid characters and their counts:\\n'\n for c, examples in result:\n s += '\"{0}\"\\t{1}\\n'.format(c, len(examples))\n s += '\\n'\n for c, examples in result:\n s += ('For character \"{0}\", found {1} occurrences.\\nExamples:\\n'\n .format(c, len(examples)))\n examples = sample(examples, min(len(examples), n_examples))\n for idx, example in enumerate(examples):\n s += 'example {0}: {1}\\n'.format(idx + 1, example)\n s += '\\n'\n f.write(s)\n else:\n f.write('All OK\\n')\n",
"role": "user"
},
{
"content": "report",
"role": "assistant"
}
] |
def x(self, text, **kwargs):
apply_tag_analysis = False
augment_words = False
all_return_types = ['text', 'vislcg3', 'trees', 'dep_graphs']
return_type = all_return_types[0]
for argName, argVal in kwargs.items():
if argName.lower() == 'return_type':
if argVal.lower() in all_return_types:
return_type = argVal.lower()
else:
raise Exception(' Unexpected return type: ', argVal)
elif argName.lower() == 'augment_words':
augment_words = bool(argVal)
elif argName.lower() == 'apply_tag_analysis':
apply_tag_analysis = bool(argVal)
kwargs['split_result'] = True
kwargs['clean_up'] = True
kwargs['remove_clo'] = kwargs.get('remove_clo', True)
kwargs['remove_cap'] = kwargs.get('remove_cap', True)
kwargs['keep_old'] = kwargs.get('keep_old', False)
kwargs['double_quotes'] = 'unesc'
if apply_tag_analysis:
text = text.tag_analysis()
result_lines1 = self.preprocessor.process_Text(text, **kwargs)
result_lines2 = self.vislcg3_processor.process_lines(result_lines1, **
kwargs)
alignments = align_cg3_with_Text(result_lines2, text, **kwargs)
alignments = normalise_alignments(alignments, data_type=VISLCG3_DATA,
**kwargs)
text[LAYER_VISLCG3] = alignments
if augment_words:
self._augment_text_w_syntactic_info(text, text[LAYER_VISLCG3])
if return_type == 'vislcg3':
return result_lines2
elif return_type == 'trees':
return build_trees_from_text(text, layer=LAYER_VISLCG3, **kwargs)
elif return_type == 'dep_graphs':
trees = build_trees_from_text(text, layer=LAYER_VISLCG3, **kwargs)
graphs = [tree.as_dependencygraph() for tree in trees]
return graphs
else:
return text
|
parse_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, **kwargs):\n apply_tag_analysis = False\n augment_words = False\n all_return_types = ['text', 'vislcg3', 'trees', 'dep_graphs']\n return_type = all_return_types[0]\n for argName, argVal in kwargs.items():\n if argName.lower() == 'return_type':\n if argVal.lower() in all_return_types:\n return_type = argVal.lower()\n else:\n raise Exception(' Unexpected return type: ', argVal)\n elif argName.lower() == 'augment_words':\n augment_words = bool(argVal)\n elif argName.lower() == 'apply_tag_analysis':\n apply_tag_analysis = bool(argVal)\n kwargs['split_result'] = True\n kwargs['clean_up'] = True\n kwargs['remove_clo'] = kwargs.get('remove_clo', True)\n kwargs['remove_cap'] = kwargs.get('remove_cap', True)\n kwargs['keep_old'] = kwargs.get('keep_old', False)\n kwargs['double_quotes'] = 'unesc'\n if apply_tag_analysis:\n text = text.tag_analysis()\n result_lines1 = self.preprocessor.process_Text(text, **kwargs)\n result_lines2 = self.vislcg3_processor.process_lines(result_lines1, **\n kwargs)\n alignments = align_cg3_with_Text(result_lines2, text, **kwargs)\n alignments = normalise_alignments(alignments, data_type=VISLCG3_DATA,\n **kwargs)\n text[LAYER_VISLCG3] = alignments\n if augment_words:\n self._augment_text_w_syntactic_info(text, text[LAYER_VISLCG3])\n if return_type == 'vislcg3':\n return result_lines2\n elif return_type == 'trees':\n return build_trees_from_text(text, layer=LAYER_VISLCG3, **kwargs)\n elif return_type == 'dep_graphs':\n trees = build_trees_from_text(text, layer=LAYER_VISLCG3, **kwargs)\n graphs = [tree.as_dependencygraph() for tree in trees]\n return graphs\n else:\n return text\n",
"role": "user"
},
{
"content": "parse_text",
"role": "assistant"
}
] |
def x(self, keep_list, **kwargs):
new_kwargs = {}
for argName, argVal in kwargs.items():
if argName.lower() in keep_list:
new_kwargs[argName.lower()] = argVal
return new_kwargs
|
filter_kwargs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keep_list, **kwargs):\n new_kwargs = {}\n for argName, argVal in kwargs.items():\n if argName.lower() in keep_list:\n new_kwargs[argName.lower()] = argVal\n return new_kwargs\n",
"role": "user"
},
{
"content": "filter_kwargs",
"role": "assistant"
}
] |
def x(self, text, text_layer):
j = 0
for sentence in text.divide(layer=WORDS, by=SENTENCES):
for i in range(len(sentence)):
estnltkToken = sentence[i]
vislcg3Token = text_layer[j]
parse_found = False
if PARSER_OUT in vislcg3Token:
if len(vislcg3Token[PARSER_OUT]) > 0:
firstParse = vislcg3Token[PARSER_OUT][0]
estnltkToken['s_label'] = str(i)
estnltkToken['s_head'] = str(firstParse[1])
deprels = '|'.join([p[0] for p in vislcg3Token[PARSER_OUT]]
)
estnltkToken['s_rel'] = deprels
parse_found = True
if not parse_found:
raise Exception(
'(!) Unable to retrieve syntactic analysis for the ',
estnltkToken, ' from ', vislcg3Token)
j += 1
|
augment_text_w_syntactic_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, text_layer):\n j = 0\n for sentence in text.divide(layer=WORDS, by=SENTENCES):\n for i in range(len(sentence)):\n estnltkToken = sentence[i]\n vislcg3Token = text_layer[j]\n parse_found = False\n if PARSER_OUT in vislcg3Token:\n if len(vislcg3Token[PARSER_OUT]) > 0:\n firstParse = vislcg3Token[PARSER_OUT][0]\n estnltkToken['s_label'] = str(i)\n estnltkToken['s_head'] = str(firstParse[1])\n deprels = '|'.join([p[0] for p in vislcg3Token[PARSER_OUT]]\n )\n estnltkToken['s_rel'] = deprels\n parse_found = True\n if not parse_found:\n raise Exception(\n '(!) Unable to retrieve syntactic analysis for the ',\n estnltkToken, ' from ', vislcg3Token)\n j += 1\n",
"role": "user"
},
{
"content": "augment_text_w_syntactic_info",
"role": "assistant"
}
] |
def x(self, text, **kwargs):
augment_words = False
all_return_types = ['text', 'conll', 'trees', 'dep_graphs']
return_type = all_return_types[0]
for argName, argVal in kwargs.items():
if argName == 'return_type':
if argVal.lower() in all_return_types:
return_type = argVal.lower()
else:
raise Exception(' Unexpected return type: ', argVal)
elif argName.lower() == 'augment_words':
augment_words = bool(argVal)
if not text.is_tagged(ANALYSIS):
text.tag_analysis()
textConllStr = convert_text_to_CONLL(text, self.feature_generator)
resultsConllStr = _executeMaltparser(textConllStr, self.maltparser_dir,
self.maltparser_jar, self.model_name)
alignments = align_CONLL_with_Text(resultsConllStr, text, self.
