source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, f0, df, N):
return self._score_frequency_grid(f0, df, N)
|
score_frequency_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, f0, df, N):\n return self._score_frequency_grid(f0, df, N)\n",
"role": "user"
},
{
"content": "score_frequency_grid",
"role": "assistant"
}
] |
def x(self, oversampling=5, nyquist_factor=3, return_periods=True):
N = len(self.t)
T = np.max(self.t) - np.min(self.t)
df = 1.0 / T / oversampling
f0 = df
Nf = int(0.5 * oversampling * nyquist_factor * N)
freq = f0 + df * np.arange(Nf)
return 1.0 / freq, self._score_frequency_grid(f0, df, Nf)
|
periodogram_auto
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, oversampling=5, nyquist_factor=3, return_periods=True):\n N = len(self.t)\n T = np.max(self.t) - np.min(self.t)\n df = 1.0 / T / oversampling\n f0 = df\n Nf = int(0.5 * oversampling * nyquist_factor * N)\n freq = f0 + df * np.arange(Nf)\n return 1.0 / freq, self._score_frequency_grid(f0, df, Nf)\n",
"role": "user"
},
{
"content": "periodogram_auto",
"role": "assistant"
}
] |
def x(self, periods=None):
periods = np.asarray(periods)
return self._score(periods.ravel()).reshape(periods.shape)
|
score
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, periods=None):\n periods = np.asarray(periods)\n return self._score(periods.ravel()).reshape(periods.shape)\n",
"role": "user"
},
{
"content": "score",
"role": "assistant"
}
] |
def x(self):
if self._best_period is None:
self._best_period = self._calc_best_period()
return self._best_period
|
best_period
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._best_period is None:\n self._best_period = self._calc_best_period()\n return self._best_period\n",
"role": "user"
},
{
"content": "best_period",
"role": "assistant"
}
] |
def x(self, n_periods=5, return_scores=False):
return self.optimizer.find_best_periods(self, n_periods, return_scores=
return_scores)
|
find_best_periods
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n_periods=5, return_scores=False):\n return self.optimizer.find_best_periods(self, n_periods, return_scores=\n return_scores)\n",
"role": "user"
},
{
"content": "find_best_periods",
"role": "assistant"
}
] |
def x(self, t, y, dy=None, filts=0):
self.unique_filts_ = np.unique(filts)
if dy is None:
dy = 1
all_data = np.broadcast_arrays(t, y, dy, filts)
self.t, self.y, self.dy, self.filts = map(np.ravel, all_data)
self._fit(self.t, self.y, self.dy, self.filts)
self._best_period = None
if self.fit_period:
self._best_period = self._calc_best_period()
return self
|
fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, y, dy=None, filts=0):\n self.unique_filts_ = np.unique(filts)\n if dy is None:\n dy = 1\n all_data = np.broadcast_arrays(t, y, dy, filts)\n self.t, self.y, self.dy, self.filts = map(np.ravel, all_data)\n self._fit(self.t, self.y, self.dy, self.filts)\n self._best_period = None\n if self.fit_period:\n self._best_period = self._calc_best_period()\n return self\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
] |
def x(self, t, filts, period=None):
unique_filts = set(np.unique(filts))
if not unique_filts.issubset(self.unique_filts_):
raise ValueError(
'filts does not match training data: input: {0} output: {1}'.
format(set(self.unique_filts_), set(unique_filts)))
t, filts = np.broadcast_arrays(t, filts)
if period is None:
period = self.best_period
result = self._predict(t.ravel(), filts=filts.ravel(), period=period)
return result.reshape(t.shape)
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, filts, period=None):\n unique_filts = set(np.unique(filts))\n if not unique_filts.issubset(self.unique_filts_):\n raise ValueError(\n 'filts does not match training data: input: {0} output: {1}'.\n format(set(self.unique_filts_), set(unique_filts)))\n t, filts = np.broadcast_arrays(t, filts)\n if period is None:\n period = self.best_period\n result = self._predict(t.ravel(), filts=filts.ravel(), period=period)\n return result.reshape(t.shape)\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x(self, omega, **kwargs):
X = self._construct_X(omega, weighted=True, **kwargs)
M = np.dot(X.T, X)
if getattr(self, 'regularization', None) is not None:
diag = M.ravel(order='K')[::M.shape[0] + 1]
if self.regularize_by_trace:
diag += diag.sum() * np.asarray(self.regularization)
else:
diag += np.asarray(self.regularization)
return X, M
|
construct_X_M
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, omega, **kwargs):\n X = self._construct_X(omega, weighted=True, **kwargs)\n M = np.dot(X.T, X)\n if getattr(self, 'regularization', None) is not None:\n diag = M.ravel(order='K')[::M.shape[0] + 1]\n if self.regularize_by_trace:\n diag += diag.sum() * np.asarray(self.regularization)\n else:\n diag += np.asarray(self.regularization)\n return X, M\n",
"role": "user"
},
{
"content": "construct_X_M",
"role": "assistant"
}
] |
def x(self, **kwargs):
y = np.asarray(kwargs.get('y', self.y))
dy = np.asarray(kwargs.get('dy', self.dy))
if dy.size == 1:
return np.mean(y)
else:
return np.average(y, weights=1 / dy ** 2)
|
compute_ymean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n y = np.asarray(kwargs.get('y', self.y))\n dy = np.asarray(kwargs.get('dy', self.dy))\n if dy.size == 1:\n return np.mean(y)\n else:\n return np.average(y, weights=1 / dy ** 2)\n",
"role": "user"
},
{
"content": "compute_ymean",
"role": "assistant"
}
] |
def x(self, omega, weighted=True, **kwargs):
t = kwargs.get('t', self.t)
dy = kwargs.get('dy', self.dy)
fit_offset = kwargs.get('fit_offset', self.fit_offset)
if fit_offset:
offsets = [np.ones(len(t))]
else:
offsets = []
cols = sum(([np.sin((i + 1) * omega * t), np.cos((i + 1) * omega * t)] for
i in range(self.Nterms)), offsets)
if weighted:
return np.transpose(np.vstack(cols) / dy)
else:
return np.transpose(np.vstack(cols))
|
construct_X
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, omega, weighted=True, **kwargs):\n t = kwargs.get('t', self.t)\n dy = kwargs.get('dy', self.dy)\n fit_offset = kwargs.get('fit_offset', self.fit_offset)\n if fit_offset:\n offsets = [np.ones(len(t))]\n else:\n offsets = []\n cols = sum(([np.sin((i + 1) * omega * t), np.cos((i + 1) * omega * t)] for\n i in range(self.Nterms)), offsets)\n if weighted:\n return np.transpose(np.vstack(cols) / dy)\n else:\n return np.transpose(np.vstack(cols))\n",
"role": "user"
},
{
"content": "construct_X",
"role": "assistant"
}
] |
def x(self, templateid):
phase, y = self._get_template_by_id(templateid)
assert phase.min() >= 0
assert phase.max() <= 1
phase = np.concatenate([phase[-5:] - 1, phase, phase[:5] + 1])
y = np.concatenate([y[-5:], y, y[:5]])
return UnivariateSpline(phase, y, s=0, k=5)
|
interpolated_template
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, templateid):\n phase, y = self._get_template_by_id(templateid)\n assert phase.min() >= 0\n assert phase.max() <= 1\n phase = np.concatenate([phase[-5:] - 1, phase, phase[:5] + 1])\n y = np.concatenate([y[-5:], y, y[:5]])\n return UnivariateSpline(phase, y, s=0, k=5)\n",
"role": "user"
},
{
"content": "interpolated_template",
"role": "assistant"
}
] |
def x(self, period):
theta_best = [self._optimize(period, tmpid) for tmpid, _ in enumerate(
self.templates)]
chi2 = [self._chi2(theta, period, tmpid) for tmpid, theta in enumerate(
theta_best)]
return theta_best, chi2
|
eval_templates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, period):\n theta_best = [self._optimize(period, tmpid) for tmpid, _ in enumerate(\n self.templates)]\n chi2 = [self._chi2(theta, period, tmpid) for tmpid, theta in enumerate(\n theta_best)]\n return theta_best, chi2\n",
"role": "user"
},
{
"content": "eval_templates",
"role": "assistant"
}
] |
def x(self, t, theta, period, tmpid):
template = self.templates[tmpid]
phase = (t / period - theta[2]) % 1
return theta[0] + theta[1] * template(phase)
|
model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, theta, period, tmpid):\n template = self.templates[tmpid]\n phase = (t / period - theta[2]) % 1\n return theta[0] + theta[1] * template(phase)\n",
"role": "user"
},
{
"content": "model",
"role": "assistant"
}
] |
def x(self, theta, period, tmpid, return_gradient=False):
template = self.templates[tmpid]
phase = (self.t / period - theta[2]) % 1
model = theta[0] + theta[1] * template(phase)
chi2 = (((model - self.y) / self.dy) ** 2).sum()
if return_gradient:
grad = 2 * (model - self.y) / self.dy ** 2
gradient = np.array([np.sum(grad), np.sum(grad * template(phase)),
-np.sum(grad * theta[1] * template.derivative(1)(phase))])
return chi2, gradient
else:
return chi2
|
chi2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, theta, period, tmpid, return_gradient=False):\n template = self.templates[tmpid]\n phase = (self.t / period - theta[2]) % 1\n model = theta[0] + theta[1] * template(phase)\n chi2 = (((model - self.y) / self.dy) ** 2).sum()\n if return_gradient:\n grad = 2 * (model - self.y) / self.dy ** 2\n gradient = np.array([np.sum(grad), np.sum(grad * template(phase)), \n -np.sum(grad * theta[1] * template.derivative(1)(phase))])\n return chi2, gradient\n else:\n return chi2\n",
"role": "user"
},
{
"content": "chi2",
"role": "assistant"
}
] |
def x(self, period, tmpid, use_gradient=True):
theta_0 = [self.y.min(), self.y.max() - self.y.min(), 0]
result = minimize(self._chi2, theta_0, jac=bool(use_gradient), bounds=[
(None, None), (0, None), (None, None)], args=(period, tmpid,
use_gradient))
return result.x
|
optimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, period, tmpid, use_gradient=True):\n theta_0 = [self.y.min(), self.y.max() - self.y.min(), 0]\n result = minimize(self._chi2, theta_0, jac=bool(use_gradient), bounds=[\n (None, None), (0, None), (None, None)], args=(period, tmpid,\n use_gradient))\n return result.x\n",
"role": "user"
},
{
"content": "optimize",
"role": "assistant"
}
] |
def x(self, model, n_periods=5, return_scores=False):
tmin, tmax = np.min(model.t), np.max(model.t)
width = 2 * np.pi / (tmax - tmin)
if tmax - tmin < np.max(self.period_range):
raise ValueError(
'The optimizer is not designed to search for for periods larger than the data baseline. '
)
omega_step = width / self.first_pass_coverage
omega_min = 2 * np.pi / np.max(self.period_range)
omega_max = 2 * np.pi / np.min(self.period_range)
omegas = np.arange(omega_min, omega_max + omega_step, omega_step)
periods = 2 * np.pi / omegas
if not self.quiet:
print('Finding optimal frequency:')
print(' - Estimated peak width = {0:.3g}'.format(width))
