source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, t=None, data=False): if t is not None: return iter([n for n in self.degree(t=t).values() if n > 0]) return iter(self._node)
nodes_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t=None, data=False):\n if t is not None:\n return iter([n for n in self.degree(t=t).values() if n > 0])\n return iter(self._node)\n", "role": "user" }, { "content": "nodes_iter", "role": "assistant" } ]
def x(self, t=None, data=False): return list(self.nodes_iter(t=t, data=data))
nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t=None, data=False):\n return list(self.nodes_iter(t=t, data=data))\n", "role": "user" }, { "content": "nodes", "role": "assistant" } ]
def x(self, nbunch=None, t=None): seen = {} if nbunch is None: nodes_nbrs = self._adj.items() else: nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch)) for n, nbrs in nodes_nbrs: for nbr in nbrs: if t is not None: if nbr not in seen and self.__presence_test(n, nbr, t): yield n, nbr, {'t': [t]} elif nbr not in seen: yield n, nbr, self._adj[n][nbr] seen[n] = 1 del seen
interactions_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n seen = {}\n if nbunch is None:\n nodes_nbrs = self._adj.items()\n else:\n nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch))\n for n, nbrs in nodes_nbrs:\n for nbr in nbrs:\n if t is not None:\n if nbr not in seen and self.__presence_test(n, nbr, t):\n yield n, nbr, {'t': [t]}\n elif nbr not in seen:\n yield n, nbr, self._adj[n][nbr]\n seen[n] = 1\n del seen\n", "role": "user" }, { "content": "interactions_iter", "role": "assistant" } ]
def x(self, u, v, t=None, e=None): if t is None: raise nx.NetworkXError('The t argument must be specified.') if u not in self._node: self._adj[u] = self.adjlist_inner_dict_factory() self._node[u] = {} if v not in self._node: self._adj[v] = self.adjlist_inner_dict_factory() self._node[v] = {} if type(t) != list: t = [t, t] for idt in [t[0]]: if self.has_edge(u, v) and not self.edge_removal: continue elif idt not in self.time_to_edge: self.time_to_edge[idt] = {(u, v, '+'): None} elif (u, v, '+') not in self.time_to_edge[idt]: self.time_to_edge[idt][u, v, '+'] = None if e is not None and self.edge_removal: t[1] = e - 1 if e not in self.time_to_edge: self.time_to_edge[e] = {(u, v, '-'): None} else: self.time_to_edge[e][u, v, '-'] = None datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) if 't' in datadict: app = datadict['t'] max_end = app[-1][1] if max_end == app[-1][0] and t[0] == app[-1][0] + 1: app[-1] = [app[-1][0], t[1]] if app[-1][0] + 1 in self.time_to_edge and (u, v, '+' ) in self.time_to_edge[app[-1][0] + 1]: del self.time_to_edge[app[-1][0] + 1][u, v, '+'] else: if t[0] < app[-1][0]: raise ValueError( 'The specified interaction extension is broader than the ones already present for the given nodes.' ) if t[0] <= max_end < t[1]: app[-1][1] = t[1] if max_end + 1 in self.time_to_edge: if self.edge_removal: del self.time_to_edge[max_end + 1][u, v, '-'] del self.time_to_edge[t[0]][u, v, '+'] elif max_end == t[0] - 1: if max_end + 1 in self.time_to_edge and (u, v, '+' ) in self.time_to_edge[max_end + 1]: del self.time_to_edge[max_end + 1][u, v, '+'] if self.edge_removal: if max_end + 1 in self.time_to_edge and (u, v, '-' ) in self.time_to_edge[max_end + 1]: del self.time_to_edge[max_end + 1][u, v, '-'] if t[1] + 1 in self.time_to_edge: self.time_to_edge[t[1] + 1][u, v, '-'] = None else: self.time_to_edge[t[1] + 1] = {(u, v, '-'): None} app[-1][1] = t[1] else: app.append(t) else: datadict['t'] = [t] if e is not None: span = range(t[0], t[1] + 1) for idt in span: if idt not in self.snapshots: self.snapshots[idt] = 1 else: self.snapshots[idt] += 1 else: for idt in t: if idt is not None: if idt not in self.snapshots: self.snapshots[idt] = 1 else: self.snapshots[idt] += 1 self._adj[u][v] = datadict self._adj[v][u] = datadict
add_interaction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, u, v, t=None, e=None):\n if t is None:\n raise nx.NetworkXError('The t argument must be specified.')\n if u not in self._node:\n self._adj[u] = self.adjlist_inner_dict_factory()\n self._node[u] = {}\n if v not in self._node:\n self._adj[v] = self.adjlist_inner_dict_factory()\n self._node[v] = {}\n if type(t) != list:\n t = [t, t]\n for idt in [t[0]]:\n if self.has_edge(u, v) and not self.edge_removal:\n continue\n elif idt not in self.time_to_edge:\n self.time_to_edge[idt] = {(u, v, '+'): None}\n elif (u, v, '+') not in self.time_to_edge[idt]:\n self.time_to_edge[idt][u, v, '+'] = None\n if e is not None and self.edge_removal:\n t[1] = e - 1\n if e not in self.time_to_edge:\n self.time_to_edge[e] = {(u, v, '-'): None}\n else:\n self.time_to_edge[e][u, v, '-'] = None\n datadict = self._adj[u].get(v, self.edge_attr_dict_factory())\n if 't' in datadict:\n app = datadict['t']\n max_end = app[-1][1]\n if max_end == app[-1][0] and t[0] == app[-1][0] + 1:\n app[-1] = [app[-1][0], t[1]]\n if app[-1][0] + 1 in self.time_to_edge and (u, v, '+'\n ) in self.time_to_edge[app[-1][0] + 1]:\n del self.time_to_edge[app[-1][0] + 1][u, v, '+']\n else:\n if t[0] < app[-1][0]:\n raise ValueError(\n 'The specified interaction extension is broader than the ones already present for the given nodes.'\n )\n if t[0] <= max_end < t[1]:\n app[-1][1] = t[1]\n if max_end + 1 in self.time_to_edge:\n if self.edge_removal:\n del self.time_to_edge[max_end + 1][u, v, '-']\n del self.time_to_edge[t[0]][u, v, '+']\n elif max_end == t[0] - 1:\n if max_end + 1 in self.time_to_edge and (u, v, '+'\n ) in self.time_to_edge[max_end + 1]:\n del self.time_to_edge[max_end + 1][u, v, '+']\n if self.edge_removal:\n if max_end + 1 in self.time_to_edge and (u, v, '-'\n ) in self.time_to_edge[max_end + 1]:\n del self.time_to_edge[max_end + 1][u, v, '-']\n if t[1] + 1 in self.time_to_edge:\n self.time_to_edge[t[1] + 1][u, v, '-'] = None\n else:\n self.time_to_edge[t[1] + 1] = {(u, v, '-'): None}\n app[-1][1] = t[1]\n else:\n app.append(t)\n else:\n datadict['t'] = [t]\n if e is not None:\n span = range(t[0], t[1] + 1)\n for idt in span:\n if idt not in self.snapshots:\n self.snapshots[idt] = 1\n else:\n self.snapshots[idt] += 1\n else:\n for idt in t:\n if idt is not None:\n if idt not in self.snapshots:\n self.snapshots[idt] = 1\n else:\n self.snapshots[idt] += 1\n self._adj[u][v] = datadict\n self._adj[v][u] = datadict\n", "role": "user" }, { "content": "add_interaction", "role": "assistant" } ]
def x(self, ebunch, t=None, e=None): if t is None: raise nx.NetworkXError('The t argument must be a specified.') for ed in ebunch: self.add_interaction(ed[0], ed[1], t, e)
add_interactions_from
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ebunch, t=None, e=None):\n if t is None:\n raise nx.NetworkXError('The t argument must be a specified.')\n for ed in ebunch:\n self.add_interaction(ed[0], ed[1], t, e)\n", "role": "user" }, { "content": "add_interactions_from", "role": "assistant" } ]
def x(self, n, t=None): try: if t is None: return list(self._adj[n]) else: return [i for i in self._adj[n] if self.__presence_test(n, i, t)] except KeyError: raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
neighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, t=None):\n try:\n if t is None:\n return list(self._adj[n])\n else:\n return [i for i in self._adj[n] if self.__presence_test(n, i, t)]\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n", "role": "user" }, { "content": "neighbors", "role": "assistant" } ]
def x(self, n, t=None): try: if t is None: return iter(self._adj[n]) else: return iter([i for i in self._adj[n] if self.__presence_test(n, i, t)]) except KeyError: raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
neighbors_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, t=None):\n try:\n if t is None:\n return iter(self._adj[n])\n else:\n return iter([i for i in self._adj[n] if self.__presence_test(n,\n i, t)])\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n", "role": "user" }, { "content": "neighbors_iter", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch in self: return next(self.degree_iter(nbunch, t))[1] else: return dict(self.degree_iter(nbunch, t))
degree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch in self:\n return next(self.degree_iter(nbunch, t))[1]\n else:\n return dict(self.degree_iter(nbunch, t))\n", "role": "user" }, { "content": "degree", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch is None: nodes_nbrs = self._adj.items() else: nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch)) if t is None: for n, nbrs in nodes_nbrs: deg = len(self._adj[n]) yield n, deg else: for n, nbrs in nodes_nbrs: edges_t = len([v for v in nbrs.keys() if self.__presence_test(n, v, t)]) if edges_t > 0: yield n, edges_t else: yield n, 0
degree_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = self._adj.items()\n else:\n nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch))\n if t is None:\n for n, nbrs in nodes_nbrs:\n deg = len(self._adj[n])\n yield n, deg\n else:\n for n, nbrs in nodes_nbrs:\n edges_t = len([v for v in nbrs.keys() if self.__presence_test(n,\n v, t)])\n if edges_t > 0:\n yield n, edges_t\n else:\n yield n, 0\n", "role": "user" }, { "content": "degree_iter", "role": "assistant" } ]
def x(self, t=None): s = sum(self.degree(t=t).values()) / 2 return int(s)
size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t=None):\n s = sum(self.degree(t=t).values()) / 2\n return int(s)\n", "role": "user" }, { "content": "size", "role": "assistant" } ]
def x(self, t=None): if t is None: return len(self._node) else: nds = sum([(1) for n in self.degree(t=t).values() if n > 0]) return nds
number_of_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t=None):\n if t is None:\n return len(self._node)\n else:\n nds = sum([(1) for n in self.degree(t=t).values() if n > 0])\n return nds\n", "role": "user" }, { "content": "number_of_nodes", "role": "assistant" } ]
def x(self, n, t=None): if t is None: try: return n in self._node except TypeError: return False else: deg = list(self.degree([n], t).values()) if len(deg) > 0: return deg[0] > 0 else: return False
has_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, t=None):\n if t is None:\n try:\n return n in self._node\n except TypeError:\n return False\n else:\n deg = list(self.degree([n], t).values())\n if len(deg) > 0:\n return deg[0] > 0\n else:\n return False\n", "role": "user" }, { "content": "has_node", "role": "assistant" } ]
def x(self, nodes, t=None): nlist = list(nodes) v = nlist[0] interaction = ((v, n) for n in nlist[1:]) self.add_interactions_from(interaction, t)
add_star
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes, t=None):\n nlist = list(nodes)\n v = nlist[0]\n interaction = ((v, n) for n in nlist[1:])\n self.add_interactions_from(interaction, t)\n", "role": "user" }, { "content": "add_star", "role": "assistant" } ]