feature_generator, **kwargs)
alignments = normalise_alignments(alignments, data_type=CONLL_DATA, **
kwargs)
text[LAYER_CONLL] = alignments
if augment_words:
augmentTextWithCONLLstr(resultsConllStr, text)
if return_type == 'conll':
return resultsConllStr
elif return_type == 'trees':
return build_trees_from_text(text, layer=LAYER_CONLL, **kwargs)
elif return_type == 'dep_graphs':
trees = build_trees_from_text(text, layer=LAYER_CONLL, **kwargs)
graphs = [tree.as_dependencygraph() for tree in trees]
return graphs
else:
return text
|
parse_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, **kwargs):\n augment_words = False\n all_return_types = ['text', 'conll', 'trees', 'dep_graphs']\n return_type = all_return_types[0]\n for argName, argVal in kwargs.items():\n if argName == 'return_type':\n if argVal.lower() in all_return_types:\n return_type = argVal.lower()\n else:\n raise Exception(' Unexpected return type: ', argVal)\n elif argName.lower() == 'augment_words':\n augment_words = bool(argVal)\n if not text.is_tagged(ANALYSIS):\n text.tag_analysis()\n textConllStr = convert_text_to_CONLL(text, self.feature_generator)\n resultsConllStr = _executeMaltparser(textConllStr, self.maltparser_dir,\n self.maltparser_jar, self.model_name)\n alignments = align_CONLL_with_Text(resultsConllStr, text, self.\n feature_generator, **kwargs)\n alignments = normalise_alignments(alignments, data_type=CONLL_DATA, **\n kwargs)\n text[LAYER_CONLL] = alignments\n if augment_words:\n augmentTextWithCONLLstr(resultsConllStr, text)\n if return_type == 'conll':\n return resultsConllStr\n elif return_type == 'trees':\n return build_trees_from_text(text, layer=LAYER_CONLL, **kwargs)\n elif return_type == 'dep_graphs':\n trees = build_trees_from_text(text, layer=LAYER_CONLL, **kwargs)\n graphs = [tree.as_dependencygraph() for tree in trees]\n return graphs\n else:\n return text\n",
"role": "user"
},
{
"content": "parse_text",
"role": "assistant"
}
] |
def x(orig_text, layer=LAYER_CONLL):
sent_start_index = 0
for sent_text in orig_text.split_by(SENTENCES):
mapping = dict()
cl_ind = sent_text.clause_indices
for wid, word in enumerate(sent_text[WORDS]):
firstSyntaxRel = sent_text[layer][wid][PARSER_OUT][0]
parentIndex = firstSyntaxRel[1]
if parentIndex != -1:
if cl_ind[parentIndex] != cl_ind[wid]:
mapping[wid] = -1
else:
clause_start = cl_ind.index(cl_ind[wid])
j = 0
k = 0
while clause_start + j < len(cl_ind):
if clause_start + j == parentIndex:
break
if cl_ind[clause_start + j] == cl_ind[wid]:
k += 1
j += 1
assert clause_start + j < len(cl_ind
), '(!) Parent index not found for: ' + str(parentIndex
)
mapping[wid] = k
else:
mapping[wid] = -1
for local_wid in mapping.keys():
global_wid = sent_start_index + local_wid
for syntax_rel in orig_text[layer][global_wid][PARSER_OUT]:
syntax_rel[1] = mapping[local_wid]
sent_start_index += len(cl_ind)
return orig_text
|
create_clause_based_dep_links
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(orig_text, layer=LAYER_CONLL):\n sent_start_index = 0\n for sent_text in orig_text.split_by(SENTENCES):\n mapping = dict()\n cl_ind = sent_text.clause_indices\n for wid, word in enumerate(sent_text[WORDS]):\n firstSyntaxRel = sent_text[layer][wid][PARSER_OUT][0]\n parentIndex = firstSyntaxRel[1]\n if parentIndex != -1:\n if cl_ind[parentIndex] != cl_ind[wid]:\n mapping[wid] = -1\n else:\n clause_start = cl_ind.index(cl_ind[wid])\n j = 0\n k = 0\n while clause_start + j < len(cl_ind):\n if clause_start + j == parentIndex:\n break\n if cl_ind[clause_start + j] == cl_ind[wid]:\n k += 1\n j += 1\n assert clause_start + j < len(cl_ind\n ), '(!) Parent index not found for: ' + str(parentIndex\n )\n mapping[wid] = k\n else:\n mapping[wid] = -1\n for local_wid in mapping.keys():\n global_wid = sent_start_index + local_wid\n for syntax_rel in orig_text[layer][global_wid][PARSER_OUT]:\n syntax_rel[1] = mapping[local_wid]\n sent_start_index += len(cl_ind)\n return orig_text\n",
"role": "user"
},
{
"content": "create_clause_based_dep_links",
"role": "assistant"
}
] |
def x(sentence):
for word in sentence:
if ANALYSIS not in word:
raise Exception('(!) Error: no analysis found from word: ' +
str(word))
else:
word[ANALYSIS] = sorted(word[ANALYSIS], key=lambda x: '_'.join(
[x[ROOT], x[POSTAG], x[FORM], x[CLITIC]]))
return sentence
|
sort_analyses
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sentence):\n for word in sentence:\n if ANALYSIS not in word:\n raise Exception('(!) Error: no analysis found from word: ' +\n str(word))\n else:\n word[ANALYSIS] = sorted(word[ANALYSIS], key=lambda x: '_'.join(\n [x[ROOT], x[POSTAG], x[FORM], x[CLITIC]]))\n return sentence\n",
"role": "user"
},
{
"content": "sort_analyses",
"role": "assistant"
}
] |
def x(text, feature_generator):
from estnltk.text import Text
if not isinstance(text, Text):
raise Exception(
"(!) Unexpected type of input argument! Expected EstNLTK's Text. ")
try:
granularity = feature_generator.parseScope
except AttributeError:
granularity = SENTENCES
assert granularity in [SENTENCES, CLAUSES
], '(!) Unsupported granularity: "' + str(granularity) + '"!'
