source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
if self._request_d:
log.debug('_do_fetch: Outstanding request: %r', self._request_d)
return
if self._retry_call is not None:
if self._retry_call.active():
self._retry_call.cancel()
self._retry_call = None
if (self._fetch_offset == OFFSET_EARLIEST or self._fetch_offset ==
OFFSET_LATEST):
offset_request = OffsetRequest(self.topic, self.partition, self.
_fetch_offset, 1)
self._request_d = self.client.send_offset_request([offset_request])
self._request_d.addCallbacks(self._handle_offset_response, self.
_handle_offset_error)
elif self._fetch_offset == OFFSET_COMMITTED:
if not self.consumer_group:
failure = Failure(InvalidConsumerGroupError(
'Bad Group_id:{0!r}'.format(self.consumer_group)))
self._start_d.errback(failure)
request = OffsetFetchRequest(self.topic, self.partition)
self._request_d = self.client.send_offset_fetch_request(self.
consumer_group, [request])
self._request_d.addCallbacks(self._handle_offset_response, self.
_handle_offset_error)
else:
request = FetchRequest(self.topic, self.partition, self.
_fetch_offset, self.buffer_size)
self._request_d = self.client.send_fetch_request([request],
max_wait_time=self.fetch_max_wait_time, min_bytes=self.
fetch_min_bytes)
d = self._request_d
d.addCallback(self._handle_fetch_response)
d.addErrback(self._handle_fetch_error)
|
do_fetch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._request_d:\n log.debug('_do_fetch: Outstanding request: %r', self._request_d)\n return\n if self._retry_call is not None:\n if self._retry_call.active():\n self._retry_call.cancel()\n self._retry_call = None\n if (self._fetch_offset == OFFSET_EARLIEST or self._fetch_offset ==\n OFFSET_LATEST):\n offset_request = OffsetRequest(self.topic, self.partition, self.\n _fetch_offset, 1)\n self._request_d = self.client.send_offset_request([offset_request])\n self._request_d.addCallbacks(self._handle_offset_response, self.\n _handle_offset_error)\n elif self._fetch_offset == OFFSET_COMMITTED:\n if not self.consumer_group:\n failure = Failure(InvalidConsumerGroupError(\n 'Bad Group_id:{0!r}'.format(self.consumer_group)))\n self._start_d.errback(failure)\n request = OffsetFetchRequest(self.topic, self.partition)\n self._request_d = self.client.send_offset_fetch_request(self.\n consumer_group, [request])\n self._request_d.addCallbacks(self._handle_offset_response, self.\n _handle_offset_error)\n else:\n request = FetchRequest(self.topic, self.partition, self.\n _fetch_offset, self.buffer_size)\n self._request_d = self.client.send_fetch_request([request],\n max_wait_time=self.fetch_max_wait_time, min_bytes=self.\n fetch_min_bytes)\n d = self._request_d\n d.addCallback(self._handle_fetch_response)\n d.addErrback(self._handle_fetch_error)\n",
"role": "user"
},
{
"content": "do_fetch",
"role": "assistant"
}
] |
def x(self, fail):
log.warning('_commit_timer_failed: uncaught error %r: %s in _auto_commit',
fail, fail.getBriefTraceback())
self._commit_looper_d = self._commit_looper.start(self.
auto_commit_every_s, now=False)
|
commit_timer_failed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fail):\n log.warning('_commit_timer_failed: uncaught error %r: %s in _auto_commit',\n fail, fail.getBriefTraceback())\n self._commit_looper_d = self._commit_looper.start(self.\n auto_commit_every_s, now=False)\n",
"role": "user"
},
{
"content": "commit_timer_failed",
"role": "assistant"
}
] |
def x(self, lCall):
if self._commit_looper is not lCall:
log.warning('_commit_timer_stopped with wrong timer:%s not:%s',
lCall, self._commit_looper)
else:
log.debug('_commit_timer_stopped: %s %s', lCall, self._commit_looper)
self._commit_looper = None
self._commit_looper_d = None
|
commit_timer_stopped
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lCall):\n if self._commit_looper is not lCall:\n log.warning('_commit_timer_stopped with wrong timer:%s not:%s',\n lCall, self._commit_looper)\n else:\n log.debug('_commit_timer_stopped: %s %s', lCall, self._commit_looper)\n self._commit_looper = None\n self._commit_looper_d = None\n",
"role": "user"
},
{
"content": "commit_timer_stopped",
"role": "assistant"
}
] |
def x(byte_array, seed=2538058380):
if not isinstance(byte_array, bytearray):
raise TypeError("Type: %r of 'byte_array' arg must be 'bytearray'",
type(byte_array))
length = len(byte_array)
m = 1540483477
r = 24
mod32bits = 4294967295
h = seed ^ length
length4 = length // 4
for i in range(length4):
i4 = i * 4
k = (byte_array[i4 + 0] & 255) + ((byte_array[i4 + 1] & 255) << 8) + ((
byte_array[i4 + 2] & 255) << 16) + ((byte_array[i4 + 3] & 255) <<
24)
k &= mod32bits
k *= m
k &= mod32bits
k ^= k % 4294967296 >> r
k &= mod32bits
k *= m
k &= mod32bits
h *= m
h &= mod32bits
h ^= k
h &= mod32bits
extra_bytes = length % 4
if extra_bytes == 3:
h ^= (byte_array[(length & ~3) + 2] & 255) << 16
h &= mod32bits
if extra_bytes >= 2:
h ^= (byte_array[(length & ~3) + 1] & 255) << 8
h &= mod32bits
if extra_bytes >= 1:
h ^= byte_array[length & ~3] & 255
h &= mod32bits
h *= m
h &= mod32bits
h ^= h % 4294967296 >> 13
h &= mod32bits
h *= m
h &= mod32bits
h ^= h % 4294967296 >> 15
h &= mod32bits
return h
|
pure_murmur2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(byte_array, seed=2538058380):\n if not isinstance(byte_array, bytearray):\n raise TypeError(\"Type: %r of 'byte_array' arg must be 'bytearray'\",\n type(byte_array))\n length = len(byte_array)\n m = 1540483477\n r = 24\n mod32bits = 4294967295\n h = seed ^ length\n length4 = length // 4\n for i in range(length4):\n i4 = i * 4\n k = (byte_array[i4 + 0] & 255) + ((byte_array[i4 + 1] & 255) << 8) + ((\n byte_array[i4 + 2] & 255) << 16) + ((byte_array[i4 + 3] & 255) <<\n 24)\n k &= mod32bits\n k *= m\n k &= mod32bits\n k ^= k % 4294967296 >> r\n k &= mod32bits\n k *= m\n k &= mod32bits\n h *= m\n h &= mod32bits\n h ^= k\n h &= mod32bits\n extra_bytes = length % 4\n if extra_bytes == 3:\n h ^= (byte_array[(length & ~3) + 2] & 255) << 16\n h &= mod32bits\n if extra_bytes >= 2:\n h ^= (byte_array[(length & ~3) + 1] & 255) << 8\n h &= mod32bits\n if extra_bytes >= 1:\n h ^= byte_array[length & ~3] & 255\n h &= mod32bits\n h *= m\n h &= mod32bits\n h ^= h % 4294967296 >> 13\n h &= mod32bits\n h *= m\n h &= mod32bits\n h ^= h % 4294967296 >> 15\n h &= mod32bits\n return h\n",
"role": "user"
},
{
"content": "pure_murmur2",
"role": "assistant"
}
] |
def x(self, key, partitions):
return partitions[(self._hash(key) & 2147483647) % len(partitions)]
|
partition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, partitions):\n return partitions[(self._hash(key) & 2147483647) % len(partitions)]\n",
"role": "user"
},
{
"content": "partition",
"role": "assistant"
}
] |
def x(payload, xerial_compatible=False, xerial_blocksize=32 * 1024):
if not has_snappy():
raise NotImplementedError('Snappy codec is not available')
if xerial_compatible:
def x():
for i in range(0, len(payload), xerial_blocksize):
yield payload[i:i + xerial_blocksize]
out = BytesIO()
out.write(_XERIAL_HEADER)
for chunk in _chunker():
block = snappy.compress(chunk)
out.write(struct.pack('!i', len(block)))
out.write(block)
out.seek(0)
return out.read()
else:
return snappy.compress(payload)
|
snappy_encode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(payload, xerial_compatible=False, xerial_blocksize=32 * 1024):\n if not has_snappy():\n raise NotImplementedError('Snappy codec is not available')\n if xerial_compatible:\n\n def x():\n for i in range(0, len(payload), xerial_blocksize):\n yield payload[i:i + xerial_blocksize]\n out = BytesIO()\n out.write(_XERIAL_HEADER)\n for chunk in _chunker():\n block = snappy.compress(chunk)\n out.write(struct.pack('!i', len(block)))\n out.write(block)\n out.seek(0)\n return out.read()\n else:\n return snappy.compress(payload)\n",
"role": "user"
},
{
"content": "snappy_encode",
"role": "assistant"
}
] |
def x(self):
if not hasattr(self, '_info_cache'):
encoding_backend = get_backend()
try:
path = os.path.abspath(self.path)
except AttributeError:
path = os.path.abspath(self.name)
self._info_cache = encoding_backend.get_media_info(path)
return self._info_cache
|
get_video_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not hasattr(self, '_info_cache'):\n encoding_backend = get_backend()\n try:\n path = os.path.abspath(self.path)\n except AttributeError:\n path = os.path.abspath(self.name)\n self._info_cache = encoding_backend.get_media_info(path)\n return self._info_cache\n",
"role": "user"
},
{
"content": "get_video_info",
"role": "assistant"
}
] |
def x(self, source_path, target_path, params):
total_time = self.get_media_info(source_path)['duration']
cmds = [self.ffmpeg_path, '-i', source_path]
cmds.extend(self.params)
cmds.extend(params)
cmds.extend([target_path])
process = self._spawn(cmds)
buf = output = ''
while True:
out = process.stderr.read(10)
if not out:
break
out = out.decode(console_encoding)
output += out
buf += out
try:
line, buf = buf.split('\r', 1)
except ValueError:
continue
try:
time_str = RE_TIMECODE.findall(line)[0]
except IndexError:
continue
time = 0
for part in time_str.split(':'):
time = 60 * time + float(part)
percent = time / total_time
logger.debug('yield {}%'.format(percent))
yield percent
if os.path.getsize(target_path) == 0:
raise exceptions.FFmpegError('File size of generated file is 0')
self._check_returncode(process)
logger.debug(output)
if not output:
raise exceptions.FFmpegError('No output from FFmpeg.')
yield 100
|
encode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source_path, target_path, params):\n total_time = self.get_media_info(source_path)['duration']\n cmds = [self.ffmpeg_path, '-i', source_path]\n cmds.extend(self.params)\n cmds.extend(params)\n cmds.extend([target_path])\n process = self._spawn(cmds)\n buf = output = ''\n while True:\n out = process.stderr.read(10)\n if not out:\n break\n out = out.decode(console_encoding)\n output += out\n buf += out\n try:\n line, buf = buf.split('\\r', 1)\n except ValueError:\n continue\n try:\n time_str = RE_TIMECODE.findall(line)[0]\n except IndexError:\n continue\n time = 0\n for part in time_str.split(':'):\n time = 60 * time + float(part)\n percent = time / total_time\n logger.debug('yield {}%'.format(percent))\n yield percent\n if os.path.getsize(target_path) == 0:\n raise exceptions.FFmpegError('File size of generated file is 0')\n self._check_returncode(process)\n logger.debug(output)\n if not output:\n raise exceptions.FFmpegError('No output from FFmpeg.')\n yield 100\n",
"role": "user"
},
{
"content": "encode",
"role": "assistant"
}
] |
def x(self, video_path):
cmds = [self.ffprobe_path, '-i', video_path]
cmds.extend(['-print_format', 'json'])
cmds.extend(['-show_format', '-show_streams'])
process = self._spawn(cmds)
stdout, __ = self._check_returncode(process)
media_info = self._parse_media_info(stdout)
return {'duration': float(media_info['format']['duration']), 'width':
int(media_info['video'][0]['width']), 'height': int(media_info[
'video'][0]['height'])}
|
get_media_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, video_path):\n cmds = [self.ffprobe_path, '-i', video_path]\n cmds.extend(['-print_format', 'json'])\n cmds.extend(['-show_format', '-show_streams'])\n process = self._spawn(cmds)\n stdout, __ = self._check_returncode(process)\n media_info = self._parse_media_info(stdout)\n return {'duration': float(media_info['format']['duration']), 'width':\n int(media_info['video'][0]['width']), 'height': int(media_info[\n 'video'][0]['height'])}\n",
"role": "user"
},
{
"content": "get_media_info",
"role": "assistant"
}
] |
def x(self, video_path, at_time=0.5):
filename = os.path.basename(video_path)
filename, __ = os.path.splitext(filename)
_, image_path = tempfile.mkstemp(suffix='_{}.jpg'.format(filename))
video_duration = self.get_media_info(video_path)['duration']
if at_time > video_duration:
raise exceptions.InvalidTimeError()
thumbnail_time = at_time
cmds = [self.ffmpeg_path, '-i', video_path, '-vframes', '1']
cmds.extend(['-ss', str(thumbnail_time), '-y', image_path])
process = self._spawn(cmds)
self._check_returncode(process)
if not os.path.getsize(image_path):
os.unlink(image_path)
raise exceptions.InvalidTimeError()
return image_path
|
get_thumbnail
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, video_path, at_time=0.5):\n filename = os.path.basename(video_path)\n filename, __ = os.path.splitext(filename)\n _, image_path = tempfile.mkstemp(suffix='_{}.jpg'.format(filename))\n video_duration = self.get_media_info(video_path)['duration']\n if at_time > video_duration:\n raise exceptions.InvalidTimeError()\n thumbnail_time = at_time\n cmds = [self.ffmpeg_path, '-i', video_path, '-vframes', '1']\n cmds.extend(['-ss', str(thumbnail_time), '-y', image_path])\n process = self._spawn(cmds)\n self._check_returncode(process)\n if not os.path.getsize(image_path):\n os.unlink(image_path)\n raise exceptions.InvalidTimeError()\n return image_path\n",
"role": "user"
},
{
"content": "get_thumbnail",
"role": "assistant"
}
] |
def x(app_label, model_name, object_pk):
Model = apps.get_model(app_label=app_label, model_name=model_name)
instance = Model.objects.get(pk=object_pk)
fields = instance._meta.fields
for field in fields:
if isinstance(field, VideoField):
if not getattr(instance, field.name):
continue
fieldfile = getattr(instance, field.name)
convert_video(fieldfile)
|
convert_all_videos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(app_label, model_name, object_pk):\n Model = apps.get_model(app_label=app_label, model_name=model_name)\n instance = Model.objects.get(pk=object_pk)\n fields = instance._meta.fields\n for field in fields:\n if isinstance(field, VideoField):\n if not getattr(instance, field.name):\n continue\n fieldfile = getattr(instance, field.name)\n convert_video(fieldfile)\n",
"role": "user"
},
{
"content": "convert_all_videos",
"role": "assistant"
}
] |
def x(fieldfile, force=False):
instance = fieldfile.instance
field = fieldfile.field
filename = os.path.basename(fieldfile.path)
source_path = fieldfile.path
encoding_backend = get_backend()
for options in settings.VIDEO_ENCODING_FORMATS[encoding_backend.name]:
video_format, created = Format.objects.get_or_create(object_id=
instance.pk, content_type=ContentType.objects.get_for_model(
instance), field_name=field.name, format=options['name'])
if video_format.file and not force:
continue
else:
video_format.reset_progress()
_, target_path = tempfile.mkstemp(suffix='_{name}.{extension}'.