print(' - Using {0} steps per peak; omega_step = {1:.3g}'.format(
self.first_pass_coverage, omega_step))
print(' - User-specified period range: {0:.2g} to {1:.2g}'.format(
periods.min(), periods.max()))
print(' - Computing periods at {0:.0f} steps'.format(len(periods)))
sys.stdout.flush()
N = int(1 + width // omega_step)
score = model.score_frequency_grid(omega_min / (2 * np.pi), omega_step /
(2 * np.pi), len(omegas))
minscore = score.min()
n_candidates = max(5, 2 * n_periods)
candidate_freqs = np.zeros(n_candidates)
candidate_scores = np.zeros(n_candidates)
for i in range(n_candidates):
j = np.argmax(score)
candidate_freqs[i] = omegas[j]
candidate_scores[i] = score[j]
score[max(0, j - N):j + N] = minscore
if self.final_pass_coverage <= self.first_pass_coverage:
best_periods = 2 * np.pi / candidate_freqs[:n_periods]
best_scores = candidate_scores[:n_periods]
else:
f0 = -omega_step / (2 * np.pi)
df = width / self.final_pass_coverage / (2 * np.pi)
Nf = abs(2 * f0) // df
steps = f0 + df * np.arange(Nf)
candidate_freqs /= 2 * np.pi
freqs = steps + candidate_freqs[:, np.newaxis]
periods = 1.0 / freqs
if not self.quiet:
print('Zooming-in on {0} candidate peaks:'.format(n_candidates))
print(' - Computing periods at {0:.0f} steps'.format(periods.size))
sys.stdout.flush()
scores = np.array([model.score_frequency_grid(c + f0, df, Nf) for c in
candidate_freqs])
best_scores = scores.max(1)
j = np.argmax(scores, 1)
i = np.argsort(best_scores)[::-1]
best_periods = periods[i, j[i]]
best_scores = best_scores[i]
if return_scores:
return best_periods[:n_periods], best_scores[:n_periods]
else:
return best_periods[:n_periods]
|
find_best_periods
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model, n_periods=5, return_scores=False):\n tmin, tmax = np.min(model.t), np.max(model.t)\n width = 2 * np.pi / (tmax - tmin)\n if tmax - tmin < np.max(self.period_range):\n raise ValueError(\n 'The optimizer is not designed to search for for periods larger than the data baseline. '\n )\n omega_step = width / self.first_pass_coverage\n omega_min = 2 * np.pi / np.max(self.period_range)\n omega_max = 2 * np.pi / np.min(self.period_range)\n omegas = np.arange(omega_min, omega_max + omega_step, omega_step)\n periods = 2 * np.pi / omegas\n if not self.quiet:\n print('Finding optimal frequency:')\n print(' - Estimated peak width = {0:.3g}'.format(width))\n print(' - Using {0} steps per peak; omega_step = {1:.3g}'.format(\n self.first_pass_coverage, omega_step))\n print(' - User-specified period range: {0:.2g} to {1:.2g}'.format(\n periods.min(), periods.max()))\n print(' - Computing periods at {0:.0f} steps'.format(len(periods)))\n sys.stdout.flush()\n N = int(1 + width // omega_step)\n score = model.score_frequency_grid(omega_min / (2 * np.pi), omega_step /\n (2 * np.pi), len(omegas))\n minscore = score.min()\n n_candidates = max(5, 2 * n_periods)\n candidate_freqs = np.zeros(n_candidates)\n candidate_scores = np.zeros(n_candidates)\n for i in range(n_candidates):\n j = np.argmax(score)\n candidate_freqs[i] = omegas[j]\n candidate_scores[i] = score[j]\n score[max(0, j - N):j + N] = minscore\n if self.final_pass_coverage <= self.first_pass_coverage:\n best_periods = 2 * np.pi / candidate_freqs[:n_periods]\n best_scores = candidate_scores[:n_periods]\n else:\n f0 = -omega_step / (2 * np.pi)\n df = width / self.final_pass_coverage / (2 * np.pi)\n Nf = abs(2 * f0) // df\n steps = f0 + df * np.arange(Nf)\n candidate_freqs /= 2 * np.pi\n freqs = steps + candidate_freqs[:, np.newaxis]\n periods = 1.0 / freqs\n if not self.quiet:\n print('Zooming-in on {0} candidate peaks:'.format(n_candidates))\n print(' - Computing periods at {0:.0f} steps'.format(periods.size))\n sys.stdout.flush()\n scores = np.array([model.score_frequency_grid(c + f0, df, Nf) for c in\n candidate_freqs])\n best_scores = scores.max(1)\n j = np.argmax(scores, 1)\n i = np.argsort(best_scores)[::-1]\n best_periods = periods[i, j[i]]\n best_scores = best_scores[i]\n if return_scores:\n return best_periods[:n_periods], best_scores[:n_periods]\n else:\n return best_periods[:n_periods]\n",
"role": "user"
},
{
"content": "find_best_periods",
"role": "assistant"
}
] |
def x(N):
if N < len(FACTORIALS):
return FACTORIALS[N]
else:
from scipy import special
return int(special.factorial(N))
|
factorial
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(N):\n if N < len(FACTORIALS):\n return FACTORIALS[N]\n else:\n from scipy import special\n return int(special.factorial(N))\n",
"role": "user"
},
{
"content": "factorial",
"role": "assistant"
}
] |
def x(N):
N = int(N) - 1
for i in [1, 2, 4, 8, 16, 32]:
N |= N >> i
return N + 1
|
bitceil
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(N):\n N = int(N) - 1\n for i in [1, 2, 4, 8, 16, 32]:\n N |= N >> i\n return N + 1\n",
"role": "user"
},
{
"content": "bitceil",
"role": "assistant"
}
] |
def x(x, y, N=None, M=4):
x, y = map(np.ravel, np.broadcast_arrays(x, y))
if N is None:
N = int(np.max(x) + 0.5 * M + 1)
result = np.zeros(N, dtype=y.dtype)
integers = x % 1 == 0
np.add.at(result, x[integers].astype(int), y[integers])
x, y = x[~integers], y[~integers]
ilo = np.clip((x - M // 2).astype(int), 0, N - M)
numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0)
denominator = factorial(M - 1)
for j in range(M):
if j > 0:
denominator *= j / (j - M)
ind = ilo + (M - 1 - j)
np.add.at(result, ind, numerator / (denominator * (x - ind)))
return result
|
extirpolate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, N=None, M=4):\n x, y = map(np.ravel, np.broadcast_arrays(x, y))\n if N is None:\n N = int(np.max(x) + 0.5 * M + 1)\n result = np.zeros(N, dtype=y.dtype)\n integers = x % 1 == 0\n np.add.at(result, x[integers].astype(int), y[integers])\n x, y = x[~integers], y[~integers]\n ilo = np.clip((x - M // 2).astype(int), 0, N - M)\n numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0)\n denominator = factorial(M - 1)\n for j in range(M):\n if j > 0:\n denominator *= j / (j - M)\n ind = ilo + (M - 1 - j)\n np.add.at(result, ind, numerator / (denominator * (x - ind)))\n return result\n",
"role": "user"
},
{
"content": "extirpolate",
"role": "assistant"
}
] |
def x(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4):
df *= freq_factor
f0 *= freq_factor
assert df > 0
t, h = map(np.ravel, np.broadcast_arrays(t, h))
if use_fft:
Mfft = int(Mfft)
assert Mfft > 0
Nfft = bitceil(N * oversampling)
t0 = t.min()
if f0 > 0:
h = h * np.exp(2.0j * np.pi * f0 * (t - t0))
tnorm = (t - t0) * Nfft * df % Nfft
grid = extirpolate(tnorm, h, Nfft, Mfft)
fftgrid = np.fft.ifft(grid)
if t0 != 0:
f = f0 + df * np.arange(Nfft)
fftgrid *= np.exp(2.0j * np.pi * t0 * f)
fftgrid = fftgrid[:N]
C = Nfft * fftgrid.real
S = Nfft * fftgrid.imag
else:
f = f0 + df * np.arange(N)
C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis]))
S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis]))
return S, C
|
trig_sum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4):\n df *= freq_factor\n f0 *= freq_factor\n assert df > 0\n t, h = map(np.ravel, np.broadcast_arrays(t, h))\n if use_fft:\n Mfft = int(Mfft)\n assert Mfft > 0\n Nfft = bitceil(N * oversampling)\n t0 = t.min()\n if f0 > 0:\n h = h * np.exp(2.0j * np.pi * f0 * (t - t0))\n tnorm = (t - t0) * Nfft * df % Nfft\n grid = extirpolate(tnorm, h, Nfft, Mfft)\n fftgrid = np.fft.ifft(grid)\n if t0 != 0:\n f = f0 + df * np.arange(Nfft)\n fftgrid *= np.exp(2.0j * np.pi * t0 * f)\n fftgrid = fftgrid[:N]\n C = Nfft * fftgrid.real\n S = Nfft * fftgrid.imag\n else:\n f = f0 + df * np.arange(N)\n C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis]))\n S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis]))\n return S, C\n",
"role": "user"
},
{
"content": "trig_sum",
"role": "assistant"
}
] |
def x(t, y, dy=1, f0=0, df=None, Nf=None, center_data=True, fit_offset=True,
use_fft=True, freq_oversampling=5, nyquist_factor=2, trig_sum_kwds=None):
t, y, dy = map(np.ravel, np.broadcast_arrays(t, y, dy))
w = 1.0 / dy ** 2
w /= w.sum()
if df is None:
peak_width = 1.0 / (t.max() - t.min())
df = peak_width / freq_oversampling
if Nf is None:
avg_Nyquist = 0.5 * len(t) / (t.max() - t.min())
Nf = max(16, (nyquist_factor * avg_Nyquist - f0) / df)
Nf = int(Nf)
assert df > 0
assert Nf > 0
freq = f0 + df * np.arange(Nf)
if center_data or fit_offset:
y = y - np.dot(w, y)
kwargs = dict.copy(trig_sum_kwds or {})
kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf)
Sh, Ch = trig_sum(t, w * y, **kwargs)
S2, C2 = trig_sum(t, w, freq_factor=2, **kwargs)
if fit_offset:
S, C = trig_sum(t, w, **kwargs)
with warnings.catch_warnings():
if f0 == 0:
warnings.simplefilter('ignore')
tan_2omega_tau = (S2 - 2 * S * C) / (C2 - (C * C - S * S))
if np.isnan(tan_2omega_tau[0]):
tan_2omega_tau[0] = 0
else:
tan_2omega_tau = S2 / C2
S2w = tan_2omega_tau / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)
C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)
Cw = np.sqrt(0.5) * np.sqrt(1 + C2w)
Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w)
YY = np.dot(w, y ** 2)
YC = Ch * Cw + Sh * Sw
YS = Sh * Cw - Ch * Sw
CC = 0.5 * (1 + C2 * C2w + S2 * S2w)
SS = 0.5 * (1 - C2 * C2w - S2 * S2w)
if fit_offset:
CC -= (C * Cw + S * Sw) ** 2
SS -= (S * Cw - C * Sw) ** 2
with warnings.catch_warnings():
if fit_offset and f0 == 0:
warnings.simplefilter('ignore')
power = (YC * YC / CC + YS * YS / SS) / YY
if np.isnan(power[0]) or np.isinf(power[0]):
power[0] = 0
return freq, power
|
lomb_scargle_fast
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(t, y, dy=1, f0=0, df=None, Nf=None, center_data=True, fit_offset=True,\n use_fft=True, freq_oversampling=5, nyquist_factor=2, trig_sum_kwds=None):\n t, y, dy = map(np.ravel, np.broadcast_arrays(t, y, dy))\n w = 1.0 / dy ** 2\n w /= w.sum()\n if df is None:\n peak_width = 1.0 / (t.max() - t.min())\n df = peak_width / freq_oversampling\n if Nf is None:\n avg_Nyquist = 0.5 * len(t) / (t.max() - t.min())\n Nf = max(16, (nyquist_factor * avg_Nyquist - f0) / df)\n Nf = int(Nf)\n assert df > 0\n assert Nf > 0\n freq = f0 + df * np.arange(Nf)\n if center_data or fit_offset:\n y = y - np.dot(w, y)\n kwargs = dict.copy(trig_sum_kwds or {})\n kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf)\n Sh, Ch = trig_sum(t, w * y, **kwargs)\n S2, C2 = trig_sum(t, w, freq_factor=2, **kwargs)\n if fit_offset:\n S, C = trig_sum(t, w, **kwargs)\n with warnings.catch_warnings():\n if f0 == 0:\n warnings.simplefilter('ignore')\n tan_2omega_tau = (S2 - 2 * S * C) / (C2 - (C * C - S * S))\n if np.isnan(tan_2omega_tau[0]):\n tan_2omega_tau[0] = 0\n else:\n tan_2omega_tau = S2 / C2\n S2w = tan_2omega_tau / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)\n C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)\n Cw = np.sqrt(0.5) * np.sqrt(1 + C2w)\n Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w)\n YY = np.dot(w, y ** 2)\n YC = Ch * Cw + Sh * Sw\n YS = Sh * Cw - Ch * Sw\n CC = 0.5 * (1 + C2 * C2w + S2 * S2w)\n SS = 0.5 * (1 - C2 * C2w - S2 * S2w)\n if fit_offset:\n CC -= (C * Cw + S * Sw) ** 2\n SS -= (S * Cw - C * Sw) ** 2\n with warnings.catch_warnings():\n if fit_offset and f0 == 0:\n warnings.simplefilter('ignore')\n power = (YC * YC / CC + YS * YS / SS) / YY\n if np.isnan(power[0]) or np.isinf(power[0]):\n power[0] = 0\n return freq, power\n",