sentenceStrs = []
for sentence_text in text.split_by(granularity):
sentence_text[WORDS] = __sort_analyses(sentence_text[WORDS])
for i in range(len(sentence_text[WORDS])):
strForm = feature_generator.generate_features(sentence_text, i)
strForm.append('_')
strForm.append('\t')
strForm.append('xxx')
strForm.append('\t')
strForm.append('_')
strForm.append('\t')
strForm.append('_')
sentenceStrs.append(''.join(strForm))
sentenceStrs.append('')
return '\n'.join(sentenceStrs)
|
convert_text_to_CONLL
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, feature_generator):\n from estnltk.text import Text\n if not isinstance(text, Text):\n raise Exception(\n \"(!) Unexpected type of input argument! Expected EstNLTK's Text. \")\n try:\n granularity = feature_generator.parseScope\n except AttributeError:\n granularity = SENTENCES\n assert granularity in [SENTENCES, CLAUSES\n ], '(!) Unsupported granularity: \"' + str(granularity) + '\"!'\n sentenceStrs = []\n for sentence_text in text.split_by(granularity):\n sentence_text[WORDS] = __sort_analyses(sentence_text[WORDS])\n for i in range(len(sentence_text[WORDS])):\n strForm = feature_generator.generate_features(sentence_text, i)\n strForm.append('_')\n strForm.append('\\t')\n strForm.append('xxx')\n strForm.append('\\t')\n strForm.append('_')\n strForm.append('\\t')\n strForm.append('_')\n sentenceStrs.append(''.join(strForm))\n sentenceStrs.append('')\n return '\\n'.join(sentenceStrs)\n",
"role": "user"
},
{
"content": "convert_text_to_CONLL",
"role": "assistant"
}
] |
def x(text, feature_generator, layer=LAYER_CONLL):
from estnltk.text import Text
if not isinstance(text, Text):
raise Exception(
"(!) Unexpected type of input argument! Expected EstNLTK's Text. ")
assert layer in text, ' (!) The layer "' + layer + '" is missing form the Text object.'
try:
granularity = feature_generator.parseScope
except AttributeError:
granularity = SENTENCES
assert granularity in [SENTENCES, CLAUSES
], '(!) Unsupported granularity: "' + str(granularity) + '"!'
sentenceStrs = []
if granularity == CLAUSES:
_create_clause_based_dep_links(text, layer)
for sentence_text in text.split_by(granularity):
sentence_text[WORDS] = __sort_analyses(sentence_text[WORDS])
for i in range(len(sentence_text[WORDS])):
strForm = feature_generator.generate_features(sentence_text, i)
syntaxToken = sentence_text[layer][i]
firstSyntaxRel = syntaxToken[PARSER_OUT][0]
parentLabel = str(firstSyntaxRel[1] + 1)
strForm.append(parentLabel)
strForm.append('\t')
if parentLabel == '0':
strForm.append('ROOT')
strForm.append('\t')
else:
strForm.append(firstSyntaxRel[0])
strForm.append('\t')
strForm.append('_')
strForm.append('\t')
strForm.append('_')
sentenceStrs.append(''.join(strForm))
sentenceStrs.append('')
return '\n'.join(sentenceStrs)
|
convert_text_w_syntax_to_CONLL
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, feature_generator, layer=LAYER_CONLL):\n from estnltk.text import Text\n if not isinstance(text, Text):\n raise Exception(\n \"(!) Unexpected type of input argument! Expected EstNLTK's Text. \")\n assert layer in text, ' (!) The layer \"' + layer + '\" is missing form the Text object.'\n try:\n granularity = feature_generator.parseScope\n except AttributeError:\n granularity = SENTENCES\n assert granularity in [SENTENCES, CLAUSES\n ], '(!) Unsupported granularity: \"' + str(granularity) + '\"!'\n sentenceStrs = []\n if granularity == CLAUSES:\n _create_clause_based_dep_links(text, layer)\n for sentence_text in text.split_by(granularity):\n sentence_text[WORDS] = __sort_analyses(sentence_text[WORDS])\n for i in range(len(sentence_text[WORDS])):\n strForm = feature_generator.generate_features(sentence_text, i)\n syntaxToken = sentence_text[layer][i]\n firstSyntaxRel = syntaxToken[PARSER_OUT][0]\n parentLabel = str(firstSyntaxRel[1] + 1)\n strForm.append(parentLabel)\n strForm.append('\\t')\n if parentLabel == '0':\n strForm.append('ROOT')\n strForm.append('\\t')\n else:\n strForm.append(firstSyntaxRel[0])\n strForm.append('\\t')\n strForm.append('_')\n strForm.append('\\t')\n strForm.append('_')\n sentenceStrs.append(''.join(strForm))\n sentenceStrs.append('')\n return '\\n'.join(sentenceStrs)\n",
"role": "user"
},
{
"content": "convert_text_w_syntax_to_CONLL",
"role": "assistant"
}
] |
def x(input_string, maltparser_dir, maltparser_jar, model_name):
temp_input_file = tempfile.NamedTemporaryFile(prefix='malt_in.', mode=
'w', delete=False)
temp_input_file.close()
out_f = codecs.open(temp_input_file.name, mode='w', encoding='utf-8')
out_f.write(input_string)
out_f.close()
temp_output_file = tempfile.NamedTemporaryFile(prefix='malt_out.', mode
='w', delete=False)
temp_output_file.close()
current_dir = os.getcwd()
os.chdir(maltparser_dir)
cmd = ['java', '-jar', os.path.join(maltparser_dir, maltparser_jar),
'-c', model_name, '-i', temp_input_file.name, '-o',
temp_output_file.name, '-m', 'parse']
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if p.wait() != 0:
raise Exception(' Error on running Maltparser: ', p.stderr.read())
os.chdir(current_dir)
results = []
in_f = codecs.open(temp_output_file.name, mode='r', encoding='utf-8')
for line in in_f:
results.append(line.rstrip())
in_f.close()
if not temp_input_file.closed:
raise Exception('Temp input file unclosed!')
