source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, t=None, data=False):
if t is not None:
return iter([n for n in self.degree(t=t).values() if n > 0])
return iter(self._node)
|
nodes_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t=None, data=False):\n if t is not None:\n return iter([n for n in self.degree(t=t).values() if n > 0])\n return iter(self._node)\n",
"role": "user"
},
{
"content": "nodes_iter",
"role": "assistant"
}
] |
def x(self, t=None, data=False):
return list(self.nodes_iter(t=t, data=data))
|
nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t=None, data=False):\n return list(self.nodes_iter(t=t, data=data))\n",
"role": "user"
},
{
"content": "nodes",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
seen = {}
if nbunch is None:
nodes_nbrs = self._adj.items()
else:
nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch))
for n, nbrs in nodes_nbrs:
for nbr in nbrs:
if t is not None:
if nbr not in seen and self.__presence_test(n, nbr, t):
yield n, nbr, {'t': [t]}
elif nbr not in seen:
yield n, nbr, self._adj[n][nbr]
seen[n] = 1
del seen
|
interactions_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n seen = {}\n if nbunch is None:\n nodes_nbrs = self._adj.items()\n else:\n nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch))\n for n, nbrs in nodes_nbrs:\n for nbr in nbrs:\n if t is not None:\n if nbr not in seen and self.__presence_test(n, nbr, t):\n yield n, nbr, {'t': [t]}\n elif nbr not in seen:\n yield n, nbr, self._adj[n][nbr]\n seen[n] = 1\n del seen\n",
"role": "user"
},
{
"content": "interactions_iter",
"role": "assistant"
}
] |
def x(self, u, v, t=None, e=None):
if t is None:
raise nx.NetworkXError('The t argument must be specified.')
if u not in self._node:
self._adj[u] = self.adjlist_inner_dict_factory()
self._node[u] = {}
if v not in self._node:
self._adj[v] = self.adjlist_inner_dict_factory()
self._node[v] = {}
if type(t) != list:
t = [t, t]
for idt in [t[0]]:
if self.has_edge(u, v) and not self.edge_removal:
continue
elif idt not in self.time_to_edge:
self.time_to_edge[idt] = {(u, v, '+'): None}
elif (u, v, '+') not in self.time_to_edge[idt]:
self.time_to_edge[idt][u, v, '+'] = None
if e is not None and self.edge_removal:
t[1] = e - 1
if e not in self.time_to_edge:
self.time_to_edge[e] = {(u, v, '-'): None}
else:
self.time_to_edge[e][u, v, '-'] = None
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
if 't' in datadict:
app = datadict['t']
max_end = app[-1][1]
if max_end == app[-1][0] and t[0] == app[-1][0] + 1:
app[-1] = [app[-1][0], t[1]]
if app[-1][0] + 1 in self.time_to_edge and (u, v, '+'
) in self.time_to_edge[app[-1][0] + 1]:
del self.time_to_edge[app[-1][0] + 1][u, v, '+']
else:
if t[0] < app[-1][0]:
raise ValueError(
'The specified interaction extension is broader than the ones already present for the given nodes.'
)
if t[0] <= max_end < t[1]:
app[-1][1] = t[1]
if max_end + 1 in self.time_to_edge:
if self.edge_removal:
del self.time_to_edge[max_end + 1][u, v, '-']
del self.time_to_edge[t[0]][u, v, '+']
elif max_end == t[0] - 1:
if max_end + 1 in self.time_to_edge and (u, v, '+'
) in self.time_to_edge[max_end + 1]:
del self.time_to_edge[max_end + 1][u, v, '+']
if self.edge_removal:
if max_end + 1 in self.time_to_edge and (u, v, '-'
) in self.time_to_edge[max_end + 1]:
del self.time_to_edge[max_end + 1][u, v, '-']
if t[1] + 1 in self.time_to_edge:
self.time_to_edge[t[1] + 1][u, v, '-'] = None
else:
self.time_to_edge[t[1] + 1] = {(u, v, '-'): None}
app[-1][1] = t[1]
else:
app.append(t)
else:
datadict['t'] = [t]
if e is not None:
span = range(t[0], t[1] + 1)
for idt in span:
if idt not in self.snapshots:
self.snapshots[idt] = 1
else:
self.snapshots[idt] += 1
else:
for idt in t:
if idt is not None:
if idt not in self.snapshots:
self.snapshots[idt] = 1
else:
self.snapshots[idt] += 1
self._adj[u][v] = datadict
self._adj[v][u] = datadict
|
add_interaction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, u, v, t=None, e=None):\n if t is None:\n raise nx.NetworkXError('The t argument must be specified.')\n if u not in self._node:\n self._adj[u] = self.adjlist_inner_dict_factory()\n self._node[u] = {}\n if v not in self._node:\n self._adj[v] = self.adjlist_inner_dict_factory()\n self._node[v] = {}\n if type(t) != list:\n t = [t, t]\n for idt in [t[0]]:\n if self.has_edge(u, v) and not self.edge_removal:\n continue\n elif idt not in self.time_to_edge:\n self.time_to_edge[idt] = {(u, v, '+'): None}\n elif (u, v, '+') not in self.time_to_edge[idt]:\n self.time_to_edge[idt][u, v, '+'] = None\n if e is not None and self.edge_removal:\n t[1] = e - 1\n if e not in self.time_to_edge:\n self.time_to_edge[e] = {(u, v, '-'): None}\n else:\n self.time_to_edge[e][u, v, '-'] = None\n datadict = self._adj[u].get(v, self.edge_attr_dict_factory())\n if 't' in datadict:\n app = datadict['t']\n max_end = app[-1][1]\n if max_end == app[-1][0] and t[0] == app[-1][0] + 1:\n app[-1] = [app[-1][0], t[1]]\n if app[-1][0] + 1 in self.time_to_edge and (u, v, '+'\n ) in self.time_to_edge[app[-1][0] + 1]:\n del self.time_to_edge[app[-1][0] + 1][u, v, '+']\n else:\n if t[0] < app[-1][0]:\n raise ValueError(\n 'The specified interaction extension is broader than the ones already present for the given nodes.'\n )\n if t[0] <= max_end < t[1]:\n app[-1][1] = t[1]\n if max_end + 1 in self.time_to_edge:\n if self.edge_removal:\n del self.time_to_edge[max_end + 1][u, v, '-']\n del self.time_to_edge[t[0]][u, v, '+']\n elif max_end == t[0] - 1:\n if max_end + 1 in self.time_to_edge and (u, v, '+'\n ) in self.time_to_edge[max_end + 1]:\n del self.time_to_edge[max_end + 1][u, v, '+']\n if self.edge_removal:\n if max_end + 1 in self.time_to_edge and (u, v, '-'\n ) in self.time_to_edge[max_end + 1]:\n del self.time_to_edge[max_end + 1][u, v, '-']\n if t[1] + 1 in self.time_to_edge:\n self.time_to_edge[t[1] + 1][u, v, '-'] = None\n else:\n self.time_to_edge[t[1] + 1] = {(u, v, '-'): None}\n app[-1][1] = t[1]\n else:\n app.append(t)\n else:\n datadict['t'] = [t]\n if e is not None:\n span = range(t[0], t[1] + 1)\n for idt in span:\n if idt not in self.snapshots:\n self.snapshots[idt] = 1\n else:\n self.snapshots[idt] += 1\n else:\n for idt in t:\n if idt is not None:\n if idt not in self.snapshots:\n self.snapshots[idt] = 1\n else:\n self.snapshots[idt] += 1\n self._adj[u][v] = datadict\n self._adj[v][u] = datadict\n",
"role": "user"
},
{
"content": "add_interaction",
"role": "assistant"
}
] |
def x(self, ebunch, t=None, e=None):
if t is None:
raise nx.NetworkXError('The t argument must be a specified.')
for ed in ebunch:
self.add_interaction(ed[0], ed[1], t, e)
|
add_interactions_from
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ebunch, t=None, e=None):\n if t is None:\n raise nx.NetworkXError('The t argument must be a specified.')\n for ed in ebunch:\n self.add_interaction(ed[0], ed[1], t, e)\n",
"role": "user"
},
{
"content": "add_interactions_from",
"role": "assistant"
}
] |
def x(self, n, t=None):
try:
if t is None:
return list(self._adj[n])
else:
return [i for i in self._adj[n] if self.__presence_test(n, i, t)]
except KeyError:
raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
|
neighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, t=None):\n try:\n if t is None:\n return list(self._adj[n])\n else:\n return [i for i in self._adj[n] if self.__presence_test(n, i, t)]\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n",
"role": "user"
},
{
"content": "neighbors",
"role": "assistant"
}
] |
def x(self, n, t=None):
try:
if t is None:
return iter(self._adj[n])
else:
return iter([i for i in self._adj[n] if self.__presence_test(n,
i, t)])
except KeyError:
raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
|
neighbors_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, t=None):\n try:\n if t is None:\n return iter(self._adj[n])\n else:\n return iter([i for i in self._adj[n] if self.__presence_test(n,\n i, t)])\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n",
"role": "user"
},
{
"content": "neighbors_iter",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch in self:
return next(self.degree_iter(nbunch, t))[1]
else:
return dict(self.degree_iter(nbunch, t))
|
degree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch in self:\n return next(self.degree_iter(nbunch, t))[1]\n else:\n return dict(self.degree_iter(nbunch, t))\n",
"role": "user"
},
{
"content": "degree",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch is None:
nodes_nbrs = self._adj.items()
else:
nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch))
if t is None:
for n, nbrs in nodes_nbrs:
deg = len(self._adj[n])
yield n, deg
else:
for n, nbrs in nodes_nbrs:
edges_t = len([v for v in nbrs.keys() if self.__presence_test(n,
v, t)])
if edges_t > 0:
yield n, edges_t
else:
yield n, 0
|
degree_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = self._adj.items()\n else:\n nodes_nbrs = ((n, self._adj[n]) for n in self.nbunch_iter(nbunch))\n if t is None:\n for n, nbrs in nodes_nbrs:\n deg = len(self._adj[n])\n yield n, deg\n else:\n for n, nbrs in nodes_nbrs:\n edges_t = len([v for v in nbrs.keys() if self.__presence_test(n,\n v, t)])\n if edges_t > 0:\n yield n, edges_t\n else:\n yield n, 0\n",
"role": "user"
},
{
"content": "degree_iter",
"role": "assistant"
}
] |
def x(self, t=None):
s = sum(self.degree(t=t).values()) / 2
return int(s)
|
size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t=None):\n s = sum(self.degree(t=t).values()) / 2\n return int(s)\n",
"role": "user"
},
{
"content": "size",
"role": "assistant"
}
] |
def x(self, t=None):
if t is None:
return len(self._node)
else:
nds = sum([(1) for n in self.degree(t=t).values() if n > 0])
return nds
|
number_of_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t=None):\n if t is None:\n return len(self._node)\n else:\n nds = sum([(1) for n in self.degree(t=t).values() if n > 0])\n return nds\n",
"role": "user"
},
{
"content": "number_of_nodes",
"role": "assistant"
}
] |
def x(self, n, t=None):
if t is None:
try:
return n in self._node
except TypeError:
return False
else:
deg = list(self.degree([n], t).values())
if len(deg) > 0:
return deg[0] > 0
else:
return False
|
has_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, t=None):\n if t is None:\n try:\n return n in self._node\n except TypeError:\n return False\n else:\n deg = list(self.degree([n], t).values())\n if len(deg) > 0:\n return deg[0] > 0\n else:\n return False\n",
"role": "user"
