source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(args):
task_family = None
error = None
parts = args.task_family.rsplit('.', 1)
if len(parts) == 2:
modid, cls_name = parts
try:
mod = __import__(modid, globals(), locals(), [cls_name])
if hasattr(mod, cls_name):
task_cls = getattr(mod, cls_name)
if not issubclass(task_cls, Task):
abort("object '{}' is not a Task".format(args.task_family))
task_family = task_cls.task_family
except ImportError as e:
logger.warning('import error in module {}: {}'.format(modid, e))
error = e
if task_family is None:
index_file = Config.instance().get_expanded('core', 'index_file')
if os.path.exists(index_file):
info = read_task_from_index(args.task_family, index_file)
if not info:
abort("task family '{}' not found in index".format(args.
task_family))
modid, task_family, _ = info
__import__(modid, globals(), locals())
if task_family is None:
if error:
raise error
else:
abort("task '{}' not found".format(args.task_family))
luigi_run([task_family] + sys.argv[3:])
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n task_family = None\n error = None\n parts = args.task_family.rsplit('.', 1)\n if len(parts) == 2:\n modid, cls_name = parts\n try:\n mod = __import__(modid, globals(), locals(), [cls_name])\n if hasattr(mod, cls_name):\n task_cls = getattr(mod, cls_name)\n if not issubclass(task_cls, Task):\n abort(\"object '{}' is not a Task\".format(args.task_family))\n task_family = task_cls.task_family\n except ImportError as e:\n logger.warning('import error in module {}: {}'.format(modid, e))\n error = e\n if task_family is None:\n index_file = Config.instance().get_expanded('core', 'index_file')\n if os.path.exists(index_file):\n info = read_task_from_index(args.task_family, index_file)\n if not info:\n abort(\"task family '{}' not found in index\".format(args.\n task_family))\n modid, task_family, _ = info\n __import__(modid, globals(), locals())\n if task_family is None:\n if error:\n raise error\n else:\n abort(\"task '{}' not found\".format(args.task_family))\n luigi_run([task_family] + sys.argv[3:])\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(task_family, index_file=None):
if index_file is None:
index_file = Config.instance().get_expanded('core', 'index_file')
with open(index_file, 'r') as f:
for line in f.readlines():
line = line.strip()
if line.count(':') >= 2:
modid, family, params = line.split(':', 2)
if family == task_family:
return modid, family, params
return None
|
read_task_from_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(task_family, index_file=None):\n if index_file is None:\n index_file = Config.instance().get_expanded('core', 'index_file')\n with open(index_file, 'r') as f:\n for line in f.readlines():\n line = line.strip()\n if line.count(':') >= 2:\n modid, family, params = line.split(':', 2)\n if family == task_family:\n return modid, family, params\n return None\n",
"role": "user"
},
{
"content": "read_task_from_index",
"role": "assistant"
}
] |
def x():
parser = ArgumentParser(prog='law', description=
'The law command line tool.')
sub_parsers = parser.add_subparsers(help='subcommands', dest='command')
parser.add_argument('--version', '-V', action='version', version=law.
__version__)
mods = {}
for prog in progs:
mods[prog] = import_module('law.cli.' + prog)
mods[prog].setup_parser(sub_parsers)
if len(sys.argv) >= 2 and sys.argv[1] in forward_progs:
args = parser.parse_args(sys.argv[1:3])
else:
args = parser.parse_args()
if args.command:
mods[args.command].execute(args)
else:
parser.print_help()
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = ArgumentParser(prog='law', description=\n 'The law command line tool.')\n sub_parsers = parser.add_subparsers(help='subcommands', dest='command')\n parser.add_argument('--version', '-V', action='version', version=law.\n __version__)\n mods = {}\n for prog in progs:\n mods[prog] = import_module('law.cli.' + prog)\n mods[prog].setup_parser(sub_parsers)\n if len(sys.argv) >= 2 and sys.argv[1] in forward_progs:\n args = parser.parse_args(sys.argv[1:3])\n else:\n args = parser.parse_args()\n if args.command:\n mods[args.command].execute(args)\n else:\n parser.print_help()\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(func):
@functools.wraps(func)
def x(self, job_data, event, job_num, *args, **kwargs):
job_id = job_data['job_id']
dashboard_status = self.map_status(job_data.get('status'), event)
if not dashboard_status or self._last_states.get(job_id
) == dashboard_status:
return None
self._last_states[job_id] = dashboard_status
return func(self, job_data, event, job_num, *args, **kwargs)
return wrapper
|
cache_by_status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n @functools.wraps(func)\n def x(self, job_data, event, job_num, *args, **kwargs):\n job_id = job_data['job_id']\n dashboard_status = self.map_status(job_data.get('status'), event)\n if not dashboard_status or self._last_states.get(job_id\n ) == dashboard_status:\n return None\n self._last_states[job_id] = dashboard_status\n return func(self, job_data, event, job_num, *args, **kwargs)\n return wrapper\n",
"role": "user"
},
{
"content": "cache_by_status",
"role": "assistant"
}
] |
def x(sub_parsers):
parser = sub_parsers.add_parser('software', prog='law software',
description=
'Create or update the law software cache ({}). This is only required for some sandboxes that need to forward software into containers.'
.format(get_sw_dir()))
parser.add_argument('--remove', '-r', action='store_true', help=
'remove the software cache directory and exit')
parser.add_argument('--location', '-l', action='store_true', help=
'print the location of the software cache directory and exit')
|
setup_parser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sub_parsers):\n parser = sub_parsers.add_parser('software', prog='law software',\n description=\n 'Create or update the law software cache ({}). This is only required for some sandboxes that need to forward software into containers.'\n .format(get_sw_dir()))\n parser.add_argument('--remove', '-r', action='store_true', help=\n 'remove the software cache directory and exit')\n parser.add_argument('--location', '-l', action='store_true', help=\n 'print the location of the software cache directory and exit')\n",
"role": "user"
},
{
"content": "setup_parser",
"role": "assistant"
}
] |
def x(args):
sw_dir = get_sw_dir()
if args.location:
print(sw_dir)
return
if args.remove:
remove_software_cache(sw_dir)
return
build_software_cache(sw_dir)
|
execute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n sw_dir = get_sw_dir()\n if args.location:\n print(sw_dir)\n return\n if args.remove:\n remove_software_cache(sw_dir)\n return\n build_software_cache(sw_dir)\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(sw_dir=None):
sw_dir = get_sw_dir(sw_dir)
remove_software_cache(sw_dir)
os.makedirs(sw_dir)
reload_dependencies(force=True)
for mod in deps:
path = os.path.dirname(mod.__file__)
name, ext = os.path.splitext(os.path.basename(mod.__file__))
if name == '__init__':
name = os.path.basename(path)
shutil.copytree(path, os.path.join(sw_dir, name))
else:
shutil.copy2(os.path.join(path, name + '.py'), sw_dir)
|
build_software_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sw_dir=None):\n sw_dir = get_sw_dir(sw_dir)\n remove_software_cache(sw_dir)\n os.makedirs(sw_dir)\n reload_dependencies(force=True)\n for mod in deps:\n path = os.path.dirname(mod.__file__)\n name, ext = os.path.splitext(os.path.basename(mod.__file__))\n if name == '__init__':\n name = os.path.basename(path)\n shutil.copytree(path, os.path.join(sw_dir, name))\n else:\n shutil.copy2(os.path.join(path, name + '.py'), sw_dir)\n",
"role": "user"
},
{
"content": "build_software_cache",
"role": "assistant"
}
] |
def x(sw_dir=None):
sw_dir = get_sw_dir(sw_dir)
if os.path.exists(sw_dir):
shutil.rmtree(sw_dir)
|
remove_software_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sw_dir=None):\n sw_dir = get_sw_dir(sw_dir)\n if os.path.exists(sw_dir):\n shutil.rmtree(sw_dir)\n",
"role": "user"
},
{
"content": "remove_software_cache",
"role": "assistant"
}
] |
def x(force=False):
global _reloaded_deps
if _reloaded_deps and not force:
return
_reloaded_deps = True
for mod in deps:
six.moves.reload_module(mod)
logger.debug("reloaded module '{}'".format(mod))
|
reload_dependencies
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(force=False):\n global _reloaded_deps\n if _reloaded_deps and not force:\n return\n _reloaded_deps = True\n for mod in deps:\n six.moves.reload_module(mod)\n logger.debug(\"reloaded module '{}'\".format(mod))\n",
"role": "user"
},
{
"content": "reload_dependencies",
"role": "assistant"
}
] |
def x(sw_dir=None, reload_deps=False):
sw_dir = get_sw_dir(sw_dir)
if os.path.exists(sw_dir):
sys.path.insert(1, sw_dir)
if reload_deps:
reload_dependencies()
|
use_software_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sw_dir=None, reload_deps=False):\n sw_dir = get_sw_dir(sw_dir)\n if os.path.exists(sw_dir):\n sys.path.insert(1, sw_dir)\n if reload_deps:\n reload_dependencies()\n",
"role": "user"
},
{
"content": "use_software_cache",
"role": "assistant"
}
] |
def x(sw_dir=None):
if sw_dir is None:
sw_dir = Config.instance().get('core', 'software_dir')
sw_dir = os.path.expandvars(os.path.expanduser(sw_dir))
return sw_dir
|
get_sw_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sw_dir=None):\n if sw_dir is None:\n sw_dir = Config.instance().get('core', 'software_dir')\n sw_dir = os.path.expandvars(os.path.expanduser(sw_dir))\n return sw_dir\n",
"role": "user"
},
{
"content": "get_sw_dir",
"role": "assistant"
}
] |
def x(*args, **kwargs):
global guarded_tfile_cls
if not guarded_tfile_cls:
import ROOT
class GuardedTFile(ROOT.TFile):
def x(self):
return self
def x(self, exc_type, exc_value, traceback):
if self.IsOpen():
self.Close()
guarded_tfile_cls = GuardedTFile
return guarded_tfile_cls(*args, **kwargs)
|
GuardedTFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*args, **kwargs):\n global guarded_tfile_cls\n if not guarded_tfile_cls:\n import ROOT\n\n\n class GuardedTFile(ROOT.TFile):\n\n def x(self):\n return self\n\n def x(self, exc_type, exc_value, traceback):\n if self.IsOpen():\n self.Close()\n guarded_tfile_cls = GuardedTFile\n return guarded_tfile_cls(*args, **kwargs)\n",
"role": "user"
},
{
"content": "GuardedTFile",
"role": "assistant"
}
] |
def x(func):
@functools.wraps(func)
def x(self):
return func(self.as_workflow())
return property(wrapper)
|
workflow_property
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n @functools.wraps(func)\n def x(self):\n return func(self.as_workflow())\n return property(wrapper)\n",
"role": "user"
},
{
"content": "workflow_property",
"role": "assistant"
}
] |
def x(func=None, attr=None, setter=True):
def x(func):
_attr = attr or '_workflow_cached_' + func.__name__
@functools.wraps(func)
def x(self):
wf = self.as_workflow()
if not hasattr(wf, _attr):
setattr(wf, _attr, func(wf))
return getattr(wf, _attr)
_setter = None
if setter:
def x(self, value):