if not temp_output_file.closed:
raise Exception('Temp input file unclosed!')
if not out_f.closed:
raise Exception('Output file unclosed!')
if not in_f.closed:
raise Exception('Input file unclosed!')
os.remove(temp_input_file.name)
os.remove(temp_output_file.name)
return results
|
executeMaltparser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(input_string, maltparser_dir, maltparser_jar, model_name):\n temp_input_file = tempfile.NamedTemporaryFile(prefix='malt_in.', mode=\n 'w', delete=False)\n temp_input_file.close()\n out_f = codecs.open(temp_input_file.name, mode='w', encoding='utf-8')\n out_f.write(input_string)\n out_f.close()\n temp_output_file = tempfile.NamedTemporaryFile(prefix='malt_out.', mode\n ='w', delete=False)\n temp_output_file.close()\n current_dir = os.getcwd()\n os.chdir(maltparser_dir)\n cmd = ['java', '-jar', os.path.join(maltparser_dir, maltparser_jar),\n '-c', model_name, '-i', temp_input_file.name, '-o',\n temp_output_file.name, '-m', 'parse']\n p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n if p.wait() != 0:\n raise Exception(' Error on running Maltparser: ', p.stderr.read())\n os.chdir(current_dir)\n results = []\n in_f = codecs.open(temp_output_file.name, mode='r', encoding='utf-8')\n for line in in_f:\n results.append(line.rstrip())\n in_f.close()\n if not temp_input_file.closed:\n raise Exception('Temp input file unclosed!')\n if not temp_output_file.closed:\n raise Exception('Temp input file unclosed!')\n if not out_f.closed:\n raise Exception('Output file unclosed!')\n if not in_f.closed:\n raise Exception('Input file unclosed!')\n os.remove(temp_input_file.name)\n os.remove(temp_output_file.name)\n return results\n",
"role": "user"
},
{
"content": "executeMaltparser",
"role": "assistant"
}
] |
def x(in_file, addDepRels=False, splitIntoSentences=True):
sentenceCount = 0
wordCountInSent = 0
tokens = []
in_f = codecs.open(in_file, mode='r', encoding='utf-8')
for line in in_f:
line = line.rstrip()
if len(line) == 0 or re.match('^\\s+$', line):
sentenceCount += 1
wordCountInSent = 0
continue
features = line.split('\t')
if len(features) != 10:
raise Exception(' In file ' + in_file +
', line with unexpected format: "' + line + '" ')
selfLabel = features[0]
token = features[1]
lemma = features[2]
cpos = features[3]
pos = features[4]
form = features[5]
parentLabel = features[6]
tokens.append([str(sentenceCount), str(wordCountInSent), token,
lemma + ' ' + pos + ' ' + form, selfLabel, parentLabel])
if addDepRels:
tokens[-1].append(features[7])
wordCountInSent += 1
in_f.close()
if not splitIntoSentences:
return tokens
else:
sentences = []
lastSentID = ''
for tok in tokens:
if tok[0] != lastSentID:
sentences.append([])
sentences[-1].append(tok)
lastSentID = tok[0]
return sentences
|
loadCONLLannotations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_file, addDepRels=False, splitIntoSentences=True):\n sentenceCount = 0\n wordCountInSent = 0\n tokens = []\n in_f = codecs.open(in_file, mode='r', encoding='utf-8')\n for line in in_f:\n line = line.rstrip()\n if len(line) == 0 or re.match('^\\\\s+$', line):\n sentenceCount += 1\n wordCountInSent = 0\n continue\n features = line.split('\\t')\n if len(features) != 10:\n raise Exception(' In file ' + in_file +\n ', line with unexpected format: \"' + line + '\" ')\n selfLabel = features[0]\n token = features[1]\n lemma = features[2]\n cpos = features[3]\n pos = features[4]\n form = features[5]\n parentLabel = features[6]\n tokens.append([str(sentenceCount), str(wordCountInSent), token, \n lemma + ' ' + pos + ' ' + form, selfLabel, parentLabel])\n if addDepRels:\n tokens[-1].append(features[7])\n wordCountInSent += 1\n in_f.close()\n if not splitIntoSentences:\n return tokens\n else:\n sentences = []\n lastSentID = ''\n for tok in tokens:\n if tok[0] != lastSentID:\n sentences.append([])\n sentences[-1].append(tok)\n lastSentID = tok[0]\n return sentences\n",
"role": "user"
},
{
"content": "loadCONLLannotations",
"role": "assistant"
}
] |
def x(in_file, addDepRels=False, verbose=False, **kwargs):
from estnltk.text import Text
sentences = loadCONLLannotations(in_file, addDepRels=addDepRels,
splitIntoSentences=True)
if verbose:
print(str(len(sentences)) + ' sentences loaded. ')
estnltkSentTexts = []
for i in range(len(sentences)):
s = sentences[i]
sentenceString = ' '.join([t[2] for t in s])
sentText = Text(sentenceString, **kwargs)
sentText.tag_analysis()
sentText.tag_clauses()
sentText.tag_verb_chains()
sentText = dict(sentText)
if len(sentText[WORDS]) == len(s):
for j in range(len(sentText[WORDS])):
estnltkWord = sentText[WORDS][j]
depSyntaxWord = s[j]
estnltkWord[SYNTAX_LABEL] = depSyntaxWord[4]