},
{
"content": "has_node",
"role": "assistant"
}
] |
def x(self, nodes, t=None):
nlist = list(nodes)
v = nlist[0]
interaction = ((v, n) for n in nlist[1:])
self.add_interactions_from(interaction, t)
|
add_star
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes, t=None):\n nlist = list(nodes)\n v = nlist[0]\n interaction = ((v, n) for n in nlist[1:])\n self.add_interactions_from(interaction, t)\n",
"role": "user"
},
{
"content": "add_star",
"role": "assistant"
}
] |
def x(self, nodes, t=None):
nlist = list(nodes)
interaction = zip(nlist[:-1], nlist[1:])
self.add_interactions_from(interaction, t)
|
add_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes, t=None):\n nlist = list(nodes)\n interaction = zip(nlist[:-1], nlist[1:])\n self.add_interactions_from(interaction, t)\n",
"role": "user"
},
{
"content": "add_path",
"role": "assistant"
}
] |
def x(self):
from .dyndigraph import DynDiGraph
G = DynDiGraph()
G.name = self.name
G.add_nodes_from(self)
for it in self.interactions_iter():
for t in it[2]['t']:
G.add_interaction(it[0], it[1], t=t[0], e=t[1])
G.graph = deepcopy(self.graph)
G._node = deepcopy(self._node)
return G
|
to_directed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from .dyndigraph import DynDiGraph\n G = DynDiGraph()\n G.name = self.name\n G.add_nodes_from(self)\n for it in self.interactions_iter():\n for t in it[2]['t']:\n G.add_interaction(it[0], it[1], t=t[0], e=t[1])\n G.graph = deepcopy(self.graph)\n G._node = deepcopy(self._node)\n return G\n",
"role": "user"
},
{
"content": "to_directed",
"role": "assistant"
}
] |
def x(self):
timestamps = sorted(self.time_to_edge.keys())
for t in timestamps:
for e in self.time_to_edge[t]:
yield e[0], e[1], e[2], t
|
stream_interactions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n timestamps = sorted(self.time_to_edge.keys())\n for t in timestamps:\n for e in self.time_to_edge[t]:\n yield e[0], e[1], e[2], t\n",
"role": "user"
},
{
"content": "stream_interactions",
"role": "assistant"
}
] |
def x(self, t_from, t_to=None):
H = self.__class__()
if t_to is not None:
if t_to < t_from:
raise ValueError('Invalid range: t_to must be grater that t_from')
else:
t_to = t_from
for u, v, ts in self.interactions_iter():
I = t_to
F = t_from
for a, b in ts['t']:
if I <= a and b <= F:
H.add_interaction(u, v, a, b)
elif a <= I and F <= b:
H.add_interaction(u, v, I, F)
elif a <= I <= b and b <= F:
H.add_interaction(u, v, I, b)
elif I <= a <= F and F <= b:
H.add_interaction(u, v, a, F)
return H
|
time_slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t_from, t_to=None):\n H = self.__class__()\n if t_to is not None:\n if t_to < t_from:\n raise ValueError('Invalid range: t_to must be grater that t_from')\n else:\n t_to = t_from\n for u, v, ts in self.interactions_iter():\n I = t_to\n F = t_from\n for a, b in ts['t']:\n if I <= a and b <= F:\n H.add_interaction(u, v, a, b)\n elif a <= I and F <= b:\n H.add_interaction(u, v, I, F)\n elif a <= I <= b and b <= F:\n H.add_interaction(u, v, I, b)\n elif I <= a <= F and F <= b:\n H.add_interaction(u, v, a, F)\n return H\n",
"role": "user"
},
{
"content": "time_slice",
"role": "assistant"
}
] |
def x(self, t=None):
if t is None:
return {k: (v / 2) for k, v in self.snapshots.items()}
else:
try:
return self.snapshots[t] / 2
except KeyError:
return 0
|
interactions_per_snapshots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t=None):\n if t is None:\n return {k: (v / 2) for k, v in self.snapshots.items()}\n else:\n try:\n return self.snapshots[t] / 2\n except KeyError:\n return 0\n",
"role": "user"
},
{
"content": "interactions_per_snapshots",
"role": "assistant"
}
] |
def x(self, u=None, v=None):
dist = {}
if u is None:
first = True
delta = None
for ext in self.stream_interactions():
if first:
delta = ext
first = False
continue
disp = ext[-1] - delta[-1]
delta = ext
if disp in dist:
dist[disp] += 1
else:
dist[disp] = 1
elif u is not None and v is None:
delta = 0, 0, 0, 0
flag = False
for ext in self.stream_interactions():
if ext[0] == u or ext[1] == u:
if flag:
disp = ext[-1] - delta[-1]
delta = ext
if disp in dist:
dist[disp] += 1
else:
dist[disp] = 1
else:
delta = ext
flag = True
else:
evt = self._adj[u][v]['t']
delta = []
for i in evt:
if i[0] != i[1]:
for j in [0, 1]:
delta.append(i[j])
else:
delta.append(i[0])
if len(delta) == 2 and delta[0] == delta[1]:
return {}
for i in range(0, len(delta) - 1):
e = delta[i + 1] - delta[i]
if e not in dist:
dist[e] = 1
else:
dist[e] += 1
return dist
|
inter_event_time_distribution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, u=None, v=None):\n dist = {}\n if u is None:\n first = True\n delta = None\n for ext in self.stream_interactions():\n if first:\n delta = ext\n first = False\n continue\n disp = ext[-1] - delta[-1]\n delta = ext\n if disp in dist:\n dist[disp] += 1\n else:\n dist[disp] = 1\n elif u is not None and v is None:\n delta = 0, 0, 0, 0\n flag = False\n for ext in self.stream_interactions():\n if ext[0] == u or ext[1] == u:\n if flag:\n disp = ext[-1] - delta[-1]\n delta = ext\n if disp in dist:\n dist[disp] += 1\n else:\n dist[disp] = 1\n else:\n delta = ext\n flag = True\n else:\n evt = self._adj[u][v]['t']\n delta = []\n for i in evt:\n if i[0] != i[1]:\n for j in [0, 1]:\n delta.append(i[j])\n else:\n delta.append(i[0])\n if len(delta) == 2 and delta[0] == delta[1]:\n return {}\n for i in range(0, len(delta) - 1):\n e = delta[i + 1] - delta[i]\n if e not in dist:\n dist[e] = 1\n else:\n dist[e] += 1\n return dist\n",
"role": "user"
},
{
"content": "inter_event_time_distribution",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch is None:
nodes_nbrs = ((n, succs, self._pred[n]) for n, succs in self._succ.
items())
else:
nodes_nbrs = ((n, self._succ[n], self._pred[n]) for n in self.
nbunch_iter(nbunch))
if t is None:
for n, succ, pred in nodes_nbrs:
yield n, len(succ) + len(pred)
else:
for n, succ, pred in nodes_nbrs:
edges_succ = len([v for v in succ.keys() if self.
__presence_test(n, v, t)])
edges_pred = len([v for v in pred.keys() if self.
__presence_test(v, n, t)])
yield n, edges_succ + edges_pred
|
degree_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = ((n, succs, self._pred[n]) for n, succs in self._succ.\n items())\n else:\n nodes_nbrs = ((n, self._succ[n], self._pred[n]) for n in self.\n nbunch_iter(nbunch))\n if t is None:\n for n, succ, pred in nodes_nbrs:\n yield n, len(succ) + len(pred)\n else:\n for n, succ, pred in nodes_nbrs:\n edges_succ = len([v for v in succ.keys() if self.\n __presence_test(n, v, t)])\n edges_pred = len([v for v in pred.keys() if self.\n __presence_test(v, n, t)])\n yield n, edges_succ + edges_pred\n",
"role": "user"
},
{
"content": "degree_iter",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
seen = {}
if nbunch is None:
nodes_nbrs_succ = self._succ.items()
else:
nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)
]
for n, nbrs in nodes_nbrs_succ:
for nbr in nbrs:
if t is not None:
if nbr not in seen and self.__presence_test(n, nbr, t):
yield n, nbr, {'t': [t]}
elif nbr not in seen:
yield nbr, n, self._succ[n][nbr]
seen[n] = 1
del seen
|
interactions_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n seen = {}\n if nbunch is None:\n nodes_nbrs_succ = self._succ.items()\n else:\n nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)\n ]\n for n, nbrs in nodes_nbrs_succ:\n for nbr in nbrs:\n if t is not None:\n if nbr not in seen and self.__presence_test(n, nbr, t):\n yield n, nbr, {'t': [t]}\n elif nbr not in seen:\n yield nbr, n, self._succ[n][nbr]\n seen[n] = 1\n del seen\n",
"role": "user"
},
{
"content": "interactions_iter",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch is None:
nodes_nbrs_pred = self._pred.items()
else:
nodes_nbrs_pred = [(n, self._pred[n]) for n in self.nbunch_iter(nbunch)
]
for n, nbrs in nodes_nbrs_pred:
for nbr in nbrs:
if t is not None:
if self.__presence_test(nbr, n, t):
yield nbr, n, {'t': [t]}
elif nbr in self._pred[n]:
yield nbr, n, self._pred[n][nbr]
|
in_interactions_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs_pred = self._pred.items()\n else:\n nodes_nbrs_pred = [(n, self._pred[n]) for n in self.nbunch_iter(nbunch)\n ]\n for n, nbrs in nodes_nbrs_pred:\n for nbr in nbrs:\n if t is not None:\n if self.__presence_test(nbr, n, t):\n yield nbr, n, {'t': [t]}\n elif nbr in self._pred[n]:\n yield nbr, n, self._pred[n][nbr]\n",
"role": "user"
},
{
"content": "in_interactions_iter",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch is None:
nodes_nbrs_succ = self._succ.items()
else:
nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)
]
for n, nbrs in nodes_nbrs_succ:
for nbr in nbrs:
if t is not None:
if self.__presence_test(n, nbr, t):
yield n, nbr, {'t': [t]}
elif nbr in self._succ[n]:
yield n, nbr, self._succ[n][nbr]
|
out_interactions_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs_succ = self._succ.items()\n else:\n nodes_nbrs_succ = [(n, self._succ[n]) for n in self.nbunch_iter(nbunch)\n ]\n for n, nbrs in nodes_nbrs_succ:\n for nbr in nbrs:\n if t is not None:\n if self.__presence_test(n, nbr, t):\n yield n, nbr, {'t': [t]}\n elif nbr in self._succ[n]:\n yield n, nbr, self._succ[n][nbr]\n",
"role": "user"
},
{
"content": "out_interactions_iter",
"role": "assistant"
}
] |
def x(self, u=None, v=None, t=None):
if t is None:
if u is None:
return int(self.size())
elif u is not None and v is not None:
if v in self._succ[u]:
return 1
else:
return 0
elif u is None:
return int(self.size(t))
elif u is not None and v is not None:
if v in self._succ[u]:
if self.__presence_test(u, v, t):
return 1
else:
return 0
|
number_of_interactions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, u=None, v=None, t=None):\n if t is None:\n if u is None:\n return int(self.size())\n elif u is not None and v is not None:\n if v in self._succ[u]:\n return 1\n else:\n return 0\n elif u is None:\n return int(self.size(t))\n elif u is not None and v is not None:\n if v in self._succ[u]:\n if self.__presence_test(u, v, t):\n return 1\n else:\n return 0\n",
"role": "user"
},
{
"content": "number_of_interactions",
"role": "assistant"
}
] |
def x(self, u, v, t=None):
try:
if t is None:
return v in self._succ[u]
else:
return v in self._succ[u] and self.__presence_test(u, v, t)
except KeyError:
return False
|
has_interaction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, u, v, t=None):\n try:\n if t is None:\n return v in self._succ[u]\n else:\n return v in self._succ[u] and self.__presence_test(u, v, t)\n except KeyError:\n return False\n",
