source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): if self._request_d: log.debug('_do_fetch: Outstanding request: %r', self._request_d) return if self._retry_call is not None: if self._retry_call.active(): self._retry_call.cancel() self._retry_call = None if (self._fetch_offset == OFFSET_EARLIEST or self._fetch_offset == OFFSET_LATEST): offset_request = OffsetRequest(self.topic, self.partition, self. _fetch_offset, 1) self._request_d = self.client.send_offset_request([offset_request]) self._request_d.addCallbacks(self._handle_offset_response, self. _handle_offset_error) elif self._fetch_offset == OFFSET_COMMITTED: if not self.consumer_group: failure = Failure(InvalidConsumerGroupError( 'Bad Group_id:{0!r}'.format(self.consumer_group))) self._start_d.errback(failure) request = OffsetFetchRequest(self.topic, self.partition) self._request_d = self.client.send_offset_fetch_request(self. consumer_group, [request]) self._request_d.addCallbacks(self._handle_offset_response, self. _handle_offset_error) else: request = FetchRequest(self.topic, self.partition, self. _fetch_offset, self.buffer_size) self._request_d = self.client.send_fetch_request([request], max_wait_time=self.fetch_max_wait_time, min_bytes=self. fetch_min_bytes) d = self._request_d d.addCallback(self._handle_fetch_response) d.addErrback(self._handle_fetch_error)
do_fetch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._request_d:\n log.debug('_do_fetch: Outstanding request: %r', self._request_d)\n return\n if self._retry_call is not None:\n if self._retry_call.active():\n self._retry_call.cancel()\n self._retry_call = None\n if (self._fetch_offset == OFFSET_EARLIEST or self._fetch_offset ==\n OFFSET_LATEST):\n offset_request = OffsetRequest(self.topic, self.partition, self.\n _fetch_offset, 1)\n self._request_d = self.client.send_offset_request([offset_request])\n self._request_d.addCallbacks(self._handle_offset_response, self.\n _handle_offset_error)\n elif self._fetch_offset == OFFSET_COMMITTED:\n if not self.consumer_group:\n failure = Failure(InvalidConsumerGroupError(\n 'Bad Group_id:{0!r}'.format(self.consumer_group)))\n self._start_d.errback(failure)\n request = OffsetFetchRequest(self.topic, self.partition)\n self._request_d = self.client.send_offset_fetch_request(self.\n consumer_group, [request])\n self._request_d.addCallbacks(self._handle_offset_response, self.\n _handle_offset_error)\n else:\n request = FetchRequest(self.topic, self.partition, self.\n _fetch_offset, self.buffer_size)\n self._request_d = self.client.send_fetch_request([request],\n max_wait_time=self.fetch_max_wait_time, min_bytes=self.\n fetch_min_bytes)\n d = self._request_d\n d.addCallback(self._handle_fetch_response)\n d.addErrback(self._handle_fetch_error)\n", "role": "user" }, { "content": "do_fetch", "role": "assistant" } ]
def x(self, fail): log.warning('_commit_timer_failed: uncaught error %r: %s in _auto_commit', fail, fail.getBriefTraceback()) self._commit_looper_d = self._commit_looper.start(self. auto_commit_every_s, now=False)
commit_timer_failed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fail):\n log.warning('_commit_timer_failed: uncaught error %r: %s in _auto_commit',\n fail, fail.getBriefTraceback())\n self._commit_looper_d = self._commit_looper.start(self.\n auto_commit_every_s, now=False)\n", "role": "user" }, { "content": "commit_timer_failed", "role": "assistant" } ]
def x(self, lCall): if self._commit_looper is not lCall: log.warning('_commit_timer_stopped with wrong timer:%s not:%s', lCall, self._commit_looper) else: log.debug('_commit_timer_stopped: %s %s', lCall, self._commit_looper) self._commit_looper = None self._commit_looper_d = None
commit_timer_stopped
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lCall):\n if self._commit_looper is not lCall:\n log.warning('_commit_timer_stopped with wrong timer:%s not:%s',\n lCall, self._commit_looper)\n else:\n log.debug('_commit_timer_stopped: %s %s', lCall, self._commit_looper)\n self._commit_looper = None\n self._commit_looper_d = None\n", "role": "user" }, { "content": "commit_timer_stopped", "role": "assistant" } ]
def x(byte_array, seed=2538058380): if not isinstance(byte_array, bytearray): raise TypeError("Type: %r of 'byte_array' arg must be 'bytearray'", type(byte_array)) length = len(byte_array) m = 1540483477 r = 24 mod32bits = 4294967295 h = seed ^ length length4 = length // 4 for i in range(length4): i4 = i * 4 k = (byte_array[i4 + 0] & 255) + ((byte_array[i4 + 1] & 255) << 8) + (( byte_array[i4 + 2] & 255) << 16) + ((byte_array[i4 + 3] & 255) << 24) k &= mod32bits k *= m k &= mod32bits k ^= k % 4294967296 >> r k &= mod32bits k *= m k &= mod32bits h *= m h &= mod32bits h ^= k h &= mod32bits extra_bytes = length % 4 if extra_bytes == 3: h ^= (byte_array[(length & ~3) + 2] & 255) << 16 h &= mod32bits if extra_bytes >= 2: h ^= (byte_array[(length & ~3) + 1] & 255) << 8 h &= mod32bits if extra_bytes >= 1: h ^= byte_array[length & ~3] & 255 h &= mod32bits h *= m h &= mod32bits h ^= h % 4294967296 >> 13 h &= mod32bits h *= m h &= mod32bits h ^= h % 4294967296 >> 15 h &= mod32bits return h
pure_murmur2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(byte_array, seed=2538058380):\n if not isinstance(byte_array, bytearray):\n raise TypeError(\"Type: %r of 'byte_array' arg must be 'bytearray'\",\n type(byte_array))\n length = len(byte_array)\n m = 1540483477\n r = 24\n mod32bits = 4294967295\n h = seed ^ length\n length4 = length // 4\n for i in range(length4):\n i4 = i * 4\n k = (byte_array[i4 + 0] & 255) + ((byte_array[i4 + 1] & 255) << 8) + ((\n byte_array[i4 + 2] & 255) << 16) + ((byte_array[i4 + 3] & 255) <<\n 24)\n k &= mod32bits\n k *= m\n k &= mod32bits\n k ^= k % 4294967296 >> r\n k &= mod32bits\n k *= m\n k &= mod32bits\n h *= m\n h &= mod32bits\n h ^= k\n h &= mod32bits\n extra_bytes = length % 4\n if extra_bytes == 3:\n h ^= (byte_array[(length & ~3) + 2] & 255) << 16\n h &= mod32bits\n if extra_bytes >= 2:\n h ^= (byte_array[(length & ~3) + 1] & 255) << 8\n h &= mod32bits\n if extra_bytes >= 1:\n h ^= byte_array[length & ~3] & 255\n h &= mod32bits\n h *= m\n h &= mod32bits\n h ^= h % 4294967296 >> 13\n h &= mod32bits\n h *= m\n h &= mod32bits\n h ^= h % 4294967296 >> 15\n h &= mod32bits\n return h\n", "role": "user" }, { "content": "pure_murmur2", "role": "assistant" } ]
def x(self, key, partitions): return partitions[(self._hash(key) & 2147483647) % len(partitions)]
partition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, partitions):\n return partitions[(self._hash(key) & 2147483647) % len(partitions)]\n", "role": "user" }, { "content": "partition", "role": "assistant" } ]
def x(payload, xerial_compatible=False, xerial_blocksize=32 * 1024): if not has_snappy(): raise NotImplementedError('Snappy codec is not available') if xerial_compatible: def x(): for i in range(0, len(payload), xerial_blocksize): yield payload[i:i + xerial_blocksize] out = BytesIO() out.write(_XERIAL_HEADER) for chunk in _chunker(): block = snappy.compress(chunk) out.write(struct.pack('!i', len(block))) out.write(block) out.seek(0) return out.read() else: return snappy.compress(payload)
snappy_encode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(payload, xerial_compatible=False, xerial_blocksize=32 * 1024):\n if not has_snappy():\n raise NotImplementedError('Snappy codec is not available')\n if xerial_compatible:\n\n def x():\n for i in range(0, len(payload), xerial_blocksize):\n yield payload[i:i + xerial_blocksize]\n out = BytesIO()\n out.write(_XERIAL_HEADER)\n for chunk in _chunker():\n block = snappy.compress(chunk)\n out.write(struct.pack('!i', len(block)))\n out.write(block)\n out.seek(0)\n return out.read()\n else:\n return snappy.compress(payload)\n", "role": "user" }, { "content": "snappy_encode", "role": "assistant" } ]
def x(self): if not hasattr(self, '_info_cache'): encoding_backend = get_backend() try: path = os.path.abspath(self.path) except AttributeError: path = os.path.abspath(self.name) self._info_cache = encoding_backend.get_media_info(path) return self._info_cache
get_video_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not hasattr(self, '_info_cache'):\n encoding_backend = get_backend()\n try:\n path = os.path.abspath(self.path)\n except AttributeError:\n path = os.path.abspath(self.name)\n self._info_cache = encoding_backend.get_media_info(path)\n return self._info_cache\n", "role": "user" }, { "content": "get_video_info", "role": "assistant" } ]
def x(self, source_path, target_path, params): total_time = self.get_media_info(source_path)['duration'] cmds = [self.ffmpeg_path, '-i', source_path] cmds.extend(self.params) cmds.extend(params) cmds.extend([target_path]) process = self._spawn(cmds) buf = output = '' while True: out = process.stderr.read(10) if not out: break out = out.decode(console_encoding) output += out buf += out try: line, buf = buf.split('\r', 1) except ValueError: continue try: time_str = RE_TIMECODE.findall(line)[0] except IndexError: continue time = 0 for part in time_str.split(':'): time = 60 * time + float(part) percent = time / total_time logger.debug('yield {}%'.format(percent)) yield percent if os.path.getsize(target_path) == 0: raise exceptions.FFmpegError('File size of generated file is 0') self._check_returncode(process) logger.debug(output) if not output: raise exceptions.FFmpegError('No output from FFmpeg.') yield 100
encode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_path, target_path, params):\n total_time = self.get_media_info(source_path)['duration']\n cmds = [self.ffmpeg_path, '-i', source_path]\n cmds.extend(self.params)\n cmds.extend(params)\n cmds.extend([target_path])\n process = self._spawn(cmds)\n buf = output = ''\n while True:\n out = process.stderr.read(10)\n if not out:\n break\n out = out.decode(console_encoding)\n output += out\n buf += out\n try:\n line, buf = buf.split('\\r', 1)\n except ValueError:\n continue\n try:\n time_str = RE_TIMECODE.findall(line)[0]\n except IndexError:\n continue\n time = 0\n for part in time_str.split(':'):\n time = 60 * time + float(part)\n percent = time / total_time\n logger.debug('yield {}%'.format(percent))\n yield percent\n if os.path.getsize(target_path) == 0:\n raise exceptions.FFmpegError('File size of generated file is 0')\n self._check_returncode(process)\n logger.debug(output)\n if not output:\n raise exceptions.FFmpegError('No output from FFmpeg.')\n yield 100\n", "role": "user" }, { "content": "encode", "role": "assistant" } ]
def x(self, video_path): cmds = [self.ffprobe_path, '-i', video_path] cmds.extend(['-print_format', 'json']) cmds.extend(['-show_format', '-show_streams']) process = self._spawn(cmds) stdout, __ = self._check_returncode(process) media_info = self._parse_media_info(stdout) return {'duration': float(media_info['format']['duration']), 'width': int(media_info['video'][0]['width']), 'height': int(media_info[ 'video'][0]['height'])}
get_media_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, video_path):\n cmds = [self.ffprobe_path, '-i', video_path]\n cmds.extend(['-print_format', 'json'])\n cmds.extend(['-show_format', '-show_streams'])\n process = self._spawn(cmds)\n stdout, __ = self._check_returncode(process)\n media_info = self._parse_media_info(stdout)\n return {'duration': float(media_info['format']['duration']), 'width':\n int(media_info['video'][0]['width']), 'height': int(media_info[\n 'video'][0]['height'])}\n", "role": "user" }, { "content": "get_media_info", "role": "assistant" } ]
def x(self, video_path, at_time=0.5): filename = os.path.basename(video_path) filename, __ = os.path.splitext(filename) _, image_path = tempfile.mkstemp(suffix='_{}.jpg'.format(filename)) video_duration = self.get_media_info(video_path)['duration'] if at_time > video_duration: raise exceptions.InvalidTimeError() thumbnail_time = at_time cmds = [self.ffmpeg_path, '-i', video_path, '-vframes', '1'] cmds.extend(['-ss', str(thumbnail_time), '-y', image_path]) process = self._spawn(cmds) self._check_returncode(process) if not os.path.getsize(image_path): os.unlink(image_path) raise exceptions.InvalidTimeError() return image_path
get_thumbnail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, video_path, at_time=0.5):\n filename = os.path.basename(video_path)\n filename, __ = os.path.splitext(filename)\n _, image_path = tempfile.mkstemp(suffix='_{}.jpg'.format(filename))\n video_duration = self.get_media_info(video_path)['duration']\n if at_time > video_duration:\n raise exceptions.InvalidTimeError()\n thumbnail_time = at_time\n cmds = [self.ffmpeg_path, '-i', video_path, '-vframes', '1']\n cmds.extend(['-ss', str(thumbnail_time), '-y', image_path])\n process = self._spawn(cmds)\n self._check_returncode(process)\n if not os.path.getsize(image_path):\n os.unlink(image_path)\n raise exceptions.InvalidTimeError()\n return image_path\n", "role": "user" }, { "content": "get_thumbnail", "role": "assistant" } ]
def x(app_label, model_name, object_pk): Model = apps.get_model(app_label=app_label, model_name=model_name) instance = Model.objects.get(pk=object_pk) fields = instance._meta.fields for field in fields: if isinstance(field, VideoField): if not getattr(instance, field.name): continue fieldfile = getattr(instance, field.name) convert_video(fieldfile)
convert_all_videos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(app_label, model_name, object_pk):\n Model = apps.get_model(app_label=app_label, model_name=model_name)\n instance = Model.objects.get(pk=object_pk)\n fields = instance._meta.fields\n for field in fields:\n if isinstance(field, VideoField):\n if not getattr(instance, field.name):\n continue\n fieldfile = getattr(instance, field.name)\n convert_video(fieldfile)\n", "role": "user" }, { "content": "convert_all_videos", "role": "assistant" } ]
def x(fieldfile, force=False): instance = fieldfile.instance field = fieldfile.field filename = os.path.basename(fieldfile.path) source_path = fieldfile.path encoding_backend = get_backend() for options in settings.VIDEO_ENCODING_FORMATS[encoding_backend.name]: video_format, created = Format.objects.get_or_create(object_id= instance.pk, content_type=ContentType.objects.get_for_model( instance), field_name=field.name, format=options['name']) if video_format.file and not force: continue else: video_format.reset_progress() _, target_path = tempfile.mkstemp(suffix='_{name}.{extension}'. format(**options)) try: encoding = encoding_backend.encode(source_path, target_path, options['params']) while encoding: try: progress = next(encoding) except StopIteration: break video_format.update_progress(progress) except VideoEncodingError: video_format.delete() os.remove(target_path) continue video_format.file.save('{filename}_{name}.{extension}'.format( filename=filename, **options), File(open(target_path, mode='rb'))) video_format.update_progress(100) os.remove(target_path)
convert_video