estnltkWord[SYNTAX_HEAD] = depSyntaxWord[5]
if addDepRels:
estnltkWord[DEPREL] = depSyntaxWord[6]
estnltkSentTexts.append(sentText)
if verbose:
print('*', end='')
elif verbose:
print(
"The sentence segmentation of dependency syntax differs from the estnltk's sentence segmentation:"
, len(sentText[WORDS]), ' vs ', len(s))
return estnltkSentTexts
|
convertCONLLtoText
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(in_file, addDepRels=False, verbose=False, **kwargs):\n from estnltk.text import Text\n sentences = loadCONLLannotations(in_file, addDepRels=addDepRels,\n splitIntoSentences=True)\n if verbose:\n print(str(len(sentences)) + ' sentences loaded. ')\n estnltkSentTexts = []\n for i in range(len(sentences)):\n s = sentences[i]\n sentenceString = ' '.join([t[2] for t in s])\n sentText = Text(sentenceString, **kwargs)\n sentText.tag_analysis()\n sentText.tag_clauses()\n sentText.tag_verb_chains()\n sentText = dict(sentText)\n if len(sentText[WORDS]) == len(s):\n for j in range(len(sentText[WORDS])):\n estnltkWord = sentText[WORDS][j]\n depSyntaxWord = s[j]\n estnltkWord[SYNTAX_LABEL] = depSyntaxWord[4]\n estnltkWord[SYNTAX_HEAD] = depSyntaxWord[5]\n if addDepRels:\n estnltkWord[DEPREL] = depSyntaxWord[6]\n estnltkSentTexts.append(sentText)\n if verbose:\n print('*', end='')\n elif verbose:\n print(\n \"The sentence segmentation of dependency syntax differs from the estnltk's sentence segmentation:\"\n , len(sentText[WORDS]), ' vs ', len(s))\n return estnltkSentTexts\n",
"role": "user"
},
{
"content": "convertCONLLtoText",
"role": "assistant"
}
] |
def x(conll_str_array, text):
j = 0
for sentence in text.divide(layer=WORDS, by=SENTENCES):
sentence = __sort_analyses(sentence)
for i in range(len(sentence)):
estnltkToken = sentence[i]
maltparserToken = conll_str_array[j]
if len(maltparserToken) > 1:
maltParserAnalysis = maltparserToken.split('\t')
if estnltkToken[TEXT] == maltParserAnalysis[1]:
estnltkToken[SYNTAX_LABEL] = maltParserAnalysis[0]
estnltkToken[SYNTAX_HEAD] = maltParserAnalysis[6]
estnltkToken[DEPREL] = maltParserAnalysis[7]
else:
raise Exception(
"A misalignment between Text and Maltparser's output: "
, estnltkToken, maltparserToken)
j += 1
j += 1
|
augmentTextWithCONLLstr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(conll_str_array, text):\n j = 0\n for sentence in text.divide(layer=WORDS, by=SENTENCES):\n sentence = __sort_analyses(sentence)\n for i in range(len(sentence)):\n estnltkToken = sentence[i]\n maltparserToken = conll_str_array[j]\n if len(maltparserToken) > 1:\n maltParserAnalysis = maltparserToken.split('\\t')\n if estnltkToken[TEXT] == maltParserAnalysis[1]:\n estnltkToken[SYNTAX_LABEL] = maltParserAnalysis[0]\n estnltkToken[SYNTAX_HEAD] = maltParserAnalysis[6]\n estnltkToken[DEPREL] = maltParserAnalysis[7]\n else:\n raise Exception(\n \"A misalignment between Text and Maltparser's output: \"\n , estnltkToken, maltparserToken)\n j += 1\n j += 1\n",
"role": "user"
},
{
"content": "augmentTextWithCONLLstr",
"role": "assistant"
}
] |
def x(sentence_text, clause_id):
clause = []
isEmbedded = False
indices = sentence_text.clause_indices
clause_anno = sentence_text.clause_annotations
for wid, token in enumerate(sentence_text[WORDS]):
if indices[wid] == clause_id:
if not clause and clause_anno[wid] == EMBEDDED_CLAUSE_START:
isEmbedded = True
clause.append((wid, token))
return clause, isEmbedded
|
get_clause_words
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sentence_text, clause_id):\n clause = []\n isEmbedded = False\n indices = sentence_text.clause_indices\n clause_anno = sentence_text.clause_annotations\n for wid, token in enumerate(sentence_text[WORDS]):\n if indices[wid] == clause_id:\n if not clause and clause_anno[wid] == EMBEDDED_CLAUSE_START:\n isEmbedded = True\n clause.append((wid, token))\n return clause, isEmbedded\n",
"role": "user"
},
{
"content": "get_clause_words",
"role": "assistant"
}
] |
def x(sentence_text, wid, fromRight=True):
i = wid
while i > -1 and i < len(sentence_text[WORDS]):
token = sentence_text[WORDS][i]
if _pat_starting_quote.match(token[TEXT]) or _pat_ending_quote.match(
token[TEXT]):
return i
i += 1 if fromRight else -1
return -1
|
detect_quotes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sentence_text, wid, fromRight=True):\n i = wid\n while i > -1 and i < len(sentence_text[WORDS]):\n token = sentence_text[WORDS][i]\n if _pat_starting_quote.match(token[TEXT]) or _pat_ending_quote.match(\n token[TEXT]):\n return i\n i += 1 if fromRight else -1\n return -1\n",
"role": "user"
},
{
"content": "detect_quotes",
"role": "assistant"
}
] |
def x(edt_sent_text):
from estnltk.mw_verbs.utils import WordTemplate
