source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(args): task_family = None error = None parts = args.task_family.rsplit('.', 1) if len(parts) == 2: modid, cls_name = parts try: mod = __import__(modid, globals(), locals(), [cls_name]) if hasattr(mod, cls_name): task_cls = getattr(mod, cls_name) if not issubclass(task_cls, Task): abort("object '{}' is not a Task".format(args.task_family)) task_family = task_cls.task_family except ImportError as e: logger.warning('import error in module {}: {}'.format(modid, e)) error = e if task_family is None: index_file = Config.instance().get_expanded('core', 'index_file') if os.path.exists(index_file): info = read_task_from_index(args.task_family, index_file) if not info: abort("task family '{}' not found in index".format(args. task_family)) modid, task_family, _ = info __import__(modid, globals(), locals()) if task_family is None: if error: raise error else: abort("task '{}' not found".format(args.task_family)) luigi_run([task_family] + sys.argv[3:])
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n task_family = None\n error = None\n parts = args.task_family.rsplit('.', 1)\n if len(parts) == 2:\n modid, cls_name = parts\n try:\n mod = __import__(modid, globals(), locals(), [cls_name])\n if hasattr(mod, cls_name):\n task_cls = getattr(mod, cls_name)\n if not issubclass(task_cls, Task):\n abort(\"object '{}' is not a Task\".format(args.task_family))\n task_family = task_cls.task_family\n except ImportError as e:\n logger.warning('import error in module {}: {}'.format(modid, e))\n error = e\n if task_family is None:\n index_file = Config.instance().get_expanded('core', 'index_file')\n if os.path.exists(index_file):\n info = read_task_from_index(args.task_family, index_file)\n if not info:\n abort(\"task family '{}' not found in index\".format(args.\n task_family))\n modid, task_family, _ = info\n __import__(modid, globals(), locals())\n if task_family is None:\n if error:\n raise error\n else:\n abort(\"task '{}' not found\".format(args.task_family))\n luigi_run([task_family] + sys.argv[3:])\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(task_family, index_file=None): if index_file is None: index_file = Config.instance().get_expanded('core', 'index_file') with open(index_file, 'r') as f: for line in f.readlines(): line = line.strip() if line.count(':') >= 2: modid, family, params = line.split(':', 2) if family == task_family: return modid, family, params return None
read_task_from_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(task_family, index_file=None):\n if index_file is None:\n index_file = Config.instance().get_expanded('core', 'index_file')\n with open(index_file, 'r') as f:\n for line in f.readlines():\n line = line.strip()\n if line.count(':') >= 2:\n modid, family, params = line.split(':', 2)\n if family == task_family:\n return modid, family, params\n return None\n", "role": "user" }, { "content": "read_task_from_index", "role": "assistant" } ]
def x(): parser = ArgumentParser(prog='law', description= 'The law command line tool.') sub_parsers = parser.add_subparsers(help='subcommands', dest='command') parser.add_argument('--version', '-V', action='version', version=law. __version__) mods = {} for prog in progs: mods[prog] = import_module('law.cli.' + prog) mods[prog].setup_parser(sub_parsers) if len(sys.argv) >= 2 and sys.argv[1] in forward_progs: args = parser.parse_args(sys.argv[1:3]) else: args = parser.parse_args() if args.command: mods[args.command].execute(args) else: parser.print_help()
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = ArgumentParser(prog='law', description=\n 'The law command line tool.')\n sub_parsers = parser.add_subparsers(help='subcommands', dest='command')\n parser.add_argument('--version', '-V', action='version', version=law.\n __version__)\n mods = {}\n for prog in progs:\n mods[prog] = import_module('law.cli.' + prog)\n mods[prog].setup_parser(sub_parsers)\n if len(sys.argv) >= 2 and sys.argv[1] in forward_progs:\n args = parser.parse_args(sys.argv[1:3])\n else:\n args = parser.parse_args()\n if args.command:\n mods[args.command].execute(args)\n else:\n parser.print_help()\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(func): @functools.wraps(func) def x(self, job_data, event, job_num, *args, **kwargs): job_id = job_data['job_id'] dashboard_status = self.map_status(job_data.get('status'), event) if not dashboard_status or self._last_states.get(job_id ) == dashboard_status: return None self._last_states[job_id] = dashboard_status return func(self, job_data, event, job_num, *args, **kwargs) return wrapper
cache_by_status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @functools.wraps(func)\n def x(self, job_data, event, job_num, *args, **kwargs):\n job_id = job_data['job_id']\n dashboard_status = self.map_status(job_data.get('status'), event)\n if not dashboard_status or self._last_states.get(job_id\n ) == dashboard_status:\n return None\n self._last_states[job_id] = dashboard_status\n return func(self, job_data, event, job_num, *args, **kwargs)\n return wrapper\n", "role": "user" }, { "content": "cache_by_status", "role": "assistant" } ]
def x(sub_parsers): parser = sub_parsers.add_parser('software', prog='law software', description= 'Create or update the law software cache ({}). This is only required for some sandboxes that need to forward software into containers.' .format(get_sw_dir())) parser.add_argument('--remove', '-r', action='store_true', help= 'remove the software cache directory and exit') parser.add_argument('--location', '-l', action='store_true', help= 'print the location of the software cache directory and exit')
setup_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sub_parsers):\n parser = sub_parsers.add_parser('software', prog='law software',\n description=\n 'Create or update the law software cache ({}). This is only required for some sandboxes that need to forward software into containers.'\n .format(get_sw_dir()))\n parser.add_argument('--remove', '-r', action='store_true', help=\n 'remove the software cache directory and exit')\n parser.add_argument('--location', '-l', action='store_true', help=\n 'print the location of the software cache directory and exit')\n", "role": "user" }, { "content": "setup_parser", "role": "assistant" } ]
def x(args): sw_dir = get_sw_dir() if args.location: print(sw_dir) return if args.remove: remove_software_cache(sw_dir) return build_software_cache(sw_dir)
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n sw_dir = get_sw_dir()\n if args.location:\n print(sw_dir)\n return\n if args.remove:\n remove_software_cache(sw_dir)\n return\n build_software_cache(sw_dir)\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(sw_dir=None): sw_dir = get_sw_dir(sw_dir) remove_software_cache(sw_dir) os.makedirs(sw_dir) reload_dependencies(force=True) for mod in deps: path = os.path.dirname(mod.__file__) name, ext = os.path.splitext(os.path.basename(mod.__file__)) if name == '__init__': name = os.path.basename(path) shutil.copytree(path, os.path.join(sw_dir, name)) else: shutil.copy2(os.path.join(path, name + '.py'), sw_dir)