wf = self.as_workflow()
setattr(wf, _attr, value)
_setter.__name__ = func.__name__
return property(fget=getter, fset=_setter)
return wrapper if not func else wrapper(func)
|
cached_workflow_property
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func=None, attr=None, setter=True):\n\n def x(func):\n _attr = attr or '_workflow_cached_' + func.__name__\n\n @functools.wraps(func)\n def x(self):\n wf = self.as_workflow()\n if not hasattr(wf, _attr):\n setattr(wf, _attr, func(wf))\n return getattr(wf, _attr)\n _setter = None\n if setter:\n\n def x(self, value):\n wf = self.as_workflow()\n setattr(wf, _attr, value)\n _setter.__name__ = func.__name__\n return property(fget=getter, fset=_setter)\n return wrapper if not func else wrapper(func)\n",
"role": "user"
},
{
"content": "cached_workflow_property",
"role": "assistant"
}
] |
def x(self):
if callable(self.task.workflow_complete):
return self.task.workflow_complete()
else:
return super(BaseWorkflowProxy, self).complete()
|
complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if callable(self.task.workflow_complete):\n return self.task.workflow_complete()\n else:\n return super(BaseWorkflowProxy, self).complete()\n",
"role": "user"
},
{
"content": "complete",
"role": "assistant"
}
] |
def x(self):
reqs = OrderedDict()
reqs.update(self.task.workflow_requires())
return reqs
|
requires
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n reqs = OrderedDict()\n reqs.update(self.task.workflow_requires())\n return reqs\n",
"role": "user"
},
{
"content": "requires",
"role": "assistant"
}
] |
def x(self):
if self.task.target_collection_cls is not None:
cls = self.task.target_collection_cls
elif self.task.outputs_siblings:
cls = SiblingFileCollection
else:
cls = TargetCollection
targets = luigi.task.getpaths(self.task.get_branch_tasks())
collection = cls(targets, threshold=self.threshold(len(targets)))
return OrderedDict([('collection', collection)])
|
output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.task.target_collection_cls is not None:\n cls = self.task.target_collection_cls\n elif self.task.outputs_siblings:\n cls = SiblingFileCollection\n else:\n cls = TargetCollection\n targets = luigi.task.getpaths(self.task.get_branch_tasks())\n collection = cls(targets, threshold=self.threshold(len(targets)))\n return OrderedDict([('collection', collection)])\n",
"role": "user"
},
{
"content": "output",
"role": "assistant"
}
] |
def x(self, n=None):
if n is None:
n = len(self.task.branch_map())
acceptance = self.task.acceptance
return acceptance * n if acceptance <= 1 else acceptance
|
threshold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n=None):\n if n is None:\n n = len(self.task.branch_map())\n acceptance = self.task.acceptance\n return acceptance * n if acceptance <= 1 else acceptance\n",
"role": "user"
},
{
"content": "threshold",
"role": "assistant"
}
] |
def x(self, section, option, **kwargs):
cfg = Config.instance()
default = cfg.get_expanded(section, option, **kwargs)
return cfg.get_expanded(section, '{}_{}'.format(self.workflow_type,
option), default=default, **kwargs)
|
get_prefixed_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, section, option, **kwargs):\n cfg = Config.instance()\n default = cfg.get_expanded(section, option, **kwargs)\n return cfg.get_expanded(section, '{}_{}'.format(self.workflow_type,\n option), default=default, **kwargs)\n",
"role": "user"
},
{
"content": "get_prefixed_config",
"role": "assistant"
}
] |
def x(p, mz_value, tol=0.1, z=1, reduce_func=sum):
tol = abs(tol)
im = np.zeros((p.imzmldict['max count of pixels y'], p.imzmldict[
'max count of pixels x']))
for i, (x, y, z_) in enumerate(p.coordinates):
if z_ == 0:
UserWarning(
"z coordinate = 0 present, if you're getting blank images set getionimage(.., .., z=0)"
)
if z_ == z:
mzs, ints = map(lambda x: np.asarray(x), p.getspectrum(i))
min_i, max_i = _bisect_spectrum(mzs, mz_value, tol)
im[y - 1, x - 1] = reduce_func(ints[min_i:max_i + 1])
return im
|
getionimage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p, mz_value, tol=0.1, z=1, reduce_func=sum):\n tol = abs(tol)\n im = np.zeros((p.imzmldict['max count of pixels y'], p.imzmldict[\n 'max count of pixels x']))\n for i, (x, y, z_) in enumerate(p.coordinates):\n if z_ == 0:\n UserWarning(\n \"z coordinate = 0 present, if you're getting blank images set getionimage(.., .., z=0)\"\n )\n if z_ == z:\n mzs, ints = map(lambda x: np.asarray(x), p.getspectrum(i))\n min_i, max_i = _bisect_spectrum(mzs, mz_value, tol)\n im[y - 1, x - 1] = reduce_func(ints[min_i:max_i + 1])\n return im\n",
"role": "user"
},
{
"content": "getionimage",
"role": "assistant"
}
] |
def x(self):
mz_group = int_group = None
slist = None
elem_iterator = self.iterparse(self.filename, events=('start', 'end'))
if sys.version_info > (3,):
_, self.root = next(elem_iterator)
else:
_, self.root = elem_iterator.next()
for event, elem in elem_iterator:
if elem.tag == self.sl + 'spectrumList' and event == 'start':
slist = elem
elif elem.tag == self.sl + 'spectrum' and event == 'end':
self.__process_spectrum(elem)
slist.remove(elem)
elif elem.tag == self.sl + 'referenceableParamGroup' and event == 'end':
for param in elem:
if param.attrib['name'] == 'm/z array':
self.mzGroupId = elem.attrib['id']
mz_group = elem
elif param.attrib['name'] == 'intensity array':
self.intGroupId = elem.attrib['id']
int_group = elem
self.__assign_precision(int_group, mz_group)
self.__fix_offsets()
|
iter_read_spectrum_meta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mz_group = int_group = None\n slist = None\n elem_iterator = self.iterparse(self.filename, events=('start', 'end'))\n if sys.version_info > (3,):\n _, self.root = next(elem_iterator)\n else:\n _, self.root = elem_iterator.next()\n for event, elem in elem_iterator:\n if elem.tag == self.sl + 'spectrumList' and event == 'start':\n slist = elem\n elif elem.tag == self.sl + 'spectrum' and event == 'end':\n self.__process_spectrum(elem)\n slist.remove(elem)\n elif elem.tag == self.sl + 'referenceableParamGroup' and event == 'end':\n for param in elem:\n if param.attrib['name'] == 'm/z array':\n self.mzGroupId = elem.attrib['id']\n mz_group = elem\n elif param.attrib['name'] == 'intensity array':\n self.intGroupId = elem.attrib['id']\n int_group = elem\n self.__assign_precision(int_group, mz_group)\n self.__fix_offsets()\n",
"role": "user"
},
{
"content": "iter_read_spectrum_meta",
"role": "assistant"
}
] |
def x(self):
d = {}
scan_settings_list_elem = self.root.find('%sscanSettingsList' % self.sl)
instrument_config_list_elem = self.root.find(
'%sinstrumentConfigurationList' % self.sl)
supportedparams1 = [('max count of pixels x', int), (
'max count of pixels y', int), ('max dimension x', int), (
'max dimension y', int), ('pixel size x', float), ('pixel size y',
float), ('matrix solution concentration', float)]
supportedparams2 = [('wavelength', float), ('focus diameter x', float),
('focus diameter y', float), ('pulse energy', float), (
'pulse duration', float), ('attenuation', float)]
supportedaccessions1 = [('IMS:1000042', 'value'), ('IMS:1000043',
'value'), ('IMS:1000044', 'value'), ('IMS:1000045', 'value'), (
'IMS:1000046', 'value'), ('IMS:1000047', 'value'), ('MS:1000835',
'value')]
supportedaccessions2 = [('MS:1000843', 'value'), ('MS:1000844', 'value'
), ('MS:1000845', 'value'), ('MS:1000846', 'value'), ('MS:1000847',
'value'), ('MS:1000848', 'value')]
for i in range(len(supportedparams1)):
acc, attr = supportedaccessions1[i]
elem = scan_settings_list_elem.find('.//%scvParam[@accession="%s"]' %
(self.sl, acc))
if elem is None:
break
name, T = supportedparams1[i]
try:
d[name] = T(elem.attrib[attr])
except ValueError:
warn(Warning(
'Wrong data type in XML file. Skipped attribute "%s"' % name))
for i in range(len(supportedparams2)):
acc, attr = supportedaccessions2[i]
elem = instrument_config_list_elem.find(
'.//%scvParam[@accession="%s"]' % (self.sl, acc))
if elem is None:
break
name, T = supportedparams2[i]
try:
d[name] = T(elem.attrib[attr])
except ValueError:
warn(Warning(
'Wrong data type in XML file. Skipped attribute "%s"' % name))
return d
|
readimzmlmeta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n d = {}\n scan_settings_list_elem = self.root.find('%sscanSettingsList' % self.sl)\n instrument_config_list_elem = self.root.find(\n '%sinstrumentConfigurationList' % self.sl)\n supportedparams1 = [('max count of pixels x', int), (\n 'max count of pixels y', int), ('max dimension x', int), (\n 'max dimension y', int), ('pixel size x', float), ('pixel size y',\n float), ('matrix solution concentration', float)]\n supportedparams2 = [('wavelength', float), ('focus diameter x', float),\n ('focus diameter y', float), ('pulse energy', float), (\n 'pulse duration', float), ('attenuation', float)]\n supportedaccessions1 = [('IMS:1000042', 'value'), ('IMS:1000043',\n 'value'), ('IMS:1000044', 'value'), ('IMS:1000045', 'value'), (\n 'IMS:1000046', 'value'), ('IMS:1000047', 'value'), ('MS:1000835',\n 'value')]\n supportedaccessions2 = [('MS:1000843', 'value'), ('MS:1000844', 'value'\n ), ('MS:1000845', 'value'), ('MS:1000846', 'value'), ('MS:1000847',\n 'value'), ('MS:1000848', 'value')]\n for i in range(len(supportedparams1)):\n acc, attr = supportedaccessions1[i]\n elem = scan_settings_list_elem.find('.//%scvParam[@accession=\"%s\"]' %\n (self.sl, acc))\n if elem is None:\n break\n name, T = supportedparams1[i]\n try:\n d[name] = T(elem.attrib[attr])\n except ValueError:\n warn(Warning(\n 'Wrong data type in XML file. Skipped attribute \"%s\"' % name))\n for i in range(len(supportedparams2)):\n acc, attr = supportedaccessions2[i]\n elem = instrument_config_list_elem.find(\n './/%scvParam[@accession=\"%s\"]' % (self.sl, acc))\n if elem is None:\n break\n name, T = supportedparams2[i]\n try:\n d[name] = T(elem.attrib[attr])\n except ValueError:\n warn(Warning(\n 'Wrong data type in XML file. Skipped attribute \"%s\"' % name))\n return d\n",
"role": "user"
},
{
"content": "readimzmlmeta",
"role": "assistant"
}
] |
def x(self, i):
try:
pixel_size_x = self.imzmldict['pixel size x']
pixel_size_y = self.imzmldict['pixel size y']
except KeyError:
raise KeyError('Could not find all pixel size attributes in imzML file'
)
image_x, image_y = self.coordinates[i][:2]
return image_x * pixel_size_x, image_y * pixel_size_y
|
get_physical_coordinates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i):\n try:\n pixel_size_x = self.imzmldict['pixel size x']\n pixel_size_y = self.imzmldict['pixel size y']\n except KeyError:\n raise KeyError('Could not find all pixel size attributes in imzML file'\n )\n image_x, image_y = self.coordinates[i][:2]\n return image_x * pixel_size_x, image_y * pixel_size_y\n",
"role": "user"
},
{
"content": "get_physical_coordinates",
"role": "assistant"
}
] |
def x(self, index):
mz_bytes, intensity_bytes = self.get_spectrum_as_string(index)
mz_array = np.frombuffer(mz_bytes, dtype=self.mzPrecision)
intensity_array = np.frombuffer(intensity_bytes, dtype=self.