format(**options))
try:
encoding = encoding_backend.encode(source_path, target_path,
options['params'])
while encoding:
try:
progress = next(encoding)
except StopIteration:
break
video_format.update_progress(progress)
except VideoEncodingError:
video_format.delete()
os.remove(target_path)
continue
video_format.file.save('{filename}_{name}.{extension}'.format(
filename=filename, **options), File(open(target_path, mode='rb')))
video_format.update_progress(100)
os.remove(target_path)
|
convert_video
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fieldfile, force=False):\n instance = fieldfile.instance\n field = fieldfile.field\n filename = os.path.basename(fieldfile.path)\n source_path = fieldfile.path\n encoding_backend = get_backend()\n for options in settings.VIDEO_ENCODING_FORMATS[encoding_backend.name]:\n video_format, created = Format.objects.get_or_create(object_id=\n instance.pk, content_type=ContentType.objects.get_for_model(\n instance), field_name=field.name, format=options['name'])\n if video_format.file and not force:\n continue\n else:\n video_format.reset_progress()\n _, target_path = tempfile.mkstemp(suffix='_{name}.{extension}'.\n format(**options))\n try:\n encoding = encoding_backend.encode(source_path, target_path,\n options['params'])\n while encoding:\n try:\n progress = next(encoding)\n except StopIteration:\n break\n video_format.update_progress(progress)\n except VideoEncodingError:\n video_format.delete()\n os.remove(target_path)\n continue\n video_format.file.save('{filename}_{name}.{extension}'.format(\n filename=filename, **options), File(open(target_path, mode='rb')))\n video_format.update_progress(100)\n os.remove(target_path)\n",
"role": "user"
},
{
"content": "convert_video",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
results = []
cache = {}
tuning_options['scaling'] = True
bounds, _, _ = get_bounds_x0_eps(tuning_options)
args = kernel_options, tuning_options, runner, results, cache
num_particles = 20
maxiter = 100
B0 = 1.0
gamma = 1.0
alpha = 0.2
best_time_global = 1e+20
best_position_global = []
swarm = []
for i in range(0, num_particles):
swarm.append(Firefly(bounds, args))
for j in range(num_particles):
swarm[j].compute_intensity(_cost_func)
for c in range(maxiter):
if tuning_options.verbose:
print('start iteration ', c, 'best time global', best_time_global)
for i in range(num_particles):
for j in range(num_particles):
if swarm[i].intensity < swarm[j].intensity:
dist = swarm[i].distance_to(swarm[j])
beta = B0 * np.exp(-gamma * dist * dist)
swarm[i].move_towards(swarm[j], beta, alpha)
swarm[i].compute_intensity(_cost_func)
if swarm[i].time <= best_time_global:
best_position_global = swarm[i].position
best_time_global = swarm[i].time
swarm.sort(key=lambda x: x.time)
if tuning_options.verbose:
print('Final result:')
print(best_position_global)
print(best_time_global)
return results, runner.dev.get_environment()
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = True\n bounds, _, _ = get_bounds_x0_eps(tuning_options)\n args = kernel_options, tuning_options, runner, results, cache\n num_particles = 20\n maxiter = 100\n B0 = 1.0\n gamma = 1.0\n alpha = 0.2\n best_time_global = 1e+20\n best_position_global = []\n swarm = []\n for i in range(0, num_particles):\n swarm.append(Firefly(bounds, args))\n for j in range(num_particles):\n swarm[j].compute_intensity(_cost_func)\n for c in range(maxiter):\n if tuning_options.verbose:\n print('start iteration ', c, 'best time global', best_time_global)\n for i in range(num_particles):\n for j in range(num_particles):\n if swarm[i].intensity < swarm[j].intensity:\n dist = swarm[i].distance_to(swarm[j])\n beta = B0 * np.exp(-gamma * dist * dist)\n swarm[i].move_towards(swarm[j], beta, alpha)\n swarm[i].compute_intensity(_cost_func)\n if swarm[i].time <= best_time_global:\n best_position_global = swarm[i].position\n best_time_global = swarm[i].time\n swarm.sort(key=lambda x: x.time)\n if tuning_options.verbose:\n print('Final result:')\n print(best_position_global)\n print(best_time_global)\n return results, runner.dev.get_environment()\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(self, other):
return np.linalg.norm(self.position - other.position)
|
distance_to
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n return np.linalg.norm(self.position - other.position)\n",
"role": "user"
},
{
"content": "distance_to",
"role": "assistant"
}
] |
def x(self, _cost_func):
self.evaluate(_cost_func)
self.intensity = 1 / self.time
|
compute_intensity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, _cost_func):\n self.evaluate(_cost_func)\n self.intensity = 1 / self.time\n",
"role": "user"
},
{
"content": "compute_intensity",
"role": "assistant"
}
] |
def x(self, other, beta, alpha):
self.position += beta * (other.position - self.position)
self.position += alpha * np.random.uniform(-0.5, 0.5, len(self.position))
self.position = np.minimum(self.position, [b[1] for b in self.bounds])
self.position = np.maximum(self.position, [b[0] for b in self.bounds])
|
move_towards
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, beta, alpha):\n self.position += beta * (other.position - self.position)\n self.position += alpha * np.random.uniform(-0.5, 0.5, len(self.position))\n self.position = np.minimum(self.position, [b[1] for b in self.bounds])\n self.position = np.maximum(self.position, [b[0] for b in self.bounds])\n",
"role": "user"
},
{
"content": "move_towards",
"role": "assistant"
}
] |
def x(instance, answer, result_host, atol, verbose):
if len(instance.arguments) != len(answer):
raise TypeError(
'The length of argument list and provided results do not match.')
for i, arg in enumerate(instance.arguments):
if answer[i] is not None:
if isinstance(answer[i], numpy.ndarray) and isinstance(arg,
numpy.ndarray):
if answer[i].dtype != arg.dtype:
raise TypeError('Element ' + str(i) +
' of the expected results list is not of the same dtype as the kernel output: '
+ str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.'
)
if answer[i].size != arg.size:
raise TypeError('Element ' + str(i) +
' of the expected results list has a size different from '
+ 'the kernel argument: ' + str(answer[i].size) +
' != ' + str(arg.size) + '.')
elif isinstance(answer[i], numpy.number) and isinstance(arg,
numpy.number):
if answer[i].dtype != arg.dtype:
raise TypeError('Element ' + str(i) +
' of the expected results list is not the same as the kernel output: '
+ str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.'
)
elif not isinstance(answer[i], numpy.ndarray) or not isinstance(
answer[i], numpy.number):
raise TypeError('Element ' + str(i) +
' of expected results list is not a numpy array or numpy scalar.'
)
else:
raise TypeError('Element ' + str(i) +
' of expected results list and kernel arguments have different types.'
)
def x(a):
if hasattr(a, 'ravel') and len(a.shape) > 1:
return a.ravel()
return a
def x(a):
if hasattr(a, 'flatten'):
return a.flatten()
return a
correct = True
for i, arg in enumerate(instance.arguments):
expected = answer[i]
if expected is not None:
result = _ravel(result_host[i])
expected = _flatten(expected)
output_test = numpy.allclose(expected, result, atol=atol)
if not output_test and verbose:
print('Error: ' + util.get_config_string(instance.params) +
' detected during correctness check')
print(
'this error occured when checking value of the %oth kernel argument'
% (i,))
print(
'Printing kernel output and expected result, set verbose=False to suppress this debug print'
)
numpy.set_printoptions(edgeitems=50)
print('Kernel output:')
print(result)
print('Expected:')
print(expected)
correct = correct and output_test
if not correct:
logging.debug('correctness check has found a correctness issue')
raise Exception('Error: ' + util.get_config_string(instance.params) +
' failed correctness check')
return correct
|
default_verify_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(instance, answer, result_host, atol, verbose):\n if len(instance.arguments) != len(answer):\n raise TypeError(\n 'The length of argument list and provided results do not match.')\n for i, arg in enumerate(instance.arguments):\n if answer[i] is not None:\n if isinstance(answer[i], numpy.ndarray) and isinstance(arg,\n numpy.ndarray):\n if answer[i].dtype != arg.dtype:\n raise TypeError('Element ' + str(i) +\n ' of the expected results list is not of the same dtype as the kernel output: '\n + str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.'\n )\n if answer[i].size != arg.size:\n raise TypeError('Element ' + str(i) +\n ' of the expected results list has a size different from '\n + 'the kernel argument: ' + str(answer[i].size) +\n ' != ' + str(arg.size) + '.')\n elif isinstance(answer[i], numpy.number) and isinstance(arg,\n numpy.number):\n if answer[i].dtype != arg.dtype:\n raise TypeError('Element ' + str(i) +\n ' of the expected results list is not the same as the kernel output: '\n + str(answer[i].dtype) + ' != ' + str(arg.dtype) + '.'\n )\n elif not isinstance(answer[i], numpy.ndarray) or not isinstance(\n answer[i], numpy.number):\n raise TypeError('Element ' + str(i) +\n ' of expected results list is not a numpy array or numpy scalar.'\n )\n else:\n raise TypeError('Element ' + str(i) +\n ' of expected results list and kernel arguments have different types.'\n )\n\n def x(a):\n if hasattr(a, 'ravel') and len(a.shape) > 1:\n return a.ravel()\n return a\n\n def x(a):\n if hasattr(a, 'flatten'):\n return a.flatten()\n return a\n correct = True\n for i, arg in enumerate(instance.arguments):\n expected = answer[i]\n if expected is not None:\n result = _ravel(result_host[i])\n expected = _flatten(expected)\n output_test = numpy.allclose(expected, result, atol=atol)\n if not output_test and verbose:\n print('Error: ' + util.get_config_string(instance.params) +\n ' detected during correctness check')\n print(\n 'this error occured when checking value of the %oth kernel argument'\n % (i,))\n print(\n 'Printing kernel output and expected result, set verbose=False to suppress this debug print'\n )\n numpy.set_printoptions(edgeitems=50)\n print('Kernel output:')\n print(result)\n print('Expected:')\n print(expected)\n correct = correct and output_test\n if not correct:\n logging.debug('correctness check has found a correctness issue')\n raise Exception('Error: ' + util.get_config_string(instance.params) +\n ' failed correctness check')\n return correct\n",
"role": "user"
},
{
"content": "default_verify_function",
"role": "assistant"
}
] |
def x(self, func, gpu_args, instance, times, verbose):
logging.debug('benchmark ' + instance.name)
logging.debug('thread block dimensions x,y,z=%d,%d,%d', *instance.threads)
logging.debug('grid dimensions x,y,z=%d,%d,%d', *instance.grid)
time = None
try:
time = self.dev.benchmark(func, gpu_args, instance.threads,
instance.grid, times)
except Exception as e:
skippable_exceptions = ['too many resources requested for launch',
'OUT_OF_RESOURCES', 'INVALID_WORK_GROUP_SIZE']
if any([(skip_str in str(e)) for skip_str in skippable_exceptions]):
logging.debug(
'benchmark fails due to runtime failure too many resources required'
)
if verbose:
print('skipping config', instance.name,
'reason: too many resources requested for launch')
else:
logging.debug('benchmark encountered runtime failure: ' + str(e))
print('Error while benchmarking:', instance.name)
raise e
return time
|
benchmark
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, gpu_args, instance, times, verbose):\n logging.debug('benchmark ' + instance.name)\n logging.debug('thread block dimensions x,y,z=%d,%d,%d', *instance.threads)\n logging.debug('grid dimensions x,y,z=%d,%d,%d', *instance.grid)\n time = None\n try:\n time = self.dev.benchmark(func, gpu_args, instance.threads,\n instance.grid, times)\n except Exception as e:\n skippable_exceptions = ['too many resources requested for launch',\n 'OUT_OF_RESOURCES', 'INVALID_WORK_GROUP_SIZE']\n if any([(skip_str in str(e)) for skip_str in skippable_exceptions]):\n logging.debug(\n 'benchmark fails due to runtime failure too many resources required'\n )\n if verbose:\n print('skipping config', instance.name,\n 'reason: too many resources requested for launch')\n else:\n logging.debug('benchmark encountered runtime failure: ' + str(e))\n print('Error while benchmarking:', instance.name)\n raise e\n return time\n",
"role": "user"
},
{
"content": "benchmark",
"role": "assistant"
}
] |
def x(self, func, gpu_args, instance, answer, atol, verify, verbose):
logging.debug('check_kernel_output')
if not verify and len(instance.arguments) != len(answer):
raise TypeError(
'The length of argument list and provided results do not match.')
for i, arg in enumerate(instance.arguments):
if verify or answer[i] is not None:
if isinstance(arg, numpy.ndarray):
self.dev.memcpy_htod(gpu_args[i], arg)
check = self.run_kernel(func, gpu_args, instance)
if not check:
return True
result_host = []
for i, arg in enumerate(instance.arguments):
if verify or answer[i] is not None:
if isinstance(arg, numpy.ndarray):
result_host.append(numpy.zeros_like(arg))
self.dev.memcpy_dtoh(result_host[-1], gpu_args[i])
else:
result_host.append(None)
if verify:
try:
return verify(answer, result_host, atol=atol)
except TypeError:
return verify(answer, result_host)
else:
return _default_verify_function(instance, answer, result_host, atol,
verbose)
|
check_kernel_output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, gpu_args, instance, answer, atol, verify, verbose):\n logging.debug('check_kernel_output')\n if not verify and len(instance.arguments) != len(answer):\n raise TypeError(\n 'The length of argument list and provided results do not match.')\n for i, arg in enumerate(instance.arguments):\n if verify or answer[i] is not None:\n if isinstance(arg, numpy.ndarray):\n self.dev.memcpy_htod(gpu_args[i], arg)\n check = self.run_kernel(func, gpu_args, instance)\n if not check:\n return True\n result_host = []\n for i, arg in enumerate(instance.arguments):\n if verify or answer[i] is not None:\n if isinstance(arg, numpy.ndarray):\n result_host.append(numpy.zeros_like(arg))\n self.dev.memcpy_dtoh(result_host[-1], gpu_args[i])\n else:\n result_host.append(None)\n if verify:\n try:\n return verify(answer, result_host, atol=atol)\n except TypeError:\n return verify(answer, result_host)\n else:\n return _default_verify_function(instance, answer, result_host, atol,\n verbose)\n",
"role": "user"
},
{
"content": "check_kernel_output",
"role": "assistant"
}
] |
def x(self, gpu_args, params, kernel_options, tuning_options):
instance_string = util.get_instance_string(params)
logging.debug('compile_and_benchmark ' + instance_string)
mem_usage = round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss /
1024.0, 1)
logging.debug('Memory usage : %2.2f MB', mem_usage)
verbose = tuning_options.verbose
instance = self.create_kernel_instance(kernel_options, params, verbose)
if instance is None:
return None
try:
func = self.compile_kernel(instance, verbose)
if func is None:
return None
if kernel_options.cmem_args is not None:
self.dev.copy_constant_memory_args(kernel_options.cmem_args)
if kernel_options.texmem_args is not None:
self.dev.copy_texture_memory_args(kernel_options.texmem_args)
if tuning_options.answer is not None:
self.check_kernel_output(func, gpu_args, instance,
tuning_options.answer, tuning_options.atol, tuning_options.