build_software_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sw_dir=None):\n sw_dir = get_sw_dir(sw_dir)\n remove_software_cache(sw_dir)\n os.makedirs(sw_dir)\n reload_dependencies(force=True)\n for mod in deps:\n path = os.path.dirname(mod.__file__)\n name, ext = os.path.splitext(os.path.basename(mod.__file__))\n if name == '__init__':\n name = os.path.basename(path)\n shutil.copytree(path, os.path.join(sw_dir, name))\n else:\n shutil.copy2(os.path.join(path, name + '.py'), sw_dir)\n", "role": "user" }, { "content": "build_software_cache", "role": "assistant" } ]
def x(sw_dir=None): sw_dir = get_sw_dir(sw_dir) if os.path.exists(sw_dir): shutil.rmtree(sw_dir)
remove_software_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sw_dir=None):\n sw_dir = get_sw_dir(sw_dir)\n if os.path.exists(sw_dir):\n shutil.rmtree(sw_dir)\n", "role": "user" }, { "content": "remove_software_cache", "role": "assistant" } ]
def x(force=False): global _reloaded_deps if _reloaded_deps and not force: return _reloaded_deps = True for mod in deps: six.moves.reload_module(mod) logger.debug("reloaded module '{}'".format(mod))
reload_dependencies
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(force=False):\n global _reloaded_deps\n if _reloaded_deps and not force:\n return\n _reloaded_deps = True\n for mod in deps:\n six.moves.reload_module(mod)\n logger.debug(\"reloaded module '{}'\".format(mod))\n", "role": "user" }, { "content": "reload_dependencies", "role": "assistant" } ]
def x(sw_dir=None, reload_deps=False): sw_dir = get_sw_dir(sw_dir) if os.path.exists(sw_dir): sys.path.insert(1, sw_dir) if reload_deps: reload_dependencies()
use_software_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sw_dir=None, reload_deps=False):\n sw_dir = get_sw_dir(sw_dir)\n if os.path.exists(sw_dir):\n sys.path.insert(1, sw_dir)\n if reload_deps:\n reload_dependencies()\n", "role": "user" }, { "content": "use_software_cache", "role": "assistant" } ]
def x(sw_dir=None): if sw_dir is None: sw_dir = Config.instance().get('core', 'software_dir') sw_dir = os.path.expandvars(os.path.expanduser(sw_dir)) return sw_dir
get_sw_dir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sw_dir=None):\n if sw_dir is None:\n sw_dir = Config.instance().get('core', 'software_dir')\n sw_dir = os.path.expandvars(os.path.expanduser(sw_dir))\n return sw_dir\n", "role": "user" }, { "content": "get_sw_dir", "role": "assistant" } ]
def x(*args, **kwargs): global guarded_tfile_cls if not guarded_tfile_cls: import ROOT class GuardedTFile(ROOT.TFile): def x(self): return self def x(self, exc_type, exc_value, traceback): if self.IsOpen(): self.Close() guarded_tfile_cls = GuardedTFile return guarded_tfile_cls(*args, **kwargs)
GuardedTFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*args, **kwargs):\n global guarded_tfile_cls\n if not guarded_tfile_cls:\n import ROOT\n\n\n class GuardedTFile(ROOT.TFile):\n\n def x(self):\n return self\n\n def x(self, exc_type, exc_value, traceback):\n if self.IsOpen():\n self.Close()\n guarded_tfile_cls = GuardedTFile\n return guarded_tfile_cls(*args, **kwargs)\n", "role": "user" }, { "content": "GuardedTFile", "role": "assistant" } ]
def x(func): @functools.wraps(func) def x(self): return func(self.as_workflow()) return property(wrapper)
workflow_property
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n @functools.wraps(func)\n def x(self):\n return func(self.as_workflow())\n return property(wrapper)\n", "role": "user" }, { "content": "workflow_property", "role": "assistant" } ]
def x(func=None, attr=None, setter=True): def x(func): _attr = attr or '_workflow_cached_' + func.__name__ @functools.wraps(func) def x(self): wf = self.as_workflow() if not hasattr(wf, _attr): setattr(wf, _attr, func(wf)) return getattr(wf, _attr) _setter = None if setter: def x(self, value): wf = self.as_workflow() setattr(wf, _attr, value) _setter.__name__ = func.__name__ return property(fget=getter, fset=_setter) return wrapper if not func else wrapper(func)
cached_workflow_property
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func=None, attr=None, setter=True):\n\n def x(func):\n _attr = attr or '_workflow_cached_' + func.__name__\n\n @functools.wraps(func)\n def x(self):\n wf = self.as_workflow()\n if not hasattr(wf, _attr):\n setattr(wf, _attr, func(wf))\n return getattr(wf, _attr)\n _setter = None\n if setter:\n\n def x(self, value):\n wf = self.as_workflow()\n setattr(wf, _attr, value)\n _setter.__name__ = func.__name__\n return property(fget=getter, fset=_setter)\n return wrapper if not func else wrapper(func)\n", "role": "user" }, { "content": "cached_workflow_property", "role": "assistant" } ]
def x(self): if callable(self.task.workflow_complete): return self.task.workflow_complete() else: return super(BaseWorkflowProxy, self).complete()
complete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if callable(self.task.workflow_complete):\n return self.task.workflow_complete()\n else:\n return super(BaseWorkflowProxy, self).complete()\n", "role": "user" }, { "content": "complete", "role": "assistant" } ]
def x(self): reqs = OrderedDict() reqs.update(self.task.workflow_requires()) return reqs
requires
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n reqs = OrderedDict()\n reqs.update(self.task.workflow_requires())\n return reqs\n", "role": "user" }, { "content": "requires", "role": "assistant" } ]
def x(self): if self.task.target_collection_cls is not None: cls = self.task.target_collection_cls elif self.task.outputs_siblings: cls = SiblingFileCollection else: cls = TargetCollection targets = luigi.task.getpaths(self.task.get_branch_tasks()) collection = cls(targets, threshold=self.threshold(len(targets))) return OrderedDict([('collection', collection)])
output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.task.target_collection_cls is not None:\n cls = self.task.target_collection_cls\n elif self.task.outputs_siblings:\n cls = SiblingFileCollection\n else:\n cls = TargetCollection\n targets = luigi.task.getpaths(self.task.get_branch_tasks())\n collection = cls(targets, threshold=self.threshold(len(targets)))\n return OrderedDict([('collection', collection)])\n", "role": "user" }, { "content": "output", "role": "assistant" } ]
def x(self, n=None): if n is None: n = len(self.task.branch_map()) acceptance = self.task.acceptance return acceptance * n if acceptance <= 1 else acceptance
threshold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n=None):\n if n is None:\n n = len(self.task.branch_map())\n acceptance = self.task.acceptance\n return acceptance * n if acceptance <= 1 else acceptance\n", "role": "user" }, { "content": "threshold", "role": "assistant" } ]
def x(self, section, option, **kwargs): cfg = Config.instance() default = cfg.get_expanded(section, option, **kwargs) return cfg.get_expanded(section, '{}_{}'.format(self.workflow_type, option), default=default, **kwargs)
get_prefixed_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, section, option, **kwargs):\n cfg = Config.instance()\n default = cfg.get_expanded(section, option, **kwargs)\n return cfg.get_expanded(section, '{}_{}'.format(self.workflow_type,\n option), default=default, **kwargs)\n", "role": "user" }, { "content": "get_prefixed_config", "role": "assistant" } ]