def x(self, nodes, t=None): nlist = list(nodes) interaction = zip(nlist[:-1], nlist[1:]) self.add_interactions_from(interaction, t)
add_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes, t=None):\n nlist = list(nodes)\n interaction = zip(nlist[:-1], nlist[1:])\n self.add_interactions_from(interaction, t)\n", "role": "user" }, { "content": "add_path", "role": "assistant" } ]
def x(self): from .dyndigraph import DynDiGraph G = DynDiGraph() G.name = self.name G.add_nodes_from(self) for it in self.interactions_iter(): for t in it[2]['t']: G.add_interaction(it[0], it[1], t=t[0], e=t[1]) G.graph = deepcopy(self.graph) G._node = deepcopy(self._node) return G
to_directed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from .dyndigraph import DynDiGraph\n G = DynDiGraph()\n G.name = self.name\n G.add_nodes_from(self)\n for it in self.interactions_iter():\n for t in it[2]['t']:\n G.add_interaction(it[0], it[1], t=t[0], e=t[1])\n G.graph = deepcopy(self.graph)\n G._node = deepcopy(self._node)\n return G\n", "role": "user" }, { "content": "to_directed", "role": "assistant" } ]
def x(self): timestamps = sorted(self.time_to_edge.keys()) for t in timestamps: for e in self.time_to_edge[t]: yield e[0], e[1], e[2], t
stream_interactions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n timestamps = sorted(self.time_to_edge.keys())\n for t in timestamps:\n for e in self.time_to_edge[t]:\n yield e[0], e[1], e[2], t\n", "role": "user" }, { "content": "stream_interactions", "role": "assistant" } ]
def x(self, t_from, t_to=None): H = self.__class__() if t_to is not None: if t_to < t_from: raise ValueError('Invalid range: t_to must be grater that t_from') else: t_to = t_from for u, v, ts in self.interactions_iter(): I = t_to F = t_from for a, b in ts['t']: if I <= a and b <= F: H.add_interaction(u, v, a, b) elif a <= I and F <= b: H.add_interaction(u, v, I, F) elif a <= I <= b and b <= F: H.add_interaction(u, v, I, b) elif I <= a <= F and F <= b: H.add_interaction(u, v, a, F) return H
time_slice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t_from, t_to=None):\n H = self.__class__()\n if t_to is not None:\n if t_to < t_from:\n raise ValueError('Invalid range: t_to must be grater that t_from')\n else:\n t_to = t_from\n for u, v, ts in self.interactions_iter():\n I = t_to\n F = t_from\n for a, b in ts['t']:\n if I <= a and b <= F:\n H.add_interaction(u, v, a, b)\n elif a <= I and F <= b:\n H.add_interaction(u, v, I, F)\n elif a <= I <= b and b <= F:\n H.add_interaction(u, v, I, b)\n elif I <= a <= F and F <= b:\n H.add_interaction(u, v, a, F)\n return H\n", "role": "user" }, { "content": "time_slice", "role": "assistant" } ]
def x(self, t=None): if t is None: return {k: (v / 2) for k, v in self.snapshots.items()} else: try: return self.snapshots[t] / 2 except KeyError: return 0
interactions_per_snapshots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t=None):\n if t is None:\n return {k: (v / 2) for k, v in self.snapshots.items()}\n else:\n try:\n return self.snapshots[t] / 2\n except KeyError:\n return 0\n", "role": "user" }, { "content": "interactions_per_snapshots", "role": "assistant" } ]
def x(self, u=None, v=None): dist = {} if u is None: first = True delta = None for ext in self.stream_interactions(): if first: delta = ext first = False continue disp = ext[-1] - delta[-1] delta = ext if disp in dist: dist[disp] += 1 else: dist[disp] = 1 elif u is not None and v is None: delta = 0, 0, 0, 0 flag = False for ext in self.stream_interactions(): if ext[0] == u or ext[1] == u: if flag: disp = ext[-1] - delta[-1] delta = ext if disp in dist: dist[disp] += 1 else: dist[disp] = 1 else: delta = ext flag = True else: evt = self._adj[u][v]['t'] delta = [] for i in evt: if i[0] != i[1]: for j in [0, 1]: delta.append(i[j]) else: delta.append(i[0]) if len(delta) == 2 and delta[0] == delta[1]: return {} for i in range(0, len(delta) - 1): e = delta[i + 1] - delta[i] if e not in dist: dist[e] = 1 else: dist[e] += 1 return dist
inter_event_time_distribution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, u=None, v=None):\n dist = {}\n if u is None:\n first = True\n delta = None\n for ext in self.stream_interactions():\n if first:\n delta = ext\n first = False\n continue\n disp = ext[-1] - delta[-1]\n delta = ext\n if disp in dist:\n dist[disp] += 1\n else:\n dist[disp] = 1\n elif u is not None and v is None:\n delta = 0, 0, 0, 0\n flag = False\n for ext in self.stream_interactions():\n if ext[0] == u or ext[1] == u:\n if flag:\n disp = ext[-1] - delta[-1]\n delta = ext\n if disp in dist:\n dist[disp] += 1\n else:\n dist[disp] = 1\n else:\n delta = ext\n flag = True\n else:\n evt = self._adj[u][v]['t']\n delta = []\n for i in evt:\n if i[0] != i[1]:\n for j in [0, 1]:\n delta.append(i[j])\n else:\n delta.append(i[0])\n if len(delta) == 2 and delta[0] == delta[1]:\n return {}\n for i in range(0, len(delta) - 1):\n e = delta[i + 1] - delta[i]\n if e not in dist:\n dist[e] = 1\n else:\n dist[e] += 1\n return dist\n", "role": "user" }, { "content": "inter_event_time_distribution", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch is None: nodes_nbrs = ((n, succs, self._pred[n]) for n, succs in self._succ. items()) else: nodes_nbrs = ((n, self._succ[n], self._pred[n]) for n in self. nbunch_iter(nbunch)) if t is None: for n, succ, pred in nodes_nbrs: yield n, len(succ) + len(pred) else: for n, succ, pred in nodes_nbrs: edges_succ = len([v for v in succ.keys() if self. __presence_test(n, v, t)]) edges_pred = len([v for v in pred.keys() if self. __presence_test(v, n, t)]) yield n, edges_succ + edges_pred
degree_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = ((n, succs, self._pred[n]) for n, succs in self._succ.\n items())\n else:\n nodes_nbrs = ((n, self._succ[n], self._pred[n]) for n in self.\n nbunch_iter(nbunch))\n if t is None:\n for n, succ, pred in nodes_nbrs:\n yield n, len(succ) + len(pred)\n else:\n for n, succ, pred in nodes_nbrs:\n edges_succ = len([v for v in succ.keys() if self.\n __presence_test(n, v, t)])\n edges_pred = len([v for v in pred.keys() if self.\n __presence_test(v, n, t)])\n yield n, edges_succ + edges_pred\n", "role": "user" }, { "content": "degree_iter", "role": "assistant" } ]
def x(self, nbunch=None, t=None): seen = {} if nbunch is None: nodes_nbrs_succ = self._succ.items() else: nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch) ] for n, nbrs in nodes_nbrs_succ: for nbr in nbrs: if t is not None: if nbr not in seen and self.__presence_test(n, nbr, t): yield n, nbr, {'t': [t]} elif nbr not in seen: yield nbr, n, self._succ[n][nbr] seen[n] = 1 del seen
interactions_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n seen = {}\n if nbunch is None:\n nodes_nbrs_succ = self._succ.items()\n else:\n nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)\n ]\n for n, nbrs in nodes_nbrs_succ:\n for nbr in nbrs:\n if t is not None:\n if nbr not in seen and self.__presence_test(n, nbr, t):\n yield n, nbr, {'t': [t]}\n elif nbr not in seen:\n yield nbr, n, self._succ[n][nbr]\n seen[n] = 1\n del seen\n", "role": "user" }, { "content": "interactions_iter", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch is None: nodes_nbrs_pred = self._pred.items() else: nodes_nbrs_pred = [(n, self._pred[n]) for n in self.nbunch_iter(nbunch) ] for n, nbrs in nodes_nbrs_pred: for nbr in nbrs: if t is not None: if self.__presence_test(nbr, n, t): yield nbr, n, {'t': [t]} elif nbr in self._pred[n]: yield nbr, n, self._pred[n][nbr]
in_interactions_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs_pred = self._pred.items()\n else:\n nodes_nbrs_pred = [(n, self._pred[n]) for n in self.nbunch_iter(nbunch)\n ]\n for n, nbrs in nodes_nbrs_pred:\n for nbr in nbrs:\n if t is not None:\n if self.__presence_test(nbr, n, t):\n yield nbr, n, {'t': [t]}\n elif nbr in self._pred[n]:\n yield nbr, n, self._pred[n][nbr]\n", "role": "user" }, { "content": "in_interactions_iter", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch is None: nodes_nbrs_succ = self._succ.items() else: nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch) ] for n, nbrs in nodes_nbrs_succ: for nbr in nbrs: if t is not None: if self.__presence_test(n, nbr, t): yield n, nbr, {'t': [t]} elif nbr in self._succ[n]: yield n, nbr, self._succ[n][nbr]
out_interactions_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs_succ = self._succ.items()\n else:\n nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)\n ]\n for n, nbrs in nodes_nbrs_succ:\n for nbr in nbrs:\n if t is not None:\n if self.__presence_test(n, nbr, t):\n yield n, nbr, {'t': [t]}\n elif nbr in self._succ[n]:\n yield n, nbr, self._succ[n][nbr]\n", "role": "user" }, { "content": "out_interactions_iter", "role": "assistant" } ]
def x(self, u=None, v=None, t=None): if t is None: if u is None: return int(self.size()) elif u is not None and v is not None: if v in self._succ[u]: return 1 else: return 0 elif u is None: return int(self.size(t)) elif u is not None and v is not None: if v in self._succ[u]: if self.__presence_test(u, v, t): return 1 else: return 0
number_of_interactions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, u=None, v=None, t=None):\n if t is None:\n if u is None:\n return int(self.size())\n elif u is not None and v is not None:\n if v in self._succ[u]:\n return 1\n else:\n return 0\n elif u is None:\n return int(self.size(t))\n elif u is not None and v is not None:\n if v in self._succ[u]:\n if self.__presence_test(u, v, t):\n return 1\n else:\n return 0\n", "role": "user" }, { "content": "number_of_interactions", "role": "assistant" } ]
def x(self, u, v, t=None): try: if t is None: return v in self._succ[u] else: return v in self._succ[u] and self.__presence_test(u, v, t) except KeyError: return False
has_interaction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, u, v, t=None):\n try:\n if t is None:\n return v in self._succ[u]\n else:\n return v in self._succ[u] and self.__presence_test(u, v, t)\n except KeyError:\n return False\n", "role": "user" }, { "content": "has_interaction", "role": "assistant" } ]
def x(self, u, v, t=None): return self.has_interaction(u, v, t)
has_successor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, u, v, t=None):\n return self.has_interaction(u, v, t)\n", "role": "user" }, { "content": "has_successor", "role": "assistant" } ]
def x(self, u, v, t=None): return self.has_interaction(v, u, t)
has_predecessor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, u, v, t=None):\n return self.has_interaction(v, u, t)\n", "role": "user" }, { "content": "has_predecessor", "role": "assistant" } ]