if not edt_sent_text.is_tagged(VERB_CHAINS):
edt_sent_text.tag_verb_chains()
saying_verbs = {}
if len(edt_sent_text[VERB_CHAINS]) < 2:
return saying_verbs
patColon = WordTemplate({'partofspeech': '^[Z]$', 'text': '^:$'})
for vid, vc in enumerate(edt_sent_text[VERB_CHAINS]):
if len(vc['phrase']) == 1 and vid == len(edt_sent_text[VERB_CHAINS]
) - 1:
wid = vc['phrase'][0]
token = edt_sent_text[WORDS][wid]
clause_id = vc[CLAUSE_IDX]
clause, insideEmbeddedCl = _get_clause_words(edt_sent_text,
clause_id)
quoteLeft = _detect_quotes(edt_sent_text, wid, fromRight=False)
quoteRight = _detect_quotes(edt_sent_text, wid, fromRight=True)
quotes_in_clause = []
for wid2, token2 in clause:
if _pat_starting_quote.match(token2[TEXT]
) or _pat_ending_quote.match(token2[TEXT]):
quotes_in_clause.append(wid2)
multipleQuotes = len(quotes_in_clause) > 1 and quotes_in_clause[-1
] == quoteLeft
if not multipleQuotes and not insideEmbeddedCl and (quoteLeft !=
-1 and quoteLeft + 1 == wid and quoteRight == -1):
saying_verbs[wid] = 'se_saying_verb'
return saying_verbs
|
detect_sentence_ending_saying_verbs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(edt_sent_text):\n from estnltk.mw_verbs.utils import WordTemplate\n if not edt_sent_text.is_tagged(VERB_CHAINS):\n edt_sent_text.tag_verb_chains()\n saying_verbs = {}\n if len(edt_sent_text[VERB_CHAINS]) < 2:\n return saying_verbs\n patColon = WordTemplate({'partofspeech': '^[Z]$', 'text': '^:$'})\n for vid, vc in enumerate(edt_sent_text[VERB_CHAINS]):\n if len(vc['phrase']) == 1 and vid == len(edt_sent_text[VERB_CHAINS]\n ) - 1:\n wid = vc['phrase'][0]\n token = edt_sent_text[WORDS][wid]\n clause_id = vc[CLAUSE_IDX]\n clause, insideEmbeddedCl = _get_clause_words(edt_sent_text,\n clause_id)\n quoteLeft = _detect_quotes(edt_sent_text, wid, fromRight=False)\n quoteRight = _detect_quotes(edt_sent_text, wid, fromRight=True)\n quotes_in_clause = []\n for wid2, token2 in clause:\n if _pat_starting_quote.match(token2[TEXT]\n ) or _pat_ending_quote.match(token2[TEXT]):\n quotes_in_clause.append(wid2)\n multipleQuotes = len(quotes_in_clause) > 1 and quotes_in_clause[-1\n ] == quoteLeft\n if not multipleQuotes and not insideEmbeddedCl and (quoteLeft !=\n -1 and quoteLeft + 1 == wid and quoteRight == -1):\n saying_verbs[wid] = 'se_saying_verb'\n return saying_verbs\n",
"role": "user"
},
{
"content": "detect_sentence_ending_saying_verbs",
"role": "assistant"
}
] |
def x(inputFile):
kSubCatRelations = dict()
in_f = codecs.open(inputFile, mode='r', encoding='utf-8')
for line in in_f:
line = line.rstrip()
if len(line) > 0 and not re.match('^#.+$', line):
items = line.split(';')
if len(items) == 4:
root = items[0]
partofspeech = items[1]
postPre = items[2]
morphPattern = items[3]
fpattern = '(sg|pl)\\s' + morphPattern
if root not in kSubCatRelations:
kSubCatRelations[root] = []
kSubCatRelations[root].append([postPre, fpattern])
root_clean = root.replace('_', '')
if root != root_clean:
if root_clean not in kSubCatRelations:
kSubCatRelations[root_clean] = []
kSubCatRelations[root_clean].append([postPre, fpattern])
else:
raise Exception(
' Unexpected number of items in the input lexicon line: ' +
line)
in_f.close()
return kSubCatRelations
|
loadKSubcatRelations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputFile):\n kSubCatRelations = dict()\n in_f = codecs.open(inputFile, mode='r', encoding='utf-8')\n for line in in_f:\n line = line.rstrip()\n if len(line) > 0 and not re.match('^#.+$', line):\n items = line.split(';')\n if len(items) == 4:\n root = items[0]\n partofspeech = items[1]\n postPre = items[2]\n morphPattern = items[3]\n fpattern = '(sg|pl)\\\\s' + morphPattern\n if root not in kSubCatRelations:\n kSubCatRelations[root] = []\n kSubCatRelations[root].append([postPre, fpattern])\n root_clean = root.replace('_', '')\n if root != root_clean:\n if root_clean not in kSubCatRelations:\n kSubCatRelations[root_clean] = []\n kSubCatRelations[root_clean].append([postPre, fpattern])\n else:\n raise Exception(\n ' Unexpected number of items in the input lexicon line: ' +\n line)\n in_f.close()\n return kSubCatRelations\n",
"role": "user"
},
{
"content": "loadKSubcatRelations",
"role": "assistant"
}
] |
def x(sentence, i, kSubCatRelsLexicon):
curToken = sentence[i]
root = curToken[ANALYSIS][0][ROOT]
if root in kSubCatRelsLexicon:
for [postPre, fpattern] in kSubCatRelsLexicon[root]:
if postPre == 'post' and i - 1 > -1:
lastTokenAnalysis = sentence[i - 1][ANALYSIS][0]
if re.match(fpattern, lastTokenAnalysis[FORM]):
return 'post', i - 1
elif postPre == 'pre' and i + 1 < len(sentence):
nextTokenAnalysis = sentence[i + 1][ANALYSIS][0]
if re.match(fpattern, nextTokenAnalysis[FORM]):
return 'pre', i + 1