def x(p, mz_value, tol=0.1, z=1, reduce_func=sum): tol = abs(tol) im = np.zeros((p.imzmldict['max count of pixels y'], p.imzmldict[ 'max count of pixels x'])) for i, (x, y, z_) in enumerate(p.coordinates): if z_ == 0: UserWarning( "z coordinate = 0 present, if you're getting blank images set getionimage(.., .., z=0)" ) if z_ == z: mzs, ints = map(lambda x: np.asarray(x), p.getspectrum(i)) min_i, max_i = _bisect_spectrum(mzs, mz_value, tol) im[y - 1, x - 1] = reduce_func(ints[min_i:max_i + 1]) return im
getionimage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, mz_value, tol=0.1, z=1, reduce_func=sum):\n tol = abs(tol)\n im = np.zeros((p.imzmldict['max count of pixels y'], p.imzmldict[\n 'max count of pixels x']))\n for i, (x, y, z_) in enumerate(p.coordinates):\n if z_ == 0:\n UserWarning(\n \"z coordinate = 0 present, if you're getting blank images set getionimage(.., .., z=0)\"\n )\n if z_ == z:\n mzs, ints = map(lambda x: np.asarray(x), p.getspectrum(i))\n min_i, max_i = _bisect_spectrum(mzs, mz_value, tol)\n im[y - 1, x - 1] = reduce_func(ints[min_i:max_i + 1])\n return im\n", "role": "user" }, { "content": "getionimage", "role": "assistant" } ]
def x(self): mz_group = int_group = None slist = None elem_iterator = self.iterparse(self.filename, events=('start', 'end')) if sys.version_info > (3,): _, self.root = next(elem_iterator) else: _, self.root = elem_iterator.next() for event, elem in elem_iterator: if elem.tag == self.sl + 'spectrumList' and event == 'start': slist = elem elif elem.tag == self.sl + 'spectrum' and event == 'end': self.__process_spectrum(elem) slist.remove(elem) elif elem.tag == self.sl + 'referenceableParamGroup' and event == 'end': for param in elem: if param.attrib['name'] == 'm/z array': self.mzGroupId = elem.attrib['id'] mz_group = elem elif param.attrib['name'] == 'intensity array': self.intGroupId = elem.attrib['id'] int_group = elem self.__assign_precision(int_group, mz_group) self.__fix_offsets()
iter_read_spectrum_meta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mz_group = int_group = None\n slist = None\n elem_iterator = self.iterparse(self.filename, events=('start', 'end'))\n if sys.version_info > (3,):\n _, self.root = next(elem_iterator)\n else:\n _, self.root = elem_iterator.next()\n for event, elem in elem_iterator:\n if elem.tag == self.sl + 'spectrumList' and event == 'start':\n slist = elem\n elif elem.tag == self.sl + 'spectrum' and event == 'end':\n self.__process_spectrum(elem)\n slist.remove(elem)\n elif elem.tag == self.sl + 'referenceableParamGroup' and event == 'end':\n for param in elem:\n if param.attrib['name'] == 'm/z array':\n self.mzGroupId = elem.attrib['id']\n mz_group = elem\n elif param.attrib['name'] == 'intensity array':\n self.intGroupId = elem.attrib['id']\n int_group = elem\n self.__assign_precision(int_group, mz_group)\n self.__fix_offsets()\n", "role": "user" }, { "content": "iter_read_spectrum_meta", "role": "assistant" } ]
def x(self): d = {} scan_settings_list_elem = self.root.find('%sscanSettingsList' % self.sl) instrument_config_list_elem = self.root.find( '%sinstrumentConfigurationList' % self.sl) supportedparams1 = [('max count of pixels x', int), ( 'max count of pixels y', int), ('max dimension x', int), ( 'max dimension y', int), ('pixel size x', float), ('pixel size y', float), ('matrix solution concentration', float)] supportedparams2 = [('wavelength', float), ('focus diameter x', float), ('focus diameter y', float), ('pulse energy', float), ( 'pulse duration', float), ('attenuation', float)] supportedaccessions1 = [('IMS:1000042', 'value'), ('IMS:1000043', 'value'), ('IMS:1000044', 'value'), ('IMS:1000045', 'value'), ( 'IMS:1000046', 'value'), ('IMS:1000047', 'value'), ('MS:1000835', 'value')] supportedaccessions2 = [('MS:1000843', 'value'), ('MS:1000844', 'value' ), ('MS:1000845', 'value'), ('MS:1000846', 'value'), ('MS:1000847', 'value'), ('MS:1000848', 'value')] for i in range(len(supportedparams1)): acc, attr = supportedaccessions1[i] elem = scan_settings_list_elem.find('.//%scvParam[@accession="%s"]' % (self.sl, acc)) if elem is None: break name, T = supportedparams1[i] try: d[name] = T(elem.attrib[attr]) except ValueError: warn(Warning( 'Wrong data type in XML file. Skipped attribute "%s"' % name)) for i in range(len(supportedparams2)): acc, attr = supportedaccessions2[i] elem = instrument_config_list_elem.find( './/%scvParam[@accession="%s"]' % (self.sl, acc)) if elem is None: break name, T = supportedparams2[i] try: d[name] = T(elem.attrib[attr]) except ValueError: warn(Warning( 'Wrong data type in XML file. Skipped attribute "%s"' % name)) return d
readimzmlmeta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n d = {}\n scan_settings_list_elem = self.root.find('%sscanSettingsList' % self.sl)\n instrument_config_list_elem = self.root.find(\n '%sinstrumentConfigurationList' % self.sl)\n supportedparams1 = [('max count of pixels x', int), (\n 'max count of pixels y', int), ('max dimension x', int), (\n 'max dimension y', int), ('pixel size x', float), ('pixel size y',\n float), ('matrix solution concentration', float)]\n supportedparams2 = [('wavelength', float), ('focus diameter x', float),\n ('focus diameter y', float), ('pulse energy', float), (\n 'pulse duration', float), ('attenuation', float)]\n supportedaccessions1 = [('IMS:1000042', 'value'), ('IMS:1000043',\n 'value'), ('IMS:1000044', 'value'), ('IMS:1000045', 'value'), (\n 'IMS:1000046', 'value'), ('IMS:1000047', 'value'), ('MS:1000835',\n 'value')]\n supportedaccessions2 = [('MS:1000843', 'value'), ('MS:1000844', 'value'\n ), ('MS:1000845', 'value'), ('MS:1000846', 'value'), ('MS:1000847',\n 'value'), ('MS:1000848', 'value')]\n for i in range(len(supportedparams1)):\n acc, attr = supportedaccessions1[i]\n elem = scan_settings_list_elem.find('.//%scvParam[@accession=\"%s\"]' %\n (self.sl, acc))\n if elem is None:\n break\n name, T = supportedparams1[i]\n try:\n d[name] = T(elem.attrib[attr])\n except ValueError:\n warn(Warning(\n 'Wrong data type in XML file. Skipped attribute \"%s\"' % name))\n for i in range(len(supportedparams2)):\n acc, attr = supportedaccessions2[i]\n elem = instrument_config_list_elem.find(\n './/%scvParam[@accession=\"%s\"]' % (self.sl, acc))\n if elem is None:\n break\n name, T = supportedparams2[i]\n try:\n d[name] = T(elem.attrib[attr])\n except ValueError:\n warn(Warning(\n 'Wrong data type in XML file. Skipped attribute \"%s\"' % name))\n return d\n", "role": "user" }, { "content": "readimzmlmeta", "role": "assistant" } ]
def x(self, i): try: pixel_size_x = self.imzmldict['pixel size x'] pixel_size_y = self.imzmldict['pixel size y'] except KeyError: raise KeyError('Could not find all pixel size attributes in imzML file' ) image_x, image_y = self.coordinates[i][:2] return image_x * pixel_size_x, image_y * pixel_size_y
get_physical_coordinates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i):\n try:\n pixel_size_x = self.imzmldict['pixel size x']\n pixel_size_y = self.imzmldict['pixel size y']\n except KeyError:\n raise KeyError('Could not find all pixel size attributes in imzML file'\n )\n image_x, image_y = self.coordinates[i][:2]\n return image_x * pixel_size_x, image_y * pixel_size_y\n", "role": "user" }, { "content": "get_physical_coordinates", "role": "assistant" } ]
def x(self, index): mz_bytes, intensity_bytes = self.get_spectrum_as_string(index) mz_array = np.frombuffer(mz_bytes, dtype=self.mzPrecision) intensity_array = np.frombuffer(intensity_bytes, dtype=self. intensityPrecision) return mz_array, intensity_array