intensityPrecision)
return mz_array, intensity_array
|
getspectrum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n mz_bytes, intensity_bytes = self.get_spectrum_as_string(index)\n mz_array = np.frombuffer(mz_bytes, dtype=self.mzPrecision)\n intensity_array = np.frombuffer(intensity_bytes, dtype=self.\n intensityPrecision)\n return mz_array, intensity_array\n",
"role": "user"
},
{
"content": "getspectrum",
"role": "assistant"
}
] |
def x(self, index):
offsets = [self.mzOffsets[index], self.intensityOffsets[index]]
lengths = [self.mzLengths[index], self.intensityLengths[index]]
lengths[0] *= self.sizeDict[self.mzPrecision]
lengths[1] *= self.sizeDict[self.intensityPrecision]
self.m.seek(offsets[0])
mz_string = self.m.read(lengths[0])
self.m.seek(offsets[1])
intensity_string = self.m.read(lengths[1])
return mz_string, intensity_string
|
get_spectrum_as_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, index):\n offsets = [self.mzOffsets[index], self.intensityOffsets[index]]\n lengths = [self.mzLengths[index], self.intensityLengths[index]]\n lengths[0] *= self.sizeDict[self.mzPrecision]\n lengths[1] *= self.sizeDict[self.intensityPrecision]\n self.m.seek(offsets[0])\n mz_string = self.m.read(lengths[0])\n self.m.seek(offsets[1])\n intensity_string = self.m.read(lengths[1])\n return mz_string, intensity_string\n",
"role": "user"
},
{
"content": "get_spectrum_as_string",
"role": "assistant"
}
] |
def x(self, mz_offset, mz_len, mz_enc_len):
self.ibd.seek(mz_offset)
data = self.ibd.read(mz_enc_len)
self.ibd.seek(0, 2)
data = self.mz_compression.decompress(data)
return tuple(np.fromstring(data, dtype=self.mz_dtype))
|
read_mz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mz_offset, mz_len, mz_enc_len):\n self.ibd.seek(mz_offset)\n data = self.ibd.read(mz_enc_len)\n self.ibd.seek(0, 2)\n data = self.mz_compression.decompress(data)\n return tuple(np.fromstring(data, dtype=self.mz_dtype))\n",
"role": "user"
},
{
"content": "read_mz",
"role": "assistant"
}
] |
def x(self, mzs):
mzs = tuple(mzs)
if mzs in self.lru_cache:
return self.lru_cache[mzs]
mz_hash = '%s-%s-%s' % (hash(mzs), sum(mzs), len(mzs))
if mz_hash in self.hashes:
for mz_data in self.hashes[mz_hash]:
test_mz = self._read_mz(*mz_data)
if mzs == test_mz:
self.lru_cache[test_mz] = mz_data
return mz_data
mz_data = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression)
self.hashes[mz_hash].append(mz_data)
self.lru_cache[mzs] = mz_data
return mz_data
|
get_previous_mz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mzs):\n mzs = tuple(mzs)\n if mzs in self.lru_cache:\n return self.lru_cache[mzs]\n mz_hash = '%s-%s-%s' % (hash(mzs), sum(mzs), len(mzs))\n if mz_hash in self.hashes:\n for mz_data in self.hashes[mz_hash]:\n test_mz = self._read_mz(*mz_data)\n if mzs == test_mz:\n self.lru_cache[test_mz] = mz_data\n return mz_data\n mz_data = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression)\n self.hashes[mz_hash].append(mz_data)\n self.lru_cache[mzs] = mz_data\n return mz_data\n",
"role": "user"
},
{
"content": "get_previous_mz",
"role": "assistant"
}
] |
def x(self, mzs, intensities, coords, userParams=[]):
if self.mode != 'continuous' or self.first_mz is None:
mzs = self.mz_compression.rounding(mzs)
intensities = self.intensity_compression.rounding(intensities)
if self.mode == 'continuous':
if self.first_mz is None:
self.first_mz = self._encode_and_write(mzs, self.mz_dtype, self
.mz_compression)
mz_data = self.first_mz
elif self.mode == 'processed':
mz_data = self._encode_and_write(mzs, self.mz_dtype, self.
mz_compression)
elif self.mode == 'auto':
mz_data = self._get_previous_mz(mzs)
else:
raise TypeError('Unknown mode: %s' % self.mode)
mz_offset, mz_len, mz_enc_len = mz_data
int_offset, int_len, int_enc_len = self._encode_and_write(intensities,
self.intensity_dtype, self.intensity_compression)
mz_min = np.min(mzs)
mz_max = np.max(mzs)
ix_max = np.argmax(intensities)
mz_base = mzs[ix_max]
int_base = intensities[ix_max]
int_tic = np.sum(intensities)
s = _Spectrum(coords, mz_len, mz_offset, mz_enc_len, int_len,
int_offset, int_enc_len, mz_min, mz_max, mz_base, int_base, int_tic,
userParams)
self.spectra.append(s)
|
addSpectrum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mzs, intensities, coords, userParams=[]):\n if self.mode != 'continuous' or self.first_mz is None:\n mzs = self.mz_compression.rounding(mzs)\n intensities = self.intensity_compression.rounding(intensities)\n if self.mode == 'continuous':\n if self.first_mz is None:\n self.first_mz = self._encode_and_write(mzs, self.mz_dtype, self\n .mz_compression)\n mz_data = self.first_mz\n elif self.mode == 'processed':\n mz_data = self._encode_and_write(mzs, self.mz_dtype, self.\n mz_compression)\n elif self.mode == 'auto':\n mz_data = self._get_previous_mz(mzs)\n else:\n raise TypeError('Unknown mode: %s' % self.mode)\n mz_offset, mz_len, mz_enc_len = mz_data\n int_offset, int_len, int_enc_len = self._encode_and_write(intensities,\n self.intensity_dtype, self.intensity_compression)\n mz_min = np.min(mzs)\n mz_max = np.max(mzs)\n ix_max = np.argmax(intensities)\n mz_base = mzs[ix_max]\n int_base = intensities[ix_max]\n int_tic = np.sum(intensities)\n s = _Spectrum(coords, mz_len, mz_offset, mz_enc_len, int_len,\n int_offset, int_enc_len, mz_min, mz_max, mz_base, int_base, int_tic,\n userParams)\n self.spectra.append(s)\n",
"role": "user"
},
{
"content": "addSpectrum",
"role": "assistant"
}
] |
def x(self):
self.ibd.close()
self._write_xml()
self.xml.close()
|
finish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.ibd.close()\n self._write_xml()\n self.xml.close()\n",
"role": "user"
},
{
"content": "finish",
"role": "assistant"
}
] |
def x():
global settings, project_settings
settings = Changes.load()
project_settings = Project.load(GitHubRepository(auth_token=settings.
auth_token))
|
initialise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n global settings, project_settings\n settings = Changes.load()\n project_settings = Project.load(GitHubRepository(auth_token=settings.\n auth_token))\n",
"role": "user"
},
{
"content": "initialise",
"role": "assistant"
}
] |
def x(context):
rmtree('dist', ignore_errors=True)
build_package_command = 'python setup.py clean sdist bdist_wheel'
result = shell.dry_run(build_package_command, context.dry_run)
packages = Path('dist').files() if not context.dry_run else 'nothing'
if not result:
raise Exception('Error building packages: %s' % result)
else:
log.info('Built %s' % ', '.join(packages))
return packages
|
build_distributions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n rmtree('dist', ignore_errors=True)\n build_package_command = 'python setup.py clean sdist bdist_wheel'\n result = shell.dry_run(build_package_command, context.dry_run)\n packages = Path('dist').files() if not context.dry_run else 'nothing'\n if not result:\n raise Exception('Error building packages: %s' % result)\n else:\n log.info('Built %s' % ', '.join(packages))\n return packages\n",
"role": "user"
},
{
"content": "build_distributions",
"role": "assistant"
}
] |
def x(context):
if not context.dry_run and build_distributions(context):
with util.mktmpdir() as tmp_dir:
venv.create_venv(tmp_dir=tmp_dir)
for distribution in Path('dist').files():
try:
venv.install(distribution, tmp_dir)
log.info('Successfully installed %s', distribution)
if context.test_command and verification.run_test_command(
context):
log.info('Successfully ran test command: %s',
context.test_command)
except Exception as e:
raise Exception('Error installing distribution %s' %
distribution, e)
else:
log.info('Dry run, skipping installation')
|
install_package
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n if not context.dry_run and build_distributions(context):\n with util.mktmpdir() as tmp_dir:\n venv.create_venv(tmp_dir=tmp_dir)\n for distribution in Path('dist').files():\n try:\n venv.install(distribution, tmp_dir)\n log.info('Successfully installed %s', distribution)\n if context.test_command and verification.run_test_command(\n context):\n log.info('Successfully ran test command: %s',\n context.test_command)\n except Exception as e:\n raise Exception('Error installing distribution %s' %\n distribution, e)\n else:\n log.info('Dry run, skipping installation')\n",
"role": "user"
},
{
"content": "install_package",
"role": "assistant"
}
] |
def x(context):
if not context.dry_run and build_distributions(context):
upload_args = 'twine upload '
upload_args += ' '.join(Path('dist').files())
if context.pypi:
upload_args += ' -r %s' % context.pypi
upload_result = shell.dry_run(upload_args, context.dry_run)
if not context.dry_run and not upload_result:
raise Exception('Error uploading: %s' % upload_result)
else:
log.info('Successfully uploaded %s:%s', context.module_name,
context.new_version)
else:
log.info('Dry run, skipping package upload')
|
upload_package
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n if not context.dry_run and build_distributions(context):\n upload_args = 'twine upload '\n upload_args += ' '.join(Path('dist').files())\n if context.pypi:\n upload_args += ' -r %s' % context.pypi\n upload_result = shell.dry_run(upload_args, context.dry_run)\n if not context.dry_run and not upload_result:\n raise Exception('Error uploading: %s' % upload_result)\n else:\n log.info('Successfully uploaded %s:%s', context.module_name,\n context.new_version)\n else:\n log.info('Dry run, skipping package upload')\n",
"role": "user"
},
{
"content": "upload_package",
"role": "assistant"
}
] |
def x(context):
tmp_dir = venv.create_venv()
install_cmd = '%s/bin/pip install %s' % (tmp_dir, context.module_name)
package_index = 'pypi'
if context.pypi:
install_cmd += '-i %s' % context.pypi
package_index = context.pypi
try:
result = shell.dry_run(install_cmd, context.dry_run)
if not context.dry_run and not result:
log.error('Failed to install %s from %s', context.module_name,
package_index)
else:
log.info('Successfully installed %s from %s', context.
module_name, package_index)
except Exception as e:
error_msg = 'Error installing %s from %s' % (context.module_name,
package_index)
log.exception(error_msg)
raise Exception(error_msg, e)
|
install_from_pypi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n tmp_dir = venv.create_venv()\n install_cmd = '%s/bin/pip install %s' % (tmp_dir, context.module_name)\n package_index = 'pypi'\n if context.pypi:\n install_cmd += '-i %s' % context.pypi\n package_index = context.pypi\n try:\n result = shell.dry_run(install_cmd, context.dry_run)\n if not context.dry_run and not result:\n log.error('Failed to install %s from %s', context.module_name,\n package_index)\n else:\n log.info('Successfully installed %s from %s', context.\n module_name, package_index)\n except Exception as e:\n error_msg = 'Error installing %s from %s' % (context.module_name,\n package_index)\n log.exception(error_msg)\n raise Exception(error_msg, e)\n",
"role": "user"
},
{
"content": "install_from_pypi",
"role": "assistant"
}
] |
def x(probe_name, probe_result, failure_msg):
log.info('%s? %s' % (probe_name, probe_result))
if not probe_result:
raise exceptions.ProbeException(failure_msg)
else:
return True
|
report_and_raise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(probe_name, probe_result, failure_msg):\n log.info('%s? %s' % (probe_name, probe_result))\n if not probe_result:\n raise exceptions.ProbeException(failure_msg)\n else:\n return True\n",
"role": "user"
},
{
"content": "report_and_raise",
"role": "assistant"
}
] |
def x(python_module):
init_path = '{}/__init__.py'.format(python_module)
has_metadata = exists(init_path) and attributes.has_attribute(python_module
, '__version__') and attributes.has_attribute(python_module, '__url__')
return report_and_raise('Has module metadata', has_metadata,
'Your %s/__init__.py must contain __version__ and __url__ attributes')
|
has_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(python_module):\n init_path = '{}/__init__.py'.format(python_module)\n has_metadata = exists(init_path) and attributes.has_attribute(python_module\n , '__version__') and attributes.has_attribute(python_module, '__url__')\n return report_and_raise('Has module metadata', has_metadata,\n 'Your %s/__init__.py must contain __version__ and __url__ attributes')\n",
"role": "user"
},
{
"content": "has_metadata",
"role": "assistant"
}
] |
def x(python_module):
log.info('Checking project for changes requirements.')
return has_tools() and has_setup() and has_metadata(python_module
) and has_test_runner() and has_readme() and has_changelog()
|
probe_project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(python_module):\n log.info('Checking project for changes requirements.')\n return has_tools() and has_setup() and has_metadata(python_module\n ) and has_test_runner() and has_readme() and has_changelog()\n",
"role": "user"
},
{
"content": "probe_project",
"role": "assistant"
}
] |
def x(context):
commit_version_change(context)
if context.github:
project_settings = project_config(context.module_name)
if not project_settings['gh_token']:
click.echo(
'You need a GitHub token for changes to create a release.')
click.pause(
'Press [enter] to launch the GitHub "New personal access token" page, to create a token for changes.'
