source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, f0, df, N): return self._score_frequency_grid(f0, df, N)
score_frequency_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, f0, df, N):\n return self._score_frequency_grid(f0, df, N)\n", "role": "user" }, { "content": "score_frequency_grid", "role": "assistant" } ]
def x(self, oversampling=5, nyquist_factor=3, return_periods=True): N = len(self.t) T = np.max(self.t) - np.min(self.t) df = 1.0 / T / oversampling f0 = df Nf = int(0.5 * oversampling * nyquist_factor * N) freq = f0 + df * np.arange(Nf) return 1.0 / freq, self._score_frequency_grid(f0, df, Nf)
periodogram_auto
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, oversampling=5, nyquist_factor=3, return_periods=True):\n N = len(self.t)\n T = np.max(self.t) - np.min(self.t)\n df = 1.0 / T / oversampling\n f0 = df\n Nf = int(0.5 * oversampling * nyquist_factor * N)\n freq = f0 + df * np.arange(Nf)\n return 1.0 / freq, self._score_frequency_grid(f0, df, Nf)\n", "role": "user" }, { "content": "periodogram_auto", "role": "assistant" } ]
def x(self, periods=None): periods = np.asarray(periods) return self._score(periods.ravel()).reshape(periods.shape)
score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, periods=None):\n periods = np.asarray(periods)\n return self._score(periods.ravel()).reshape(periods.shape)\n", "role": "user" }, { "content": "score", "role": "assistant" } ]
def x(self): if self._best_period is None: self._best_period = self._calc_best_period() return self._best_period
best_period
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._best_period is None:\n self._best_period = self._calc_best_period()\n return self._best_period\n", "role": "user" }, { "content": "best_period", "role": "assistant" } ]
def x(self, n_periods=5, return_scores=False): return self.optimizer.find_best_periods(self, n_periods, return_scores= return_scores)
find_best_periods
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n_periods=5, return_scores=False):\n return self.optimizer.find_best_periods(self, n_periods, return_scores=\n return_scores)\n", "role": "user" }, { "content": "find_best_periods", "role": "assistant" } ]
def x(self, t, y, dy=None, filts=0): self.unique_filts_ = np.unique(filts) if dy is None: dy = 1 all_data = np.broadcast_arrays(t, y, dy, filts) self.t, self.y, self.dy, self.filts = map(np.ravel, all_data) self._fit(self.t, self.y, self.dy, self.filts) self._best_period = None if self.fit_period: self._best_period = self._calc_best_period() return self
fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, y, dy=None, filts=0):\n self.unique_filts_ = np.unique(filts)\n if dy is None:\n dy = 1\n all_data = np.broadcast_arrays(t, y, dy, filts)\n self.t, self.y, self.dy, self.filts = map(np.ravel, all_data)\n self._fit(self.t, self.y, self.dy, self.filts)\n self._best_period = None\n if self.fit_period:\n self._best_period = self._calc_best_period()\n return self\n", "role": "user" }, { "content": "fit", "role": "assistant" } ]
def x(self, t, filts, period=None): unique_filts = set(np.unique(filts)) if not unique_filts.issubset(self.unique_filts_): raise ValueError( 'filts does not match training data: input: {0} output: {1}'. format(set(self.unique_filts_), set(unique_filts))) t, filts = np.broadcast_arrays(t, filts) if period is None: period = self.best_period result = self._predict(t.ravel(), filts=filts.ravel(), period=period) return result.reshape(t.shape)
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, filts, period=None):\n unique_filts = set(np.unique(filts))\n if not unique_filts.issubset(self.unique_filts_):\n raise ValueError(\n 'filts does not match training data: input: {0} output: {1}'.\n format(set(self.unique_filts_), set(unique_filts)))\n t, filts = np.broadcast_arrays(t, filts)\n if period is None:\n period = self.best_period\n result = self._predict(t.ravel(), filts=filts.ravel(), period=period)\n return result.reshape(t.shape)\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(self, omega, **kwargs): X = self._construct_X(omega, weighted=True, **kwargs) M = np.dot(X.T, X) if getattr(self, 'regularization', None) is not None: diag = M.ravel(order='K')[::M.shape[0] + 1] if self.regularize_by_trace: diag += diag.sum() * np.asarray(self.regularization) else: diag += np.asarray(self.regularization) return X, M
construct_X_M
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, omega, **kwargs):\n X = self._construct_X(omega, weighted=True, **kwargs)\n M = np.dot(X.T, X)\n if getattr(self, 'regularization', None) is not None:\n diag = M.ravel(order='K')[::M.shape[0] + 1]\n if self.regularize_by_trace:\n diag += diag.sum() * np.asarray(self.regularization)\n else:\n diag += np.asarray(self.regularization)\n return X, M\n", "role": "user" }, { "content": "construct_X_M", "role": "assistant" } ]
def x(self, **kwargs): y = np.asarray(kwargs.get('y', self.y)) dy = np.asarray(kwargs.get('dy', self.dy)) if dy.size == 1: return np.mean(y) else: return np.average(y, weights=1 / dy ** 2)
compute_ymean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n y = np.asarray(kwargs.get('y', self.y))\n dy = np.asarray(kwargs.get('dy', self.dy))\n if dy.size == 1:\n return np.mean(y)\n else:\n return np.average(y, weights=1 / dy ** 2)\n", "role": "user" }, { "content": "compute_ymean", "role": "assistant" } ]
def x(self, omega, weighted=True, **kwargs): t = kwargs.get('t', self.t) dy = kwargs.get('dy', self.dy) fit_offset = kwargs.get('fit_offset', self.fit_offset) if fit_offset: offsets = [np.ones(len(t))] else: offsets = [] cols = sum(([np.sin((i + 1) * omega * t), np.cos((i + 1) * omega * t)] for i in range(self.Nterms)), offsets) if weighted: return np.transpose(np.vstack(cols) / dy) else: return np.transpose(np.vstack(cols))
construct_X
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, omega, weighted=True, **kwargs):\n t = kwargs.get('t', self.t)\n dy = kwargs.get('dy', self.dy)\n fit_offset = kwargs.get('fit_offset', self.fit_offset)\n if fit_offset:\n offsets = [np.ones(len(t))]\n else:\n offsets = []\n cols = sum(([np.sin((i + 1) * omega * t), np.cos((i + 1) * omega * t)] for\n i in range(self.Nterms)), offsets)\n if weighted:\n return np.transpose(np.vstack(cols) / dy)\n else:\n return np.transpose(np.vstack(cols))\n", "role": "user" }, { "content": "construct_X", "role": "assistant" } ]
def x(self, templateid): phase, y = self._get_template_by_id(templateid) assert phase.min() >= 0 assert phase.max() <= 1 phase = np.concatenate([phase[-5:] - 1, phase, phase[:5] + 1]) y = np.concatenate([y[-5:], y, y[:5]]) return UnivariateSpline(phase, y, s=0, k=5)
interpolated_template
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, templateid):\n phase, y = self._get_template_by_id(templateid)\n assert phase.min() >= 0\n assert phase.max() <= 1\n phase = np.concatenate([phase[-5:] - 1, phase, phase[:5] + 1])\n y = np.concatenate([y[-5:], y, y[:5]])\n return UnivariateSpline(phase, y, s=0, k=5)\n", "role": "user" }, { "content": "interpolated_template", "role": "assistant" } ]
def x(self, period): theta_best = [self._optimize(period, tmpid) for tmpid, _ in enumerate( self.templates)] chi2 = [self._chi2(theta, period, tmpid) for tmpid, theta in enumerate( theta_best)] return theta_best, chi2
eval_templates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, period):\n theta_best = [self._optimize(period, tmpid) for tmpid, _ in enumerate(\n self.templates)]\n chi2 = [self._chi2(theta, period, tmpid) for tmpid, theta in enumerate(\n theta_best)]\n return theta_best, chi2\n", "role": "user" }, { "content": "eval_templates", "role": "assistant" } ]
def x(self, t, theta, period, tmpid): template = self.templates[tmpid] phase = (t / period - theta[2]) % 1 return theta[0] + theta[1] * template(phase)
model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, theta, period, tmpid):\n template = self.templates[tmpid]\n phase = (t / period - theta[2]) % 1\n return theta[0] + theta[1] * template(phase)\n", "role": "user" }, { "content": "model", "role": "assistant" } ]
def x(self, theta, period, tmpid, return_gradient=False): template = self.templates[tmpid] phase = (self.t / period - theta[2]) % 1 model = theta[0] + theta[1] * template(phase) chi2 = (((model - self.y) / self.dy) ** 2).sum() if return_gradient: grad = 2 * (model - self.y) / self.dy ** 2 gradient = np.array([np.sum(grad), np.sum(grad * template(phase)), -np.sum(grad * theta[1] * template.derivative(1)(phase))]) return chi2, gradient else: return chi2
chi2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, theta, period, tmpid, return_gradient=False):\n template = self.templates[tmpid]\n phase = (self.t / period - theta[2]) % 1\n model = theta[0] + theta[1] * template(phase)\n chi2 = (((model - self.y) / self.dy) ** 2).sum()\n if return_gradient:\n grad = 2 * (model - self.y) / self.dy ** 2\n gradient = np.array([np.sum(grad), np.sum(grad * template(phase)), \n -np.sum(grad * theta[1] * template.derivative(1)(phase))])\n return chi2, gradient\n else:\n return chi2\n", "role": "user" }, { "content": "chi2", "role": "assistant" } ]
def x(self, period, tmpid, use_gradient=True): theta_0 = [self.y.min(), self.y.max() - self.y.min(), 0] result = minimize(self._chi2, theta_0, jac=bool(use_gradient), bounds=[ (None, None), (0, None), (None, None)], args=(period, tmpid, use_gradient)) return result.x
optimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, period, tmpid, use_gradient=True):\n theta_0 = [self.y.min(), self.y.max() - self.y.min(), 0]\n result = minimize(self._chi2, theta_0, jac=bool(use_gradient), bounds=[\n (None, None), (0, None), (None, None)], args=(period, tmpid,\n use_gradient))\n return result.x\n", "role": "user" }, { "content": "optimize", "role": "assistant" } ]