"role": "user"
},
{
"content": "has_interaction",
"role": "assistant"
}
] |
def x(self, u, v, t=None):
return self.has_interaction(u, v, t)
|
has_successor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, u, v, t=None):\n return self.has_interaction(u, v, t)\n",
"role": "user"
},
{
"content": "has_successor",
"role": "assistant"
}
] |
def x(self, u, v, t=None):
return self.has_interaction(v, u, t)
|
has_predecessor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, u, v, t=None):\n return self.has_interaction(v, u, t)\n",
"role": "user"
},
{
"content": "has_predecessor",
"role": "assistant"
}
] |
def x(self, n, t=None):
try:
if t is None:
return iter(self._succ[n])
else:
return iter([i for i in self._succ[n] if self.__presence_test(n,
i, t)])
except KeyError:
raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
|
successors_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, t=None):\n try:\n if t is None:\n return iter(self._succ[n])\n else:\n return iter([i for i in self._succ[n] if self.__presence_test(n,\n i, t)])\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n",
"role": "user"
},
{
"content": "successors_iter",
"role": "assistant"
}
] |
def x(self, n, t=None):
try:
if t is None:
return iter(self._pred[n])
else:
return iter([i for i in self._pred[n] if self.__presence_test(i,
n, t)])
except KeyError:
raise nx.NetworkXError('The node %s is not in the graph.' % (n,))
|
predecessors_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, t=None):\n try:\n if t is None:\n return iter(self._pred[n])\n else:\n return iter([i for i in self._pred[n] if self.__presence_test(i,\n n, t)])\n except KeyError:\n raise nx.NetworkXError('The node %s is not in the graph.' % (n,))\n",
"role": "user"
},
{
"content": "predecessors_iter",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch in self:
return next(self.in_degree_iter(nbunch, t))[1]
else:
return dict(self.in_degree_iter(nbunch, t))
|
in_degree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch in self:\n return next(self.in_degree_iter(nbunch, t))[1]\n else:\n return dict(self.in_degree_iter(nbunch, t))\n",
"role": "user"
},
{
"content": "in_degree",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch is None:
nodes_nbrs = self._pred.items()
else:
nodes_nbrs = ((n, self._pred[n]) for n in self.nbunch_iter(nbunch))
if t is None:
for n, nbrs in nodes_nbrs:
deg = len(self._pred[n])
yield n, deg
else:
for n, nbrs in nodes_nbrs:
edges_t = len([v for v in nbrs.keys() if self.__presence_test(v,
n, t)])
if edges_t > 0:
yield n, edges_t
else:
yield n, 0
|
in_degree_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = self._pred.items()\n else:\n nodes_nbrs = ((n, self._pred[n]) for n in self.nbunch_iter(nbunch))\n if t is None:\n for n, nbrs in nodes_nbrs:\n deg = len(self._pred[n])\n yield n, deg\n else:\n for n, nbrs in nodes_nbrs:\n edges_t = len([v for v in nbrs.keys() if self.__presence_test(v,\n n, t)])\n if edges_t > 0:\n yield n, edges_t\n else:\n yield n, 0\n",
"role": "user"
},
{
"content": "in_degree_iter",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch in self:
return next(self.out_degree_iter(nbunch, t))[1]
else:
return dict(self.out_degree_iter(nbunch, t))
|
out_degree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch in self:\n return next(self.out_degree_iter(nbunch, t))[1]\n else:\n return dict(self.out_degree_iter(nbunch, t))\n",
"role": "user"
},
{
"content": "out_degree",
"role": "assistant"
}
] |
def x(self, nbunch=None, t=None):
if nbunch is None:
nodes_nbrs = self._succ.items()
else:
nodes_nbrs = ((n, self._succ[n]) for n in self.nbunch_iter(nbunch))
if t is None:
for n, nbrs in nodes_nbrs:
deg = len(self._succ[n])
yield n, deg
else:
for n, nbrs in nodes_nbrs:
edges_t = len([v for v in nbrs.keys() if self.__presence_test(n,
v, t)])
if edges_t > 0:
yield n, edges_t
else:
yield n, 0
|
out_degree_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nbunch=None, t=None):\n if nbunch is None:\n nodes_nbrs = self._succ.items()\n else:\n nodes_nbrs = ((n, self._succ[n]) for n in self.nbunch_iter(nbunch))\n if t is None:\n for n, nbrs in nodes_nbrs:\n deg = len(self._succ[n])\n yield n, deg\n else:\n for n, nbrs in nodes_nbrs:\n edges_t = len([v for v in nbrs.keys() if self.__presence_test(n,\n v, t)])\n if edges_t > 0:\n yield n, edges_t\n else:\n yield n, 0\n",
"role": "user"
},
{
"content": "out_degree_iter",
"role": "assistant"
}
] |
def x(self, reciprocal=False):
from .dyngraph import DynGraph
H = DynGraph()
H.name = self.name
H.add_nodes_from(self)
if reciprocal is True:
for u in self._node:
for v in self._node:
if u >= v:
try:
outc = self._succ[u][v]['t']
intc = self._pred[u][v]['t']
for o in outc:
r = set(range(o[0], o[1] + 1))
for i in intc:
r2 = set(range(i[0], i[1] + 1))
inter = list(r & r2)
if len(inter) == 1:
H.add_interaction(u, v, t=inter[0])
elif len(inter) > 1:
H.add_interaction(u, v, t=inter[0], e=
inter[-1])
except:
pass
else:
for it in self.interactions_iter():
for t in it[2]['t']:
H.add_interaction(it[0], it[1], t=t[0], e=t[1])
H.graph = deepcopy(self.graph)
H._node = deepcopy(self._node)
return H
|
to_undirected
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, reciprocal=False):\n from .dyngraph import DynGraph\n H = DynGraph()\n H.name = self.name\n H.add_nodes_from(self)\n if reciprocal is True:\n for u in self._node:\n for v in self._node:\n if u >= v:\n try:\n outc = self._succ[u][v]['t']\n intc = self._pred[u][v]['t']\n for o in outc:\n r = set(range(o[0], o[1] + 1))\n for i in intc:\n r2 = set(range(i[0], i[1] + 1))\n inter = list(r & r2)\n if len(inter) == 1:\n H.add_interaction(u, v, t=inter[0])\n elif len(inter) > 1:\n H.add_interaction(u, v, t=inter[0], e=\n inter[-1])\n except:\n pass\n else:\n for it in self.interactions_iter():\n for t in it[2]['t']:\n H.add_interaction(it[0], it[1], t=t[0], e=t[1])\n H.graph = deepcopy(self.graph)\n H._node = deepcopy(self._node)\n return H\n",
"role": "user"
},
{
"content": "to_undirected",
"role": "assistant"
}
] |
def x(G, path, delimiter=' ', encoding='utf-8'):
for line in generate_interactions(G, delimiter):
line += '\n'
path.write(line.encode(encoding))
|
write_interactions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, path, delimiter=' ', encoding='utf-8'):\n for line in generate_interactions(G, delimiter):\n line += '\\n'\n path.write(line.encode(encoding))\n",
"role": "user"
},
{
"content": "write_interactions",
"role": "assistant"
}
] |
def x(path, comments='#', directed=False, delimiter=None, nodetype=None,
timestamptype=None, encoding='utf-8', keys=False):
ids = None
lines = (line.decode(encoding) for line in path)
if keys:
ids = read_ids(path.name, delimiter=delimiter, timestamptype=
timestamptype)
return parse_interactions(lines, comments=comments, directed=directed,
delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype,
keys=ids)
|
read_interactions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, comments='#', directed=False, delimiter=None, nodetype=None,\n timestamptype=None, encoding='utf-8', keys=False):\n ids = None\n lines = (line.decode(encoding) for line in path)\n if keys:\n ids = read_ids(path.name, delimiter=delimiter, timestamptype=\n timestamptype)\n return parse_interactions(lines, comments=comments, directed=directed,\n delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype,\n keys=ids)\n",
"role": "user"
},
{
"content": "read_interactions",
"role": "assistant"
}
] |
def x(G, path, delimiter=' ', encoding='utf-8'):
for line in generate_snapshots(G, delimiter):
line += '\n'
path.write(line.encode(encoding))
|
write_snapshots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, path, delimiter=' ', encoding='utf-8'):\n for line in generate_snapshots(G, delimiter):\n line += '\\n'\n path.write(line.encode(encoding))\n",
"role": "user"
},
{
"content": "write_snapshots",
"role": "assistant"
}
] |
def x(path, comments='#', directed=False, delimiter=None, nodetype=None,
timestamptype=None, encoding='utf-8', keys=False):
ids = None
lines = (line.decode(encoding) for line in path)
if keys:
ids = read_ids(path.name, delimiter=delimiter, timestamptype=
timestamptype)
return parse_snapshots(lines, comments=comments, directed=directed,
delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype,
keys=ids)
|
read_snapshots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, comments='#', directed=False, delimiter=None, nodetype=None,\n timestamptype=None, encoding='utf-8', keys=False):\n ids = None\n lines = (line.decode(encoding) for line in path)\n if keys:\n ids = read_ids(path.name, delimiter=delimiter, timestamptype=\n timestamptype)\n return parse_snapshots(lines, comments=comments, directed=directed,\n delimiter=delimiter, nodetype=nodetype, timestamptype=timestamptype,\n keys=ids)\n",
"role": "user"
},
{
"content": "read_snapshots",
"role": "assistant"
}
] |
def x(path_arg, mode='r'):
@decorator
def x(func, *args, **kwargs):
try:
path = args[path_arg]
except TypeError:
try:
path = kwargs[path_arg]
except KeyError:
msg = 'Missing required keyword argument: {0}'
raise nx.NetworkXError(msg.format(path_arg))
else:
is_kwarg = True
except IndexError:
msg = 'path_arg of open_file decorator is incorrect'
raise nx.NetworkXError(msg)
else:
is_kwarg = False
if is_string_like(path):
ext = splitext(path)[1]
fobj = _dispatch_dict[ext](path, mode=mode)
close_fobj = True
elif hasattr(path, 'read'):
fobj = path
close_fobj = False
else:
fobj = path
close_fobj = False
if is_kwarg:
new_args = args
kwargs[path_arg] = fobj
else:
new_args = list(args)
new_args[path_arg] = fobj
try:
result = func(*new_args, **kwargs)
finally:
if close_fobj:
fobj.close()
return result
return _open_file
|
open_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_arg, mode='r'):\n\n @decorator\n def x(func, *args, **kwargs):\n try:\n path = args[path_arg]\n except TypeError:\n try:\n path = kwargs[path_arg]\n except KeyError:\n msg = 'Missing required keyword argument: {0}'\n raise nx.NetworkXError(msg.format(path_arg))\n else:\n is_kwarg = True\n except IndexError:\n msg = 'path_arg of open_file decorator is incorrect'\n raise nx.NetworkXError(msg)\n else:\n is_kwarg = False\n if is_string_like(path):\n ext = splitext(path)[1]\n fobj = _dispatch_dict[ext](path, mode=mode)\n close_fobj = True\n elif hasattr(path, 'read'):\n fobj = path\n close_fobj = False\n else:\n fobj = path\n close_fobj = False\n if is_kwarg:\n new_args = args\n kwargs[path_arg] = fobj\n else:\n new_args = list(args)\n new_args[path_arg] = fobj\n try:\n result = func(*new_args, **kwargs)\n finally:\n if close_fobj:\n fobj.close()\n return result\n return _open_file\n",