)
click.launch('https://github.com/settings/tokens/new')
project_settings['gh_token'] = click.prompt(
'Enter your changes token')
store_settings(context.module_name, project_settings)
description = click.prompt('Describe this release')
upload_url = create_github_release(context, project_settings[
'gh_token'], description)
upload_release_distributions(context, project_settings['gh_token'],
build_distributions(context), upload_url)
click.pause('Press [enter] to review and update your new release')
click.launch('{0}/releases/tag/{1}'.format(context.repo_url,
context.new_version))
else:
tag_and_push(context)
|
publish
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n commit_version_change(context)\n if context.github:\n project_settings = project_config(context.module_name)\n if not project_settings['gh_token']:\n click.echo(\n 'You need a GitHub token for changes to create a release.')\n click.pause(\n 'Press [enter] to launch the GitHub \"New personal access token\" page, to create a token for changes.'\n )\n click.launch('https://github.com/settings/tokens/new')\n project_settings['gh_token'] = click.prompt(\n 'Enter your changes token')\n store_settings(context.module_name, project_settings)\n description = click.prompt('Describe this release')\n upload_url = create_github_release(context, project_settings[\n 'gh_token'], description)\n upload_release_distributions(context, project_settings['gh_token'],\n build_distributions(context), upload_url)\n click.pause('Press [enter] to review and update your new release')\n click.launch('{0}/releases/tag/{1}'.format(context.repo_url,\n context.new_version))\n else:\n tag_and_push(context)\n",
"role": "user"
},
{
"content": "publish",
"role": "assistant"
}
] |
def x(context):
try:
run_tests()
if not context.skip_changelog:
generate_changelog(context)
increment_version(context)
build_distributions(context)
install_package(context)
upload_package(context)
install_from_pypi(context)
publish(context)
except Exception:
log.exception('Error releasing')
|
perform_release
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n try:\n run_tests()\n if not context.skip_changelog:\n generate_changelog(context)\n increment_version(context)\n build_distributions(context)\n install_package(context)\n upload_package(context)\n install_from_pypi(context)\n publish(context)\n except Exception:\n log.exception('Error releasing')\n",
"role": "user"
},
{
"content": "perform_release",
"role": "assistant"
}
] |
def x(module_name, attribute_name):
with open('%s/__init__.py' % module_name) as input_file:
for line in input_file:
if line.startswith(attribute_name):
return ast.literal_eval(line.split('=')[1].strip())
|
extract_attribute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(module_name, attribute_name):\n with open('%s/__init__.py' % module_name) as input_file:\n for line in input_file:\n if line.startswith(attribute_name):\n return ast.literal_eval(line.split('=')[1].strip())\n",
"role": "user"
},
{
"content": "extract_attribute",
"role": "assistant"
}
] |
def x(module_name, attribute_name, new_value, dry_run=True):
init_file = '%s/__init__.py' % module_name
_, tmp_file = tempfile.mkstemp()
with open(init_file) as input_file:
with open(tmp_file, 'w') as output_file:
for line in input_file:
if line.startswith(attribute_name):
line = "%s = '%s'\n" % (attribute_name, new_value)
output_file.write(line)
if not dry_run:
Path(tmp_file).copy(init_file)
else:
log.info(diff(tmp_file, init_file, retcode=None))
|
replace_attribute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(module_name, attribute_name, new_value, dry_run=True):\n init_file = '%s/__init__.py' % module_name\n _, tmp_file = tempfile.mkstemp()\n with open(init_file) as input_file:\n with open(tmp_file, 'w') as output_file:\n for line in input_file:\n if line.startswith(attribute_name):\n line = \"%s = '%s'\\n\" % (attribute_name, new_value)\n output_file.write(line)\n if not dry_run:\n Path(tmp_file).copy(init_file)\n else:\n log.info(diff(tmp_file, init_file, retcode=None))\n",
"role": "user"
},
{
"content": "replace_attribute",
"role": "assistant"
}
] |
def x(module_name, attribute_name):
init_file = '%s/__init__.py' % module_name
return any([(attribute_name in init_line) for init_line in open(
init_file).readlines()])
|
has_attribute
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(module_name, attribute_name):\n init_file = '%s/__init__.py' % module_name\n return any([(attribute_name in init_line) for init_line in open(\n init_file).readlines()])\n",
"role": "user"
},
{
"content": "has_attribute",
"role": "assistant"
}
] |
def x(alternatives):
if not alternatives:
raise ValueError
if not isinstance(alternatives, list):
raise TypeError
choice_map = OrderedDict(('{}'.format(i), value) for i, value in
enumerate(alternatives, 1))
input_terminator = '0'
choice_map.update({input_terminator: '<done>'})
choice_map.move_to_end('0', last=False)
choice_indexes = choice_map.keys()
choice_lines = ['{} - {}'.format(*c) for c in choice_map.items()]
prompt = '\n'.join(('Select labels:', '\n'.join(choice_lines),
'Choose from {}'.format(', '.join(choice_indexes))))
user_choices = set()
user_choice = None
while not user_choice == input_terminator:
if user_choices:
note('Selected labels: [{}]'.format(', '.join(user_choices)))
user_choice = click.prompt(prompt, type=click.Choice(choice_indexes
), default=input_terminator)
done = user_choice == input_terminator
new_selection = user_choice not in user_choices
nothing_selected = not user_choices
if not done and new_selection:
user_choices.add(choice_map[user_choice])
if done and nothing_selected:
error('Please select at least one label')
user_choice = None
return user_choices
|
choose_labels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(alternatives):\n if not alternatives:\n raise ValueError\n if not isinstance(alternatives, list):\n raise TypeError\n choice_map = OrderedDict(('{}'.format(i), value) for i, value in\n enumerate(alternatives, 1))\n input_terminator = '0'\n choice_map.update({input_terminator: '<done>'})\n choice_map.move_to_end('0', last=False)\n choice_indexes = choice_map.keys()\n choice_lines = ['{} - {}'.format(*c) for c in choice_map.items()]\n prompt = '\\n'.join(('Select labels:', '\\n'.join(choice_lines),\n 'Choose from {}'.format(', '.join(choice_indexes))))\n user_choices = set()\n user_choice = None\n while not user_choice == input_terminator:\n if user_choices:\n note('Selected labels: [{}]'.format(', '.join(user_choices)))\n user_choice = click.prompt(prompt, type=click.Choice(choice_indexes\n ), default=input_terminator)\n done = user_choice == input_terminator\n new_selection = user_choice not in user_choices\n nothing_selected = not user_choices\n if not done and new_selection:\n user_choices.add(choice_map[user_choice])\n if done and nothing_selected:\n error('Please select at least one label')\n user_choice = None\n return user_choices\n",
"role": "user"
},
{
"content": "choose_labels",
"role": "assistant"
}
] |
def x(dirname=None):
curdir = os.getcwd()
try:
if dirname is not None:
os.chdir(dirname)
requests_cache.configure(expire_after=60 * 10 * 10)
changes.initialise()
yield
finally:
os.chdir(curdir)
|
work_in
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dirname=None):\n curdir = os.getcwd()\n try:\n if dirname is not None:\n os.chdir(dirname)\n requests_cache.configure(expire_after=60 * 10 * 10)\n changes.initialise()\n yield\n finally:\n os.chdir(curdir)\n",
"role": "user"
},
{
"content": "work_in",
"role": "assistant"
}
] |
def x(draft, discard, repo_directory, release_name, release_description):
with work_in(repo_directory):
if discard:
stage_command.discard(release_name, release_description)
else:
stage_command.stage(draft, release_name, release_description)
|
stage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(draft, discard, repo_directory, release_name, release_description):\n with work_in(repo_directory):\n if discard:\n stage_command.discard(release_name, release_description)\n else:\n stage_command.stage(draft, release_name, release_description)\n",
"role": "user"
},
{
"content": "stage",
"role": "assistant"
}
] |
def x(context):
changelog_content = ['\n## [%s](%s/compare/%s...%s)\n\n' % (context.
new_version, context.repo_url, context.current_version, context.
new_version)]
git_log_content = None
git_log = 'log --oneline --no-merges --no-color'.split(' ')
try:
git_log_tag = git_log + ['%s..master' % context.current_version]
git_log_content = git(git_log_tag)
log.debug('content: %s' % git_log_content)
except Exception:
log.warn('Error diffing previous version, initial release')
git_log_content = git(git_log)
git_log_content = replace_sha_with_commit_link(context.repo_url,
git_log_content)
if git_log_content:
[(changelog_content.append('* %s\n' % line) if line else line) for
line in git_log_content[:-1]]
write_new_changelog(context.repo_url, 'CHANGELOG.md', changelog_content,
dry_run=context.dry_run)
log.info('Added content to CHANGELOG.md')
context.changelog_content = changelog_content
|
generate_changelog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n changelog_content = ['\\n## [%s](%s/compare/%s...%s)\\n\\n' % (context.\n new_version, context.repo_url, context.current_version, context.\n new_version)]\n git_log_content = None\n git_log = 'log --oneline --no-merges --no-color'.split(' ')\n try:\n git_log_tag = git_log + ['%s..master' % context.current_version]\n git_log_content = git(git_log_tag)\n log.debug('content: %s' % git_log_content)\n except Exception:\n log.warn('Error diffing previous version, initial release')\n git_log_content = git(git_log)\n git_log_content = replace_sha_with_commit_link(context.repo_url,\n git_log_content)\n if git_log_content:\n [(changelog_content.append('* %s\\n' % line) if line else line) for\n line in git_log_content[:-1]]\n write_new_changelog(context.repo_url, 'CHANGELOG.md', changelog_content,\n dry_run=context.dry_run)\n log.info('Added content to CHANGELOG.md')\n context.changelog_content = changelog_content\n",
"role": "user"
},
{
"content": "generate_changelog",
"role": "assistant"
}
] |
def x(dictionary, keys):
return dict((k, dictionary[k]) for k in keys if k in dictionary)
|
extract
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dictionary, keys):\n return dict((k, dictionary[k]) for k in keys if k in dictionary)\n",
"role": "user"
},
{
"content": "extract",
"role": "assistant"
}
] |
def x(arguments, long_keys, key_prefix='--'):
long_arguments = extract(arguments, long_keys)
return dict([(key.replace(key_prefix, ''), value) for key, value in
long_arguments.items()])
|
extract_arguments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arguments, long_keys, key_prefix='--'):\n long_arguments = extract(arguments, long_keys)\n return dict([(key.replace(key_prefix, ''), value) for key, value in\n long_arguments.items()])\n",
"role": "user"
},
{
"content": "extract_arguments",
"role": "assistant"
}
] |
def x(context):
tag_option = '--annotate'
if probe.has_signing_key(context):
tag_option = '--sign'
shell.dry_run(TAG_TEMPLATE % (tag_option, context.new_version, context.