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fieldfile, force=False):\n instance = fieldfile.instance\n field = fieldfile.field\n filename = os.path.basename(fieldfile.path)\n source_path = fieldfile.path\n encoding_backend = get_backend()\n for options in settings.VIDEO_ENCODING_FORMATS[encoding_backend.name]:\n video_format, created = Format.objects.get_or_create(object_id=\n instance.pk, content_type=ContentType.objects.get_for_model(\n instance), field_name=field.name, format=options['name'])\n if video_format.file and not force:\n continue\n else:\n video_format.reset_progress()\n _, target_path = tempfile.mkstemp(suffix='_{name}.{extension}'.\n format(**options))\n try:\n encoding = encoding_backend.encode(source_path, target_path,\n options['params'])\n while encoding:\n try:\n progress = next(encoding)\n except StopIteration:\n break\n video_format.update_progress(progress)\n except VideoEncodingError:\n video_format.delete()\n os.remove(target_path)\n continue\n video_format.file.save('{filename}_{name}.{extension}'.format(\n filename=filename, **options), File(open(target_path, mode='rb')))\n video_format.update_progress(100)\n os.remove(target_path)\n", "role": "user" }, { "content": "convert_video", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): results = [] cache = {} tuning_options['scaling'] = True bounds, _, _ = get_bounds_x0_eps(tuning_options) args = kernel_options, tuning_options, runner, results, cache num_particles = 20 maxiter = 100 B0 = 1.0 gamma = 1.0 alpha = 0.2 best_time_global = 1e+20 best_position_global = [] swarm = [] for i in range(0, num_particles): swarm.append(Firefly(bounds, args)) for j in range(num_particles): swarm[j].compute_intensity(_cost_func) for c in range(maxiter): if tuning_options.verbose: print('start iteration ', c, 'best time global', best_time_global) for i in range(num_particles): for j in range(num_particles): if swarm[i].intensity < swarm[j].intensity: dist = swarm[i].distance_to(swarm[j]) beta = B0 * np.exp(-gamma * dist * dist) swarm[i].move_towards(swarm[j], beta, alpha) swarm[i].compute_intensity(_cost_func) if swarm[i].time <= best_time_global: best_position_global = swarm[i].position best_time_global = swarm[i].time swarm.sort(key=lambda x: x.time) if tuning_options.verbose: print('Final result:') print(best_position_global) print(best_time_global) return results, runner.dev.get_environment()
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = True\n bounds, _, _ = get_bounds_x0_eps(tuning_options)\n args = kernel_options, tuning_options, runner, results, cache\n num_particles = 20\n maxiter = 100\n B0 = 1.0\n gamma = 1.0\n alpha = 0.2\n best_time_global = 1e+20\n best_position_global = []\n swarm = []\n for i in range(0, num_particles):\n swarm.append(Firefly(bounds, args))\n for j in range(num_particles):\n swarm[j].compute_intensity(_cost_func)\n for c in range(maxiter):\n if tuning_options.verbose:\n print('start iteration ', c, 'best time global', best_time_global)\n for i in range(num_particles):\n for j in range(num_particles):\n if swarm[i].intensity < swarm[j].intensity:\n dist = swarm[i].distance_to(swarm[j])\n beta = B0 * np.exp(-gamma * dist * dist)\n swarm[i].move_towards(swarm[j], beta, alpha)\n swarm[i].compute_intensity(_cost_func)\n if swarm[i].time <= best_time_global:\n best_position_global = swarm[i].position\n best_time_global = swarm[i].time\n swarm.sort(key=lambda x: x.time)\n if tuning_options.verbose:\n print('Final result:')\n print(best_position_global)\n print(best_time_global)\n return results, runner.dev.get_environment()\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(self, other): return np.linalg.norm(self.position - other.position)
distance_to
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n return np.linalg.norm(self.position - other.position)\n", "role": "user" }, { "content": "distance_to", "role": "assistant" } ]
def x(self, _cost_func): self.evaluate(_cost_func) self.intensity = 1 / self.time
compute_intensity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, _cost_func):\n self.evaluate(_cost_func)\n self.intensity = 1 / self.time\n", "role": "user" }, { "content": "compute_intensity", "role": "assistant" } ]
def x(self, other, beta, alpha): self.position += beta * (other.position - self.position) self.position += alpha * np.random.uniform(-0.5, 0.5, len(self.position)) self.position = np.minimum(self.position, [b[1] for b in self.bounds]) self.position = np.maximum(self.position, [b[0] for b in self.bounds])
move_towards
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, beta, alpha):\n self.position += beta * (other.position - self.position)\n self.position += alpha * np.random.uniform(-0.5, 0.5, len(self.position))\n self.position = np.minimum(self.position, [b[1] for b in self.bounds])\n self.position = np.maximum(self.position, [b[0] for b in self.bounds])\n", "role": "user" }, { "content": "move_towards", "role": "assistant" } ]
def x(instance, answer, result_host, atol, verbose): if len(instance.arguments) != len(answer): raise TypeError( 'The length of argument list and provided results do not match.') for i, arg in enumerate(instance.arguments): if answer[i] is not None: if isinstance(answer[i], numpy.ndarray) and isinstance(arg, numpy.ndarray): if answer[i].dtype != arg.dtype: raise TypeError('Element ' + str(i) + ' of the expected results list is not of the same dtype as the kernel output: ' + str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.' ) if answer[i].size != arg.size: raise TypeError('Element ' + str(i) + ' of the expected results list has a size different from ' + 'the kernel argument: ' + str(answer[i].size) + ' != ' + str(arg.size) + '.') elif isinstance(answer[i], numpy.number) and isinstance(arg, numpy.number): if answer[i].dtype != arg.dtype: raise TypeError('Element ' + str(i) + ' of the expected results list is not the same as the kernel output: ' + str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.' ) elif not isinstance(answer[i], numpy.ndarray) or not isinstance( answer[i], numpy.number): raise TypeError('Element ' + str(i) + ' of expected results list is not a numpy array or numpy scalar.' ) else: raise TypeError('Element ' + str(i) + ' of expected results list and kernel arguments have different types.' ) def x(a): if hasattr(a, 'ravel') and len(a.shape) > 1: return a.ravel() return a def x(a): if hasattr(a, 'flatten'): return a.flatten() return a correct = True for i, arg in enumerate(instance.arguments): expected = answer[i] if expected is not None: result = _ravel(result_host[i]) expected = _flatten(expected) output_test = numpy.allclose(expected, result, atol=atol) if not output_test and verbose: print('Error: ' + util.get_config_string(instance.params) + ' detected during correctness check') print( 'this error occured when checking value of the %oth kernel argument' % (i,)) print( 'Printing kernel output and expected result, set verbose=False to suppress this debug print' ) numpy.set_printoptions(edgeitems=50) print('Kernel output:') print(result) print('Expected:') print(expected) correct = correct and output_test if not correct: logging.debug('correctness check has found a correctness issue') raise Exception('Error: ' + util.get_config_string(instance.params) + ' failed correctness check') return correct
default_verify_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instance, answer, result_host, atol, verbose):\n if len(instance.arguments) != len(answer):\n raise TypeError(\n 'The length of argument list and provided results do not match.')\n for i, arg in enumerate(instance.arguments):\n if answer[i] is not None:\n if isinstance(answer[i], numpy.ndarray) and isinstance(arg,\n numpy.ndarray):\n if answer[i].dtype != arg.dtype:\n raise TypeError('Element ' + str(i) +\n ' of the expected results list is not of the same dtype as the kernel output: '\n + str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.'\n )\n if answer[i].size != arg.size:\n raise TypeError('Element ' + str(i) +\n ' of the expected results list has a size different from '\n + 'the kernel argument: ' + str(answer[i].size) +\n ' != ' + str(arg.size) + '.')\n elif isinstance(answer[i], numpy.number) and isinstance(arg,\n numpy.number):\n if answer[i].dtype != arg.dtype:\n raise TypeError('Element ' + str(i) +\n ' of the expected results list is not the same as the kernel output: '\n + str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.'\n )\n elif not isinstance(answer[i], numpy.ndarray) or not isinstance(\n answer[i], numpy.number):\n raise TypeError('Element ' + str(i) +\n ' of expected results list is not a numpy array or numpy scalar.'\n )\n else:\n raise TypeError('Element ' + str(i) +\n ' of expected results list and kernel arguments have different types.'\n )\n\n def x(a):\n if hasattr(a, 'ravel') and len(a.shape) > 1:\n return a.ravel()\n return a\n\n def x(a):\n if hasattr(a, 'flatten'):\n return a.flatten()\n return a\n correct = True\n for i, arg in enumerate(instance.arguments):\n expected = answer[i]\n if expected is not None:\n result = _ravel(result_host[i])\n expected = _flatten(expected)\n output_test = numpy.allclose(expected, result, atol=atol)\n if not output_test and verbose:\n print('Error: ' + util.get_config_string(instance.params) +\n ' detected during correctness check')\n print(\n 'this error occured when checking value of the %oth kernel argument'\n % (i,))\n print(\n 'Printing kernel output and expected result, set verbose=False to suppress this debug print'\n )\n numpy.set_printoptions(edgeitems=50)\n print('Kernel output:')\n print(result)\n print('Expected:')\n print(expected)\n correct = correct and output_test\n if not correct:\n logging.debug('correctness check has found a correctness issue')\n raise Exception('Error: ' + util.get_config_string(instance.params) +\n ' failed correctness check')\n return correct\n", "role": "user" }, { "content": "default_verify_function", "role": "assistant" } ]
def x(self, func, gpu_args, instance, times, verbose): logging.debug('benchmark ' + instance.name) logging.debug('thread block dimensions x,y,z=%d,%d,%d', *instance.threads) logging.debug('grid dimensions x,y,z=%d,%d,%d', *instance.grid) time = None try: time = self.dev.benchmark(func, gpu_args, instance.threads, instance.grid, times) except Exception as e: skippable_exceptions = ['too many resources requested for launch', 'OUT_OF_RESOURCES', 'INVALID_WORK_GROUP_SIZE'] if any([(skip_str in str(e)) for skip_str in skippable_exceptions]): logging.debug( 'benchmark fails due to runtime failure too many resources required' ) if verbose: print('skipping config', instance.name, 'reason: too many resources requested for launch') else: logging.debug('benchmark encountered runtime failure: ' + str(e)) print('Error while benchmarking:', instance.name) raise e return time
benchmark
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, gpu_args, instance, times, verbose):\n logging.debug('benchmark ' + instance.name)\n logging.debug('thread block dimensions x,y,z=%d,%d,%d', *instance.threads)\n logging.debug('grid dimensions x,y,z=%d,%d,%d', *instance.grid)\n time = None\n try:\n time = self.dev.benchmark(func, gpu_args, instance.threads,\n instance.grid, times)\n except Exception as e:\n skippable_exceptions = ['too many resources requested for launch',\n 'OUT_OF_RESOURCES', 'INVALID_WORK_GROUP_SIZE']\n if any([(skip_str in str(e)) for skip_str in skippable_exceptions]):\n logging.debug(\n 'benchmark fails due to runtime failure too many resources required'\n )\n if verbose:\n print('skipping config', instance.name,\n 'reason: too many resources requested for launch')\n else:\n logging.debug('benchmark encountered runtime failure: ' + str(e))\n print('Error while benchmarking:', instance.name)\n raise e\n return time\n", "role": "user" }, { "content": "benchmark", "role": "assistant" } ]
def x(self, func, gpu_args, instance, answer, atol, verify, verbose): logging.debug('check_kernel_output') if not verify and len(instance.arguments) != len(answer): raise TypeError( 'The length of argument list and provided results do not match.') for i, arg in enumerate(instance.arguments): if verify or answer[i] is not None: if isinstance(arg, numpy.ndarray): self.dev.memcpy_htod(gpu_args[i], arg) check = self.run_kernel(func, gpu_args, instance) if not check: return True result_host = [] for i, arg in enumerate(instance.arguments): if verify or answer[i] is not None: if isinstance(arg, numpy.ndarray): result_host.append(numpy.zeros_like(arg)) self.dev.memcpy_dtoh(result_host[-1], gpu_args[i]) else: result_host.append(None) if verify: try: return verify(answer, result_host, atol=atol) except TypeError: return verify(answer, result_host) else: return _default_verify_function(instance, answer, result_host, atol, verbose)
check_kernel_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, gpu_args, instance, answer, atol, verify, verbose):\n logging.debug('check_kernel_output')\n if not verify and len(instance.arguments) != len(answer):\n raise TypeError(\n 'The length of argument list and provided results do not match.')\n for i, arg in enumerate(instance.arguments):\n if verify or answer[i] is not None:\n if isinstance(arg, numpy.ndarray):\n self.dev.memcpy_htod(gpu_args[i], arg)\n check = self.run_kernel(func, gpu_args, instance)\n if not check:\n return True\n result_host = []\n for i, arg in enumerate(instance.arguments):\n if verify or answer[i] is not None:\n if isinstance(arg, numpy.ndarray):\n result_host.append(numpy.zeros_like(arg))\n self.dev.memcpy_dtoh(result_host[-1], gpu_args[i])\n else:\n result_host.append(None)\n if verify:\n try:\n return verify(answer, result_host, atol=atol)\n except TypeError:\n return verify(answer, result_host)\n else:\n return _default_verify_function(instance, answer, result_host, atol,\n verbose)\n", "role": "user" }, { "content": "check_kernel_output", "role": "assistant" } ]
def x(self, gpu_args, params, kernel_options, tuning_options): instance_string = util.get_instance_string(params) logging.debug('compile_and_benchmark ' + instance_string) mem_usage = round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024.0, 1) logging.debug('Memory usage : %2.2f MB', mem_usage) verbose = tuning_options.verbose instance = self.create_kernel_instance(kernel_options, params, verbose) if instance is None: return None try: func = self.compile_kernel(instance, verbose) if func is None: return None if kernel_options.cmem_args is not None: self.dev.copy_constant_memory_args(kernel_options.cmem_args) if kernel_options.texmem_args is not None: self.dev.copy_texture_memory_args(kernel_options.texmem_args) if tuning_options.answer is not None: self.check_kernel_output(func, gpu_args, instance, tuning_options.answer, tuning_options.atol, tuning_options. verify, verbose) time = self.benchmark(func, gpu_args, instance, tuning_options. times, verbose) except Exception as e: temp_filename = util.get_temp_filename(suffix='.c') util.write_file(temp_filename, instance.kernel_string) print('Error while compiling or benchmarking, see source files: ' + temp_filename + ' '.join(instance.temp_files.values())) raise e for v in instance.temp_files.values(): util.delete_temp_file(v) return time
compile_and_benchmark
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gpu_args, params, kernel_options, tuning_options):\n instance_string = util.get_instance_string(params)\n logging.debug('compile_and_benchmark ' + instance_string)\n mem_usage = round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / \n 1024.0, 1)\n logging.debug('Memory usage : %2.2f MB', mem_usage)\n verbose = tuning_options.verbose\n instance = self.create_kernel_instance(kernel_options, params, verbose)\n if instance is None:\n return None\n try:\n func = self.compile_kernel(instance, verbose)\n if func is None:\n return None\n if kernel_options.cmem_args is not None:\n self.dev.copy_constant_memory_args(kernel_options.cmem_args)\n if kernel_options.texmem_args is not None:\n self.dev.copy_texture_memory_args(kernel_options.texmem_args)\n if tuning_options.answer is not None:\n self.check_kernel_output(func, gpu_args, instance,\n tuning_options.answer, tuning_options.atol, tuning_options.\n verify, verbose)\n time = self.benchmark(func, gpu_args, instance, tuning_options.\n times, verbose)\n except Exception as e:\n temp_filename = util.get_temp_filename(suffix='.c')\n util.write_file(temp_filename, instance.kernel_string)\n print('Error while compiling or benchmarking, see source files: ' +\n temp_filename + ' '.join(instance.temp_files.values()))\n raise e\n for v in instance.temp_files.values():\n util.delete_temp_file(v)\n return time\n", "role": "user" }, { "content": "compile_and_benchmark", "role": "assistant" } ]