if len(kSubCatRelsLexicon[root]) == 1:
return kSubCatRelsLexicon[root][0][0], -1
return '_', -1
|
detectKsubcatRelType
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sentence, i, kSubCatRelsLexicon):\n curToken = sentence[i]\n root = curToken[ANALYSIS][0][ROOT]\n if root in kSubCatRelsLexicon:\n for [postPre, fpattern] in kSubCatRelsLexicon[root]:\n if postPre == 'post' and i - 1 > -1:\n lastTokenAnalysis = sentence[i - 1][ANALYSIS][0]\n if re.match(fpattern, lastTokenAnalysis[FORM]):\n return 'post', i - 1\n elif postPre == 'pre' and i + 1 < len(sentence):\n nextTokenAnalysis = sentence[i + 1][ANALYSIS][0]\n if re.match(fpattern, nextTokenAnalysis[FORM]):\n return 'pre', i + 1\n if len(kSubCatRelsLexicon[root]) == 1:\n return kSubCatRelsLexicon[root][0][0], -1\n return '_', -1\n",
"role": "user"
},
{
"content": "detectKsubcatRelType",
"role": "assistant"
}
] |
def x(sentence, kSubCatRelsLexicon, reverseMapping=False):
relationIndex = dict()
relationType = dict()
for i in range(len(sentence)):
estnltkWord = sentence[i]
firstAnalysis = estnltkWord[ANALYSIS][0]
if firstAnalysis[POSTAG] == 'K':
grammCats, kChild = _detectKsubcatRelType(sentence, i,
kSubCatRelsLexicon)
if kChild != -1:
if reverseMapping:
relationIndex[kChild] = i
relationType[kChild] = grammCats
else:
relationIndex[i] = kChild
relationType[i] = grammCats
return relationIndex, relationType
|
detectPossibleKsubcatRelsFromSent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sentence, kSubCatRelsLexicon, reverseMapping=False):\n relationIndex = dict()\n relationType = dict()\n for i in range(len(sentence)):\n estnltkWord = sentence[i]\n firstAnalysis = estnltkWord[ANALYSIS][0]\n if firstAnalysis[POSTAG] == 'K':\n grammCats, kChild = _detectKsubcatRelType(sentence, i,\n kSubCatRelsLexicon)\n if kChild != -1:\n if reverseMapping:\n relationIndex[kChild] = i\n relationType[kChild] = grammCats\n else:\n relationIndex[i] = kChild\n relationType[i] = grammCats\n return relationIndex, relationType\n",
"role": "user"
},
{
"content": "detectPossibleKsubcatRelsFromSent",
"role": "assistant"
}
] |
def x(sentence, kSubCatRelsLexicon, addFeaturesToK=True):
features = dict()
if addFeaturesToK:
for i in range(len(sentence)):
estnltkWord = sentence[i]
firstAnalysis = estnltkWord[ANALYSIS][0]
if firstAnalysis[POSTAG] == 'K':
grammCats, kChild = _detectKsubcatRelType(sentence, i,
kSubCatRelsLexicon)
features[i] = grammCats
else:
relationIndex, relationType = _detectPossibleKsubcatRelsFromSent(
sentence, kSubCatRelsLexicon, reverseMapping=True)
for i in relationIndex:
features[i] = relationType[i]
return features
|
findKsubcatFeatures
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sentence, kSubCatRelsLexicon, addFeaturesToK=True):\n features = dict()\n if addFeaturesToK:\n for i in range(len(sentence)):\n estnltkWord = sentence[i]\n firstAnalysis = estnltkWord[ANALYSIS][0]\n if firstAnalysis[POSTAG] == 'K':\n grammCats, kChild = _detectKsubcatRelType(sentence, i,\n kSubCatRelsLexicon)\n features[i] = grammCats\n else:\n relationIndex, relationType = _detectPossibleKsubcatRelsFromSent(\n sentence, kSubCatRelsLexicon, reverseMapping=True)\n for i in relationIndex:\n features[i] = relationType[i]\n return features\n",
"role": "user"
},
{
"content": "findKsubcatFeatures",
"role": "assistant"
}
] |
def x(self, sentence_text, wid):
assert WORDS in sentence_text and len(sentence_text[WORDS]
) > 0, " (!) 'words' layer missing or empty in given Text!"
sentence = sentence_text[WORDS]
assert -1 < wid and wid < len(sentence), ' (!) Invalid word id: ' + str(wid
)
if wid == 0:
if self.kSubCatRelsLex:
self.kFeatures = _findKsubcatFeatures(sentence, self.
kSubCatRelsLex, addFeaturesToK=True)
if self.addVerbcGramm or self.addNomAdvVinf:
self.vcFeatures = generate_verb_chain_features(sentence_text,
addGrammPred=self.addVerbcGramm, addNomAdvVinf=self.
addNomAdvVinf)
if self.addSeSayingVerbs:
self.sayingverbs = detect_sentence_ending_saying_verbs(
sentence_text)
if self.addClauseBound:
self.clbFeatures = []
for tag in sentence_text.clause_annotations:
if not tag:
self.clbFeatures.append([])
elif tag == EMBEDDED_CLAUSE_START:
self.clbFeatures.append(['emb_cl_start'])
elif tag == EMBEDDED_CLAUSE_END:
self.clbFeatures.append(['emb_cl_end'])
elif tag == CLAUSE_BOUNDARY:
self.clbFeatures.append(['clb'])
estnltkWord = sentence[wid]
firstAnalysis = estnltkWord[ANALYSIS][0]
strForm = []
strForm.append(str(wid + 1))
strForm.append('\t')
word_text = estnltkWord[TEXT]
word_text = word_text.replace(' ', '_')
strForm.append(word_text)
strForm.append('\t')
word_root = firstAnalysis[ROOT]
word_root = word_root.replace(' ', '_')
if len(word_root) == 0:
word_root = '??'