def x(self, model, n_periods=5, return_scores=False): tmin, tmax = np.min(model.t), np.max(model.t) width = 2 * np.pi / (tmax - tmin) if tmax - tmin < np.max(self.period_range): raise ValueError( 'The optimizer is not designed to search for for periods larger than the data baseline. ' ) omega_step = width / self.first_pass_coverage omega_min = 2 * np.pi / np.max(self.period_range) omega_max = 2 * np.pi / np.min(self.period_range) omegas = np.arange(omega_min, omega_max + omega_step, omega_step) periods = 2 * np.pi / omegas if not self.quiet: print('Finding optimal frequency:') print(' - Estimated peak width = {0:.3g}'.format(width)) print(' - Using {0} steps per peak; omega_step = {1:.3g}'.format( self.first_pass_coverage, omega_step)) print(' - User-specified period range: {0:.2g} to {1:.2g}'.format( periods.min(), periods.max())) print(' - Computing periods at {0:.0f} steps'.format(len(periods))) sys.stdout.flush() N = int(1 + width // omega_step) score = model.score_frequency_grid(omega_min / (2 * np.pi), omega_step / (2 * np.pi), len(omegas)) minscore = score.min() n_candidates = max(5, 2 * n_periods) candidate_freqs = np.zeros(n_candidates) candidate_scores = np.zeros(n_candidates) for i in range(n_candidates): j = np.argmax(score) candidate_freqs[i] = omegas[j] candidate_scores[i] = score[j] score[max(0, j - N):j + N] = minscore if self.final_pass_coverage <= self.first_pass_coverage: best_periods = 2 * np.pi / candidate_freqs[:n_periods] best_scores = candidate_scores[:n_periods] else: f0 = -omega_step / (2 * np.pi) df = width / self.final_pass_coverage / (2 * np.pi) Nf = abs(2 * f0) // df steps = f0 + df * np.arange(Nf) candidate_freqs /= 2 * np.pi freqs = steps + candidate_freqs[:, np.newaxis] periods = 1.0 / freqs if not self.quiet: print('Zooming-in on {0} candidate peaks:'.format(n_candidates)) print(' - Computing periods at {0:.0f} steps'.format(periods.size)) sys.stdout.flush() scores = np.array([model.score_frequency_grid(c + f0, df, Nf) for c in candidate_freqs]) best_scores = scores.max(1) j = np.argmax(scores, 1) i = np.argsort(best_scores)[::-1] best_periods = periods[i, j[i]] best_scores = best_scores[i] if return_scores: return best_periods[:n_periods], best_scores[:n_periods] else: return best_periods[:n_periods]
find_best_periods
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model, n_periods=5, return_scores=False):\n tmin, tmax = np.min(model.t), np.max(model.t)\n width = 2 * np.pi / (tmax - tmin)\n if tmax - tmin < np.max(self.period_range):\n raise ValueError(\n 'The optimizer is not designed to search for for periods larger than the data baseline. '\n )\n omega_step = width / self.first_pass_coverage\n omega_min = 2 * np.pi / np.max(self.period_range)\n omega_max = 2 * np.pi / np.min(self.period_range)\n omegas = np.arange(omega_min, omega_max + omega_step, omega_step)\n periods = 2 * np.pi / omegas\n if not self.quiet:\n print('Finding optimal frequency:')\n print(' - Estimated peak width = {0:.3g}'.format(width))\n print(' - Using {0} steps per peak; omega_step = {1:.3g}'.format(\n self.first_pass_coverage, omega_step))\n print(' - User-specified period range: {0:.2g} to {1:.2g}'.format(\n periods.min(), periods.max()))\n print(' - Computing periods at {0:.0f} steps'.format(len(periods)))\n sys.stdout.flush()\n N = int(1 + width // omega_step)\n score = model.score_frequency_grid(omega_min / (2 * np.pi), omega_step /\n (2 * np.pi), len(omegas))\n minscore = score.min()\n n_candidates = max(5, 2 * n_periods)\n candidate_freqs = np.zeros(n_candidates)\n candidate_scores = np.zeros(n_candidates)\n for i in range(n_candidates):\n j = np.argmax(score)\n candidate_freqs[i] = omegas[j]\n candidate_scores[i] = score[j]\n score[max(0, j - N):j + N] = minscore\n if self.final_pass_coverage <= self.first_pass_coverage:\n best_periods = 2 * np.pi / candidate_freqs[:n_periods]\n best_scores = candidate_scores[:n_periods]\n else:\n f0 = -omega_step / (2 * np.pi)\n df = width / self.final_pass_coverage / (2 * np.pi)\n Nf = abs(2 * f0) // df\n steps = f0 + df * np.arange(Nf)\n candidate_freqs /= 2 * np.pi\n freqs = steps + candidate_freqs[:, np.newaxis]\n periods = 1.0 / freqs\n if not self.quiet:\n print('Zooming-in on {0} candidate peaks:'.format(n_candidates))\n print(' - Computing periods at {0:.0f} steps'.format(periods.size))\n sys.stdout.flush()\n scores = np.array([model.score_frequency_grid(c + f0, df, Nf) for c in\n candidate_freqs])\n best_scores = scores.max(1)\n j = np.argmax(scores, 1)\n i = np.argsort(best_scores)[::-1]\n best_periods = periods[i, j[i]]\n best_scores = best_scores[i]\n if return_scores:\n return best_periods[:n_periods], best_scores[:n_periods]\n else:\n return best_periods[:n_periods]\n", "role": "user" }, { "content": "find_best_periods", "role": "assistant" } ]
def x(N): if N < len(FACTORIALS): return FACTORIALS[N] else: from scipy import special return int(special.factorial(N))
factorial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(N):\n if N < len(FACTORIALS):\n return FACTORIALS[N]\n else:\n from scipy import special\n return int(special.factorial(N))\n", "role": "user" }, { "content": "factorial", "role": "assistant" } ]
def x(N): N = int(N) - 1 for i in [1, 2, 4, 8, 16, 32]: N |= N >> i return N + 1
bitceil
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(N):\n N = int(N) - 1\n for i in [1, 2, 4, 8, 16, 32]:\n N |= N >> i\n return N + 1\n", "role": "user" }, { "content": "bitceil", "role": "assistant" } ]
def x(x, y, N=None, M=4): x, y = map(np.ravel, np.broadcast_arrays(x, y)) if N is None: N = int(np.max(x) + 0.5 * M + 1) result = np.zeros(N, dtype=y.dtype) integers = x % 1 == 0 np.add.at(result, x[integers].astype(int), y[integers]) x, y = x[~integers], y[~integers] ilo = np.clip((x - M // 2).astype(int), 0, N - M) numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0) denominator = factorial(M - 1) for j in range(M): if j > 0: denominator *= j / (j - M) ind = ilo + (M - 1 - j) np.add.at(result, ind, numerator / (denominator * (x - ind))) return result
extirpolate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, N=None, M=4):\n x, y = map(np.ravel, np.broadcast_arrays(x, y))\n if N is None:\n N = int(np.max(x) + 0.5 * M + 1)\n result = np.zeros(N, dtype=y.dtype)\n integers = x % 1 == 0\n np.add.at(result, x[integers].astype(int), y[integers])\n x, y = x[~integers], y[~integers]\n ilo = np.clip((x - M // 2).astype(int), 0, N - M)\n numerator = y * np.prod(x - ilo - np.arange(M)[:, np.newaxis], 0)\n denominator = factorial(M - 1)\n for j in range(M):\n if j > 0:\n denominator *= j / (j - M)\n ind = ilo + (M - 1 - j)\n np.add.at(result, ind, numerator / (denominator * (x - ind)))\n return result\n", "role": "user" }, { "content": "extirpolate", "role": "assistant" } ]
def x(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4): df *= freq_factor f0 *= freq_factor assert df > 0 t, h = map(np.ravel, np.broadcast_arrays(t, h)) if use_fft: Mfft = int(Mfft) assert Mfft > 0 Nfft = bitceil(N * oversampling) t0 = t.min() if f0 > 0: h = h * np.exp(2.0j * np.pi * f0 * (t - t0)) tnorm = (t - t0) * Nfft * df % Nfft grid = extirpolate(tnorm, h, Nfft, Mfft) fftgrid = np.fft.ifft(grid) if t0 != 0: f = f0 + df * np.arange(Nfft) fftgrid *= np.exp(2.0j * np.pi * t0 * f) fftgrid = fftgrid[:N] C = Nfft * fftgrid.real S = Nfft * fftgrid.imag else: f = f0 + df * np.arange(N) C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis])) S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis])) return S, C
trig_sum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t, h, df, N, f0=0, freq_factor=1, oversampling=5, use_fft=True, Mfft=4):\n df *= freq_factor\n f0 *= freq_factor\n assert df > 0\n t, h = map(np.ravel, np.broadcast_arrays(t, h))\n if use_fft:\n Mfft = int(Mfft)\n assert Mfft > 0\n Nfft = bitceil(N * oversampling)\n t0 = t.min()\n if f0 > 0:\n h = h * np.exp(2.0j * np.pi * f0 * (t - t0))\n tnorm = (t - t0) * Nfft * df % Nfft\n grid = extirpolate(tnorm, h, Nfft, Mfft)\n fftgrid = np.fft.ifft(grid)\n if t0 != 0:\n f = f0 + df * np.arange(Nfft)\n fftgrid *= np.exp(2.0j * np.pi * t0 * f)\n fftgrid = fftgrid[:N]\n C = Nfft * fftgrid.real\n S = Nfft * fftgrid.imag\n else:\n f = f0 + df * np.arange(N)\n C = np.dot(h, np.cos(2 * np.pi * f * t[:, np.newaxis]))\n S = np.dot(h, np.sin(2 * np.pi * f * t[:, np.newaxis]))\n return S, C\n", "role": "user" }, { "content": "trig_sum", "role": "assistant" } ]
def x(t, y, dy=1, f0=0, df=None, Nf=None, center_data=True, fit_offset=True, use_fft=True, freq_oversampling=5, nyquist_factor=2, trig_sum_kwds=None): t, y, dy = map(np.ravel, np.broadcast_arrays(t, y, dy)) w = 1.0 / dy ** 2 w /= w.sum() if df is None: peak_width = 1.0 / (t.max() - t.min()) df = peak_width / freq_oversampling if Nf is None: avg_Nyquist = 0.5 * len(t) / (t.max() - t.min()) Nf = max(16, (nyquist_factor * avg_Nyquist - f0) / df) Nf = int(Nf) assert df > 0 assert Nf > 0 freq = f0 + df * np.arange(Nf) if center_data or fit_offset: y = y - np.dot(w, y) kwargs = dict.copy(trig_sum_kwds or {}) kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf) Sh, Ch = trig_sum(t, w * y, **kwargs) S2, C2 = trig_sum(t, w, freq_factor=2, **kwargs) if fit_offset: S, C = trig_sum(t, w, **kwargs) with warnings.catch_warnings(): if f0 == 0: warnings.simplefilter('ignore') tan_2omega_tau = (S2 - 2 * S * C) / (C2 - (C * C - S * S)) if np.isnan(tan_2omega_tau[0]): tan_2omega_tau[0] = 0 else: tan_2omega_tau = S2 / C2 S2w = tan_2omega_tau / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau) C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau) Cw = np.sqrt(0.5) * np.sqrt(1 + C2w) Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w) YY = np.dot(w, y ** 2) YC = Ch * Cw + Sh * Sw YS = Sh * Cw - Ch * Sw CC = 0.5 * (1 + C2 * C2w + S2 * S2w) SS = 0.5 * (1 - C2 * C2w - S2 * S2w) if fit_offset: CC -= (C * Cw + S * Sw) ** 2 SS -= (S * Cw - C * Sw) ** 2 with warnings.catch_warnings(): if fit_offset and f0 == 0: warnings.simplefilter('ignore') power = (YC * YC / CC + YS * YS / SS) / YY if np.isnan(power[0]) or np.isinf(power[0]): power[0] = 0 return freq, power
lomb_scargle_fast