def x(self, instance, verbose): logging.debug('compile_kernel ' + instance.name) func = None try: func = self.dev.compile(instance.name, instance.kernel_string) except Exception as e: if 'uses too much shared data' in str(e): logging.debug( 'compile_kernel failed due to kernel using too much shared memory' ) if verbose: print('skipping config', instance.name, 'reason: too much shared memory used') else: logging.debug('compile_kernel failed due to error: ' + str(e)) print('Error while compiling:', instance.name) raise e return func
compile_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, verbose):\n logging.debug('compile_kernel ' + instance.name)\n func = None\n try:\n func = self.dev.compile(instance.name, instance.kernel_string)\n except Exception as e:\n if 'uses too much shared data' in str(e):\n logging.debug(\n 'compile_kernel failed due to kernel using too much shared memory'\n )\n if verbose:\n print('skipping config', instance.name,\n 'reason: too much shared memory used')\n else:\n logging.debug('compile_kernel failed due to error: ' + str(e))\n print('Error while compiling:', instance.name)\n raise e\n return func\n", "role": "user" }, { "content": "compile_kernel", "role": "assistant" } ]
def x(self, cmem_args): if self.lang == 'CUDA': self.dev.copy_constant_memory_args(cmem_args) else: raise Exception( 'Error cannot copy constant memory arguments when language is not CUDA' )
copy_constant_memory_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cmem_args):\n if self.lang == 'CUDA':\n self.dev.copy_constant_memory_args(cmem_args)\n else:\n raise Exception(\n 'Error cannot copy constant memory arguments when language is not CUDA'\n )\n", "role": "user" }, { "content": "copy_constant_memory_args", "role": "assistant" } ]
def x(self, texmem_args): if self.lang == 'CUDA': self.dev.copy_texture_memory_args(texmem_args) else: raise Exception( 'Error cannot copy texture memory arguments when language is not CUDA' )
copy_texture_memory_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texmem_args):\n if self.lang == 'CUDA':\n self.dev.copy_texture_memory_args(texmem_args)\n else:\n raise Exception(\n 'Error cannot copy texture memory arguments when language is not CUDA'\n )\n", "role": "user" }, { "content": "copy_texture_memory_args", "role": "assistant" } ]
def x(self, kernel_options, params, verbose): instance_string = util.get_instance_string(params) grid_div = (kernel_options.grid_div_x, kernel_options.grid_div_y, kernel_options.grid_div_z) if not kernel_options.block_size_names: kernel_options.block_size_names = util.default_block_size_names threads, grid = util.setup_block_and_grid(kernel_options.problem_size, grid_div, params, kernel_options.block_size_names) if numpy.prod(threads) > self.dev.max_threads: if verbose: print('skipping config', instance_string, 'reason: too many threads per block') return None temp_files = dict() kernel_source = kernel_options.kernel_string if not isinstance(kernel_source, list): kernel_source = [kernel_source] name, kernel_string, temp_files = util.prepare_list_of_files(kernel_options .kernel_name, kernel_source, params, grid, threads, kernel_options. block_size_names) return KernelInstance(name, kernel_string, temp_files, threads, grid, params, kernel_options.arguments)
create_kernel_instance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kernel_options, params, verbose):\n instance_string = util.get_instance_string(params)\n grid_div = (kernel_options.grid_div_x, kernel_options.grid_div_y,\n kernel_options.grid_div_z)\n if not kernel_options.block_size_names:\n kernel_options.block_size_names = util.default_block_size_names\n threads, grid = util.setup_block_and_grid(kernel_options.problem_size,\n grid_div, params, kernel_options.block_size_names)\n if numpy.prod(threads) > self.dev.max_threads:\n if verbose:\n print('skipping config', instance_string,\n 'reason: too many threads per block')\n return None\n temp_files = dict()\n kernel_source = kernel_options.kernel_string\n if not isinstance(kernel_source, list):\n kernel_source = [kernel_source]\n name, kernel_string, temp_files = util.prepare_list_of_files(kernel_options\n .kernel_name, kernel_source, params, grid, threads, kernel_options.\n block_size_names)\n return KernelInstance(name, kernel_string, temp_files, threads, grid,\n params, kernel_options.arguments)\n", "role": "user" }, { "content": "create_kernel_instance", "role": "assistant" } ]
def x(self, func, gpu_args, instance): logging.debug('run_kernel %s', instance.name) logging.debug('thread block dims (%d, %d, %d)', *instance.threads) logging.debug('grid dims (%d, %d, %d)', *instance.grid) try: self.dev.run_kernel(func, gpu_args, instance.threads, instance.grid) except Exception as e: if 'too many resources requested for launch' in str(e ) or 'OUT_OF_RESOURCES' in str(e): logging.debug( 'ignoring runtime failure due to too many resources required') return False else: logging.debug('encountered unexpected runtime failure: ' + str(e)) raise e return True
run_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, gpu_args, instance):\n logging.debug('run_kernel %s', instance.name)\n logging.debug('thread block dims (%d, %d, %d)', *instance.threads)\n logging.debug('grid dims (%d, %d, %d)', *instance.grid)\n try:\n self.dev.run_kernel(func, gpu_args, instance.threads, instance.grid)\n except Exception as e:\n if 'too many resources requested for launch' in str(e\n ) or 'OUT_OF_RESOURCES' in str(e):\n logging.debug(\n 'ignoring runtime failure due to too many resources required')\n return False\n else:\n logging.debug('encountered unexpected runtime failure: ' + str(e))\n raise e\n return True\n", "role": "user" }, { "content": "run_kernel", "role": "assistant" } ]
def x(l, n): for i in range(0, len(l), n): yield l[i:i + n]
chunk_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, n):\n for i in range(0, len(l), n):\n yield l[i:i + n]\n", "role": "user" }, { "content": "chunk_list", "role": "assistant" } ]
def x(self, parameter_space, kernel_options, tuning_options): workflow = self._parameter_sweep(parameter_space, kernel_options, self. device_options, tuning_options) if tuning_options.verbose: with NCDisplay(_error_filter) as display: answer = run_parallel_with_display(workflow, self.max_threads, display) else: answer = run_parallel(workflow, self.max_threads) if answer is None: print('Tuning did not return any results, did an error occur?') return None result = [] for chunk in answer: result += [d for d in chunk if d['time']] return result, {}
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, kernel_options, tuning_options):\n workflow = self._parameter_sweep(parameter_space, kernel_options, self.\n device_options, tuning_options)\n if tuning_options.verbose:\n with NCDisplay(_error_filter) as display:\n answer = run_parallel_with_display(workflow, self.max_threads,\n display)\n else:\n answer = run_parallel(workflow, self.max_threads)\n if answer is None:\n print('Tuning did not return any results, did an error occur?')\n return None\n result = []\n for chunk in answer:\n result += [d for d in chunk if d['time']]\n return result, {}\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, parameter_space, kernel_options, device_options, tuning_options): results = [] parameter_space = list(parameter_space) random.shuffle(parameter_space) work_per_thread = int(numpy.ceil(len(parameter_space) / float(self. max_threads))) chunks = _chunk_list(parameter_space, work_per_thread) for chunk in chunks: chunked_result = self._run_chunk(chunk, kernel_options, device_options, tuning_options) results.append(lift(chunked_result)) return gather(*results)
parameter_sweep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, kernel_options, device_options, tuning_options):\n results = []\n parameter_space = list(parameter_space)\n random.shuffle(parameter_space)\n work_per_thread = int(numpy.ceil(len(parameter_space) / float(self.\n max_threads)))\n chunks = _chunk_list(parameter_space, work_per_thread)\n for chunk in chunks:\n chunked_result = self._run_chunk(chunk, kernel_options,\n device_options, tuning_options)\n results.append(lift(chunked_result))\n return gather(*results)\n", "role": "user" }, { "content": "parameter_sweep", "role": "assistant" } ]
def x(self, chunk, kernel_options, device_options, tuning_options): self.dev = DeviceInterface(kernel_options.kernel_string, iterations= tuning_options.iterations, **device_options) gpu_args = self.dev.ready_argument_list(kernel_options.arguments) results = [] for element in chunk: params = dict(OrderedDict(zip(tuning_options.tune_params.keys(), element))) try: time = self.dev.compile_and_benchmark(gpu_args, params, kernel_options, tuning_options) params['time'] = time results.append(params) except Exception: params['time'] = None results.append(params) return results
run_chunk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chunk, kernel_options, device_options, tuning_options):\n self.dev = DeviceInterface(kernel_options.kernel_string, iterations=\n tuning_options.iterations, **device_options)\n gpu_args = self.dev.ready_argument_list(kernel_options.arguments)\n results = []\n for element in chunk:\n params = dict(OrderedDict(zip(tuning_options.tune_params.keys(),\n element)))\n try:\n time = self.dev.compile_and_benchmark(gpu_args, params,\n kernel_options, tuning_options)\n params['time'] = time\n results.append(params)\n except Exception:\n params['time'] = None\n results.append(params)\n return results\n", "role": "user" }, { "content": "run_chunk", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): tune_params = tuning_options.tune_params parameter_space = itertools.product(*tune_params.values()) if tuning_options.restrictions is not None: parameter_space = filter(lambda p: util.check_restrictions( tuning_options.restrictions, p, tune_params.keys(), tuning_options.verbose), parameter_space) parameter_space = numpy.array(list(parameter_space)) size = len(parameter_space) fraction = int(numpy.ceil(size * float(tuning_options.sample_fraction))) sample_indices = numpy.random.choice(range(size), size=fraction, replace=False) parameter_space = parameter_space[sample_indices] results, env = runner.run(parameter_space, kernel_options, tuning_options) return results, env
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n tune_params = tuning_options.tune_params\n parameter_space = itertools.product(*tune_params.values())\n if tuning_options.restrictions is not None:\n parameter_space = filter(lambda p: util.check_restrictions(\n tuning_options.restrictions, p, tune_params.keys(),\n tuning_options.verbose), parameter_space)\n parameter_space = numpy.array(list(parameter_space))\n size = len(parameter_space)\n fraction = int(numpy.ceil(size * float(tuning_options.sample_fraction)))\n sample_indices = numpy.random.choice(range(size), size=fraction,\n replace=False)\n parameter_space = parameter_space[sample_indices]\n results, env = runner.run(parameter_space, kernel_options, tuning_options)\n return results, env\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(dtype, kernel_argument, i): types_map = {'uint8': ['uchar', 'unsigned char', 'uint8_t'], 'int8': [ 'char', 'int8_t'], 'uint16': ['ushort', 'unsigned short', 'uint16_t'], 'int16': ['short', 'int16_t'], 'uint32': ['uint', 'unsigned int', 'uint32_t'], 'int32': ['int', 'int32_t'], 'uint64': ['ulong', 'unsigned long', 'uint64_t'], 'int64': ['long', 'int64_t' ], 'float16': ['half'], 'float32': ['float'], 'float64': ['double']} if dtype in types_map: return any([(substr in kernel_argument) for substr in types_map[dtype]] ) else: return False
check_argument_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dtype, kernel_argument, i):\n types_map = {'uint8': ['uchar', 'unsigned char', 'uint8_t'], 'int8': [\n 'char', 'int8_t'], 'uint16': ['ushort', 'unsigned short',\n 'uint16_t'], 'int16': ['short', 'int16_t'], 'uint32': ['uint',\n 'unsigned int', 'uint32_t'], 'int32': ['int', 'int32_t'], 'uint64':\n ['ulong', 'unsigned long', 'uint64_t'], 'int64': ['long', 'int64_t'\n ], 'float16': ['half'], 'float32': ['float'], 'float64': ['double']}\n if dtype in types_map:\n return any([(substr in kernel_argument) for substr in types_map[dtype]]\n )\n else:\n return False\n", "role": "user" }, { "content": "check_argument_type", "role": "assistant" } ]
def x(kernel_name, kernel_string, args): kernel_arguments = list() collected_errors = list() for iterator in re.finditer(kernel_name + '[ \n\t]*' + '\\(', kernel_string ): kernel_start = iterator.end() kernel_end = kernel_string.find(')', kernel_start) if kernel_start != 0: kernel_arguments.append(kernel_string[kernel_start:kernel_end]. split(',')) for arguments_set, arguments in enumerate(kernel_arguments): collected_errors.append(list()) if len(arguments) != len(args): collected_errors[arguments_set].append( 'Kernel and host argument lists do not match in size.') continue for i, arg in enumerate(args): kernel_argument = arguments[i] if not isinstance(arg, (numpy.ndarray, numpy.generic)): raise TypeError('Argument at position ' + str(i) + ' of type: ' + str(type(arg)) + ' should be of type numpy.ndarray or numpy scalar') correct = True if isinstance(arg, numpy.ndarray) and not '*' in kernel_argument: correct = False if correct and check_argument_type(str(arg.dtype), kernel_argument, i): continue collected_errors[arguments_set].append('Argument at position ' + str(i) + ' of dtype: ' + str(arg.dtype) + ' does not match ' + kernel_argument + '.') if not collected_errors[arguments_set]: return for errors in collected_errors: warnings.warn(errors[0], UserWarning)
check_argument_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel_name, kernel_string, args):\n kernel_arguments = list()\n collected_errors = list()\n for iterator in re.finditer(kernel_name + '[ \\n\\t]*' + '\\\\(', kernel_string\n ):\n kernel_start = iterator.end()\n kernel_end = kernel_string.find(')', kernel_start)\n if kernel_start != 0:\n kernel_arguments.append(kernel_string[kernel_start:kernel_end].\n split(','))\n for arguments_set, arguments in enumerate(kernel_arguments):\n collected_errors.append(list())\n if len(arguments) != len(args):\n collected_errors[arguments_set].append(\n 'Kernel and host argument lists do not match in size.')\n continue\n for i, arg in enumerate(args):\n kernel_argument = arguments[i]\n if not isinstance(arg, (numpy.ndarray, numpy.generic)):\n raise TypeError('Argument at position ' + str(i) +\n ' of type: ' + str(type(arg)) +\n ' should be of type numpy.ndarray or numpy scalar')\n correct = True\n if isinstance(arg, numpy.ndarray) and not '*' in kernel_argument:\n correct = False\n if correct and check_argument_type(str(arg.dtype),\n kernel_argument, i):\n continue\n collected_errors[arguments_set].append('Argument at position ' +\n str(i) + ' of dtype: ' + str(arg.dtype) +\n ' does not match ' + kernel_argument + '.')\n if not collected_errors[arguments_set]:\n return\n for errors in collected_errors:\n warnings.warn(errors[0], UserWarning)\n", "role": "user" }, { "content": "check_argument_list", "role": "assistant" } ]
def x(tune_params): forbidden_names = 'grid_size_x', 'grid_size_y', 'grid_size_z' forbidden_name_substr = 'time', 'times' for name, param in tune_params.items(): if name in forbidden_names: raise ValueError('Tune parameter ' + name + ' with value ' + str(param) + ' has a forbidden name!') for forbidden_substr in forbidden_name_substr: if forbidden_substr in name: raise ValueError('Tune parameter ' + name + ' with value ' + str(param) + ' has a forbidden name: not allowed to use ' + forbidden_substr + ' in tune parameter names!')