def x(self, n, t=None): try: if t is None: return iter(self._succ[n]) else: return iter([i for i in self._succ[n] if self.__presence_test(n, i, t)]) except KeyError: raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
successors_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, t=None):\n try:\n if t is None:\n return iter(self._succ[n])\n else:\n return iter([i for i in self._succ[n] if self.__presence_test(n,\n i, t)])\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n", "role": "user" }, { "content": "successors_iter", "role": "assistant" } ]
def x(self, n, t=None): try: if t is None: return iter(self._pred[n]) else: return iter([i for i in self._pred[n] if self.__presence_test(i, n, t)]) except KeyError: raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
predecessors_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, t=None):\n try:\n if t is None:\n return iter(self._pred[n])\n else:\n return iter([i for i in self._pred[n] if self.__presence_test(i,\n n, t)])\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n", "role": "user" }, { "content": "predecessors_iter", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch in self: return next(self.in_degree_iter(nbunch, t))[1] else: return dict(self.in_degree_iter(nbunch, t))
in_degree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch in self:\n return next(self.in_degree_iter(nbunch, t))[1]\n else:\n return dict(self.in_degree_iter(nbunch, t))\n", "role": "user" }, { "content": "in_degree", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch is None: nodes_nbrs = self._pred.items() else: nodes_nbrs = ((n, self._pred[n]) for n in self.nbunch_iter(nbunch)) if t is None: for n, nbrs in nodes_nbrs: deg = len(self._pred[n]) yield n, deg else: for n, nbrs in nodes_nbrs: edges_t = len([v for v in nbrs.keys() if self.__presence_test(v, n, t)]) if edges_t > 0: yield n, edges_t else: yield n, 0
in_degree_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = self._pred.items()\n else:\n nodes_nbrs = ((n, self._pred[n]) for n in self.nbunch_iter(nbunch))\n if t is None:\n for n, nbrs in nodes_nbrs:\n deg = len(self._pred[n])\n yield n, deg\n else:\n for n, nbrs in nodes_nbrs:\n edges_t = len([v for v in nbrs.keys() if self.__presence_test(v,\n n, t)])\n if edges_t > 0:\n yield n, edges_t\n else:\n yield n, 0\n", "role": "user" }, { "content": "in_degree_iter", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch in self: return next(self.out_degree_iter(nbunch, t))[1] else: return dict(self.out_degree_iter(nbunch, t))
out_degree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch in self:\n return next(self.out_degree_iter(nbunch, t))[1]\n else:\n return dict(self.out_degree_iter(nbunch, t))\n", "role": "user" }, { "content": "out_degree", "role": "assistant" } ]
def x(self, nbunch=None, t=None): if nbunch is None: nodes_nbrs = self._succ.items() else: nodes_nbrs = ((n, self._succ[n]) for n in self.nbunch_iter(nbunch)) if t is None: for n, nbrs in nodes_nbrs: deg = len(self._succ[n]) yield n, deg else: for n, nbrs in nodes_nbrs: edges_t = len([v for v in nbrs.keys() if self.__presence_test(n, v, t)]) if edges_t > 0: yield n, edges_t else: yield n, 0
out_degree_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = self._succ.items()\n else:\n nodes_nbrs = ((n, self._succ[n]) for n in self.nbunch_iter(nbunch))\n if t is None:\n for n, nbrs in nodes_nbrs:\n deg = len(self._succ[n])\n yield n, deg\n else:\n for n, nbrs in nodes_nbrs:\n edges_t = len([v for v in nbrs.keys() if self.__presence_test(n,\n v, t)])\n if edges_t > 0:\n yield n, edges_t\n else:\n yield n, 0\n", "role": "user" }, { "content": "out_degree_iter", "role": "assistant" } ]
def x(self, reciprocal=False): from .dyngraph import DynGraph H = DynGraph() H.name = self.name H.add_nodes_from(self) if reciprocal is True: for u in self._node: for v in self._node: if u >= v: try: outc = self._succ[u][v]['t'] intc = self._pred[u][v]['t'] for o in outc: r = set(range(o[0], o[1] + 1)) for i in intc: r2 = set(range(i[0], i[1] + 1)) inter = list(r & r2) if len(inter) == 1: H.add_interaction(u, v, t=inter[0]) elif len(inter) > 1: H.add_interaction(u, v, t=inter[0], e= inter[-1]) except: pass else: for it in self.interactions_iter(): for t in it[2]['t']: H.add_interaction(it[0], it[1], t=t[0], e=t[1]) H.graph = deepcopy(self.graph) H._node = deepcopy(self._node) return H
to_undirected
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, reciprocal=False):\n from .dyngraph import DynGraph\n H = DynGraph()\n H.name = self.name\n H.add_nodes_from(self)\n if reciprocal is True:\n for u in self._node:\n for v in self._node:\n if u >= v:\n try:\n outc = self._succ[u][v]['t']\n intc = self._pred[u][v]['t']\n for o in outc:\n r = set(range(o[0], o[1] + 1))\n for i in intc:\n r2 = set(range(i[0], i[1] + 1))\n inter = list(r & r2)\n if len(inter) == 1:\n H.add_interaction(u, v, t=inter[0])\n elif len(inter) > 1:\n H.add_interaction(u, v, t=inter[0], e=\n inter[-1])\n except:\n pass\n else:\n for it in self.interactions_iter():\n for t in it[2]['t']:\n H.add_interaction(it[0], it[1], t=t[0], e=t[1])\n H.graph = deepcopy(self.graph)\n H._node = deepcopy(self._node)\n return H\n", "role": "user" }, { "content": "to_undirected", "role": "assistant" } ]
def x(G, path, delimiter=' ', encoding='utf-8'): for line in generate_interactions(G, delimiter): line += '\n' path.write(line.encode(encoding))
write_interactions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, path, delimiter=' ', encoding='utf-8'):\n for line in generate_interactions(G, delimiter):\n line += '\\n'\n path.write(line.encode(encoding))\n", "role": "user" }, { "content": "write_interactions", "role": "assistant" } ]
def x(path, comments='#', directed=False, delimiter=None, nodetype=None, timestamptype=None, encoding='utf-8', keys=False): ids = None lines = (line.decode(encoding) for line in path) if keys: ids = read_ids(path.name, delimiter=delimiter, timestamptype= timestamptype) return parse_interactions(lines, comments=comments, directed=directed, delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype, keys=ids)
read_interactions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, comments='#', directed=False, delimiter=None, nodetype=None,\n timestamptype=None, encoding='utf-8', keys=False):\n ids = None\n lines = (line.decode(encoding) for line in path)\n if keys:\n ids = read_ids(path.name, delimiter=delimiter, timestamptype=\n timestamptype)\n return parse_interactions(lines, comments=comments, directed=directed,\n delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype,\n keys=ids)\n", "role": "user" }, { "content": "read_interactions", "role": "assistant" } ]
def x(G, path, delimiter=' ', encoding='utf-8'): for line in generate_snapshots(G, delimiter): line += '\n' path.write(line.encode(encoding))
write_snapshots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, path, delimiter=' ', encoding='utf-8'):\n for line in generate_snapshots(G, delimiter):\n line += '\\n'\n path.write(line.encode(encoding))\n", "role": "user" }, { "content": "write_snapshots", "role": "assistant" } ]
def x(path, comments='#', directed=False, delimiter=None, nodetype=None, timestamptype=None, encoding='utf-8', keys=False): ids = None lines = (line.decode(encoding) for line in path) if keys: ids = read_ids(path.name, delimiter=delimiter, timestamptype= timestamptype) return parse_snapshots(lines, comments=comments, directed=directed, delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype, keys=ids)
read_snapshots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, comments='#', directed=False, delimiter=None, nodetype=None,\n timestamptype=None, encoding='utf-8', keys=False):\n ids = None\n lines = (line.decode(encoding) for line in path)\n if keys:\n ids = read_ids(path.name, delimiter=delimiter, timestamptype=\n timestamptype)\n return parse_snapshots(lines, comments=comments, directed=directed,\n delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype,\n keys=ids)\n", "role": "user" }, { "content": "read_snapshots", "role": "assistant" } ]
def x(path_arg, mode='r'): @decorator def x(func, *args, **kwargs): try: path = args[path_arg] except TypeError: try: path = kwargs[path_arg] except KeyError: msg = 'Missing required keyword argument: {0}' raise nx.NetworkXError(msg.format(path_arg)) else: is_kwarg = True except IndexError: msg = 'path_arg of open_file decorator is incorrect' raise nx.NetworkXError(msg) else: is_kwarg = False if is_string_like(path): ext = splitext(path)[1] fobj = _dispatch_dict[ext](path, mode=mode) close_fobj = True elif hasattr(path, 'read'): fobj = path close_fobj = False else: fobj = path close_fobj = False if is_kwarg: new_args = args kwargs[path_arg] = fobj else: new_args = list(args) new_args[path_arg] = fobj try: result = func(*new_args, **kwargs) finally: if close_fobj: fobj.close() return result return _open_file
open_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path_arg, mode='r'):\n\n @decorator\n def x(func, *args, **kwargs):\n try:\n path = args[path_arg]\n except TypeError:\n try:\n path = kwargs[path_arg]\n except KeyError:\n msg = 'Missing required keyword argument: {0}'\n raise nx.NetworkXError(msg.format(path_arg))\n else:\n is_kwarg = True\n except IndexError:\n msg = 'path_arg of open_file decorator is incorrect'\n raise nx.NetworkXError(msg)\n else:\n is_kwarg = False\n if is_string_like(path):\n ext = splitext(path)[1]\n fobj = _dispatch_dict[ext](path, mode=mode)\n close_fobj = True\n elif hasattr(path, 'read'):\n fobj = path\n close_fobj = False\n else:\n fobj = path\n close_fobj = False\n if is_kwarg:\n new_args = args\n kwargs[path_arg] = fobj\n else:\n new_args = list(args)\n new_args[path_arg] = fobj\n try:\n result = func(*new_args, **kwargs)\n finally:\n if close_fobj:\n fobj.close()\n return result\n return _open_file\n", "role": "user" }, { "content": "open_file", "role": "assistant" } ]
def x(G, u=None, v=None, t=None): return G.number_of_interactions(u, v, t)
number_of_interactions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, u=None, v=None, t=None):\n return G.number_of_interactions(u, v, t)\n", "role": "user" }, { "content": "number_of_interactions", "role": "assistant" } ]
def x(G, t=None): n = number_of_nodes(G, t) m = number_of_interactions(G, t) if m == 0 or m is None or n <= 1: return 0 d = m / (n * (n - 1)) if not G.is_directed(): d *= 2 return d
density
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, t=None):\n n = number_of_nodes(G, t)\n m = number_of_interactions(G, t)\n if m == 0 or m is None or n <= 1:\n return 0\n d = m / (n * (n - 1))\n if not G.is_directed():\n d *= 2\n return d\n", "role": "user" }, { "content": "density", "role": "assistant" } ]