getspectrum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n mz_bytes, intensity_bytes = self.get_spectrum_as_string(index)\n mz_array = np.frombuffer(mz_bytes, dtype=self.mzPrecision)\n intensity_array = np.frombuffer(intensity_bytes, dtype=self.\n intensityPrecision)\n return mz_array, intensity_array\n", "role": "user" }, { "content": "getspectrum", "role": "assistant" } ]
def x(self, index): offsets = [self.mzOffsets[index], self.intensityOffsets[index]] lengths = [self.mzLengths[index], self.intensityLengths[index]] lengths[0] *= self.sizeDict[self.mzPrecision] lengths[1] *= self.sizeDict[self.intensityPrecision] self.m.seek(offsets[0]) mz_string = self.m.read(lengths[0]) self.m.seek(offsets[1]) intensity_string = self.m.read(lengths[1]) return mz_string, intensity_string
get_spectrum_as_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, index):\n offsets = [self.mzOffsets[index], self.intensityOffsets[index]]\n lengths = [self.mzLengths[index], self.intensityLengths[index]]\n lengths[0] *= self.sizeDict[self.mzPrecision]\n lengths[1] *= self.sizeDict[self.intensityPrecision]\n self.m.seek(offsets[0])\n mz_string = self.m.read(lengths[0])\n self.m.seek(offsets[1])\n intensity_string = self.m.read(lengths[1])\n return mz_string, intensity_string\n", "role": "user" }, { "content": "get_spectrum_as_string", "role": "assistant" } ]
def x(self, mz_offset, mz_len, mz_enc_len): self.ibd.seek(mz_offset) data = self.ibd.read(mz_enc_len) self.ibd.seek(0, 2) data = self.mz_compression.decompress(data) return tuple(np.fromstring(data, dtype=self.mz_dtype))
read_mz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mz_offset, mz_len, mz_enc_len):\n self.ibd.seek(mz_offset)\n data = self.ibd.read(mz_enc_len)\n self.ibd.seek(0, 2)\n data = self.mz_compression.decompress(data)\n return tuple(np.fromstring(data, dtype=self.mz_dtype))\n", "role": "user" }, { "content": "read_mz", "role": "assistant" } ]
def x(self, mzs): mzs = tuple(mzs) if mzs in self.lru_cache: return self.lru_cache[mzs] mz_hash = '%s-%s-%s' % (hash(mzs), sum(mzs), len(mzs)) if mz_hash in self.hashes: for mz_data in self.hashes[mz_hash]: test_mz = self._read_mz(*mz_data) if mzs == test_mz: self.lru_cache[test_mz] = mz_data return mz_data mz_data = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression) self.hashes[mz_hash].append(mz_data) self.lru_cache[mzs] = mz_data return mz_data
get_previous_mz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mzs):\n mzs = tuple(mzs)\n if mzs in self.lru_cache:\n return self.lru_cache[mzs]\n mz_hash = '%s-%s-%s' % (hash(mzs), sum(mzs), len(mzs))\n if mz_hash in self.hashes:\n for mz_data in self.hashes[mz_hash]:\n test_mz = self._read_mz(*mz_data)\n if mzs == test_mz:\n self.lru_cache[test_mz] = mz_data\n return mz_data\n mz_data = self._encode_and_write(mzs, self.mz_dtype, self.mz_compression)\n self.hashes[mz_hash].append(mz_data)\n self.lru_cache[mzs] = mz_data\n return mz_data\n", "role": "user" }, { "content": "get_previous_mz", "role": "assistant" } ]
def x(self, mzs, intensities, coords, userParams=[]): if self.mode != 'continuous' or self.first_mz is None: mzs = self.mz_compression.rounding(mzs) intensities = self.intensity_compression.rounding(intensities) if self.mode == 'continuous': if self.first_mz is None: self.first_mz = self._encode_and_write(mzs, self.mz_dtype, self .mz_compression) mz_data = self.first_mz elif self.mode == 'processed': mz_data = self._encode_and_write(mzs, self.mz_dtype, self. mz_compression) elif self.mode == 'auto': mz_data = self._get_previous_mz(mzs) else: raise TypeError('Unknown mode: %s' % self.mode) mz_offset, mz_len, mz_enc_len = mz_data int_offset, int_len, int_enc_len = self._encode_and_write(intensities, self.intensity_dtype, self.intensity_compression) mz_min = np.min(mzs) mz_max = np.max(mzs) ix_max = np.argmax(intensities) mz_base = mzs[ix_max] int_base = intensities[ix_max] int_tic = np.sum(intensities) s = _Spectrum(coords, mz_len, mz_offset, mz_enc_len, int_len, int_offset, int_enc_len, mz_min, mz_max, mz_base, int_base, int_tic, userParams) self.spectra.append(s)
addSpectrum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mzs, intensities, coords, userParams=[]):\n if self.mode != 'continuous' or self.first_mz is None:\n mzs = self.mz_compression.rounding(mzs)\n intensities = self.intensity_compression.rounding(intensities)\n if self.mode == 'continuous':\n if self.first_mz is None:\n self.first_mz = self._encode_and_write(mzs, self.mz_dtype, self\n .mz_compression)\n mz_data = self.first_mz\n elif self.mode == 'processed':\n mz_data = self._encode_and_write(mzs, self.mz_dtype, self.\n mz_compression)\n elif self.mode == 'auto':\n mz_data = self._get_previous_mz(mzs)\n else:\n raise TypeError('Unknown mode: %s' % self.mode)\n mz_offset, mz_len, mz_enc_len = mz_data\n int_offset, int_len, int_enc_len = self._encode_and_write(intensities,\n self.intensity_dtype, self.intensity_compression)\n mz_min = np.min(mzs)\n mz_max = np.max(mzs)\n ix_max = np.argmax(intensities)\n mz_base = mzs[ix_max]\n int_base = intensities[ix_max]\n int_tic = np.sum(intensities)\n s = _Spectrum(coords, mz_len, mz_offset, mz_enc_len, int_len,\n int_offset, int_enc_len, mz_min, mz_max, mz_base, int_base, int_tic,\n userParams)\n self.spectra.append(s)\n", "role": "user" }, { "content": "addSpectrum", "role": "assistant" } ]
def x(self): self.ibd.close() self._write_xml() self.xml.close()
finish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.ibd.close()\n self._write_xml()\n self.xml.close()\n", "role": "user" }, { "content": "finish", "role": "assistant" } ]
def x(): global settings, project_settings settings = Changes.load() project_settings = Project.load(GitHubRepository(auth_token=settings. auth_token))
initialise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n global settings, project_settings\n settings = Changes.load()\n project_settings = Project.load(GitHubRepository(auth_token=settings.\n auth_token))\n", "role": "user" }, { "content": "initialise", "role": "assistant" } ]
def x(context): rmtree('dist', ignore_errors=True) build_package_command = 'python setup.py clean sdist bdist_wheel' result = shell.dry_run(build_package_command, context.dry_run) packages = Path('dist').files() if not context.dry_run else 'nothing' if not result: raise Exception('Error building packages: %s' % result) else: log.info('Built %s' % ', '.join(packages)) return packages
build_distributions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n rmtree('dist', ignore_errors=True)\n build_package_command = 'python setup.py clean sdist bdist_wheel'\n result = shell.dry_run(build_package_command, context.dry_run)\n packages = Path('dist').files() if not context.dry_run else 'nothing'\n if not result:\n raise Exception('Error building packages: %s' % result)\n else:\n log.info('Built %s' % ', '.join(packages))\n return packages\n", "role": "user" }, { "content": "build_distributions", "role": "assistant" } ]
def x(context): if not context.dry_run and build_distributions(context): with util.mktmpdir() as tmp_dir: venv.create_venv(tmp_dir=tmp_dir) for distribution in Path('dist').files(): try: venv.install(distribution, tmp_dir) log.info('Successfully installed %s', distribution) if context.test_command and verification.run_test_command( context): log.info('Successfully ran test command: %s', context.test_command) except Exception as e: raise Exception('Error installing distribution %s' % distribution, e) else: log.info('Dry run, skipping installation')