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t, y, dy=1, f0=0, df=None, Nf=None, center_data=True, fit_offset=True,\n use_fft=True, freq_oversampling=5, nyquist_factor=2, trig_sum_kwds=None):\n t, y, dy = map(np.ravel, np.broadcast_arrays(t, y, dy))\n w = 1.0 / dy ** 2\n w /= w.sum()\n if df is None:\n peak_width = 1.0 / (t.max() - t.min())\n df = peak_width / freq_oversampling\n if Nf is None:\n avg_Nyquist = 0.5 * len(t) / (t.max() - t.min())\n Nf = max(16, (nyquist_factor * avg_Nyquist - f0) / df)\n Nf = int(Nf)\n assert df > 0\n assert Nf > 0\n freq = f0 + df * np.arange(Nf)\n if center_data or fit_offset:\n y = y - np.dot(w, y)\n kwargs = dict.copy(trig_sum_kwds or {})\n kwargs.update(f0=f0, df=df, use_fft=use_fft, N=Nf)\n Sh, Ch = trig_sum(t, w * y, **kwargs)\n S2, C2 = trig_sum(t, w, freq_factor=2, **kwargs)\n if fit_offset:\n S, C = trig_sum(t, w, **kwargs)\n with warnings.catch_warnings():\n if f0 == 0:\n warnings.simplefilter('ignore')\n tan_2omega_tau = (S2 - 2 * S * C) / (C2 - (C * C - S * S))\n if np.isnan(tan_2omega_tau[0]):\n tan_2omega_tau[0] = 0\n else:\n tan_2omega_tau = S2 / C2\n S2w = tan_2omega_tau / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)\n C2w = 1 / np.sqrt(1 + tan_2omega_tau * tan_2omega_tau)\n Cw = np.sqrt(0.5) * np.sqrt(1 + C2w)\n Sw = np.sqrt(0.5) * np.sign(S2w) * np.sqrt(1 - C2w)\n YY = np.dot(w, y ** 2)\n YC = Ch * Cw + Sh * Sw\n YS = Sh * Cw - Ch * Sw\n CC = 0.5 * (1 + C2 * C2w + S2 * S2w)\n SS = 0.5 * (1 - C2 * C2w - S2 * S2w)\n if fit_offset:\n CC -= (C * Cw + S * Sw) ** 2\n SS -= (S * Cw - C * Sw) ** 2\n with warnings.catch_warnings():\n if fit_offset and f0 == 0:\n warnings.simplefilter('ignore')\n power = (YC * YC / CC + YS * YS / SS) / YY\n if np.isnan(power[0]) or np.isinf(power[0]):\n power[0] = 0\n return freq, power\n", "role": "user" }, { "content": "lomb_scargle_fast", "role": "assistant" } ]
def x(self, band, corrected=True): if band not in 'ugriz': raise ValueError("band='{0}' not recognized".format(band)) i = 'ugriz'.find(band) t, y, dy = self.lcdata.get_lightcurve(self.lcid, return_1d=False) if corrected: ext = self.obsmeta['rExt'] * self.ext_correction[band] else: ext = 0 return t[:, i], y[:, i] - ext, dy[:, i]
observed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, band, corrected=True):\n if band not in 'ugriz':\n raise ValueError(\"band='{0}' not recognized\".format(band))\n i = 'ugriz'.find(band)\n t, y, dy = self.lcdata.get_lightcurve(self.lcid, return_1d=False)\n if corrected:\n ext = self.obsmeta['rExt'] * self.ext_correction[band]\n else:\n ext = 0\n return t[:, i], y[:, i] - ext, dy[:, i]\n", "role": "user" }, { "content": "observed", "role": "assistant" } ]
def x(self, band, t, err=None, corrected=True): t = np.asarray(t) num = self.meta[band + 'T'] mu = self.meta[band + '0'] amp = self.meta[band + 'A'] t0 = self.meta[band + 'E'] bad_vals = np.isnan(t) | np.isinf(t) t[bad_vals] = t0 if corrected: ext = 0 else: ext = self.obsmeta['rExt'] * self.ext_correction[band] func = self._template_func(num, band, mu + ext, amp) mag = func((t - t0) / self.period % 1) mag[bad_vals] = np.nan if err is not None: mag += self.rng.normal(0, err, t.shape) return mag
generated
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, band, t, err=None, corrected=True):\n t = np.asarray(t)\n num = self.meta[band + 'T']\n mu = self.meta[band + '0']\n amp = self.meta[band + 'A']\n t0 = self.meta[band + 'E']\n bad_vals = np.isnan(t) | np.isinf(t)\n t[bad_vals] = t0\n if corrected:\n ext = 0\n else:\n ext = self.obsmeta['rExt'] * self.ext_correction[band]\n func = self._template_func(num, band, mu + ext, amp)\n mag = func((t - t0) / self.period % 1)\n mag[bad_vals] = np.nan\n if err is not None:\n mag += self.rng.normal(0, err, t.shape)\n return mag\n", "role": "user" }, { "content": "generated", "role": "assistant" } ]
def x(filename, data_home=None, url=SESAR_RRLYRAE_URL, force_download=False): from astroML.datasets.tools import get_data_home if data_home is None: data_home = get_data_home(data_home) data_home = os.path.join(data_home, 'Sesar2010') if not os.path.exists(data_home): os.makedirs(data_home) src_url = SESAR_RRLYRAE_URL + filename save_loc = os.path.join(data_home, filename) if force_download or not os.path.exists(save_loc): fhandle = urlopen(src_url) with open(save_loc, 'wb') as cache: cache.write(fhandle.read()) return save_loc
get_download_or_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, data_home=None, url=SESAR_RRLYRAE_URL, force_download=False):\n from astroML.datasets.tools import get_data_home\n if data_home is None:\n data_home = get_data_home(data_home)\n data_home = os.path.join(data_home, 'Sesar2010')\n if not os.path.exists(data_home):\n os.makedirs(data_home)\n src_url = SESAR_RRLYRAE_URL + filename\n save_loc = os.path.join(data_home, filename)\n if force_download or not os.path.exists(save_loc):\n fhandle = urlopen(src_url)\n with open(save_loc, 'wb') as cache:\n cache.write(fhandle.read())\n return save_loc\n", "role": "user" }, { "content": "get_download_or_cache", "role": "assistant" } ]
def x(partial=False, **kwargs): if partial: return PartialRRLyraeLC('table1.tar.gz', cache_kwargs=kwargs) else: return RRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)
fetch_rrlyrae
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(partial=False, **kwargs):\n if partial:\n return PartialRRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)\n else:\n return RRLyraeLC('table1.tar.gz', cache_kwargs=kwargs)\n", "role": "user" }, { "content": "fetch_rrlyrae", "role": "assistant" } ]
def x(**kwargs): save_loc = _get_download_or_cache('table2.dat.gz', **kwargs) dtype = [('id', 'i'), ('type', 'S2'), ('P', 'f'), ('uA', 'f'), ('u0', 'f'), ('uE', 'f'), ('uT', 'f'), ('gA', 'f'), ('g0', 'f'), ('gE', 'f'), ('gT', 'f'), ('rA', 'f'), ('r0', 'f'), ('rE', 'f'), ('rT', 'f'), ('iA', 'f'), ('i0', 'f'), ('iE', 'f'), ('iT', 'f'), ('zA', 'f'), ('z0', 'f'), ('zE', 'f'), ('zT', 'f')] return np.loadtxt(save_loc, dtype=dtype)
fetch_rrlyrae_lc_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n save_loc = _get_download_or_cache('table2.dat.gz', **kwargs)\n dtype = [('id', 'i'), ('type', 'S2'), ('P', 'f'), ('uA', 'f'), ('u0',\n 'f'), ('uE', 'f'), ('uT', 'f'), ('gA', 'f'), ('g0', 'f'), ('gE',\n 'f'), ('gT', 'f'), ('rA', 'f'), ('r0', 'f'), ('rE', 'f'), ('rT',\n 'f'), ('iA', 'f'), ('i0', 'f'), ('iE', 'f'), ('iT', 'f'), ('zA',\n 'f'), ('z0', 'f'), ('zE', 'f'), ('zT', 'f')]\n return np.loadtxt(save_loc, dtype=dtype)\n", "role": "user" }, { "content": "fetch_rrlyrae_lc_params", "role": "assistant" } ]
def x(**kwargs): save_loc = _get_download_or_cache('table3.dat.gz', **kwargs) dtype = [('id', 'i'), ('RA', 'f'), ('DEC', 'f'), ('rExt', 'f'), ('d', 'f'), ('RGC', 'f'), ('u', 'f'), ('g', 'f'), ('r', 'f'), ('i', 'f'), ('z', 'f'), ('V', 'f'), ('ugmin', 'f'), ('ugmin_err', 'f'), ( 'grmin', 'f'), ('grmin_err', 'f')] return np.loadtxt(save_loc, dtype=dtype)
fetch_rrlyrae_fitdata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(**kwargs):\n save_loc = _get_download_or_cache('table3.dat.gz', **kwargs)\n dtype = [('id', 'i'), ('RA', 'f'), ('DEC', 'f'), ('rExt', 'f'), ('d',\n 'f'), ('RGC', 'f'), ('u', 'f'), ('g', 'f'), ('r', 'f'), ('i', 'f'),\n ('z', 'f'), ('V', 'f'), ('ugmin', 'f'), ('ugmin_err', 'f'), (\n 'grmin', 'f'), ('grmin_err', 'f')]\n return np.loadtxt(save_loc, dtype=dtype)\n", "role": "user" }, { "content": "fetch_rrlyrae_fitdata", "role": "assistant" } ]
def x(self, star_id, return_1d=True): filename = '{0}/{1}.dat'.format(self.dirname, star_id) try: data = np.loadtxt(self.data.extractfile(filename)) except KeyError: raise ValueError('invalid star id: {0}'.format(star_id)) RA = data[:, 0] DEC = data[:, 1] t = data[:, 2::3] y = data[:, 3::3] dy = data[:, 4::3] nans = y == -99.99 t[nans] = np.nan y[nans] = np.nan dy[nans] = np.nan if return_1d: t, y, dy, filts = np.broadcast_arrays(t, y, dy, ['u', 'g', 'r', 'i', 'z']) good = ~np.isnan(t) return t[good], y[good], dy[good], filts[good] else: return t, y, dy
get_lightcurve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, star_id, return_1d=True):\n filename = '{0}/{1}.dat'.format(self.dirname, star_id)\n try:\n data = np.loadtxt(self.data.extractfile(filename))\n except KeyError:\n raise ValueError('invalid star id: {0}'.format(star_id))\n RA = data[:, 0]\n DEC = data[:, 1]\n t = data[:, 2::3]\n y = data[:, 3::3]\n dy = data[:, 4::3]\n nans = y == -99.99\n t[nans] = np.nan\n y[nans] = np.nan\n dy[nans] = np.nan\n if return_1d:\n t, y, dy, filts = np.broadcast_arrays(t, y, dy, ['u', 'g', 'r', 'i',\n 'z'])\n good = ~np.isnan(t)\n return t[good], y[good], dy[good], filts[good]\n else:\n return t, y, dy\n", "role": "user" }, { "content": "get_lightcurve", "role": "assistant" } ]
def x(self, lcid): if self._metadata is None: self._metadata = fetch_rrlyrae_lc_params() i = np.where(self._metadata['id'] == lcid)[0] if len(i) == 0: raise ValueError('invalid lcid: {0}'.format(lcid)) return self._metadata[i[0]]
get_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lcid):\n if self._metadata is None:\n self._metadata = fetch_rrlyrae_lc_params()\n i = np.where(self._metadata['id'] == lcid)[0]\n if len(i) == 0:\n raise ValueError('invalid lcid: {0}'.format(lcid))\n return self._metadata[i[0]]\n", "role": "user" }, { "content": "get_metadata", "role": "assistant" } ]
def x(self, lcid): if self._obsdata is None: self._obsdata = fetch_rrlyrae_fitdata() i = np.where(self._obsdata['id'] == lcid)[0] if len(i) == 0: raise ValueError('invalid lcid: {0}'.format(lcid)) return self._obsdata[i[0]]
get_obsmeta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lcid):\n if self._obsdata is None:\n self._obsdata = fetch_rrlyrae_fitdata()\n i = np.where(self._obsdata['id'] == lcid)[0]\n if len(i) == 0:\n raise ValueError('invalid lcid: {0}'.format(lcid))\n return self._obsdata[i[0]]\n", "role": "user" }, { "content": "get_obsmeta", "role": "assistant" } ]