verify, verbose)
time = self.benchmark(func, gpu_args, instance, tuning_options.
times, verbose)
except Exception as e:
temp_filename = util.get_temp_filename(suffix='.c')
util.write_file(temp_filename, instance.kernel_string)
print('Error while compiling or benchmarking, see source files: ' +
temp_filename + ' '.join(instance.temp_files.values()))
raise e
for v in instance.temp_files.values():
util.delete_temp_file(v)
return time
|
compile_and_benchmark
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gpu_args, params, kernel_options, tuning_options):\n instance_string = util.get_instance_string(params)\n logging.debug('compile_and_benchmark ' + instance_string)\n mem_usage = round(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / \n 1024.0, 1)\n logging.debug('Memory usage : %2.2f MB', mem_usage)\n verbose = tuning_options.verbose\n instance = self.create_kernel_instance(kernel_options, params, verbose)\n if instance is None:\n return None\n try:\n func = self.compile_kernel(instance, verbose)\n if func is None:\n return None\n if kernel_options.cmem_args is not None:\n self.dev.copy_constant_memory_args(kernel_options.cmem_args)\n if kernel_options.texmem_args is not None:\n self.dev.copy_texture_memory_args(kernel_options.texmem_args)\n if tuning_options.answer is not None:\n self.check_kernel_output(func, gpu_args, instance,\n tuning_options.answer, tuning_options.atol, tuning_options.\n verify, verbose)\n time = self.benchmark(func, gpu_args, instance, tuning_options.\n times, verbose)\n except Exception as e:\n temp_filename = util.get_temp_filename(suffix='.c')\n util.write_file(temp_filename, instance.kernel_string)\n print('Error while compiling or benchmarking, see source files: ' +\n temp_filename + ' '.join(instance.temp_files.values()))\n raise e\n for v in instance.temp_files.values():\n util.delete_temp_file(v)\n return time\n",
"role": "user"
},
{
"content": "compile_and_benchmark",
"role": "assistant"
}
] |
def x(self, instance, verbose):
logging.debug('compile_kernel ' + instance.name)
func = None
try:
func = self.dev.compile(instance.name, instance.kernel_string)
except Exception as e:
if 'uses too much shared data' in str(e):
logging.debug(
'compile_kernel failed due to kernel using too much shared memory'
)
if verbose:
print('skipping config', instance.name,
'reason: too much shared memory used')
else:
logging.debug('compile_kernel failed due to error: ' + str(e))
print('Error while compiling:', instance.name)
raise e
return func
|
compile_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, verbose):\n logging.debug('compile_kernel ' + instance.name)\n func = None\n try:\n func = self.dev.compile(instance.name, instance.kernel_string)\n except Exception as e:\n if 'uses too much shared data' in str(e):\n logging.debug(\n 'compile_kernel failed due to kernel using too much shared memory'\n )\n if verbose:\n print('skipping config', instance.name,\n 'reason: too much shared memory used')\n else:\n logging.debug('compile_kernel failed due to error: ' + str(e))\n print('Error while compiling:', instance.name)\n raise e\n return func\n",
"role": "user"
},
{
"content": "compile_kernel",
"role": "assistant"
}
] |
def x(self, cmem_args):
if self.lang == 'CUDA':
self.dev.copy_constant_memory_args(cmem_args)
else:
raise Exception(
'Error cannot copy constant memory arguments when language is not CUDA'
)
|
copy_constant_memory_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cmem_args):\n if self.lang == 'CUDA':\n self.dev.copy_constant_memory_args(cmem_args)\n else:\n raise Exception(\n 'Error cannot copy constant memory arguments when language is not CUDA'\n )\n",
"role": "user"
},
{
"content": "copy_constant_memory_args",
"role": "assistant"
}
] |
def x(self, texmem_args):
if self.lang == 'CUDA':
self.dev.copy_texture_memory_args(texmem_args)
else:
raise Exception(
'Error cannot copy texture memory arguments when language is not CUDA'
)
|
copy_texture_memory_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texmem_args):\n if self.lang == 'CUDA':\n self.dev.copy_texture_memory_args(texmem_args)\n else:\n raise Exception(\n 'Error cannot copy texture memory arguments when language is not CUDA'\n )\n",
"role": "user"
},
{
"content": "copy_texture_memory_args",
"role": "assistant"
}
] |
def x(self, kernel_options, params, verbose):
instance_string = util.get_instance_string(params)
grid_div = (kernel_options.grid_div_x, kernel_options.grid_div_y,
kernel_options.grid_div_z)
if not kernel_options.block_size_names:
kernel_options.block_size_names = util.default_block_size_names
threads, grid = util.setup_block_and_grid(kernel_options.problem_size,
grid_div, params, kernel_options.block_size_names)
if numpy.prod(threads) > self.dev.max_threads:
if verbose:
print('skipping config', instance_string,
'reason: too many threads per block')
return None
temp_files = dict()
kernel_source = kernel_options.kernel_string
if not isinstance(kernel_source, list):
kernel_source = [kernel_source]
name, kernel_string, temp_files = util.prepare_list_of_files(kernel_options
.kernel_name, kernel_source, params, grid, threads, kernel_options.
block_size_names)
return KernelInstance(name, kernel_string, temp_files, threads, grid,
params, kernel_options.arguments)
|
create_kernel_instance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kernel_options, params, verbose):\n instance_string = util.get_instance_string(params)\n grid_div = (kernel_options.grid_div_x, kernel_options.grid_div_y,\n kernel_options.grid_div_z)\n if not kernel_options.block_size_names:\n kernel_options.block_size_names = util.default_block_size_names\n threads, grid = util.setup_block_and_grid(kernel_options.problem_size,\n grid_div, params, kernel_options.block_size_names)\n if numpy.prod(threads) > self.dev.max_threads:\n if verbose:\n print('skipping config', instance_string,\n 'reason: too many threads per block')\n return None\n temp_files = dict()\n kernel_source = kernel_options.kernel_string\n if not isinstance(kernel_source, list):\n kernel_source = [kernel_source]\n name, kernel_string, temp_files = util.prepare_list_of_files(kernel_options\n .kernel_name, kernel_source, params, grid, threads, kernel_options.\n block_size_names)\n return KernelInstance(name, kernel_string, temp_files, threads, grid,\n params, kernel_options.arguments)\n",
"role": "user"
},
{
"content": "create_kernel_instance",
"role": "assistant"
}
] |
def x(self, func, gpu_args, instance):
logging.debug('run_kernel %s', instance.name)
logging.debug('thread block dims (%d, %d, %d)', *instance.threads)
logging.debug('grid dims (%d, %d, %d)', *instance.grid)
try:
self.dev.run_kernel(func, gpu_args, instance.threads, instance.grid)
except Exception as e:
if 'too many resources requested for launch' in str(e
) or 'OUT_OF_RESOURCES' in str(e):
logging.debug(
'ignoring runtime failure due to too many resources required')
return False
else:
logging.debug('encountered unexpected runtime failure: ' + str(e))
raise e
return True
|
run_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, gpu_args, instance):\n logging.debug('run_kernel %s', instance.name)\n logging.debug('thread block dims (%d, %d, %d)', *instance.threads)\n logging.debug('grid dims (%d, %d, %d)', *instance.grid)\n try:\n self.dev.run_kernel(func, gpu_args, instance.threads, instance.grid)\n except Exception as e:\n if 'too many resources requested for launch' in str(e\n ) or 'OUT_OF_RESOURCES' in str(e):\n logging.debug(\n 'ignoring runtime failure due to too many resources required')\n return False\n else:\n logging.debug('encountered unexpected runtime failure: ' + str(e))\n raise e\n return True\n",
"role": "user"
},
{
"content": "run_kernel",
"role": "assistant"
}
] |
def x(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
|
chunk_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, n):\n for i in range(0, len(l), n):\n yield l[i:i + n]\n",
"role": "user"
},
{
"content": "chunk_list",
"role": "assistant"
}
] |
def x(self, parameter_space, kernel_options, tuning_options):
workflow = self._parameter_sweep(parameter_space, kernel_options, self.
device_options, tuning_options)
if tuning_options.verbose:
with NCDisplay(_error_filter) as display:
answer = run_parallel_with_display(workflow, self.max_threads,
display)
else:
answer = run_parallel(workflow, self.max_threads)
if answer is None:
print('Tuning did not return any results, did an error occur?')
return None
result = []
for chunk in answer:
result += [d for d in chunk if d['time']]
return result, {}
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, kernel_options, tuning_options):\n workflow = self._parameter_sweep(parameter_space, kernel_options, self.\n device_options, tuning_options)\n if tuning_options.verbose:\n with NCDisplay(_error_filter) as display:\n answer = run_parallel_with_display(workflow, self.max_threads,\n display)\n else:\n answer = run_parallel(workflow, self.max_threads)\n if answer is None:\n print('Tuning did not return any results, did an error occur?')\n return None\n result = []\n for chunk in answer:\n result += [d for d in chunk if d['time']]\n return result, {}\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, parameter_space, kernel_options, device_options, tuning_options):
results = []
parameter_space = list(parameter_space)
random.shuffle(parameter_space)
work_per_thread = int(numpy.ceil(len(parameter_space) / float(self.
max_threads)))
chunks = _chunk_list(parameter_space, work_per_thread)
for chunk in chunks:
chunked_result = self._run_chunk(chunk, kernel_options,
device_options, tuning_options)
results.append(lift(chunked_result))
return gather(*results)
|
parameter_sweep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, kernel_options, device_options, tuning_options):\n results = []\n parameter_space = list(parameter_space)\n random.shuffle(parameter_space)\n work_per_thread = int(numpy.ceil(len(parameter_space) / float(self.\n max_threads)))\n chunks = _chunk_list(parameter_space, work_per_thread)\n for chunk in chunks:\n chunked_result = self._run_chunk(chunk, kernel_options,\n device_options, tuning_options)\n results.append(lift(chunked_result))\n return gather(*results)\n",
"role": "user"
},
{
"content": "parameter_sweep",
"role": "assistant"
}
] |
def x(self, chunk, kernel_options, device_options, tuning_options):
self.dev = DeviceInterface(kernel_options.kernel_string, iterations=
tuning_options.iterations, **device_options)
gpu_args = self.dev.ready_argument_list(kernel_options.arguments)
results = []
for element in chunk:
params = dict(OrderedDict(zip(tuning_options.tune_params.keys(),
element)))
try:
time = self.dev.compile_and_benchmark(gpu_args, params,
kernel_options, tuning_options)
params['time'] = time
results.append(params)
except Exception:
params['time'] = None
results.append(params)
return results
|
run_chunk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chunk, kernel_options, device_options, tuning_options):\n self.dev = DeviceInterface(kernel_options.kernel_string, iterations=\n tuning_options.iterations, **device_options)\n gpu_args = self.dev.ready_argument_list(kernel_options.arguments)\n results = []\n for element in chunk:\n params = dict(OrderedDict(zip(tuning_options.tune_params.keys(),\n element)))\n try:\n time = self.dev.compile_and_benchmark(gpu_args, params,\n kernel_options, tuning_options)\n params['time'] = time\n results.append(params)\n except Exception:\n params['time'] = None\n results.append(params)\n return results\n",
"role": "user"
},
{
"content": "run_chunk",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
tune_params = tuning_options.tune_params
parameter_space = itertools.product(*tune_params.values())
if tuning_options.restrictions is not None:
parameter_space = filter(lambda p: util.check_restrictions(
tuning_options.restrictions, p, tune_params.keys(),
tuning_options.verbose), parameter_space)
parameter_space = numpy.array(list(parameter_space))
size = len(parameter_space)
fraction = int(numpy.ceil(size * float(tuning_options.sample_fraction)))
sample_indices = numpy.random.choice(range(size), size=fraction,
replace=False)
parameter_space = parameter_space[sample_indices]
results, env = runner.run(parameter_space, kernel_options, tuning_options)
return results, env
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n tune_params = tuning_options.tune_params\n parameter_space = itertools.product(*tune_params.values())\n if tuning_options.restrictions is not None:\n parameter_space = filter(lambda p: util.check_restrictions(\n tuning_options.restrictions, p, tune_params.keys(),\n tuning_options.verbose), parameter_space)\n parameter_space = numpy.array(list(parameter_space))\n size = len(parameter_space)\n fraction = int(numpy.ceil(size * float(tuning_options.sample_fraction)))\n sample_indices = numpy.random.choice(range(size), size=fraction,\n replace=False)\n parameter_space = parameter_space[sample_indices]\n results, env = runner.run(parameter_space, kernel_options, tuning_options)\n return results, env\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(dtype, kernel_argument, i):
types_map = {'uint8': ['uchar', 'unsigned char', 'uint8_t'], 'int8': [
'char', 'int8_t'], 'uint16': ['ushort', 'unsigned short',
'uint16_t'], 'int16': ['short', 'int16_t'], 'uint32': ['uint',
'unsigned int', 'uint32_t'], 'int32': ['int', 'int32_t'], 'uint64':
['ulong', 'unsigned long', 'uint64_t'], 'int64': ['long', 'int64_t'
], 'float16': ['half'], 'float32': ['float'], 'float64': ['double']}
if dtype in types_map:
return any([(substr in kernel_argument) for substr in types_map[dtype]]
)
else:
return False
|
check_argument_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dtype, kernel_argument, i):\n types_map = {'uint8': ['uchar', 'unsigned char', 'uint8_t'], 'int8': [\n 'char', 'int8_t'], 'uint16': ['ushort', 'unsigned short',\n 'uint16_t'], 'int16': ['short', 'int16_t'], 'uint32': ['uint',\n 'unsigned int', 'uint32_t'], 'int32': ['int', 'int32_t'], 'uint64':\n ['ulong', 'unsigned long', 'uint64_t'], 'int64': ['long', 'int64_t'\n ], 'float16': ['half'], 'float32': ['float'], 'float64': ['double']}\n if dtype in types_map:\n return any([(substr in kernel_argument) for substr in types_map[dtype]]\n )\n else:\n return False\n",
"role": "user"
},
{
"content": "check_argument_type",
"role": "assistant"
}
] |
def x(kernel_name, kernel_string, args):
kernel_arguments = list()
collected_errors = list()
for iterator in re.finditer(kernel_name + '[ \n\t]*' + '\\(', kernel_string
):
kernel_start = iterator.end()
kernel_end = kernel_string.find(')', kernel_start)
if kernel_start != 0:
kernel_arguments.append(kernel_string[kernel_start:kernel_end].