def x(G, t=None): counts = Counter(d for n, d in G.degree(t=t).items()) return [counts.get(i, 0) for i in range(max(counts) + 1)]
degree_histogram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, t=None):\n counts = Counter(d for n, d in G.degree(t=t).items())\n return [counts.get(i, 0) for i in range(max(counts) + 1)]\n", "role": "user" }, { "content": "degree_histogram", "role": "assistant" } ]
def x(G): G.add_node = frozen G.add_nodes_from = frozen G.remove_node = frozen G.remove_nodes_from = frozen G.add_edge = frozen G.add_edges_from = frozen G.remove_edge = frozen G.remove_edges_from = frozen G.clear = frozen G.frozen = True return G
freeze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G):\n G.add_node = frozen\n G.add_nodes_from = frozen\n G.remove_node = frozen\n G.remove_nodes_from = frozen\n G.add_edge = frozen\n G.add_edges_from = frozen\n G.remove_edge = frozen\n G.remove_edges_from = frozen\n G.clear = frozen\n G.frozen = True\n return G\n", "role": "user" }, { "content": "freeze", "role": "assistant" } ]
def x(G, nodes, t, **attr): nlist = iter(nodes) v = next(nlist) edges = ((v, n) for n in nlist) G.add_interactions_from(edges, t, **attr)
add_star
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, nodes, t, **attr):\n nlist = iter(nodes)\n v = next(nlist)\n edges = ((v, n) for n in nlist)\n G.add_interactions_from(edges, t, **attr)\n", "role": "user" }, { "content": "add_star", "role": "assistant" } ]
def x(G, nodes, t, **attr): nlist = list(nodes) edges = zip(nlist[:-1], nlist[1:]) G.add_interactions_from(edges, t, **attr)
add_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, nodes, t, **attr):\n nlist = list(nodes)\n edges = zip(nlist[:-1], nlist[1:])\n G.add_interactions_from(edges, t, **attr)\n", "role": "user" }, { "content": "add_path", "role": "assistant" } ]
def x(G, with_data=True): H = G.__class__() H.add_nodes_from(G.nodes(data=with_data)) if with_data: H.graph.update(G.graph) return H
create_empty_copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, with_data=True):\n H = G.__class__()\n H.add_nodes_from(G.nodes(data=with_data))\n if with_data:\n H.graph.update(G.graph)\n return H\n", "role": "user" }, { "content": "create_empty_copy", "role": "assistant" } ]
def x(G, values, name=None): if name is not None: try: for n, v in values.items(): try: G.node[n][name] = values[n] except KeyError: pass except AttributeError: for n in G: G.node[n][name] = values else: for n, d in values.items(): try: G.node[n].update(d) except KeyError: pass
set_node_attributes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, values, name=None):\n if name is not None:\n try:\n for n, v in values.items():\n try:\n G.node[n][name] = values[n]\n except KeyError:\n pass\n except AttributeError:\n for n in G:\n G.node[n][name] = values\n else:\n for n, d in values.items():\n try:\n G.node[n].update(d)\n except KeyError:\n pass\n", "role": "user" }, { "content": "set_node_attributes", "role": "assistant" } ]
def x(G, name): return {n: d[name] for n, d in G.node.items() if name in d}
get_node_attributes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, name):\n return {n: d[name] for n, d in G.node.items() if name in d}\n", "role": "user" }, { "content": "get_node_attributes", "role": "assistant" } ]
def x(graph, node, t=None): if graph.is_directed(): values = chain(graph.predecessors(node, t=t), graph.successors(node, t=t)) else: values = graph.neighbors(node, t=t) return values
all_neighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, node, t=None):\n if graph.is_directed():\n values = chain(graph.predecessors(node, t=t), graph.successors(node,\n t=t))\n else:\n values = graph.neighbors(node, t=t)\n return values\n", "role": "user" }, { "content": "all_neighbors", "role": "assistant" } ]
def x(graph, node, t=None): if graph.is_directed(): values = chain(graph.predecessors(node, t=t), graph.successors(node, t=t)) else: values = graph.neighbors(node, t=t) nbors = set(values) | {node} return (nnode for nnode in graph if nnode not in nbors)
non_neighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, node, t=None):\n if graph.is_directed():\n values = chain(graph.predecessors(node, t=t), graph.successors(node,\n t=t))\n else:\n values = graph.neighbors(node, t=t)\n nbors = set(values) | {node}\n return (nnode for nnode in graph if nnode not in nbors)\n", "role": "user" }, { "content": "non_neighbors", "role": "assistant" } ]
def x(graph, t=None): nodes = set(graph) while nodes: u = nodes.pop() for v in (nodes - set(graph[u])): yield u, v
non_interactions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, t=None):\n nodes = set(graph)\n while nodes:\n u = nodes.pop()\n for v in (nodes - set(graph[u])):\n yield u, v\n", "role": "user" }, { "content": "non_interactions", "role": "assistant" } ]
def x(self): return ( 'Function %s (args=%s) (kwargs=%s) timed out after %f seconds.\n' % (self.timedOutFunction.__name__, repr(self.timedOutArgs), repr(self .timedOutKwargs), self.timedOutAfter))
getMsg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return (\n 'Function %s (args=%s) (kwargs=%s) timed out after %f seconds.\\n' %\n (self.timedOutFunction.__name__, repr(self.timedOutArgs), repr(self\n .timedOutKwargs), self.timedOutAfter))\n", "role": "user" }, { "content": "getMsg", "role": "assistant" } ]
def x(self, timeout=RETRY_SAME_TIMEOUT): if timeout is None: return self.timedOutFunction(*self.timedOutArgs, **self.timedOutKwargs) from .dafunc import func_timeout if timeout == RETRY_SAME_TIMEOUT: timeout = self.timedOutAfter return func_timeout(timeout, self.timedOutFunction, args=self. timedOutArgs, kwargs=self.timedOutKwargs)
retry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout=RETRY_SAME_TIMEOUT):\n if timeout is None:\n return self.timedOutFunction(*self.timedOutArgs, **self.timedOutKwargs)\n from .dafunc import func_timeout\n if timeout == RETRY_SAME_TIMEOUT:\n timeout = self.timedOutAfter\n return func_timeout(timeout, self.timedOutFunction, args=self.\n timedOutArgs, kwargs=self.timedOutKwargs)\n", "role": "user" }, { "content": "retry", "role": "assistant" } ]
def x(timeout, func, args=(), kwargs=None): if not kwargs: kwargs = {} if not args: args = () ret = [] exception = [] isStopped = False def x(args2, kwargs2): try: ret.append(func(*args2, **kwargs2)) except FunctionTimedOut: pass except Exception as e: exc_info = sys.exc_info() if isStopped is False: e.__traceback__ = exc_info[2].tb_next exception.append(e) thread = StoppableThread(target=funcwrap, args=(args, kwargs)) thread.daemon = True thread.start() thread.join(timeout) stopException = None if thread.isAlive(): isStopped = True class FunctionTimedOutTempType(FunctionTimedOut): def x(self): return FunctionTimedOut.__init__(self, '', timeout, func, args, kwargs) FunctionTimedOutTemp = type('FunctionTimedOut' + str(hash( '%d_%d_%d_%d' % (id(timeout), id(func), id(args), id(kwargs)))), FunctionTimedOutTempType.__bases__, dict( FunctionTimedOutTempType.__dict__)) stopException = FunctionTimedOutTemp thread._stopThread(stopException) thread.join(min(0.1, timeout / 50.0)) raise FunctionTimedOut('', timeout, func, args, kwargs) else: thread.join(0.5) if exception: raise_exception(exception) if ret: return ret[0]
func_timeout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timeout, func, args=(), kwargs=None):\n if not kwargs:\n kwargs = {}\n if not args:\n args = ()\n ret = []\n exception = []\n isStopped = False\n\n def x(args2, kwargs2):\n try:\n ret.append(func(*args2, **kwargs2))\n except FunctionTimedOut:\n pass\n except Exception as e:\n exc_info = sys.exc_info()\n if isStopped is False:\n e.__traceback__ = exc_info[2].tb_next\n exception.append(e)\n thread = StoppableThread(target=funcwrap, args=(args, kwargs))\n thread.daemon = True\n thread.start()\n thread.join(timeout)\n stopException = None\n if thread.isAlive():\n isStopped = True\n\n\n class FunctionTimedOutTempType(FunctionTimedOut):\n\n def x(self):\n return FunctionTimedOut.__init__(self, '', timeout, func,\n args, kwargs)\n FunctionTimedOutTemp = type('FunctionTimedOut' + str(hash(\n '%d_%d_%d_%d' % (id(timeout), id(func), id(args), id(kwargs)))),\n FunctionTimedOutTempType.__bases__, dict(\n FunctionTimedOutTempType.__dict__))\n stopException = FunctionTimedOutTemp\n thread._stopThread(stopException)\n thread.join(min(0.1, timeout / 50.0))\n raise FunctionTimedOut('', timeout, func, args, kwargs)\n else:\n thread.join(0.5)\n if exception:\n raise_exception(exception)\n if ret:\n return ret[0]\n", "role": "user" }, { "content": "func_timeout", "role": "assistant" } ]
def x(timeout, allowOverride=False): defaultTimeout = copy.copy(timeout) isTimeoutAFunction = bool(issubclass(timeout.__class__, (types. FunctionType, types.MethodType, types.LambdaType, types. BuiltinFunctionType, types.BuiltinMethodType))) if not isTimeoutAFunction: if not issubclass(timeout.__class__, (float, int)): try: timeout = float(timeout) except: raise ValueError( 'timeout argument must be a float/int for number of seconds, or a function/lambda which gets passed the function arguments and returns a calculated timeout (as float or int). Passed type: < %s > is not of any of these, and cannot be converted to a float.' % (timeout.__class__.__name__,)) if not allowOverride and not isTimeoutAFunction: def x(func): return wraps(func)(lambda *args, **kwargs: func_timeout( defaultTimeout, func, args=args, kwargs=kwargs)) return _function_decorator if not isTimeoutAFunction: def x(func): def x(*args, **kwargs): if 'forceTimeout' in kwargs: useTimeout = kwargs.pop('forceTimeout') else: useTimeout = defaultTimeout return func_timeout(useTimeout, func, args=args, kwargs=kwargs) return wraps(func)(_function_wrapper) return _function_decorator timeoutFunction = timeout if allowOverride: def x(func): def x(*args, **kwargs): if 'forceTimeout' in kwargs: useTimeout = kwargs.pop('forceTimeout') else: useTimeout = timeoutFunction(*args, **kwargs) return func_timeout(useTimeout, func, args=args, kwargs=kwargs) return wraps(func)(_function_wrapper) return _function_decorator def x(func): def x(*args, **kwargs): useTimeout = timeoutFunction(*args, **kwargs) return func_timeout(useTimeout, func, args=args, kwargs=kwargs) return wraps(func)(_function_wrapper) return _function_decorator
func_set_timeout