def x(self, template_id): try: data = np.loadtxt(self.data.extractfile(template_id + '.dat')) except KeyError: raise ValueError('invalid star id: {0}'.format(template_id)) return data[:, 0], data[:, 1]
get_template
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, template_id):\n try:\n data = np.loadtxt(self.data.extractfile(template_id + '.dat'))\n except KeyError:\n raise ValueError('invalid star id: {0}'.format(template_id))\n return data[:, 0], data[:, 1]\n", "role": "user" }, { "content": "get_template", "role": "assistant" } ]
def x(self): hr_data = self.hr_values() return int(sum(hr_data) / len(hr_data))
hr_avg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n hr_data = self.hr_values()\n return int(sum(hr_data) / len(hr_data))\n", "role": "user" }, { "content": "hr_avg", "role": "assistant" } ]
def x(self): secs_per_km = self.duration / (self.distance / 1000) return time.strftime('%M:%S', time.gmtime(secs_per_km))
pace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n secs_per_km = self.duration / (self.distance / 1000)\n return time.strftime('%M:%S', time.gmtime(secs_per_km))\n", "role": "user" }, { "content": "pace", "role": "assistant" } ]
def x(self): total_ascent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1): diff = altitude_data[i + 1] - altitude_data[i] if diff > 0.0: total_ascent += diff return total_ascent
ascent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n total_ascent = 0.0\n altitude_data = self.altitude_points()\n for i in range(len(altitude_data) - 1):\n diff = altitude_data[i + 1] - altitude_data[i]\n if diff > 0.0:\n total_ascent += diff\n return total_ascent\n", "role": "user" }, { "content": "ascent", "role": "assistant" } ]
def x(self): total_descent = 0.0 altitude_data = self.altitude_points() for i in range(len(altitude_data) - 1): diff = altitude_data[i + 1] - altitude_data[i] if diff < 0.0: total_descent += abs(diff) return total_descent
descent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n total_descent = 0.0\n altitude_data = self.altitude_points()\n for i in range(len(altitude_data) - 1):\n diff = altitude_data[i + 1] - altitude_data[i]\n if diff < 0.0:\n total_descent += abs(diff)\n return total_descent\n", "role": "user" }, { "content": "descent", "role": "assistant" } ]
def x(keywords): invalid_chars = '!"#$%&\'()*+-./:;<=>?@[\\]^_{|}~\t\n' if any(char in invalid_chars for char in keywords): raise ValidationError(MESSAGE_KEYWORD_SPECIAL_CHARS)
keywords_special_characters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(keywords):\n invalid_chars = '!\"#$%&\\'()*+-./:;<=>?@[\\\\]^_{|}~\\t\\n'\n if any(char in invalid_chars for char in keywords):\n raise ValidationError(MESSAGE_KEYWORD_SPECIAL_CHARS)\n", "role": "user" }, { "content": "keywords_special_characters", "role": "assistant" } ]
def x(value): if value.image.format.upper() not in constants.ALLOWED_IMAGE_FORMATS: raise ValidationError(MESSAGE_INVALID_IMAGE_FORMAT)
image_format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n if value.image.format.upper() not in constants.ALLOWED_IMAGE_FORMATS:\n raise ValidationError(MESSAGE_INVALID_IMAGE_FORMAT)\n", "role": "user" }, { "content": "image_format", "role": "assistant" } ]
def x(value): parsed = parse.urlparse(value.lower()) if not parsed.netloc.endswith('facebook.com'): raise ValidationError(MESSAGE_NOT_FACEBOOK)
case_study_social_link_facebook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n parsed = parse.urlparse(value.lower())\n if not parsed.netloc.endswith('facebook.com'):\n raise ValidationError(MESSAGE_NOT_FACEBOOK)\n", "role": "user" }, { "content": "case_study_social_link_facebook", "role": "assistant" } ]
def x(value): parsed = parse.urlparse(value.lower()) if not parsed.netloc.endswith('twitter.com'): raise ValidationError(MESSAGE_NOT_TWITTER)
case_study_social_link_twitter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n parsed = parse.urlparse(value.lower())\n if not parsed.netloc.endswith('twitter.com'):\n raise ValidationError(MESSAGE_NOT_TWITTER)\n", "role": "user" }, { "content": "case_study_social_link_twitter", "role": "assistant" } ]
def x(value): parsed = parse.urlparse(value.lower()) if not parsed.netloc.endswith('linkedin.com'): raise ValidationError(MESSAGE_NOT_LINKEDIN)
case_study_social_link_linkedin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n parsed = parse.urlparse(value.lower())\n if not parsed.netloc.endswith('linkedin.com'):\n raise ValidationError(MESSAGE_NOT_LINKEDIN)\n", "role": "user" }, { "content": "case_study_social_link_linkedin", "role": "assistant" } ]
def x(value): for prefix, name in company_types_with_insufficient_companies_house_data: if value.upper().startswith(prefix): raise ValidationError(MESSAGE_INSUFFICIENT_DATA, params={'name': name})
no_company_with_insufficient_companies_house_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n for prefix, name in company_types_with_insufficient_companies_house_data:\n if value.upper().startswith(prefix):\n raise ValidationError(MESSAGE_INSUFFICIENT_DATA, params={'name':\n name})\n", "role": "user" }, { "content": "no_company_with_insufficient_companies_house_data", "role": "assistant" } ]
def x(value): domain = helpers.get_domain_from_email_address(value) if domain.lower() in free_domains: raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)
email_domain_free
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n domain = helpers.get_domain_from_email_address(value)\n if domain.lower() in free_domains:\n raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)\n", "role": "user" }, { "content": "email_domain_free", "role": "assistant" } ]
def x(value): domain = helpers.get_domain_from_email_address(value) if domain.lower() in disposable_domains: raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)
email_domain_disposable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n domain = helpers.get_domain_from_email_address(value)\n if domain.lower() in disposable_domains:\n raise ValidationError(MESSAGE_USE_COMPANY_EMAIL)\n", "role": "user" }, { "content": "email_domain_disposable", "role": "assistant" } ]
def x(value): try: parsed = phonenumbers.parse(value, 'GB') except NumberParseException: pass else: is_mobile = carrier._is_mobile(number_type(parsed)) if is_mobile and phonenumbers.is_valid_number(parsed): return None raise ValidationError(MESSAGE_INVALID_PHONE_NUMBER)
domestic_mobile_phone_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value):\n try:\n parsed = phonenumbers.parse(value, 'GB')\n except NumberParseException:\n pass\n else:\n is_mobile = carrier._is_mobile(number_type(parsed))\n if is_mobile and phonenumbers.is_valid_number(parsed):\n return None\n raise ValidationError(MESSAGE_INVALID_PHONE_NUMBER)\n", "role": "user" }, { "content": "domestic_mobile_phone_number", "role": "assistant" } ]
def x(points): result = [points[0]] for i in range(1, len(points) - 2): prv = points[i - 1] crr = points[i] nxt = points[i + 1] if prv.time <= crr.time and crr.time <= nxt.time: result.append(crr) result.append(points[-1]) return result
remove_liers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points):\n result = [points[0]]\n for i in range(1, len(points) - 2):\n prv = points[i - 1]\n crr = points[i]\n nxt = points[i + 1]\n if prv.time <= crr.time and crr.time <= nxt.time:\n result.append(crr)\n result.append(points[-1])\n return result\n", "role": "user" }, { "content": "remove_liers", "role": "assistant" } ]
def x(self, thr=0, lower_index=0, upper_index=-1): points = self.points[lower_index:upper_index] min_lat = float('inf') min_lon = float('inf') max_lat = -float('inf') max_lon = -float('inf') for point in points: min_lat = min(min_lat, point.lat) min_lon = min(min_lon, point.lon) max_lat = max(max_lat, point.lat) max_lon = max(max_lon, point.lon) return min_lat - thr, min_lon - thr, max_lat + thr, max_lon + thr
bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, thr=0, lower_index=0, upper_index=-1):\n points = self.points[lower_index:upper_index]\n min_lat = float('inf')\n min_lon = float('inf')\n max_lat = -float('inf')\n max_lon = -float('inf')\n for point in points:\n min_lat = min(min_lat, point.lat)\n min_lon = min(min_lon, point.lon)\n max_lat = max(max_lat, point.lat)\n max_lon = max(max_lon, point.lon)\n return min_lat - thr, min_lon - thr, max_lat + thr, max_lon + thr\n", "role": "user" }, { "content": "bounds", "role": "assistant" } ]
def x(self, noise, strategy=INVERSE_STRATEGY): if strategy is INVERSE_STRATEGY: self.points = with_inverse(self.points, noise) elif strategy is EXTRAPOLATE_STRATEGY: self.points = with_extrapolation(self.points, noise, 30) elif strategy is NO_STRATEGY: self.points = with_no_strategy(self.points, noise) return self
smooth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, noise, strategy=INVERSE_STRATEGY):\n if strategy is INVERSE_STRATEGY:\n self.points = with_inverse(self.points, noise)\n elif strategy is EXTRAPOLATE_STRATEGY:\n self.points = with_extrapolation(self.points, noise, 30)\n elif strategy is NO_STRATEGY:\n self.points = with_no_strategy(self.points, noise)\n return self\n", "role": "user" }, { "content": "smooth", "role": "assistant" } ]
def x(self, eps, max_dist_error, max_speed_error, topology_only=False): if topology_only: self.points = drp(self.points, eps) else: self.points = spt(self.points, max_dist_error, max_speed_error) return self
simplify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, eps, max_dist_error, max_speed_error, topology_only=False):\n if topology_only:\n self.points = drp(self.points, eps)\n else:\n self.points = spt(self.points, max_dist_error, max_speed_error)\n return self\n", "role": "user" }, { "content": "simplify", "role": "assistant" } ]
def x(self): for prev, point in pairwise(self.points): point.compute_metrics(prev) return self
compute_metrics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for prev, point in pairwise(self.points):\n point.compute_metrics(prev)\n return self\n", "role": "user" }, { "content": "compute_metrics", "role": "assistant" } ]