split(','))
for arguments_set, arguments in enumerate(kernel_arguments):
collected_errors.append(list())
if len(arguments) != len(args):
collected_errors[arguments_set].append(
'Kernel and host argument lists do not match in size.')
continue
for i, arg in enumerate(args):
kernel_argument = arguments[i]
if not isinstance(arg, (numpy.ndarray, numpy.generic)):
raise TypeError('Argument at position ' + str(i) +
' of type: ' + str(type(arg)) +
' should be of type numpy.ndarray or numpy scalar')
correct = True
if isinstance(arg, numpy.ndarray) and not '*' in kernel_argument:
correct = False
if correct and check_argument_type(str(arg.dtype),
kernel_argument, i):
continue
collected_errors[arguments_set].append('Argument at position ' +
str(i) + ' of dtype: ' + str(arg.dtype) +
' does not match ' + kernel_argument + '.')
if not collected_errors[arguments_set]:
return
for errors in collected_errors:
warnings.warn(errors[0], UserWarning)
|
check_argument_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel_name, kernel_string, args):\n kernel_arguments = list()\n collected_errors = list()\n for iterator in re.finditer(kernel_name + '[ \\n\\t]*' + '\\\\(', kernel_string\n ):\n kernel_start = iterator.end()\n kernel_end = kernel_string.find(')', kernel_start)\n if kernel_start != 0:\n kernel_arguments.append(kernel_string[kernel_start:kernel_end].\n split(','))\n for arguments_set, arguments in enumerate(kernel_arguments):\n collected_errors.append(list())\n if len(arguments) != len(args):\n collected_errors[arguments_set].append(\n 'Kernel and host argument lists do not match in size.')\n continue\n for i, arg in enumerate(args):\n kernel_argument = arguments[i]\n if not isinstance(arg, (numpy.ndarray, numpy.generic)):\n raise TypeError('Argument at position ' + str(i) +\n ' of type: ' + str(type(arg)) +\n ' should be of type numpy.ndarray or numpy scalar')\n correct = True\n if isinstance(arg, numpy.ndarray) and not '*' in kernel_argument:\n correct = False\n if correct and check_argument_type(str(arg.dtype),\n kernel_argument, i):\n continue\n collected_errors[arguments_set].append('Argument at position ' +\n str(i) + ' of dtype: ' + str(arg.dtype) +\n ' does not match ' + kernel_argument + '.')\n if not collected_errors[arguments_set]:\n return\n for errors in collected_errors:\n warnings.warn(errors[0], UserWarning)\n",
"role": "user"
},
{
"content": "check_argument_list",
"role": "assistant"
}
] |
def x(tune_params):
forbidden_names = 'grid_size_x', 'grid_size_y', 'grid_size_z'
forbidden_name_substr = 'time', 'times'
for name, param in tune_params.items():
if name in forbidden_names:
raise ValueError('Tune parameter ' + name + ' with value ' +
str(param) + ' has a forbidden name!')
for forbidden_substr in forbidden_name_substr:
if forbidden_substr in name:
raise ValueError('Tune parameter ' + name + ' with value ' +
str(param) +
' has a forbidden name: not allowed to use ' +
forbidden_substr + ' in tune parameter names!')
|
check_tune_params_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tune_params):\n forbidden_names = 'grid_size_x', 'grid_size_y', 'grid_size_z'\n forbidden_name_substr = 'time', 'times'\n for name, param in tune_params.items():\n if name in forbidden_names:\n raise ValueError('Tune parameter ' + name + ' with value ' +\n str(param) + ' has a forbidden name!')\n for forbidden_substr in forbidden_name_substr:\n if forbidden_substr in name:\n raise ValueError('Tune parameter ' + name + ' with value ' +\n str(param) +\n ' has a forbidden name: not allowed to use ' +\n forbidden_substr + ' in tune parameter names!')\n",
"role": "user"
},
{
"content": "check_tune_params_list",
"role": "assistant"
}
] |
def x(restrictions, element, keys, verbose):
params = OrderedDict(zip(keys, element))
for restrict in restrictions:
if not eval(replace_param_occurrences(restrict, params)):
if verbose:
print('skipping config', get_instance_string(params),
'reason: config fails restriction')
return False
return True
|
check_restrictions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(restrictions, element, keys, verbose):\n params = OrderedDict(zip(keys, element))\n for restrict in restrictions:\n if not eval(replace_param_occurrences(restrict, params)):\n if verbose:\n print('skipping config', get_instance_string(params),\n 'reason: config fails restriction')\n return False\n return True\n",
"role": "user"
},
{
"content": "check_restrictions",
"role": "assistant"
}
] |
def x(lang, kernel_source):
if lang is None:
if callable(kernel_source):
raise TypeError(
'Please specify language when using a code generator function')
kernel_string = get_kernel_string(kernel_source)
if '__global__' in kernel_string:
lang = 'CUDA'
elif '__kernel' in kernel_string:
lang = 'OpenCL'
else:
lang = 'C'
return lang
|
detect_language
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lang, kernel_source):\n if lang is None:\n if callable(kernel_source):\n raise TypeError(\n 'Please specify language when using a code generator function')\n kernel_string = get_kernel_string(kernel_source)\n if '__global__' in kernel_string:\n lang = 'CUDA'\n elif '__kernel' in kernel_string:\n lang = 'OpenCL'\n else:\n lang = 'C'\n return lang\n",
"role": "user"
},
{
"content": "detect_language",
"role": "assistant"
}
] |
def x(params, units=None):
compact_str_items = []
for k, v in params.items():
unit = ''
if isinstance(units, dict):
unit = units.get(k, '')
compact_str_items.append(k + '=' + str(v) + unit)
compact_str = ', '.join(compact_str_items)
return compact_str
|
get_config_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, units=None):\n compact_str_items = []\n for k, v in params.items():\n unit = ''\n if isinstance(units, dict):\n unit = units.get(k, '')\n compact_str_items.append(k + '=' + str(v) + unit)\n compact_str = ', '.join(compact_str_items)\n return compact_str\n",
"role": "user"
},
{
"content": "get_config_string",
"role": "assistant"
}
] |
def x(current_problem_size, params, grid_div, block_size_names):
def x(divisor_list, default, params):
if divisor_list is None:
if default in params:
divisor_list = [default]
else:
return 1
return numpy.prod([int(eval(replace_param_occurrences(s, params))) for
s in divisor_list])
divisors = [get_dimension_divisor(d, block_size_names[i], params) for i,
d in enumerate(grid_div)]
return tuple(int(numpy.ceil(float(current_problem_size[i]) / float(d))) for
i, d in enumerate(divisors))
|
get_grid_dimensions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(current_problem_size, params, grid_div, block_size_names):\n\n def x(divisor_list, default, params):\n if divisor_list is None:\n if default in params:\n divisor_list = [default]\n else:\n return 1\n return numpy.prod([int(eval(replace_param_occurrences(s, params))) for\n s in divisor_list])\n divisors = [get_dimension_divisor(d, block_size_names[i], params) for i,\n d in enumerate(grid_div)]\n return tuple(int(numpy.ceil(float(current_problem_size[i]) / float(d))) for\n i, d in enumerate(divisors))\n",
"role": "user"
},
{
"content": "get_grid_dimensions",
"role": "assistant"
}
] |
def x(kernel_source, params=None):
logging.debug('get_kernel_string called')
kernel_string = None
if callable(kernel_source):
kernel_string = kernel_source(params)
elif isinstance(kernel_source, str):
if looks_like_a_filename(kernel_source):
kernel_string = read_file(kernel_source) or kernel_source
else:
kernel_string = kernel_source
else:
raise TypeError(
'Error kernel_source is not a string nor a callable function')
return kernel_string
|
get_kernel_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel_source, params=None):\n logging.debug('get_kernel_string called')\n kernel_string = None\n if callable(kernel_source):\n kernel_string = kernel_source(params)\n elif isinstance(kernel_source, str):\n if looks_like_a_filename(kernel_source):\n kernel_string = read_file(kernel_source) or kernel_source\n else:\n kernel_string = kernel_source\n else:\n raise TypeError(\n 'Error kernel_source is not a string nor a callable function')\n return kernel_string\n",
"role": "user"
},
{
"content": "get_kernel_string",
"role": "assistant"
}
] |
def x(problem_size, params):
if isinstance(problem_size, (str, int, numpy.integer)):
problem_size = problem_size,
current_problem_size = [1, 1, 1]
for i, s in enumerate(problem_size):
if isinstance(s, str):
current_problem_size[i] = int(eval(replace_param_occurrences(s,
params)))
elif isinstance(s, (int, numpy.integer)):
current_problem_size[i] = s
else:
raise TypeError(
'Error: problem_size should only contain strings or integers')
return current_problem_size
|
get_problem_size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(problem_size, params):\n if isinstance(problem_size, (str, int, numpy.integer)):\n problem_size = problem_size,\n current_problem_size = [1, 1, 1]\n for i, s in enumerate(problem_size):\n if isinstance(s, str):\n current_problem_size[i] = int(eval(replace_param_occurrences(s,\n params)))\n elif isinstance(s, (int, numpy.integer)):\n current_problem_size[i] = s\n else:\n raise TypeError(\n 'Error: problem_size should only contain strings or integers')\n return current_problem_size\n",
"role": "user"
},
{
"content": "get_problem_size",
"role": "assistant"
}
] |
def x(suffix=None):
file = tempfile.mkstemp(suffix=suffix or '', prefix='temp_', dir=os.
getcwd())
os.close(file[0])
return file[1]
|
get_temp_filename
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(suffix=None):\n file = tempfile.mkstemp(suffix=suffix or '', prefix='temp_', dir=os.\n getcwd())\n os.close(file[0])\n return file[1]\n",
"role": "user"
},
{
"content": "get_temp_filename",
"role": "assistant"
}
] |
def x(params, block_size_names=None):
if not block_size_names:
block_size_names = default_block_size_names
block_size_x = params.get(block_size_names[0], 256)
block_size_y = params.get(block_size_names[1], 1)
block_size_z = params.get(block_size_names[2], 1)
return int(block_size_x), int(block_size_y), int(block_size_z)
|
get_thread_block_dimensions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, block_size_names=None):\n if not block_size_names:\n block_size_names = default_block_size_names\n block_size_x = params.get(block_size_names[0], 256)\n block_size_y = params.get(block_size_names[1], 1)\n block_size_z = params.get(block_size_names[2], 1)\n return int(block_size_x), int(block_size_y), int(block_size_z)\n",
"role": "user"
},
{
"content": "get_thread_block_dimensions",
"role": "assistant"
}
] |
def x(kernel_source):
logging.debug('looks_like_a_filename called')
result = False
if isinstance(kernel_source, str):
result = True
if len(kernel_source) > 250:
result = False
for c in '();{}\\':
if c in kernel_source:
result = False
for s in ['__global__ ', '__kernel ', 'void ', 'float ']:
if s in kernel_source:
result = False
result = result and any([(s in kernel_source) for s in ('.c',
'.opencl', '.F')])
logging.debug('kernel_source is a filename: %s' % str(result))
return result
|
looks_like_a_filename
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel_source):\n logging.debug('looks_like_a_filename called')\n result = False\n if isinstance(kernel_source, str):\n result = True\n if len(kernel_source) > 250:\n result = False\n for c in '();{}\\\\':\n if c in kernel_source:\n result = False\n for s in ['__global__ ', '__kernel ', 'void ', 'float ']:\n if s in kernel_source:\n result = False\n result = result and any([(s in kernel_source) for s in ('.c',\n '.opencl', '.F')])\n logging.debug('kernel_source is a filename: %s' % str(result))\n return result\n",
"role": "user"
},
{
"content": "looks_like_a_filename",
"role": "assistant"
}
] |
def x(kernel_name, kernel_string, params, grid, threads, block_size_names):
logging.debug('prepare_kernel_string called for %s', kernel_name)
grid_dim_names = ['grid_size_x', 'grid_size_y', 'grid_size_z']
for i, g in enumerate(grid):
kernel_string = '#define ' + grid_dim_names[i] + ' ' + str(g
) + '\n' + kernel_string
for i, g in enumerate(threads):
kernel_string = '#define ' + block_size_names[i] + ' ' + str(g
) + '\n' + kernel_string
for k, v in params.items():
if k not in block_size_names:
kernel_string = '#define ' + k + ' ' + str(v
) + '\n' + kernel_string
name = kernel_name
return name, kernel_string
|
prepare_kernel_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel_name, kernel_string, params, grid, threads, block_size_names):\n logging.debug('prepare_kernel_string called for %s', kernel_name)\n grid_dim_names = ['grid_size_x', 'grid_size_y', 'grid_size_z']\n for i, g in enumerate(grid):\n kernel_string = '#define ' + grid_dim_names[i] + ' ' + str(g\n ) + '\\n' + kernel_string\n for i, g in enumerate(threads):\n kernel_string = '#define ' + block_size_names[i] + ' ' + str(g\n ) + '\\n' + kernel_string\n for k, v in params.items():\n if k not in block_size_names:\n kernel_string = '#define ' + k + ' ' + str(v\n ) + '\\n' + kernel_string\n name = kernel_name\n return name, kernel_string\n",
"role": "user"
},
{
"content": "prepare_kernel_string",
"role": "assistant"
}
] |
def x(kernel_name, kernel_file_list, params, grid, threads, block_size_names):
temp_files = dict()
kernel_string = get_kernel_string(kernel_file_list[0], params)
name, kernel_string = prepare_kernel_string(kernel_name, kernel_string,
params, grid, threads, block_size_names)
if len(kernel_file_list) > 1:
for f in kernel_file_list[1:]:
temp_file = get_temp_filename(suffix='.' + f.split('.')[-1])
temp_files[f] = temp_file
_, temp_file_string = prepare_kernel_string(kernel_name,
get_kernel_string(f, params), params, grid, threads,
block_size_names)
write_file(temp_file, temp_file_string)
kernel_string = kernel_string.replace(f, temp_file)
return name, kernel_string, temp_files
|
prepare_list_of_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kernel_name, kernel_file_list, params, grid, threads, block_size_names):\n temp_files = dict()\n kernel_string = get_kernel_string(kernel_file_list[0], params)\n name, kernel_string = prepare_kernel_string(kernel_name, kernel_string,\n params, grid, threads, block_size_names)\n if len(kernel_file_list) > 1:\n for f in kernel_file_list[1:]:\n temp_file = get_temp_filename(suffix='.' + f.split('.')[-1])\n temp_files[f] = temp_file\n _, temp_file_string = prepare_kernel_string(kernel_name,\n get_kernel_string(f, params), params, grid, threads,\n block_size_names)\n write_file(temp_file, temp_file_string)\n kernel_string = kernel_string.replace(f, temp_file)\n return name, kernel_string, temp_files\n",
"role": "user"
},
{
"content": "prepare_list_of_files",
"role": "assistant"
}
] |
def x(filename):
if os.path.isfile(filename):
with open(filename, 'r') as f:
return f.read()
|
read_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n if os.path.isfile(filename):\n with open(filename, 'r') as f:\n return f.read()\n",
"role": "user"
},
{
"content": "read_file",
"role": "assistant"
}
] |
def x(string, params):
for k, v in params.items():
string = string.replace(k, str(v))
return string
|
replace_param_occurrences
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, params):\n for k, v in params.items():\n string = string.replace(k, str(v))\n return string\n",
"role": "user"
},
{
"content": "replace_param_occurrences",
"role": "assistant"
}
] |
def x(problem_size, grid_div, params, block_size_names=None):
threads = get_thread_block_dimensions(params, block_size_names)
current_problem_size = get_problem_size(problem_size, params)
grid = get_grid_dimensions(current_problem_size, params, grid_div,
block_size_names)
return threads, grid
|
setup_block_and_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(problem_size, grid_div, params, block_size_names=None):\n threads = get_thread_block_dimensions(params, block_size_names)\n current_problem_size = get_problem_size(problem_size, params)\n grid = get_grid_dimensions(current_problem_size, params, grid_div,\n block_size_names)\n return threads, grid\n",
"role": "user"
},
{
"content": "setup_block_and_grid",
"role": "assistant"
}
] |
def x(filename, string):
import sys
if sys.version_info[0] >= 3:
with open(filename, 'w', encoding='utf-8') as f:
f.write(string)
else:
with open(filename, 'w') as f:
f.write(string.encode('utf-8'))
|
write_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, string):\n import sys\n if sys.version_info[0] >= 3:\n with open(filename, 'w', encoding='utf-8') as f:\n f.write(string)\n else:\n with open(filename, 'w') as f:\n f.write(string.encode('utf-8'))\n",
"role": "user"
},
{
"content": "write_file",
"role": "assistant"
}
] |
def x(self, arguments):
gpu_args = []
for arg in arguments:
if isinstance(arg, numpy.ndarray):
gpu_args.append(cl.Buffer(self.ctx, self.mf.READ_WRITE | self.