check_tune_params_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tune_params):\n forbidden_names = 'grid_size_x', 'grid_size_y', 'grid_size_z'\n forbidden_name_substr = 'time', 'times'\n for name, param in tune_params.items():\n if name in forbidden_names:\n raise ValueError('Tune parameter ' + name + ' with value ' +\n str(param) + ' has a forbidden name!')\n for forbidden_substr in forbidden_name_substr:\n if forbidden_substr in name:\n raise ValueError('Tune parameter ' + name + ' with value ' +\n str(param) +\n ' has a forbidden name: not allowed to use ' +\n forbidden_substr + ' in tune parameter names!')\n", "role": "user" }, { "content": "check_tune_params_list", "role": "assistant" } ]
def x(restrictions, element, keys, verbose): params = OrderedDict(zip(keys, element)) for restrict in restrictions: if not eval(replace_param_occurrences(restrict, params)): if verbose: print('skipping config', get_instance_string(params), 'reason: config fails restriction') return False return True
check_restrictions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(restrictions, element, keys, verbose):\n params = OrderedDict(zip(keys, element))\n for restrict in restrictions:\n if not eval(replace_param_occurrences(restrict, params)):\n if verbose:\n print('skipping config', get_instance_string(params),\n 'reason: config fails restriction')\n return False\n return True\n", "role": "user" }, { "content": "check_restrictions", "role": "assistant" } ]
def x(lang, kernel_source): if lang is None: if callable(kernel_source): raise TypeError( 'Please specify language when using a code generator function') kernel_string = get_kernel_string(kernel_source) if '__global__' in kernel_string: lang = 'CUDA' elif '__kernel' in kernel_string: lang = 'OpenCL' else: lang = 'C' return lang
detect_language
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lang, kernel_source):\n if lang is None:\n if callable(kernel_source):\n raise TypeError(\n 'Please specify language when using a code generator function')\n kernel_string = get_kernel_string(kernel_source)\n if '__global__' in kernel_string:\n lang = 'CUDA'\n elif '__kernel' in kernel_string:\n lang = 'OpenCL'\n else:\n lang = 'C'\n return lang\n", "role": "user" }, { "content": "detect_language", "role": "assistant" } ]
def x(params, units=None): compact_str_items = [] for k, v in params.items(): unit = '' if isinstance(units, dict): unit = units.get(k, '') compact_str_items.append(k + '=' + str(v) + unit) compact_str = ', '.join(compact_str_items) return compact_str
get_config_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, units=None):\n compact_str_items = []\n for k, v in params.items():\n unit = ''\n if isinstance(units, dict):\n unit = units.get(k, '')\n compact_str_items.append(k + '=' + str(v) + unit)\n compact_str = ', '.join(compact_str_items)\n return compact_str\n", "role": "user" }, { "content": "get_config_string", "role": "assistant" } ]
def x(current_problem_size, params, grid_div, block_size_names): def x(divisor_list, default, params): if divisor_list is None: if default in params: divisor_list = [default] else: return 1 return numpy.prod([int(eval(replace_param_occurrences(s, params))) for s in divisor_list]) divisors = [get_dimension_divisor(d, block_size_names[i], params) for i, d in enumerate(grid_div)] return tuple(int(numpy.ceil(float(current_problem_size[i]) / float(d))) for i, d in enumerate(divisors))
get_grid_dimensions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(current_problem_size, params, grid_div, block_size_names):\n\n def x(divisor_list, default, params):\n if divisor_list is None:\n if default in params:\n divisor_list = [default]\n else:\n return 1\n return numpy.prod([int(eval(replace_param_occurrences(s, params))) for\n s in divisor_list])\n divisors = [get_dimension_divisor(d, block_size_names[i], params) for i,\n d in enumerate(grid_div)]\n return tuple(int(numpy.ceil(float(current_problem_size[i]) / float(d))) for\n i, d in enumerate(divisors))\n", "role": "user" }, { "content": "get_grid_dimensions", "role": "assistant" } ]
def x(kernel_source, params=None): logging.debug('get_kernel_string called') kernel_string = None if callable(kernel_source): kernel_string = kernel_source(params) elif isinstance(kernel_source, str): if looks_like_a_filename(kernel_source): kernel_string = read_file(kernel_source) or kernel_source else: kernel_string = kernel_source else: raise TypeError( 'Error kernel_source is not a string nor a callable function') return kernel_string
get_kernel_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel_source, params=None):\n logging.debug('get_kernel_string called')\n kernel_string = None\n if callable(kernel_source):\n kernel_string = kernel_source(params)\n elif isinstance(kernel_source, str):\n if looks_like_a_filename(kernel_source):\n kernel_string = read_file(kernel_source) or kernel_source\n else:\n kernel_string = kernel_source\n else:\n raise TypeError(\n 'Error kernel_source is not a string nor a callable function')\n return kernel_string\n", "role": "user" }, { "content": "get_kernel_string", "role": "assistant" } ]
def x(problem_size, params): if isinstance(problem_size, (str, int, numpy.integer)): problem_size = problem_size, current_problem_size = [1, 1, 1] for i, s in enumerate(problem_size): if isinstance(s, str): current_problem_size[i] = int(eval(replace_param_occurrences(s, params))) elif isinstance(s, (int, numpy.integer)): current_problem_size[i] = s else: raise TypeError( 'Error: problem_size should only contain strings or integers') return current_problem_size
get_problem_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(problem_size, params):\n if isinstance(problem_size, (str, int, numpy.integer)):\n problem_size = problem_size,\n current_problem_size = [1, 1, 1]\n for i, s in enumerate(problem_size):\n if isinstance(s, str):\n current_problem_size[i] = int(eval(replace_param_occurrences(s,\n params)))\n elif isinstance(s, (int, numpy.integer)):\n current_problem_size[i] = s\n else:\n raise TypeError(\n 'Error: problem_size should only contain strings or integers')\n return current_problem_size\n", "role": "user" }, { "content": "get_problem_size", "role": "assistant" } ]
def x(suffix=None): file = tempfile.mkstemp(suffix=suffix or '', prefix='temp_', dir=os. getcwd()) os.close(file[0]) return file[1]
get_temp_filename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(suffix=None):\n file = tempfile.mkstemp(suffix=suffix or '', prefix='temp_', dir=os.\n getcwd())\n os.close(file[0])\n return file[1]\n", "role": "user" }, { "content": "get_temp_filename", "role": "assistant" } ]
def x(params, block_size_names=None): if not block_size_names: block_size_names = default_block_size_names block_size_x = params.get(block_size_names[0], 256) block_size_y = params.get(block_size_names[1], 1) block_size_z = params.get(block_size_names[2], 1) return int(block_size_x), int(block_size_y), int(block_size_z)
get_thread_block_dimensions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, block_size_names=None):\n if not block_size_names:\n block_size_names = default_block_size_names\n block_size_x = params.get(block_size_names[0], 256)\n block_size_y = params.get(block_size_names[1], 1)\n block_size_z = params.get(block_size_names[2], 1)\n return int(block_size_x), int(block_size_y), int(block_size_z)\n", "role": "user" }, { "content": "get_thread_block_dimensions", "role": "assistant" } ]
def x(kernel_source): logging.debug('looks_like_a_filename called') result = False if isinstance(kernel_source, str): result = True if len(kernel_source) > 250: result = False for c in '();{}\\': if c in kernel_source: result = False for s in ['__global__ ', '__kernel ', 'void ', 'float ']: if s in kernel_source: result = False result = result and any([(s in kernel_source) for s in ('.c', '.opencl', '.F')]) logging.debug('kernel_source is a filename: %s' % str(result)) return result
looks_like_a_filename
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel_source):\n logging.debug('looks_like_a_filename called')\n result = False\n if isinstance(kernel_source, str):\n result = True\n if len(kernel_source) > 250:\n result = False\n for c in '();{}\\\\':\n if c in kernel_source:\n result = False\n for s in ['__global__ ', '__kernel ', 'void ', 'float ']:\n if s in kernel_source:\n result = False\n result = result and any([(s in kernel_source) for s in ('.c',\n '.opencl', '.F')])\n logging.debug('kernel_source is a filename: %s' % str(result))\n return result\n", "role": "user" }, { "content": "looks_like_a_filename", "role": "assistant" } ]
def x(kernel_name, kernel_string, params, grid, threads, block_size_names): logging.debug('prepare_kernel_string called for %s', kernel_name) grid_dim_names = ['grid_size_x', 'grid_size_y', 'grid_size_z'] for i, g in enumerate(grid): kernel_string = '#define ' + grid_dim_names[i] + ' ' + str(g ) + '\n' + kernel_string for i, g in enumerate(threads): kernel_string = '#define ' + block_size_names[i] + ' ' + str(g ) + '\n' + kernel_string for k, v in params.items(): if k not in block_size_names: kernel_string = '#define ' + k + ' ' + str(v ) + '\n' + kernel_string name = kernel_name return name, kernel_string
prepare_kernel_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel_name, kernel_string, params, grid, threads, block_size_names):\n logging.debug('prepare_kernel_string called for %s', kernel_name)\n grid_dim_names = ['grid_size_x', 'grid_size_y', 'grid_size_z']\n for i, g in enumerate(grid):\n kernel_string = '#define ' + grid_dim_names[i] + ' ' + str(g\n ) + '\\n' + kernel_string\n for i, g in enumerate(threads):\n kernel_string = '#define ' + block_size_names[i] + ' ' + str(g\n ) + '\\n' + kernel_string\n for k, v in params.items():\n if k not in block_size_names:\n kernel_string = '#define ' + k + ' ' + str(v\n ) + '\\n' + kernel_string\n name = kernel_name\n return name, kernel_string\n", "role": "user" }, { "content": "prepare_kernel_string", "role": "assistant" } ]
def x(kernel_name, kernel_file_list, params, grid, threads, block_size_names): temp_files = dict() kernel_string = get_kernel_string(kernel_file_list[0], params) name, kernel_string = prepare_kernel_string(kernel_name, kernel_string, params, grid, threads, block_size_names) if len(kernel_file_list) > 1: for f in kernel_file_list[1:]: temp_file = get_temp_filename(suffix='.' + f.split('.')[-1]) temp_files[f] = temp_file _, temp_file_string = prepare_kernel_string(kernel_name, get_kernel_string(f, params), params, grid, threads, block_size_names) write_file(temp_file, temp_file_string) kernel_string = kernel_string.replace(f, temp_file) return name, kernel_string, temp_files
prepare_list_of_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kernel_name, kernel_file_list, params, grid, threads, block_size_names):\n temp_files = dict()\n kernel_string = get_kernel_string(kernel_file_list[0], params)\n name, kernel_string = prepare_kernel_string(kernel_name, kernel_string,\n params, grid, threads, block_size_names)\n if len(kernel_file_list) > 1:\n for f in kernel_file_list[1:]:\n temp_file = get_temp_filename(suffix='.' + f.split('.')[-1])\n temp_files[f] = temp_file\n _, temp_file_string = prepare_kernel_string(kernel_name,\n get_kernel_string(f, params), params, grid, threads,\n block_size_names)\n write_file(temp_file, temp_file_string)\n kernel_string = kernel_string.replace(f, temp_file)\n return name, kernel_string, temp_files\n", "role": "user" }, { "content": "prepare_list_of_files", "role": "assistant" } ]
def x(filename): if os.path.isfile(filename): with open(filename, 'r') as f: return f.read()
read_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n if os.path.isfile(filename):\n with open(filename, 'r') as f:\n return f.read()\n", "role": "user" }, { "content": "read_file", "role": "assistant" } ]
def x(string, params): for k, v in params.items(): string = string.replace(k, str(v)) return string
replace_param_occurrences
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, params):\n for k, v in params.items():\n string = string.replace(k, str(v))\n return string\n", "role": "user" }, { "content": "replace_param_occurrences", "role": "assistant" } ]
def x(problem_size, grid_div, params, block_size_names=None): threads = get_thread_block_dimensions(params, block_size_names) current_problem_size = get_problem_size(problem_size, params) grid = get_grid_dimensions(current_problem_size, params, grid_div, block_size_names) return threads, grid
setup_block_and_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(problem_size, grid_div, params, block_size_names=None):\n threads = get_thread_block_dimensions(params, block_size_names)\n current_problem_size = get_problem_size(problem_size, params)\n grid = get_grid_dimensions(current_problem_size, params, grid_div,\n block_size_names)\n return threads, grid\n", "role": "user" }, { "content": "setup_block_and_grid", "role": "assistant" } ]
def x(filename, string): import sys if sys.version_info[0] >= 3: with open(filename, 'w', encoding='utf-8') as f: f.write(string) else: with open(filename, 'w') as f: f.write(string.encode('utf-8'))
write_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, string):\n import sys\n if sys.version_info[0] >= 3:\n with open(filename, 'w', encoding='utf-8') as f:\n f.write(string)\n else:\n with open(filename, 'w') as f:\n f.write(string.encode('utf-8'))\n", "role": "user" }, { "content": "write_file", "role": "assistant" } ]
def x(self, arguments): gpu_args = [] for arg in arguments: if isinstance(arg, numpy.ndarray): gpu_args.append(cl.Buffer(self.ctx, self.mf.READ_WRITE | self. mf.COPY_HOST_PTR, hostbuf=arg)) else: gpu_args.append(arg) return gpu_args