"role": "user"
},
{
"content": "lomb_scargle_fast",
"role": "assistant"
}
] |
def x(self, band, corrected=True):
if band not in 'ugriz':
raise ValueError("band='{0}' not recognized".format(band))
i = 'ugriz'.find(band)
t, y, dy = self.lcdata.get_lightcurve(self.lcid, return_1d=False)
if corrected:
ext = self.obsmeta['rExt'] * self.ext_correction[band]
else:
ext = 0
return t[:, i], y[:, i] - ext, dy[:, i]
|
observed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, band, corrected=True):\n if band not in 'ugriz':\n raise ValueError(\"band='{0}' not recognized\".format(band))\n i = 'ugriz'.find(band)\n t, y, dy = self.lcdata.get_lightcurve(self.lcid, return_1d=False)\n if corrected:\n ext = self.obsmeta['rExt'] * self.ext_correction[band]\n else:\n ext = 0\n return t[:, i], y[:, i] - ext, dy[:, i]\n",
"role": "user"
},
{
"content": "observed",
"role": "assistant"
}
] |
def x(self, band, t, err=None, corrected=True):
t = np.asarray(t)
num = self.meta[band + 'T']
mu = self.meta[band + '0']
amp = self.meta[band + 'A']
t0 = self.meta[band + 'E']
bad_vals = np.isnan(t) | np.isinf(t)
t[bad_vals] = t0
if corrected:
ext = 0
else:
ext = self.obsmeta['rExt'] * self.ext_correction[band]
func = self._template_func(num, band, mu + ext, amp)
mag = func((t - t0) / self.period % 1)
mag[bad_vals] = np.nan
if err is not None:
mag += self.rng.normal(0, err, t.shape)
return mag
|
generated
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, band, t, err=None, corrected=True):\n t = np.asarray(t)\n num = self.meta[band + 'T']\n mu = self.meta[band + '0']\n amp = self.meta[band + 'A']\n t0 = self.meta[band + 'E']\n bad_vals = np.isnan(t) | np.isinf(t)\n t[bad_vals] = t0\n if corrected:\n ext = 0\n else:\n ext = self.obsmeta['rExt'] * self.ext_correction[band]\n func = self._template_func(num, band, mu + ext, amp)\n mag = func((t - t0) / self.period % 1)\n mag[bad_vals] = np.nan\n if err is not None:\n mag += self.rng.normal(0, err, t.shape)\n return mag\n",
"role": "user"
},
{
"content": "generated",
"role": "assistant"
}
] |
def x(filename, data_home=None, url=SESAR_RRLYRAE_URL, force_download=False):
from astroML.datasets.tools import get_data_home
if data_home is None:
data_home = get_data_home(data_home)
data_home = os.path.join(data_home, 'Sesar2010')
if not os.path.exists(data_home):
os.makedirs(data_home)
src_url = SESAR_RRLYRAE_URL + filename
save_loc = os.path.join(data_home, filename)
if force_download or not os.path.exists(save_loc):
fhandle = urlopen(src_url)
with open(save_loc, 'wb') as cache:
cache.write(fhandle.read())
return save_loc
|
get_download_or_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, data_home=None, url=SESAR_RRLYRAE_URL, force_download=False):\n from astroML.datasets.tools import get_data_home\n if data_home is None:\n data_home = get_data_home(data_home)\n data_home = os.path.join(data_home, 'Sesar2010')\n if not os.path.exists(data_home):\n os.makedirs(data_home)\n src_url = SESAR_RRLYRAE_URL + filename\n save_loc = os.path.join(data_home, filename)\n if force_download or not os.path.exists(save_loc):\n fhandle = urlopen(src_url)\n with open(save_loc, 'wb') as cache:\n cache.write(fhandle.read())\n return save_loc\n",
"role": "user"
},
{
"content": "get_download_or_cache",
"role": "assistant"
}
] |
def x(partial=False, **kwargs):
if partial:
return PartialRRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)
else:
return RRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)
|
fetch_rrlyrae
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(partial=False, **kwargs):\n if partial:\n return PartialRRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)\n else:\n return RRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)\n",
"role": "user"
},
{
"content": "fetch_rrlyrae",
"role": "assistant"
}
] |
def x(**kwargs):
save_loc = _get_download_or_cache('table2.dat.gz', **kwargs)
dtype = [('id', 'i'), ('type', 'S2'), ('P', 'f'), ('uA', 'f'), ('u0',
'f'), ('uE', 'f'), ('uT', 'f'), ('gA', 'f'), ('g0', 'f'), ('gE',
'f'), ('gT', 'f'), ('rA', 'f'), ('r0', 'f'), ('rE', 'f'), ('rT',
'f'), ('iA', 'f'), ('i0', 'f'), ('iE', 'f'), ('iT', 'f'), ('zA',
'f'), ('z0', 'f'), ('zE', 'f'), ('zT', 'f')]
return np.loadtxt(save_loc, dtype=dtype)
|
fetch_rrlyrae_lc_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n save_loc = _get_download_or_cache('table2.dat.gz', **kwargs)\n dtype = [('id', 'i'), ('type', 'S2'), ('P', 'f'), ('uA', 'f'), ('u0',\n 'f'), ('uE', 'f'), ('uT', 'f'), ('gA', 'f'), ('g0', 'f'), ('gE',\n 'f'), ('gT', 'f'), ('rA', 'f'), ('r0', 'f'), ('rE', 'f'), ('rT',\n 'f'), ('iA', 'f'), ('i0', 'f'), ('iE', 'f'), ('iT', 'f'), ('zA',\n 'f'), ('z0', 'f'), ('zE', 'f'), ('zT', 'f')]\n return np.loadtxt(save_loc, dtype=dtype)\n",
"role": "user"
},
{
"content": "fetch_rrlyrae_lc_params",
"role": "assistant"
}
] |
def x(**kwargs):
save_loc = _get_download_or_cache('table3.dat.gz', **kwargs)
dtype = [('id', 'i'), ('RA', 'f'), ('DEC', 'f'), ('rExt', 'f'), ('d',
'f'), ('RGC', 'f'), ('u', 'f'), ('g', 'f'), ('r', 'f'), ('i', 'f'),
('z', 'f'), ('V', 'f'), ('ugmin', 'f'), ('ugmin_err', 'f'), (
'grmin', 'f'), ('grmin_err', 'f')]
return np.loadtxt(save_loc, dtype=dtype)
|
fetch_rrlyrae_fitdata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(**kwargs):\n save_loc = _get_download_or_cache('table3.dat.gz', **kwargs)\n dtype = [('id', 'i'), ('RA', 'f'), ('DEC', 'f'), ('rExt', 'f'), ('d',\n 'f'), ('RGC', 'f'), ('u', 'f'), ('g', 'f'), ('r', 'f'), ('i', 'f'),\n ('z', 'f'), ('V', 'f'), ('ugmin', 'f'), ('ugmin_err', 'f'), (\n 'grmin', 'f'), ('grmin_err', 'f')]\n return np.loadtxt(save_loc, dtype=dtype)\n",
"role": "user"
},
{
"content": "fetch_rrlyrae_fitdata",
"role": "assistant"
}
] |
def x(self, star_id, return_1d=True):
filename = '{0}/{1}.dat'.format(self.dirname, star_id)
try:
data = np.loadtxt(self.data.extractfile(filename))
except KeyError:
raise ValueError('invalid star id: {0}'.format(star_id))
RA = data[:, 0]
DEC = data[:, 1]
t = data[:, 2::3]
y = data[:, 3::3]
dy = data[:, 4::3]
nans = y == -99.99
t[nans] = np.nan
y[nans] = np.nan
dy[nans] = np.nan
if return_1d:
t, y, dy, filts = np.broadcast_arrays(t, y, dy, ['u', 'g', 'r', 'i',
'z'])
good = ~np.isnan(t)
return t[good], y[good], dy[good], filts[good]
else:
return t, y, dy
|
get_lightcurve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, star_id, return_1d=True):\n filename = '{0}/{1}.dat'.format(self.dirname, star_id)\n try:\n data = np.loadtxt(self.data.extractfile(filename))\n except KeyError:\n raise ValueError('invalid star id: {0}'.format(star_id))\n RA = data[:, 0]\n DEC = data[:, 1]\n t = data[:, 2::3]\n y = data[:, 3::3]\n dy = data[:, 4::3]\n nans = y == -99.99\n t[nans] = np.nan\n y[nans] = np.nan\n dy[nans] = np.nan\n if return_1d:\n t, y, dy, filts = np.broadcast_arrays(t, y, dy, ['u', 'g', 'r', 'i',\n 'z'])\n good = ~np.isnan(t)\n return t[good], y[good], dy[good], filts[good]\n else:\n return t, y, dy\n",
"role": "user"
},
{
"content": "get_lightcurve",
"role": "assistant"
}
] |
def x(self, lcid):
if self._metadata is None:
self._metadata = fetch_rrlyrae_lc_params()
i = np.where(self._metadata['id'] == lcid)[0]
if len(i) == 0:
raise ValueError('invalid lcid: {0}'.format(lcid))
return self._metadata[i[0]]
|
get_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lcid):\n if self._metadata is None:\n self._metadata = fetch_rrlyrae_lc_params()\n i = np.where(self._metadata['id'] == lcid)[0]\n if len(i) == 0:\n raise ValueError('invalid lcid: {0}'.format(lcid))\n return self._metadata[i[0]]\n",
"role": "user"
},
{
"content": "get_metadata",
"role": "assistant"
}
] |
def x(self, lcid):
if self._obsdata is None:
self._obsdata = fetch_rrlyrae_fitdata()
i = np.where(self._obsdata['id'] == lcid)[0]
if len(i) == 0:
raise ValueError('invalid lcid: {0}'.format(lcid))
return self._obsdata[i[0]]
|
get_obsmeta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lcid):\n if self._obsdata is None:\n self._obsdata = fetch_rrlyrae_fitdata()\n i = np.where(self._obsdata['id'] == lcid)[0]\n if len(i) == 0:\n raise ValueError('invalid lcid: {0}'.format(lcid))\n return self._obsdata[i[0]]\n",
"role": "user"
},
{
"content": "get_obsmeta",
"role": "assistant"
}
] |
def x(self, template_id):
try:
data = np.loadtxt(self.data.extractfile(template_id + '.dat'))
except KeyError:
raise ValueError('invalid star id: {0}'.format(template_id))
return data[:, 0], data[:, 1]
|
get_template
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, template_id):\n try:\n data = np.loadtxt(self.data.extractfile(template_id + '.dat'))\n except KeyError:\n raise ValueError('invalid star id: {0}'.format(template_id))\n return data[:, 0], data[:, 1]\n",
"role": "user"
},
{
"content": "get_template",
"role": "assistant"
}
] |
def x(self):
hr_data = self.hr_values()
return int(sum(hr_data) / len(hr_data))
|
hr_avg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n hr_data = self.hr_values()\n return int(sum(hr_data) / len(hr_data))\n",
"role": "user"
},
{
"content": "hr_avg",
"role": "assistant"
}
] |
def x(self):
secs_per_km = self.duration / (self.distance / 1000)
return time.strftime('%M:%S', time.gmtime(secs_per_km))
|
pace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n secs_per_km = self.duration / (self.distance / 1000)\n return time.strftime('%M:%S', time.gmtime(secs_per_km))\n",
"role": "user"
},
{
"content": "pace",
"role": "assistant"
}
] |
def x(self):
total_ascent = 0.0
altitude_data = self.altitude_points()
for i in range(len(altitude_data) - 1):
diff = altitude_data[i + 1] - altitude_data[i]
if diff > 0.0:
total_ascent += diff
return total_ascent
|