strForm.append(word_root)
strForm.append('\t')
strForm.append(firstAnalysis[POSTAG])
strForm.append('\t')
finePos = firstAnalysis[POSTAG]
if self.addAmbiguousPos and len(estnltkWord[ANALYSIS]) > 1:
pos_tags = sorted(list(set([a[POSTAG] for a in estnltkWord[ANALYSIS]]))
)
finePos = '_'.join(pos_tags)
strForm.append(finePos)
strForm.append('\t')
grammCats = []
if len(firstAnalysis[FORM]) != 0:
forms = firstAnalysis[FORM].split()
grammCats.extend(forms)
if self.vcFeatures and self.vcFeatures[wid]:
grammCats.extend(self.vcFeatures[wid])
if self.addClauseBound and self.clbFeatures[wid]:
grammCats.extend(self.clbFeatures[wid])
if self.kFeatures and wid in self.kFeatures:
grammCats.extend([self.kFeatures[wid]])
if self.sayingverbs and wid in self.sayingverbs:
grammCats.extend([self.sayingverbs[wid]])
if not grammCats:
grammCats = '_'
else:
grammCats = '|'.join(grammCats)
strForm.append(grammCats)
strForm.append('\t')
return strForm
|
generate_features
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sentence_text, wid):\n assert WORDS in sentence_text and len(sentence_text[WORDS]\n ) > 0, \" (!) 'words' layer missing or empty in given Text!\"\n sentence = sentence_text[WORDS]\n assert -1 < wid and wid < len(sentence), ' (!) Invalid word id: ' + str(wid\n )\n if wid == 0:\n if self.kSubCatRelsLex:\n self.kFeatures = _findKsubcatFeatures(sentence, self.\n kSubCatRelsLex, addFeaturesToK=True)\n if self.addVerbcGramm or self.addNomAdvVinf:\n self.vcFeatures = generate_verb_chain_features(sentence_text,\n addGrammPred=self.addVerbcGramm, addNomAdvVinf=self.\n addNomAdvVinf)\n if self.addSeSayingVerbs:\n self.sayingverbs = detect_sentence_ending_saying_verbs(\n sentence_text)\n if self.addClauseBound:\n self.clbFeatures = []\n for tag in sentence_text.clause_annotations:\n if not tag:\n self.clbFeatures.append([])\n elif tag == EMBEDDED_CLAUSE_START:\n self.clbFeatures.append(['emb_cl_start'])\n elif tag == EMBEDDED_CLAUSE_END:\n self.clbFeatures.append(['emb_cl_end'])\n elif tag == CLAUSE_BOUNDARY:\n self.clbFeatures.append(['clb'])\n estnltkWord = sentence[wid]\n firstAnalysis = estnltkWord[ANALYSIS][0]\n strForm = []\n strForm.append(str(wid + 1))\n strForm.append('\\t')\n word_text = estnltkWord[TEXT]\n word_text = word_text.replace(' ', '_')\n strForm.append(word_text)\n strForm.append('\\t')\n word_root = firstAnalysis[ROOT]\n word_root = word_root.replace(' ', '_')\n if len(word_root) == 0:\n word_root = '??'\n strForm.append(word_root)\n strForm.append('\\t')\n strForm.append(firstAnalysis[POSTAG])\n strForm.append('\\t')\n finePos = firstAnalysis[POSTAG]\n if self.addAmbiguousPos and len(estnltkWord[ANALYSIS]) > 1:\n pos_tags = sorted(list(set([a[POSTAG] for a in estnltkWord[ANALYSIS]]))\n )\n finePos = '_'.join(pos_tags)\n strForm.append(finePos)\n strForm.append('\\t')\n grammCats = []\n if len(firstAnalysis[FORM]) != 0:\n forms = firstAnalysis[FORM].split()\n grammCats.extend(forms)\n if self.vcFeatures and self.vcFeatures[wid]:\n grammCats.extend(self.vcFeatures[wid])\n if self.addClauseBound and self.clbFeatures[wid]:\n grammCats.extend(self.clbFeatures[wid])\n if self.kFeatures and wid in self.kFeatures:\n grammCats.extend([self.kFeatures[wid]])\n if self.sayingverbs and wid in self.sayingverbs:\n grammCats.extend([self.sayingverbs[wid]])\n if not grammCats:\n grammCats = '_'\n else:\n grammCats = '|'.join(grammCats)\n strForm.append(grammCats)\n strForm.append('\\t')\n return strForm\n",
"role": "user"
},
{
"content": "generate_features",
"role": "assistant"
}
] |
def x(aes, value):
if isinstance(value, six.string_types):
return Rules(aes)
else:
rules = Rules()
for idx, (pattern, css_value) in enumerate(value):
rules.add_rule(pattern, '{0}_{1}'.format(aes, idx))
return rules
|
create_rules
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(aes, value):\n if isinstance(value, six.string_types):\n return Rules(aes)\n else:\n rules = Rules()\n for idx, (pattern, css_value) in enumerate(value):\n rules.add_rule(pattern, '{0}_{1}'.format(aes, idx))\n return rules\n",
"role": "user"
},
{
"content": "create_rules",
"role": "assistant"
}
] |
def x(self, pattern, css_class):
self.__patterns.append(re.compile(pattern, flags=re.U | re.M))
self.__css_classes.append(css_class)
|
add_rule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pattern, css_class):\n self.__patterns.append(re.compile(pattern, flags=re.U | re.M))\n self.__css_classes.append(css_class)\n",
"role": "user"
},
{
"content": "add_rule",
"role": "assistant"
}
] |
def x(self, value):
for idx, pattern in enumerate(self.__patterns):
if pattern.match(value) is not None:
return self.__css_classes[idx]
return self.__default
|
get_css_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n for idx, pattern in enumerate(self.__patterns):\n if pattern.match(value) is not None:\n return self.__css_classes[idx]\n return self.__default\n",
"role": "user"
},
{
"content": "get_css_class",
"role": "assistant"
}
] |
def x(index_name, **kwargs):
es = elasticsearch.Elasticsearch(**kwargs)
es.indices.create(index=index_name, body=mapping)
return connect(index_name, **kwargs)
|
create_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(index_name, **kwargs):\n es = elasticsearch.Elasticsearch(**kwargs)\n es.indices.create(index=index_name, body=mapping)\n return connect(index_name, **kwargs)\n",
"role": "user"
},
{
"content": "create_index",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.