ready_argument_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arguments):\n gpu_args = []\n for arg in arguments:\n if isinstance(arg, numpy.ndarray):\n gpu_args.append(cl.Buffer(self.ctx, self.mf.READ_WRITE | self.\n mf.COPY_HOST_PTR, hostbuf=arg))\n else:\n gpu_args.append(arg)\n return gpu_args\n", "role": "user" }, { "content": "ready_argument_list", "role": "assistant" } ]
def x(self, kernel_name, kernel_string): prg = cl.Program(self.ctx, kernel_string).build(options=self. compiler_options) func = getattr(prg, kernel_name) return func
compile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kernel_name, kernel_string):\n prg = cl.Program(self.ctx, kernel_string).build(options=self.\n compiler_options)\n func = getattr(prg, kernel_name)\n return func\n", "role": "user" }, { "content": "compile", "role": "assistant" } ]
def x(self, func, gpu_args, threads, grid, times): global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2 ] * threads[2] local_size = threads time = [] for _ in range(self.iterations): event = func(self.queue, global_size, local_size, *gpu_args) event.wait() time.append((event.profile.end - event.profile.start) * 1e-06) time = sorted(time) if times: return time elif self.iterations > 4: return numpy.mean(time[1:-1]) else: return numpy.mean(time)
benchmark
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, gpu_args, threads, grid, times):\n global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2\n ] * threads[2]\n local_size = threads\n time = []\n for _ in range(self.iterations):\n event = func(self.queue, global_size, local_size, *gpu_args)\n event.wait()\n time.append((event.profile.end - event.profile.start) * 1e-06)\n time = sorted(time)\n if times:\n return time\n elif self.iterations > 4:\n return numpy.mean(time[1:-1])\n else:\n return numpy.mean(time)\n", "role": "user" }, { "content": "benchmark", "role": "assistant" } ]
def x(self, func, gpu_args, threads, grid): global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2 ] * threads[2] local_size = threads event = func(self.queue, global_size, local_size, *gpu_args) event.wait()
run_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, gpu_args, threads, grid):\n global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2\n ] * threads[2]\n local_size = threads\n event = func(self.queue, global_size, local_size, *gpu_args)\n event.wait()\n", "role": "user" }, { "content": "run_kernel", "role": "assistant" } ]
def x(self, buffer, value, size): if isinstance(buffer, cl.Buffer): try: cl.enqueue_fill_buffer(self.queue, buffer, numpy.uint32(value), 0, size) except AttributeError: src = numpy.zeros(size, dtype='uint8') + numpy.uint8(value) cl.enqueue_copy(self.queue, buffer, src)
memset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, buffer, value, size):\n if isinstance(buffer, cl.Buffer):\n try:\n cl.enqueue_fill_buffer(self.queue, buffer, numpy.uint32(value),\n 0, size)\n except AttributeError:\n src = numpy.zeros(size, dtype='uint8') + numpy.uint8(value)\n cl.enqueue_copy(self.queue, buffer, src)\n", "role": "user" }, { "content": "memset", "role": "assistant" } ]
def x(self, dest, src): if isinstance(src, cl.Buffer): cl.enqueue_copy(self.queue, dest, src)
memcpy_dtoh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dest, src):\n if isinstance(src, cl.Buffer):\n cl.enqueue_copy(self.queue, dest, src)\n", "role": "user" }, { "content": "memcpy_dtoh", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): results = [] cache = {} tuning_options['scaling'] = False bounds = get_bounds(tuning_options.tune_params) args = kernel_options, tuning_options, runner, results, cache opt_result = differential_evolution(_cost_func, bounds, args, maxiter=1, polish=False, disp=tuning_options.verbose) if tuning_options.verbose: print(opt_result.message) return results, runner.dev.get_environment()
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = False\n bounds = get_bounds(tuning_options.tune_params)\n args = kernel_options, tuning_options, runner, results, cache\n opt_result = differential_evolution(_cost_func, bounds, args, maxiter=1,\n polish=False, disp=tuning_options.verbose)\n if tuning_options.verbose:\n print(opt_result.message)\n return results, runner.dev.get_environment()\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): results = [] cache = {} tuning_options['scaling'] = True bounds, _, _ = get_bounds_x0_eps(tuning_options) args = kernel_options, tuning_options, runner, results, cache num_particles = 20 maxiter = 100 best_time_global = 1e+20 best_position_global = [] swarm = [] for i in range(0, num_particles): swarm.append(Particle(bounds, args)) for i in range(maxiter): if tuning_options.verbose: print('start iteration ', i, 'best time global', best_time_global) for j in range(num_particles): swarm[j].evaluate(_cost_func) if swarm[j].time <= best_time_global: best_position_global = swarm[j].position best_time_global = swarm[j].time for j in range(0, num_particles): swarm[j].update_velocity(best_position_global) swarm[j].update_position(bounds) if tuning_options.verbose: print('Final result:') print(best_position_global) print(best_time_global) return results, runner.dev.get_environment()
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = True\n bounds, _, _ = get_bounds_x0_eps(tuning_options)\n args = kernel_options, tuning_options, runner, results, cache\n num_particles = 20\n maxiter = 100\n best_time_global = 1e+20\n best_position_global = []\n swarm = []\n for i in range(0, num_particles):\n swarm.append(Particle(bounds, args))\n for i in range(maxiter):\n if tuning_options.verbose:\n print('start iteration ', i, 'best time global', best_time_global)\n for j in range(num_particles):\n swarm[j].evaluate(_cost_func)\n if swarm[j].time <= best_time_global:\n best_position_global = swarm[j].position\n best_time_global = swarm[j].time\n for j in range(0, num_particles):\n swarm[j].update_velocity(best_position_global)\n swarm[j].update_position(bounds)\n if tuning_options.verbose:\n print('Final result:')\n print(best_position_global)\n print(best_time_global)\n return results, runner.dev.get_environment()\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): dna_size = len(tuning_options.tune_params.keys()) pop_size = 20 generations = 100 tuning_options['scaling'] = False tune_params = tuning_options.tune_params population = random_population(dna_size, pop_size, tune_params) best_time = 1e+20 all_results = [] cache = {} for generation in range(generations): if tuning_options.verbose: print('Generation %d, best_time %f' % (generation, best_time)) weighted_population = [] for dna in population: time = _cost_func(dna, kernel_options, tuning_options, runner, all_results, cache) weighted_population.append((dna, time)) population = [] if tuning_options.verbose and all_results: best_time = min(all_results, key=lambda x: x['time'])['time'] weighted_population.sort(key=lambda x: x[1]) for _ in range(pop_size // 2): ind1 = weighted_choice(weighted_population) ind2 = weighted_choice(weighted_population) ind1, ind2 = crossover(ind1, ind2) population.append(mutate(ind1, dna_size, tune_params)) population.append(mutate(ind2, dna_size, tune_params)) return all_results, runner.dev.get_environment()
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n dna_size = len(tuning_options.tune_params.keys())\n pop_size = 20\n generations = 100\n tuning_options['scaling'] = False\n tune_params = tuning_options.tune_params\n population = random_population(dna_size, pop_size, tune_params)\n best_time = 1e+20\n all_results = []\n cache = {}\n for generation in range(generations):\n if tuning_options.verbose:\n print('Generation %d, best_time %f' % (generation, best_time))\n weighted_population = []\n for dna in population:\n time = _cost_func(dna, kernel_options, tuning_options, runner,\n all_results, cache)\n weighted_population.append((dna, time))\n population = []\n if tuning_options.verbose and all_results:\n best_time = min(all_results, key=lambda x: x['time'])['time']\n weighted_population.sort(key=lambda x: x[1])\n for _ in range(pop_size // 2):\n ind1 = weighted_choice(weighted_population)\n ind2 = weighted_choice(weighted_population)\n ind1, ind2 = crossover(ind1, ind2)\n population.append(mutate(ind1, dna_size, tune_params))\n population.append(mutate(ind2, dna_size, tune_params))\n return all_results, runner.dev.get_environment()\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(population): random_number = random.betavariate(1, 2.5) ind = int(random_number * len(population)) ind = min(max(ind, 0), len(population) - 1) return population[ind][0]
weighted_choice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(population):\n random_number = random.betavariate(1, 2.5)\n ind = int(random_number * len(population))\n ind = min(max(ind, 0), len(population) - 1)\n return population[ind][0]\n", "role": "user" }, { "content": "weighted_choice", "role": "assistant" } ]
def x(dna_size, pop_size, tune_params): population = [] for _ in range(pop_size): dna = [] for i in range(dna_size): dna.append(random_val(i, tune_params)) population.append(dna) return population
random_population
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dna_size, pop_size, tune_params):\n population = []\n for _ in range(pop_size):\n dna = []\n for i in range(dna_size):\n dna.append(random_val(i, tune_params))\n population.append(dna)\n return population\n", "role": "user" }, { "content": "random_population", "role": "assistant" } ]
def x(index, tune_params): key = list(tune_params.keys())[index] return random.choice(tune_params[key])
random_val
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(index, tune_params):\n key = list(tune_params.keys())[index]\n return random.choice(tune_params[key])\n", "role": "user" }, { "content": "random_val", "role": "assistant" } ]
def x(dna, dna_size, tune_params): dna_out = [] mutation_chance = 10 for i in range(dna_size): if int(random.random() * mutation_chance) == 1: dna_out.append(random_val(i, tune_params)) else: dna_out.append(dna[i]) return dna_out
mutate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dna, dna_size, tune_params):\n dna_out = []\n mutation_chance = 10\n for i in range(dna_size):\n if int(random.random() * mutation_chance) == 1:\n dna_out.append(random_val(i, tune_params))\n else:\n dna_out.append(dna[i])\n return dna_out\n", "role": "user" }, { "content": "mutate", "role": "assistant" } ]
def x(dna1, dna2): pos = int(random.random() * len(dna1)) if random.random() < 0.5: return dna1[:pos] + dna2[pos:], dna2[:pos] + dna1[pos:] else: return dna2[:pos] + dna1[pos:], dna1[:pos] + dna2[pos:]
crossover
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dna1, dna2):\n pos = int(random.random() * len(dna1))\n if random.random() < 0.5:\n return dna1[:pos] + dna2[pos:], dna2[:pos] + dna1[pos:]\n else:\n return dna2[:pos] + dna1[pos:], dna1[:pos] + dna2[pos:]\n", "role": "user" }, { "content": "crossover", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): results = [] cache = {} method = tuning_options.method tuning_options['scaling'] = True bounds, x0, _ = get_bounds_x0_eps(tuning_options) kwargs = setup_method_arguments(method, bounds) options = setup_method_options(method, tuning_options) if not method in ['TNC']: options['disp'] = tuning_options.verbose args = kernel_options, tuning_options, runner, results, cache opt_result = scipy.optimize.minimize(_cost_func, x0, args=args, method= method, options=options, **kwargs) if tuning_options.verbose: print(opt_result.message) return results, runner.dev.get_environment()
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n method = tuning_options.method\n tuning_options['scaling'] = True\n bounds, x0, _ = get_bounds_x0_eps(tuning_options)\n kwargs = setup_method_arguments(method, bounds)\n options = setup_method_options(method, tuning_options)\n if not method in ['TNC']:\n options['disp'] = tuning_options.verbose\n args = kernel_options, tuning_options, runner, results, cache\n opt_result = scipy.optimize.minimize(_cost_func, x0, args=args, method=\n method, options=options, **kwargs)\n if tuning_options.verbose:\n print(opt_result.message)\n return results, runner.dev.get_environment()\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(x, kernel_options, tuning_options, runner, results, cache): error_time = 1e+20 logging.debug('_cost_func called') logging.debug('x: ' + str(x)) x_key = ','.join([str(i) for i in x]) if x_key in cache: return cache[x_key] if tuning_options.scaling: params = unscale_and_snap_to_nearest(x, tuning_options.tune_params, tuning_options.eps) else: params = snap_to_nearest_config(x, tuning_options.tune_params) logging.debug('params ' + str(params)) x_int = ','.join([str(i) for i in params]) if x_int in cache: return cache[x_int] if tuning_options.restrictions: legal = util.check_restrictions(tuning_options.restrictions, params, tuning_options.tune_params.keys(), tuning_options.verbose) if not legal: cache[x_int] = error_time cache[x_key] = error_time return error_time res, _ = runner.run([params], kernel_options, tuning_options) if res: results.append(res[0]) cache[x_int] = res[0]['time'] cache[x_key] = res[0]['time'] return res[0]['time'] cache[x_int] = error_time cache[x_key] = error_time return error_time