ascent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n total_ascent = 0.0\n altitude_data = self.altitude_points()\n for i in range(len(altitude_data) - 1):\n diff = altitude_data[i + 1] - altitude_data[i]\n if diff > 0.0:\n total_ascent += diff\n return total_ascent\n",
"role": "user"
},
{
"content": "ascent",
"role": "assistant"
}
] |
def x(self):
total_descent = 0.0
altitude_data = self.altitude_points()
for i in range(len(altitude_data) - 1):
diff = altitude_data[i + 1] - altitude_data[i]
if diff < 0.0:
total_descent += abs(diff)
return total_descent
|
descent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n total_descent = 0.0\n altitude_data = self.altitude_points()\n for i in range(len(altitude_data) - 1):\n diff = altitude_data[i + 1] - altitude_data[i]\n if diff < 0.0:\n total_descent += abs(diff)\n return total_descent\n",
"role": "user"
},
{
"content": "descent",
"role": "assistant"
}
] |
def x(keywords):
invalid_chars = '!"#$%&\'()*+-./:;<=>?@[\\]^_{|}~\t\n'
if any(char in invalid_chars for char in keywords):
raise ValidationError(MESSAGE_KEYWORD_SPECIAL_CHARS)
|
keywords_special_characters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(keywords):\n invalid_chars = '!\"#$%&\\'()*+-./:;<=>?@[\\\\]^_{|}~\\t\\n'\n if any(char in invalid_chars for char in keywords):\n raise ValidationError(MESSAGE_KEYWORD_SPECIAL_CHARS)\n",
"role": "user"
},
{
"content": "keywords_special_characters",
"role": "assistant"
}
] |
def x(value):
if value.image.format.upper() not in constants.ALLOWED_IMAGE_FORMATS:
raise ValidationError(MESSAGE_INVALID_IMAGE_FORMAT)
|
image_format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n if value.image.format.upper() not in constants.ALLOWED_IMAGE_FORMATS:\n raise ValidationError(MESSAGE_INVALID_IMAGE_FORMAT)\n",
"role": "user"
},
{
"content": "image_format",
"role": "assistant"
}
] |
def x(value):
parsed = parse.urlparse(value.lower())
if not parsed.netloc.endswith('facebook.com'):
raise ValidationError(MESSAGE_NOT_FACEBOOK)
|
case_study_social_link_facebook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n parsed = parse.urlparse(value.lower())\n if not parsed.netloc.endswith('facebook.com'):\n raise ValidationError(MESSAGE_NOT_FACEBOOK)\n",
"role": "user"
},
{
"content": "case_study_social_link_facebook",
"role": "assistant"
}
] |
def x(value):
parsed = parse.urlparse(value.lower())
if not parsed.netloc.endswith('twitter.com'):
raise ValidationError(MESSAGE_NOT_TWITTER)
|
case_study_social_link_twitter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n parsed = parse.urlparse(value.lower())\n if not parsed.netloc.endswith('twitter.com'):\n raise ValidationError(MESSAGE_NOT_TWITTER)\n",
"role": "user"
},
{
"content": "case_study_social_link_twitter",
"role": "assistant"
}
] |
def x(value):
parsed = parse.urlparse(value.lower())
if not parsed.netloc.endswith('linkedin.com'):
raise ValidationError(MESSAGE_NOT_LINKEDIN)
|
case_study_social_link_linkedin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n parsed = parse.urlparse(value.lower())\n if not parsed.netloc.endswith('linkedin.com'):\n raise ValidationError(MESSAGE_NOT_LINKEDIN)\n",
"role": "user"
},
{
"content": "case_study_social_link_linkedin",
"role": "assistant"
}
] |
def x(value):
for prefix, name in company_types_with_insufficient_companies_house_data:
if value.upper().startswith(prefix):
raise ValidationError(MESSAGE_INSUFFICIENT_DATA, params={'name':
name})
|
no_company_with_insufficient_companies_house_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n for prefix, name in company_types_with_insufficient_companies_house_data:\n if value.upper().startswith(prefix):\n raise ValidationError(MESSAGE_INSUFFICIENT_DATA, params={'name':\n name})\n",
"role": "user"
},
{
"content": "no_company_with_insufficient_companies_house_data",
"role": "assistant"
}
] |
def x(value):
domain = helpers.get_domain_from_email_address(value)
if domain.lower() in free_domains:
raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)
|
email_domain_free
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n domain = helpers.get_domain_from_email_address(value)\n if domain.lower() in free_domains:\n raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)\n",
"role": "user"
},
{
"content": "email_domain_free",
"role": "assistant"
}
] |
def x(value):
domain = helpers.get_domain_from_email_address(value)
if domain.lower() in disposable_domains:
raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)
|
email_domain_disposable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n domain = helpers.get_domain_from_email_address(value)\n if domain.lower() in disposable_domains:\n raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)\n",
"role": "user"
},
{
"content": "email_domain_disposable",
"role": "assistant"
}
] |
def x(value):
try:
parsed = phonenumbers.parse(value, 'GB')
except NumberParseException:
pass
else:
is_mobile = carrier._is_mobile(number_type(parsed))
if is_mobile and phonenumbers.is_valid_number(parsed):
return None
raise ValidationError(MESSAGE_INVALID_PHONE_NUMBER)
|
domestic_mobile_phone_number
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n try:\n parsed = phonenumbers.parse(value, 'GB')\n except NumberParseException:\n pass\n else:\n is_mobile = carrier._is_mobile(number_type(parsed))\n if is_mobile and phonenumbers.is_valid_number(parsed):\n return None\n raise ValidationError(MESSAGE_INVALID_PHONE_NUMBER)\n",
"role": "user"
},
{
"content": "domestic_mobile_phone_number",
"role": "assistant"
}
] |
def x(points):
result = [points[0]]
for i in range(1, len(points) - 2):
prv = points[i - 1]
crr = points[i]
nxt = points[i + 1]
if prv.time <= crr.time and crr.time <= nxt.time:
result.append(crr)
result.append(points[-1])
return result
|
remove_liers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points):\n result = [points[0]]\n for i in range(1, len(points) - 2):\n prv = points[i - 1]\n crr = points[i]\n nxt = points[i + 1]\n if prv.time <= crr.time and crr.time <= nxt.time:\n result.append(crr)\n result.append(points[-1])\n return result\n",
"role": "user"
},
{
"content": "remove_liers",
"role": "assistant"
}
] |
def x(self, thr=0, lower_index=0, upper_index=-1):
points = self.points[lower_index:upper_index]
min_lat = float('inf')
min_lon = float('inf')
max_lat = -float('inf')
max_lon = -float('inf')
for point in points:
min_lat = min(min_lat, point.lat)
min_lon = min(min_lon, point.lon)
max_lat = max(max_lat, point.lat)
max_lon = max(max_lon, point.lon)
return min_lat - thr, min_lon - thr, max_lat + thr, max_lon + thr
|
bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, thr=0, lower_index=0, upper_index=-1):\n points = self.points[lower_index:upper_index]\n min_lat = float('inf')\n min_lon = float('inf')\n max_lat = -float('inf')\n max_lon = -float('inf')\n for point in points:\n min_lat = min(min_lat, point.lat)\n min_lon = min(min_lon, point.lon)\n max_lat = max(max_lat, point.lat)\n max_lon = max(max_lon, point.lon)\n return min_lat - thr, min_lon - thr, max_lat + thr, max_lon + thr\n",
"role": "user"
},
{
"content": "bounds",
"role": "assistant"
}
] |
def x(self, noise, strategy=INVERSE_STRATEGY):
if strategy is INVERSE_STRATEGY:
self.points = with_inverse(self.points, noise)
elif strategy is EXTRAPOLATE_STRATEGY:
self.points = with_extrapolation(self.points, noise, 30)
elif strategy is NO_STRATEGY:
self.points = with_no_strategy(self.points, noise)
return self
|
smooth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, noise, strategy=INVERSE_STRATEGY):\n if strategy is INVERSE_STRATEGY:\n self.points = with_inverse(self.points, noise)\n elif strategy is EXTRAPOLATE_STRATEGY:\n self.points = with_extrapolation(self.points, noise, 30)\n elif strategy is NO_STRATEGY:\n self.points = with_no_strategy(self.points, noise)\n return self\n",
"role": "user"
},
{
"content": "smooth",
"role": "assistant"
}
] |
def x(self, eps, max_dist_error, max_speed_error, topology_only=False):
if topology_only:
self.points = drp(self.points, eps)
else:
self.points = spt(self.points, max_dist_error, max_speed_error)
return self
|
simplify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, eps, max_dist_error, max_speed_error, topology_only=False):\n if topology_only:\n self.points = drp(self.points, eps)\n else:\n self.points = spt(self.points, max_dist_error, max_speed_error)\n return self\n",
"role": "user"
},
{
"content": "simplify",
"role": "assistant"
}
] |
def x(self):
for prev, point in pairwise(self.points):
point.compute_metrics(prev)
return self
|
compute_metrics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for prev, point in pairwise(self.points):\n point.compute_metrics(prev)\n return self\n",
"role": "user"
},
{
"content": "compute_metrics",
"role": "assistant"
}
] |
def x(self, location_query, max_distance, google_key, foursquare_client_id,
foursquare_client_secret, limit):
self.location_from = infer_location(self.points[0], location_query,
max_distance, google_key, foursquare_client_id,
foursquare_client_secret, limit)
self.location_to = infer_location(self.points[-1], location_query,
max_distance, google_key, foursquare_client_id,
foursquare_client_secret, limit)
return self
|
infer_location
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, location_query, max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit):\n self.location_from = infer_location(self.points[0], location_query,\n max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit)\n self.location_to = infer_location(self.points[-1], location_query,\n max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit)\n return self\n",
"role": "user"
},
{
"content": "infer_location",
"role": "assistant"
}
] |
def x(self, clf, min_time):
self.transportation_modes = speed_clustering(clf, self.points, min_time)
return self
|
infer_transportation_mode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, clf, min_time):\n self.transportation_modes = speed_clustering(clf, self.points, min_time)\n return self\n",
"role": "user"
},
{
"content": "infer_transportation_mode",
"role": "assistant"
}
] |
def x(self, segment):
self.points = sort_segment_points(self.points, segment.points)
return self
|
merge_and_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, segment):\n self.points = sort_segment_points(self.points, segment.points)\n return self\n",
"role": "user"
},
{
"content": "merge_and_fit",
"role": "assistant"
}
] |
def x(self, point, thr=20.0):
i = 0
point_arr = point.gen2arr()
def x(pointA, pointB):
temp = closest_point(pointA.gen2arr(), pointB.gen2arr(), point_arr)