new_version), context.dry_run)
shell.dry_run('git push --tags', context.dry_run)
|
tag_and_push
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n tag_option = '--annotate'\n if probe.has_signing_key(context):\n tag_option = '--sign'\n shell.dry_run(TAG_TEMPLATE % (tag_option, context.new_version, context.\n new_version), context.dry_run)\n shell.dry_run('git push --tags', context.dry_run)\n",
"role": "user"
},
{
"content": "tag_and_push",
"role": "assistant"
}
] |
def x(command, dry_run):
if not dry_run:
cmd_parts = command.split(' ')
return local[cmd_parts[0]](cmd_parts[1:])
else:
log.info('Dry run of %s, skipping' % command)
return True
|
dry_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command, dry_run):\n if not dry_run:\n cmd_parts = command.split(' ')\n return local[cmd_parts[0]](cmd_parts[1:])\n else:\n log.info('Dry run of %s, skipping' % command)\n return True\n",
"role": "user"
},
{
"content": "dry_run",
"role": "assistant"
}
] |
def x():
project_name = curdir
config_path = Path(join(project_name, PROJECT_CONFIG_FILE))
if not exists(config_path):
store_settings(DEFAULTS.copy())
return DEFAULTS
return toml.load(io.open(config_path)) or {}
|
project_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n project_name = curdir\n config_path = Path(join(project_name, PROJECT_CONFIG_FILE))\n if not exists(config_path):\n store_settings(DEFAULTS.copy())\n return DEFAULTS\n return toml.load(io.open(config_path)) or {}\n",
"role": "user"
},
{
"content": "project_config",
"role": "assistant"
}
] |
def x(version, major=False, minor=False, patch=True):
version = semantic_version.Version(version)
if major:
version.major += 1
version.minor = 0
version.patch = 0
elif minor:
version.minor += 1
version.patch = 0
elif patch:
version.patch += 1
return str(version)
|
increment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(version, major=False, minor=False, patch=True):\n version = semantic_version.Version(version)\n if major:\n version.major += 1\n version.minor = 0\n version.patch = 0\n elif minor:\n version.minor += 1\n version.patch = 0\n elif patch:\n version.patch += 1\n return str(version)\n",
"role": "user"
},
{
"content": "increment",
"role": "assistant"
}
] |
def x(context):
attributes.replace_attribute(context.module_name, '__version__',
context.new_version, dry_run=context.dry_run)
log.info('Bumped version from %s to %s' % (context.current_version,
context.new_version))
|
increment_version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context):\n attributes.replace_attribute(context.module_name, '__version__',\n context.new_version, dry_run=context.dry_run)\n log.info('Bumped version from %s to %s' % (context.current_version,\n context.new_version))\n",
"role": "user"
},
{
"content": "increment_version",
"role": "assistant"
}
] |
def x(href, items):
response = _request('GET', href)
response.raise_for_status()
items.extend(response.json())
if 'link' not in response.headers:
return
links = link_header.parse(response.headers['link'])
rels = {link.rel: link.href for link in links.links}
if 'next' in rels:
_recursive_gh_get(rels['next'], items)
|
recursive_gh_get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(href, items):\n response = _request('GET', href)\n response.raise_for_status()\n items.extend(response.json())\n if 'link' not in response.headers:\n return\n links = link_header.parse(response.headers['link'])\n rels = {link.rel: link.href for link in links.links}\n if 'next' in rels:\n _recursive_gh_get(rels['next'], items)\n",
"role": "user"
},
{
"content": "recursive_gh_get",
"role": "assistant"
}
] |
def x(github_token, github_api_url, progress):
global progress_reporter_cls
progress_reporter_cls.reportProgress = sys.stdout.isatty() and progress
if progress_reporter_cls.reportProgress:
progress_reporter_cls = _progress_bar
global _github_token_cli_arg
_github_token_cli_arg = github_token
global _github_api_url
_github_api_url = github_api_url
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(github_token, github_api_url, progress):\n global progress_reporter_cls\n progress_reporter_cls.reportProgress = sys.stdout.isatty() and progress\n if progress_reporter_cls.reportProgress:\n progress_reporter_cls = _progress_bar\n global _github_token_cli_arg\n _github_token_cli_arg = github_token\n global _github_api_url\n _github_api_url = github_api_url\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(repo_name, tag_name, new_release_sha, dry_run):
if new_release_sha is None:
return
refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tag_name)
if not refs:
return
assert len(refs) == 1
previous_release_sha = refs[0]['object']['sha']
if previous_release_sha == new_release_sha:
return
tmp_tag_name = tag_name + '-tmp'
refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tmp_tag_name
)
if refs:
assert len(refs) == 1
time.sleep(0.1)
gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run
)
time.sleep(0.1)
patch_release(repo_name, tag_name, tag_name=tmp_tag_name,
target_commitish=new_release_sha, dry_run=dry_run)
time.sleep(0.1)
gh_ref_delete(repo_name, 'refs/tags/%s' % tag_name, dry_run=dry_run)
time.sleep(0.1)
patch_release(repo_name, tmp_tag_name, tag_name=tag_name,
target_commitish=new_release_sha, dry_run=dry_run)
time.sleep(0.1)
gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run)
|
update_release_sha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(repo_name, tag_name, new_release_sha, dry_run):\n if new_release_sha is None:\n return\n refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tag_name)\n if not refs:\n return\n assert len(refs) == 1\n previous_release_sha = refs[0]['object']['sha']\n if previous_release_sha == new_release_sha:\n return\n tmp_tag_name = tag_name + '-tmp'\n refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tmp_tag_name\n )\n if refs:\n assert len(refs) == 1\n time.sleep(0.1)\n gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run\n )\n time.sleep(0.1)\n patch_release(repo_name, tag_name, tag_name=tmp_tag_name,\n target_commitish=new_release_sha, dry_run=dry_run)\n time.sleep(0.1)\n gh_ref_delete(repo_name, 'refs/tags/%s' % tag_name, dry_run=dry_run)\n time.sleep(0.1)\n patch_release(repo_name, tmp_tag_name, tag_name=tag_name,\n target_commitish=new_release_sha, dry_run=dry_run)\n time.sleep(0.1)\n gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run)\n",
"role": "user"
},
{
"content": "update_release_sha",
"role": "assistant"
}
] |
def x(pronac, dt):
funds_df = data.approved_funds_by_projects
project = funds_df.loc[funds_df['PRONAC'] == pronac]
project = project.to_dict('records')[0]
info = data.approved_funds_agg.to_dict(orient='index')[project[
'idSegmento']]
mean, std = info.values()
outlier = gaussian_outlier.is_outlier(project['VlTotalAprovado'], mean, std
)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {'is_outlier': outlier, 'total_approved_funds': project[
'VlTotalAprovado'], 'maximum_expected_funds': maximum_expected_funds}
|
approved_funds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, dt):\n funds_df = data.approved_funds_by_projects\n project = funds_df.loc[funds_df['PRONAC'] == pronac]\n project = project.to_dict('records')[0]\n info = data.approved_funds_agg.to_dict(orient='index')[project[\n 'idSegmento']]\n mean, std = info.values()\n outlier = gaussian_outlier.is_outlier(project['VlTotalAprovado'], mean, std\n )\n maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)\n return {'is_outlier': outlier, 'total_approved_funds': project[\n 'VlTotalAprovado'], 'maximum_expected_funds': maximum_expected_funds}\n",
"role": "user"
},
{
"content": "approved_funds",
"role": "assistant"
}
] |
def x(obj):
indicators = obj.indicator_set.all()
if not indicators:
value = 0.0
else:
value = indicators.first().value
return value
|
complexidade
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n indicators = obj.indicator_set.all()\n if not indicators:\n value = 0.0\n else:\n value = indicators.first().value\n return value\n",
"role": "user"
},
{
"content": "complexidade",
"role": "assistant"
}
] |
def x(project):
indicators = project.indicator_set.all()
indicators_detail = [(indicator_details(i) for i in indicators)][0]
if not indicators:
indicators_detail = [{'FinancialIndicator': {'valor': 0.0,
'metrics': default_metrics}}]
indicators_detail = convert_list_into_dict(indicators_detail)
return {'pronac': project.pronac, 'nome': project.nome, 'indicadores':
indicators_detail}
|
details
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(project):\n indicators = project.indicator_set.all()\n indicators_detail = [(indicator_details(i) for i in indicators)][0]\n if not indicators:\n indicators_detail = [{'FinancialIndicator': {'valor': 0.0,\n 'metrics': default_metrics}}]\n indicators_detail = convert_list_into_dict(indicators_detail)\n return {'pronac': project.pronac, 'nome': project.nome, 'indicadores':\n indicators_detail}\n",
"role": "user"
},
{
"content": "details",
"role": "assistant"
}
] |
def x(indicator):
metrics = format_metrics_json(indicator)
metrics_list = set(indicator.metrics.filter(name__in=metrics_name_map.
keys()).values_list('name', flat=True))
null_metrics = default_metrics
for keys in metrics_list:
null_metrics.pop(metrics_name_map[keys], None)
metrics.update(null_metrics)
return {type(indicator).__name__: {'valor': indicator.value, 'metricas':
metrics}}
|
indicator_details
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(indicator):\n metrics = format_metrics_json(indicator)\n metrics_list = set(indicator.metrics.filter(name__in=metrics_name_map.\n keys()).values_list('name', flat=True))\n null_metrics = default_metrics\n for keys in metrics_list:\n null_metrics.pop(metrics_name_map[keys], None)\n metrics.update(null_metrics)\n return {type(indicator).__name__: {'valor': indicator.value, 'metricas':\n metrics}}\n",
"role": "user"
},
{
"content": "indicator_details",
"role": "assistant"
}
] |
def x(self, pronac, metric):
assert isinstance(metric, str)
assert '.' in metric, 'metric must declare a namespace'
try:
func = self._metrics[metric]
return func(pronac, self._data)
except KeyError:
raise InvalidMetricError('metric does not exist')
|
get_metric
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pronac, metric):\n assert isinstance(metric, str)\n assert '.' in metric, 'metric must declare a namespace'\n try:\n func = self._metrics[metric]\n return func(pronac, self._data)\n except KeyError:\n raise InvalidMetricError('metric does not exist')\n",
"role": "user"
},
{
"content": "get_metric",
"role": "assistant"
}
] |
def x(self, category):
def x(func):
name = func.__name__
key = f'{category}.{name}'
self._metrics[key] = func
return func
return decorator
|
register
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, category):\n\n def x(func):\n name = func.__name__\n key = f'{category}.{name}'\n self._metrics[key] = func\n return func\n return decorator\n",
"role": "user"
},
{
"content": "register",
"role": "assistant"
}
] |
def x(force_update=False):
with open(MODEL_FILE, 'r') as file_content:
query = file_content.read()
db = db_connector()
query_result = db.execute_pandas_sql_query(query)
db.close()
try:
projects = Project.objects.bulk_create(Project(**vals) for vals in
query_result.to_dict('records'))
indicators = [FinancialIndicator(project=p) for p in projects]
FinancialIndicator.objects.bulk_create(indicators)
except IntegrityError:
LOG('Projects bulk_create failed, creating one by one...')
with transaction.atomic():
if force_update:
for item in query_result.to_dict('records'):
p, _ = Project.objects.update_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p)
else:
for item in query_result.to_dict('records'):
p, _ = Project.objects.get_or_create(**item)
FinancialIndicator.objects.update_or_create(project=p)
|
execute_project_models_sql_scripts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(force_update=False):\n with open(MODEL_FILE, 'r') as file_content:\n query = file_content.read()\n db = db_connector()\n query_result = db.execute_pandas_sql_query(query)\n db.close()\n try:\n projects = Project.objects.bulk_create(Project(**vals) for vals in\n query_result.to_dict('records'))\n indicators = [FinancialIndicator(project=p) for p in projects]\n FinancialIndicator.objects.bulk_create(indicators)\n except IntegrityError:\n LOG('Projects bulk_create failed, creating one by one...')\n with transaction.atomic():\n if force_update:\n for item in query_result.to_dict('records'):\n p, _ = Project.objects.update_or_create(**item)\n FinancialIndicator.objects.update_or_create(project=p)\n else:\n for item in query_result.to_dict('records'):\n p, _ = Project.objects.get_or_create(**item)\n FinancialIndicator.objects.update_or_create(project=p)\n",
"role": "user"
},
{
"content": "execute_project_models_sql_scripts",
"role": "assistant"
}
] |
def x(metrics: list, pronacs: list):
missing = missing_metrics(metrics, pronacs)
print(f'There are {len(missing)} missing metrics!')
processors = mp.cpu_count()
print(f'Using {processors} processors to calculate metrics!')
indicators_qs = FinancialIndicator.objects.filter(project_id__in=[p for
p, _ in missing])
indicators = {i.project_id: i for i in indicators_qs}
pool = mp.Pool(processors)
results = [pool.apply_async(create_metric, args=(indicators,
metric_name, pronac)) for pronac, metric_name in missing]
calculated_metrics = [p.get() for p in results]
if calculated_metrics:
Metric.objects.bulk_create(calculated_metrics)
print('Bulk completed')
for indicator in indicators.values():
indicator.fetch_weighted_complexity()
print('Finished update indicators!')
pool.close()
print('Finished metrics calculation!')