mf.COPY_HOST_PTR, hostbuf=arg))
else:
gpu_args.append(arg)
return gpu_args
|
ready_argument_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arguments):\n gpu_args = []\n for arg in arguments:\n if isinstance(arg, numpy.ndarray):\n gpu_args.append(cl.Buffer(self.ctx, self.mf.READ_WRITE | self.\n mf.COPY_HOST_PTR, hostbuf=arg))\n else:\n gpu_args.append(arg)\n return gpu_args\n",
"role": "user"
},
{
"content": "ready_argument_list",
"role": "assistant"
}
] |
def x(self, kernel_name, kernel_string):
prg = cl.Program(self.ctx, kernel_string).build(options=self.
compiler_options)
func = getattr(prg, kernel_name)
return func
|
compile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kernel_name, kernel_string):\n prg = cl.Program(self.ctx, kernel_string).build(options=self.\n compiler_options)\n func = getattr(prg, kernel_name)\n return func\n",
"role": "user"
},
{
"content": "compile",
"role": "assistant"
}
] |
def x(self, func, gpu_args, threads, grid, times):
global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2
] * threads[2]
local_size = threads
time = []
for _ in range(self.iterations):
event = func(self.queue, global_size, local_size, *gpu_args)
event.wait()
time.append((event.profile.end - event.profile.start) * 1e-06)
time = sorted(time)
if times:
return time
elif self.iterations > 4:
return numpy.mean(time[1:-1])
else:
return numpy.mean(time)
|
benchmark
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, gpu_args, threads, grid, times):\n global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2\n ] * threads[2]\n local_size = threads\n time = []\n for _ in range(self.iterations):\n event = func(self.queue, global_size, local_size, *gpu_args)\n event.wait()\n time.append((event.profile.end - event.profile.start) * 1e-06)\n time = sorted(time)\n if times:\n return time\n elif self.iterations > 4:\n return numpy.mean(time[1:-1])\n else:\n return numpy.mean(time)\n",
"role": "user"
},
{
"content": "benchmark",
"role": "assistant"
}
] |
def x(self, func, gpu_args, threads, grid):
global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2
] * threads[2]
local_size = threads
event = func(self.queue, global_size, local_size, *gpu_args)
event.wait()
|
run_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, gpu_args, threads, grid):\n global_size = grid[0] * threads[0], grid[1] * threads[1], grid[2\n ] * threads[2]\n local_size = threads\n event = func(self.queue, global_size, local_size, *gpu_args)\n event.wait()\n",
"role": "user"
},
{
"content": "run_kernel",
"role": "assistant"
}
] |
def x(self, buffer, value, size):
if isinstance(buffer, cl.Buffer):
try:
cl.enqueue_fill_buffer(self.queue, buffer, numpy.uint32(value),
0, size)
except AttributeError:
src = numpy.zeros(size, dtype='uint8') + numpy.uint8(value)
cl.enqueue_copy(self.queue, buffer, src)
|
memset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, buffer, value, size):\n if isinstance(buffer, cl.Buffer):\n try:\n cl.enqueue_fill_buffer(self.queue, buffer, numpy.uint32(value),\n 0, size)\n except AttributeError:\n src = numpy.zeros(size, dtype='uint8') + numpy.uint8(value)\n cl.enqueue_copy(self.queue, buffer, src)\n",
"role": "user"
},
{
"content": "memset",
"role": "assistant"
}
] |
def x(self, dest, src):
if isinstance(src, cl.Buffer):
cl.enqueue_copy(self.queue, dest, src)
|
memcpy_dtoh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dest, src):\n if isinstance(src, cl.Buffer):\n cl.enqueue_copy(self.queue, dest, src)\n",
"role": "user"
},
{
"content": "memcpy_dtoh",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
results = []
cache = {}
tuning_options['scaling'] = False
bounds = get_bounds(tuning_options.tune_params)
args = kernel_options, tuning_options, runner, results, cache
opt_result = differential_evolution(_cost_func, bounds, args, maxiter=1,
polish=False, disp=tuning_options.verbose)
if tuning_options.verbose:
print(opt_result.message)
return results, runner.dev.get_environment()
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = False\n bounds = get_bounds(tuning_options.tune_params)\n args = kernel_options, tuning_options, runner, results, cache\n opt_result = differential_evolution(_cost_func, bounds, args, maxiter=1,\n polish=False, disp=tuning_options.verbose)\n if tuning_options.verbose:\n print(opt_result.message)\n return results, runner.dev.get_environment()\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
results = []
cache = {}
tuning_options['scaling'] = True
bounds, _, _ = get_bounds_x0_eps(tuning_options)
args = kernel_options, tuning_options, runner, results, cache
num_particles = 20
maxiter = 100
best_time_global = 1e+20
best_position_global = []
swarm = []
for i in range(0, num_particles):
swarm.append(Particle(bounds, args))
for i in range(maxiter):
if tuning_options.verbose:
print('start iteration ', i, 'best time global', best_time_global)
for j in range(num_particles):
swarm[j].evaluate(_cost_func)
if swarm[j].time <= best_time_global:
best_position_global = swarm[j].position
best_time_global = swarm[j].time
for j in range(0, num_particles):
swarm[j].update_velocity(best_position_global)
swarm[j].update_position(bounds)
if tuning_options.verbose:
print('Final result:')
print(best_position_global)
print(best_time_global)
return results, runner.dev.get_environment()
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = True\n bounds, _, _ = get_bounds_x0_eps(tuning_options)\n args = kernel_options, tuning_options, runner, results, cache\n num_particles = 20\n maxiter = 100\n best_time_global = 1e+20\n best_position_global = []\n swarm = []\n for i in range(0, num_particles):\n swarm.append(Particle(bounds, args))\n for i in range(maxiter):\n if tuning_options.verbose:\n print('start iteration ', i, 'best time global', best_time_global)\n for j in range(num_particles):\n swarm[j].evaluate(_cost_func)\n if swarm[j].time <= best_time_global:\n best_position_global = swarm[j].position\n best_time_global = swarm[j].time\n for j in range(0, num_particles):\n swarm[j].update_velocity(best_position_global)\n swarm[j].update_position(bounds)\n if tuning_options.verbose:\n print('Final result:')\n print(best_position_global)\n print(best_time_global)\n return results, runner.dev.get_environment()\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
dna_size = len(tuning_options.tune_params.keys())
pop_size = 20
generations = 100
tuning_options['scaling'] = False
tune_params = tuning_options.tune_params
population = random_population(dna_size, pop_size, tune_params)
best_time = 1e+20
all_results = []
cache = {}
for generation in range(generations):
if tuning_options.verbose:
print('Generation %d, best_time %f' % (generation, best_time))
weighted_population = []
for dna in population:
time = _cost_func(dna, kernel_options, tuning_options, runner,
all_results, cache)
weighted_population.append((dna, time))
population = []
if tuning_options.verbose and all_results:
best_time = min(all_results, key=lambda x: x['time'])['time']
weighted_population.sort(key=lambda x: x[1])
for _ in range(pop_size // 2):
ind1 = weighted_choice(weighted_population)
ind2 = weighted_choice(weighted_population)
ind1, ind2 = crossover(ind1, ind2)
population.append(mutate(ind1, dna_size, tune_params))
population.append(mutate(ind2, dna_size, tune_params))
return all_results, runner.dev.get_environment()
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n dna_size = len(tuning_options.tune_params.keys())\n pop_size = 20\n generations = 100\n tuning_options['scaling'] = False\n tune_params = tuning_options.tune_params\n population = random_population(dna_size, pop_size, tune_params)\n best_time = 1e+20\n all_results = []\n cache = {}\n for generation in range(generations):\n if tuning_options.verbose:\n print('Generation %d, best_time %f' % (generation, best_time))\n weighted_population = []\n for dna in population:\n time = _cost_func(dna, kernel_options, tuning_options, runner,\n all_results, cache)\n weighted_population.append((dna, time))\n population = []\n if tuning_options.verbose and all_results:\n best_time = min(all_results, key=lambda x: x['time'])['time']\n weighted_population.sort(key=lambda x: x[1])\n for _ in range(pop_size // 2):\n ind1 = weighted_choice(weighted_population)\n ind2 = weighted_choice(weighted_population)\n ind1, ind2 = crossover(ind1, ind2)\n population.append(mutate(ind1, dna_size, tune_params))\n population.append(mutate(ind2, dna_size, tune_params))\n return all_results, runner.dev.get_environment()\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(population):
random_number = random.betavariate(1, 2.5)
ind = int(random_number * len(population))
ind = min(max(ind, 0), len(population) - 1)
return population[ind][0]
|
weighted_choice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(population):\n random_number = random.betavariate(1, 2.5)\n ind = int(random_number * len(population))\n ind = min(max(ind, 0), len(population) - 1)\n return population[ind][0]\n",
"role": "user"
},
{
"content": "weighted_choice",
"role": "assistant"
}
] |
def x(dna_size, pop_size, tune_params):
population = []
for _ in range(pop_size):
dna = []
for i in range(dna_size):
dna.append(random_val(i, tune_params))
population.append(dna)
return population
|
random_population
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dna_size, pop_size, tune_params):\n population = []\n for _ in range(pop_size):\n dna = []\n for i in range(dna_size):\n dna.append(random_val(i, tune_params))\n population.append(dna)\n return population\n",
"role": "user"
},
{
"content": "random_population",
"role": "assistant"
}
] |
def x(index, tune_params):
key = list(tune_params.keys())[index]
return random.choice(tune_params[key])
|
random_val
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(index, tune_params):\n key = list(tune_params.keys())[index]\n return random.choice(tune_params[key])\n",
"role": "user"
},
{
"content": "random_val",
"role": "assistant"
}
] |
def x(dna, dna_size, tune_params):
dna_out = []
mutation_chance = 10
for i in range(dna_size):
if int(random.random() * mutation_chance) == 1:
dna_out.append(random_val(i, tune_params))
else:
dna_out.append(dna[i])
return dna_out
|
mutate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dna, dna_size, tune_params):\n dna_out = []\n mutation_chance = 10\n for i in range(dna_size):\n if int(random.random() * mutation_chance) == 1:\n dna_out.append(random_val(i, tune_params))\n else:\n dna_out.append(dna[i])\n return dna_out\n",
"role": "user"
},
{
"content": "mutate",
"role": "assistant"
}
] |
def x(dna1, dna2):
pos = int(random.random() * len(dna1))
if random.random() < 0.5:
return dna1[:pos] + dna2[pos:], dna2[:pos] + dna1[pos:]
else:
return dna2[:pos] + dna1[pos:], dna1[:pos] + dna2[pos:]
|
crossover
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dna1, dna2):\n pos = int(random.random() * len(dna1))\n if random.random() < 0.5:\n return dna1[:pos] + dna2[pos:], dna2[:pos] + dna1[pos:]\n else:\n return dna2[:pos] + dna1[pos:], dna1[:pos] + dna2[pos:]\n",
"role": "user"
},
{
"content": "crossover",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
results = []
cache = {}
method = tuning_options.method
tuning_options['scaling'] = True
bounds, x0, _ = get_bounds_x0_eps(tuning_options)
kwargs = setup_method_arguments(method, bounds)
options = setup_method_options(method, tuning_options)
if not method in ['TNC']:
options['disp'] = tuning_options.verbose
args = kernel_options, tuning_options, runner, results, cache
opt_result = scipy.optimize.minimize(_cost_func, x0, args=args, method=
method, options=options, **kwargs)
if tuning_options.verbose:
print(opt_result.message)
return results, runner.dev.get_environment()
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n method = tuning_options.method\n tuning_options['scaling'] = True\n bounds, x0, _ = get_bounds_x0_eps(tuning_options)\n kwargs = setup_method_arguments(method, bounds)\n options = setup_method_options(method, tuning_options)\n if not method in ['TNC']:\n options['disp'] = tuning_options.verbose\n args = kernel_options, tuning_options, runner, results, cache\n opt_result = scipy.optimize.minimize(_cost_func, x0, args=args, method=\n method, options=options, **kwargs)\n if tuning_options.verbose:\n print(opt_result.message)\n return results, runner.dev.get_environment()\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(x, kernel_options, tuning_options, runner, results, cache):
error_time = 1e+20
logging.debug('_cost_func called')
logging.debug('x: ' + str(x))
x_key = ','.join([str(i) for i in x])
if x_key in cache:
return cache[x_key]
if tuning_options.scaling:
params = unscale_and_snap_to_nearest(x, tuning_options.tune_params,
tuning_options.eps)
else:
params = snap_to_nearest_config(x, tuning_options.tune_params)
logging.debug('params ' + str(params))
x_int = ','.join([str(i) for i in params])
if x_int in cache:
return cache[x_int]
if tuning_options.restrictions:
legal = util.check_restrictions(tuning_options.restrictions, params,
tuning_options.tune_params.keys(), tuning_options.verbose)
if not legal:
cache[x_int] = error_time
cache[x_key] = error_time
return error_time
res, _ = runner.run([params], kernel_options, tuning_options)
if res:
results.append(res[0])
cache[x_int] = res[0]['time']
cache[x_key] = res[0]['time']
return res[0]['time']