return Point(temp[1], temp[0], None)
for p_a, p_b in pairwise(self.points):
candidate = closest_in_line(p_a, p_b)
if candidate.distance(point) <= thr:
if p_a.distance(point) <= thr:
return i, p_a
elif p_b.distance(point) <= thr:
return i + 1, p_b
else:
return i, candidate
i = i + 1
return -1, None
|
closest_point_to
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, point, thr=20.0):\n i = 0\n point_arr = point.gen2arr()\n\n def x(pointA, pointB):\n temp = closest_point(pointA.gen2arr(), pointB.gen2arr(), point_arr)\n return Point(temp[1], temp[0], None)\n for p_a, p_b in pairwise(self.points):\n candidate = closest_in_line(p_a, p_b)\n if candidate.distance(point) <= thr:\n if p_a.distance(point) <= thr:\n return i, p_a\n elif p_b.distance(point) <= thr:\n return i + 1, p_b\n else:\n return i, candidate\n i = i + 1\n return -1, None\n",
"role": "user"
},
{
"content": "closest_point_to",
"role": "assistant"
}
] |
def x(self, start, end):
reverse = False
if start > end:
temp = start
start = end
end = temp
reverse = True
seg = self.copy()
seg.points = seg.points[start:end + 1]
if reverse:
seg.points = list(reversed(seg.points))
return seg
|
slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start, end):\n reverse = False\n if start > end:\n temp = start\n start = end\n end = temp\n reverse = True\n seg = self.copy()\n seg.points = seg.points[start:end + 1]\n if reverse:\n seg.points = list(reversed(seg.points))\n return seg\n",
"role": "user"
},
{
"content": "slice",
"role": "assistant"
}
] |
def x(self):
points = [point.to_json() for point in self.points]
return {'points': points, 'transportationModes': self.
transportation_modes, 'locationFrom': self.location_from.to_json() if
self.location_from != None else None, 'locationTo': self.
location_to.to_json() if self.location_to != None else None}
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n points = [point.to_json() for point in self.points]\n return {'points': points, 'transportationModes': self.\n transportation_modes, 'locationFrom': self.location_from.to_json() if\n self.location_from != None else None, 'locationTo': self.\n location_to.to_json() if self.location_to != None else None}\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(gpx_segment):
points = []
for point in gpx_segment.points:
points.append(Point.from_gpx(point))
return Segment(points)
|
from_gpx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gpx_segment):\n points = []\n for point in gpx_segment.points:\n points.append(Point.from_gpx(point))\n return Segment(points)\n",
"role": "user"
},
{
"content": "from_gpx",
"role": "assistant"
}
] |
def x(json):
points = []
for point in json['points']:
points.append(Point.from_json(point))
return Segment(points)
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(json):\n points = []\n for point in json['points']:\n points.append(Point.from_json(point))\n return Segment(points)\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(points, n_points):
points = points[:n_points]
lat = []
lon = []
last = None
for point in points:
if last is not None:
lat.append(last.lat - point.lat)
lon.append(last.lon - point.lon)
last = point
dts = np.mean([p.dt for p in points])
lons = np.mean(lon)
lats = np.mean(lat)
gen_sample = []
last = points[0]
for _ in range(n_points):
point = Point(last.lat + lats, last.lon + lons, None)
point.dt = dts
gen_sample.append(point)
last = point
return gen_sample
|
extrapolate_points
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, n_points):\n points = points[:n_points]\n lat = []\n lon = []\n last = None\n for point in points:\n if last is not None:\n lat.append(last.lat - point.lat)\n lon.append(last.lon - point.lon)\n last = point\n dts = np.mean([p.dt for p in points])\n lons = np.mean(lon)\n lats = np.mean(lat)\n gen_sample = []\n last = points[0]\n for _ in range(n_points):\n point = Point(last.lat + lats, last.lon + lons, None)\n point.dt = dts\n gen_sample.append(point)\n last = point\n return gen_sample\n",
"role": "user"
},
{
"content": "extrapolate_points",
"role": "assistant"
}
] |
def x(points, noise, n_points):
n_points = 10
return kalman_filter(extrapolate_points(points, n_points) + points, noise)[
n_points:]
|
with_extrapolation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, noise, n_points):\n n_points = 10\n return kalman_filter(extrapolate_points(points, n_points) + points, noise)[\n n_points:]\n",
"role": "user"
},
{
"content": "with_extrapolation",
"role": "assistant"
}
] |
def x(points, noise):
n_points = len(points) / 2
break_point = n_points
points_part = copy.deepcopy(points)
points_part = list(reversed(points_part))
part = kalman_filter(points_part, noise)
total = kalman_filter(points, noise)
result = list(reversed(part))[:break_point] + total[break_point:]
result[break_point] = point_mean(part[break_point], total[break_point])
return result
|
with_inverse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, noise):\n n_points = len(points) / 2\n break_point = n_points\n points_part = copy.deepcopy(points)\n points_part = list(reversed(points_part))\n part = kalman_filter(points_part, noise)\n total = kalman_filter(points, noise)\n result = list(reversed(part))[:break_point] + total[break_point:]\n result[break_point] = point_mean(part[break_point], total[break_point])\n return result\n",
"role": "user"
},
{
"content": "with_inverse",
"role": "assistant"
}
] |
def x(segments, min_time):
final_segments = []
for segment in segments:
final_segments.append([])
for point in segment:
if point.dt > min_time:
final_segments.append([])
final_segments[-1].append(point)
return final_segments
|
temporal_segmentation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(segments, min_time):\n final_segments = []\n for segment in segments:\n final_segments.append([])\n for point in segment:\n if point.dt > min_time:\n final_segments.append([])\n final_segments[-1].append(point)\n return final_segments\n",
"role": "user"
},
{
"content": "temporal_segmentation",
"role": "assistant"
}
] |
def x(segments, clusters, min_time):
result_segments = []
prev_segment = None
for i, segment in enumerate(segments):
if len(segment) >= 1:
continue
cluster = clusters[i]
if prev_segment is None:
prev_segment = segment
else:
cluster_dt = 0
if len(cluster) > 0:
cluster_dt = abs(cluster[0].time_difference(cluster[-1]))
if cluster_dt <= min_time:
prev_segment.extend(segment)
else:
prev_segment.append(segment[0])
result_segments.append(prev_segment)
prev_segment = segment
if prev_segment is not None:
result_segments.append(prev_segment)
return result_segments
|
correct_segmentation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(segments, clusters, min_time):\n result_segments = []\n prev_segment = None\n for i, segment in enumerate(segments):\n if len(segment) >= 1:\n continue\n cluster = clusters[i]\n if prev_segment is None:\n prev_segment = segment\n else:\n cluster_dt = 0\n if len(cluster) > 0:\n cluster_dt = abs(cluster[0].time_difference(cluster[-1]))\n if cluster_dt <= min_time:\n prev_segment.extend(segment)\n else:\n prev_segment.append(segment[0])\n result_segments.append(prev_segment)\n prev_segment = segment\n if prev_segment is not None:\n result_segments.append(prev_segment)\n return result_segments\n",
"role": "user"
},
{
"content": "correct_segmentation",
"role": "assistant"
}
] |
def x(points, noise):
kalman = ikalman.filter(noise)
for point in points:
kalman.update_velocity2d(point.lat, point.lon, point.dt)
lat, lon = kalman.get_lat_long()
point.lat = lat
point.lon = lon
return points
|
kalman_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, noise):\n kalman = ikalman.filter(noise)\n for point in points:\n kalman.update_velocity2d(point.lat, point.lon, point.dt)\n lat, lon = kalman.get_lat_long()\n point.lat = lat\n point.lon = lon\n return points\n",
"role": "user"
},
{
"content": "kalman_filter",
"role": "assistant"
}
] |
def x(track, clf):
for segment in track.segments:
tmodes = segment.transportation_modes
points = segment.points
features = []
labels = []
for tmode in tmodes:
points_part = points[tmode['from']:tmode['to']]
if len(points_part) > 0:
features.append(extract_features_2(points_part))
labels.append(tmode['label'])
clf.learn(features, labels)
|
learn_transportation_mode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(track, clf):\n for segment in track.segments:\n tmodes = segment.transportation_modes\n points = segment.points\n features = []\n labels = []\n for tmode in tmodes:\n points_part = points[tmode['from']:tmode['to']]\n if len(points_part) > 0:\n features.append(extract_features_2(points_part))\n labels.append(tmode['label'])\n clf.learn(features, labels)\n",
"role": "user"
},
{
"content": "learn_transportation_mode",
"role": "assistant"
}
] |
def x(points, n_tops):
max_bin = -1
for point in points:
max_bin = max(max_bin, point.vel)
max_bin = int(round(max_bin)) + 1
histogram = [0] * max_bin
time = 0
for point in points:
bin_index = int(round(point.vel))
histogram[bin_index] += point.dt
time += point.dt
result = []
if time == 0:
return result
for _ in range(n_tops):
max_index = np.argmax(histogram)
value = histogram[max_index] / time
result.extend([max_index, value])
histogram[max_index] = -1
return result
|
extract_features
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, n_tops):\n max_bin = -1\n for point in points:\n max_bin = max(max_bin, point.vel)\n max_bin = int(round(max_bin)) + 1\n histogram = [0] * max_bin\n time = 0\n for point in points:\n bin_index = int(round(point.vel))\n histogram[bin_index] += point.dt\n time += point.dt\n result = []\n if time == 0:\n return result\n for _ in range(n_tops):\n max_index = np.argmax(histogram)\n value = histogram[max_index] / time\n result.extend([max_index, value])\n histogram[max_index] = -1\n return result\n",
"role": "user"
},
{
"content": "extract_features",
"role": "assistant"
}
] |
def x(points):
data = [0]
for before, after in pairwise(points):
data.append(before.vel - after.vel)
return data
|
speed_difference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points):\n data = [0]\n for before, after in pairwise(points):\n data.append(before.vel - after.vel)\n return data\n",
"role": "user"
},
{
"content": "speed_difference",
"role": "assistant"
}
] |
def x(points):
data = [0]
for before, after in pairwise(points):
data.append(before.acc - after.acc)
return data
|
acc_difference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points):\n data = [0]\n for before, after in pairwise(points):\n data.append(before.acc - after.acc)\n return data\n",