"role": "user"
},
{
"content": "open_file",
"role": "assistant"
}
] |
def x(G, u=None, v=None, t=None):
return G.number_of_interactions(u, v, t)
|
number_of_interactions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, u=None, v=None, t=None):\n return G.number_of_interactions(u, v, t)\n",
"role": "user"
},
{
"content": "number_of_interactions",
"role": "assistant"
}
] |
def x(G, t=None):
n = number_of_nodes(G, t)
m = number_of_interactions(G, t)
if m == 0 or m is None or n <= 1:
return 0
d = m / (n * (n - 1))
if not G.is_directed():
d *= 2
return d
|
density
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, t=None):\n n = number_of_nodes(G, t)\n m = number_of_interactions(G, t)\n if m == 0 or m is None or n <= 1:\n return 0\n d = m / (n * (n - 1))\n if not G.is_directed():\n d *= 2\n return d\n",
"role": "user"
},
{
"content": "density",
"role": "assistant"
}
] |
def x(G, t=None):
counts = Counter(d for n, d in G.degree(t=t).items())
return [counts.get(i, 0) for i in range(max(counts) + 1)]
|
degree_histogram
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, t=None):\n counts = Counter(d for n, d in G.degree(t=t).items())\n return [counts.get(i, 0) for i in range(max(counts) + 1)]\n",
"role": "user"
},
{
"content": "degree_histogram",
"role": "assistant"
}
] |
def x(G):
G.add_node = frozen
G.add_nodes_from = frozen
G.remove_node = frozen
G.remove_nodes_from = frozen
G.add_edge = frozen
G.add_edges_from = frozen
G.remove_edge = frozen
G.remove_edges_from = frozen
G.clear = frozen
G.frozen = True
return G
|
freeze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G):\n G.add_node = frozen\n G.add_nodes_from = frozen\n G.remove_node = frozen\n G.remove_nodes_from = frozen\n G.add_edge = frozen\n G.add_edges_from = frozen\n G.remove_edge = frozen\n G.remove_edges_from = frozen\n G.clear = frozen\n G.frozen = True\n return G\n",
"role": "user"
},
{
"content": "freeze",
"role": "assistant"
}
] |
def x(G, nodes, t, **attr):
nlist = iter(nodes)
v = next(nlist)
edges = ((v, n) for n in nlist)
G.add_interactions_from(edges, t, **attr)
|
add_star
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, nodes, t, **attr):\n nlist = iter(nodes)\n v = next(nlist)\n edges = ((v, n) for n in nlist)\n G.add_interactions_from(edges, t, **attr)\n",
"role": "user"
},
{
"content": "add_star",
"role": "assistant"
}
] |
def x(G, nodes, t, **attr):
nlist = list(nodes)
edges = zip(nlist[:-1], nlist[1:])
G.add_interactions_from(edges, t, **attr)
|
add_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, nodes, t, **attr):\n nlist = list(nodes)\n edges = zip(nlist[:-1], nlist[1:])\n G.add_interactions_from(edges, t, **attr)\n",
"role": "user"
},
{
"content": "add_path",
"role": "assistant"
}
] |
def x(G, with_data=True):
H = G.__class__()
H.add_nodes_from(G.nodes(data=with_data))
if with_data:
H.graph.update(G.graph)
return H
|
create_empty_copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, with_data=True):\n H = G.__class__()\n H.add_nodes_from(G.nodes(data=with_data))\n if with_data:\n H.graph.update(G.graph)\n return H\n",
"role": "user"
},
{
"content": "create_empty_copy",
"role": "assistant"
}
] |
def x(G, values, name=None):
if name is not None:
try:
for n, v in values.items():
try:
G.node[n][name] = values[n]
except KeyError:
pass
except AttributeError:
for n in G:
G.node[n][name] = values
else:
for n, d in values.items():
try:
G.node[n].update(d)
except KeyError:
pass
|
set_node_attributes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, values, name=None):\n if name is not None:\n try:\n for n, v in values.items():\n try:\n G.node[n][name] = values[n]\n except KeyError:\n pass\n except AttributeError:\n for n in G:\n G.node[n][name] = values\n else:\n for n, d in values.items():\n try:\n G.node[n].update(d)\n except KeyError:\n pass\n",
"role": "user"
},
{
"content": "set_node_attributes",
"role": "assistant"
}
] |
def x(G, name):
return {n: d[name] for n, d in G.node.items() if name in d}
|
get_node_attributes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, name):\n return {n: d[name] for n, d in G.node.items() if name in d}\n",
"role": "user"
},
{
"content": "get_node_attributes",
"role": "assistant"
}
] |
def x(graph, node, t=None):
if graph.is_directed():
values = chain(graph.predecessors(node, t=t), graph.successors(node,
t=t))
else:
values = graph.neighbors(node, t=t)
return values
|
all_neighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, node, t=None):\n if graph.is_directed():\n values = chain(graph.predecessors(node, t=t), graph.successors(node,\n t=t))\n else:\n values = graph.neighbors(node, t=t)\n return values\n",
"role": "user"
},
{
"content": "all_neighbors",
"role": "assistant"
}
] |
def x(graph, node, t=None):
if graph.is_directed():
values = chain(graph.predecessors(node, t=t), graph.successors(node,
t=t))
else:
values = graph.neighbors(node, t=t)
nbors = set(values) | {node}
return (nnode for nnode in graph if nnode not in nbors)
|
non_neighbors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, node, t=None):\n if graph.is_directed():\n values = chain(graph.predecessors(node, t=t), graph.successors(node,\n t=t))\n else:\n values = graph.neighbors(node, t=t)\n nbors = set(values) | {node}\n return (nnode for nnode in graph if nnode not in nbors)\n",
"role": "user"
},
{
"content": "non_neighbors",
"role": "assistant"
}
] |
def x(graph, t=None):
nodes = set(graph)
while nodes:
u = nodes.pop()
for v in (nodes - set(graph[u])):
yield u, v
|
non_interactions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, t=None):\n nodes = set(graph)\n while nodes:\n u = nodes.pop()\n for v in (nodes - set(graph[u])):\n yield u, v\n",
"role": "user"
},
{
"content": "non_interactions",
"role": "assistant"
}
] |
def x(self):
return (
'Function %s (args=%s) (kwargs=%s) timed out after %f seconds.\n' %
(self.timedOutFunction.__name__, repr(self.timedOutArgs), repr(self
.timedOutKwargs), self.timedOutAfter))
|
getMsg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return (\n 'Function %s (args=%s) (kwargs=%s) timed out after %f seconds.\\n' %\n (self.timedOutFunction.__name__, repr(self.timedOutArgs), repr(self\n .timedOutKwargs), self.timedOutAfter))\n",
"role": "user"
},
{
"content": "getMsg",
"role": "assistant"
}
] |
def x(self, timeout=RETRY_SAME_TIMEOUT):
if timeout is None:
return self.timedOutFunction(*self.timedOutArgs, **self.timedOutKwargs)
from .dafunc import func_timeout
if timeout == RETRY_SAME_TIMEOUT:
timeout = self.timedOutAfter
return func_timeout(timeout, self.timedOutFunction, args=self.
timedOutArgs, kwargs=self.timedOutKwargs)
|
retry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeout=RETRY_SAME_TIMEOUT):\n if timeout is None:\n return self.timedOutFunction(*self.timedOutArgs, **self.timedOutKwargs)\n from .dafunc import func_timeout\n if timeout == RETRY_SAME_TIMEOUT:\n timeout = self.timedOutAfter\n return func_timeout(timeout, self.timedOutFunction, args=self.\n timedOutArgs, kwargs=self.timedOutKwargs)\n",
"role": "user"
},
{
"content": "retry",
"role": "assistant"
}
] |
def x(timeout, func, args=(), kwargs=None):
if not kwargs:
kwargs = {}
if not args:
args = ()
ret = []
exception = []
isStopped = False
def x(args2, kwargs2):
try:
ret.append(func(*args2, **kwargs2))
except FunctionTimedOut:
pass
except Exception as e:
exc_info = sys.exc_info()
if isStopped is False:
e.__traceback__ = exc_info[2].tb_next
exception.append(e)
thread = StoppableThread(target=funcwrap, args=(args, kwargs))
thread.daemon = True
thread.start()
thread.join(timeout)
stopException = None
if thread.isAlive():
isStopped = True
class FunctionTimedOutTempType(FunctionTimedOut):
def x(self):
return FunctionTimedOut.__init__(self, '', timeout, func,
args, kwargs)
FunctionTimedOutTemp = type('FunctionTimedOut' + str(hash(
'%d_%d_%d_%d' % (id(timeout), id(func), id(args), id(kwargs)))),
FunctionTimedOutTempType.__bases__, dict(
FunctionTimedOutTempType.__dict__))
stopException = FunctionTimedOutTemp
thread._stopThread(stopException)
thread.join(min(0.1, timeout / 50.0))
raise FunctionTimedOut('', timeout, func, args, kwargs)
else:
thread.join(0.5)
if exception:
raise_exception(exception)
if ret:
return ret[0]
|
func_timeout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(timeout, func, args=(), kwargs=None):\n if not kwargs:\n kwargs = {}\n if not args:\n args = ()\n ret = []\n exception = []\n isStopped = False\n\n def x(args2, kwargs2):\n try:\n ret.append(func(*args2, **kwargs2))\n except FunctionTimedOut:\n pass\n except Exception as e:\n exc_info = sys.exc_info()\n if isStopped is False:\n e.__traceback__ = exc_info[2].tb_next\n exception.append(e)\n thread = StoppableThread(target=funcwrap, args=(args, kwargs))\n thread.daemon = True\n thread.start()\n thread.join(timeout)\n stopException = None\n if thread.isAlive():\n isStopped = True\n\n\n class FunctionTimedOutTempType(FunctionTimedOut):\n\n def x(self):\n return FunctionTimedOut.__init__(self, '', timeout, func,\n args, kwargs)\n FunctionTimedOutTemp = type('FunctionTimedOut' + str(hash(\n '%d_%d_%d_%d' % (id(timeout), id(func), id(args), id(kwargs)))),\n FunctionTimedOutTempType.__bases__, dict(\n FunctionTimedOutTempType.__dict__))\n stopException = FunctionTimedOutTemp\n thread._stopThread(stopException)\n thread.join(min(0.1, timeout / 50.0))\n raise FunctionTimedOut('', timeout, func, args, kwargs)\n else:\n thread.join(0.5)\n if exception:\n raise_exception(exception)\n if ret:\n return ret[0]\n",
"role": "user"
},
{
"content": "func_timeout",
"role": "assistant"
}
] |
def x(timeout, allowOverride=False):
defaultTimeout = copy.copy(timeout)
isTimeoutAFunction = bool(issubclass(timeout.__class__, (types.
FunctionType, types.MethodType, types.LambdaType, types.
BuiltinFunctionType, types.BuiltinMethodType)))
if not isTimeoutAFunction:
if not issubclass(timeout.__class__, (float, int)):
try:
timeout = float(timeout)
except:
raise ValueError(
'timeout argument must be a float/int for number of seconds, or a function/lambda which gets passed the function arguments and returns a calculated timeout (as float or int). Passed type: < %s > is not of any of these, and cannot be converted to a float.'