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timeout, allowOverride=False):\n defaultTimeout = copy.copy(timeout)\n isTimeoutAFunction = bool(issubclass(timeout.__class__, (types.\n FunctionType, types.MethodType, types.LambdaType, types.\n BuiltinFunctionType, types.BuiltinMethodType)))\n if not isTimeoutAFunction:\n if not issubclass(timeout.__class__, (float, int)):\n try:\n timeout = float(timeout)\n except:\n raise ValueError(\n 'timeout argument must be a float/int for number of seconds, or a function/lambda which gets passed the function arguments and returns a calculated timeout (as float or int). Passed type: < %s > is not of any of these, and cannot be converted to a float.'\n % (timeout.__class__.__name__,))\n if not allowOverride and not isTimeoutAFunction:\n\n def x(func):\n return wraps(func)(lambda *args, **kwargs: func_timeout(\n defaultTimeout, func, args=args, kwargs=kwargs))\n return _function_decorator\n if not isTimeoutAFunction:\n\n def x(func):\n\n def x(*args, **kwargs):\n if 'forceTimeout' in kwargs:\n useTimeout = kwargs.pop('forceTimeout')\n else:\n useTimeout = defaultTimeout\n return func_timeout(useTimeout, func, args=args, kwargs=kwargs)\n return wraps(func)(_function_wrapper)\n return _function_decorator\n timeoutFunction = timeout\n if allowOverride:\n\n def x(func):\n\n def x(*args, **kwargs):\n if 'forceTimeout' in kwargs:\n useTimeout = kwargs.pop('forceTimeout')\n else:\n useTimeout = timeoutFunction(*args, **kwargs)\n return func_timeout(useTimeout, func, args=args, kwargs=kwargs)\n return wraps(func)(_function_wrapper)\n return _function_decorator\n\n def x(func):\n\n def x(*args, **kwargs):\n useTimeout = timeoutFunction(*args, **kwargs)\n return func_timeout(useTimeout, func, args=args, kwargs=kwargs)\n return wraps(func)(_function_wrapper)\n return _function_decorator\n", "role": "user" }, { "content": "func_set_timeout", "role": "assistant" } ]
def x(V, x0list=[], plot=False): T = 4.0 ndT = 8.0 neval = 300000.0 nitn = 6 alpha = 0.1 integrand = PathIntegrand(V=V, T=T, ndT=ndT) integ = vegas.Integrator(integrand.region, alpha=alpha) integ(integrand, neval=neval, nitn=nitn / 2, alpha=2 * alpha) integrand = PathIntegrand(V=V, x0list=x0list, T=T, ndT=ndT) results = integ(integrand, neval=neval, nitn=nitn, alpha=alpha) print(results.summary()) E0 = -np.log(results['exp(-E0*T)']) / T print('Ground-state energy = %s Q = %.2f\n' % (E0, results.Q)) if len(x0list) <= 0: return E0 psi2 = results['exp(-E0*T) * psi(x0)**2'] / results['exp(-E0*T)'] print('%5s %-12s %-10s' % ('x', 'psi**2', 'sho-exact')) print(27 * '-') for i, (x0i, psi2i) in enumerate(zip(x0list, psi2)): exact = np.exp(-x0i ** 2) / np.sqrt(np.pi) print('%5.1f %-12s %-10.5f' % (x0i, psi2i, exact)) if plot: plot_results(E0, x0list, psi2, T) return E0
analyze_theory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(V, x0list=[], plot=False):\n T = 4.0\n ndT = 8.0\n neval = 300000.0\n nitn = 6\n alpha = 0.1\n integrand = PathIntegrand(V=V, T=T, ndT=ndT)\n integ = vegas.Integrator(integrand.region, alpha=alpha)\n integ(integrand, neval=neval, nitn=nitn / 2, alpha=2 * alpha)\n integrand = PathIntegrand(V=V, x0list=x0list, T=T, ndT=ndT)\n results = integ(integrand, neval=neval, nitn=nitn, alpha=alpha)\n print(results.summary())\n E0 = -np.log(results['exp(-E0*T)']) / T\n print('Ground-state energy = %s Q = %.2f\\n' % (E0, results.Q))\n if len(x0list) <= 0:\n return E0\n psi2 = results['exp(-E0*T) * psi(x0)**2'] / results['exp(-E0*T)']\n print('%5s %-12s %-10s' % ('x', 'psi**2', 'sho-exact'))\n print(27 * '-')\n for i, (x0i, psi2i) in enumerate(zip(x0list, psi2)):\n exact = np.exp(-x0i ** 2) / np.sqrt(np.pi)\n print('%5.1f %-12s %-10.5f' % (x0i, psi2i, exact))\n if plot:\n plot_results(E0, x0list, psi2, T)\n return E0\n", "role": "user" }, { "content": "analyze_theory", "role": "assistant" } ]
def x(self, exception, raiseEvery=2.0): if self.isAlive() is False: return True self._stderr = open(os.devnull, 'w') joinThread = JoinThread(self, exception, repeatEvery=raiseEvery) joinThread._stderr = self._stderr joinThread.start() joinThread._stderr = self._stderr
stopThread
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, exception, raiseEvery=2.0):\n if self.isAlive() is False:\n return True\n self._stderr = open(os.devnull, 'w')\n joinThread = JoinThread(self, exception, repeatEvery=raiseEvery)\n joinThread._stderr = self._stderr\n joinThread.start()\n joinThread._stderr = self._stderr\n", "role": "user" }, { "content": "stopThread", "role": "assistant" } ]
def x(self): self.otherThread._Thread__stderr = self._stderr if hasattr(self.otherThread, '_Thread__stop'): self.otherThread._Thread__stop() while self.otherThread.isAlive(): ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self. otherThread.ident), ctypes.py_object(self.exception)) self.otherThread.join(self.repeatEvery) try: self._stderr.close() except: pass
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.otherThread._Thread__stderr = self._stderr\n if hasattr(self.otherThread, '_Thread__stop'):\n self.otherThread._Thread__stop()\n while self.otherThread.isAlive():\n ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self.\n otherThread.ident), ctypes.py_object(self.exception))\n self.otherThread.join(self.repeatEvery)\n try:\n self._stderr.close()\n except:\n pass\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): with open('src/vegas/__init__.py', 'a') as vfile: vfile.write("\n__version__ = '%s'\n" % VEGAS_VERSION) _build_py.run(self)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n with open('src/vegas/__init__.py', 'a') as vfile:\n vfile.write(\"\\n__version__ = '%s'\\n\" % VEGAS_VERSION)\n _build_py.run(self)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, limit): ny = 2000 y = numpy.random.uniform(0.0, 1.0, (ny, 1)) limit = numpy.arctan(limit) m = AdaptiveMap([[-limit, limit]], ninc=100) theta = numpy.empty(y.shape, float) jac = numpy.empty(y.shape[0], float) for itn in range(10): m.map(y, theta, jac) tan_theta = numpy.tan(theta[:, 0]) x = self.scale * tan_theta fx = (tan_theta ** 2 + 1) * numpy.exp(-x ** 2 / 2.0) m.add_training_data(y, (jac * fx) ** 2) m.adapt(alpha=1.5) return numpy.array(m.grid[0])
make_map
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, limit):\n ny = 2000\n y = numpy.random.uniform(0.0, 1.0, (ny, 1))\n limit = numpy.arctan(limit)\n m = AdaptiveMap([[-limit, limit]], ninc=100)\n theta = numpy.empty(y.shape, float)\n jac = numpy.empty(y.shape[0], float)\n for itn in range(10):\n m.map(y, theta, jac)\n tan_theta = numpy.tan(theta[:, 0])\n x = self.scale * tan_theta\n fx = (tan_theta ** 2 + 1) * numpy.exp(-x ** 2 / 2.0)\n m.add_training_data(y, (jac * fx) ** 2)\n m.adapt(alpha=1.5)\n return numpy.array(m.grid[0])\n", "role": "user" }, { "content": "make_map", "role": "assistant" } ]
def x(self, f, nopdf): def x(theta, nopdf=nopdf): tan_theta = numpy.tan(theta) x = self.scale * tan_theta jac = self.scale * (tan_theta ** 2 + 1.0) if nopdf: pdf = jac * self.pdf.pjac[None, :] else: pdf = jac * numpy.exp(-x ** 2 / 2.0) / numpy.sqrt(2 * numpy.pi) dp = self.pdf.x2dpflat(x) parg = None ans = None fparg_is_dict = False for i, (dpi, pdfi) in enumerate(zip(dp, pdf)): p = self.pdf.meanflat + dpi if parg is None: if self.pdf.shape is None: parg = _gvar.BufferDict(self.pdf.g, buf=p) else: parg = p.reshape(self.pdf.shape) elif parg.shape is None: parg.buf = p else: parg.flat[:] = p fparg = 1.0 if f is None else f(parg) if ans is None: if hasattr(fparg, 'keys'): fparg_is_dict = True if not isinstance(fparg, _gvar.BufferDict): fparg = _gvar.BufferDict(fparg) ans = _gvar.BufferDict() for k in fparg: ans[k] = numpy.empty((len(pdf),) + fparg. slice_shape(k)[1], float) elif numpy.shape(fparg) == (): ans = numpy.empty(len(pdf), float) else: ans = numpy.empty((len(pdf),) + numpy.shape(fparg), float) if fparg_is_dict: prod_pdfi = numpy.prod(pdfi) for k in ans: ans[k][i] = fparg[k] ans[k][i] *= prod_pdfi else: if not isinstance(fparg, numpy.ndarray): fparg = numpy.asarray(fparg) ans[i] = fparg * numpy.prod(pdfi) return ans return ff
expval
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f, nopdf):\n\n def x(theta, nopdf=nopdf):\n tan_theta = numpy.tan(theta)\n x = self.scale * tan_theta\n jac = self.scale * (tan_theta ** 2 + 1.0)\n if nopdf:\n pdf = jac * self.pdf.pjac[None, :]\n else:\n pdf = jac * numpy.exp(-x ** 2 / 2.0) / numpy.sqrt(2 * numpy.pi)\n dp = self.pdf.x2dpflat(x)\n parg = None\n ans = None\n fparg_is_dict = False\n for i, (dpi, pdfi) in enumerate(zip(dp, pdf)):\n p = self.pdf.meanflat + dpi\n if parg is None:\n if self.pdf.shape is None:\n parg = _gvar.BufferDict(self.pdf.g, buf=p)\n else:\n parg = p.reshape(self.pdf.shape)\n elif parg.shape is None:\n parg.buf = p\n else:\n parg.flat[:] = p\n fparg = 1.0 if f is None else f(parg)\n if ans is None:\n if hasattr(fparg, 'keys'):\n fparg_is_dict = True\n if not isinstance(fparg, _gvar.BufferDict):\n fparg = _gvar.BufferDict(fparg)\n ans = _gvar.BufferDict()\n for k in fparg:\n ans[k] = numpy.empty((len(pdf),) + fparg.\n slice_shape(k)[1], float)\n elif numpy.shape(fparg) == ():\n ans = numpy.empty(len(pdf), float)\n else:\n ans = numpy.empty((len(pdf),) + numpy.shape(fparg), float)\n if fparg_is_dict:\n prod_pdfi = numpy.prod(pdfi)\n for k in ans:\n ans[k][i] = fparg[k]\n ans[k][i] *= prod_pdfi\n else:\n if not isinstance(fparg, numpy.ndarray):\n fparg = numpy.asarray(fparg)\n ans[i] = fparg * numpy.prod(pdfi)\n return ans\n return ff\n", "role": "user" }, { "content": "expval", "role": "assistant" } ]
def x(filename, length=1024): try: with open(filename, 'rb') as f: chunk = f.read(length) return chunk except IOError as e: print(e)
get_starting_chunk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, length=1024):\n try:\n with open(filename, 'rb') as f:\n chunk = f.read(length)\n return chunk\n except IOError as e:\n print(e)\n", "role": "user" }, { "content": "get_starting_chunk", "role": "assistant" } ]
def x(self, function_name): assert isinstance(function_name, str) self.stdout.write(function_name) self.stdout.write('\n') self.stdout.write('-' * len(function_name)) self.stdout.write('\n\n') byte_code = self.interpreter.compiled_functions[function_name] self.stdout.write(byte_code.dump()) self.stdout.write('\n')
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, function_name):\n assert isinstance(function_name, str)\n self.stdout.write(function_name)\n self.stdout.write('\\n')\n self.stdout.write('-' * len(function_name))\n self.stdout.write('\\n\\n')\n byte_code = self.interpreter.compiled_functions[function_name]\n self.stdout.write(byte_code.dump())\n self.stdout.write('\\n')\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(self, **options): template = os.path.dirname(os.path.abspath(__file__)) + '/app_template' name = options.pop('name') call_command('startapp', name, template=template, **options)
handle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **options):\n template = os.path.dirname(os.path.abspath(__file__)) + '/app_template'\n name = options.pop('name')\n call_command('startapp', name, template=template, **options)\n", "role": "user" }, { "content": "handle", "role": "assistant" } ]