install_package
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n if not context.dry_run and build_distributions(context):\n with util.mktmpdir() as tmp_dir:\n venv.create_venv(tmp_dir=tmp_dir)\n for distribution in Path('dist').files():\n try:\n venv.install(distribution, tmp_dir)\n log.info('Successfully installed %s', distribution)\n if context.test_command and verification.run_test_command(\n context):\n log.info('Successfully ran test command: %s',\n context.test_command)\n except Exception as e:\n raise Exception('Error installing distribution %s' %\n distribution, e)\n else:\n log.info('Dry run, skipping installation')\n", "role": "user" }, { "content": "install_package", "role": "assistant" } ]
def x(context): if not context.dry_run and build_distributions(context): upload_args = 'twine upload ' upload_args += ' '.join(Path('dist').files()) if context.pypi: upload_args += ' -r %s' % context.pypi upload_result = shell.dry_run(upload_args, context.dry_run) if not context.dry_run and not upload_result: raise Exception('Error uploading: %s' % upload_result) else: log.info('Successfully uploaded %s:%s', context.module_name, context.new_version) else: log.info('Dry run, skipping package upload')
upload_package
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n if not context.dry_run and build_distributions(context):\n upload_args = 'twine upload '\n upload_args += ' '.join(Path('dist').files())\n if context.pypi:\n upload_args += ' -r %s' % context.pypi\n upload_result = shell.dry_run(upload_args, context.dry_run)\n if not context.dry_run and not upload_result:\n raise Exception('Error uploading: %s' % upload_result)\n else:\n log.info('Successfully uploaded %s:%s', context.module_name,\n context.new_version)\n else:\n log.info('Dry run, skipping package upload')\n", "role": "user" }, { "content": "upload_package", "role": "assistant" } ]
def x(context): tmp_dir = venv.create_venv() install_cmd = '%s/bin/pip install %s' % (tmp_dir, context.module_name) package_index = 'pypi' if context.pypi: install_cmd += '-i %s' % context.pypi package_index = context.pypi try: result = shell.dry_run(install_cmd, context.dry_run) if not context.dry_run and not result: log.error('Failed to install %s from %s', context.module_name, package_index) else: log.info('Successfully installed %s from %s', context. module_name, package_index) except Exception as e: error_msg = 'Error installing %s from %s' % (context.module_name, package_index) log.exception(error_msg) raise Exception(error_msg, e)
install_from_pypi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n tmp_dir = venv.create_venv()\n install_cmd = '%s/bin/pip install %s' % (tmp_dir, context.module_name)\n package_index = 'pypi'\n if context.pypi:\n install_cmd += '-i %s' % context.pypi\n package_index = context.pypi\n try:\n result = shell.dry_run(install_cmd, context.dry_run)\n if not context.dry_run and not result:\n log.error('Failed to install %s from %s', context.module_name,\n package_index)\n else:\n log.info('Successfully installed %s from %s', context.\n module_name, package_index)\n except Exception as e:\n error_msg = 'Error installing %s from %s' % (context.module_name,\n package_index)\n log.exception(error_msg)\n raise Exception(error_msg, e)\n", "role": "user" }, { "content": "install_from_pypi", "role": "assistant" } ]
def x(probe_name, probe_result, failure_msg): log.info('%s? %s' % (probe_name, probe_result)) if not probe_result: raise exceptions.ProbeException(failure_msg) else: return True
report_and_raise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(probe_name, probe_result, failure_msg):\n log.info('%s? %s' % (probe_name, probe_result))\n if not probe_result:\n raise exceptions.ProbeException(failure_msg)\n else:\n return True\n", "role": "user" }, { "content": "report_and_raise", "role": "assistant" } ]
def x(python_module): init_path = '{}/__init__.py'.format(python_module) has_metadata = exists(init_path) and attributes.has_attribute(python_module , '__version__') and attributes.has_attribute(python_module, '__url__') return report_and_raise('Has module metadata', has_metadata, 'Your %s/__init__.py must contain __version__ and __url__ attributes')
has_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(python_module):\n init_path = '{}/__init__.py'.format(python_module)\n has_metadata = exists(init_path) and attributes.has_attribute(python_module\n , '__version__') and attributes.has_attribute(python_module, '__url__')\n return report_and_raise('Has module metadata', has_metadata,\n 'Your %s/__init__.py must contain __version__ and __url__ attributes')\n", "role": "user" }, { "content": "has_metadata", "role": "assistant" } ]
def x(python_module): log.info('Checking project for changes requirements.') return has_tools() and has_setup() and has_metadata(python_module ) and has_test_runner() and has_readme() and has_changelog()
probe_project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(python_module):\n log.info('Checking project for changes requirements.')\n return has_tools() and has_setup() and has_metadata(python_module\n ) and has_test_runner() and has_readme() and has_changelog()\n", "role": "user" }, { "content": "probe_project", "role": "assistant" } ]
def x(context): commit_version_change(context) if context.github: project_settings = project_config(context.module_name) if not project_settings['gh_token']: click.echo( 'You need a GitHub token for changes to create a release.') click.pause( 'Press [enter] to launch the GitHub "New personal access token" page, to create a token for changes.' ) click.launch('https://github.com/settings/tokens/new') project_settings['gh_token'] = click.prompt( 'Enter your changes token') store_settings(context.module_name, project_settings) description = click.prompt('Describe this release') upload_url = create_github_release(context, project_settings[ 'gh_token'], description) upload_release_distributions(context, project_settings['gh_token'], build_distributions(context), upload_url) click.pause('Press [enter] to review and update your new release') click.launch('{0}/releases/tag/{1}'.format(context.repo_url, context.new_version)) else: tag_and_push(context)
publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n commit_version_change(context)\n if context.github:\n project_settings = project_config(context.module_name)\n if not project_settings['gh_token']:\n click.echo(\n 'You need a GitHub token for changes to create a release.')\n click.pause(\n 'Press [enter] to launch the GitHub \"New personal access token\" page, to create a token for changes.'\n )\n click.launch('https://github.com/settings/tokens/new')\n project_settings['gh_token'] = click.prompt(\n 'Enter your changes token')\n store_settings(context.module_name, project_settings)\n description = click.prompt('Describe this release')\n upload_url = create_github_release(context, project_settings[\n 'gh_token'], description)\n upload_release_distributions(context, project_settings['gh_token'],\n build_distributions(context), upload_url)\n click.pause('Press [enter] to review and update your new release')\n click.launch('{0}/releases/tag/{1}'.format(context.repo_url,\n context.new_version))\n else:\n tag_and_push(context)\n", "role": "user" }, { "content": "publish", "role": "assistant" } ]