"role": "user"
},
{
"content": "acc_difference",
"role": "assistant"
}
] |
def x(points, min_time, data_processor=acc_difference):
data = data_processor(points)
changepoints = pelt(normal_mean(data, np.std(data)), len(data))
changepoints.append(len(points) - 1)
result = []
for start, end in pairwise(changepoints):
time_diff = points[end].time_difference(points[start])
if time_diff > min_time:
result.append(start)
result.append(0)
result.append(len(points) - 1)
return sorted(list(set(result)))
|
detect_changepoints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, min_time, data_processor=acc_difference):\n data = data_processor(points)\n changepoints = pelt(normal_mean(data, np.std(data)), len(data))\n changepoints.append(len(points) - 1)\n result = []\n for start, end in pairwise(changepoints):\n time_diff = points[end].time_difference(points[start])\n if time_diff > min_time:\n result.append(start)\n result.append(0)\n result.append(len(points) - 1)\n return sorted(list(set(result)))\n",
"role": "user"
},
{
"content": "detect_changepoints",
"role": "assistant"
}
] |
def x(modes):
if len(modes) > 0:
previous = modes[0]
grouped = []
for changep in modes[1:]:
if changep['label'] != previous['label']:
previous['to'] = changep['from']
grouped.append(previous)
previous = changep
previous['to'] = modes[-1]['to']
grouped.append(previous)
return grouped
else:
return modes
|
group_modes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(modes):\n if len(modes) > 0:\n previous = modes[0]\n grouped = []\n for changep in modes[1:]:\n if changep['label'] != previous['label']:\n previous['to'] = changep['from']\n grouped.append(previous)\n previous = changep\n previous['to'] = modes[-1]['to']\n grouped.append(previous)\n return grouped\n else:\n return modes\n",
"role": "user"
},
{
"content": "group_modes",
"role": "assistant"
}
] |
def x(clf, points, min_time):
changepoints = detect_changepoints(points, min_time)
cp_info = []
for i in range(0, len(changepoints) - 1):
from_index = changepoints[i]
to_index = changepoints[i + 1]
info = classify(clf, points[from_index:to_index], min_time,
from_index, to_index)
if info:
cp_info.append(info)
return group_modes(cp_info)
|
speed_clustering
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(clf, points, min_time):\n changepoints = detect_changepoints(points, min_time)\n cp_info = []\n for i in range(0, len(changepoints) - 1):\n from_index = changepoints[i]\n to_index = changepoints[i + 1]\n info = classify(clf, points[from_index:to_index], min_time,\n from_index, to_index)\n if info:\n cp_info.append(info)\n return group_modes(cp_info)\n",
"role": "user"
},
{
"content": "speed_clustering",
"role": "assistant"
}
] |
def x(p_a, p_b):
return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2)
|
distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p_a, p_b):\n return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2)\n",
"role": "user"
},
{
"content": "distance",
"role": "assistant"
}
] |
def x(point, start, end):
if start == end:
return distance(point, start)
else:
un_dist = abs((end.lat - start.lat) * (start.lon - point.lon) - (
start.lat - point.lat) * (end.lon - start.lon))
n_dist = sqrt((end.lat - start.lat) ** 2 + (end.lon - start.lon) ** 2)
if n_dist == 0:
return 0
else:
return un_dist / n_dist
|
point_line_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(point, start, end):\n if start == end:\n return distance(point, start)\n else:\n un_dist = abs((end.lat - start.lat) * (start.lon - point.lon) - (\n start.lat - point.lat) * (end.lon - start.lon))\n n_dist = sqrt((end.lat - start.lat) ** 2 + (end.lon - start.lon) ** 2)\n if n_dist == 0:\n return 0\n else:\n return un_dist / n_dist\n",
"role": "user"
},
{
"content": "point_line_distance",
"role": "assistant"
}
] |
def x(points, epsilon):
dmax = 0.0
index = 0
for i in range(1, len(points) - 1):
dist = point_line_distance(points[i], points[0], points[-1])
if dist > dmax:
index = i
dmax = dist
if dmax > epsilon:
return drp(points[:index + 1], epsilon)[:-1] + drp(points[index:],
epsilon)
else:
return [points[0], points[-1]]
|
drp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, epsilon):\n dmax = 0.0\n index = 0\n for i in range(1, len(points) - 1):\n dist = point_line_distance(points[i], points[0], points[-1])\n if dist > dmax:\n index = i\n dmax = dist\n if dmax > epsilon:\n return drp(points[:index + 1], epsilon)[:-1] + drp(points[index:],\n epsilon)\n else:\n return [points[0], points[-1]]\n",
"role": "user"
},
{
"content": "drp",
"role": "assistant"
}
] |
def x(points, speed_threshold):
if len(points) <= 2:
return points
else:
max_speed_threshold = 0
found_index = 0
for i in range(1, len(points) - 1):
dt1 = time_dist(points[i], points[i - 1])
if dt1 == 0:
dt1 = 1e-09
vim = loc_dist(points[i], points[i - 1]) / dt1
dt2 = time_dist(points[i + 1], points[i])
if dt2 == 0:
dt2 = 1e-09
vi_ = loc_dist(points[i + 1], points[i]) / dt2
if abs(vi_ - vim) > max_speed_threshold:
max_speed_threshold = abs(vi_ - vim)
found_index = i
if max_speed_threshold > speed_threshold:
one = td_sp(points[:found_index], speed_threshold)
two = td_sp(points[found_index:], speed_threshold)
one.extend(two)
return one
else:
return [points[0], points[-1]]
|
td_sp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, speed_threshold):\n if len(points) <= 2:\n return points\n else:\n max_speed_threshold = 0\n found_index = 0\n for i in range(1, len(points) - 1):\n dt1 = time_dist(points[i], points[i - 1])\n if dt1 == 0:\n dt1 = 1e-09\n vim = loc_dist(points[i], points[i - 1]) / dt1\n dt2 = time_dist(points[i + 1], points[i])\n if dt2 == 0:\n dt2 = 1e-09\n vi_ = loc_dist(points[i + 1], points[i]) / dt2\n if abs(vi_ - vim) > max_speed_threshold:\n max_speed_threshold = abs(vi_ - vim)\n found_index = i\n if max_speed_threshold > speed_threshold:\n one = td_sp(points[:found_index], speed_threshold)\n two = td_sp(points[found_index:], speed_threshold)\n one.extend(two)\n return one\n else:\n return [points[0], points[-1]]\n",
"role": "user"
},
{
"content": "td_sp",
"role": "assistant"
}
] |
def x(points, dist_threshold):
if len(points) <= 2:
return points
else:
max_dist_threshold = 0
found_index = 0
delta_e = time_dist(points[-1], points[0]) * I_3600
d_lat = points[-1].lat - points[0].lat
d_lon = points[-1].lon - points[0].lon
for i in range(1, len(points) - 1):
delta_i = time_dist(points[i], points[0]) * I_3600
di_de = delta_i / delta_e
point = Point(points[0].lat + d_lat * di_de, points[0].lon +
d_lon * di_de, None)
dist = loc_dist(points[i], point)
if dist > max_dist_threshold:
max_dist_threshold = dist
found_index = i
if max_dist_threshold > dist_threshold:
one = td_tr(points[:found_index], dist_threshold)
two = td_tr(points[found_index:], dist_threshold)
one.extend(two)
return one
else:
return [points[0], points[-1]]
|
td_tr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, dist_threshold):\n if len(points) <= 2:\n return points\n else:\n max_dist_threshold = 0\n found_index = 0\n delta_e = time_dist(points[-1], points[0]) * I_3600\n d_lat = points[-1].lat - points[0].lat\n d_lon = points[-1].lon - points[0].lon\n for i in range(1, len(points) - 1):\n delta_i = time_dist(points[i], points[0]) * I_3600\n di_de = delta_i / delta_e\n point = Point(points[0].lat + d_lat * di_de, points[0].lon + \n d_lon * di_de, None)\n dist = loc_dist(points[i], point)\n if dist > max_dist_threshold:\n max_dist_threshold = dist\n found_index = i\n if max_dist_threshold > dist_threshold:\n one = td_tr(points[:found_index], dist_threshold)\n two = td_tr(points[found_index:], dist_threshold)\n one.extend(two)\n return one\n else:\n return [points[0], points[-1]]\n",
"role": "user"
},
{
"content": "td_tr",
"role": "assistant"
}
] |
def x(points, max_dist_error, max_speed_error):
if len(points) <= 2:
return points
else:
is_error = False
e = 1
while e < len(points) and not is_error:
i = 1
while i < e and not is_error:
delta_e = time_dist(points[e], points[0]) * I_3600
delta_i = time_dist(points[i], points[0]) * I_3600
di_de = 0
if delta_e != 0:
di_de = delta_i / delta_e
d_lat = points[e].lat - points[0].lat
d_lon = points[e].lon - points[0].lon
point = Point(points[0].lat + d_lat * di_de, points[0].lon +
d_lon * di_de, None)
dt1 = time_dist(points[i], points[i - 1])
if dt1 == 0:
dt1 = 1e-09
dt2 = time_dist(points[i + 1], points[i])
if dt2 == 0:
dt2 = 1e-09
v_i_1 = loc_dist(points[i], points[i - 1]) / dt1
v_i = loc_dist(points[i + 1], points[i]) / dt2
if loc_dist(points[i], point) > max_dist_error or abs(v_i -
v_i_1) > max_speed_error:
is_error = True
else:
i = i + 1
if is_error:
return [points[0]] + spt(points[i:len(points)],
max_dist_error, max_speed_error)
e = e + 1
if not is_error:
return [points[0], points[len(points) - 1]]
|
spt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(points, max_dist_error, max_speed_error):\n if len(points) <= 2:\n return points\n else:\n is_error = False\n e = 1\n while e < len(points) and not is_error:\n i = 1\n while i < e and not is_error:\n delta_e = time_dist(points[e], points[0]) * I_3600\n delta_i = time_dist(points[i], points[0]) * I_3600\n di_de = 0\n if delta_e != 0:\n di_de = delta_i / delta_e\n d_lat = points[e].lat - points[0].lat\n d_lon = points[e].lon - points[0].lon\n point = Point(points[0].lat + d_lat * di_de, points[0].lon +\n d_lon * di_de, None)\n dt1 = time_dist(points[i], points[i - 1])\n if dt1 == 0:\n dt1 = 1e-09\n dt2 = time_dist(points[i + 1], points[i])\n if dt2 == 0:\n dt2 = 1e-09\n v_i_1 = loc_dist(points[i], points[i - 1]) / dt1\n v_i = loc_dist(points[i + 1], points[i]) / dt2\n if loc_dist(points[i], point) > max_dist_error or abs(v_i -\n v_i_1) > max_speed_error:\n is_error = True\n else:\n i = i + 1\n if is_error:\n return [points[0]] + spt(points[i:len(points)],\n max_dist_error, max_speed_error)\n e = e + 1\n if not is_error:\n return [points[0], points[len(points) - 1]]\n",
"role": "user"
},
{
"content": "spt",
"role": "assistant"
}
] |
def x(self, name_format=DEFAULT_FILE_NAME_FORMAT):
if len(self.segments) > 0:
return self.segments[0].points[0].time.strftime(name_format) + '.gpx'
else:
return 'EmptyTrack'
|
generate_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name_format=DEFAULT_FILE_NAME_FORMAT):\n if len(self.segments) > 0:\n return self.segments[0].points[0].time.strftime(name_format) + '.gpx'\n else:\n return 'EmptyTrack'\n",
"role": "user"
},
{