def x(self, email, password, **extra_fields): if not email: raise ValueError('The given email must be set') email = self.normalize_email(email) user = self.model(email=email, **extra_fields) user.set_password(password) user.save(using=self._db) return user
create_user
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, email, password, **extra_fields):\n if not email:\n raise ValueError('The given email must be set')\n email = self.normalize_email(email)\n user = self.model(email=email, **extra_fields)\n user.set_password(password)\n user.save(using=self._db)\n return user\n", "role": "user" }, { "content": "create_user", "role": "assistant" } ]
def x(iterable, n): iters = itertools.tee(iterable, n) iters = (itertools.islice(it, i, None) for i, it in enumerate(iters)) return itertools.izip(*iters)
nwise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(iterable, n):\n iters = itertools.tee(iterable, n)\n iters = (itertools.islice(it, i, None) for i, it in enumerate(iters))\n return itertools.izip(*iters)\n", "role": "user" }, { "content": "nwise", "role": "assistant" } ]
def x(g, nodes): c = [g.node[n]['coordinate'] for n in nodes] return c
coordinates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, nodes):\n c = [g.node[n]['coordinate'] for n in nodes]\n return c\n", "role": "user" }, { "content": "coordinates", "role": "assistant" } ]
def x(g, n1, n2, inbound=False, backward=False, continue_fn=None): forw = g.successors back = g.predecessors if backward: back, forw = forw, back nodes = forw(n2) if inbound: nodes = set(nodes + back(n2)) candidates = [n for n in nodes if n != n1] if len(candidates) == 1: result = candidates[0] elif continue_fn: result = continue_fn(g, n1, n2, backward) else: result = None return result
step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, n1, n2, inbound=False, backward=False, continue_fn=None):\n forw = g.successors\n back = g.predecessors\n if backward:\n back, forw = forw, back\n nodes = forw(n2)\n if inbound:\n nodes = set(nodes + back(n2))\n candidates = [n for n in nodes if n != n1]\n if len(candidates) == 1:\n result = candidates[0]\n elif continue_fn:\n result = continue_fn(g, n1, n2, backward)\n else:\n result = None\n return result\n", "role": "user" }, { "content": "step", "role": "assistant" } ]
def x(g, n1, n2, **kwargs): prev = n1 curr = n2 _next = step(g, prev, curr, **kwargs) yield prev yield curr visited_nodes = set([prev, curr]) while _next: yield _next if _next in visited_nodes: return visited_nodes.add(_next) prev = curr curr = _next _next = step(g, prev, curr, **kwargs)
move
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, n1, n2, **kwargs):\n prev = n1\n curr = n2\n _next = step(g, prev, curr, **kwargs)\n yield prev\n yield curr\n visited_nodes = set([prev, curr])\n while _next:\n yield _next\n if _next in visited_nodes:\n return\n visited_nodes.add(_next)\n prev = curr\n curr = _next\n _next = step(g, prev, curr, **kwargs)\n", "role": "user" }, { "content": "move", "role": "assistant" } ]
def x(g, n): return len(set(g.predecessors(n) + g.successors(n))) > 2
is_intersection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(g, n):\n return len(set(g.predecessors(n) + g.successors(n))) > 2\n", "role": "user" }, { "content": "is_intersection", "role": "assistant" } ]
def x(self): if not self._is_valid: self.validate() from .converters import to_dict return to_dict(self)
as_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self._is_valid:\n self.validate()\n from .converters import to_dict\n return to_dict(self)\n", "role": "user" }, { "content": "as_dict", "role": "assistant" } ]
def x(self, data): for node_id, lon, lat in data: self.coords[node_id] = lon, lat
coords_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n for node_id, lon, lat in data:\n self.coords[node_id] = lon, lat\n", "role": "user" }, { "content": "coords_callback", "role": "assistant" } ]
def x(self, data): for node_id, tags, coords in data: self.nodes[node_id] = tags
nodes_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n for node_id, tags, coords in data:\n self.nodes[node_id] = tags\n", "role": "user" }, { "content": "nodes_callback", "role": "assistant" } ]
def x(self, data): for way_id, tags, nodes in data: if tags: self.ways[way_id] = tags, nodes
ways_callback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n for way_id, tags, nodes in data:\n if tags:\n self.ways[way_id] = tags, nodes\n", "role": "user" }, { "content": "ways_callback", "role": "assistant" } ]
def x(self, parse_direction=False): g = nx.DiGraph() for way_id, (tags, nodes) in self.ways.items(): if tags.get('oneway') == '-1': nodes = reversed(nodes) tags['oneway'] = 'yes' oneway = tags.get('oneway') == 'yes' for n0, n1 in tools.pairwise(nodes): g.add_edge(n0, n1, attr_dict=tags) if parse_direction: g[n0][n1]['_direction'] = 'forward' if not oneway: g.add_edge(n1, n0, attr_dict=tags) if parse_direction: g[n1][n0]['_direction'] = 'backward' g.node[n0].update(self._node_properties(n0)) g.node[n1].update(self._node_properties(n1)) return g
get_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parse_direction=False):\n g = nx.DiGraph()\n for way_id, (tags, nodes) in self.ways.items():\n if tags.get('oneway') == '-1':\n nodes = reversed(nodes)\n tags['oneway'] = 'yes'\n oneway = tags.get('oneway') == 'yes'\n for n0, n1 in tools.pairwise(nodes):\n g.add_edge(n0, n1, attr_dict=tags)\n if parse_direction:\n g[n0][n1]['_direction'] = 'forward'\n if not oneway:\n g.add_edge(n1, n0, attr_dict=tags)\n if parse_direction:\n g[n1][n0]['_direction'] = 'backward'\n g.node[n0].update(self._node_properties(n0))\n g.node[n1].update(self._node_properties(n1))\n return g\n", "role": "user" }, { "content": "get_graph", "role": "assistant" } ]
def x(filename, parse_direction=False, **kwargs): importer, parser = make_importer_parser(OSMParser, **kwargs) parser.parse(filename) return importer.get_graph(parse_direction=parse_direction)
parse_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, parse_direction=False, **kwargs):\n importer, parser = make_importer_parser(OSMParser, **kwargs)\n parser.parse(filename)\n return importer.get_graph(parse_direction=parse_direction)\n", "role": "user" }, { "content": "parse_file", "role": "assistant" } ]
def x(data, type, **kwargs): suffixes = {'xml': '.osm', 'pbf': '.pbf'} try: suffix = suffixes[type] except KeyError: raise ValueError('Unknown data type "%s"' % type) fd, filename = tempfile.mkstemp(suffix=suffix) try: os.write(fd, data) os.close(fd) return parse_file(filename, **kwargs) finally: os.remove(filename)
parse_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, type, **kwargs):\n suffixes = {'xml': '.osm', 'pbf': '.pbf'}\n try:\n suffix = suffixes[type]\n except KeyError:\n raise ValueError('Unknown data type \"%s\"' % type)\n fd, filename = tempfile.mkstemp(suffix=suffix)\n try:\n os.write(fd, data)\n os.close(fd)\n return parse_file(filename, **kwargs)\n finally:\n os.remove(filename)\n", "role": "user" }, { "content": "parse_data", "role": "assistant" } ]
def x(x, y, zoom, data, parse_direction=False, **kwargs): import osmqa importer, parser = make_importer_parser(osmqa.QATileParser, **kwargs) parser.parse_data(x, y, zoom, data) return importer.get_graph(parse_direction=parse_direction)
parse_qa_tile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, zoom, data, parse_direction=False, **kwargs):\n import osmqa\n importer, parser = make_importer_parser(osmqa.QATileParser, **kwargs)\n parser.parse_data(x, y, zoom, data)\n return importer.get_graph(parse_direction=parse_direction)\n", "role": "user" }, { "content": "parse_qa_tile", "role": "assistant" } ]
def x(fname): if not isinstance(fname, Path): fname = Path(fname) path, name, ext = fname.parent, fname.stem, fname.suffix return path, name, ext
basename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n if not isinstance(fname, Path):\n fname = Path(fname)\n path, name, ext = fname.parent, fname.stem, fname.suffix\n return path, name, ext\n", "role": "user" }, { "content": "basename", "role": "assistant" } ]
def x(fname): df = pd.read_csv(fname, skiprows=2, parse_dates=[1], index_col=0, names =['bottle_number', 'time', 'startscan', 'endscan']) df._metadata = {'time_of_reset': pd.to_datetime(linecache.getline(str( fname), 2)[6:-1]).to_pydatetime()} return df
from_bl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n df = pd.read_csv(fname, skiprows=2, parse_dates=[1], index_col=0, names\n =['bottle_number', 'time', 'startscan', 'endscan'])\n df._metadata = {'time_of_reset': pd.to_datetime(linecache.getline(str(\n fname), 2)[6:-1]).to_pydatetime()}\n return df\n", "role": "user" }, { "content": "from_bl", "role": "assistant" } ]
def x(fname): f = _read_file(fname) metadata = _parse_seabird(f.readlines(), ftype='btl') f.seek(0) df = pd.read_fwf(f, header=None, index_col=False, names=metadata[ 'names'], parse_dates=False, skiprows=metadata['skiprows']) f.close() rowtypes = df[df.columns[-1]].unique() dates = df.iloc[::len(rowtypes), 1].reset_index(drop=True) times = df.iloc[1::len(rowtypes), 1].reset_index(drop=True) datetimes = dates + ' ' + times df.loc[::len(rowtypes), 'Date'] = datetimes.values df.loc[1::len(rowtypes), 'Date'] = datetimes.values df['Bottle'] = df['Bottle'].fillna(method='ffill') df['Date'] = df['Date'].fillna(method='ffill') df['Statistic'] = df['Statistic'].str.replace('\\(|\\)', '') name = _basename(fname)[1] dtypes = {'bpos': int, 'pumps': bool, 'flag': bool, 'Bottle': int, 'Scan': int, 'Statistic': str, 'Date': str} for column in df.columns: if column in dtypes: df[column] = df[column].astype(dtypes[column]) else: try: df[column] = df[column].astype(float) except ValueError: warnings.warn('Could not convert %s to float.' % column) df['Date'] = pd.to_datetime(df['Date']) metadata['name'] = str(name) setattr(df, '_metadata', metadata) return df
from_btl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n f = _read_file(fname)\n metadata = _parse_seabird(f.readlines(), ftype='btl')\n f.seek(0)\n df = pd.read_fwf(f, header=None, index_col=False, names=metadata[\n 'names'], parse_dates=False, skiprows=metadata['skiprows'])\n f.close()\n rowtypes = df[df.columns[-1]].unique()\n dates = df.iloc[::len(rowtypes), 1].reset_index(drop=True)\n times = df.iloc[1::len(rowtypes), 1].reset_index(drop=True)\n datetimes = dates + ' ' + times\n df.loc[::len(rowtypes), 'Date'] = datetimes.values\n df.loc[1::len(rowtypes), 'Date'] = datetimes.values\n df['Bottle'] = df['Bottle'].fillna(method='ffill')\n df['Date'] = df['Date'].fillna(method='ffill')\n df['Statistic'] = df['Statistic'].str.replace('\\\\(|\\\\)', '')\n name = _basename(fname)[1]\n dtypes = {'bpos': int, 'pumps': bool, 'flag': bool, 'Bottle': int,\n 'Scan': int, 'Statistic': str, 'Date': str}\n for column in df.columns:\n if column in dtypes:\n df[column] = df[column].astype(dtypes[column])\n else:\n try:\n df[column] = df[column].astype(float)\n except ValueError:\n warnings.warn('Could not convert %s to float.' % column)\n df['Date'] = pd.to_datetime(df['Date'])\n metadata['name'] = str(name)\n setattr(df, '_metadata', metadata)\n return df\n", "role": "user" }, { "content": "from_btl", "role": "assistant" } ]