cache[x_int] = error_time
cache[x_key] = error_time
return error_time
|
cost_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, kernel_options, tuning_options, runner, results, cache):\n error_time = 1e+20\n logging.debug('_cost_func called')\n logging.debug('x: ' + str(x))\n x_key = ','.join([str(i) for i in x])\n if x_key in cache:\n return cache[x_key]\n if tuning_options.scaling:\n params = unscale_and_snap_to_nearest(x, tuning_options.tune_params,\n tuning_options.eps)\n else:\n params = snap_to_nearest_config(x, tuning_options.tune_params)\n logging.debug('params ' + str(params))\n x_int = ','.join([str(i) for i in params])\n if x_int in cache:\n return cache[x_int]\n if tuning_options.restrictions:\n legal = util.check_restrictions(tuning_options.restrictions, params,\n tuning_options.tune_params.keys(), tuning_options.verbose)\n if not legal:\n cache[x_int] = error_time\n cache[x_key] = error_time\n return error_time\n res, _ = runner.run([params], kernel_options, tuning_options)\n if res:\n results.append(res[0])\n cache[x_int] = res[0]['time']\n cache[x_key] = res[0]['time']\n return res[0]['time']\n cache[x_int] = error_time\n cache[x_key] = error_time\n return error_time\n",
"role": "user"
},
{
"content": "cost_func",
"role": "assistant"
}
] |
def x(tuning_options):
values = tuning_options.tune_params.values()
if tuning_options.scaling:
eps = numpy.amin([(1.0 / len(v)) for v in values])
bounds = [(0, eps * len(v)) for v in values]
x0 = [(0.5 * eps * len(v)) for v in values]
else:
bounds = get_bounds(tuning_options.tune_params)
x0 = [((min_v + max_v) / 2.0) for min_v, max_v in bounds]
eps = 1000000000.0
for v_list in values:
vals = numpy.sort(v_list)
eps = min(eps, numpy.amin(numpy.gradient(vals)))
tuning_options['eps'] = eps
logging.debug('get_bounds_x0_eps called')
logging.debug('bounds ' + str(bounds))
logging.debug('x0 ' + str(x0))
logging.debug('eps ' + str(eps))
return bounds, x0, eps
|
get_bounds_x0_eps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tuning_options):\n values = tuning_options.tune_params.values()\n if tuning_options.scaling:\n eps = numpy.amin([(1.0 / len(v)) for v in values])\n bounds = [(0, eps * len(v)) for v in values]\n x0 = [(0.5 * eps * len(v)) for v in values]\n else:\n bounds = get_bounds(tuning_options.tune_params)\n x0 = [((min_v + max_v) / 2.0) for min_v, max_v in bounds]\n eps = 1000000000.0\n for v_list in values:\n vals = numpy.sort(v_list)\n eps = min(eps, numpy.amin(numpy.gradient(vals)))\n tuning_options['eps'] = eps\n logging.debug('get_bounds_x0_eps called')\n logging.debug('bounds ' + str(bounds))\n logging.debug('x0 ' + str(x0))\n logging.debug('eps ' + str(eps))\n return bounds, x0, eps\n",
"role": "user"
},
{
"content": "get_bounds_x0_eps",
"role": "assistant"
}
] |
def x(tune_params):
bounds = []
for values in tune_params.values():
sorted_values = numpy.sort(values)
bounds.append((sorted_values[0], sorted_values[-1]))
return bounds
|
get_bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tune_params):\n bounds = []\n for values in tune_params.values():\n sorted_values = numpy.sort(values)\n bounds.append((sorted_values[0], sorted_values[-1]))\n return bounds\n",
"role": "user"
},
{
"content": "get_bounds",
"role": "assistant"
}
] |
def x(method, tuning_options):
kwargs = {}
maxiter = numpy.prod([len(v) for v in tuning_options.tune_params.values()])
kwargs['maxiter'] = maxiter
if method in ['Nelder-Mead', 'Powell']:
kwargs['maxfev'] = maxiter
elif method == 'L-BFGS-B':
kwargs['maxfun'] = maxiter
if method in ['CG', 'BFGS', 'L-BFGS-B', 'TNC', 'SLSQP']:
kwargs['eps'] = tuning_options.eps
elif method == 'COBYLA':
kwargs['rhobeg'] = tuning_options.eps
return kwargs
|
setup_method_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method, tuning_options):\n kwargs = {}\n maxiter = numpy.prod([len(v) for v in tuning_options.tune_params.values()])\n kwargs['maxiter'] = maxiter\n if method in ['Nelder-Mead', 'Powell']:\n kwargs['maxfev'] = maxiter\n elif method == 'L-BFGS-B':\n kwargs['maxfun'] = maxiter\n if method in ['CG', 'BFGS', 'L-BFGS-B', 'TNC', 'SLSQP']:\n kwargs['eps'] = tuning_options.eps\n elif method == 'COBYLA':\n kwargs['rhobeg'] = tuning_options.eps\n return kwargs\n",
"role": "user"
},
{
"content": "setup_method_options",
"role": "assistant"
}
] |
def x(x, tune_params):
params = []
for i, k in enumerate(tune_params.keys()):
values = numpy.array(tune_params[k])
idx = numpy.abs(values - x[i]).argmin()
params.append(int(values[idx]))
return params
|
snap_to_nearest_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, tune_params):\n params = []\n for i, k in enumerate(tune_params.keys()):\n values = numpy.array(tune_params[k])\n idx = numpy.abs(values - x[i]).argmin()\n params.append(int(values[idx]))\n return params\n",
"role": "user"
},
{
"content": "snap_to_nearest_config",
"role": "assistant"
}
] |
def x(x, tune_params, eps):
x_u = [i for i in x]
for i, v in enumerate(tune_params.values()):
pad = 0.5 * eps
linspace = numpy.linspace(pad, eps * len(v) - pad, len(v))
idx = numpy.abs(linspace - x[i]).argmin()
idx = min(max(idx, 0), len(v) - 1)
x_u[i] = v[idx]
return x_u
|
unscale_and_snap_to_nearest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, tune_params, eps):\n x_u = [i for i in x]\n for i, v in enumerate(tune_params.values()):\n pad = 0.5 * eps\n linspace = numpy.linspace(pad, eps * len(v) - pad, len(v))\n idx = numpy.abs(linspace - x[i]).argmin()\n idx = min(max(idx, 0), len(v) - 1)\n x_u[i] = v[idx]\n return x_u\n",
"role": "user"
},
{
"content": "unscale_and_snap_to_nearest",
"role": "assistant"
}
] |
def x(self, parameter_space, kernel_options, tuning_options):
logging.debug('sequential runner started for ' + kernel_options.kernel_name
)
results = []
for element in parameter_space:
params = OrderedDict(zip(tuning_options.tune_params.keys(), element))
time = self.dev.compile_and_benchmark(self.gpu_args, params,
kernel_options, tuning_options)
if time is None:
logging.debug(
'received time is None, kernel configuration was skipped silently due to compile or runtime failure'
)
continue
params['time'] = time
output_string = get_config_string(params, self.units)
logging.debug(output_string)
if not self.quiet:
print(output_string)
results.append(params)
return results, self.dev.get_environment()
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, kernel_options, tuning_options):\n logging.debug('sequential runner started for ' + kernel_options.kernel_name\n )\n results = []\n for element in parameter_space:\n params = OrderedDict(zip(tuning_options.tune_params.keys(), element))\n time = self.dev.compile_and_benchmark(self.gpu_args, params,\n kernel_options, tuning_options)\n if time is None:\n logging.debug(\n 'received time is None, kernel configuration was skipped silently due to compile or runtime failure'\n )\n continue\n params['time'] = time\n output_string = get_config_string(params, self.units)\n logging.debug(output_string)\n if not self.quiet:\n print(output_string)\n results.append(params)\n return results, self.dev.get_environment()\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
results = []
cache = {}
method = tuning_options.method
tuning_options['scaling'] = True
bounds, x0, eps = get_bounds_x0_eps(tuning_options)
kwargs = setup_method_arguments(method, bounds)
options = setup_method_options(method, tuning_options)
kwargs['options'] = options
args = kernel_options, tuning_options, runner, results, cache
minimizer_kwargs = dict(**kwargs)
minimizer_kwargs['method'] = method
minimizer_kwargs['args'] = args
opt_result = scipy.optimize.basinhopping(_cost_func, x0, stepsize=eps,
minimizer_kwargs=minimizer_kwargs, disp=tuning_options.verbose)
if tuning_options.verbose:
print(opt_result.message)
return results, runner.dev.get_environment()
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n method = tuning_options.method\n tuning_options['scaling'] = True\n bounds, x0, eps = get_bounds_x0_eps(tuning_options)\n kwargs = setup_method_arguments(method, bounds)\n options = setup_method_options(method, tuning_options)\n kwargs['options'] = options\n args = kernel_options, tuning_options, runner, results, cache\n minimizer_kwargs = dict(**kwargs)\n minimizer_kwargs['method'] = method\n minimizer_kwargs['args'] = args\n opt_result = scipy.optimize.basinhopping(_cost_func, x0, stepsize=eps,\n minimizer_kwargs=minimizer_kwargs, disp=tuning_options.verbose)\n if tuning_options.verbose:\n print(opt_result.message)\n return results, runner.dev.get_environment()\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(n, dtype=numpy.float32):
return drv.pagelocked_empty(int(n), dtype, order='C', mem_flags=drv.
host_alloc_flags.PORTABLE)
|
allocate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, dtype=numpy.float32):\n return drv.pagelocked_empty(int(n), dtype, order='C', mem_flags=drv.\n host_alloc_flags.PORTABLE)\n",
"role": "user"
},
{
"content": "allocate",
"role": "assistant"
}
] |
def x(self, arguments):
gpu_args = []
for arg in arguments:
if isinstance(arg, numpy.ndarray):
alloc = drv.mem_alloc(arg.nbytes)
self.allocations.append(alloc)
gpu_args.append(alloc)
drv.memcpy_htod(gpu_args[-1], arg)
else:
gpu_args.append(arg)
return gpu_args
|
ready_argument_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arguments):\n gpu_args = []\n for arg in arguments:\n if isinstance(arg, numpy.ndarray):\n alloc = drv.mem_alloc(arg.nbytes)\n self.allocations.append(alloc)\n gpu_args.append(alloc)\n drv.memcpy_htod(gpu_args[-1], arg)\n else:\n gpu_args.append(arg)\n return gpu_args\n",
"role": "user"
},
{
"content": "ready_argument_list",
"role": "assistant"
}
] |
def x(self, kernel_name, kernel_string):
try:
no_extern_c = 'extern "C"' in kernel_string
compiler_options = ['-Xcompiler=-Wall']
if self.compiler_options:
compiler_options += self.compiler_options
self.current_module = self.source_mod(kernel_string, options=
compiler_options + ['-e', kernel_name], arch='compute_' + self.
cc if self.cc != '00' else None, code='sm_' + self.cc if self.
cc != '00' else None, cache_dir=False, no_extern_c=no_extern_c)
func = self.current_module.get_function(kernel_name)
return func
except drv.CompileError as e:
if 'uses too much shared data' in e.stderr:
raise Exception('uses too much shared data')
else:
raise e
|
compile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kernel_name, kernel_string):\n try:\n no_extern_c = 'extern \"C\"' in kernel_string\n compiler_options = ['-Xcompiler=-Wall']\n if self.compiler_options:\n compiler_options += self.compiler_options\n self.current_module = self.source_mod(kernel_string, options=\n compiler_options + ['-e', kernel_name], arch='compute_' + self.\n cc if self.cc != '00' else None, code='sm_' + self.cc if self.\n cc != '00' else None, cache_dir=False, no_extern_c=no_extern_c)\n func = self.current_module.get_function(kernel_name)\n return func\n except drv.CompileError as e:\n if 'uses too much shared data' in e.stderr:\n raise Exception('uses too much shared data')\n else:\n raise e\n",
"role": "user"
},
{
"content": "compile",
"role": "assistant"
}
] |
def x(self, func, gpu_args, threads, grid, times):
start = drv.Event()
end = drv.Event()
time = []
for _ in range(self.iterations):
self.context.synchronize()
start.record()
self.run_kernel(func, gpu_args, threads, grid)
end.record()
self.context.synchronize()
time.append(end.time_since(start))
time = sorted(time)
if times:
return time
elif self.iterations > 4:
return numpy.mean(time[1:-1])
else:
return numpy.mean(time)
|
benchmark
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, gpu_args, threads, grid, times):\n start = drv.Event()\n end = drv.Event()\n time = []\n for _ in range(self.iterations):\n self.context.synchronize()\n start.record()\n self.run_kernel(func, gpu_args, threads, grid)\n end.record()\n self.context.synchronize()\n time.append(end.time_since(start))\n time = sorted(time)\n if times:\n return time\n elif self.iterations > 4:\n return numpy.mean(time[1:-1])\n else:\n return numpy.mean(time)\n",
"role": "user"
},
{
"content": "benchmark",
"role": "assistant"
}
] |
def x(self, cmem_args):
logging.debug('copy_constant_memory_args called')
logging.debug('current module: ' + str(self.current_module))
for k, v in cmem_args.items():
symbol = self.current_module.get_global(k)[0]
logging.debug('copying to symbol: ' + str(symbol))
logging.debug('array to be copied: ')
logging.debug(v.nbytes)
logging.debug(v.dtype)
logging.debug(v.flags)
drv.memcpy_htod(symbol, v)
|
copy_constant_memory_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cmem_args):\n logging.debug('copy_constant_memory_args called')\n logging.debug('current module: ' + str(self.current_module))\n for k, v in cmem_args.items():\n symbol = self.current_module.get_global(k)[0]\n logging.debug('copying to symbol: ' + str(symbol))\n logging.debug('array to be copied: ')\n logging.debug(v.nbytes)\n logging.debug(v.dtype)\n logging.debug(v.flags)\n drv.memcpy_htod(symbol, v)\n",
"role": "user"
},
{
"content": "copy_constant_memory_args",
"role": "assistant"
}
] |
def x(self, texmem_args):
filter_mode_map = {'point': drv.filter_mode.POINT, 'linear': drv.
filter_mode.LINEAR}
address_mode_map = {'border': drv.address_mode.BORDER, 'clamp': drv.
address_mode.CLAMP, 'mirror': drv.address_mode.MIRROR, 'wrap': drv.