% (timeout.__class__.__name__,))
if not allowOverride and not isTimeoutAFunction:
def x(func):
return wraps(func)(lambda *args, **kwargs: func_timeout(
defaultTimeout, func, args=args, kwargs=kwargs))
return _function_decorator
if not isTimeoutAFunction:
def x(func):
def x(*args, **kwargs):
if 'forceTimeout' in kwargs:
useTimeout = kwargs.pop('forceTimeout')
else:
useTimeout = defaultTimeout
return func_timeout(useTimeout, func, args=args, kwargs=kwargs)
return wraps(func)(_function_wrapper)
return _function_decorator
timeoutFunction = timeout
if allowOverride:
def x(func):
def x(*args, **kwargs):
if 'forceTimeout' in kwargs:
useTimeout = kwargs.pop('forceTimeout')
else:
useTimeout = timeoutFunction(*args, **kwargs)
return func_timeout(useTimeout, func, args=args, kwargs=kwargs)
return wraps(func)(_function_wrapper)
return _function_decorator
def x(func):
def x(*args, **kwargs):
useTimeout = timeoutFunction(*args, **kwargs)
return func_timeout(useTimeout, func, args=args, kwargs=kwargs)
return wraps(func)(_function_wrapper)
return _function_decorator
|
func_set_timeout
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(timeout, allowOverride=False):\n defaultTimeout = copy.copy(timeout)\n isTimeoutAFunction = bool(issubclass(timeout.__class__, (types.\n FunctionType, types.MethodType, types.LambdaType, types.\n BuiltinFunctionType, types.BuiltinMethodType)))\n if not isTimeoutAFunction:\n if not issubclass(timeout.__class__, (float, int)):\n try:\n timeout = float(timeout)\n except:\n raise ValueError(\n 'timeout argument must be a float/int for number of seconds, or a function/lambda which gets passed the function arguments and returns a calculated timeout (as float or int). Passed type: < %s > is not of any of these, and cannot be converted to a float.'\n % (timeout.__class__.__name__,))\n if not allowOverride and not isTimeoutAFunction:\n\n def x(func):\n return wraps(func)(lambda *args, **kwargs: func_timeout(\n defaultTimeout, func, args=args, kwargs=kwargs))\n return _function_decorator\n if not isTimeoutAFunction:\n\n def x(func):\n\n def x(*args, **kwargs):\n if 'forceTimeout' in kwargs:\n useTimeout = kwargs.pop('forceTimeout')\n else:\n useTimeout = defaultTimeout\n return func_timeout(useTimeout, func, args=args, kwargs=kwargs)\n return wraps(func)(_function_wrapper)\n return _function_decorator\n timeoutFunction = timeout\n if allowOverride:\n\n def x(func):\n\n def x(*args, **kwargs):\n if 'forceTimeout' in kwargs:\n useTimeout = kwargs.pop('forceTimeout')\n else:\n useTimeout = timeoutFunction(*args, **kwargs)\n return func_timeout(useTimeout, func, args=args, kwargs=kwargs)\n return wraps(func)(_function_wrapper)\n return _function_decorator\n\n def x(func):\n\n def x(*args, **kwargs):\n useTimeout = timeoutFunction(*args, **kwargs)\n return func_timeout(useTimeout, func, args=args, kwargs=kwargs)\n return wraps(func)(_function_wrapper)\n return _function_decorator\n",
"role": "user"
},
{
"content": "func_set_timeout",
"role": "assistant"
}
] |
def x(V, x0list=[], plot=False):
T = 4.0
ndT = 8.0
neval = 300000.0
nitn = 6
alpha = 0.1
integrand = PathIntegrand(V=V, T=T, ndT=ndT)
integ = vegas.Integrator(integrand.region, alpha=alpha)
integ(integrand, neval=neval, nitn=nitn / 2, alpha=2 * alpha)
integrand = PathIntegrand(V=V, x0list=x0list, T=T, ndT=ndT)
results = integ(integrand, neval=neval, nitn=nitn, alpha=alpha)
print(results.summary())
E0 = -np.log(results['exp(-E0*T)']) / T
print('Ground-state energy = %s Q = %.2f\n' % (E0, results.Q))
if len(x0list) <= 0:
return E0
psi2 = results['exp(-E0*T) * psi(x0)**2'] / results['exp(-E0*T)']
print('%5s %-12s %-10s' % ('x', 'psi**2', 'sho-exact'))
print(27 * '-')
for i, (x0i, psi2i) in enumerate(zip(x0list, psi2)):
exact = np.exp(-x0i ** 2) / np.sqrt(np.pi)
print('%5.1f %-12s %-10.5f' % (x0i, psi2i, exact))
if plot:
plot_results(E0, x0list, psi2, T)
return E0
|
analyze_theory
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(V, x0list=[], plot=False):\n T = 4.0\n ndT = 8.0\n neval = 300000.0\n nitn = 6\n alpha = 0.1\n integrand = PathIntegrand(V=V, T=T, ndT=ndT)\n integ = vegas.Integrator(integrand.region, alpha=alpha)\n integ(integrand, neval=neval, nitn=nitn / 2, alpha=2 * alpha)\n integrand = PathIntegrand(V=V, x0list=x0list, T=T, ndT=ndT)\n results = integ(integrand, neval=neval, nitn=nitn, alpha=alpha)\n print(results.summary())\n E0 = -np.log(results['exp(-E0*T)']) / T\n print('Ground-state energy = %s Q = %.2f\\n' % (E0, results.Q))\n if len(x0list) <= 0:\n return E0\n psi2 = results['exp(-E0*T) * psi(x0)**2'] / results['exp(-E0*T)']\n print('%5s %-12s %-10s' % ('x', 'psi**2', 'sho-exact'))\n print(27 * '-')\n for i, (x0i, psi2i) in enumerate(zip(x0list, psi2)):\n exact = np.exp(-x0i ** 2) / np.sqrt(np.pi)\n print('%5.1f %-12s %-10.5f' % (x0i, psi2i, exact))\n if plot:\n plot_results(E0, x0list, psi2, T)\n return E0\n",
"role": "user"
},
{
"content": "analyze_theory",
"role": "assistant"
}
] |
def x(self, exception, raiseEvery=2.0):
if self.isAlive() is False:
return True
self._stderr = open(os.devnull, 'w')
joinThread = JoinThread(self, exception, repeatEvery=raiseEvery)
joinThread._stderr = self._stderr
joinThread.start()
joinThread._stderr = self._stderr
|
stopThread
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, exception, raiseEvery=2.0):\n if self.isAlive() is False:\n return True\n self._stderr = open(os.devnull, 'w')\n joinThread = JoinThread(self, exception, repeatEvery=raiseEvery)\n joinThread._stderr = self._stderr\n joinThread.start()\n joinThread._stderr = self._stderr\n",
"role": "user"
},
{
"content": "stopThread",
"role": "assistant"
}
] |
def x(self):
self.otherThread._Thread__stderr = self._stderr
if hasattr(self.otherThread, '_Thread__stop'):
self.otherThread._Thread__stop()
while self.otherThread.isAlive():
ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self.
otherThread.ident), ctypes.py_object(self.exception))
self.otherThread.join(self.repeatEvery)
try:
self._stderr.close()
except:
pass
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.otherThread._Thread__stderr = self._stderr\n if hasattr(self.otherThread, '_Thread__stop'):\n self.otherThread._Thread__stop()\n while self.otherThread.isAlive():\n ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(self.\n otherThread.ident), ctypes.py_object(self.exception))\n self.otherThread.join(self.repeatEvery)\n try:\n self._stderr.close()\n except:\n pass\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
with open('src/vegas/__init__.py', 'a') as vfile:
vfile.write("\n__version__ = '%s'\n" % VEGAS_VERSION)
_build_py.run(self)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n with open('src/vegas/__init__.py', 'a') as vfile:\n vfile.write(\"\\n__version__ = '%s'\\n\" % VEGAS_VERSION)\n _build_py.run(self)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, limit):
ny = 2000
y = numpy.random.uniform(0.0, 1.0, (ny, 1))
limit = numpy.arctan(limit)
m = AdaptiveMap([[-limit, limit]], ninc=100)
theta = numpy.empty(y.shape, float)
jac = numpy.empty(y.shape[0], float)
for itn in range(10):
m.map(y, theta, jac)
tan_theta = numpy.tan(theta[:, 0])
x = self.scale * tan_theta
fx = (tan_theta ** 2 + 1) * numpy.exp(-x ** 2 / 2.0)
m.add_training_data(y, (jac * fx) ** 2)
m.adapt(alpha=1.5)
return numpy.array(m.grid[0])
|
make_map
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, limit):\n ny = 2000\n y = numpy.random.uniform(0.0, 1.0, (ny, 1))\n limit = numpy.arctan(limit)\n m = AdaptiveMap([[-limit, limit]], ninc=100)\n theta = numpy.empty(y.shape, float)\n jac = numpy.empty(y.shape[0], float)\n for itn in range(10):\n m.map(y, theta, jac)\n tan_theta = numpy.tan(theta[:, 0])\n x = self.scale * tan_theta\n fx = (tan_theta ** 2 + 1) * numpy.exp(-x ** 2 / 2.0)\n m.add_training_data(y, (jac * fx) ** 2)\n m.adapt(alpha=1.5)\n return numpy.array(m.grid[0])\n",
"role": "user"
},
{
"content": "make_map",
"role": "assistant"
}
] |
def x(self, f, nopdf):
def x(theta, nopdf=nopdf):
tan_theta = numpy.tan(theta)
x = self.scale * tan_theta
jac = self.scale * (tan_theta ** 2 + 1.0)
if nopdf:
pdf = jac * self.pdf.pjac[None, :]
else:
pdf = jac * numpy.exp(-x ** 2 / 2.0) / numpy.sqrt(2 * numpy.pi)
dp = self.pdf.x2dpflat(x)
parg = None
ans = None
fparg_is_dict = False
for i, (dpi, pdfi) in enumerate(zip(dp, pdf)):
p = self.pdf.meanflat + dpi
if parg is None:
if self.pdf.shape is None:
parg = _gvar.BufferDict(self.pdf.g, buf=p)
else:
parg = p.reshape(self.pdf.shape)
elif parg.shape is None:
parg.buf = p
else:
parg.flat[:] = p
fparg = 1.0 if f is None else f(parg)
if ans is None:
if hasattr(fparg, 'keys'):
fparg_is_dict = True
if not isinstance(fparg, _gvar.BufferDict):
fparg = _gvar.BufferDict(fparg)
ans = _gvar.BufferDict()
for k in fparg:
ans[k] = numpy.empty((len(pdf),) + fparg.
slice_shape(k)[1], float)
elif numpy.shape(fparg) == ():
ans = numpy.empty(len(pdf), float)
else:
ans = numpy.empty((len(pdf),) + numpy.shape(fparg), float)
if fparg_is_dict:
prod_pdfi = numpy.prod(pdfi)
for k in ans:
ans[k][i] = fparg[k]
ans[k][i] *= prod_pdfi
else:
if not isinstance(fparg, numpy.ndarray):
fparg = numpy.asarray(fparg)
ans[i] = fparg * numpy.prod(pdfi)
return ans
return ff
|
expval
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f, nopdf):\n\n def x(theta, nopdf=nopdf):\n tan_theta = numpy.tan(theta)\n x = self.scale * tan_theta\n jac = self.scale * (tan_theta ** 2 + 1.0)\n if nopdf:\n pdf = jac * self.pdf.pjac[None, :]\n else:\n pdf = jac * numpy.exp(-x ** 2 / 2.0) / numpy.sqrt(2 * numpy.pi)\n dp = self.pdf.x2dpflat(x)\n parg = None\n ans = None\n fparg_is_dict = False\n for i, (dpi, pdfi) in enumerate(zip(dp, pdf)):\n p = self.pdf.meanflat + dpi\n if parg is None:\n if self.pdf.shape is None:\n parg = _gvar.BufferDict(self.pdf.g, buf=p)\n else:\n parg = p.reshape(self.pdf.shape)\n elif parg.shape is None:\n parg.buf = p\n else:\n parg.flat[:] = p\n fparg = 1.0 if f is None else f(parg)\n if ans is None:\n if hasattr(fparg, 'keys'):\n fparg_is_dict = True\n if not isinstance(fparg, _gvar.BufferDict):\n fparg = _gvar.BufferDict(fparg)\n ans = _gvar.BufferDict()\n for k in fparg:\n ans[k] = numpy.empty((len(pdf),) + fparg.\n slice_shape(k)[1], float)\n elif numpy.shape(fparg) == ():\n ans = numpy.empty(len(pdf), float)\n else:\n ans = numpy.empty((len(pdf),) + numpy.shape(fparg), float)\n if fparg_is_dict:\n prod_pdfi = numpy.prod(pdfi)\n for k in ans:\n ans[k][i] = fparg[k]\n ans[k][i] *= prod_pdfi\n else:\n if not isinstance(fparg, numpy.ndarray):\n fparg = numpy.asarray(fparg)\n ans[i] = fparg * numpy.prod(pdfi)\n return ans\n return ff\n",
"role": "user"
},
{
"content": "expval",
"role": "assistant"
}
] |
def x(filename, length=1024):
try:
with open(filename, 'rb') as f:
chunk = f.read(length)
return chunk
except IOError as e:
print(e)
|
get_starting_chunk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, length=1024):\n try:\n with open(filename, 'rb') as f:\n chunk = f.read(length)\n return chunk\n except IOError as e:\n print(e)\n",
"role": "user"
},
{
"content": "get_starting_chunk",
"role": "assistant"
}
] |
def x(self, function_name):
assert isinstance(function_name, str)
self.stdout.write(function_name)
self.stdout.write('\n')
self.stdout.write('-' * len(function_name))
self.stdout.write('\n\n')
byte_code = self.interpreter.compiled_functions[function_name]
self.stdout.write(byte_code.dump())
self.stdout.write('\n')
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, function_name):\n assert isinstance(function_name, str)\n self.stdout.write(function_name)\n self.stdout.write('\\n')\n self.stdout.write('-' * len(function_name))\n self.stdout.write('\\n\\n')\n byte_code = self.interpreter.compiled_functions[function_name]\n self.stdout.write(byte_code.dump())\n self.stdout.write('\\n')\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(self, **options):
template = os.path.dirname(os.path.abspath(__file__)) + '/app_template'
name = options.pop('name')
call_command('startapp', name, template=template, **options)
|
handle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **options):\n template = os.path.dirname(os.path.abspath(__file__)) + '/app_template'\n name = options.pop('name')\n call_command('startapp', name, template=template, **options)\n",
"role": "user"
},
{
"content": "handle",
"role": "assistant"
}
] |
def x(self, email, password, **extra_fields):
if not email:
raise ValueError('The given email must be set')
email = self.normalize_email(email)