cost_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, kernel_options, tuning_options, runner, results, cache):\n error_time = 1e+20\n logging.debug('_cost_func called')\n logging.debug('x: ' + str(x))\n x_key = ','.join([str(i) for i in x])\n if x_key in cache:\n return cache[x_key]\n if tuning_options.scaling:\n params = unscale_and_snap_to_nearest(x, tuning_options.tune_params,\n tuning_options.eps)\n else:\n params = snap_to_nearest_config(x, tuning_options.tune_params)\n logging.debug('params ' + str(params))\n x_int = ','.join([str(i) for i in params])\n if x_int in cache:\n return cache[x_int]\n if tuning_options.restrictions:\n legal = util.check_restrictions(tuning_options.restrictions, params,\n tuning_options.tune_params.keys(), tuning_options.verbose)\n if not legal:\n cache[x_int] = error_time\n cache[x_key] = error_time\n return error_time\n res, _ = runner.run([params], kernel_options, tuning_options)\n if res:\n results.append(res[0])\n cache[x_int] = res[0]['time']\n cache[x_key] = res[0]['time']\n return res[0]['time']\n cache[x_int] = error_time\n cache[x_key] = error_time\n return error_time\n", "role": "user" }, { "content": "cost_func", "role": "assistant" } ]
def x(tuning_options): values = tuning_options.tune_params.values() if tuning_options.scaling: eps = numpy.amin([(1.0 / len(v)) for v in values]) bounds = [(0, eps * len(v)) for v in values] x0 = [(0.5 * eps * len(v)) for v in values] else: bounds = get_bounds(tuning_options.tune_params) x0 = [((min_v + max_v) / 2.0) for min_v, max_v in bounds] eps = 1000000000.0 for v_list in values: vals = numpy.sort(v_list) eps = min(eps, numpy.amin(numpy.gradient(vals))) tuning_options['eps'] = eps logging.debug('get_bounds_x0_eps called') logging.debug('bounds ' + str(bounds)) logging.debug('x0 ' + str(x0)) logging.debug('eps ' + str(eps)) return bounds, x0, eps
get_bounds_x0_eps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tuning_options):\n values = tuning_options.tune_params.values()\n if tuning_options.scaling:\n eps = numpy.amin([(1.0 / len(v)) for v in values])\n bounds = [(0, eps * len(v)) for v in values]\n x0 = [(0.5 * eps * len(v)) for v in values]\n else:\n bounds = get_bounds(tuning_options.tune_params)\n x0 = [((min_v + max_v) / 2.0) for min_v, max_v in bounds]\n eps = 1000000000.0\n for v_list in values:\n vals = numpy.sort(v_list)\n eps = min(eps, numpy.amin(numpy.gradient(vals)))\n tuning_options['eps'] = eps\n logging.debug('get_bounds_x0_eps called')\n logging.debug('bounds ' + str(bounds))\n logging.debug('x0 ' + str(x0))\n logging.debug('eps ' + str(eps))\n return bounds, x0, eps\n", "role": "user" }, { "content": "get_bounds_x0_eps", "role": "assistant" } ]
def x(tune_params): bounds = [] for values in tune_params.values(): sorted_values = numpy.sort(values) bounds.append((sorted_values[0], sorted_values[-1])) return bounds
get_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tune_params):\n bounds = []\n for values in tune_params.values():\n sorted_values = numpy.sort(values)\n bounds.append((sorted_values[0], sorted_values[-1]))\n return bounds\n", "role": "user" }, { "content": "get_bounds", "role": "assistant" } ]
def x(method, tuning_options): kwargs = {} maxiter = numpy.prod([len(v) for v in tuning_options.tune_params.values()]) kwargs['maxiter'] = maxiter if method in ['Nelder-Mead', 'Powell']: kwargs['maxfev'] = maxiter elif method == 'L-BFGS-B': kwargs['maxfun'] = maxiter if method in ['CG', 'BFGS', 'L-BFGS-B', 'TNC', 'SLSQP']: kwargs['eps'] = tuning_options.eps elif method == 'COBYLA': kwargs['rhobeg'] = tuning_options.eps return kwargs
setup_method_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method, tuning_options):\n kwargs = {}\n maxiter = numpy.prod([len(v) for v in tuning_options.tune_params.values()])\n kwargs['maxiter'] = maxiter\n if method in ['Nelder-Mead', 'Powell']:\n kwargs['maxfev'] = maxiter\n elif method == 'L-BFGS-B':\n kwargs['maxfun'] = maxiter\n if method in ['CG', 'BFGS', 'L-BFGS-B', 'TNC', 'SLSQP']:\n kwargs['eps'] = tuning_options.eps\n elif method == 'COBYLA':\n kwargs['rhobeg'] = tuning_options.eps\n return kwargs\n", "role": "user" }, { "content": "setup_method_options", "role": "assistant" } ]
def x(x, tune_params): params = [] for i, k in enumerate(tune_params.keys()): values = numpy.array(tune_params[k]) idx = numpy.abs(values - x[i]).argmin() params.append(int(values[idx])) return params
snap_to_nearest_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, tune_params):\n params = []\n for i, k in enumerate(tune_params.keys()):\n values = numpy.array(tune_params[k])\n idx = numpy.abs(values - x[i]).argmin()\n params.append(int(values[idx]))\n return params\n", "role": "user" }, { "content": "snap_to_nearest_config", "role": "assistant" } ]
def x(x, tune_params, eps): x_u = [i for i in x] for i, v in enumerate(tune_params.values()): pad = 0.5 * eps linspace = numpy.linspace(pad, eps * len(v) - pad, len(v)) idx = numpy.abs(linspace - x[i]).argmin() idx = min(max(idx, 0), len(v) - 1) x_u[i] = v[idx] return x_u
unscale_and_snap_to_nearest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, tune_params, eps):\n x_u = [i for i in x]\n for i, v in enumerate(tune_params.values()):\n pad = 0.5 * eps\n linspace = numpy.linspace(pad, eps * len(v) - pad, len(v))\n idx = numpy.abs(linspace - x[i]).argmin()\n idx = min(max(idx, 0), len(v) - 1)\n x_u[i] = v[idx]\n return x_u\n", "role": "user" }, { "content": "unscale_and_snap_to_nearest", "role": "assistant" } ]
def x(self, parameter_space, kernel_options, tuning_options): logging.debug('sequential runner started for ' + kernel_options.kernel_name ) results = [] for element in parameter_space: params = OrderedDict(zip(tuning_options.tune_params.keys(), element)) time = self.dev.compile_and_benchmark(self.gpu_args, params, kernel_options, tuning_options) if time is None: logging.debug( 'received time is None, kernel configuration was skipped silently due to compile or runtime failure' ) continue params['time'] = time output_string = get_config_string(params, self.units) logging.debug(output_string) if not self.quiet: print(output_string) results.append(params) return results, self.dev.get_environment()
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, kernel_options, tuning_options):\n logging.debug('sequential runner started for ' + kernel_options.kernel_name\n )\n results = []\n for element in parameter_space:\n params = OrderedDict(zip(tuning_options.tune_params.keys(), element))\n time = self.dev.compile_and_benchmark(self.gpu_args, params,\n kernel_options, tuning_options)\n if time is None:\n logging.debug(\n 'received time is None, kernel configuration was skipped silently due to compile or runtime failure'\n )\n continue\n params['time'] = time\n output_string = get_config_string(params, self.units)\n logging.debug(output_string)\n if not self.quiet:\n print(output_string)\n results.append(params)\n return results, self.dev.get_environment()\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): results = [] cache = {} method = tuning_options.method tuning_options['scaling'] = True bounds, x0, eps = get_bounds_x0_eps(tuning_options) kwargs = setup_method_arguments(method, bounds) options = setup_method_options(method, tuning_options) kwargs['options'] = options args = kernel_options, tuning_options, runner, results, cache minimizer_kwargs = dict(**kwargs) minimizer_kwargs['method'] = method minimizer_kwargs['args'] = args opt_result = scipy.optimize.basinhopping(_cost_func, x0, stepsize=eps, minimizer_kwargs=minimizer_kwargs, disp=tuning_options.verbose) if tuning_options.verbose: print(opt_result.message) return results, runner.dev.get_environment()
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n method = tuning_options.method\n tuning_options['scaling'] = True\n bounds, x0, eps = get_bounds_x0_eps(tuning_options)\n kwargs = setup_method_arguments(method, bounds)\n options = setup_method_options(method, tuning_options)\n kwargs['options'] = options\n args = kernel_options, tuning_options, runner, results, cache\n minimizer_kwargs = dict(**kwargs)\n minimizer_kwargs['method'] = method\n minimizer_kwargs['args'] = args\n opt_result = scipy.optimize.basinhopping(_cost_func, x0, stepsize=eps,\n minimizer_kwargs=minimizer_kwargs, disp=tuning_options.verbose)\n if tuning_options.verbose:\n print(opt_result.message)\n return results, runner.dev.get_environment()\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(n, dtype=numpy.float32): return drv.pagelocked_empty(int(n), dtype, order='C', mem_flags=drv. host_alloc_flags.PORTABLE)
allocate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, dtype=numpy.float32):\n return drv.pagelocked_empty(int(n), dtype, order='C', mem_flags=drv.\n host_alloc_flags.PORTABLE)\n", "role": "user" }, { "content": "allocate", "role": "assistant" } ]
def x(self, arguments): gpu_args = [] for arg in arguments: if isinstance(arg, numpy.ndarray): alloc = drv.mem_alloc(arg.nbytes) self.allocations.append(alloc) gpu_args.append(alloc) drv.memcpy_htod(gpu_args[-1], arg) else: gpu_args.append(arg) return gpu_args
ready_argument_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arguments):\n gpu_args = []\n for arg in arguments:\n if isinstance(arg, numpy.ndarray):\n alloc = drv.mem_alloc(arg.nbytes)\n self.allocations.append(alloc)\n gpu_args.append(alloc)\n drv.memcpy_htod(gpu_args[-1], arg)\n else:\n gpu_args.append(arg)\n return gpu_args\n", "role": "user" }, { "content": "ready_argument_list", "role": "assistant" } ]
def x(self, kernel_name, kernel_string): try: no_extern_c = 'extern "C"' in kernel_string compiler_options = ['-Xcompiler=-Wall'] if self.compiler_options: compiler_options += self.compiler_options self.current_module = self.source_mod(kernel_string, options= compiler_options + ['-e', kernel_name], arch='compute_' + self. cc if self.cc != '00' else None, code='sm_' + self.cc if self. cc != '00' else None, cache_dir=False, no_extern_c=no_extern_c) func = self.current_module.get_function(kernel_name) return func except drv.CompileError as e: if 'uses too much shared data' in e.stderr: raise Exception('uses too much shared data') else: raise e
compile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kernel_name, kernel_string):\n try:\n no_extern_c = 'extern \"C\"' in kernel_string\n compiler_options = ['-Xcompiler=-Wall']\n if self.compiler_options:\n compiler_options += self.compiler_options\n self.current_module = self.source_mod(kernel_string, options=\n compiler_options + ['-e', kernel_name], arch='compute_' + self.\n cc if self.cc != '00' else None, code='sm_' + self.cc if self.\n cc != '00' else None, cache_dir=False, no_extern_c=no_extern_c)\n func = self.current_module.get_function(kernel_name)\n return func\n except drv.CompileError as e:\n if 'uses too much shared data' in e.stderr:\n raise Exception('uses too much shared data')\n else:\n raise e\n", "role": "user" }, { "content": "compile", "role": "assistant" } ]
def x(self, func, gpu_args, threads, grid, times): start = drv.Event() end = drv.Event() time = [] for _ in range(self.iterations): self.context.synchronize() start.record() self.run_kernel(func, gpu_args, threads, grid) end.record() self.context.synchronize() time.append(end.time_since(start)) time = sorted(time) if times: return time elif self.iterations > 4: return numpy.mean(time[1:-1]) else: return numpy.mean(time)
benchmark
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, gpu_args, threads, grid, times):\n start = drv.Event()\n end = drv.Event()\n time = []\n for _ in range(self.iterations):\n self.context.synchronize()\n start.record()\n self.run_kernel(func, gpu_args, threads, grid)\n end.record()\n self.context.synchronize()\n time.append(end.time_since(start))\n time = sorted(time)\n if times:\n return time\n elif self.iterations > 4:\n return numpy.mean(time[1:-1])\n else:\n return numpy.mean(time)\n", "role": "user" }, { "content": "benchmark", "role": "assistant" } ]
def x(self, cmem_args): logging.debug('copy_constant_memory_args called') logging.debug('current module: ' + str(self.current_module)) for k, v in cmem_args.items(): symbol = self.current_module.get_global(k)[0] logging.debug('copying to symbol: ' + str(symbol)) logging.debug('array to be copied: ') logging.debug(v.nbytes) logging.debug(v.dtype) logging.debug(v.flags) drv.memcpy_htod(symbol, v)
copy_constant_memory_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cmem_args):\n logging.debug('copy_constant_memory_args called')\n logging.debug('current module: ' + str(self.current_module))\n for k, v in cmem_args.items():\n symbol = self.current_module.get_global(k)[0]\n logging.debug('copying to symbol: ' + str(symbol))\n logging.debug('array to be copied: ')\n logging.debug(v.nbytes)\n logging.debug(v.dtype)\n logging.debug(v.flags)\n drv.memcpy_htod(symbol, v)\n", "role": "user" }, { "content": "copy_constant_memory_args", "role": "assistant" } ]
def x(self, texmem_args): filter_mode_map = {'point': drv.filter_mode.POINT, 'linear': drv. filter_mode.LINEAR} address_mode_map = {'border': drv.address_mode.BORDER, 'clamp': drv. address_mode.CLAMP, 'mirror': drv.address_mode.MIRROR, 'wrap': drv. address_mode.WRAP} logging.debug('copy_texture_memory_args called') logging.debug('current module: ' + str(self.current_module)) self.texrefs = [] for k, v in texmem_args.items(): tex = self.current_module.get_texref(k) self.texrefs.append(tex) logging.debug('copying to texture: ' + str(k)) if not isinstance(v, dict): data = v else: data = v['array'] logging.debug('texture to be copied: ') logging.debug(data.nbytes) logging.debug(data.dtype) logging.debug(data.flags) drv.matrix_to_texref(data, tex, order='C') if isinstance(v, dict): if 'address_mode' in v and v['address_mode'] is not None: amode = v['address_mode'] if not isinstance(amode, list): amode = [amode] * data.ndim for i, m in enumerate(amode): try: if m is not None: tex.set_address_mode(i, address_mode_map[m]) except KeyError: raise ValueError('Unknown address mode: ' + m) if 'filter_mode' in v and v['filter_mode'] is not None: fmode = v['filter_mode'] try: tex.set_filter_mode(filter_mode_map[fmode]) except KeyError: raise ValueError('Unknown filter mode: ' + fmode) if 'normalized_coordinates' in v and v['normalized_coordinates']: tex.set_flags(tex.get_flags() | drv.TRSF_NORMALIZED_COORDINATES )