address_mode.WRAP}
logging.debug('copy_texture_memory_args called')
logging.debug('current module: ' + str(self.current_module))
self.texrefs = []
for k, v in texmem_args.items():
tex = self.current_module.get_texref(k)
self.texrefs.append(tex)
logging.debug('copying to texture: ' + str(k))
if not isinstance(v, dict):
data = v
else:
data = v['array']
logging.debug('texture to be copied: ')
logging.debug(data.nbytes)
logging.debug(data.dtype)
logging.debug(data.flags)
drv.matrix_to_texref(data, tex, order='C')
if isinstance(v, dict):
if 'address_mode' in v and v['address_mode'] is not None:
amode = v['address_mode']
if not isinstance(amode, list):
amode = [amode] * data.ndim
for i, m in enumerate(amode):
try:
if m is not None:
tex.set_address_mode(i, address_mode_map[m])
except KeyError:
raise ValueError('Unknown address mode: ' + m)
if 'filter_mode' in v and v['filter_mode'] is not None:
fmode = v['filter_mode']
try:
tex.set_filter_mode(filter_mode_map[fmode])
except KeyError:
raise ValueError('Unknown filter mode: ' + fmode)
if 'normalized_coordinates' in v and v['normalized_coordinates']:
tex.set_flags(tex.get_flags() | drv.TRSF_NORMALIZED_COORDINATES
)
|
copy_texture_memory_args
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, texmem_args):\n filter_mode_map = {'point': drv.filter_mode.POINT, 'linear': drv.\n filter_mode.LINEAR}\n address_mode_map = {'border': drv.address_mode.BORDER, 'clamp': drv.\n address_mode.CLAMP, 'mirror': drv.address_mode.MIRROR, 'wrap': drv.\n address_mode.WRAP}\n logging.debug('copy_texture_memory_args called')\n logging.debug('current module: ' + str(self.current_module))\n self.texrefs = []\n for k, v in texmem_args.items():\n tex = self.current_module.get_texref(k)\n self.texrefs.append(tex)\n logging.debug('copying to texture: ' + str(k))\n if not isinstance(v, dict):\n data = v\n else:\n data = v['array']\n logging.debug('texture to be copied: ')\n logging.debug(data.nbytes)\n logging.debug(data.dtype)\n logging.debug(data.flags)\n drv.matrix_to_texref(data, tex, order='C')\n if isinstance(v, dict):\n if 'address_mode' in v and v['address_mode'] is not None:\n amode = v['address_mode']\n if not isinstance(amode, list):\n amode = [amode] * data.ndim\n for i, m in enumerate(amode):\n try:\n if m is not None:\n tex.set_address_mode(i, address_mode_map[m])\n except KeyError:\n raise ValueError('Unknown address mode: ' + m)\n if 'filter_mode' in v and v['filter_mode'] is not None:\n fmode = v['filter_mode']\n try:\n tex.set_filter_mode(filter_mode_map[fmode])\n except KeyError:\n raise ValueError('Unknown filter mode: ' + fmode)\n if 'normalized_coordinates' in v and v['normalized_coordinates']:\n tex.set_flags(tex.get_flags() | drv.TRSF_NORMALIZED_COORDINATES\n )\n",
"role": "user"
},
{
"content": "copy_texture_memory_args",
"role": "assistant"
}
] |
def x(self, func, gpu_args, threads, grid):
func(*gpu_args, block=threads, grid=grid, texrefs=self.texrefs)
|
run_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, gpu_args, threads, grid):\n func(*gpu_args, block=threads, grid=grid, texrefs=self.texrefs)\n",
"role": "user"
},
{
"content": "run_kernel",
"role": "assistant"
}
] |
def x(self, allocation, value, size):
drv.memset_d8(allocation, value, size)
|
memset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, allocation, value, size):\n drv.memset_d8(allocation, value, size)\n",
"role": "user"
},
{
"content": "memset",
"role": "assistant"
}
] |
def x(self, dest, src):
if isinstance(src, drv.DeviceAllocation):
drv.memcpy_dtoh(dest, src)
else:
dest = src
|
memcpy_dtoh
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dest, src):\n if isinstance(src, drv.DeviceAllocation):\n drv.memcpy_dtoh(dest, src)\n else:\n dest = src\n",
"role": "user"
},
{
"content": "memcpy_dtoh",
"role": "assistant"
}
] |
def x(self, dest, src):
if isinstance(dest, drv.DeviceAllocation):
drv.memcpy_htod(dest, src)
else:
dest = src
|
memcpy_htod
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dest, src):\n if isinstance(dest, drv.DeviceAllocation):\n drv.memcpy_htod(dest, src)\n else:\n dest = src\n",
"role": "user"
},
{
"content": "memcpy_htod",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
results = []
cache = {}
tuning_options['scaling'] = False
args = kernel_options, tuning_options, runner, results, cache
tune_params = tuning_options.tune_params
T = 1.0
T_min = 0.001
alpha = 0.9
niter = 20
pos = []
for i, _ in enumerate(tune_params.keys()):
pos.append(random_val(i, tune_params))
old_cost = _cost_func(pos, *args)
if tuning_options.verbose:
c = 0
while T > T_min:
if tuning_options.verbose:
print('iteration: ', c, 'T', T, 'cost: ', old_cost)
c += 1
for i in range(niter):
new_pos = neighbor(pos, tune_params)
new_cost = _cost_func(new_pos, *args)
ap = acceptance_prob(old_cost, new_cost, T)
r = random.random()
if ap > r:
if tuning_options.verbose:
print('new position accepted', new_pos, new_cost,
'old:', pos, old_cost, 'ap', ap, 'r', r, 'T', T)
pos = new_pos
old_cost = new_cost
T = T * alpha
return results, runner.dev.get_environment()
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n results = []\n cache = {}\n tuning_options['scaling'] = False\n args = kernel_options, tuning_options, runner, results, cache\n tune_params = tuning_options.tune_params\n T = 1.0\n T_min = 0.001\n alpha = 0.9\n niter = 20\n pos = []\n for i, _ in enumerate(tune_params.keys()):\n pos.append(random_val(i, tune_params))\n old_cost = _cost_func(pos, *args)\n if tuning_options.verbose:\n c = 0\n while T > T_min:\n if tuning_options.verbose:\n print('iteration: ', c, 'T', T, 'cost: ', old_cost)\n c += 1\n for i in range(niter):\n new_pos = neighbor(pos, tune_params)\n new_cost = _cost_func(new_pos, *args)\n ap = acceptance_prob(old_cost, new_cost, T)\n r = random.random()\n if ap > r:\n if tuning_options.verbose:\n print('new position accepted', new_pos, new_cost,\n 'old:', pos, old_cost, 'ap', ap, 'r', r, 'T', T)\n pos = new_pos\n old_cost = new_cost\n T = T * alpha\n return results, runner.dev.get_environment()\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(old_cost, new_cost, T):
if old_cost == 1e+20:
return 1.0
if new_cost == 1e+20:
return 0.0
if new_cost < old_cost:
return 1.0
return np.exp((old_cost - new_cost) / old_cost / T)
|
acceptance_prob
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(old_cost, new_cost, T):\n if old_cost == 1e+20:\n return 1.0\n if new_cost == 1e+20:\n return 0.0\n if new_cost < old_cost:\n return 1.0\n return np.exp((old_cost - new_cost) / old_cost / T)\n",
"role": "user"
},
{
"content": "acceptance_prob",
"role": "assistant"
}
] |
def x(pos, tune_params):
size = len(pos)
pos_out = []
for i in range(size):
key = list(tune_params.keys())[i]
values = tune_params[key]
if random.random() < 0.2:
new_value = random_val(i, tune_params)
else:
ind = values.index(pos[i])
if random.random() > 0.5:
ind += 1
else:
ind -= 1
ind = min(max(ind, 0), len(values) - 1)
new_value = values[ind]
pos_out.append(new_value)
return pos_out
|
neighbor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pos, tune_params):\n size = len(pos)\n pos_out = []\n for i in range(size):\n key = list(tune_params.keys())[i]\n values = tune_params[key]\n if random.random() < 0.2:\n new_value = random_val(i, tune_params)\n else:\n ind = values.index(pos[i])\n if random.random() > 0.5:\n ind += 1\n else:\n ind -= 1\n ind = min(max(ind, 0), len(values) - 1)\n new_value = values[ind]\n pos_out.append(new_value)\n return pos_out\n",
"role": "user"
},
{
"content": "neighbor",
"role": "assistant"
}
] |
def x(runner, kernel_options, device_options, tuning_options):
tune_params = tuning_options.tune_params
restrictions = tuning_options.restrictions
verbose = tuning_options.verbose
parameter_space = itertools.product(*tune_params.values())
if restrictions is not None:
parameter_space = filter(lambda p: util.check_restrictions(
restrictions, p, tune_params.keys(), verbose), parameter_space)
results, env = runner.run(parameter_space, kernel_options, tuning_options)
return results, env
|
tune
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(runner, kernel_options, device_options, tuning_options):\n tune_params = tuning_options.tune_params\n restrictions = tuning_options.restrictions\n verbose = tuning_options.verbose\n parameter_space = itertools.product(*tune_params.values())\n if restrictions is not None:\n parameter_space = filter(lambda p: util.check_restrictions(\n restrictions, p, tune_params.keys(), verbose), parameter_space)\n results, env = runner.run(parameter_space, kernel_options, tuning_options)\n return results, env\n",
"role": "user"
},
{
"content": "tune",
"role": "assistant"
}
] |
def x(function_name, kernel_source, args, convert_to_array=None):
if convert_to_array and len(args) != len(convert_to_array):
raise ValueError('convert_to_array length should be same as args')
type_map = {'int8': 'char', 'int16': 'short', 'int32': 'int', 'float32':
'float', 'float64': 'double'}
def x(arg):
if not str(arg.dtype) in type_map:
raise Value(
'only primitive data types are supported by the C++ wrapper')
typestring = type_map[str(arg.dtype)]
if isinstance(arg, np.ndarray):
typestring += ' *'
return typestring + ' '
signature = ','.join([(type_str(arg) + 'arg' + str(i)) for i, arg in
enumerate(args)])
if not convert_to_array:
call_args = ','.join([('arg' + str(i)) for i in range(len(args))])
else:
call_args = []
for i, arg in enumerate(args):
if convert_to_array[i]:
if not isinstance(arg, np.ndarray):
ValueError(
'conversion to array reference only supported for arguments that are numpy arrays, use length-1 numpy array to pass a scalar by reference'
)
if np.prod(arg.shape) > 1:
arg_shape = ''.join('[%d]' % i for i in arg.shape)
arg_str = '*reinterpret_cast<' + type_map[str(arg.dtype)
] + '(*)' + arg_shape + '>(arg' + str(i) + ')'
else:
arg_str = '*arg' + str(i)
call_args.append(arg_str)
else:
call_args.append('arg' + str(i))
call_args_str = ','.join(call_args)
kernel_string = util.get_kernel_string(kernel_source)
return (
"""
%s
extern "C"
float %s_wrapper(%s) {
%s(%s);
return 0.0f;
}"""
% (kernel_string, function_name, signature, function_name,
call_args_str))
|
cpp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(function_name, kernel_source, args, convert_to_array=None):\n if convert_to_array and len(args) != len(convert_to_array):\n raise ValueError('convert_to_array length should be same as args')\n type_map = {'int8': 'char', 'int16': 'short', 'int32': 'int', 'float32':\n 'float', 'float64': 'double'}\n\n def x(arg):\n if not str(arg.dtype) in type_map:\n raise Value(\n 'only primitive data types are supported by the C++ wrapper')\n typestring = type_map[str(arg.dtype)]\n if isinstance(arg, np.ndarray):\n typestring += ' *'\n return typestring + ' '\n signature = ','.join([(type_str(arg) + 'arg' + str(i)) for i, arg in\n enumerate(args)])\n if not convert_to_array:\n call_args = ','.join([('arg' + str(i)) for i in range(len(args))])\n else:\n call_args = []\n for i, arg in enumerate(args):\n if convert_to_array[i]:\n if not isinstance(arg, np.ndarray):\n ValueError(\n 'conversion to array reference only supported for arguments that are numpy arrays, use length-1 numpy array to pass a scalar by reference'\n )\n if np.prod(arg.shape) > 1:\n arg_shape = ''.join('[%d]' % i for i in arg.shape)\n arg_str = '*reinterpret_cast<' + type_map[str(arg.dtype)\n ] + '(*)' + arg_shape + '>(arg' + str(i) + ')'\n else:\n arg_str = '*arg' + str(i)\n call_args.append(arg_str)\n else:\n call_args.append('arg' + str(i))\n call_args_str = ','.join(call_args)\n kernel_string = util.get_kernel_string(kernel_source)\n return (\n \"\"\"\n\n %s\n\n extern \"C\"\n float %s_wrapper(%s) {\n\n %s(%s);\n\n return 0.0f;\n }\"\"\"\n % (kernel_string, function_name, signature, function_name,\n call_args_str))\n",
"role": "user"
},
{
"content": "cpp",
"role": "assistant"
}
] |
def x(self, arguments):
ctype_args = [None for _ in arguments]
for i, arg in enumerate(arguments):
if not isinstance(arg, (numpy.ndarray, numpy.number)):
raise TypeError(
'Argument is not numpy ndarray or numpy scalar %s' % type(arg))
dtype_str = str(arg.dtype)
data = arg.copy()
if isinstance(arg, numpy.ndarray):
if dtype_str in dtype_map.keys():
data_ctypes = data.ctypes.data_as(C.POINTER(dtype_map[
dtype_str]))
else:
raise TypeError('unknown dtype for ndarray')
elif isinstance(arg, numpy.generic):
data_ctypes = dtype_map[dtype_str](arg)
ctype_args[i] = Argument(numpy=data, ctypes=data_ctypes)
return ctype_args
|
ready_argument_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arguments):\n ctype_args = [None for _ in arguments]\n for i, arg in enumerate(arguments):\n if not isinstance(arg, (numpy.ndarray, numpy.number)):\n raise TypeError(\n 'Argument is not numpy ndarray or numpy scalar %s' % type(arg))\n dtype_str = str(arg.dtype)\n data = arg.copy()\n if isinstance(arg, numpy.ndarray):\n if dtype_str in dtype_map.keys():\n data_ctypes = data.ctypes.data_as(C.POINTER(dtype_map[\n dtype_str]))\n else:\n raise TypeError('unknown dtype for ndarray')\n elif isinstance(arg, numpy.generic):\n data_ctypes = dtype_map[dtype_str](arg)\n ctype_args[i] = Argument(numpy=data, ctypes=data_ctypes)\n return ctype_args\n",
"role": "user"
},
{
"content": "ready_argument_list",
"role": "assistant"
}
] |
def x(self, kernel_name, kernel_string):
logging.debug('compiling ' + kernel_name)
if self.lib != None:
self.cleanup_lib()
compiler_options = ['-fPIC']
if '#include <omp.h>' in kernel_string or 'use omp_lib' in kernel_string:
logging.debug('set using_openmp to true')
self.using_openmp = True
if self.compiler == 'pgfortran':
compiler_options.append('-mp')
else:
compiler_options.append('-fopenmp')
suffix = '.cc'
if '#include <cuda' in kernel_string or 'cudaMemcpy' in kernel_string:
if self.compiler == 'g++' and self.nvcc_available:
self.compiler = 'nvcc'
if self.compiler == 'nvcc' and '__global__' in kernel_string:
suffix = '.cu'
if self.compiler in ['gfortran', 'pgfortran', 'ftn', 'ifort']:
suffix = '.F90'
if self.compiler == 'nvcc':
compiler_options = [('-Xcompiler=' + c) for c in compiler_options]
if '.c' in suffix:
if not 'extern "C"' in kernel_string:
kernel_string = 'extern "C" {\n' + kernel_string + '\n}'
if self.compiler_options:
compiler_options += self.compiler_options
lib_args = []
if 'CL/cl.h' in kernel_string:
lib_args = ['-lOpenCL']
logging.debug('using compiler ' + self.compiler)
logging.debug('compiler_options ' + ' '.join(compiler_options))
logging.debug('lib_args ' + ' '.join(lib_args))
source_file = get_temp_filename(suffix=suffix)
filename = '.'.join(source_file.split('.')[:-1])
match = re.search('\\s*module\\s+([a-zA-Z_]*)', kernel_string)
if match:
if self.compiler == 'gfortran':
kernel_name = '__' + match.group(1) + '_MOD_' + kernel_name
elif self.compiler in ['ftn', 'ifort']:
kernel_name = match.group(1) + '_mp_' + kernel_name + '_'
elif self.compiler == 'pgfortran':
kernel_name = match.group(1) + '_' + kernel_name + '_'
try:
write_file(source_file, kernel_string)
lib_extension = '.so'
if platform.system() == 'Darwin':
lib_extension = '.dylib'
subprocess.check_call([self.compiler, '-c', source_file] +
compiler_options + ['-o', filename + '.o'])
subprocess.check_call([self.compiler, filename + '.o'] +
compiler_options + ['-shared', '-o', filename + lib_extension] +
lib_args)
self.lib = numpy.ctypeslib.load_library(filename, '.')