user = self.model(email=email, **extra_fields)
user.set_password(password)
user.save(using=self._db)
return user
|
create_user
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, email, password, **extra_fields):\n if not email:\n raise ValueError('The given email must be set')\n email = self.normalize_email(email)\n user = self.model(email=email, **extra_fields)\n user.set_password(password)\n user.save(using=self._db)\n return user\n",
"role": "user"
},
{
"content": "create_user",
"role": "assistant"
}
] |
def x(iterable, n):
iters = itertools.tee(iterable, n)
iters = (itertools.islice(it, i, None) for i, it in enumerate(iters))
return itertools.izip(*iters)
|
nwise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(iterable, n):\n iters = itertools.tee(iterable, n)\n iters = (itertools.islice(it, i, None) for i, it in enumerate(iters))\n return itertools.izip(*iters)\n",
"role": "user"
},
{
"content": "nwise",
"role": "assistant"
}
] |
def x(g, nodes):
c = [g.node[n]['coordinate'] for n in nodes]
return c
|
coordinates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, nodes):\n c = [g.node[n]['coordinate'] for n in nodes]\n return c\n",
"role": "user"
},
{
"content": "coordinates",
"role": "assistant"
}
] |
def x(g, n1, n2, inbound=False, backward=False, continue_fn=None):
forw = g.successors
back = g.predecessors
if backward:
back, forw = forw, back
nodes = forw(n2)
if inbound:
nodes = set(nodes + back(n2))
candidates = [n for n in nodes if n != n1]
if len(candidates) == 1:
result = candidates[0]
elif continue_fn:
result = continue_fn(g, n1, n2, backward)
else:
result = None
return result
|
step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, n1, n2, inbound=False, backward=False, continue_fn=None):\n forw = g.successors\n back = g.predecessors\n if backward:\n back, forw = forw, back\n nodes = forw(n2)\n if inbound:\n nodes = set(nodes + back(n2))\n candidates = [n for n in nodes if n != n1]\n if len(candidates) == 1:\n result = candidates[0]\n elif continue_fn:\n result = continue_fn(g, n1, n2, backward)\n else:\n result = None\n return result\n",
"role": "user"
},
{
"content": "step",
"role": "assistant"
}
] |
def x(g, n1, n2, **kwargs):
prev = n1
curr = n2
_next = step(g, prev, curr, **kwargs)
yield prev
yield curr
visited_nodes = set([prev, curr])
while _next:
yield _next
if _next in visited_nodes:
return
visited_nodes.add(_next)
prev = curr
curr = _next
_next = step(g, prev, curr, **kwargs)
|
move
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, n1, n2, **kwargs):\n prev = n1\n curr = n2\n _next = step(g, prev, curr, **kwargs)\n yield prev\n yield curr\n visited_nodes = set([prev, curr])\n while _next:\n yield _next\n if _next in visited_nodes:\n return\n visited_nodes.add(_next)\n prev = curr\n curr = _next\n _next = step(g, prev, curr, **kwargs)\n",
"role": "user"
},
{
"content": "move",
"role": "assistant"
}
] |
def x(g, n):
return len(set(g.predecessors(n) + g.successors(n))) > 2
|
is_intersection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(g, n):\n return len(set(g.predecessors(n) + g.successors(n))) > 2\n",
"role": "user"
},
{
"content": "is_intersection",
"role": "assistant"
}
] |
def x(self):
if not self._is_valid:
self.validate()
from .converters import to_dict
return to_dict(self)
|
as_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self._is_valid:\n self.validate()\n from .converters import to_dict\n return to_dict(self)\n",
"role": "user"
},
{
"content": "as_dict",
"role": "assistant"
}
] |
def x(self, data):
for node_id, lon, lat in data:
self.coords[node_id] = lon, lat
|
coords_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n for node_id, lon, lat in data:\n self.coords[node_id] = lon, lat\n",
"role": "user"
},
{
"content": "coords_callback",
"role": "assistant"
}
] |
def x(self, data):
for node_id, tags, coords in data:
self.nodes[node_id] = tags
|
nodes_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n for node_id, tags, coords in data:\n self.nodes[node_id] = tags\n",
"role": "user"
},
{
"content": "nodes_callback",
"role": "assistant"
}
] |
def x(self, data):
for way_id, tags, nodes in data:
if tags:
self.ways[way_id] = tags, nodes
|
ways_callback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n for way_id, tags, nodes in data:\n if tags:\n self.ways[way_id] = tags, nodes\n",
"role": "user"
},
{
"content": "ways_callback",
"role": "assistant"
}
] |
def x(self, parse_direction=False):
g = nx.DiGraph()
for way_id, (tags, nodes) in self.ways.items():
if tags.get('oneway') == '-1':
nodes = reversed(nodes)
tags['oneway'] = 'yes'
oneway = tags.get('oneway') == 'yes'
for n0, n1 in tools.pairwise(nodes):
g.add_edge(n0, n1, attr_dict=tags)
if parse_direction:
g[n0][n1]['_direction'] = 'forward'
if not oneway:
g.add_edge(n1, n0, attr_dict=tags)
if parse_direction:
g[n1][n0]['_direction'] = 'backward'
g.node[n0].update(self._node_properties(n0))
g.node[n1].update(self._node_properties(n1))
return g
|
get_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parse_direction=False):\n g = nx.DiGraph()\n for way_id, (tags, nodes) in self.ways.items():\n if tags.get('oneway') == '-1':\n nodes = reversed(nodes)\n tags['oneway'] = 'yes'\n oneway = tags.get('oneway') == 'yes'\n for n0, n1 in tools.pairwise(nodes):\n g.add_edge(n0, n1, attr_dict=tags)\n if parse_direction:\n g[n0][n1]['_direction'] = 'forward'\n if not oneway:\n g.add_edge(n1, n0, attr_dict=tags)\n if parse_direction:\n g[n1][n0]['_direction'] = 'backward'\n g.node[n0].update(self._node_properties(n0))\n g.node[n1].update(self._node_properties(n1))\n return g\n",
"role": "user"
},
{
"content": "get_graph",
"role": "assistant"
}
] |
def x(filename, parse_direction=False, **kwargs):
importer, parser = make_importer_parser(OSMParser, **kwargs)
parser.parse(filename)
return importer.get_graph(parse_direction=parse_direction)
|
parse_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, parse_direction=False, **kwargs):\n importer, parser = make_importer_parser(OSMParser, **kwargs)\n parser.parse(filename)\n return importer.get_graph(parse_direction=parse_direction)\n",
"role": "user"
},
{
"content": "parse_file",
"role": "assistant"
}
] |
def x(data, type, **kwargs):
suffixes = {'xml': '.osm', 'pbf': '.pbf'}
try:
suffix = suffixes[type]
except KeyError:
raise ValueError('Unknown data type "%s"' % type)
fd, filename = tempfile.mkstemp(suffix=suffix)
try:
os.write(fd, data)
os.close(fd)
return parse_file(filename, **kwargs)
finally:
os.remove(filename)
|
parse_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, type, **kwargs):\n suffixes = {'xml': '.osm', 'pbf': '.pbf'}\n try:\n suffix = suffixes[type]\n except KeyError:\n raise ValueError('Unknown data type \"%s\"' % type)\n fd, filename = tempfile.mkstemp(suffix=suffix)\n try:\n os.write(fd, data)\n os.close(fd)\n return parse_file(filename, **kwargs)\n finally:\n os.remove(filename)\n",
"role": "user"
},
{
"content": "parse_data",
"role": "assistant"
}
] |
def x(x, y, zoom, data, parse_direction=False, **kwargs):
import osmqa
importer, parser = make_importer_parser(osmqa.QATileParser, **kwargs)
parser.parse_data(x, y, zoom, data)
return importer.get_graph(parse_direction=parse_direction)
|
parse_qa_tile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, zoom, data, parse_direction=False, **kwargs):\n import osmqa\n importer, parser = make_importer_parser(osmqa.QATileParser, **kwargs)\n parser.parse_data(x, y, zoom, data)\n return importer.get_graph(parse_direction=parse_direction)\n",
"role": "user"
},
{
"content": "parse_qa_tile",
"role": "assistant"
}
] |
def x(fname):
if not isinstance(fname, Path):
fname = Path(fname)
path, name, ext = fname.parent, fname.stem, fname.suffix
return path, name, ext
|
basename
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n if not isinstance(fname, Path):\n fname = Path(fname)\n path, name, ext = fname.parent, fname.stem, fname.suffix\n return path, name, ext\n",
"role": "user"
},
{
"content": "basename",
"role": "assistant"
}
] |
def x(fname):
df = pd.read_csv(fname, skiprows=2, parse_dates=[1], index_col=0, names
=['bottle_number', 'time', 'startscan', 'endscan'])
df._metadata = {'time_of_reset': pd.to_datetime(linecache.getline(str(
fname), 2)[6:-1]).to_pydatetime()}
return df
|
from_bl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n df = pd.read_csv(fname, skiprows=2, parse_dates=[1], index_col=0, names\n =['bottle_number', 'time', 'startscan', 'endscan'])\n df._metadata = {'time_of_reset': pd.to_datetime(linecache.getline(str(\n fname), 2)[6:-1]).to_pydatetime()}\n return df\n",
"role": "user"
},
{
"content": "from_bl",
"role": "assistant"
}
] |
def x(fname):
f = _read_file(fname)
metadata = _parse_seabird(f.readlines(), ftype='btl')
f.seek(0)
df = pd.read_fwf(f, header=None, index_col=False, names=metadata[
'names'], parse_dates=False, skiprows=metadata['skiprows'])
f.close()
rowtypes = df[df.columns[-1]].unique()
dates = df.iloc[::len(rowtypes), 1].reset_index(drop=True)
times = df.iloc[1::len(rowtypes), 1].reset_index(drop=True)
datetimes = dates + ' ' + times
df.loc[::len(rowtypes), 'Date'] = datetimes.values
df.loc[1::len(rowtypes), 'Date'] = datetimes.values
df['Bottle'] = df['Bottle'].fillna(method='ffill')
df['Date'] = df['Date'].fillna(method='ffill')
df['Statistic'] = df['Statistic'].str.replace('\\(|\\)', '')
name = _basename(fname)[1]
dtypes = {'bpos': int, 'pumps': bool, 'flag': bool, 'Bottle': int,
'Scan': int, 'Statistic': str, 'Date': str}
for column in df.columns:
if column in dtypes:
df[column] = df[column].astype(dtypes[column])
else:
try:
df[column] = df[column].astype(float)
except ValueError:
warnings.warn('Could not convert %s to float.' % column)
df['Date'] = pd.to_datetime(df['Date'])
metadata['name'] = str(name)
setattr(df, '_metadata', metadata)
return df
|
from_btl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n f = _read_file(fname)\n metadata = _parse_seabird(f.readlines(), ftype='btl')\n f.seek(0)\n df = pd.read_fwf(f, header=None, index_col=False, names=metadata[\n 'names'], parse_dates=False, skiprows=metadata['skiprows'])\n f.close()\n rowtypes = df[df.columns[-1]].unique()\n dates = df.iloc[::len(rowtypes), 1].reset_index(drop=True)\n times = df.iloc[1::len(rowtypes), 1].reset_index(drop=True)\n datetimes = dates + ' ' + times\n df.loc[::len(rowtypes), 'Date'] = datetimes.values\n df.loc[1::len(rowtypes), 'Date'] = datetimes.values\n df['Bottle'] = df['Bottle'].fillna(method='ffill')\n df['Date'] = df['Date'].fillna(method='ffill')\n df['Statistic'] = df['Statistic'].str.replace('\\\\(|\\\\)', '')\n name = _basename(fname)[1]\n dtypes = {'bpos': int, 'pumps': bool, 'flag': bool, 'Bottle': int,\n 'Scan': int, 'Statistic': str, 'Date': str}\n for column in df.columns:\n if column in dtypes:\n df[column] = df[column].astype(dtypes[column])\n else:\n try:\n df[column] = df[column].astype(float)\n except ValueError:\n warnings.warn('Could not convert %s to float.' % column)\n df['Date'] = pd.to_datetime(df['Date'])\n metadata['name'] = str(name)\n setattr(df, '_metadata', metadata)\n return df\n",
"role": "user"
},
{
"content": "from_btl",
"role": "assistant"
}
] |
def x(fname):
f = _read_file(fname)
header, names = [], []
for k, line in enumerate(f.readlines()):
line = line.strip()
if line.startswith('Serial Number'):
serial = line.strip().split(':')[1].strip()
elif line.startswith('Latitude'):
try:
hemisphere = line[-1]
lat = line.strip(hemisphere).split(':')[1].strip()
lat = np.float_(lat.split())
if hemisphere == 'S':
lat = -(lat[0] + lat[1] / 60.0)
elif hemisphere == 'N':
lat = lat[0] + lat[1] / 60.0
except (IndexError, ValueError):
lat = None
elif line.startswith('Longitude'):
try:
hemisphere = line[-1]
lon = line.strip(hemisphere).split(':')[1].strip()
lon = np.float_(lon.split())
if hemisphere == 'W':
lon = -(lon[0] + lon[1] / 60.0)
elif hemisphere == 'E':
lon = lon[0] + lon[1] / 60.0
except (IndexError, ValueError):
lon = None
else:
header.append(line)
if line.startswith('Field'):
col, unit = [l.strip().lower() for l in line.split(':')]
names.append(unit.split()[0])
if line == '// Data':
skiprows = k + 1
break
f.seek(0)
df = pd.read_csv(f, header=None, index_col=None, names=names, skiprows=
skiprows, delim_whitespace=True)
f.close()
df.set_index('depth', drop=True, inplace=True)
df.index.name = 'Depth [m]'
name = _basename(fname)[1]
metadata = {'lon': lon, 'lat': lat, 'name': str(name), 'header': '\n'.