def x(self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit): self.location_from = infer_location(self.points[0], location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit) self.location_to = infer_location(self.points[-1], location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit) return self
infer_location
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, location_query, max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit):\n self.location_from = infer_location(self.points[0], location_query,\n max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit)\n self.location_to = infer_location(self.points[-1], location_query,\n max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit)\n return self\n", "role": "user" }, { "content": "infer_location", "role": "assistant" } ]
def x(self, clf, min_time): self.transportation_modes = speed_clustering(clf, self.points, min_time) return self
infer_transportation_mode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, clf, min_time):\n self.transportation_modes = speed_clustering(clf, self.points, min_time)\n return self\n", "role": "user" }, { "content": "infer_transportation_mode", "role": "assistant" } ]
def x(self, segment): self.points = sort_segment_points(self.points, segment.points) return self
merge_and_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, segment):\n self.points = sort_segment_points(self.points, segment.points)\n return self\n", "role": "user" }, { "content": "merge_and_fit", "role": "assistant" } ]
def x(self, point, thr=20.0): i = 0 point_arr = point.gen2arr() def x(pointA, pointB): temp = closest_point(pointA.gen2arr(), pointB.gen2arr(), point_arr) return Point(temp[1], temp[0], None) for p_a, p_b in pairwise(self.points): candidate = closest_in_line(p_a, p_b) if candidate.distance(point) <= thr: if p_a.distance(point) <= thr: return i, p_a elif p_b.distance(point) <= thr: return i + 1, p_b else: return i, candidate i = i + 1 return -1, None
closest_point_to
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, point, thr=20.0):\n i = 0\n point_arr = point.gen2arr()\n\n def x(pointA, pointB):\n temp = closest_point(pointA.gen2arr(), pointB.gen2arr(), point_arr)\n return Point(temp[1], temp[0], None)\n for p_a, p_b in pairwise(self.points):\n candidate = closest_in_line(p_a, p_b)\n if candidate.distance(point) <= thr:\n if p_a.distance(point) <= thr:\n return i, p_a\n elif p_b.distance(point) <= thr:\n return i + 1, p_b\n else:\n return i, candidate\n i = i + 1\n return -1, None\n", "role": "user" }, { "content": "closest_point_to", "role": "assistant" } ]
def x(self, start, end): reverse = False if start > end: temp = start start = end end = temp reverse = True seg = self.copy() seg.points = seg.points[start:end + 1] if reverse: seg.points = list(reversed(seg.points)) return seg
slice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, end):\n reverse = False\n if start > end:\n temp = start\n start = end\n end = temp\n reverse = True\n seg = self.copy()\n seg.points = seg.points[start:end + 1]\n if reverse:\n seg.points = list(reversed(seg.points))\n return seg\n", "role": "user" }, { "content": "slice", "role": "assistant" } ]
def x(self): points = [point.to_json() for point in self.points] return {'points': points, 'transportationModes': self. transportation_modes, 'locationFrom': self.location_from.to_json() if self.location_from != None else None, 'locationTo': self. location_to.to_json() if self.location_to != None else None}
to_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n points = [point.to_json() for point in self.points]\n return {'points': points, 'transportationModes': self.\n transportation_modes, 'locationFrom': self.location_from.to_json() if\n self.location_from != None else None, 'locationTo': self.\n location_to.to_json() if self.location_to != None else None}\n", "role": "user" }, { "content": "to_json", "role": "assistant" } ]
def x(gpx_segment): points = [] for point in gpx_segment.points: points.append(Point.from_gpx(point)) return Segment(points)
from_gpx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gpx_segment):\n points = []\n for point in gpx_segment.points:\n points.append(Point.from_gpx(point))\n return Segment(points)\n", "role": "user" }, { "content": "from_gpx", "role": "assistant" } ]
def x(json): points = [] for point in json['points']: points.append(Point.from_json(point)) return Segment(points)
from_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(json):\n points = []\n for point in json['points']:\n points.append(Point.from_json(point))\n return Segment(points)\n", "role": "user" }, { "content": "from_json", "role": "assistant" } ]
def x(points, n_points): points = points[:n_points] lat = [] lon = [] last = None for point in points: if last is not None: lat.append(last.lat - point.lat) lon.append(last.lon - point.lon) last = point dts = np.mean([p.dt for p in points]) lons = np.mean(lon) lats = np.mean(lat) gen_sample = [] last = points[0] for _ in range(n_points): point = Point(last.lat + lats, last.lon + lons, None) point.dt = dts gen_sample.append(point) last = point return gen_sample
extrapolate_points
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, n_points):\n points = points[:n_points]\n lat = []\n lon = []\n last = None\n for point in points:\n if last is not None:\n lat.append(last.lat - point.lat)\n lon.append(last.lon - point.lon)\n last = point\n dts = np.mean([p.dt for p in points])\n lons = np.mean(lon)\n lats = np.mean(lat)\n gen_sample = []\n last = points[0]\n for _ in range(n_points):\n point = Point(last.lat + lats, last.lon + lons, None)\n point.dt = dts\n gen_sample.append(point)\n last = point\n return gen_sample\n", "role": "user" }, { "content": "extrapolate_points", "role": "assistant" } ]
def x(points, noise, n_points): n_points = 10 return kalman_filter(extrapolate_points(points, n_points) + points, noise)[ n_points:]
with_extrapolation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, noise, n_points):\n n_points = 10\n return kalman_filter(extrapolate_points(points, n_points) + points, noise)[\n n_points:]\n", "role": "user" }, { "content": "with_extrapolation", "role": "assistant" } ]
def x(points, noise): n_points = len(points) / 2 break_point = n_points points_part = copy.deepcopy(points) points_part = list(reversed(points_part)) part = kalman_filter(points_part, noise) total = kalman_filter(points, noise) result = list(reversed(part))[:break_point] + total[break_point:] result[break_point] = point_mean(part[break_point], total[break_point]) return result
with_inverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, noise):\n n_points = len(points) / 2\n break_point = n_points\n points_part = copy.deepcopy(points)\n points_part = list(reversed(points_part))\n part = kalman_filter(points_part, noise)\n total = kalman_filter(points, noise)\n result = list(reversed(part))[:break_point] + total[break_point:]\n result[break_point] = point_mean(part[break_point], total[break_point])\n return result\n", "role": "user" }, { "content": "with_inverse", "role": "assistant" } ]
def x(segments, min_time): final_segments = [] for segment in segments: final_segments.append([]) for point in segment: if point.dt > min_time: final_segments.append([]) final_segments[-1].append(point) return final_segments
temporal_segmentation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(segments, min_time):\n final_segments = []\n for segment in segments:\n final_segments.append([])\n for point in segment:\n if point.dt > min_time:\n final_segments.append([])\n final_segments[-1].append(point)\n return final_segments\n", "role": "user" }, { "content": "temporal_segmentation", "role": "assistant" } ]
def x(segments, clusters, min_time): result_segments = [] prev_segment = None for i, segment in enumerate(segments): if len(segment) >= 1: continue cluster = clusters[i] if prev_segment is None: prev_segment = segment else: cluster_dt = 0 if len(cluster) > 0: cluster_dt = abs(cluster[0].time_difference(cluster[-1])) if cluster_dt <= min_time: prev_segment.extend(segment) else: prev_segment.append(segment[0]) result_segments.append(prev_segment) prev_segment = segment if prev_segment is not None: result_segments.append(prev_segment) return result_segments
correct_segmentation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(segments, clusters, min_time):\n result_segments = []\n prev_segment = None\n for i, segment in enumerate(segments):\n if len(segment) >= 1:\n continue\n cluster = clusters[i]\n if prev_segment is None:\n prev_segment = segment\n else:\n cluster_dt = 0\n if len(cluster) > 0:\n cluster_dt = abs(cluster[0].time_difference(cluster[-1]))\n if cluster_dt <= min_time:\n prev_segment.extend(segment)\n else:\n prev_segment.append(segment[0])\n result_segments.append(prev_segment)\n prev_segment = segment\n if prev_segment is not None:\n result_segments.append(prev_segment)\n return result_segments\n", "role": "user" }, { "content": "correct_segmentation", "role": "assistant" } ]
def x(points, noise): kalman = ikalman.filter(noise) for point in points: kalman.update_velocity2d(point.lat, point.lon, point.dt) lat, lon = kalman.get_lat_long() point.lat = lat point.lon = lon return points
kalman_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, noise):\n kalman = ikalman.filter(noise)\n for point in points:\n kalman.update_velocity2d(point.lat, point.lon, point.dt)\n lat, lon = kalman.get_lat_long()\n point.lat = lat\n point.lon = lon\n return points\n", "role": "user" }, { "content": "kalman_filter", "role": "assistant" } ]
def x(track, clf): for segment in track.segments: tmodes = segment.transportation_modes points = segment.points features = [] labels = [] for tmode in tmodes: points_part = points[tmode['from']:tmode['to']] if len(points_part) > 0: features.append(extract_features_2(points_part)) labels.append(tmode['label']) clf.learn(features, labels)