copy_texture_memory_args
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, texmem_args):\n filter_mode_map = {'point': drv.filter_mode.POINT, 'linear': drv.\n filter_mode.LINEAR}\n address_mode_map = {'border': drv.address_mode.BORDER, 'clamp': drv.\n address_mode.CLAMP, 'mirror': drv.address_mode.MIRROR, 'wrap': drv.\n address_mode.WRAP}\n logging.debug('copy_texture_memory_args called')\n logging.debug('current module: ' + str(self.current_module))\n self.texrefs = []\n for k, v in texmem_args.items():\n tex = self.current_module.get_texref(k)\n self.texrefs.append(tex)\n logging.debug('copying to texture: ' + str(k))\n if not isinstance(v, dict):\n data = v\n else:\n data = v['array']\n logging.debug('texture to be copied: ')\n logging.debug(data.nbytes)\n logging.debug(data.dtype)\n logging.debug(data.flags)\n drv.matrix_to_texref(data, tex, order='C')\n if isinstance(v, dict):\n if 'address_mode' in v and v['address_mode'] is not None:\n amode = v['address_mode']\n if not isinstance(amode, list):\n amode = [amode] * data.ndim\n for i, m in enumerate(amode):\n try:\n if m is not None:\n tex.set_address_mode(i, address_mode_map[m])\n except KeyError:\n raise ValueError('Unknown address mode: ' + m)\n if 'filter_mode' in v and v['filter_mode'] is not None:\n fmode = v['filter_mode']\n try:\n tex.set_filter_mode(filter_mode_map[fmode])\n except KeyError:\n raise ValueError('Unknown filter mode: ' + fmode)\n if 'normalized_coordinates' in v and v['normalized_coordinates']:\n tex.set_flags(tex.get_flags() | drv.TRSF_NORMALIZED_COORDINATES\n )\n", "role": "user" }, { "content": "copy_texture_memory_args", "role": "assistant" } ]
def x(self, func, gpu_args, threads, grid): func(*gpu_args, block=threads, grid=grid, texrefs=self.texrefs)
run_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, gpu_args, threads, grid):\n func(*gpu_args, block=threads, grid=grid, texrefs=self.texrefs)\n", "role": "user" }, { "content": "run_kernel", "role": "assistant" } ]
def x(self, allocation, value, size): drv.memset_d8(allocation, value, size)
memset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, allocation, value, size):\n drv.memset_d8(allocation, value, size)\n", "role": "user" }, { "content": "memset", "role": "assistant" } ]
def x(self, dest, src): if isinstance(src, drv.DeviceAllocation): drv.memcpy_dtoh(dest, src) else: dest = src
memcpy_dtoh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dest, src):\n if isinstance(src, drv.DeviceAllocation):\n drv.memcpy_dtoh(dest, src)\n else:\n dest = src\n", "role": "user" }, { "content": "memcpy_dtoh", "role": "assistant" } ]
def x(self, dest, src): if isinstance(dest, drv.DeviceAllocation): drv.memcpy_htod(dest, src) else: dest = src
memcpy_htod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dest, src):\n if isinstance(dest, drv.DeviceAllocation):\n drv.memcpy_htod(dest, src)\n else:\n dest = src\n", "role": "user" }, { "content": "memcpy_htod", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): results = [] cache = {} tuning_options['scaling'] = False args = kernel_options, tuning_options, runner, results, cache tune_params = tuning_options.tune_params T = 1.0 T_min = 0.001 alpha = 0.9 niter = 20 pos = [] for i, _ in enumerate(tune_params.keys()): pos.append(random_val(i, tune_params)) old_cost = _cost_func(pos, *args) if tuning_options.verbose: c = 0 while T > T_min: if tuning_options.verbose: print('iteration: ', c, 'T', T, 'cost: ', old_cost) c += 1 for i in range(niter): new_pos = neighbor(pos, tune_params) new_cost = _cost_func(new_pos, *args) ap = acceptance_prob(old_cost, new_cost, T) r = random.random() if ap > r: if tuning_options.verbose: print('new position accepted', new_pos, new_cost, 'old:', pos, old_cost, 'ap', ap, 'r', r, 'T', T) pos = new_pos old_cost = new_cost T = T * alpha return results, runner.dev.get_environment()
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = False\n args = kernel_options, tuning_options, runner, results, cache\n tune_params = tuning_options.tune_params\n T = 1.0\n T_min = 0.001\n alpha = 0.9\n niter = 20\n pos = []\n for i, _ in enumerate(tune_params.keys()):\n pos.append(random_val(i, tune_params))\n old_cost = _cost_func(pos, *args)\n if tuning_options.verbose:\n c = 0\n while T > T_min:\n if tuning_options.verbose:\n print('iteration: ', c, 'T', T, 'cost: ', old_cost)\n c += 1\n for i in range(niter):\n new_pos = neighbor(pos, tune_params)\n new_cost = _cost_func(new_pos, *args)\n ap = acceptance_prob(old_cost, new_cost, T)\n r = random.random()\n if ap > r:\n if tuning_options.verbose:\n print('new position accepted', new_pos, new_cost,\n 'old:', pos, old_cost, 'ap', ap, 'r', r, 'T', T)\n pos = new_pos\n old_cost = new_cost\n T = T * alpha\n return results, runner.dev.get_environment()\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(old_cost, new_cost, T): if old_cost == 1e+20: return 1.0 if new_cost == 1e+20: return 0.0 if new_cost < old_cost: return 1.0 return np.exp((old_cost - new_cost) / old_cost / T)
acceptance_prob
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(old_cost, new_cost, T):\n if old_cost == 1e+20:\n return 1.0\n if new_cost == 1e+20:\n return 0.0\n if new_cost < old_cost:\n return 1.0\n return np.exp((old_cost - new_cost) / old_cost / T)\n", "role": "user" }, { "content": "acceptance_prob", "role": "assistant" } ]
def x(pos, tune_params): size = len(pos) pos_out = [] for i in range(size): key = list(tune_params.keys())[i] values = tune_params[key] if random.random() < 0.2: new_value = random_val(i, tune_params) else: ind = values.index(pos[i]) if random.random() > 0.5: ind += 1 else: ind -= 1 ind = min(max(ind, 0), len(values) - 1) new_value = values[ind] pos_out.append(new_value) return pos_out
neighbor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pos, tune_params):\n size = len(pos)\n pos_out = []\n for i in range(size):\n key = list(tune_params.keys())[i]\n values = tune_params[key]\n if random.random() < 0.2:\n new_value = random_val(i, tune_params)\n else:\n ind = values.index(pos[i])\n if random.random() > 0.5:\n ind += 1\n else:\n ind -= 1\n ind = min(max(ind, 0), len(values) - 1)\n new_value = values[ind]\n pos_out.append(new_value)\n return pos_out\n", "role": "user" }, { "content": "neighbor", "role": "assistant" } ]
def x(runner, kernel_options, device_options, tuning_options): tune_params = tuning_options.tune_params restrictions = tuning_options.restrictions verbose = tuning_options.verbose parameter_space = itertools.product(*tune_params.values()) if restrictions is not None: parameter_space = filter(lambda p: util.check_restrictions( restrictions, p, tune_params.keys(), verbose), parameter_space) results, env = runner.run(parameter_space, kernel_options, tuning_options) return results, env
tune
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(runner, kernel_options, device_options, tuning_options):\n tune_params = tuning_options.tune_params\n restrictions = tuning_options.restrictions\n verbose = tuning_options.verbose\n parameter_space = itertools.product(*tune_params.values())\n if restrictions is not None:\n parameter_space = filter(lambda p: util.check_restrictions(\n restrictions, p, tune_params.keys(), verbose), parameter_space)\n results, env = runner.run(parameter_space, kernel_options, tuning_options)\n return results, env\n", "role": "user" }, { "content": "tune", "role": "assistant" } ]
def x(function_name, kernel_source, args, convert_to_array=None): if convert_to_array and len(args) != len(convert_to_array): raise ValueError('convert_to_array length should be same as args') type_map = {'int8': 'char', 'int16': 'short', 'int32': 'int', 'float32': 'float', 'float64': 'double'} def x(arg): if not str(arg.dtype) in type_map: raise Value( 'only primitive data types are supported by the C++ wrapper') typestring = type_map[str(arg.dtype)] if isinstance(arg, np.ndarray): typestring += ' *' return typestring + ' ' signature = ','.join([(type_str(arg) + 'arg' + str(i)) for i, arg in enumerate(args)]) if not convert_to_array: call_args = ','.join([('arg' + str(i)) for i in range(len(args))]) else: call_args = [] for i, arg in enumerate(args): if convert_to_array[i]: if not isinstance(arg, np.ndarray): ValueError( 'conversion to array reference only supported for arguments that are numpy arrays, use length-1 numpy array to pass a scalar by reference' ) if np.prod(arg.shape) > 1: arg_shape = ''.join('[%d]' % i for i in arg.shape) arg_str = '*reinterpret_cast<' + type_map[str(arg.dtype) ] + '(*)' + arg_shape + '>(arg' + str(i) + ')' else: arg_str = '*arg' + str(i) call_args.append(arg_str) else: call_args.append('arg' + str(i)) call_args_str = ','.join(call_args) kernel_string = util.get_kernel_string(kernel_source) return ( """ %s extern "C" float %s_wrapper(%s) { %s(%s); return 0.0f; }""" % (kernel_string, function_name, signature, function_name, call_args_str))
cpp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(function_name, kernel_source, args, convert_to_array=None):\n if convert_to_array and len(args) != len(convert_to_array):\n raise ValueError('convert_to_array length should be same as args')\n type_map = {'int8': 'char', 'int16': 'short', 'int32': 'int', 'float32':\n 'float', 'float64': 'double'}\n\n def x(arg):\n if not str(arg.dtype) in type_map:\n raise Value(\n 'only primitive data types are supported by the C++ wrapper')\n typestring = type_map[str(arg.dtype)]\n if isinstance(arg, np.ndarray):\n typestring += ' *'\n return typestring + ' '\n signature = ','.join([(type_str(arg) + 'arg' + str(i)) for i, arg in\n enumerate(args)])\n if not convert_to_array:\n call_args = ','.join([('arg' + str(i)) for i in range(len(args))])\n else:\n call_args = []\n for i, arg in enumerate(args):\n if convert_to_array[i]:\n if not isinstance(arg, np.ndarray):\n ValueError(\n 'conversion to array reference only supported for arguments that are numpy arrays, use length-1 numpy array to pass a scalar by reference'\n )\n if np.prod(arg.shape) > 1:\n arg_shape = ''.join('[%d]' % i for i in arg.shape)\n arg_str = '*reinterpret_cast<' + type_map[str(arg.dtype)\n ] + '(*)' + arg_shape + '>(arg' + str(i) + ')'\n else:\n arg_str = '*arg' + str(i)\n call_args.append(arg_str)\n else:\n call_args.append('arg' + str(i))\n call_args_str = ','.join(call_args)\n kernel_string = util.get_kernel_string(kernel_source)\n return (\n \"\"\"\n\n %s\n\n extern \"C\"\n float %s_wrapper(%s) {\n\n %s(%s);\n\n return 0.0f;\n }\"\"\"\n % (kernel_string, function_name, signature, function_name,\n call_args_str))\n", "role": "user" }, { "content": "cpp", "role": "assistant" } ]
def x(self, arguments): ctype_args = [None for _ in arguments] for i, arg in enumerate(arguments): if not isinstance(arg, (numpy.ndarray, numpy.number)): raise TypeError( 'Argument is not numpy ndarray or numpy scalar %s' % type(arg)) dtype_str = str(arg.dtype) data = arg.copy() if isinstance(arg, numpy.ndarray): if dtype_str in dtype_map.keys(): data_ctypes = data.ctypes.data_as(C.POINTER(dtype_map[ dtype_str])) else: raise TypeError('unknown dtype for ndarray') elif isinstance(arg, numpy.generic): data_ctypes = dtype_map[dtype_str](arg) ctype_args[i] = Argument(numpy=data, ctypes=data_ctypes) return ctype_args
ready_argument_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arguments):\n ctype_args = [None for _ in arguments]\n for i, arg in enumerate(arguments):\n if not isinstance(arg, (numpy.ndarray, numpy.number)):\n raise TypeError(\n 'Argument is not numpy ndarray or numpy scalar %s' % type(arg))\n dtype_str = str(arg.dtype)\n data = arg.copy()\n if isinstance(arg, numpy.ndarray):\n if dtype_str in dtype_map.keys():\n data_ctypes = data.ctypes.data_as(C.POINTER(dtype_map[\n dtype_str]))\n else:\n raise TypeError('unknown dtype for ndarray')\n elif isinstance(arg, numpy.generic):\n data_ctypes = dtype_map[dtype_str](arg)\n ctype_args[i] = Argument(numpy=data, ctypes=data_ctypes)\n return ctype_args\n", "role": "user" }, { "content": "ready_argument_list", "role": "assistant" } ]
def x(self, kernel_name, kernel_string): logging.debug('compiling ' + kernel_name) if self.lib != None: self.cleanup_lib() compiler_options = ['-fPIC'] if '#include <omp.h>' in kernel_string or 'use omp_lib' in kernel_string: logging.debug('set using_openmp to true') self.using_openmp = True if self.compiler == 'pgfortran': compiler_options.append('-mp') else: compiler_options.append('-fopenmp') suffix = '.cc' if '#include <cuda' in kernel_string or 'cudaMemcpy' in kernel_string: if self.compiler == 'g++' and self.nvcc_available: self.compiler = 'nvcc' if self.compiler == 'nvcc' and '__global__' in kernel_string: suffix = '.cu' if self.compiler in ['gfortran', 'pgfortran', 'ftn', 'ifort']: suffix = '.F90' if self.compiler == 'nvcc': compiler_options = [('-Xcompiler=' + c) for c in compiler_options] if '.c' in suffix: if not 'extern "C"' in kernel_string: kernel_string = 'extern "C" {\n' + kernel_string + '\n}' if self.compiler_options: compiler_options += self.compiler_options lib_args = [] if 'CL/cl.h' in kernel_string: lib_args = ['-lOpenCL'] logging.debug('using compiler ' + self.compiler) logging.debug('compiler_options ' + ' '.join(compiler_options)) logging.debug('lib_args ' + ' '.join(lib_args)) source_file = get_temp_filename(suffix=suffix) filename = '.'.join(source_file.split('.')[:-1]) match = re.search('\\s*module\\s+([a-zA-Z_]*)', kernel_string) if match: if self.compiler == 'gfortran': kernel_name = '__' + match.group(1) + '_MOD_' + kernel_name elif self.compiler in ['ftn', 'ifort']: kernel_name = match.group(1) + '_mp_' + kernel_name + '_' elif self.compiler == 'pgfortran': kernel_name = match.group(1) + '_' + kernel_name + '_' try: write_file(source_file, kernel_string) lib_extension = '.so' if platform.system() == 'Darwin': lib_extension = '.dylib' subprocess.check_call([self.compiler, '-c', source_file] + compiler_options + ['-o', filename + '.o']) subprocess.check_call([self.compiler, filename + '.o'] + compiler_options + ['-shared', '-o', filename + lib_extension] + lib_args) self.lib = numpy.ctypeslib.load_library(filename, '.') func = getattr(self.lib, kernel_name) func.restype = C.c_float finally: delete_temp_file(source_file) delete_temp_file(filename + '.o') delete_temp_file(filename + '.so') delete_temp_file(filename + '.dylib') return func