def x(fname): f = _read_file(fname) header, names = [], [] for k, line in enumerate(f.readlines()): line = line.strip() if line.startswith('Serial Number'): serial = line.strip().split(':')[1].strip() elif line.startswith('Latitude'): try: hemisphere = line[-1] lat = line.strip(hemisphere).split(':')[1].strip() lat = np.float_(lat.split()) if hemisphere == 'S': lat = -(lat[0] + lat[1] / 60.0) elif hemisphere == 'N': lat = lat[0] + lat[1] / 60.0 except (IndexError, ValueError): lat = None elif line.startswith('Longitude'): try: hemisphere = line[-1] lon = line.strip(hemisphere).split(':')[1].strip() lon = np.float_(lon.split()) if hemisphere == 'W': lon = -(lon[0] + lon[1] / 60.0) elif hemisphere == 'E': lon = lon[0] + lon[1] / 60.0 except (IndexError, ValueError): lon = None else: header.append(line) if line.startswith('Field'): col, unit = [l.strip().lower() for l in line.split(':')] names.append(unit.split()[0]) if line == '// Data': skiprows = k + 1 break f.seek(0) df = pd.read_csv(f, header=None, index_col=None, names=names, skiprows= skiprows, delim_whitespace=True) f.close() df.set_index('depth', drop=True, inplace=True) df.index.name = 'Depth [m]' name = _basename(fname)[1] metadata = {'lon': lon, 'lat': lat, 'name': str(name), 'header': '\n'. join(header), 'serial': serial} setattr(df, '_metadata', metadata) return df
from_edf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n f = _read_file(fname)\n header, names = [], []\n for k, line in enumerate(f.readlines()):\n line = line.strip()\n if line.startswith('Serial Number'):\n serial = line.strip().split(':')[1].strip()\n elif line.startswith('Latitude'):\n try:\n hemisphere = line[-1]\n lat = line.strip(hemisphere).split(':')[1].strip()\n lat = np.float_(lat.split())\n if hemisphere == 'S':\n lat = -(lat[0] + lat[1] / 60.0)\n elif hemisphere == 'N':\n lat = lat[0] + lat[1] / 60.0\n except (IndexError, ValueError):\n lat = None\n elif line.startswith('Longitude'):\n try:\n hemisphere = line[-1]\n lon = line.strip(hemisphere).split(':')[1].strip()\n lon = np.float_(lon.split())\n if hemisphere == 'W':\n lon = -(lon[0] + lon[1] / 60.0)\n elif hemisphere == 'E':\n lon = lon[0] + lon[1] / 60.0\n except (IndexError, ValueError):\n lon = None\n else:\n header.append(line)\n if line.startswith('Field'):\n col, unit = [l.strip().lower() for l in line.split(':')]\n names.append(unit.split()[0])\n if line == '// Data':\n skiprows = k + 1\n break\n f.seek(0)\n df = pd.read_csv(f, header=None, index_col=None, names=names, skiprows=\n skiprows, delim_whitespace=True)\n f.close()\n df.set_index('depth', drop=True, inplace=True)\n df.index.name = 'Depth [m]'\n name = _basename(fname)[1]\n metadata = {'lon': lon, 'lat': lat, 'name': str(name), 'header': '\\n'.\n join(header), 'serial': serial}\n setattr(df, '_metadata', metadata)\n return df\n", "role": "user" }, { "content": "from_edf", "role": "assistant" } ]
def x(fname): f = _read_file(fname) metadata = _parse_seabird(f.readlines(), ftype='cnv') f.seek(0) df = pd.read_fwf(f, header=None, index_col=None, names=metadata['names' ], skiprows=metadata['skiprows'], delim_whitespace=True, widths=[11 ] * len(metadata['names'])) f.close() key_set = False prkeys = ['prDM', 'prdM', 'pr'] for prkey in prkeys: try: df.set_index(prkey, drop=True, inplace=True) key_set = True except KeyError: continue if not key_set: raise KeyError( f'Could not find pressure field (supported names are {prkeys}).') df.index.name = 'Pressure [dbar]' name = _basename(fname)[1] dtypes = {'bpos': int, 'pumps': bool, 'flag': bool} for column in df.columns: if column in dtypes: df[column] = df[column].astype(dtypes[column]) else: try: df[column] = df[column].astype(float) except ValueError: warnings.warn('Could not convert %s to float.' % column) metadata['name'] = str(name) setattr(df, '_metadata', metadata) return df
from_cnv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n f = _read_file(fname)\n metadata = _parse_seabird(f.readlines(), ftype='cnv')\n f.seek(0)\n df = pd.read_fwf(f, header=None, index_col=None, names=metadata['names'\n ], skiprows=metadata['skiprows'], delim_whitespace=True, widths=[11\n ] * len(metadata['names']))\n f.close()\n key_set = False\n prkeys = ['prDM', 'prdM', 'pr']\n for prkey in prkeys:\n try:\n df.set_index(prkey, drop=True, inplace=True)\n key_set = True\n except KeyError:\n continue\n if not key_set:\n raise KeyError(\n f'Could not find pressure field (supported names are {prkeys}).')\n df.index.name = 'Pressure [dbar]'\n name = _basename(fname)[1]\n dtypes = {'bpos': int, 'pumps': bool, 'flag': bool}\n for column in df.columns:\n if column in dtypes:\n df[column] = df[column].astype(dtypes[column])\n else:\n try:\n df[column] = df[column].astype(float)\n except ValueError:\n warnings.warn('Could not convert %s to float.' % column)\n metadata['name'] = str(name)\n setattr(df, '_metadata', metadata)\n return df\n", "role": "user" }, { "content": "from_cnv", "role": "assistant" } ]
def x(fname, skiprows=9): f = _read_file(fname) df = pd.read_csv(f, header='infer', index_col=None, skiprows=skiprows, dtype=float, delim_whitespace=True) f.close() df.set_index('PRES', drop=True, inplace=True) df.index.name = 'Pressure [dbar]' metadata = {'name': str(fname)} setattr(df, '_metadata', metadata) return df
from_fsi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname, skiprows=9):\n f = _read_file(fname)\n df = pd.read_csv(f, header='infer', index_col=None, skiprows=skiprows,\n dtype=float, delim_whitespace=True)\n f.close()\n df.set_index('PRES', drop=True, inplace=True)\n df.index.name = 'Pressure [dbar]'\n metadata = {'name': str(fname)}\n setattr(df, '_metadata', metadata)\n return df\n", "role": "user" }, { "content": "from_fsi", "role": "assistant" } ]
def x(fname): ros = from_cnv(fname) ros['pressure'] = ros.index.values.astype(float) ros['nbf'] = ros['nbf'].astype(int) ros.set_index('nbf', drop=True, inplace=True, verify_integrity=False) return ros
rosette_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n ros = from_cnv(fname)\n ros['pressure'] = ros.index.values.astype(float)\n ros['nbf'] = ros['nbf'].astype(int)\n ros.set_index('nbf', drop=True, inplace=True, verify_integrity=False)\n return ros\n", "role": "user" }, { "content": "rosette_summary", "role": "assistant" } ]
def x(interpolator): xs, ys = interpolator.x, interpolator.y def x(x): if x < xs[0]: return ys[0] + (x - xs[0]) * (ys[1] - ys[0]) / (xs[1] - xs[0]) elif x > xs[-1]: return ys[-1] + (x - xs[-1]) * (ys[-1] - ys[-2]) / (xs[-1] - xs[-2] ) else: return interpolator(x) def x(xs): return np.array(list(map(pointwise, np.array(xs)))) return ufunclike
extrap1d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(interpolator):\n xs, ys = interpolator.x, interpolator.y\n\n def x(x):\n if x < xs[0]:\n return ys[0] + (x - xs[0]) * (ys[1] - ys[0]) / (xs[1] - xs[0])\n elif x > xs[-1]:\n return ys[-1] + (x - xs[-1]) * (ys[-1] - ys[-2]) / (xs[-1] - xs[-2]\n )\n else:\n return interpolator(x)\n\n def x(xs):\n return np.array(list(map(pointwise, np.array(xs))))\n return ufunclike\n", "role": "user" }, { "content": "extrap1d", "role": "assistant" } ]
def x(data, dist, depth, w1=1.0, w2=0): from scipy.interpolate import interp1d new_data1 = [] for row in data: mask = ~np.isnan(row) if mask.any(): y = row[mask] if y.size == 1: row = np.repeat(y, len(mask)) else: x = dist[mask] f_i = interp1d(x, y) f_x = _extrap1d(f_i) row = f_x(dist) new_data1.append(row) new_data2 = [] for col in data.T: mask = ~np.isnan(col) if mask.any(): y = col[mask] if y.size == 1: col = np.repeat(y, len(mask)) else: z = depth[mask] f_i = interp1d(z, y) f_z = _extrap1d(f_i) col = f_z(depth) new_data2.append(col) new_data = np.array(new_data1) * w1 + np.array(new_data2).T * w2 return new_data
extrap_sec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, dist, depth, w1=1.0, w2=0):\n from scipy.interpolate import interp1d\n new_data1 = []\n for row in data:\n mask = ~np.isnan(row)\n if mask.any():\n y = row[mask]\n if y.size == 1:\n row = np.repeat(y, len(mask))\n else:\n x = dist[mask]\n f_i = interp1d(x, y)\n f_x = _extrap1d(f_i)\n row = f_x(dist)\n new_data1.append(row)\n new_data2 = []\n for col in data.T:\n mask = ~np.isnan(col)\n if mask.any():\n y = col[mask]\n if y.size == 1:\n col = np.repeat(y, len(mask))\n else:\n z = depth[mask]\n f_i = interp1d(z, y)\n f_z = _extrap1d(f_i)\n col = f_z(depth)\n new_data2.append(col)\n new_data = np.array(new_data1) * w1 + np.array(new_data2).T * w2\n return new_data\n", "role": "user" }, { "content": "extrap_sec", "role": "assistant" } ]
def x(h, lon, lat, dx=1.0, kind='linear', plot=False): import gsw from scipy.interpolate import interp1d h, lon, lat = list(map(np.asanyarray, (h, lon, lat))) x = np.append(0, np.cumsum(gsw.distance(lon, lat)[0] / 1000.0)) h = -gsw.z_from_p(h, lat.mean()) Ih = interp1d(x, h, kind=kind, bounds_error=False, fill_value=h[-1]) xm = np.arange(0, x.max() + dx, dx) hm = Ih(xm) return xm, hm
gen_topomask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(h, lon, lat, dx=1.0, kind='linear', plot=False):\n import gsw\n from scipy.interpolate import interp1d\n h, lon, lat = list(map(np.asanyarray, (h, lon, lat)))\n x = np.append(0, np.cumsum(gsw.distance(lon, lat)[0] / 1000.0))\n h = -gsw.z_from_p(h, lat.mean())\n Ih = interp1d(x, h, kind=kind, bounds_error=False, fill_value=h[-1])\n xm = np.arange(0, x.max() + dx, dx)\n hm = Ih(xm)\n return xm, hm\n", "role": "user" }, { "content": "gen_topomask", "role": "assistant" } ]
def x(temperature, conductivity): alpha = 0.03 beta = 1.0 / 7 sample_interval = 1 / 15.0 a = 2 * alpha / (sample_interval * beta + 2) b = 1 - 2 * a / alpha dCodT = 0.1 * (1 + 0.006 * [temperature - 20]) dT = np.diff(temperature) ctm = -1.0 * b * conductivity + a * dCodT * dT return ctm
cell_thermal_mass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(temperature, conductivity):\n alpha = 0.03\n beta = 1.0 / 7\n sample_interval = 1 / 15.0\n a = 2 * alpha / (sample_interval * beta + 2)\n b = 1 - 2 * a / alpha\n dCodT = 0.1 * (1 + 0.006 * [temperature - 20])\n dT = np.diff(temperature)\n ctm = -1.0 * b * conductivity + a * dCodT * dT\n return ctm\n", "role": "user" }, { "content": "cell_thermal_mass", "role": "assistant" } ]