learn_transportation_mode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(track, clf):\n for segment in track.segments:\n tmodes = segment.transportation_modes\n points = segment.points\n features = []\n labels = []\n for tmode in tmodes:\n points_part = points[tmode['from']:tmode['to']]\n if len(points_part) > 0:\n features.append(extract_features_2(points_part))\n labels.append(tmode['label'])\n clf.learn(features, labels)\n", "role": "user" }, { "content": "learn_transportation_mode", "role": "assistant" } ]
def x(points, n_tops): max_bin = -1 for point in points: max_bin = max(max_bin, point.vel) max_bin = int(round(max_bin)) + 1 histogram = [0] * max_bin time = 0 for point in points: bin_index = int(round(point.vel)) histogram[bin_index] += point.dt time += point.dt result = [] if time == 0: return result for _ in range(n_tops): max_index = np.argmax(histogram) value = histogram[max_index] / time result.extend([max_index, value]) histogram[max_index] = -1 return result
extract_features
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, n_tops):\n max_bin = -1\n for point in points:\n max_bin = max(max_bin, point.vel)\n max_bin = int(round(max_bin)) + 1\n histogram = [0] * max_bin\n time = 0\n for point in points:\n bin_index = int(round(point.vel))\n histogram[bin_index] += point.dt\n time += point.dt\n result = []\n if time == 0:\n return result\n for _ in range(n_tops):\n max_index = np.argmax(histogram)\n value = histogram[max_index] / time\n result.extend([max_index, value])\n histogram[max_index] = -1\n return result\n", "role": "user" }, { "content": "extract_features", "role": "assistant" } ]
def x(points): data = [0] for before, after in pairwise(points): data.append(before.vel - after.vel) return data
speed_difference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points):\n data = [0]\n for before, after in pairwise(points):\n data.append(before.vel - after.vel)\n return data\n", "role": "user" }, { "content": "speed_difference", "role": "assistant" } ]
def x(points): data = [0] for before, after in pairwise(points): data.append(before.acc - after.acc) return data
acc_difference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points):\n data = [0]\n for before, after in pairwise(points):\n data.append(before.acc - after.acc)\n return data\n", "role": "user" }, { "content": "acc_difference", "role": "assistant" } ]
def x(points, min_time, data_processor=acc_difference): data = data_processor(points) changepoints = pelt(normal_mean(data, np.std(data)), len(data)) changepoints.append(len(points) - 1) result = [] for start, end in pairwise(changepoints): time_diff = points[end].time_difference(points[start]) if time_diff > min_time: result.append(start) result.append(0) result.append(len(points) - 1) return sorted(list(set(result)))
detect_changepoints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, min_time, data_processor=acc_difference):\n data = data_processor(points)\n changepoints = pelt(normal_mean(data, np.std(data)), len(data))\n changepoints.append(len(points) - 1)\n result = []\n for start, end in pairwise(changepoints):\n time_diff = points[end].time_difference(points[start])\n if time_diff > min_time:\n result.append(start)\n result.append(0)\n result.append(len(points) - 1)\n return sorted(list(set(result)))\n", "role": "user" }, { "content": "detect_changepoints", "role": "assistant" } ]
def x(modes): if len(modes) > 0: previous = modes[0] grouped = [] for changep in modes[1:]: if changep['label'] != previous['label']: previous['to'] = changep['from'] grouped.append(previous) previous = changep previous['to'] = modes[-1]['to'] grouped.append(previous) return grouped else: return modes
group_modes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(modes):\n if len(modes) > 0:\n previous = modes[0]\n grouped = []\n for changep in modes[1:]:\n if changep['label'] != previous['label']:\n previous['to'] = changep['from']\n grouped.append(previous)\n previous = changep\n previous['to'] = modes[-1]['to']\n grouped.append(previous)\n return grouped\n else:\n return modes\n", "role": "user" }, { "content": "group_modes", "role": "assistant" } ]
def x(clf, points, min_time): changepoints = detect_changepoints(points, min_time) cp_info = [] for i in range(0, len(changepoints) - 1): from_index = changepoints[i] to_index = changepoints[i + 1] info = classify(clf, points[from_index:to_index], min_time, from_index, to_index) if info: cp_info.append(info) return group_modes(cp_info)
speed_clustering
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(clf, points, min_time):\n changepoints = detect_changepoints(points, min_time)\n cp_info = []\n for i in range(0, len(changepoints) - 1):\n from_index = changepoints[i]\n to_index = changepoints[i + 1]\n info = classify(clf, points[from_index:to_index], min_time,\n from_index, to_index)\n if info:\n cp_info.append(info)\n return group_modes(cp_info)\n", "role": "user" }, { "content": "speed_clustering", "role": "assistant" } ]
def x(p_a, p_b): return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2)
distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p_a, p_b):\n return sqrt((p_a.lat - p_b.lat) ** 2 + (p_a.lon - p_b.lon) ** 2)\n", "role": "user" }, { "content": "distance", "role": "assistant" } ]
def x(point, start, end): if start == end: return distance(point, start) else: un_dist = abs((end.lat - start.lat) * (start.lon - point.lon) - ( start.lat - point.lat) * (end.lon - start.lon)) n_dist = sqrt((end.lat - start.lat) ** 2 + (end.lon - start.lon) ** 2) if n_dist == 0: return 0 else: return un_dist / n_dist
point_line_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(point, start, end):\n if start == end:\n return distance(point, start)\n else:\n un_dist = abs((end.lat - start.lat) * (start.lon - point.lon) - (\n start.lat - point.lat) * (end.lon - start.lon))\n n_dist = sqrt((end.lat - start.lat) ** 2 + (end.lon - start.lon) ** 2)\n if n_dist == 0:\n return 0\n else:\n return un_dist / n_dist\n", "role": "user" }, { "content": "point_line_distance", "role": "assistant" } ]
def x(points, epsilon): dmax = 0.0 index = 0 for i in range(1, len(points) - 1): dist = point_line_distance(points[i], points[0], points[-1]) if dist > dmax: index = i dmax = dist if dmax > epsilon: return drp(points[:index + 1], epsilon)[:-1] + drp(points[index:], epsilon) else: return [points[0], points[-1]]
drp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, epsilon):\n dmax = 0.0\n index = 0\n for i in range(1, len(points) - 1):\n dist = point_line_distance(points[i], points[0], points[-1])\n if dist > dmax:\n index = i\n dmax = dist\n if dmax > epsilon:\n return drp(points[:index + 1], epsilon)[:-1] + drp(points[index:],\n epsilon)\n else:\n return [points[0], points[-1]]\n", "role": "user" }, { "content": "drp", "role": "assistant" } ]
def x(points, speed_threshold): if len(points) <= 2: return points else: max_speed_threshold = 0 found_index = 0 for i in range(1, len(points) - 1): dt1 = time_dist(points[i], points[i - 1]) if dt1 == 0: dt1 = 1e-09 vim = loc_dist(points[i], points[i - 1]) / dt1 dt2 = time_dist(points[i + 1], points[i]) if dt2 == 0: dt2 = 1e-09 vi_ = loc_dist(points[i + 1], points[i]) / dt2 if abs(vi_ - vim) > max_speed_threshold: max_speed_threshold = abs(vi_ - vim) found_index = i if max_speed_threshold > speed_threshold: one = td_sp(points[:found_index], speed_threshold) two = td_sp(points[found_index:], speed_threshold) one.extend(two) return one else: return [points[0], points[-1]]
td_sp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, speed_threshold):\n if len(points) <= 2:\n return points\n else:\n max_speed_threshold = 0\n found_index = 0\n for i in range(1, len(points) - 1):\n dt1 = time_dist(points[i], points[i - 1])\n if dt1 == 0:\n dt1 = 1e-09\n vim = loc_dist(points[i], points[i - 1]) / dt1\n dt2 = time_dist(points[i + 1], points[i])\n if dt2 == 0:\n dt2 = 1e-09\n vi_ = loc_dist(points[i + 1], points[i]) / dt2\n if abs(vi_ - vim) > max_speed_threshold:\n max_speed_threshold = abs(vi_ - vim)\n found_index = i\n if max_speed_threshold > speed_threshold:\n one = td_sp(points[:found_index], speed_threshold)\n two = td_sp(points[found_index:], speed_threshold)\n one.extend(two)\n return one\n else:\n return [points[0], points[-1]]\n", "role": "user" }, { "content": "td_sp", "role": "assistant" } ]
def x(points, dist_threshold): if len(points) <= 2: return points else: max_dist_threshold = 0 found_index = 0 delta_e = time_dist(points[-1], points[0]) * I_3600 d_lat = points[-1].lat - points[0].lat d_lon = points[-1].lon - points[0].lon for i in range(1, len(points) - 1): delta_i = time_dist(points[i], points[0]) * I_3600 di_de = delta_i / delta_e point = Point(points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None) dist = loc_dist(points[i], point) if dist > max_dist_threshold: max_dist_threshold = dist found_index = i if max_dist_threshold > dist_threshold: one = td_tr(points[:found_index], dist_threshold) two = td_tr(points[found_index:], dist_threshold) one.extend(two) return one else: return [points[0], points[-1]]
td_tr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, dist_threshold):\n if len(points) <= 2:\n return points\n else:\n max_dist_threshold = 0\n found_index = 0\n delta_e = time_dist(points[-1], points[0]) * I_3600\n d_lat = points[-1].lat - points[0].lat\n d_lon = points[-1].lon - points[0].lon\n for i in range(1, len(points) - 1):\n delta_i = time_dist(points[i], points[0]) * I_3600\n di_de = delta_i / delta_e\n point = Point(points[0].lat + d_lat * di_de, points[0].lon + \n d_lon * di_de, None)\n dist = loc_dist(points[i], point)\n if dist > max_dist_threshold:\n max_dist_threshold = dist\n found_index = i\n if max_dist_threshold > dist_threshold:\n one = td_tr(points[:found_index], dist_threshold)\n two = td_tr(points[found_index:], dist_threshold)\n one.extend(two)\n return one\n else:\n return [points[0], points[-1]]\n", "role": "user" }, { "content": "td_tr", "role": "assistant" } ]