func = getattr(self.lib, kernel_name)
func.restype = C.c_float
finally:
delete_temp_file(source_file)
delete_temp_file(filename + '.o')
delete_temp_file(filename + '.so')
delete_temp_file(filename + '.dylib')
return func
|
compile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kernel_name, kernel_string):\n logging.debug('compiling ' + kernel_name)\n if self.lib != None:\n self.cleanup_lib()\n compiler_options = ['-fPIC']\n if '#include <omp.h>' in kernel_string or 'use omp_lib' in kernel_string:\n logging.debug('set using_openmp to true')\n self.using_openmp = True\n if self.compiler == 'pgfortran':\n compiler_options.append('-mp')\n else:\n compiler_options.append('-fopenmp')\n suffix = '.cc'\n if '#include <cuda' in kernel_string or 'cudaMemcpy' in kernel_string:\n if self.compiler == 'g++' and self.nvcc_available:\n self.compiler = 'nvcc'\n if self.compiler == 'nvcc' and '__global__' in kernel_string:\n suffix = '.cu'\n if self.compiler in ['gfortran', 'pgfortran', 'ftn', 'ifort']:\n suffix = '.F90'\n if self.compiler == 'nvcc':\n compiler_options = [('-Xcompiler=' + c) for c in compiler_options]\n if '.c' in suffix:\n if not 'extern \"C\"' in kernel_string:\n kernel_string = 'extern \"C\" {\\n' + kernel_string + '\\n}'\n if self.compiler_options:\n compiler_options += self.compiler_options\n lib_args = []\n if 'CL/cl.h' in kernel_string:\n lib_args = ['-lOpenCL']\n logging.debug('using compiler ' + self.compiler)\n logging.debug('compiler_options ' + ' '.join(compiler_options))\n logging.debug('lib_args ' + ' '.join(lib_args))\n source_file = get_temp_filename(suffix=suffix)\n filename = '.'.join(source_file.split('.')[:-1])\n match = re.search('\\\\s*module\\\\s+([a-zA-Z_]*)', kernel_string)\n if match:\n if self.compiler == 'gfortran':\n kernel_name = '__' + match.group(1) + '_MOD_' + kernel_name\n elif self.compiler in ['ftn', 'ifort']:\n kernel_name = match.group(1) + '_mp_' + kernel_name + '_'\n elif self.compiler == 'pgfortran':\n kernel_name = match.group(1) + '_' + kernel_name + '_'\n try:\n write_file(source_file, kernel_string)\n lib_extension = '.so'\n if platform.system() == 'Darwin':\n lib_extension = '.dylib'\n subprocess.check_call([self.compiler, '-c', source_file] +\n compiler_options + ['-o', filename + '.o'])\n subprocess.check_call([self.compiler, filename + '.o'] +\n compiler_options + ['-shared', '-o', filename + lib_extension] +\n lib_args)\n self.lib = numpy.ctypeslib.load_library(filename, '.')\n func = getattr(self.lib, kernel_name)\n func.restype = C.c_float\n finally:\n delete_temp_file(source_file)\n delete_temp_file(filename + '.o')\n delete_temp_file(filename + '.so')\n delete_temp_file(filename + '.dylib')\n return func\n",
"role": "user"
},
{
"content": "compile",
"role": "assistant"
}
] |
def x(self, func, c_args, threads, grid, times):
time = []
for _ in range(self.iterations):
value = self.run_kernel(func, c_args, threads, grid)
if value < 0.0:
raise Exception('too many resources requested for launch')
time.append(value)
time = sorted(time)
if times:
return time
elif self.iterations > 4:
return numpy.mean(time[1:-1])
else:
return numpy.mean(time)
|
benchmark
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, c_args, threads, grid, times):\n time = []\n for _ in range(self.iterations):\n value = self.run_kernel(func, c_args, threads, grid)\n if value < 0.0:\n raise Exception('too many resources requested for launch')\n time.append(value)\n time = sorted(time)\n if times:\n return time\n elif self.iterations > 4:\n return numpy.mean(time[1:-1])\n else:\n return numpy.mean(time)\n",
"role": "user"
},
{
"content": "benchmark",
"role": "assistant"
}
] |
def x(self, func, c_args, threads, grid):
logging.debug('run_kernel')
logging.debug('arguments=' + str([str(arg.ctypes) for arg in c_args]))
time = func(*[arg.ctypes for arg in c_args])
return time
|
run_kernel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func, c_args, threads, grid):\n logging.debug('run_kernel')\n logging.debug('arguments=' + str([str(arg.ctypes) for arg in c_args]))\n time = func(*[arg.ctypes for arg in c_args])\n return time\n",
"role": "user"
},
{
"content": "run_kernel",
"role": "assistant"
}
] |
def x(self, allocation, value, size):
C.memset(allocation.ctypes, value, size)
|
memset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, allocation, value, size):\n C.memset(allocation.ctypes, value, size)\n",
"role": "user"
},
{
"content": "memset",
"role": "assistant"
}
] |
def x(self):
if not self.using_openmp:
logging.debug('unloading shared library')
_ctypes.dlclose(self.lib._handle)
|
cleanup_lib
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.using_openmp:\n logging.debug('unloading shared library')\n _ctypes.dlclose(self.lib._handle)\n",
"role": "user"
},
{
"content": "cleanup_lib",
"role": "assistant"
}
] |
def x(rpc):
while True:
yield from rpc.notify('clock', str(datetime.datetime.now()))
yield from asyncio.sleep(1)
|
clock
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rpc):\n while True:\n yield from rpc.notify('clock', str(datetime.datetime.now()))\n yield from asyncio.sleep(1)\n",
"role": "user"
},
{
"content": "clock",
"role": "assistant"
}
] |
def x():
global __already_patched
if not __already_patched:
from django.db import connections
connections._connections = local(connections._connections)
__already_patched = True
|
patch_db_connections
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n global __already_patched\n if not __already_patched:\n from django.db import connections\n connections._connections = local(connections._connections)\n __already_patched = True\n",
"role": "user"
},
{
"content": "patch_db_connections",
"role": "assistant"
}
] |
def x(raw_msg):
try:
msg_data = json.loads(raw_msg)
except ValueError:
raise RpcParseError
if 'jsonrpc' not in msg_data or not msg_data['jsonrpc'] == JSONRPC:
raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))
if not len(set(['error', 'result', 'method']) & set(msg_data)) == 1:
raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))
if 'method' in msg_data:
if 'id' in msg_data and msg_data['id'] is not None:
msg_type = JsonRpcMsgTyp.REQUEST
else:
msg_type = JsonRpcMsgTyp.NOTIFICATION
elif 'result' in msg_data:
msg_type = JsonRpcMsgTyp.RESULT
elif 'error' in msg_data:
msg_type = JsonRpcMsgTyp.ERROR
if msg_type in (JsonRpcMsgTyp.REQUEST, JsonRpcMsgTyp.NOTIFICATION):
if type(msg_data['method']) is not str:
raise RpcInvalidRequestError
if 'params' not in msg_data:
msg_data['params'] = None
if 'id' not in msg_data:
msg_data['id'] = None
if msg_type in (JsonRpcMsgTyp.RESULT, JsonRpcMsgTyp.ERROR):
if 'id' not in msg_data:
raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))
if msg_type == JsonRpcMsgTyp.ERROR:
if type(msg_data['error']) is not dict:
raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))
if not len(set(['code', 'message']) & set(msg_data['error'])) == 2:
raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))
if not msg_data['error']['code'] in RpcError.lookup_table.keys():
raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))
if 'data' not in msg_data['error']:
msg_data['error']['data'] = None
return JsonRpcMsg(msg_type, msg_data)
|
decode_msg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raw_msg):\n try:\n msg_data = json.loads(raw_msg)\n except ValueError:\n raise RpcParseError\n if 'jsonrpc' not in msg_data or not msg_data['jsonrpc'] == JSONRPC:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if not len(set(['error', 'result', 'method']) & set(msg_data)) == 1:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if 'method' in msg_data:\n if 'id' in msg_data and msg_data['id'] is not None:\n msg_type = JsonRpcMsgTyp.REQUEST\n else:\n msg_type = JsonRpcMsgTyp.NOTIFICATION\n elif 'result' in msg_data:\n msg_type = JsonRpcMsgTyp.RESULT\n elif 'error' in msg_data:\n msg_type = JsonRpcMsgTyp.ERROR\n if msg_type in (JsonRpcMsgTyp.REQUEST, JsonRpcMsgTyp.NOTIFICATION):\n if type(msg_data['method']) is not str:\n raise RpcInvalidRequestError\n if 'params' not in msg_data:\n msg_data['params'] = None\n if 'id' not in msg_data:\n msg_data['id'] = None\n if msg_type in (JsonRpcMsgTyp.RESULT, JsonRpcMsgTyp.ERROR):\n if 'id' not in msg_data:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if msg_type == JsonRpcMsgTyp.ERROR:\n if type(msg_data['error']) is not dict:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if not len(set(['code', 'message']) & set(msg_data['error'])) == 2:\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if not msg_data['error']['code'] in RpcError.lookup_table.keys():\n raise RpcInvalidRequestError(msg_id=msg_data.get('id', None))\n if 'data' not in msg_data['error']:\n msg_data['error']['data'] = None\n return JsonRpcMsg(msg_type, msg_data)\n",
"role": "user"
},
{
"content": "decode_msg",
"role": "assistant"
}
] |
def x(task, kwargs, **kw):
from .compat import get_public_schema_name, get_tenant_model
old_schema = connection.schema_name, connection.include_public_schema
setattr(task, '_old_schema', old_schema)
schema = get_schema_name_from_task(task, kwargs) or get_public_schema_name(
)
if connection.schema_name == schema:
return
if connection.schema_name != get_public_schema_name():
connection.set_schema_to_public()
if schema == get_public_schema_name():
return
tenant = get_tenant_model().objects.get(schema_name=schema)
connection.set_tenant(tenant, include_public=True)
|
switch_schema
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(task, kwargs, **kw):\n from .compat import get_public_schema_name, get_tenant_model\n old_schema = connection.schema_name, connection.include_public_schema\n setattr(task, '_old_schema', old_schema)\n schema = get_schema_name_from_task(task, kwargs) or get_public_schema_name(\n )\n if connection.schema_name == schema:\n return\n if connection.schema_name != get_public_schema_name():\n connection.set_schema_to_public()\n if schema == get_public_schema_name():\n return\n tenant = get_tenant_model().objects.get(schema_name=schema)\n connection.set_tenant(tenant, include_public=True)\n",
"role": "user"
},
{
"content": "switch_schema",
"role": "assistant"
}
] |
def x(task, **kwargs):
from .compat import get_public_schema_name
schema_name = get_public_schema_name()
include_public = True
if hasattr(task, '_old_schema'):
schema_name, include_public = task._old_schema
if connection.schema_name == schema_name:
return
connection.set_schema(schema_name, include_public=include_public)
|
restore_schema
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(task, **kwargs):\n from .compat import get_public_schema_name\n schema_name = get_public_schema_name()\n include_public = True\n if hasattr(task, '_old_schema'):\n schema_name, include_public = task._old_schema\n if connection.schema_name == schema_name:\n return\n connection.set_schema(schema_name, include_public=include_public)\n",
"role": "user"
},
{
"content": "restore_schema",
"role": "assistant"
}
] |
def x(G, attrs=_attrs):
id_ = attrs['id']
data = {}
data['directed'] = G.is_directed()
data['graph'] = G.graph
data['nodes'] = [dict(chain(G.node[n].items(), [(id_, n)])) for n in G]
data['links'] = []
for u, v, timeline in G.interactions_iter():
for t in timeline['t']:
for tid in past.builtins.xrange(t[0], t[-1] + 1):
data['links'].append({'source': u, 'target': v, 'time': tid})
return data
|
node_link_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(G, attrs=_attrs):\n id_ = attrs['id']\n data = {}\n data['directed'] = G.is_directed()\n data['graph'] = G.graph\n data['nodes'] = [dict(chain(G.node[n].items(), [(id_, n)])) for n in G]\n data['links'] = []\n for u, v, timeline in G.interactions_iter():\n for t in timeline['t']:\n for tid in past.builtins.xrange(t[0], t[-1] + 1):\n data['links'].append({'source': u, 'target': v, 'time': tid})\n return data\n",
"role": "user"
},
{
"content": "node_link_data",
"role": "assistant"
}
] |
def x(data, directed=False, attrs=_attrs):
directed = data.get('directed', directed)
graph = dn.DynGraph()
if directed:
graph = graph.to_directed()
id_ = attrs['id']
mapping = []
graph.graph = data.get('graph', {})
c = count()
for d in data['nodes']:
node = d.get(id_, next(c))
mapping.append(node)
nodedata = dict((make_str(k), v) for k, v in d.items() if k != id_)
graph.add_node(node, **nodedata)
for d in data['links']:
graph.add_interaction(d['source'], d['target'], d['time'])
return graph
|
node_link_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, directed=False, attrs=_attrs):\n directed = data.get('directed', directed)\n graph = dn.DynGraph()\n if directed:\n graph = graph.to_directed()\n id_ = attrs['id']\n mapping = []\n graph.graph = data.get('graph', {})\n c = count()\n for d in data['nodes']:\n node = d.get(id_, next(c))\n mapping.append(node)\n nodedata = dict((make_str(k), v) for k, v in d.items() if k != id_)\n graph.add_node(node, **nodedata)\n for d in data['links']:\n graph.add_interaction(d['source'], d['target'], d['time'])\n return graph\n",
"role": "user"
},
{
"content": "node_link_graph",
"role": "assistant"
}
] |
def x(sind_list):
tls = sorted(sind_list)
conversion = {val: idx for idx, val in enumerate(tls)}
return conversion
|
compact_timeslot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sind_list):\n tls = sorted(sind_list)\n conversion = {val: idx for idx, val in enumerate(tls)}\n return conversion\n",
"role": "user"
},
{
"content": "compact_timeslot",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.