|
create_finance_metrics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(metrics: list, pronacs: list):\n missing = missing_metrics(metrics, pronacs)\n print(f'There are {len(missing)} missing metrics!')\n processors = mp.cpu_count()\n print(f'Using {processors} processors to calculate metrics!')\n indicators_qs = FinancialIndicator.objects.filter(project_id__in=[p for\n p, _ in missing])\n indicators = {i.project_id: i for i in indicators_qs}\n pool = mp.Pool(processors)\n results = [pool.apply_async(create_metric, args=(indicators,\n metric_name, pronac)) for pronac, metric_name in missing]\n calculated_metrics = [p.get() for p in results]\n if calculated_metrics:\n Metric.objects.bulk_create(calculated_metrics)\n print('Bulk completed')\n for indicator in indicators.values():\n indicator.fetch_weighted_complexity()\n print('Finished update indicators!')\n pool.close()\n print('Finished metrics calculation!')\n",
"role": "user"
},
{
"content": "create_finance_metrics",
"role": "assistant"
}
] |
def x(pronac, dt):
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]['idSegmento']
segments_cache = data.segment_projects_agg
segments_cache = segments_cache.to_dict(orient='index')
mean = segments_cache[segment_id]['mean']
std = segments_cache[segment_id]['<lambda>']
total_receipts = project.shape[0]
is_outlier = gaussian_outlier.is_outlier(total_receipts, mean, std)
maximum_expected = gaussian_outlier.maximum_expected_value(mean, std)
return {'is_outlier': is_outlier, 'valor': total_receipts,
'maximo_esperado': maximum_expected, 'minimo_esperado': 0}
|
total_receipts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, dt):\n dataframe = data.planilha_comprovacao\n project = dataframe.loc[dataframe['PRONAC'] == pronac]\n segment_id = project.iloc[0]['idSegmento']\n segments_cache = data.segment_projects_agg\n segments_cache = segments_cache.to_dict(orient='index')\n mean = segments_cache[segment_id]['mean']\n std = segments_cache[segment_id]['<lambda>']\n total_receipts = project.shape[0]\n is_outlier = gaussian_outlier.is_outlier(total_receipts, mean, std)\n maximum_expected = gaussian_outlier.maximum_expected_value(mean, std)\n return {'is_outlier': is_outlier, 'valor': total_receipts,\n 'maximo_esperado': maximum_expected, 'minimo_esperado': 0}\n",
"role": "user"
},
{
"content": "total_receipts",
"role": "assistant"
}
] |
def x():
all_metrics = FinancialIndicator.METRICS
for key in all_metrics:
df = getattr(data, key)
pronac = 'PRONAC'
if key == 'planilha_captacao':
pronac = 'Pronac'
pronacs = df[pronac].unique().tolist()
create_finance_metrics(all_metrics[key], pronacs)
|
load_project_metrics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n all_metrics = FinancialIndicator.METRICS\n for key in all_metrics:\n df = getattr(data, key)\n pronac = 'PRONAC'\n if key == 'planilha_captacao':\n pronac = 'Pronac'\n pronacs = df[pronac].unique().tolist()\n create_finance_metrics(all_metrics[key], pronacs)\n",
"role": "user"
},
{
"content": "load_project_metrics",
"role": "assistant"
}
] |
def x(pronac, dt):
info = data.providers_info
df = info[info['PRONAC'] == pronac]
providers_count = data.providers_count.to_dict()[0]
new_providers = []
segment_id = None
for _, row in df.iterrows():
cnpj = row['nrCNPJCPF']
cnpj_count = providers_count.get(cnpj, 0)
segment_id = row['idSegmento']
if cnpj_count <= 1:
item_id = row['idPlanilhaAprovacao']
item_name = row['Item']
provider_name = row['nmFornecedor']
new_provider = {'nome': provider_name, 'cnpj': cnpj, 'itens': {
item_id: {'nome': item_name, 'tem_comprovante': True}}}
new_providers.append(new_provider)
providers_amount = len(df['nrCNPJCPF'].unique())
new_providers_amount = len(new_providers)
new_providers_percentage = new_providers_amount / providers_amount
averages = data.average_percentage_of_new_providers.to_dict()
segments_average = averages['segments_average_percentage']
all_projects_average = list(averages['all_projects_average'].values())[0]
if new_providers:
new_providers.sort(key=lambda provider: provider['nome'])
return {'lista_de_novos_fornecedores': new_providers, 'valor':
new_providers_amount, 'new_providers_percentage':
new_providers_percentage, 'is_outlier': new_providers_percentage >
segments_average[segment_id], 'segment_average_percentage':
segments_average[segment_id], 'all_projects_average_percentage':
all_projects_average}
|
new_providers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, dt):\n info = data.providers_info\n df = info[info['PRONAC'] == pronac]\n providers_count = data.providers_count.to_dict()[0]\n new_providers = []\n segment_id = None\n for _, row in df.iterrows():\n cnpj = row['nrCNPJCPF']\n cnpj_count = providers_count.get(cnpj, 0)\n segment_id = row['idSegmento']\n if cnpj_count <= 1:\n item_id = row['idPlanilhaAprovacao']\n item_name = row['Item']\n provider_name = row['nmFornecedor']\n new_provider = {'nome': provider_name, 'cnpj': cnpj, 'itens': {\n item_id: {'nome': item_name, 'tem_comprovante': True}}}\n new_providers.append(new_provider)\n providers_amount = len(df['nrCNPJCPF'].unique())\n new_providers_amount = len(new_providers)\n new_providers_percentage = new_providers_amount / providers_amount\n averages = data.average_percentage_of_new_providers.to_dict()\n segments_average = averages['segments_average_percentage']\n all_projects_average = list(averages['all_projects_average'].values())[0]\n if new_providers:\n new_providers.sort(key=lambda provider: provider['nome'])\n return {'lista_de_novos_fornecedores': new_providers, 'valor':\n new_providers_amount, 'new_providers_percentage':\n new_providers_percentage, 'is_outlier': new_providers_percentage >\n segments_average[segment_id], 'segment_average_percentage':\n segments_average[segment_id], 'all_projects_average_percentage':\n all_projects_average}\n",
"role": "user"
},
{
"content": "new_providers",
"role": "assistant"
}
] |
def x(providers_info, providers_count):
segments_percentages = {}
all_projects_percentages = []
providers_count = providers_count.to_dict()[0]
for _, items in providers_info.groupby('PRONAC'):
cnpj_array = items['nrCNPJCPF'].unique()
new_providers = 0
for cnpj in cnpj_array:
cnpj_count = providers_count.get(cnpj, 0)
if cnpj_count <= 1:
new_providers += 1
segment_id = items.iloc[0]['idSegmento']
new_providers_percent = new_providers / cnpj_array.size
segments_percentages.setdefault(segment_id, [])
segments_percentages[segment_id].append(new_providers_percent)
all_projects_percentages.append(new_providers_percent)
segments_average_percentage = {}
for segment_id, percentages in segments_percentages.items():
mean = np.mean(percentages)
segments_average_percentage[segment_id] = mean
return pd.DataFrame.from_dict({'segments_average_percentage':
segments_average_percentage, 'all_projects_average': np.mean(
all_projects_percentages)})
|
average_percentage_of_new_providers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(providers_info, providers_count):\n segments_percentages = {}\n all_projects_percentages = []\n providers_count = providers_count.to_dict()[0]\n for _, items in providers_info.groupby('PRONAC'):\n cnpj_array = items['nrCNPJCPF'].unique()\n new_providers = 0\n for cnpj in cnpj_array:\n cnpj_count = providers_count.get(cnpj, 0)\n if cnpj_count <= 1:\n new_providers += 1\n segment_id = items.iloc[0]['idSegmento']\n new_providers_percent = new_providers / cnpj_array.size\n segments_percentages.setdefault(segment_id, [])\n segments_percentages[segment_id].append(new_providers_percent)\n all_projects_percentages.append(new_providers_percent)\n segments_average_percentage = {}\n for segment_id, percentages in segments_percentages.items():\n mean = np.mean(percentages)\n segments_average_percentage[segment_id] = mean\n return pd.DataFrame.from_dict({'segments_average_percentage':\n segments_average_percentage, 'all_projects_average': np.mean(\n all_projects_percentages)})\n",
"role": "user"
},
{
"content": "average_percentage_of_new_providers",
"role": "assistant"
}
] |
def x(df):
providers_count = {}
cnpj_array = df.values
for a in cnpj_array:
cnpj = a[0]
occurrences = providers_count.get(cnpj, 0)
providers_count[cnpj] = occurrences + 1
return pd.DataFrame.from_dict(providers_count, orient='index')
|
providers_count
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n providers_count = {}\n cnpj_array = df.values\n for a in cnpj_array:\n cnpj = a[0]\n occurrences = providers_count.get(cnpj, 0)\n providers_count[cnpj] = occurrences + 1\n return pd.DataFrame.from_dict(providers_count, orient='index')\n",
"role": "user"
},
{
"content": "providers_count",
"role": "assistant"
}
] |
def x(df):
cnpj_list = []
for _, items in df.groupby('PRONAC'):
unique_cnpjs = items['nrCNPJCPF'].unique()
cnpj_list += list(unique_cnpjs)
return pd.DataFrame(cnpj_list)
|
all_providers_cnpj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n cnpj_list = []\n for _, items in df.groupby('PRONAC'):\n unique_cnpjs = items['nrCNPJCPF'].unique()\n cnpj_list += list(unique_cnpjs)\n return pd.DataFrame(cnpj_list)\n",
"role": "user"
},
{
"content": "all_providers_cnpj",
"role": "assistant"
}
] |
def x(pronac):
df = data.providers_info
grouped = df.groupby('PRONAC')
return grouped.get_group(pronac)
|
get_providers_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac):\n df = data.providers_info\n grouped = df.groupby('PRONAC')\n return grouped.get_group(pronac)\n",
"role": "user"
},
{
"content": "get_providers_info",
"role": "assistant"
}
] |
def x(df, group, info=['mean', 'std']):
agg = df.groupby(group).agg(info)
agg.columns = agg.columns.droplevel(0)
return agg
|
get_info
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, group, info=['mean', 'std']):\n agg = df.groupby(group).agg(info)\n agg.columns = agg.columns.droplevel(0)\n return agg\n",
"role": "user"
},
{
"content": "get_info",
"role": "assistant"
}
] |
def x(item, prefix, df_values=None):
url_keys = {'pronac': 'idPronac', 'uf': 'uf', 'product': 'produto',
'county': 'idmunicipio', 'item_id': 'idPlanilhaItem', 'stage': 'etapa'}
if df_values:
values = [item[v] for v in df_values]
url_values = dict(zip(url_keys.keys(), values))
else:
url_values = {'pronac': item['idPronac'], 'uf': item['UfItem'],
'product': item['idProduto'], 'county': item['cdCidade'],
'item_id': item['idPlanilhaItens'], 'stage': item['cdEtapa']}
item_data = [(value, url_values[key]) for key, value in url_keys.items()]
url = prefix
for k, v in item_data:
url += f'/{str(k)}/{str(v)}'
return url
|
get_salic_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(item, prefix, df_values=None):\n url_keys = {'pronac': 'idPronac', 'uf': 'uf', 'product': 'produto',\n 'county': 'idmunicipio', 'item_id': 'idPlanilhaItem', 'stage': 'etapa'}\n if df_values:\n values = [item[v] for v in df_values]\n url_values = dict(zip(url_keys.keys(), values))\n else:\n url_values = {'pronac': item['idPronac'], 'uf': item['UfItem'],\n 'product': item['idProduto'], 'county': item['cdCidade'],\n 'item_id': item['idPlanilhaItens'], 'stage': item['cdEtapa']}\n item_data = [(value, url_values[key]) for key, value in url_keys.items()]\n url = prefix\n for k, v in item_data:\n url += f'/{str(k)}/{str(v)}'\n return url\n",
"role": "user"
},
{
"content": "get_salic_url",
"role": "assistant"
}
] |
def x(pronac):
df = data.planilha_projetos
cpf_cnpj = None
row_df = df[df['PRONAC'].astype(str) == str(pronac)]
if not row_df.empty:
cpf_cnpj = row_df.iloc[0]['CgcCpf']
return str(cpf_cnpj)
|
get_cpf_cnpj_by_pronac
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac):\n df = data.planilha_projetos\n cpf_cnpj = None\n row_df = df[df['PRONAC'].astype(str) == str(pronac)]\n if not row_df.empty:\n cpf_cnpj = row_df.iloc[0]['CgcCpf']\n return str(cpf_cnpj)\n",
"role": "user"
},
{
"content": "get_cpf_cnpj_by_pronac",