compile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kernel_name, kernel_string):\n logging.debug('compiling ' + kernel_name)\n if self.lib != None:\n self.cleanup_lib()\n compiler_options = ['-fPIC']\n if '#include <omp.h>' in kernel_string or 'use omp_lib' in kernel_string:\n logging.debug('set using_openmp to true')\n self.using_openmp = True\n if self.compiler == 'pgfortran':\n compiler_options.append('-mp')\n else:\n compiler_options.append('-fopenmp')\n suffix = '.cc'\n if '#include <cuda' in kernel_string or 'cudaMemcpy' in kernel_string:\n if self.compiler == 'g++' and self.nvcc_available:\n self.compiler = 'nvcc'\n if self.compiler == 'nvcc' and '__global__' in kernel_string:\n suffix = '.cu'\n if self.compiler in ['gfortran', 'pgfortran', 'ftn', 'ifort']:\n suffix = '.F90'\n if self.compiler == 'nvcc':\n compiler_options = [('-Xcompiler=' + c) for c in compiler_options]\n if '.c' in suffix:\n if not 'extern \"C\"' in kernel_string:\n kernel_string = 'extern \"C\" {\\n' + kernel_string + '\\n}'\n if self.compiler_options:\n compiler_options += self.compiler_options\n lib_args = []\n if 'CL/cl.h' in kernel_string:\n lib_args = ['-lOpenCL']\n logging.debug('using compiler ' + self.compiler)\n logging.debug('compiler_options ' + ' '.join(compiler_options))\n logging.debug('lib_args ' + ' '.join(lib_args))\n source_file = get_temp_filename(suffix=suffix)\n filename = '.'.join(source_file.split('.')[:-1])\n match = re.search('\\\\s*module\\\\s+([a-zA-Z_]*)', kernel_string)\n if match:\n if self.compiler == 'gfortran':\n kernel_name = '__' + match.group(1) + '_MOD_' + kernel_name\n elif self.compiler in ['ftn', 'ifort']:\n kernel_name = match.group(1) + '_mp_' + kernel_name + '_'\n elif self.compiler == 'pgfortran':\n kernel_name = match.group(1) + '_' + kernel_name + '_'\n try:\n write_file(source_file, kernel_string)\n lib_extension = '.so'\n if platform.system() == 'Darwin':\n lib_extension = '.dylib'\n subprocess.check_call([self.compiler, '-c', source_file] +\n compiler_options + ['-o', filename + '.o'])\n subprocess.check_call([self.compiler, filename + '.o'] +\n compiler_options + ['-shared', '-o', filename + lib_extension] +\n lib_args)\n self.lib = numpy.ctypeslib.load_library(filename, '.')\n func = getattr(self.lib, kernel_name)\n func.restype = C.c_float\n finally:\n delete_temp_file(source_file)\n delete_temp_file(filename + '.o')\n delete_temp_file(filename + '.so')\n delete_temp_file(filename + '.dylib')\n return func\n", "role": "user" }, { "content": "compile", "role": "assistant" } ]
def x(self, func, c_args, threads, grid, times): time = [] for _ in range(self.iterations): value = self.run_kernel(func, c_args, threads, grid) if value < 0.0: raise Exception('too many resources requested for launch') time.append(value) time = sorted(time) if times: return time elif self.iterations > 4: return numpy.mean(time[1:-1]) else: return numpy.mean(time)
benchmark
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, c_args, threads, grid, times):\n time = []\n for _ in range(self.iterations):\n value = self.run_kernel(func, c_args, threads, grid)\n if value < 0.0:\n raise Exception('too many resources requested for launch')\n time.append(value)\n time = sorted(time)\n if times:\n return time\n elif self.iterations > 4:\n return numpy.mean(time[1:-1])\n else:\n return numpy.mean(time)\n", "role": "user" }, { "content": "benchmark", "role": "assistant" } ]
def x(self, func, c_args, threads, grid): logging.debug('run_kernel') logging.debug('arguments=' + str([str(arg.ctypes) for arg in c_args])) time = func(*[arg.ctypes for arg in c_args]) return time
run_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func, c_args, threads, grid):\n logging.debug('run_kernel')\n logging.debug('arguments=' + str([str(arg.ctypes) for arg in c_args]))\n time = func(*[arg.ctypes for arg in c_args])\n return time\n", "role": "user" }, { "content": "run_kernel", "role": "assistant" } ]
def x(self, allocation, value, size): C.memset(allocation.ctypes, value, size)
memset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, allocation, value, size):\n C.memset(allocation.ctypes, value, size)\n", "role": "user" }, { "content": "memset", "role": "assistant" } ]
def x(self): if not self.using_openmp: logging.debug('unloading shared library') _ctypes.dlclose(self.lib._handle)
cleanup_lib
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.using_openmp:\n logging.debug('unloading shared library')\n _ctypes.dlclose(self.lib._handle)\n", "role": "user" }, { "content": "cleanup_lib", "role": "assistant" } ]
def x(rpc): while True: yield from rpc.notify('clock', str(datetime.datetime.now())) yield from asyncio.sleep(1)
clock
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rpc):\n while True:\n yield from rpc.notify('clock', str(datetime.datetime.now()))\n yield from asyncio.sleep(1)\n", "role": "user" }, { "content": "clock", "role": "assistant" } ]
def x(): global __already_patched if not __already_patched: from django.db import connections connections._connections = local(connections._connections) __already_patched = True
patch_db_connections
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n global __already_patched\n if not __already_patched:\n from django.db import connections\n connections._connections = local(connections._connections)\n __already_patched = True\n", "role": "user" }, { "content": "patch_db_connections", "role": "assistant" } ]
def x(raw_msg): try: msg_data = json.loads(raw_msg) except ValueError: raise RpcParseError if 'jsonrpc' not in msg_data or not msg_data['jsonrpc'] == JSONRPC: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) if not len(set(['error', 'result', 'method']) & set(msg_data)) == 1: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) if 'method' in msg_data: if 'id' in msg_data and msg_data['id'] is not None: msg_type = JsonRpcMsgTyp.REQUEST else: msg_type = JsonRpcMsgTyp.NOTIFICATION elif 'result' in msg_data: msg_type = JsonRpcMsgTyp.RESULT elif 'error' in msg_data: msg_type = JsonRpcMsgTyp.ERROR if msg_type in (JsonRpcMsgTyp.REQUEST, JsonRpcMsgTyp.NOTIFICATION): if type(msg_data['method']) is not str: raise RpcInvalidRequestError if 'params' not in msg_data: msg_data['params'] = None if 'id' not in msg_data: msg_data['id'] = None if msg_type in (JsonRpcMsgTyp.RESULT, JsonRpcMsgTyp.ERROR): if 'id' not in msg_data: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) if msg_type == JsonRpcMsgTyp.ERROR: if type(msg_data['error']) is not dict: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) if not len(set(['code', 'message']) & set(msg_data['error'])) == 2: raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) if not msg_data['error']['code'] in RpcError.lookup_table.keys(): raise RpcInvalidRequestError(msg_id=msg_data.get('id', None)) if 'data' not in msg_data['error']: msg_data['error']['data'] = None return JsonRpcMsg(msg_type, msg_data)
decode_msg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(raw_msg):\n try:\n msg_data = json.loads(raw_msg)\n except ValueError:\n raise RpcParseError\n if 'jsonrpc' not in msg_data or not msg_data['jsonrpc'] == JSONRPC:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if not len(set(['error', 'result', 'method']) & set(msg_data)) == 1:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if 'method' in msg_data:\n if 'id' in msg_data and msg_data['id'] is not None:\n msg_type = JsonRpcMsgTyp.REQUEST\n else:\n msg_type = JsonRpcMsgTyp.NOTIFICATION\n elif 'result' in msg_data:\n msg_type = JsonRpcMsgTyp.RESULT\n elif 'error' in msg_data:\n msg_type = JsonRpcMsgTyp.ERROR\n if msg_type in (JsonRpcMsgTyp.REQUEST, JsonRpcMsgTyp.NOTIFICATION):\n if type(msg_data['method']) is not str:\n raise RpcInvalidRequestError\n if 'params' not in msg_data:\n msg_data['params'] = None\n if 'id' not in msg_data:\n msg_data['id'] = None\n if msg_type in (JsonRpcMsgTyp.RESULT, JsonRpcMsgTyp.ERROR):\n if 'id' not in msg_data:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if msg_type == JsonRpcMsgTyp.ERROR:\n if type(msg_data['error']) is not dict:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if not len(set(['code', 'message']) & set(msg_data['error'])) == 2:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if not msg_data['error']['code'] in RpcError.lookup_table.keys():\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if 'data' not in msg_data['error']:\n msg_data['error']['data'] = None\n return JsonRpcMsg(msg_type, msg_data)\n", "role": "user" }, { "content": "decode_msg", "role": "assistant" } ]
def x(task, kwargs, **kw): from .compat import get_public_schema_name, get_tenant_model old_schema = connection.schema_name, connection.include_public_schema setattr(task, '_old_schema', old_schema) schema = get_schema_name_from_task(task, kwargs) or get_public_schema_name( ) if connection.schema_name == schema: return if connection.schema_name != get_public_schema_name(): connection.set_schema_to_public() if schema == get_public_schema_name(): return tenant = get_tenant_model().objects.get(schema_name=schema) connection.set_tenant(tenant, include_public=True)
switch_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(task, kwargs, **kw):\n from .compat import get_public_schema_name, get_tenant_model\n old_schema = connection.schema_name, connection.include_public_schema\n setattr(task, '_old_schema', old_schema)\n schema = get_schema_name_from_task(task, kwargs) or get_public_schema_name(\n )\n if connection.schema_name == schema:\n return\n if connection.schema_name != get_public_schema_name():\n connection.set_schema_to_public()\n if schema == get_public_schema_name():\n return\n tenant = get_tenant_model().objects.get(schema_name=schema)\n connection.set_tenant(tenant, include_public=True)\n", "role": "user" }, { "content": "switch_schema", "role": "assistant" } ]
def x(task, **kwargs): from .compat import get_public_schema_name schema_name = get_public_schema_name() include_public = True if hasattr(task, '_old_schema'): schema_name, include_public = task._old_schema if connection.schema_name == schema_name: return connection.set_schema(schema_name, include_public=include_public)
restore_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(task, **kwargs):\n from .compat import get_public_schema_name\n schema_name = get_public_schema_name()\n include_public = True\n if hasattr(task, '_old_schema'):\n schema_name, include_public = task._old_schema\n if connection.schema_name == schema_name:\n return\n connection.set_schema(schema_name, include_public=include_public)\n", "role": "user" }, { "content": "restore_schema", "role": "assistant" } ]
def x(G, attrs=_attrs): id_ = attrs['id'] data = {} data['directed'] = G.is_directed() data['graph'] = G.graph data['nodes'] = [dict(chain(G.node[n].items(), [(id_, n)])) for n in G] data['links'] = [] for u, v, timeline in G.interactions_iter(): for t in timeline['t']: for tid in past.builtins.xrange(t[0], t[-1] + 1): data['links'].append({'source': u, 'target': v, 'time': tid}) return data
node_link_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(G, attrs=_attrs):\n id_ = attrs['id']\n data = {}\n data['directed'] = G.is_directed()\n data['graph'] = G.graph\n data['nodes'] = [dict(chain(G.node[n].items(), [(id_, n)])) for n in G]\n data['links'] = []\n for u, v, timeline in G.interactions_iter():\n for t in timeline['t']:\n for tid in past.builtins.xrange(t[0], t[-1] + 1):\n data['links'].append({'source': u, 'target': v, 'time': tid})\n return data\n", "role": "user" }, { "content": "node_link_data", "role": "assistant" } ]
def x(data, directed=False, attrs=_attrs): directed = data.get('directed', directed) graph = dn.DynGraph() if directed: graph = graph.to_directed() id_ = attrs['id'] mapping = [] graph.graph = data.get('graph', {}) c = count() for d in data['nodes']: node = d.get(id_, next(c)) mapping.append(node) nodedata = dict((make_str(k), v) for k, v in d.items() if k != id_) graph.add_node(node, **nodedata) for d in data['links']: graph.add_interaction(d['source'], d['target'], d['time']) return graph
node_link_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, directed=False, attrs=_attrs):\n directed = data.get('directed', directed)\n graph = dn.DynGraph()\n if directed:\n graph = graph.to_directed()\n id_ = attrs['id']\n mapping = []\n graph.graph = data.get('graph', {})\n c = count()\n for d in data['nodes']:\n node = d.get(id_, next(c))\n mapping.append(node)\n nodedata = dict((make_str(k), v) for k, v in d.items() if k != id_)\n graph.add_node(node, **nodedata)\n for d in data['links']:\n graph.add_interaction(d['source'], d['target'], d['time'])\n return graph\n", "role": "user" }, { "content": "node_link_graph", "role": "assistant" } ]
def x(sind_list): tls = sorted(sind_list) conversion = {val: idx for idx, val in enumerate(tls)} return conversion
compact_timeslot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sind_list):\n tls = sorted(sind_list)\n conversion = {val: idx for idx, val in enumerate(tls)}\n return conversion\n", "role": "user" }, { "content": "compact_timeslot", "role": "assistant" } ]