def x(context): try: run_tests() if not context.skip_changelog: generate_changelog(context) increment_version(context) build_distributions(context) install_package(context) upload_package(context) install_from_pypi(context) publish(context) except Exception: log.exception('Error releasing')
perform_release
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n try:\n run_tests()\n if not context.skip_changelog:\n generate_changelog(context)\n increment_version(context)\n build_distributions(context)\n install_package(context)\n upload_package(context)\n install_from_pypi(context)\n publish(context)\n except Exception:\n log.exception('Error releasing')\n", "role": "user" }, { "content": "perform_release", "role": "assistant" } ]
def x(module_name, attribute_name): with open('%s/__init__.py' % module_name) as input_file: for line in input_file: if line.startswith(attribute_name): return ast.literal_eval(line.split('=')[1].strip())
extract_attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(module_name, attribute_name):\n with open('%s/__init__.py' % module_name) as input_file:\n for line in input_file:\n if line.startswith(attribute_name):\n return ast.literal_eval(line.split('=')[1].strip())\n", "role": "user" }, { "content": "extract_attribute", "role": "assistant" } ]
def x(module_name, attribute_name, new_value, dry_run=True): init_file = '%s/__init__.py' % module_name _, tmp_file = tempfile.mkstemp() with open(init_file) as input_file: with open(tmp_file, 'w') as output_file: for line in input_file: if line.startswith(attribute_name): line = "%s = '%s'\n" % (attribute_name, new_value) output_file.write(line) if not dry_run: Path(tmp_file).copy(init_file) else: log.info(diff(tmp_file, init_file, retcode=None))
replace_attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(module_name, attribute_name, new_value, dry_run=True):\n init_file = '%s/__init__.py' % module_name\n _, tmp_file = tempfile.mkstemp()\n with open(init_file) as input_file:\n with open(tmp_file, 'w') as output_file:\n for line in input_file:\n if line.startswith(attribute_name):\n line = \"%s = '%s'\\n\" % (attribute_name, new_value)\n output_file.write(line)\n if not dry_run:\n Path(tmp_file).copy(init_file)\n else:\n log.info(diff(tmp_file, init_file, retcode=None))\n", "role": "user" }, { "content": "replace_attribute", "role": "assistant" } ]
def x(module_name, attribute_name): init_file = '%s/__init__.py' % module_name return any([(attribute_name in init_line) for init_line in open( init_file).readlines()])
has_attribute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(module_name, attribute_name):\n init_file = '%s/__init__.py' % module_name\n return any([(attribute_name in init_line) for init_line in open(\n init_file).readlines()])\n", "role": "user" }, { "content": "has_attribute", "role": "assistant" } ]
def x(alternatives): if not alternatives: raise ValueError if not isinstance(alternatives, list): raise TypeError choice_map = OrderedDict(('{}'.format(i), value) for i, value in enumerate(alternatives, 1)) input_terminator = '0' choice_map.update({input_terminator: '<done>'}) choice_map.move_to_end('0', last=False) choice_indexes = choice_map.keys() choice_lines = ['{} - {}'.format(*c) for c in choice_map.items()] prompt = '\n'.join(('Select labels:', '\n'.join(choice_lines), 'Choose from {}'.format(', '.join(choice_indexes)))) user_choices = set() user_choice = None while not user_choice == input_terminator: if user_choices: note('Selected labels: [{}]'.format(', '.join(user_choices))) user_choice = click.prompt(prompt, type=click.Choice(choice_indexes ), default=input_terminator) done = user_choice == input_terminator new_selection = user_choice not in user_choices nothing_selected = not user_choices if not done and new_selection: user_choices.add(choice_map[user_choice]) if done and nothing_selected: error('Please select at least one label') user_choice = None return user_choices
choose_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alternatives):\n if not alternatives:\n raise ValueError\n if not isinstance(alternatives, list):\n raise TypeError\n choice_map = OrderedDict(('{}'.format(i), value) for i, value in\n enumerate(alternatives, 1))\n input_terminator = '0'\n choice_map.update({input_terminator: '<done>'})\n choice_map.move_to_end('0', last=False)\n choice_indexes = choice_map.keys()\n choice_lines = ['{} - {}'.format(*c) for c in choice_map.items()]\n prompt = '\\n'.join(('Select labels:', '\\n'.join(choice_lines),\n 'Choose from {}'.format(', '.join(choice_indexes))))\n user_choices = set()\n user_choice = None\n while not user_choice == input_terminator:\n if user_choices:\n note('Selected labels: [{}]'.format(', '.join(user_choices)))\n user_choice = click.prompt(prompt, type=click.Choice(choice_indexes\n ), default=input_terminator)\n done = user_choice == input_terminator\n new_selection = user_choice not in user_choices\n nothing_selected = not user_choices\n if not done and new_selection:\n user_choices.add(choice_map[user_choice])\n if done and nothing_selected:\n error('Please select at least one label')\n user_choice = None\n return user_choices\n", "role": "user" }, { "content": "choose_labels", "role": "assistant" } ]
def x(dirname=None): curdir = os.getcwd() try: if dirname is not None: os.chdir(dirname) requests_cache.configure(expire_after=60 * 10 * 10) changes.initialise() yield finally: os.chdir(curdir)
work_in
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dirname=None):\n curdir = os.getcwd()\n try:\n if dirname is not None:\n os.chdir(dirname)\n requests_cache.configure(expire_after=60 * 10 * 10)\n changes.initialise()\n yield\n finally:\n os.chdir(curdir)\n", "role": "user" }, { "content": "work_in", "role": "assistant" } ]
def x(draft, discard, repo_directory, release_name, release_description): with work_in(repo_directory): if discard: stage_command.discard(release_name, release_description) else: stage_command.stage(draft, release_name, release_description)
stage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(draft, discard, repo_directory, release_name, release_description):\n with work_in(repo_directory):\n if discard:\n stage_command.discard(release_name, release_description)\n else:\n stage_command.stage(draft, release_name, release_description)\n", "role": "user" }, { "content": "stage", "role": "assistant" } ]
def x(context): changelog_content = ['\n## [%s](%s/compare/%s...%s)\n\n' % (context. new_version, context.repo_url, context.current_version, context. new_version)] git_log_content = None git_log = 'log --oneline --no-merges --no-color'.split(' ') try: git_log_tag = git_log + ['%s..master' % context.current_version] git_log_content = git(git_log_tag) log.debug('content: %s' % git_log_content) except Exception: log.warn('Error diffing previous version, initial release') git_log_content = git(git_log) git_log_content = replace_sha_with_commit_link(context.repo_url, git_log_content) if git_log_content: [(changelog_content.append('* %s\n' % line) if line else line) for line in git_log_content[:-1]] write_new_changelog(context.repo_url, 'CHANGELOG.md', changelog_content, dry_run=context.dry_run) log.info('Added content to CHANGELOG.md') context.changelog_content = changelog_content