def x(SA, CT): import gsw sigma_theta = gsw.sigma0(SA, CT) mask = mixed_layer_depth(CT) mld = np.where(mask)[0][-1] sig_surface = sigma_theta[0] sig_bottom_mld = gsw.sigma0(SA[0], CT[mld]) d_sig_t = sig_surface - sig_bottom_mld d_sig = sigma_theta - sig_bottom_mld mask = d_sig < d_sig_t return Series(mask, index=SA.index, name='BLT')
barrier_layer_thickness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(SA, CT):\n import gsw\n sigma_theta = gsw.sigma0(SA, CT)\n mask = mixed_layer_depth(CT)\n mld = np.where(mask)[0][-1]\n sig_surface = sigma_theta[0]\n sig_bottom_mld = gsw.sigma0(SA[0], CT[mld])\n d_sig_t = sig_surface - sig_bottom_mld\n d_sig = sigma_theta - sig_bottom_mld\n mask = d_sig < d_sig_t\n return Series(mask, index=SA.index, name='BLT')\n", "role": "user" }, { "content": "barrier_layer_thickness", "role": "assistant" } ]
def x(df, secondary_y=False, label=None, *args, **kwargs): ax = kwargs.pop('ax', None) fignums = plt.get_fignums() if ax is None and not fignums: ax = plt.axes() fig = ax.get_figure() fig.set_size_inches((5.25, 6.75)) else: ax = plt.gca() fig = plt.gcf() figsize = kwargs.pop('figsize', fig.get_size_inches()) fig.set_size_inches(figsize) y_inverted = False if not getattr(ax, 'y_inverted', False): setattr(ax, 'y_inverted', True) y_inverted = True if secondary_y: ax = ax.twiny() xlabel = getattr(df, 'name', None) ylabel = getattr(df.index, 'name', None) if isinstance(df, pd.DataFrame): labels = label if label else df.columns for k, (col, series) in enumerate(df.iteritems()): ax.plot(series, series.index, label=labels[k]) elif isinstance(df, pd.Series): label = label if label else str(df.name) ax.plot(df.values, df.index, *args, label=label, **kwargs) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) if y_inverted and not secondary_y: ax.invert_yaxis() return ax
plot_cast
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, secondary_y=False, label=None, *args, **kwargs):\n ax = kwargs.pop('ax', None)\n fignums = plt.get_fignums()\n if ax is None and not fignums:\n ax = plt.axes()\n fig = ax.get_figure()\n fig.set_size_inches((5.25, 6.75))\n else:\n ax = plt.gca()\n fig = plt.gcf()\n figsize = kwargs.pop('figsize', fig.get_size_inches())\n fig.set_size_inches(figsize)\n y_inverted = False\n if not getattr(ax, 'y_inverted', False):\n setattr(ax, 'y_inverted', True)\n y_inverted = True\n if secondary_y:\n ax = ax.twiny()\n xlabel = getattr(df, 'name', None)\n ylabel = getattr(df.index, 'name', None)\n if isinstance(df, pd.DataFrame):\n labels = label if label else df.columns\n for k, (col, series) in enumerate(df.iteritems()):\n ax.plot(series, series.index, label=labels[k])\n elif isinstance(df, pd.Series):\n label = label if label else str(df.name)\n ax.plot(df.values, df.index, *args, label=label, **kwargs)\n ax.set_ylabel(ylabel)\n ax.set_xlabel(xlabel)\n if y_inverted and not secondary_y:\n ax.invert_yaxis()\n return ax\n", "role": "user" }, { "content": "plot_cast", "role": "assistant" } ]
def x(data, block): shape = data.shape[:-1] + (data.shape[-1] - block + 1, block) strides = data.strides + (data.strides[-1],) return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
rolling_window
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, block):\n shape = data.shape[:-1] + (data.shape[-1] - block + 1, block)\n strides = data.strides + (data.strides[-1],)\n return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)\n", "role": "user" }, { "content": "rolling_window", "role": "assistant" } ]
def x(df): idx = df.index.argmax() + 1 down = df.iloc[:idx] up = df.iloc[idx:][::-1] return down, up
split
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n idx = df.index.argmax() + 1\n down = df.iloc[:idx]\n up = df.iloc[idx:][::-1]\n return down, up\n", "role": "user" }, { "content": "split", "role": "assistant" } ]
def x(df, sample_rate=24.0, time_constant=0.15): from scipy import signal Wn = 1.0 / time_constant / (sample_rate * 2.0) b, a = signal.butter(2, Wn, 'low') new_df = df.copy() new_df.index = signal.filtfilt(b, a, df.index.values) return new_df
lp_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, sample_rate=24.0, time_constant=0.15):\n from scipy import signal\n Wn = 1.0 / time_constant / (sample_rate * 2.0)\n b, a = signal.butter(2, Wn, 'low')\n new_df = df.copy()\n new_df.index = signal.filtfilt(b, a, df.index.values)\n return new_df\n", "role": "user" }, { "content": "lp_filter", "role": "assistant" } ]
def x(df): new_df = df.copy() press = new_df.copy().index.values ref = press[0] inversions = np.diff(np.r_[press, press[-1]]) < 0 mask = np.zeros_like(inversions) for k, p in enumerate(inversions): if p: ref = press[k] cut = press[k + 1:] < ref mask[k + 1:][cut] = True new_df[mask] = np.NaN return new_df
press_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n new_df = df.copy()\n press = new_df.copy().index.values\n ref = press[0]\n inversions = np.diff(np.r_[press, press[-1]]) < 0\n mask = np.zeros_like(inversions)\n for k, p in enumerate(inversions):\n if p:\n ref = press[k]\n cut = press[k + 1:] < ref\n mask[k + 1:][cut] = True\n new_df[mask] = np.NaN\n return new_df\n", "role": "user" }, { "content": "press_check", "role": "assistant" } ]
def x(df, delta=1.0, method='average'): start = np.floor(df.index[0]) stop = np.ceil(df.index[-1]) new_index = np.arange(start, stop, delta) binned = pd.cut(df.index, bins=new_index) if method == 'average': new_df = df.groupby(binned).mean() new_df.index = new_index[:-1] elif method == 'interpolate': raise NotImplementedError( 'Bin-average via interpolation method is not Implemented yet.') else: raise ValueError( f'Expected method `average` or `interpolate`, but got {method}.') return new_df
bindata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, delta=1.0, method='average'):\n start = np.floor(df.index[0])\n stop = np.ceil(df.index[-1])\n new_index = np.arange(start, stop, delta)\n binned = pd.cut(df.index, bins=new_index)\n if method == 'average':\n new_df = df.groupby(binned).mean()\n new_df.index = new_index[:-1]\n elif method == 'interpolate':\n raise NotImplementedError(\n 'Bin-average via interpolation method is not Implemented yet.')\n else:\n raise ValueError(\n f'Expected method `average` or `interpolate`, but got {method}.')\n return new_df\n", "role": "user" }, { "content": "bindata", "role": "assistant" } ]
def x(series, n1, n2, block, keep): data = series.values.astype(float).copy() roll = _rolling_window(data, block) roll = ma.masked_invalid(roll) std = n1 * roll.std(axis=1) mean = roll.mean(axis=1) std = np.r_[std, np.tile(std[-1], block - 1)] mean = np.r_[mean, np.tile(mean[-1], block - 1)] mask = np.abs(data - mean.filled(fill_value=np.NaN)) > std.filled( fill_value=np.NaN) data[mask] = np.NaN roll = _rolling_window(data, block) roll = ma.masked_invalid(roll) std = n2 * roll.std(axis=1) mean = roll.mean(axis=1) std = np.r_[std, np.tile(std[-1], block - 1)] mean = np.r_[mean, np.tile(mean[-1], block - 1)] values = series.values.astype(float) mask = np.abs(values - mean.filled(fill_value=np.NaN)) > std.filled( fill_value=np.NaN) clean = series.astype(float).copy() clean[mask] = np.NaN return clean
despike
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(series, n1, n2, block, keep):\n data = series.values.astype(float).copy()\n roll = _rolling_window(data, block)\n roll = ma.masked_invalid(roll)\n std = n1 * roll.std(axis=1)\n mean = roll.mean(axis=1)\n std = np.r_[std, np.tile(std[-1], block - 1)]\n mean = np.r_[mean, np.tile(mean[-1], block - 1)]\n mask = np.abs(data - mean.filled(fill_value=np.NaN)) > std.filled(\n fill_value=np.NaN)\n data[mask] = np.NaN\n roll = _rolling_window(data, block)\n roll = ma.masked_invalid(roll)\n std = n2 * roll.std(axis=1)\n mean = roll.mean(axis=1)\n std = np.r_[std, np.tile(std[-1], block - 1)]\n mean = np.r_[mean, np.tile(mean[-1], block - 1)]\n values = series.values.astype(float)\n mask = np.abs(values - mean.filled(fill_value=np.NaN)) > std.filled(\n fill_value=np.NaN)\n clean = series.astype(float).copy()\n clean[mask] = np.NaN\n return clean\n", "role": "user" }, { "content": "despike", "role": "assistant" } ]
def x(df, n1=2, n2=20, block=100, keep=0): if isinstance(df, pd.Series): new_df = _despike(df, n1=n1, n2=n2, block=block, keep=keep) else: new_df = df.apply(_despike, n1=n1, n2=n2, block=block, keep=keep) return new_df
despike
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, n1=2, n2=20, block=100, keep=0):\n if isinstance(df, pd.Series):\n new_df = _despike(df, n1=n1, n2=n2, block=block, keep=keep)\n else:\n new_df = df.apply(_despike, n1=n1, n2=n2, block=block, keep=keep)\n return new_df\n", "role": "user" }, { "content": "despike", "role": "assistant" } ]
def x(series, window_len, window): windows = {'flat': np.ones, 'hanning': np.hanning, 'hamming': np. hamming, 'bartlett': np.bartlett, 'blackman': np.blackman} data = series.values.copy() if window_len < 3: return pd.Series(data, index=series.index, name=series.name) if window not in list(windows.keys()): raise ValueError( """window must be one of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'""" ) s = np.r_[2 * data[0] - data[window_len:1:-1], data, 2 * data[-1] - data[-1:-window_len:-1]] w = windows[window](window_len) data = np.convolve(w / w.sum(), s, mode='same') data = data[window_len - 1:-window_len + 1] return pd.Series(data, index=series.index, name=series.name)
smooth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(series, window_len, window):\n windows = {'flat': np.ones, 'hanning': np.hanning, 'hamming': np.\n hamming, 'bartlett': np.bartlett, 'blackman': np.blackman}\n data = series.values.copy()\n if window_len < 3:\n return pd.Series(data, index=series.index, name=series.name)\n if window not in list(windows.keys()):\n raise ValueError(\n \"\"\"window must be one of 'flat', 'hanning',\n 'hamming', 'bartlett', 'blackman'\"\"\"\n )\n s = np.r_[2 * data[0] - data[window_len:1:-1], data, 2 * data[-1] -\n data[-1:-window_len:-1]]\n w = windows[window](window_len)\n data = np.convolve(w / w.sum(), s, mode='same')\n data = data[window_len - 1:-window_len + 1]\n return pd.Series(data, index=series.index, name=series.name)\n", "role": "user" }, { "content": "smooth", "role": "assistant" } ]
def x(df, window_len=11, window='hanning'): if isinstance(df, pd.Series): new_df = _smooth(df, window_len=window_len, window=window) else: new_df = df.apply(_smooth, window_len=window_len, window=window) return new_df
smooth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, window_len=11, window='hanning'):\n if isinstance(df, pd.Series):\n new_df = _smooth(df, window_len=window_len, window=window)\n else:\n new_df = df.apply(_smooth, window_len=window_len, window=window)\n return new_df\n", "role": "user" }, { "content": "smooth", "role": "assistant" } ]