join(header), 'serial': serial}
setattr(df, '_metadata', metadata)
return df
|
from_edf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n f = _read_file(fname)\n header, names = [], []\n for k, line in enumerate(f.readlines()):\n line = line.strip()\n if line.startswith('Serial Number'):\n serial = line.strip().split(':')[1].strip()\n elif line.startswith('Latitude'):\n try:\n hemisphere = line[-1]\n lat = line.strip(hemisphere).split(':')[1].strip()\n lat = np.float_(lat.split())\n if hemisphere == 'S':\n lat = -(lat[0] + lat[1] / 60.0)\n elif hemisphere == 'N':\n lat = lat[0] + lat[1] / 60.0\n except (IndexError, ValueError):\n lat = None\n elif line.startswith('Longitude'):\n try:\n hemisphere = line[-1]\n lon = line.strip(hemisphere).split(':')[1].strip()\n lon = np.float_(lon.split())\n if hemisphere == 'W':\n lon = -(lon[0] + lon[1] / 60.0)\n elif hemisphere == 'E':\n lon = lon[0] + lon[1] / 60.0\n except (IndexError, ValueError):\n lon = None\n else:\n header.append(line)\n if line.startswith('Field'):\n col, unit = [l.strip().lower() for l in line.split(':')]\n names.append(unit.split()[0])\n if line == '// Data':\n skiprows = k + 1\n break\n f.seek(0)\n df = pd.read_csv(f, header=None, index_col=None, names=names, skiprows=\n skiprows, delim_whitespace=True)\n f.close()\n df.set_index('depth', drop=True, inplace=True)\n df.index.name = 'Depth [m]'\n name = _basename(fname)[1]\n metadata = {'lon': lon, 'lat': lat, 'name': str(name), 'header': '\\n'.\n join(header), 'serial': serial}\n setattr(df, '_metadata', metadata)\n return df\n",
"role": "user"
},
{
"content": "from_edf",
"role": "assistant"
}
] |
def x(fname):
f = _read_file(fname)
metadata = _parse_seabird(f.readlines(), ftype='cnv')
f.seek(0)
df = pd.read_fwf(f, header=None, index_col=None, names=metadata['names'
], skiprows=metadata['skiprows'], delim_whitespace=True, widths=[11
] * len(metadata['names']))
f.close()
key_set = False
prkeys = ['prDM', 'prdM', 'pr']
for prkey in prkeys:
try:
df.set_index(prkey, drop=True, inplace=True)
key_set = True
except KeyError:
continue
if not key_set:
raise KeyError(
f'Could not find pressure field (supported names are {prkeys}).')
df.index.name = 'Pressure [dbar]'
name = _basename(fname)[1]
dtypes = {'bpos': int, 'pumps': bool, 'flag': bool}
for column in df.columns:
if column in dtypes:
df[column] = df[column].astype(dtypes[column])
else:
try:
df[column] = df[column].astype(float)
except ValueError:
warnings.warn('Could not convert %s to float.' % column)
metadata['name'] = str(name)
setattr(df, '_metadata', metadata)
return df
|
from_cnv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n f = _read_file(fname)\n metadata = _parse_seabird(f.readlines(), ftype='cnv')\n f.seek(0)\n df = pd.read_fwf(f, header=None, index_col=None, names=metadata['names'\n ], skiprows=metadata['skiprows'], delim_whitespace=True, widths=[11\n ] * len(metadata['names']))\n f.close()\n key_set = False\n prkeys = ['prDM', 'prdM', 'pr']\n for prkey in prkeys:\n try:\n df.set_index(prkey, drop=True, inplace=True)\n key_set = True\n except KeyError:\n continue\n if not key_set:\n raise KeyError(\n f'Could not find pressure field (supported names are {prkeys}).')\n df.index.name = 'Pressure [dbar]'\n name = _basename(fname)[1]\n dtypes = {'bpos': int, 'pumps': bool, 'flag': bool}\n for column in df.columns:\n if column in dtypes:\n df[column] = df[column].astype(dtypes[column])\n else:\n try:\n df[column] = df[column].astype(float)\n except ValueError:\n warnings.warn('Could not convert %s to float.' % column)\n metadata['name'] = str(name)\n setattr(df, '_metadata', metadata)\n return df\n",
"role": "user"
},
{
"content": "from_cnv",
"role": "assistant"
}
] |
def x(fname, skiprows=9):
f = _read_file(fname)
df = pd.read_csv(f, header='infer', index_col=None, skiprows=skiprows,
dtype=float, delim_whitespace=True)
f.close()
df.set_index('PRES', drop=True, inplace=True)
df.index.name = 'Pressure [dbar]'
metadata = {'name': str(fname)}
setattr(df, '_metadata', metadata)
return df
|
from_fsi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname, skiprows=9):\n f = _read_file(fname)\n df = pd.read_csv(f, header='infer', index_col=None, skiprows=skiprows,\n dtype=float, delim_whitespace=True)\n f.close()\n df.set_index('PRES', drop=True, inplace=True)\n df.index.name = 'Pressure [dbar]'\n metadata = {'name': str(fname)}\n setattr(df, '_metadata', metadata)\n return df\n",
"role": "user"
},
{
"content": "from_fsi",
"role": "assistant"
}
] |
def x(fname):
ros = from_cnv(fname)
ros['pressure'] = ros.index.values.astype(float)
ros['nbf'] = ros['nbf'].astype(int)
ros.set_index('nbf', drop=True, inplace=True, verify_integrity=False)
return ros
|
rosette_summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n ros = from_cnv(fname)\n ros['pressure'] = ros.index.values.astype(float)\n ros['nbf'] = ros['nbf'].astype(int)\n ros.set_index('nbf', drop=True, inplace=True, verify_integrity=False)\n return ros\n",
"role": "user"
},
{
"content": "rosette_summary",
"role": "assistant"
}
] |
def x(interpolator):
xs, ys = interpolator.x, interpolator.y
def x(x):
if x < xs[0]:
return ys[0] + (x - xs[0]) * (ys[1] - ys[0]) / (xs[1] - xs[0])
elif x > xs[-1]:
return ys[-1] + (x - xs[-1]) * (ys[-1] - ys[-2]) / (xs[-1] - xs[-2]
)
else:
return interpolator(x)
def x(xs):
return np.array(list(map(pointwise, np.array(xs))))
return ufunclike
|
extrap1d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(interpolator):\n xs, ys = interpolator.x, interpolator.y\n\n def x(x):\n if x < xs[0]:\n return ys[0] + (x - xs[0]) * (ys[1] - ys[0]) / (xs[1] - xs[0])\n elif x > xs[-1]:\n return ys[-1] + (x - xs[-1]) * (ys[-1] - ys[-2]) / (xs[-1] - xs[-2]\n )\n else:\n return interpolator(x)\n\n def x(xs):\n return np.array(list(map(pointwise, np.array(xs))))\n return ufunclike\n",
"role": "user"
},
{
"content": "extrap1d",
"role": "assistant"
}
] |
def x(data, dist, depth, w1=1.0, w2=0):
from scipy.interpolate import interp1d
new_data1 = []
for row in data:
mask = ~np.isnan(row)
if mask.any():
y = row[mask]
if y.size == 1:
row = np.repeat(y, len(mask))
else:
x = dist[mask]
f_i = interp1d(x, y)
f_x = _extrap1d(f_i)
row = f_x(dist)
new_data1.append(row)
new_data2 = []
for col in data.T:
mask = ~np.isnan(col)
if mask.any():
y = col[mask]
if y.size == 1:
col = np.repeat(y, len(mask))
else:
z = depth[mask]
f_i = interp1d(z, y)
f_z = _extrap1d(f_i)
col = f_z(depth)
new_data2.append(col)
new_data = np.array(new_data1) * w1 + np.array(new_data2).T * w2
return new_data
|
extrap_sec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, dist, depth, w1=1.0, w2=0):\n from scipy.interpolate import interp1d\n new_data1 = []\n for row in data:\n mask = ~np.isnan(row)\n if mask.any():\n y = row[mask]\n if y.size == 1:\n row = np.repeat(y, len(mask))\n else:\n x = dist[mask]\n f_i = interp1d(x, y)\n f_x = _extrap1d(f_i)\n row = f_x(dist)\n new_data1.append(row)\n new_data2 = []\n for col in data.T:\n mask = ~np.isnan(col)\n if mask.any():\n y = col[mask]\n if y.size == 1:\n col = np.repeat(y, len(mask))\n else:\n z = depth[mask]\n f_i = interp1d(z, y)\n f_z = _extrap1d(f_i)\n col = f_z(depth)\n new_data2.append(col)\n new_data = np.array(new_data1) * w1 + np.array(new_data2).T * w2\n return new_data\n",
"role": "user"
},
{
"content": "extrap_sec",
"role": "assistant"
}
] |
def x(h, lon, lat, dx=1.0, kind='linear', plot=False):
import gsw
from scipy.interpolate import interp1d
h, lon, lat = list(map(np.asanyarray, (h, lon, lat)))
x = np.append(0, np.cumsum(gsw.distance(lon, lat)[0] / 1000.0))
h = -gsw.z_from_p(h, lat.mean())
Ih = interp1d(x, h, kind=kind, bounds_error=False, fill_value=h[-1])
xm = np.arange(0, x.max() + dx, dx)
hm = Ih(xm)
return xm, hm
|
gen_topomask
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(h, lon, lat, dx=1.0, kind='linear', plot=False):\n import gsw\n from scipy.interpolate import interp1d\n h, lon, lat = list(map(np.asanyarray, (h, lon, lat)))\n x = np.append(0, np.cumsum(gsw.distance(lon, lat)[0] / 1000.0))\n h = -gsw.z_from_p(h, lat.mean())\n Ih = interp1d(x, h, kind=kind, bounds_error=False, fill_value=h[-1])\n xm = np.arange(0, x.max() + dx, dx)\n hm = Ih(xm)\n return xm, hm\n",
"role": "user"
},
{
"content": "gen_topomask",
"role": "assistant"
}
] |
def x(temperature, conductivity):
alpha = 0.03
beta = 1.0 / 7
sample_interval = 1 / 15.0
a = 2 * alpha / (sample_interval * beta + 2)
b = 1 - 2 * a / alpha
dCodT = 0.1 * (1 + 0.006 * [temperature - 20])
dT = np.diff(temperature)
ctm = -1.0 * b * conductivity + a * dCodT * dT
return ctm
|
cell_thermal_mass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(temperature, conductivity):\n alpha = 0.03\n beta = 1.0 / 7\n sample_interval = 1 / 15.0\n a = 2 * alpha / (sample_interval * beta + 2)\n b = 1 - 2 * a / alpha\n dCodT = 0.1 * (1 + 0.006 * [temperature - 20])\n dT = np.diff(temperature)\n ctm = -1.0 * b * conductivity + a * dCodT * dT\n return ctm\n",
"role": "user"
},
{
"content": "cell_thermal_mass",
"role": "assistant"
}
] |
def x(SA, CT):
import gsw
sigma_theta = gsw.sigma0(SA, CT)
mask = mixed_layer_depth(CT)
mld = np.where(mask)[0][-1]
sig_surface = sigma_theta[0]
sig_bottom_mld = gsw.sigma0(SA[0], CT[mld])
d_sig_t = sig_surface - sig_bottom_mld
d_sig = sigma_theta - sig_bottom_mld
mask = d_sig < d_sig_t
return Series(mask, index=SA.index, name='BLT')
|
barrier_layer_thickness
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(SA, CT):\n import gsw\n sigma_theta = gsw.sigma0(SA, CT)\n mask = mixed_layer_depth(CT)\n mld = np.where(mask)[0][-1]\n sig_surface = sigma_theta[0]\n sig_bottom_mld = gsw.sigma0(SA[0], CT[mld])\n d_sig_t = sig_surface - sig_bottom_mld\n d_sig = sigma_theta - sig_bottom_mld\n mask = d_sig < d_sig_t\n return Series(mask, index=SA.index, name='BLT')\n",
"role": "user"
},
{
"content": "barrier_layer_thickness",
"role": "assistant"
}
] |
def x(df, secondary_y=False, label=None, *args, **kwargs):