generate_changelog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n changelog_content = ['\\n## [%s](%s/compare/%s...%s)\\n\\n' % (context.\n new_version, context.repo_url, context.current_version, context.\n new_version)]\n git_log_content = None\n git_log = 'log --oneline --no-merges --no-color'.split(' ')\n try:\n git_log_tag = git_log + ['%s..master' % context.current_version]\n git_log_content = git(git_log_tag)\n log.debug('content: %s' % git_log_content)\n except Exception:\n log.warn('Error diffing previous version, initial release')\n git_log_content = git(git_log)\n git_log_content = replace_sha_with_commit_link(context.repo_url,\n git_log_content)\n if git_log_content:\n [(changelog_content.append('* %s\\n' % line) if line else line) for\n line in git_log_content[:-1]]\n write_new_changelog(context.repo_url, 'CHANGELOG.md', changelog_content,\n dry_run=context.dry_run)\n log.info('Added content to CHANGELOG.md')\n context.changelog_content = changelog_content\n", "role": "user" }, { "content": "generate_changelog", "role": "assistant" } ]
def x(dictionary, keys): return dict((k, dictionary[k]) for k in keys if k in dictionary)
extract
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dictionary, keys):\n return dict((k, dictionary[k]) for k in keys if k in dictionary)\n", "role": "user" }, { "content": "extract", "role": "assistant" } ]
def x(arguments, long_keys, key_prefix='--'): long_arguments = extract(arguments, long_keys) return dict([(key.replace(key_prefix, ''), value) for key, value in long_arguments.items()])
extract_arguments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arguments, long_keys, key_prefix='--'):\n long_arguments = extract(arguments, long_keys)\n return dict([(key.replace(key_prefix, ''), value) for key, value in\n long_arguments.items()])\n", "role": "user" }, { "content": "extract_arguments", "role": "assistant" } ]
def x(context): tag_option = '--annotate' if probe.has_signing_key(context): tag_option = '--sign' shell.dry_run(TAG_TEMPLATE % (tag_option, context.new_version, context. new_version), context.dry_run) shell.dry_run('git push --tags', context.dry_run)
tag_and_push
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n tag_option = '--annotate'\n if probe.has_signing_key(context):\n tag_option = '--sign'\n shell.dry_run(TAG_TEMPLATE % (tag_option, context.new_version, context.\n new_version), context.dry_run)\n shell.dry_run('git push --tags', context.dry_run)\n", "role": "user" }, { "content": "tag_and_push", "role": "assistant" } ]
def x(command, dry_run): if not dry_run: cmd_parts = command.split(' ') return local[cmd_parts[0]](cmd_parts[1:]) else: log.info('Dry run of %s, skipping' % command) return True
dry_run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(command, dry_run):\n if not dry_run:\n cmd_parts = command.split(' ')\n return local[cmd_parts[0]](cmd_parts[1:])\n else:\n log.info('Dry run of %s, skipping' % command)\n return True\n", "role": "user" }, { "content": "dry_run", "role": "assistant" } ]
def x(): project_name = curdir config_path = Path(join(project_name, PROJECT_CONFIG_FILE)) if not exists(config_path): store_settings(DEFAULTS.copy()) return DEFAULTS return toml.load(io.open(config_path)) or {}
project_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n project_name = curdir\n config_path = Path(join(project_name, PROJECT_CONFIG_FILE))\n if not exists(config_path):\n store_settings(DEFAULTS.copy())\n return DEFAULTS\n return toml.load(io.open(config_path)) or {}\n", "role": "user" }, { "content": "project_config", "role": "assistant" } ]
def x(version, major=False, minor=False, patch=True): version = semantic_version.Version(version) if major: version.major += 1 version.minor = 0 version.patch = 0 elif minor: version.minor += 1 version.patch = 0 elif patch: version.patch += 1 return str(version)
increment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(version, major=False, minor=False, patch=True):\n version = semantic_version.Version(version)\n if major:\n version.major += 1\n version.minor = 0\n version.patch = 0\n elif minor:\n version.minor += 1\n version.patch = 0\n elif patch:\n version.patch += 1\n return str(version)\n", "role": "user" }, { "content": "increment", "role": "assistant" } ]
def x(context): attributes.replace_attribute(context.module_name, '__version__', context.new_version, dry_run=context.dry_run) log.info('Bumped version from %s to %s' % (context.current_version, context.new_version))
increment_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context):\n attributes.replace_attribute(context.module_name, '__version__',\n context.new_version, dry_run=context.dry_run)\n log.info('Bumped version from %s to %s' % (context.current_version,\n context.new_version))\n", "role": "user" }, { "content": "increment_version", "role": "assistant" } ]
def x(href, items): response = _request('GET', href) response.raise_for_status() items.extend(response.json()) if 'link' not in response.headers: return links = link_header.parse(response.headers['link']) rels = {link.rel: link.href for link in links.links} if 'next' in rels: _recursive_gh_get(rels['next'], items)
recursive_gh_get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(href, items):\n response = _request('GET', href)\n response.raise_for_status()\n items.extend(response.json())\n if 'link' not in response.headers:\n return\n links = link_header.parse(response.headers['link'])\n rels = {link.rel: link.href for link in links.links}\n if 'next' in rels:\n _recursive_gh_get(rels['next'], items)\n", "role": "user" }, { "content": "recursive_gh_get", "role": "assistant" } ]
def x(github_token, github_api_url, progress): global progress_reporter_cls progress_reporter_cls.reportProgress = sys.stdout.isatty() and progress if progress_reporter_cls.reportProgress: progress_reporter_cls = _progress_bar global _github_token_cli_arg _github_token_cli_arg = github_token global _github_api_url _github_api_url = github_api_url
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(github_token, github_api_url, progress):\n global progress_reporter_cls\n progress_reporter_cls.reportProgress = sys.stdout.isatty() and progress\n if progress_reporter_cls.reportProgress:\n progress_reporter_cls = _progress_bar\n global _github_token_cli_arg\n _github_token_cli_arg = github_token\n global _github_api_url\n _github_api_url = github_api_url\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(repo_name, tag_name, new_release_sha, dry_run): if new_release_sha is None: return refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tag_name) if not refs: return assert len(refs) == 1 previous_release_sha = refs[0]['object']['sha'] if previous_release_sha == new_release_sha: return tmp_tag_name = tag_name + '-tmp' refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tmp_tag_name ) if refs: assert len(refs) == 1 time.sleep(0.1) gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run ) time.sleep(0.1) patch_release(repo_name, tag_name, tag_name=tmp_tag_name, target_commitish=new_release_sha, dry_run=dry_run) time.sleep(0.1) gh_ref_delete(repo_name, 'refs/tags/%s' % tag_name, dry_run=dry_run) time.sleep(0.1) patch_release(repo_name, tmp_tag_name, tag_name=tag_name, target_commitish=new_release_sha, dry_run=dry_run) time.sleep(0.1) gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run)