def x(points, max_dist_error, max_speed_error): if len(points) <= 2: return points else: is_error = False e = 1 while e < len(points) and not is_error: i = 1 while i < e and not is_error: delta_e = time_dist(points[e], points[0]) * I_3600 delta_i = time_dist(points[i], points[0]) * I_3600 di_de = 0 if delta_e != 0: di_de = delta_i / delta_e d_lat = points[e].lat - points[0].lat d_lon = points[e].lon - points[0].lon point = Point(points[0].lat + d_lat * di_de, points[0].lon + d_lon * di_de, None) dt1 = time_dist(points[i], points[i - 1]) if dt1 == 0: dt1 = 1e-09 dt2 = time_dist(points[i + 1], points[i]) if dt2 == 0: dt2 = 1e-09 v_i_1 = loc_dist(points[i], points[i - 1]) / dt1 v_i = loc_dist(points[i + 1], points[i]) / dt2 if loc_dist(points[i], point) > max_dist_error or abs(v_i - v_i_1) > max_speed_error: is_error = True else: i = i + 1 if is_error: return [points[0]] + spt(points[i:len(points)], max_dist_error, max_speed_error) e = e + 1 if not is_error: return [points[0], points[len(points) - 1]]
spt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(points, max_dist_error, max_speed_error):\n if len(points) <= 2:\n return points\n else:\n is_error = False\n e = 1\n while e < len(points) and not is_error:\n i = 1\n while i < e and not is_error:\n delta_e = time_dist(points[e], points[0]) * I_3600\n delta_i = time_dist(points[i], points[0]) * I_3600\n di_de = 0\n if delta_e != 0:\n di_de = delta_i / delta_e\n d_lat = points[e].lat - points[0].lat\n d_lon = points[e].lon - points[0].lon\n point = Point(points[0].lat + d_lat * di_de, points[0].lon +\n d_lon * di_de, None)\n dt1 = time_dist(points[i], points[i - 1])\n if dt1 == 0:\n dt1 = 1e-09\n dt2 = time_dist(points[i + 1], points[i])\n if dt2 == 0:\n dt2 = 1e-09\n v_i_1 = loc_dist(points[i], points[i - 1]) / dt1\n v_i = loc_dist(points[i + 1], points[i]) / dt2\n if loc_dist(points[i], point) > max_dist_error or abs(v_i -\n v_i_1) > max_speed_error:\n is_error = True\n else:\n i = i + 1\n if is_error:\n return [points[0]] + spt(points[i:len(points)],\n max_dist_error, max_speed_error)\n e = e + 1\n if not is_error:\n return [points[0], points[len(points) - 1]]\n", "role": "user" }, { "content": "spt", "role": "assistant" } ]
def x(self, name_format=DEFAULT_FILE_NAME_FORMAT): if len(self.segments) > 0: return self.segments[0].points[0].time.strftime(name_format) + '.gpx' else: return 'EmptyTrack'
generate_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name_format=DEFAULT_FILE_NAME_FORMAT):\n if len(self.segments) > 0:\n return self.segments[0].points[0].time.strftime(name_format) + '.gpx'\n else:\n return 'EmptyTrack'\n", "role": "user" }, { "content": "generate_name", "role": "assistant" } ]
def x(self, eps, min_time): new_segments = [] for segment in self.segments: segmented = segment.segment(eps, min_time) for seg in segmented: new_segments.append(Segment(seg)) self.segments = new_segments return self
segment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, eps, min_time):\n new_segments = []\n for segment in self.segments:\n segmented = segment.segment(eps, min_time)\n for seg in segmented:\n new_segments.append(Segment(seg))\n self.segments = new_segments\n return self\n", "role": "user" }, { "content": "segment", "role": "assistant" } ]
def x(self, eps, max_dist_error, max_speed_error, topology_only=False): for segment in self.segments: segment.simplify(eps, max_dist_error, max_speed_error, topology_only) return self
simplify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, eps, max_dist_error, max_speed_error, topology_only=False):\n for segment in self.segments:\n segment.simplify(eps, max_dist_error, max_speed_error, topology_only)\n return self\n", "role": "user" }, { "content": "simplify", "role": "assistant" } ]
def x(self, clf, min_time): for segment in self.segments: segment.infer_transportation_mode(clf, min_time) return self
infer_transportation_mode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, clf, min_time):\n for segment in self.segments:\n segment.infer_transportation_mode(clf, min_time)\n return self\n", "role": "user" }, { "content": "infer_transportation_mode", "role": "assistant" } ]
def x(self, smooth, smooth_strategy, smooth_noise, seg, seg_eps, seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error): self.compute_metrics() self.remove_noise() print(smooth, seg, simplify) if smooth: self.compute_metrics() self.smooth(smooth_strategy, smooth_noise) if seg: self.compute_metrics() self.segment(seg_eps, seg_min_time) if simplify: self.compute_metrics() self.simplify(0, simplify_max_dist_error, simplify_max_speed_error) self.compute_metrics() return self
to_trip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, smooth, smooth_strategy, smooth_noise, seg, seg_eps,\n seg_min_time, simplify, simplify_max_dist_error, simplify_max_speed_error):\n self.compute_metrics()\n self.remove_noise()\n print(smooth, seg, simplify)\n if smooth:\n self.compute_metrics()\n self.smooth(smooth_strategy, smooth_noise)\n if seg:\n self.compute_metrics()\n self.segment(seg_eps, seg_min_time)\n if simplify:\n self.compute_metrics()\n self.simplify(0, simplify_max_dist_error, simplify_max_speed_error)\n self.compute_metrics()\n return self\n", "role": "user" }, { "content": "to_trip", "role": "assistant" } ]
def x(self, dt_threshold=10): self.segments = [segment.infer_transportation_mode(dt_threshold= dt_threshold) for segment in self.segments] return self
infer_transportation_modes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dt_threshold=10):\n self.segments = [segment.infer_transportation_mode(dt_threshold=\n dt_threshold) for segment in self.segments]\n return self\n", "role": "user" }, { "content": "infer_transportation_modes", "role": "assistant" } ]
def x(self, location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit): self.segments = [segment.infer_location(location_query, max_distance, google_key, foursquare_client_id, foursquare_client_secret, limit) for segment in self.segments] return self
infer_location
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, location_query, max_distance, google_key, foursquare_client_id,\n foursquare_client_secret, limit):\n self.segments = [segment.infer_location(location_query, max_distance,\n google_key, foursquare_client_id, foursquare_client_secret, limit) for\n segment in self.segments]\n return self\n", "role": "user" }, { "content": "infer_location", "role": "assistant" } ]
def x(self): return {'name': self.name, 'segments': [segment.to_json() for segment in self.segments], 'meta': self.meta}
to_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return {'name': self.name, 'segments': [segment.to_json() for segment in\n self.segments], 'meta': self.meta}\n", "role": "user" }, { "content": "to_json", "role": "assistant" } ]
def x(self, track, pairings): for self_seg_index, track_seg_index, _ in pairings: self_s = self.segments[self_seg_index] ss_start = self_s.points[0] track_s = track.segments[track_seg_index] tt_start = track_s.points[0] tt_end = track_s.points[-1] d_start = ss_start.distance(tt_start) d_end = ss_start.distance(tt_end) if d_start > d_end: track_s = track_s.copy() track_s.points = list(reversed(track_s.points)) self_s.merge_and_fit(track_s) return self
merge_and_fit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, track, pairings):\n for self_seg_index, track_seg_index, _ in pairings:\n self_s = self.segments[self_seg_index]\n ss_start = self_s.points[0]\n track_s = track.segments[track_seg_index]\n tt_start = track_s.points[0]\n tt_end = track_s.points[-1]\n d_start = ss_start.distance(tt_start)\n d_end = ss_start.distance(tt_end)\n if d_start > d_end:\n track_s = track_s.copy()\n track_s.points = list(reversed(track_s.points))\n self_s.merge_and_fit(track_s)\n return self\n", "role": "user" }, { "content": "merge_and_fit", "role": "assistant" } ]
def x(self, point): for i, segment in enumerate(self.segments): idx = segment.getPointIndex(point) if idx != -1: return i, idx return -1, -1
get_point_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, point):\n for i, segment in enumerate(self.segments):\n idx = segment.getPointIndex(point)\n if idx != -1:\n return i, idx\n return -1, -1\n", "role": "user" }, { "content": "get_point_index", "role": "assistant" } ]
def x(self, thr=0): min_lat = float('inf') min_lon = float('inf') max_lat = -float('inf') max_lon = -float('inf') for segment in self.segments: milat, milon, malat, malon = segment.bounds(thr=thr) min_lat = min(milat, min_lat) min_lon = min(milon, min_lon) max_lat = max(malat, max_lat) max_lon = max(malon, max_lon) return min_lat, min_lon, max_lat, max_lon
bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, thr=0):\n min_lat = float('inf')\n min_lon = float('inf')\n max_lat = -float('inf')\n max_lon = -float('inf')\n for segment in self.segments:\n milat, milon, malat, malon = segment.bounds(thr=thr)\n min_lat = min(milat, min_lat)\n min_lon = min(milon, min_lon)\n max_lat = max(malat, max_lat)\n max_lon = max(malon, max_lon)\n return min_lat, min_lon, max_lat, max_lon\n", "role": "user" }, { "content": "bounds", "role": "assistant" } ]
def x(self, track): idx = index.Index() i = 0 for i, segment in enumerate(self.segments): idx.insert(i, segment.bounds(), obj=segment) final_siml = [] final_diff = [] for i, segment in enumerate(track.segments): query = idx.intersection(segment.bounds(), objects=True) res_siml = [] res_diff = [] for result in query: siml, diff = segment_similarity(segment, result.object) res_siml.append(siml) res_diff.append((result.id, i, diff)) if len(res_siml) > 0: final_siml.append(max(res_siml)) final_diff.append(res_diff[np.argmax(res_siml)]) else: final_siml.append(0) final_diff.append([]) return np.mean(final_siml), final_diff