"role": "assistant"
}
] |
def x(item):
pronac_id = str(item['idPronac'])
item_id = str(item['idPlanilhaItens'])
combined_id = f'{pronac_id}/{item_id}'
return combined_id in data.receipt.index
|
has_receipt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(item):\n pronac_id = str(item['idPronac'])\n item_id = str(item['idPlanilhaItens'])\n combined_id = f'{pronac_id}/{item_id}'\n return combined_id in data.receipt.index\n",
"role": "user"
},
{
"content": "has_receipt",
"role": "assistant"
}
] |
def x(segment_id):
df = data.all_items
return df[df['idSegmento'] == str(segment_id)].drop_duplicates(['PRONAC']
).values
|
get_segment_projects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(segment_id):\n df = data.all_items\n return df[df['idSegmento'] == str(segment_id)].drop_duplicates(['PRONAC']\n ).values\n",
"role": "user"
},
{
"content": "get_segment_projects",
"role": "assistant"
}
] |
def x(df):
mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str)
mutated_df['pronac_planilha_itens'
] = f"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}"
return mutated_df.set_index(['pronac_planilha_itens'])
|
receipt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str)\n mutated_df['pronac_planilha_itens'\n ] = f\"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}\"\n return mutated_df.set_index(['pronac_planilha_itens'])\n",
"role": "user"
},
{
"content": "receipt",
"role": "assistant"
}
] |
def x(ctx, models=True, pickles=False, f=False):
if pickles:
save_sql_to_files(f)
if models:
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={})
|
update_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, models=True, pickles=False, f=False):\n if pickles:\n save_sql_to_files(f)\n if models:\n if f:\n manage(ctx, 'create_models_from_sql --force True', env={})\n else:\n manage(ctx, 'create_models_from_sql', env={})\n",
"role": "user"
},
{
"content": "update_data",
"role": "assistant"
}
] |
def x(ctx, f=False):
if f:
manage(ctx, 'create_models_from_sql --force True', env={})
else:
manage(ctx, 'create_models_from_sql', env={})
|
update_models
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, f=False):\n if f:\n manage(ctx, 'create_models_from_sql --force True', env={})\n else:\n manage(ctx, 'create_models_from_sql', env={})\n",
"role": "user"
},
{
"content": "update_models",
"role": "assistant"
}
] |
def x(self, project, is_valid, metrics_list):
project = Project.objects.get(pronac=project)
indicator, _ = FinancialIndicator.objects.update_or_create(project=project)
indicator.is_valid = is_valid
if indicator.is_valid:
p_metrics = metrics_calc.get_project(project.pronac)
for metric_name in metrics_list:
print('calculando a metrica ', metric_name)
x = getattr(p_metrics.finance, metric_name)
print('do projeto: ', project)
Metric.objects.create_metric(metric_name, x, indicator)
indicator.fetch_weighted_complexity()
return indicator
|
create_indicator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, project, is_valid, metrics_list):\n project = Project.objects.get(pronac=project)\n indicator, _ = FinancialIndicator.objects.update_or_create(project=project)\n indicator.is_valid = is_valid\n if indicator.is_valid:\n p_metrics = metrics_calc.get_project(project.pronac)\n for metric_name in metrics_list:\n print('calculando a metrica ', metric_name)\n x = getattr(p_metrics.finance, metric_name)\n print('do projeto: ', project)\n Metric.objects.create_metric(metric_name, x, indicator)\n indicator.fetch_weighted_complexity()\n return indicator\n",
"role": "user"
},
{
"content": "create_indicator",
"role": "assistant"
}
] |
def x(overwrite=False):
ext_size = len(SQL_EXTENSION)
path = DATA_PATH / 'scripts'
save_dir = DATA_PATH / 'raw'
for file in os.listdir(path):
if file.endswith(SQL_EXTENSION):
file_path = os.path.join(save_dir, file[:-ext_size] + '.' +
FILE_EXTENSION)
if not os.path.isfile(file_path) or overwrite:
query_result = make_query(path / file)
save_dataframe_as_pickle(query_result, file_path)
else:
print(
'file {} already exists, if you would like to update it, use -f flag\n'
.format(file_path))
|
save_sql_to_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(overwrite=False):\n ext_size = len(SQL_EXTENSION)\n path = DATA_PATH / 'scripts'\n save_dir = DATA_PATH / 'raw'\n for file in os.listdir(path):\n if file.endswith(SQL_EXTENSION):\n file_path = os.path.join(save_dir, file[:-ext_size] + '.' +\n FILE_EXTENSION)\n if not os.path.isfile(file_path) or overwrite:\n query_result = make_query(path / file)\n save_dataframe_as_pickle(query_result, file_path)\n else:\n print(\n 'file {} already exists, if you would like to update it, use -f flag\\n'\n .format(file_path))\n",
"role": "user"
},
{
"content": "save_sql_to_files",
"role": "assistant"
}
] |
def x(self, recalculate_metrics=False):
max_total = sum([self.metrics_weights[metric_name] for metric_name in
self.metrics_weights])
total = 0
if recalculate_metrics:
self.calculate_indicator_metrics()
for metric in self.metrics.all():
if metric.name in self.metrics_weights and metric.is_outlier:
total += self.metrics_weights[metric.name]
value = total / max_total
final_value = '{:.1f}'.format(value * 10)
if final_value[-1] == '0':
final_value = '{:.0f}'.format(value * 10)
final_value = int(final_value)
else:
final_value = float(final_value)
self.value = float(final_value)
self.is_valid = True
self.updated_at = datetime.datetime.now()
self.save()
return final_value
|
fetch_weighted_complexity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, recalculate_metrics=False):\n max_total = sum([self.metrics_weights[metric_name] for metric_name in\n self.metrics_weights])\n total = 0\n if recalculate_metrics:\n self.calculate_indicator_metrics()\n for metric in self.metrics.all():\n if metric.name in self.metrics_weights and metric.is_outlier:\n total += self.metrics_weights[metric.name]\n value = total / max_total\n final_value = '{:.1f}'.format(value * 10)\n if final_value[-1] == '0':\n final_value = '{:.0f}'.format(value * 10)\n final_value = int(final_value)\n else:\n final_value = float(final_value)\n self.value = float(final_value)\n self.is_valid = True\n self.updated_at = datetime.datetime.now()\n self.save()\n return final_value\n",
"role": "user"
},
{
"content": "fetch_weighted_complexity",
"role": "assistant"
}
] |
def x(pronac, data):
threshold = 0.1
outlier_info = get_outliers_percentage(pronac)
outlier_info['is_outlier'] = outlier_info['percentage'] > threshold
outlier_info['maximum_expected'] = threshold * outlier_info['total_items']
return outlier_info
|
item_prices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, data):\n threshold = 0.1\n outlier_info = get_outliers_percentage(pronac)\n outlier_info['is_outlier'] = outlier_info['percentage'] > threshold\n outlier_info['maximum_expected'] = threshold * outlier_info['total_items']\n return outlier_info\n",
"role": "user"
},
{
"content": "item_prices",
"role": "assistant"
}
] |
def x(df, item_id, segment_id, price):
if (segment_id, item_id) not in df.index:
return False
mean = df.loc[segment_id, item_id]['mean']
std = df.loc[segment_id, item_id]['std']
return gaussian_outlier.is_outlier(x=price, mean=mean,
standard_deviation=std)
|
is_outlier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, item_id, segment_id, price):\n if (segment_id, item_id) not in df.index:\n return False\n mean = df.loc[segment_id, item_id]['mean']\n std = df.loc[segment_id, item_id]['std']\n return gaussian_outlier.is_outlier(x=price, mean=mean,\n standard_deviation=std)\n",
"role": "user"
},
{
"content": "is_outlier",
"role": "assistant"
}
] |
def x(raw_df):
df = raw_df[['idSegmento', 'idPlanilhaItens', 'VlUnitarioAprovado']
].groupby(by=['idSegmento', 'idPlanilhaItens']).agg([np.mean, lambda
x: np.std(x, ddof=0)])
df.columns = df.columns.droplevel(0)
return df.rename(columns={'<lambda>': 'std'})
|
aggregated_relevant_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raw_df):\n df = raw_df[['idSegmento', 'idPlanilhaItens', 'VlUnitarioAprovado']\n ].groupby(by=['idSegmento', 'idPlanilhaItens']).agg([np.mean, lambda\n x: np.std(x, ddof=0)])\n df.columns = df.columns.droplevel(0)\n return df.rename(columns={'<lambda>': 'std'})\n",
"role": "user"
},
{
"content": "aggregated_relevant_items",
"role": "assistant"
}
] |
def x(df):
start_date = datetime(2013, 1, 1)
df['DataProjeto'] = pd.to_datetime(df['DataProjeto'])
df = df[df.DataProjeto >= start_date]
df = df[df.VlUnitarioAprovado > 0.0]
return df
|
relevant_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n start_date = datetime(2013, 1, 1)\n df['DataProjeto'] = pd.to_datetime(df['DataProjeto'])\n df = df[df.DataProjeto >= start_date]\n df = df[df.VlUnitarioAprovado > 0.0]\n return df\n",
"role": "user"
},
{
"content": "relevant_items",
"role": "assistant"
}
] |
def x(raw_df):
df = raw_df[['PRONAC', 'idPlanilhaAprovacao', 'Item', 'idPlanilhaItens',
'VlUnitarioAprovado', 'idSegmento', 'DataProjeto', 'idPronac',
'UfItem', 'idProduto', 'cdCidade', 'cdEtapa']].copy()
df['VlUnitarioAprovado'] = df['VlUnitarioAprovado'].apply(pd.to_numeric)
return df
|
items_with_price
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(raw_df):\n df = raw_df[['PRONAC', 'idPlanilhaAprovacao', 'Item', 'idPlanilhaItens',\n 'VlUnitarioAprovado', 'idSegmento', 'DataProjeto', 'idPronac',\n 'UfItem', 'idProduto', 'cdCidade', 'cdEtapa']].copy()\n df['VlUnitarioAprovado'] = df['VlUnitarioAprovado'].apply(pd.to_numeric)\n return df\n",
"role": "user"
},
{
"content": "items_with_price",
"role": "assistant"
}
] |
def x(pronac):
items = data.items_with_price.groupby(['PRONAC']).get_group(pronac)
df = data.aggregated_relevant_items
outlier_items = {}
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in items.iterrows():
item_id = item['idPlanilhaItens']
price = item['VlUnitarioAprovado']
segment_id = item['idSegmento']
item_name = item['Item']
if is_outlier(df, item_id, segment_id, price):
outlier_items[item_id] = {'name': item_name, 'salic_url':
get_salic_url(item, url_prefix), 'has_receipt': has_receipt
(item)}
total_items = items.shape[0]
outliers_amount = len(outlier_items)
percentage = outliers_amount / total_items
return {'items': outlier_items, 'valor': outliers_amount, 'total_items':
total_items, 'percentage': percentage, 'is_outlier':
outliers_amount > 0}
|
get_outliers_percentage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac):\n items = data.items_with_price.groupby(['PRONAC']).get_group(pronac)\n df = data.aggregated_relevant_items\n outlier_items = {}\n url_prefix = '/prestacao-contas/analisar/comprovante'\n for _, item in items.iterrows():\n item_id = item['idPlanilhaItens']\n price = item['VlUnitarioAprovado']\n segment_id = item['idSegmento']\n item_name = item['Item']\n if is_outlier(df, item_id, segment_id, price):\n outlier_items[item_id] = {'name': item_name, 'salic_url':\n get_salic_url(item, url_prefix), 'has_receipt': has_receipt\n (item)}\n total_items = items.shape[0]\n outliers_amount = len(outlier_items)\n percentage = outliers_amount / total_items\n return {'items': outlier_items, 'valor': outliers_amount, 'total_items':\n total_items, 'percentage': percentage, 'is_outlier': \n outliers_amount > 0}\n",
"role": "user"
},
{
"content": "get_outliers_percentage",
"role": "assistant"
}
] |
def x(pronac, dt):
df = data.items_by_project
project = df.loc[df['PRONAC'] == pronac]
seg = project.iloc[0]['idSegmento']
info = data.items_by_project_agg.to_dict(orient='index')[seg]
mean, std = info.values()
threshold = mean + 1.5 * std
project_items_count = project.shape[0]
is_outlier = project_items_count > threshold
return {'is_outlier': is_outlier, 'valor': project_items_count,
'maximo_esperado': mean, 'desvio_padrao': std}
|