"content": "generate_name",
"role": "assistant"
}
] |
def x(self, eps, min_time):
new_segments = []
for segment in self.segments:
segmented = segment.segment(eps, min_time)
for seg in segmented:
new_segments.append(Segment(seg))
self.segments = new_segments
return self
|
segment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, eps, min_time):\n new_segments = []\n for segment in self.segments:\n segmented = segment.segment(eps, min_time)\n for seg in segmented:\n new_segments.append(Segment(seg))\n self.segments = new_segments\n return self\n",
"role": "user"
},
{
"content": "segment",
"role": "assistant"
}
] |
def x(self, eps, max_dist_error, max_speed_error, topology_only=False):
for segment in self.segments:
segment.simplify(eps, max_dist_error, max_speed_error, topology_only)
return self
|
simplify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, eps, max_dist_error, max_speed_error, topology_only=False):\n for segment in self.segments:\n segment.simplify(eps, max_dist_error, max_speed_error, topology_only)\n return self\n",
"role": "user"
},
{
"content": "simplify",
"role": "assistant"
}
] |
def x(self, clf, min_time):
for segment in self.segments:
segment.infer_transportation_mode(clf, min_time)
return self
|
infer_transportation_mode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, clf, min_time):\n for segment in self.segments:\n segment.infer_transportation_mode(clf, min_time)\n return self\n",
"role": "user"
},
{
"content": "infer_transportation_mode",
"role": "assistant"
}
] |
def x(self, smooth, smooth_strategy, smooth_noise, seg, seg_eps,
seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error):
self.compute_metrics()
self.remove_noise()
print(smooth, seg, simplify)
if smooth:
self.compute_metrics()
self.smooth(smooth_strategy, smooth_noise)
if seg:
self.compute_metrics()
self.segment(seg_eps, seg_min_time)
if simplify:
self.compute_metrics()
self.simplify(0, simplify_max_dist_error, simplify_max_speed_error)
self.compute_metrics()
return self
|
to_trip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, smooth, smooth_strategy, smooth_noise, seg, seg_eps,\n seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error):\n self.compute_metrics()\n self.remove_noise()\n print(smooth, seg, simplify)\n if smooth:\n self.compute_metrics()\n self.smooth(smooth_strategy, smooth_noise)\n if seg:\n self.compute_metrics()\n self.segment(seg_eps, seg_min_time)\n if simplify:\n self.compute_metrics()\n self.simplify(0, simplify_max_dist_error, simplify_max_speed_error)\n self.compute_metrics()\n return self\n",
"role": "user"
},
{
"content": "to_trip",
"role": "assistant"
}
] |
def x(self, dt_threshold=10):
self.segments = [segment.infer_transportation_mode(dt_threshold=
dt_threshold) for segment in self.segments]
return self
|
infer_transportation_modes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dt_threshold=10):\n self.segments = [segment.infer_transportation_mode(dt_threshold=\n dt_threshold) for segment in self.segments]\n return self\n",
"role": "user"
},
{
"content": "infer_transportation_modes",
"role": "assistant"
}
] |
def x(self, location_query, max_distance, google_key, foursquare_client_id,
foursquare_client_secret, limit):
self.segments = [segment.infer_location(location_query, max_distance,
google_key, foursquare_client_id, foursquare_client_secret, limit) for
segment in self.segments]
return self
|
infer_location
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, location_query, max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit):\n self.segments = [segment.infer_location(location_query, max_distance,\n google_key, foursquare_client_id, foursquare_client_secret, limit) for\n segment in self.segments]\n return self\n",
"role": "user"
},
{
"content": "infer_location",
"role": "assistant"
}
] |
def x(self):
return {'name': self.name, 'segments': [segment.to_json() for segment in
self.segments], 'meta': self.meta}
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {'name': self.name, 'segments': [segment.to_json() for segment in\n self.segments], 'meta': self.meta}\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(self, track, pairings):
for self_seg_index, track_seg_index, _ in pairings:
self_s = self.segments[self_seg_index]
ss_start = self_s.points[0]
track_s = track.segments[track_seg_index]
tt_start = track_s.points[0]
tt_end = track_s.points[-1]
d_start = ss_start.distance(tt_start)
d_end = ss_start.distance(tt_end)
if d_start > d_end:
track_s = track_s.copy()
track_s.points = list(reversed(track_s.points))
self_s.merge_and_fit(track_s)
return self
|
merge_and_fit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, track, pairings):\n for self_seg_index, track_seg_index, _ in pairings:\n self_s = self.segments[self_seg_index]\n ss_start = self_s.points[0]\n track_s = track.segments[track_seg_index]\n tt_start = track_s.points[0]\n tt_end = track_s.points[-1]\n d_start = ss_start.distance(tt_start)\n d_end = ss_start.distance(tt_end)\n if d_start > d_end:\n track_s = track_s.copy()\n track_s.points = list(reversed(track_s.points))\n self_s.merge_and_fit(track_s)\n return self\n",
"role": "user"
},
{
"content": "merge_and_fit",
"role": "assistant"
}
] |
def x(self, point):
for i, segment in enumerate(self.segments):
idx = segment.getPointIndex(point)
if idx != -1:
return i, idx
return -1, -1
|
get_point_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, point):\n for i, segment in enumerate(self.segments):\n idx = segment.getPointIndex(point)\n if idx != -1:\n return i, idx\n return -1, -1\n",
"role": "user"
},
{
"content": "get_point_index",
"role": "assistant"
}
] |
def x(self, thr=0):
min_lat = float('inf')
min_lon = float('inf')
max_lat = -float('inf')
max_lon = -float('inf')
for segment in self.segments:
milat, milon, malat, malon = segment.bounds(thr=thr)
min_lat = min(milat, min_lat)
min_lon = min(milon, min_lon)
max_lat = max(malat, max_lat)
max_lon = max(malon, max_lon)
return min_lat, min_lon, max_lat, max_lon
|
bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, thr=0):\n min_lat = float('inf')\n min_lon = float('inf')\n max_lat = -float('inf')\n max_lon = -float('inf')\n for segment in self.segments:\n milat, milon, malat, malon = segment.bounds(thr=thr)\n min_lat = min(milat, min_lat)\n min_lon = min(milon, min_lon)\n max_lat = max(malat, max_lat)\n max_lon = max(malon, max_lon)\n return min_lat, min_lon, max_lat, max_lon\n",
"role": "user"
},
{
"content": "bounds",
"role": "assistant"
}
] |
def x(self, track):
idx = index.Index()
i = 0
for i, segment in enumerate(self.segments):
idx.insert(i, segment.bounds(), obj=segment)
final_siml = []
final_diff = []
for i, segment in enumerate(track.segments):
query = idx.intersection(segment.bounds(), objects=True)
res_siml = []
res_diff = []
for result in query:
siml, diff = segment_similarity(segment, result.object)
res_siml.append(siml)
res_diff.append((result.id, i, diff))
if len(res_siml) > 0:
final_siml.append(max(res_siml))
final_diff.append(res_diff[np.argmax(res_siml)])
else:
final_siml.append(0)
final_diff.append([])
return np.mean(final_siml), final_diff
|
similarity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, track):\n idx = index.Index()\n i = 0\n for i, segment in enumerate(self.segments):\n idx.insert(i, segment.bounds(), obj=segment)\n final_siml = []\n final_diff = []\n for i, segment in enumerate(track.segments):\n query = idx.intersection(segment.bounds(), objects=True)\n res_siml = []\n res_diff = []\n for result in query:\n siml, diff = segment_similarity(segment, result.object)\n res_siml.append(siml)\n res_diff.append((result.id, i, diff))\n if len(res_siml) > 0:\n final_siml.append(max(res_siml))\n final_diff.append(res_diff[np.argmax(res_siml)])\n else:\n final_siml.append(0)\n final_diff.append([])\n return np.mean(final_siml), final_diff\n",
"role": "user"
},
{
"content": "similarity",
"role": "assistant"
}
] |
def x(self):
gpx_segments = []
for segment in self.segments:
gpx_points = []
for point in segment.points:
time = ''
if point.time:
iso_time = point.time.isoformat().split('.')[0]
time = '<time>%s</time>' % iso_time
gpx_points.append(u'<trkpt lat="%f" lon="%f">%s</trkpt>' % (
point.lat, point.lon, time))
points = u'\n\t\t\t'.join(gpx_points)
gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points)
segments = u'\t\n'.join(gpx_segments)
content = [u'<?xml version="1.0" encoding="UTF-8"?>',
u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">'
, u'\t<trk>', segments, u'\t</trk>', u'</gpx>']
return u'\n'.join(content)
|
to_gpx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n gpx_segments = []\n for segment in self.segments:\n gpx_points = []\n for point in segment.points:\n time = ''\n if point.time:\n iso_time = point.time.isoformat().split('.')[0]\n time = '<time>%s</time>' % iso_time\n gpx_points.append(u'<trkpt lat=\"%f\" lon=\"%f\">%s</trkpt>' % (\n point.lat, point.lon, time))\n points = u'\\n\\t\\t\\t'.join(gpx_points)\n gpx_segments.append(u'\\t\\t<trkseg>\\n\\t\\t\\t%s\\n\\t\\t</trkseg>' % points)\n segments = u'\\t\\n'.join(gpx_segments)\n content = [u'<?xml version=\"1.0\" encoding=\"UTF-8\"?>',\n u'<gpx xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xmlns=\"http://www.topografix.com/GPX/1/0\" xsi:schemaLocation=\"http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd\" version=\"1.0\" creator=\"GatherMySteps\">'\n , u'\\t<trk>', segments, u'\\t</trk>', u'</gpx>']\n return u'\\n'.join(content)\n",
"role": "user"
},
{
"content": "to_gpx",
"role": "assistant"
}
] |
def x(self, timezone=0):
tz_dt = timedelta(hours=timezone)
for segment in self.segments:
for point in segment.points:
point.time = point.time + tz_dt
return self
|
timezone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timezone=0):\n tz_dt = timedelta(hours=timezone)\n for segment in self.segments:\n for point in segment.points:\n point.time = point.time + tz_dt\n return self\n",
"role": "user"
},
{
"content": "timezone",
"role": "assistant"
}
] |
def x(self):
buff = '--%s\n' % self.segments[0].points[0].time.strftime('%Y_%m_%d')
def x(time):
return time.strftime('%H%M')
def x(buff, start, end, place):
if not isinstance(start, str):
start = military_time(start)
if not isinstance(end, str):
end = military_time(end)
return '%s\n%s-%s: %s' % (buff, start, end, place.label)
def x(buff, segment):
trip = '%s-%s: %s -> %s' % (military_time(segment.points[0].time),
military_time(segment.points[-1].time), segment.location_from.