similarity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, track):\n idx = index.Index()\n i = 0\n for i, segment in enumerate(self.segments):\n idx.insert(i, segment.bounds(), obj=segment)\n final_siml = []\n final_diff = []\n for i, segment in enumerate(track.segments):\n query = idx.intersection(segment.bounds(), objects=True)\n res_siml = []\n res_diff = []\n for result in query:\n siml, diff = segment_similarity(segment, result.object)\n res_siml.append(siml)\n res_diff.append((result.id, i, diff))\n if len(res_siml) > 0:\n final_siml.append(max(res_siml))\n final_diff.append(res_diff[np.argmax(res_siml)])\n else:\n final_siml.append(0)\n final_diff.append([])\n return np.mean(final_siml), final_diff\n", "role": "user" }, { "content": "similarity", "role": "assistant" } ]
def x(self): gpx_segments = [] for segment in self.segments: gpx_points = [] for point in segment.points: time = '' if point.time: iso_time = point.time.isoformat().split('.')[0] time = '<time>%s</time>' % iso_time gpx_points.append(u'<trkpt lat="%f" lon="%f">%s</trkpt>' % ( point.lat, point.lon, time)) points = u'\n\t\t\t'.join(gpx_points) gpx_segments.append(u'\t\t<trkseg>\n\t\t\t%s\n\t\t</trkseg>' % points) segments = u'\t\n'.join(gpx_segments) content = [u'<?xml version="1.0" encoding="UTF-8"?>', u'<gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd" version="1.0" creator="GatherMySteps">' , u'\t<trk>', segments, u'\t</trk>', u'</gpx>'] return u'\n'.join(content)
to_gpx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n gpx_segments = []\n for segment in self.segments:\n gpx_points = []\n for point in segment.points:\n time = ''\n if point.time:\n iso_time = point.time.isoformat().split('.')[0]\n time = '<time>%s</time>' % iso_time\n gpx_points.append(u'<trkpt lat=\"%f\" lon=\"%f\">%s</trkpt>' % (\n point.lat, point.lon, time))\n points = u'\\n\\t\\t\\t'.join(gpx_points)\n gpx_segments.append(u'\\t\\t<trkseg>\\n\\t\\t\\t%s\\n\\t\\t</trkseg>' % points)\n segments = u'\\t\\n'.join(gpx_segments)\n content = [u'<?xml version=\"1.0\" encoding=\"UTF-8\"?>',\n u'<gpx xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xmlns=\"http://www.topografix.com/GPX/1/0\" xsi:schemaLocation=\"http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd\" version=\"1.0\" creator=\"GatherMySteps\">'\n , u'\\t<trk>', segments, u'\\t</trk>', u'</gpx>']\n return u'\\n'.join(content)\n", "role": "user" }, { "content": "to_gpx", "role": "assistant" } ]
def x(self, timezone=0): tz_dt = timedelta(hours=timezone) for segment in self.segments: for point in segment.points: point.time = point.time + tz_dt return self
timezone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timezone=0):\n tz_dt = timedelta(hours=timezone)\n for segment in self.segments:\n for point in segment.points:\n point.time = point.time + tz_dt\n return self\n", "role": "user" }, { "content": "timezone", "role": "assistant" } ]
def x(self): buff = '--%s\n' % self.segments[0].points[0].time.strftime('%Y_%m_%d') def x(time): return time.strftime('%H%M') def x(buff, start, end, place): if not isinstance(start, str): start = military_time(start) if not isinstance(end, str): end = military_time(end) return '%s\n%s-%s: %s' % (buff, start, end, place.label) def x(buff, segment): trip = '%s-%s: %s -> %s' % (military_time(segment.points[0].time), military_time(segment.points[-1].time), segment.location_from. label, segment.location_to.label) t_modes = segment.transportation_modes if len(t_modes) == 1: trip = '%s [%s]' % (trip, t_modes[0]['label']) elif len(t_modes) > 1: modes = [] for mode in t_modes: trip_from = military_time(segment.points[mode['from']].time) trip_to = military_time(segment.points[mode['to']].time) modes.append(' %s-%s: [%s]' % (trip_from, trip_to, mode[ 'label'])) trip = '%s\n%s' % (trip, '\n'.join(modes)) return '%s\n%s' % (buff, trip) last = len(self.segments) - 1 for i, segment in enumerate(self.segments): if i == 0: buff = stay(buff, '0000', military_time(segment.points[0].time), segment.location_from) buff = trip(buff, segment) if i is last: buff = stay(buff, military_time(segment.points[-1].time), '2359', segment.location_to) else: next_seg = self.segments[i + 1] buff = stay(buff, military_time(segment.points[-1].time), military_time(next_seg.points[0].time), segment.location_to) return buff
to_life
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n buff = '--%s\\n' % self.segments[0].points[0].time.strftime('%Y_%m_%d')\n\n def x(time):\n return time.strftime('%H%M')\n\n def x(buff, start, end, place):\n if not isinstance(start, str):\n start = military_time(start)\n if not isinstance(end, str):\n end = military_time(end)\n return '%s\\n%s-%s: %s' % (buff, start, end, place.label)\n\n def x(buff, segment):\n trip = '%s-%s: %s -> %s' % (military_time(segment.points[0].time),\n military_time(segment.points[-1].time), segment.location_from.\n label, segment.location_to.label)\n t_modes = segment.transportation_modes\n if len(t_modes) == 1:\n trip = '%s [%s]' % (trip, t_modes[0]['label'])\n elif len(t_modes) > 1:\n modes = []\n for mode in t_modes:\n trip_from = military_time(segment.points[mode['from']].time)\n trip_to = military_time(segment.points[mode['to']].time)\n modes.append(' %s-%s: [%s]' % (trip_from, trip_to, mode[\n 'label']))\n trip = '%s\\n%s' % (trip, '\\n'.join(modes))\n return '%s\\n%s' % (buff, trip)\n last = len(self.segments) - 1\n for i, segment in enumerate(self.segments):\n if i == 0:\n buff = stay(buff, '0000', military_time(segment.points[0].time),\n segment.location_from)\n buff = trip(buff, segment)\n if i is last:\n buff = stay(buff, military_time(segment.points[-1].time),\n '2359', segment.location_to)\n else:\n next_seg = self.segments[i + 1]\n buff = stay(buff, military_time(segment.points[-1].time),\n military_time(next_seg.points[0].time), segment.location_to)\n return buff\n", "role": "user" }, { "content": "to_life", "role": "assistant" } ]
def x(file_path): gpx = gpxpy.parse(open(file_path, 'r')) file_name = basename(file_path) tracks = [] for i, track in enumerate(gpx.tracks): segments = [] for segment in track.segments: segments.append(Segment.from_gpx(segment)) if len(gpx.tracks) > 1: name = file_name + '_' + str(i) else: name = file_name tracks.append(Track(name, segments)) return tracks
from_gpx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n gpx = gpxpy.parse(open(file_path, 'r'))\n file_name = basename(file_path)\n tracks = []\n for i, track in enumerate(gpx.tracks):\n segments = []\n for segment in track.segments:\n segments.append(Segment.from_gpx(segment))\n if len(gpx.tracks) > 1:\n name = file_name + '_' + str(i)\n else:\n name = file_name\n tracks.append(Track(name, segments))\n return tracks\n", "role": "user" }, { "content": "from_gpx", "role": "assistant" } ]
def x(json): segments = [Segment.from_json(s) for s in json['segments']] return Track(json['name'], segments).compute_metrics()
from_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(json):\n segments = [Segment.from_json(s) for s in json['segments']]\n return Track(json['name'], segments).compute_metrics()\n", "role": "user" }, { "content": "from_json", "role": "assistant" } ]
def x(p): l = math.sqrt(p[0] ** 2 + p[1] ** 2) return [0.0, 0.0] if l == 0 else [p[0] / l, p[1] / l]
normalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p):\n l = math.sqrt(p[0] ** 2 + p[1] ** 2)\n return [0.0, 0.0] if l == 0 else [p[0] / l, p[1] / l]\n", "role": "user" }, { "content": "normalize", "role": "assistant" } ]
def x(p1, p2): A = p1[1] - p2[1] B = p2[0] - p1[0] C = p1[0] * p2[1] - p2[0] * p1[1] return A, B, -C
line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p1, p2):\n A = p1[1] - p2[1]\n B = p2[0] - p1[0]\n C = p1[0] * p2[1] - p2[0] * p1[1]\n return A, B, -C\n", "role": "user" }, { "content": "line", "role": "assistant" } ]
def x(L1, L2): D = L1[0] * L2[1] - L1[1] * L2[0] Dx = L1[2] * L2[1] - L1[1] * L2[2] Dy = L1[0] * L2[2] - L1[2] * L2[0] if D != 0: x = Dx / D y = Dy / D return x, y else: return False
intersection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(L1, L2):\n D = L1[0] * L2[1] - L1[1] * L2[0]\n Dx = L1[2] * L2[1] - L1[1] * L2[2]\n Dy = L1[0] * L2[2] - L1[2] * L2[0]\n if D != 0:\n x = Dx / D\n y = Dy / D\n return x, y\n else:\n return False\n", "role": "user" }, { "content": "intersection", "role": "assistant" } ]
def x(a, b): return math.sqrt((b.lat - a.lat) ** 2 + (b.lon - a.lon) ** 2)
distance_tt_point
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b):\n return math.sqrt((b.lat - a.lat) ** 2 + (b.lon - a.lon) ** 2)\n", "role": "user" }, { "content": "distance_tt_point", "role": "assistant" } ]
def x(a, b, p): ap = [p[0] - a[0], p[1] - a[1]] ab = [b[0] - a[0], b[1] - a[1]] mag = float(ab[0] ** 2 + ab[1] ** 2) proj = dot(ap, ab) if mag == 0: dist = 0 else: dist = proj / mag if dist < 0: return [a[0], a[1]] elif dist > 1: return [b[0], b[1]] else: return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]
closest_point
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, p):\n ap = [p[0] - a[0], p[1] - a[1]]\n ab = [b[0] - a[0], b[1] - a[1]]\n mag = float(ab[0] ** 2 + ab[1] ** 2)\n proj = dot(ap, ab)\n if mag == 0:\n dist = 0\n else:\n dist = proj / mag\n if dist < 0:\n return [a[0], a[1]]\n elif dist > 1:\n return [b[0], b[1]]\n else:\n return [a[0] + ab[0] * dist, a[1] + ab[1] * dist]\n", "role": "user" }, { "content": "closest_point", "role": "assistant" } ]
def x(a, b, p): return distance(closest_point(a, b, p), p)
distance_to_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, p):\n return distance(closest_point(a, b, p), p)\n", "role": "user" }, { "content": "distance_to_line", "role": "assistant" } ]
def x(a, b, p, T=CLOSE_DISTANCE_THRESHOLD): d = distance_to_line(a, b, p) r = -1 / float(T) * abs(d) + 1 return r if r > 0 else 0
distance_similarity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b, p, T=CLOSE_DISTANCE_THRESHOLD):\n d = distance_to_line(a, b, p)\n r = -1 / float(T) * abs(d) + 1\n return r if r > 0 else 0\n", "role": "user" }, { "content": "distance_similarity", "role": "assistant" } ]