number_of_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, dt):\n df = data.items_by_project\n project = df.loc[df['PRONAC'] == pronac]\n seg = project.iloc[0]['idSegmento']\n info = data.items_by_project_agg.to_dict(orient='index')[seg]\n mean, std = info.values()\n threshold = mean + 1.5 * std\n project_items_count = project.shape[0]\n is_outlier = project_items_count > threshold\n return {'is_outlier': is_outlier, 'valor': project_items_count,\n 'maximo_esperado': mean, 'desvio_padrao': std}\n",
"role": "user"
},
{
"content": "number_of_items",
"role": "assistant"
}
] |
def x(df):
percentage = 0.1
return df.groupby(['idSegmento', 'idPlanilhaItens']).count().rename(columns
={'PRONAC': 'itemOccurrences'}).sort_values('itemOccurrences',
ascending=False).reset_index(['idSegmento', 'idPlanilhaItens']
).groupby('idSegmento').apply(lambda x: x[None:max(2, int(len(x) *
percentage))]).reset_index(['idSegmento'], drop=True).set_index([
'idSegmento'])
|
common_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n percentage = 0.1\n return df.groupby(['idSegmento', 'idPlanilhaItens']).count().rename(columns\n ={'PRONAC': 'itemOccurrences'}).sort_values('itemOccurrences',\n ascending=False).reset_index(['idSegmento', 'idPlanilhaItens']\n ).groupby('idSegmento').apply(lambda x: x[None:max(2, int(len(x) *\n percentage))]).reset_index(['idSegmento'], drop=True).set_index([\n 'idSegmento'])\n",
"role": "user"
},
{
"content": "common_items",
"role": "assistant"
}
] |
def x(pronac, seg_common_items):
if len(seg_common_items) == 0:
return 0
project_items = get_project_items(pronac).values[:, 0]
project_items_amount = len(project_items)
if project_items_amount == 0:
return 1
common_found_items = sum(seg_common_items.isin(project_items)[
'idPlanilhaItens'])
return common_found_items / project_items_amount
|
common_items_percentage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, seg_common_items):\n if len(seg_common_items) == 0:\n return 0\n project_items = get_project_items(pronac).values[:, 0]\n project_items_amount = len(project_items)\n if project_items_amount == 0:\n return 1\n common_found_items = sum(seg_common_items.isin(project_items)[\n 'idPlanilhaItens'])\n return common_found_items / project_items_amount\n",
"role": "user"
},
{
"content": "common_items_percentage",
"role": "assistant"
}
] |
def x(all_items, common_items):
segments = common_items.index.unique()
metrics = {}
for seg in segments:
seg_common_items = segment_common_items(seg)
projects = get_segment_projects(seg)
metric_values = []
for proj in projects:
pronac = proj[0]
percentage = common_items_percentage(pronac, seg_common_items)
metric_values.append(percentage)
metrics[seg] = {'mean': np.mean(metric_values), 'std': np.std(
metric_values)}
return pd.DataFrame.from_dict(metrics, orient='index')
|
common_items_metrics
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_items, common_items):\n segments = common_items.index.unique()\n metrics = {}\n for seg in segments:\n seg_common_items = segment_common_items(seg)\n projects = get_segment_projects(seg)\n metric_values = []\n for proj in projects:\n pronac = proj[0]\n percentage = common_items_percentage(pronac, seg_common_items)\n metric_values.append(percentage)\n metrics[seg] = {'mean': np.mean(metric_values), 'std': np.std(\n metric_values)}\n return pd.DataFrame.from_dict(metrics, orient='index')\n",
"role": "user"
},
{
"content": "common_items_metrics",
"role": "assistant"
}
] |
def x(pronac):
df = data.all_items
return df[df['PRONAC'] == pronac].drop(columns=['PRONAC', 'idSegmento'])
|
get_project_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac):\n df = data.all_items\n return df[df['PRONAC'] == pronac].drop(columns=['PRONAC', 'idSegmento'])\n",
"role": "user"
},
{
"content": "get_project_items",
"role": "assistant"
}
] |
def x(segment_id):
df = data.common_items
return df.loc[str(segment_id)].reset_index(drop=1).drop(columns=[
'itemOccurrences'])
|
segment_common_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(segment_id):\n df = data.common_items\n return df.loc[str(segment_id)].reset_index(drop=1).drop(columns=[\n 'itemOccurrences'])\n",
"role": "user"
},
{
"content": "segment_common_items",
"role": "assistant"
}
] |
def x(pronac):
segment_id = get_segment_id(str(pronac))
seg_common_items = segment_common_items(segment_id).set_index(
'idPlanilhaItens').index
project_items = get_project_items(pronac).set_index('idPlanilhaItens'
).index
diff = list(project_items.difference(seg_common_items))
return data.distinct_items.loc[diff].to_dict()['Item']
|
get_uncommon_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac):\n segment_id = get_segment_id(str(pronac))\n seg_common_items = segment_common_items(segment_id).set_index(\n 'idPlanilhaItens').index\n project_items = get_project_items(pronac).set_index('idPlanilhaItens'\n ).index\n diff = list(project_items.difference(seg_common_items))\n return data.distinct_items.loc[diff].to_dict()['Item']\n",
"role": "user"
},
{
"content": "get_uncommon_items",
"role": "assistant"
}
] |
def x(filtered_items, uncommon_items):
result = uncommon_items
url_prefix = '/prestacao-contas/analisar/comprovante'
for _, item in filtered_items.iterrows():
item_id = item['idPlanilhaItens']
item_name = uncommon_items[item_id]
result[item_id] = {'name': item_name, 'salic_url': get_salic_url(
item, url_prefix), 'has_recepit': has_receipt(item)}
return result
|
add_info_to_uncommon_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filtered_items, uncommon_items):\n result = uncommon_items\n url_prefix = '/prestacao-contas/analisar/comprovante'\n for _, item in filtered_items.iterrows():\n item_id = item['idPlanilhaItens']\n item_name = uncommon_items[item_id]\n result[item_id] = {'name': item_name, 'salic_url': get_salic_url(\n item, url_prefix), 'has_recepit': has_receipt(item)}\n return result\n",
"role": "user"
},
{
"content": "add_info_to_uncommon_items",
"role": "assistant"
}
] |
def x(pronac, dt):
segment_id = get_segment_id(str(pronac))
metrics = data.common_items_metrics.to_dict(orient='index')[segment_id]
ratio = common_items_percentage(pronac, segment_common_items(segment_id))
k = 1.5
threshold = metrics['mean'] - k * metrics['std']
uncommon_items = get_uncommon_items(pronac)
pronac_filter = data.all_items['PRONAC'] == pronac
uncommon_items_filter = data.all_items['idPlanilhaItens'].isin(
uncommon_items)
items_filter = pronac_filter & uncommon_items_filter
filtered_items = data.all_items[items_filter].drop_duplicates(subset=
'idPlanilhaItens')
uncommon_items = add_info_to_uncommon_items(filtered_items, uncommon_items)
return {'is_outlier': ratio < threshold, 'valor': ratio,
'maximo_esperado': metrics['mean'], 'desvio_padrao': metrics['std'],
'items_incomuns': uncommon_items,
'items_comuns_que_o_projeto_nao_possui':
get_common_items_not_present(pronac)}
|
common_items_ratio
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, dt):\n segment_id = get_segment_id(str(pronac))\n metrics = data.common_items_metrics.to_dict(orient='index')[segment_id]\n ratio = common_items_percentage(pronac, segment_common_items(segment_id))\n k = 1.5\n threshold = metrics['mean'] - k * metrics['std']\n uncommon_items = get_uncommon_items(pronac)\n pronac_filter = data.all_items['PRONAC'] == pronac\n uncommon_items_filter = data.all_items['idPlanilhaItens'].isin(\n uncommon_items)\n items_filter = pronac_filter & uncommon_items_filter\n filtered_items = data.all_items[items_filter].drop_duplicates(subset=\n 'idPlanilhaItens')\n uncommon_items = add_info_to_uncommon_items(filtered_items, uncommon_items)\n return {'is_outlier': ratio < threshold, 'valor': ratio,\n 'maximo_esperado': metrics['mean'], 'desvio_padrao': metrics['std'],\n 'items_incomuns': uncommon_items,\n 'items_comuns_que_o_projeto_nao_possui':\n get_common_items_not_present(pronac)}\n",
"role": "user"
},
{
"content": "common_items_ratio",
"role": "assistant"
}
] |
def x(pronac, dt):
dataframe = data.planilha_comprovacao
project = dataframe.loc[dataframe['PRONAC'] == pronac]
segment_id = project.iloc[0]['idSegmento']
pronac_funds = project[['idPlanilhaAprovacao', 'PRONAC',
'vlComprovacao', 'idSegmento']]
funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby([
'PRONAC'])
project_funds = funds_grp.sum().loc[pronac]['vlComprovacao']
segments_info = data.verified_funds_by_segment_agg.to_dict(orient='index')
mean = segments_info[segment_id]['mean']
std = segments_info[segment_id]['std']
is_outlier = gaussian_outlier.is_outlier(project_funds, mean, std)
maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)
return {'is_outlier': is_outlier, 'valor': project_funds,
'maximo_esperado': maximum_expected_funds, 'minimo_esperado': 0}
|
verified_funds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, dt):\n dataframe = data.planilha_comprovacao\n project = dataframe.loc[dataframe['PRONAC'] == pronac]\n segment_id = project.iloc[0]['idSegmento']\n pronac_funds = project[['idPlanilhaAprovacao', 'PRONAC',\n 'vlComprovacao', 'idSegmento']]\n funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby([\n 'PRONAC'])\n project_funds = funds_grp.sum().loc[pronac]['vlComprovacao']\n segments_info = data.verified_funds_by_segment_agg.to_dict(orient='index')\n mean = segments_info[segment_id]['mean']\n std = segments_info[segment_id]['std']\n is_outlier = gaussian_outlier.is_outlier(project_funds, mean, std)\n maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)\n return {'is_outlier': is_outlier, 'valor': project_funds,\n 'maximo_esperado': maximum_expected_funds, 'minimo_esperado': 0}\n",
"role": "user"
},
{
"content": "verified_funds",
"role": "assistant"
}
] |
def x(df):
df['CaptacaoReal'] = df['CaptacaoReal'].apply(pd.to_numeric)
return df[['Pronac', 'CaptacaoReal']].groupby(['Pronac']).sum()
|
raised_funds_by_project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df):\n df['CaptacaoReal'] = df['CaptacaoReal'].apply(pd.to_numeric)\n return df[['Pronac', 'CaptacaoReal']].groupby(['Pronac']).sum()\n",
"role": "user"
},
{
"content": "raised_funds_by_project",
"role": "assistant"
}
] |
def x(pronac, dt):
project_raised_funds = data.raised_funds_by_project.loc[pronac][
'CaptacaoReal']
dataframe = data.planilha_comprovacao
project_verified = dataframe.loc[dataframe['PRONAC'] == str(pronac)]
if project_verified.empty:
project_verified_funds = 0
else:
pronac_funds = project_verified[['idPlanilhaAprovacao', 'PRONAC',
'vlComprovacao', 'idSegmento']]
funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby(
['PRONAC'])
project_verified_funds = funds_grp.sum().loc[pronac]['vlComprovacao']
to_verify_value = project_raised_funds - float(project_verified_funds)
is_outlier = to_verify_value != 0
return {'is_outlier': is_outlier, 'valor': to_verify_value,
'valor_captado': project_raised_funds, 'valor_comprovado':
project_verified_funds, 'minimo_esperado': 0}
|
to_verify_funds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pronac, dt):\n project_raised_funds = data.raised_funds_by_project.loc[pronac][\n 'CaptacaoReal']\n dataframe = data.planilha_comprovacao\n project_verified = dataframe.loc[dataframe['PRONAC'] == str(pronac)]\n if project_verified.empty:\n project_verified_funds = 0\n else:\n pronac_funds = project_verified[['idPlanilhaAprovacao', 'PRONAC',\n 'vlComprovacao', 'idSegmento']]\n funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby(\n ['PRONAC'])\n project_verified_funds = funds_grp.sum().loc[pronac]['vlComprovacao']\n to_verify_value = project_raised_funds - float(project_verified_funds)\n is_outlier = to_verify_value != 0\n return {'is_outlier': is_outlier, 'valor': to_verify_value,\n 'valor_captado': project_raised_funds, 'valor_comprovado':\n project_verified_funds, 'minimo_esperado': 0}\n",
"role": "user"
},
{
"content": "to_verify_funds",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.