label, segment.location_to.label)
t_modes = segment.transportation_modes
if len(t_modes) == 1:
trip = '%s [%s]' % (trip, t_modes[0]['label'])
elif len(t_modes) > 1:
modes = []
for mode in t_modes:
trip_from = military_time(segment.points[mode['from']].time)
trip_to = military_time(segment.points[mode['to']].time)
modes.append(' %s-%s: [%s]' % (trip_from, trip_to, mode[
'label']))
trip = '%s\n%s' % (trip, '\n'.join(modes))
return '%s\n%s' % (buff, trip)
last = len(self.segments) - 1
for i, segment in enumerate(self.segments):
if i == 0:
buff = stay(buff, '0000', military_time(segment.points[0].time),
segment.location_from)
buff = trip(buff, segment)
if i is last:
buff = stay(buff, military_time(segment.points[-1].time),
'2359', segment.location_to)
else:
next_seg = self.segments[i + 1]
buff = stay(buff, military_time(segment.points[-1].time),
military_time(next_seg.points[0].time), segment.location_to)
return buff
|
to_life
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n buff = '--%s\\n' % self.segments[0].points[0].time.strftime('%Y_%m_%d')\n\n def x(time):\n return time.strftime('%H%M')\n\n def x(buff, start, end, place):\n if not isinstance(start, str):\n start = military_time(start)\n if not isinstance(end, str):\n end = military_time(end)\n return '%s\\n%s-%s: %s' % (buff, start, end, place.label)\n\n def x(buff, segment):\n trip = '%s-%s: %s -> %s' % (military_time(segment.points[0].time),\n military_time(segment.points[-1].time), segment.location_from.\n label, segment.location_to.label)\n t_modes = segment.transportation_modes\n if len(t_modes) == 1:\n trip = '%s [%s]' % (trip, t_modes[0]['label'])\n elif len(t_modes) > 1:\n modes = []\n for mode in t_modes:\n trip_from = military_time(segment.points[mode['from']].time)\n trip_to = military_time(segment.points[mode['to']].time)\n modes.append(' %s-%s: [%s]' % (trip_from, trip_to, mode[\n 'label']))\n trip = '%s\\n%s' % (trip, '\\n'.join(modes))\n return '%s\\n%s' % (buff, trip)\n last = len(self.segments) - 1\n for i, segment in enumerate(self.segments):\n if i == 0:\n buff = stay(buff, '0000', military_time(segment.points[0].time),\n segment.location_from)\n buff = trip(buff, segment)\n if i is last:\n buff = stay(buff, military_time(segment.points[-1].time),\n '2359', segment.location_to)\n else:\n next_seg = self.segments[i + 1]\n buff = stay(buff, military_time(segment.points[-1].time),\n military_time(next_seg.points[0].time), segment.location_to)\n return buff\n",
"role": "user"
},
{
"content": "to_life",
"role": "assistant"
}
] |
def x(file_path):
gpx = gpxpy.parse(open(file_path, 'r'))
file_name = basename(file_path)
tracks = []
for i, track in enumerate(gpx.tracks):
segments = []
for segment in track.segments:
segments.append(Segment.from_gpx(segment))
if len(gpx.tracks) > 1:
name = file_name + '_' + str(i)
else:
name = file_name
tracks.append(Track(name, segments))
return tracks
|
from_gpx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n gpx = gpxpy.parse(open(file_path, 'r'))\n file_name = basename(file_path)\n tracks = []\n for i, track in enumerate(gpx.tracks):\n segments = []\n for segment in track.segments:\n segments.append(Segment.from_gpx(segment))\n if len(gpx.tracks) > 1:\n name = file_name + '_' + str(i)\n else:\n name = file_name\n tracks.append(Track(name, segments))\n return tracks\n",
"role": "user"
},
{
"content": "from_gpx",
"role": "assistant"
}
] |
def x(json):
segments = [Segment.from_json(s) for s in json['segments']]
return Track(json['name'], segments).compute_metrics()
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(json):\n segments = [Segment.from_json(s) for s in json['segments']]\n return Track(json['name'], segments).compute_metrics()\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(p):
l = math.sqrt(p[0] ** 2 + p[1] ** 2)
return [0.0, 0.0] if l == 0 else [p[0] / l, p[1] / l]
|
normalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p):\n l = math.sqrt(p[0] ** 2 + p[1] ** 2)\n return [0.0, 0.0] if l == 0 else [p[0] / l, p[1] / l]\n",
"role": "user"
},
{
"content": "normalize",
"role": "assistant"
}
] |
def x(p1, p2):
A = p1[1] - p2[1]
B = p2[0] - p1[0]
C = p1[0] * p2[1] - p2[0] * p1[1]
return A, B, -C
|
line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p1, p2):\n A = p1[1] - p2[1]\n B = p2[0] - p1[0]\n C = p1[0] * p2[1] - p2[0] * p1[1]\n return A, B, -C\n",
"role": "user"
},
{
"content": "line",
"role": "assistant"
}
] |
def x(L1, L2):
D = L1[0] * L2[1] - L1[1] * L2[0]
Dx = L1[2] * L2[1] - L1[1] * L2[2]
Dy = L1[0] * L2[2] - L1[2] * L2[0]
if D != 0:
x = Dx / D
y = Dy / D
return x, y
else:
return False
|
intersection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(L1, L2):\n D = L1[0] * L2[1] - L1[1] * L2[0]\n Dx = L1[2] * L2[1] - L1[1] * L2[2]\n Dy = L1[0] * L2[2] - L1[2] * L2[0]\n if D != 0:\n x = Dx / D\n y = Dy / D\n return x, y\n else:\n return False\n",
"role": "user"
},
{
"content": "intersection",
"role": "assistant"
}
] |
def x(a, b):
return math.sqrt((b.lat - a.lat) ** 2 + (b.lon - a.lon) ** 2)
|
distance_tt_point
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b):\n return math.sqrt((b.lat - a.lat) ** 2 + (b.lon - a.lon) ** 2)\n",
"role": "user"
},
{
"content": "distance_tt_point",
"role": "assistant"
}
] |
def x(a, b, p):
ap = [p[0] - a[0], p[1] - a[1]]
ab = [b[0] - a[0], b[1] - a[1]]
mag = float(ab[0] ** 2 + ab[1] ** 2)
proj = dot(ap, ab)
if mag == 0:
dist = 0
else:
dist = proj / mag
if dist < 0:
return [a[0], a[1]]
elif dist > 1:
return [b[0], b[1]]
else:
return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]
|
closest_point
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, p):\n ap = [p[0] - a[0], p[1] - a[1]]\n ab = [b[0] - a[0], b[1] - a[1]]\n mag = float(ab[0] ** 2 + ab[1] ** 2)\n proj = dot(ap, ab)\n if mag == 0:\n dist = 0\n else:\n dist = proj / mag\n if dist < 0:\n return [a[0], a[1]]\n elif dist > 1:\n return [b[0], b[1]]\n else:\n return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]\n",
"role": "user"
},
{
"content": "closest_point",
"role": "assistant"
}
] |
def x(a, b, p):
return distance(closest_point(a, b, p), p)
|
distance_to_line
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, p):\n return distance(closest_point(a, b, p), p)\n",
"role": "user"
},
{
"content": "distance_to_line",
"role": "assistant"
}
] |
def x(a, b, p, T=CLOSE_DISTANCE_THRESHOLD):
d = distance_to_line(a, b, p)
r = -1 / float(T) * abs(d) + 1
return r if r > 0 else 0
|
distance_similarity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b, p, T=CLOSE_DISTANCE_THRESHOLD):\n d = distance_to_line(a, b, p)\n r = -1 / float(T) * abs(d) + 1\n return r if r > 0 else 0\n",
"role": "user"
},
{
"content": "distance_similarity",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.