ax = kwargs.pop('ax', None)
fignums = plt.get_fignums()
if ax is None and not fignums:
ax = plt.axes()
fig = ax.get_figure()
fig.set_size_inches((5.25, 6.75))
else:
ax = plt.gca()
fig = plt.gcf()
figsize = kwargs.pop('figsize', fig.get_size_inches())
fig.set_size_inches(figsize)
y_inverted = False
if not getattr(ax, 'y_inverted', False):
setattr(ax, 'y_inverted', True)
y_inverted = True
if secondary_y:
ax = ax.twiny()
xlabel = getattr(df, 'name', None)
ylabel = getattr(df.index, 'name', None)
if isinstance(df, pd.DataFrame):
labels = label if label else df.columns
for k, (col, series) in enumerate(df.iteritems()):
ax.plot(series, series.index, label=labels[k])
elif isinstance(df, pd.Series):
label = label if label else str(df.name)
ax.plot(df.values, df.index, *args, label=label, **kwargs)
ax.set_ylabel(ylabel)
ax.set_xlabel(xlabel)
if y_inverted and not secondary_y:
ax.invert_yaxis()
return ax
|
plot_cast
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, secondary_y=False, label=None, *args, **kwargs):\n ax = kwargs.pop('ax', None)\n fignums = plt.get_fignums()\n if ax is None and not fignums:\n ax = plt.axes()\n fig = ax.get_figure()\n fig.set_size_inches((5.25, 6.75))\n else:\n ax = plt.gca()\n fig = plt.gcf()\n figsize = kwargs.pop('figsize', fig.get_size_inches())\n fig.set_size_inches(figsize)\n y_inverted = False\n if not getattr(ax, 'y_inverted', False):\n setattr(ax, 'y_inverted', True)\n y_inverted = True\n if secondary_y:\n ax = ax.twiny()\n xlabel = getattr(df, 'name', None)\n ylabel = getattr(df.index, 'name', None)\n if isinstance(df, pd.DataFrame):\n labels = label if label else df.columns\n for k, (col, series) in enumerate(df.iteritems()):\n ax.plot(series, series.index, label=labels[k])\n elif isinstance(df, pd.Series):\n label = label if label else str(df.name)\n ax.plot(df.values, df.index, *args, label=label, **kwargs)\n ax.set_ylabel(ylabel)\n ax.set_xlabel(xlabel)\n if y_inverted and not secondary_y:\n ax.invert_yaxis()\n return ax\n",
"role": "user"
},
{
"content": "plot_cast",
"role": "assistant"
}
] |
def x(data, block):
shape = data.shape[:-1] + (data.shape[-1] - block + 1, block)
strides = data.strides + (data.strides[-1],)
return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
|
rolling_window
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, block):\n shape = data.shape[:-1] + (data.shape[-1] - block + 1, block)\n strides = data.strides + (data.strides[-1],)\n return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)\n",
"role": "user"
},
{
"content": "rolling_window",
"role": "assistant"
}
] |
def x(df):
idx = df.index.argmax() + 1
down = df.iloc[:idx]
up = df.iloc[idx:][::-1]
return down, up
|
split
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n idx = df.index.argmax() + 1\n down = df.iloc[:idx]\n up = df.iloc[idx:][::-1]\n return down, up\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
] |
def x(df, sample_rate=24.0, time_constant=0.15):
from scipy import signal
Wn = 1.0 / time_constant / (sample_rate * 2.0)
b, a = signal.butter(2, Wn, 'low')
new_df = df.copy()
new_df.index = signal.filtfilt(b, a, df.index.values)
return new_df
|
lp_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, sample_rate=24.0, time_constant=0.15):\n from scipy import signal\n Wn = 1.0 / time_constant / (sample_rate * 2.0)\n b, a = signal.butter(2, Wn, 'low')\n new_df = df.copy()\n new_df.index = signal.filtfilt(b, a, df.index.values)\n return new_df\n",
"role": "user"
},
{
"content": "lp_filter",
"role": "assistant"
}
] |
def x(df):
new_df = df.copy()
press = new_df.copy().index.values
ref = press[0]
inversions = np.diff(np.r_[press, press[-1]]) < 0
mask = np.zeros_like(inversions)
for k, p in enumerate(inversions):
if p:
ref = press[k]
cut = press[k + 1:] < ref
mask[k + 1:][cut] = True
new_df[mask] = np.NaN
return new_df
|
press_check
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n new_df = df.copy()\n press = new_df.copy().index.values\n ref = press[0]\n inversions = np.diff(np.r_[press, press[-1]]) < 0\n mask = np.zeros_like(inversions)\n for k, p in enumerate(inversions):\n if p:\n ref = press[k]\n cut = press[k + 1:] < ref\n mask[k + 1:][cut] = True\n new_df[mask] = np.NaN\n return new_df\n",
"role": "user"
},
{
"content": "press_check",
"role": "assistant"
}
] |
def x(df, delta=1.0, method='average'):
start = np.floor(df.index[0])
stop = np.ceil(df.index[-1])
new_index = np.arange(start, stop, delta)
binned = pd.cut(df.index, bins=new_index)
if method == 'average':
new_df = df.groupby(binned).mean()
new_df.index = new_index[:-1]
elif method == 'interpolate':
raise NotImplementedError(
'Bin-average via interpolation method is not Implemented yet.')
else:
raise ValueError(
f'Expected method `average` or `interpolate`, but got {method}.')
return new_df
|
bindata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, delta=1.0, method='average'):\n start = np.floor(df.index[0])\n stop = np.ceil(df.index[-1])\n new_index = np.arange(start, stop, delta)\n binned = pd.cut(df.index, bins=new_index)\n if method == 'average':\n new_df = df.groupby(binned).mean()\n new_df.index = new_index[:-1]\n elif method == 'interpolate':\n raise NotImplementedError(\n 'Bin-average via interpolation method is not Implemented yet.')\n else:\n raise ValueError(\n f'Expected method `average` or `interpolate`, but got {method}.')\n return new_df\n",
"role": "user"
},
{
"content": "bindata",
"role": "assistant"
}
] |
def x(series, n1, n2, block, keep):
data = series.values.astype(float).copy()
roll = _rolling_window(data, block)
roll = ma.masked_invalid(roll)
std = n1 * roll.std(axis=1)
mean = roll.mean(axis=1)
std = np.r_[std, np.tile(std[-1], block - 1)]
mean = np.r_[mean, np.tile(mean[-1], block - 1)]
mask = np.abs(data - mean.filled(fill_value=np.NaN)) > std.filled(
fill_value=np.NaN)
data[mask] = np.NaN
roll = _rolling_window(data, block)
roll = ma.masked_invalid(roll)
std = n2 * roll.std(axis=1)
mean = roll.mean(axis=1)
std = np.r_[std, np.tile(std[-1], block - 1)]
mean = np.r_[mean, np.tile(mean[-1], block - 1)]
values = series.values.astype(float)
mask = np.abs(values - mean.filled(fill_value=np.NaN)) > std.filled(
fill_value=np.NaN)
clean = series.astype(float).copy()
clean[mask] = np.NaN
return clean
|
despike
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(series, n1, n2, block, keep):\n data = series.values.astype(float).copy()\n roll = _rolling_window(data, block)\n roll = ma.masked_invalid(roll)\n std = n1 * roll.std(axis=1)\n mean = roll.mean(axis=1)\n std = np.r_[std, np.tile(std[-1], block - 1)]\n mean = np.r_[mean, np.tile(mean[-1], block - 1)]\n mask = np.abs(data - mean.filled(fill_value=np.NaN)) > std.filled(\n fill_value=np.NaN)\n data[mask] = np.NaN\n roll = _rolling_window(data, block)\n roll = ma.masked_invalid(roll)\n std = n2 * roll.std(axis=1)\n mean = roll.mean(axis=1)\n std = np.r_[std, np.tile(std[-1], block - 1)]\n mean = np.r_[mean, np.tile(mean[-1], block - 1)]\n values = series.values.astype(float)\n mask = np.abs(values - mean.filled(fill_value=np.NaN)) > std.filled(\n fill_value=np.NaN)\n clean = series.astype(float).copy()\n clean[mask] = np.NaN\n return clean\n",
"role": "user"
},
{
"content": "despike",
"role": "assistant"
}
] |
def x(df, n1=2, n2=20, block=100, keep=0):
if isinstance(df, pd.Series):
new_df = _despike(df, n1=n1, n2=n2, block=block, keep=keep)
else:
new_df = df.apply(_despike, n1=n1, n2=n2, block=block, keep=keep)
return new_df
|
despike
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, n1=2, n2=20, block=100, keep=0):\n if isinstance(df, pd.Series):\n new_df = _despike(df, n1=n1, n2=n2, block=block, keep=keep)\n else:\n new_df = df.apply(_despike, n1=n1, n2=n2, block=block, keep=keep)\n return new_df\n",
"role": "user"
},
{
"content": "despike",
"role": "assistant"
}
] |
def x(series, window_len, window):
windows = {'flat': np.ones, 'hanning': np.hanning, 'hamming': np.
hamming, 'bartlett': np.bartlett, 'blackman': np.blackman}
data = series.values.copy()
if window_len < 3:
return pd.Series(data, index=series.index, name=series.name)
if window not in list(windows.keys()):
raise ValueError(
"""window must be one of 'flat', 'hanning',
'hamming', 'bartlett', 'blackman'"""
)
s = np.r_[2 * data[0] - data[window_len:1:-1], data, 2 * data[-1] -
data[-1:-window_len:-1]]
w = windows[window](window_len)
data = np.convolve(w / w.sum(), s, mode='same')
data = data[window_len - 1:-window_len + 1]
return pd.Series(data, index=series.index, name=series.name)
|
smooth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(series, window_len, window):\n windows = {'flat': np.ones, 'hanning': np.hanning, 'hamming': np.\n hamming, 'bartlett': np.bartlett, 'blackman': np.blackman}\n data = series.values.copy()\n if window_len < 3:\n return pd.Series(data, index=series.index, name=series.name)\n if window not in list(windows.keys()):\n raise ValueError(\n \"\"\"window must be one of 'flat', 'hanning',\n 'hamming', 'bartlett', 'blackman'\"\"\"\n )\n s = np.r_[2 * data[0] - data[window_len:1:-1], data, 2 * data[-1] -\n data[-1:-window_len:-1]]\n w = windows[window](window_len)\n data = np.convolve(w / w.sum(), s, mode='same')\n data = data[window_len - 1:-window_len + 1]\n return pd.Series(data, index=series.index, name=series.name)\n",
"role": "user"
},
{
"content": "smooth",
"role": "assistant"
}
] |
def x(df, window_len=11, window='hanning'):
if isinstance(df, pd.Series):
new_df = _smooth(df, window_len=window_len, window=window)
else:
new_df = df.apply(_smooth, window_len=window_len, window=window)
return new_df
|
smooth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, window_len=11, window='hanning'):\n if isinstance(df, pd.Series):\n new_df = _smooth(df, window_len=window_len, window=window)\n else:\n new_df = df.apply(_smooth, window_len=window_len, window=window)\n return new_df\n",
"role": "user"
},
{
"content": "smooth",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.