update_release_sha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(repo_name, tag_name, new_release_sha, dry_run):\n if new_release_sha is None:\n return\n refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tag_name)\n if not refs:\n return\n assert len(refs) == 1\n previous_release_sha = refs[0]['object']['sha']\n if previous_release_sha == new_release_sha:\n return\n tmp_tag_name = tag_name + '-tmp'\n refs = get_refs(repo_name, tags=True, pattern='refs/tags/%s' % tmp_tag_name\n )\n if refs:\n assert len(refs) == 1\n time.sleep(0.1)\n gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run\n )\n time.sleep(0.1)\n patch_release(repo_name, tag_name, tag_name=tmp_tag_name,\n target_commitish=new_release_sha, dry_run=dry_run)\n time.sleep(0.1)\n gh_ref_delete(repo_name, 'refs/tags/%s' % tag_name, dry_run=dry_run)\n time.sleep(0.1)\n patch_release(repo_name, tmp_tag_name, tag_name=tag_name,\n target_commitish=new_release_sha, dry_run=dry_run)\n time.sleep(0.1)\n gh_ref_delete(repo_name, 'refs/tags/%s' % tmp_tag_name, dry_run=dry_run)\n", "role": "user" }, { "content": "update_release_sha", "role": "assistant" } ]
def x(pronac, dt): funds_df = data.approved_funds_by_projects project = funds_df.loc[funds_df['PRONAC'] == pronac] project = project.to_dict('records')[0] info = data.approved_funds_agg.to_dict(orient='index')[project[ 'idSegmento']] mean, std = info.values() outlier = gaussian_outlier.is_outlier(project['VlTotalAprovado'], mean, std ) maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std) return {'is_outlier': outlier, 'total_approved_funds': project[ 'VlTotalAprovado'], 'maximum_expected_funds': maximum_expected_funds}
approved_funds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, dt):\n funds_df = data.approved_funds_by_projects\n project = funds_df.loc[funds_df['PRONAC'] == pronac]\n project = project.to_dict('records')[0]\n info = data.approved_funds_agg.to_dict(orient='index')[project[\n 'idSegmento']]\n mean, std = info.values()\n outlier = gaussian_outlier.is_outlier(project['VlTotalAprovado'], mean, std\n )\n maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)\n return {'is_outlier': outlier, 'total_approved_funds': project[\n 'VlTotalAprovado'], 'maximum_expected_funds': maximum_expected_funds}\n", "role": "user" }, { "content": "approved_funds", "role": "assistant" } ]
def x(obj): indicators = obj.indicator_set.all() if not indicators: value = 0.0 else: value = indicators.first().value return value
complexidade
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n indicators = obj.indicator_set.all()\n if not indicators:\n value = 0.0\n else:\n value = indicators.first().value\n return value\n", "role": "user" }, { "content": "complexidade", "role": "assistant" } ]
def x(project): indicators = project.indicator_set.all() indicators_detail = [(indicator_details(i) for i in indicators)][0] if not indicators: indicators_detail = [{'FinancialIndicator': {'valor': 0.0, 'metrics': default_metrics}}] indicators_detail = convert_list_into_dict(indicators_detail) return {'pronac': project.pronac, 'nome': project.nome, 'indicadores': indicators_detail}
details
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(project):\n indicators = project.indicator_set.all()\n indicators_detail = [(indicator_details(i) for i in indicators)][0]\n if not indicators:\n indicators_detail = [{'FinancialIndicator': {'valor': 0.0,\n 'metrics': default_metrics}}]\n indicators_detail = convert_list_into_dict(indicators_detail)\n return {'pronac': project.pronac, 'nome': project.nome, 'indicadores':\n indicators_detail}\n", "role": "user" }, { "content": "details", "role": "assistant" } ]
def x(indicator): metrics = format_metrics_json(indicator) metrics_list = set(indicator.metrics.filter(name__in=metrics_name_map. keys()).values_list('name', flat=True)) null_metrics = default_metrics for keys in metrics_list: null_metrics.pop(metrics_name_map[keys], None) metrics.update(null_metrics) return {type(indicator).__name__: {'valor': indicator.value, 'metricas': metrics}}
indicator_details
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(indicator):\n metrics = format_metrics_json(indicator)\n metrics_list = set(indicator.metrics.filter(name__in=metrics_name_map.\n keys()).values_list('name', flat=True))\n null_metrics = default_metrics\n for keys in metrics_list:\n null_metrics.pop(metrics_name_map[keys], None)\n metrics.update(null_metrics)\n return {type(indicator).__name__: {'valor': indicator.value, 'metricas':\n metrics}}\n", "role": "user" }, { "content": "indicator_details", "role": "assistant" } ]
def x(self, pronac, metric): assert isinstance(metric, str) assert '.' in metric, 'metric must declare a namespace' try: func = self._metrics[metric] return func(pronac, self._data) except KeyError: raise InvalidMetricError('metric does not exist')
get_metric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pronac, metric):\n assert isinstance(metric, str)\n assert '.' in metric, 'metric must declare a namespace'\n try:\n func = self._metrics[metric]\n return func(pronac, self._data)\n except KeyError:\n raise InvalidMetricError('metric does not exist')\n", "role": "user" }, { "content": "get_metric", "role": "assistant" } ]
def x(self, category): def x(func): name = func.__name__ key = f'{category}.{name}' self._metrics[key] = func return func return decorator
register
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, category):\n\n def x(func):\n name = func.__name__\n key = f'{category}.{name}'\n self._metrics[key] = func\n return func\n return decorator\n", "role": "user" }, { "content": "register", "role": "assistant" } ]
def x(force_update=False): with open(MODEL_FILE, 'r') as file_content: query = file_content.read() db = db_connector() query_result = db.execute_pandas_sql_query(query) db.close() try: projects = Project.objects.bulk_create(Project(**vals) for vals in query_result.to_dict('records')) indicators = [FinancialIndicator(project=p) for p in projects] FinancialIndicator.objects.bulk_create(indicators) except IntegrityError: LOG('Projects bulk_create failed, creating one by one...') with transaction.atomic(): if force_update: for item in query_result.to_dict('records'): p, _ = Project.objects.update_or_create(**item) FinancialIndicator.objects.update_or_create(project=p) else: for item in query_result.to_dict('records'): p, _ = Project.objects.get_or_create(**item) FinancialIndicator.objects.update_or_create(project=p)
execute_project_models_sql_scripts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(force_update=False):\n with open(MODEL_FILE, 'r') as file_content:\n query = file_content.read()\n db = db_connector()\n query_result = db.execute_pandas_sql_query(query)\n db.close()\n try:\n projects = Project.objects.bulk_create(Project(**vals) for vals in\n query_result.to_dict('records'))\n indicators = [FinancialIndicator(project=p) for p in projects]\n FinancialIndicator.objects.bulk_create(indicators)\n except IntegrityError:\n LOG('Projects bulk_create failed, creating one by one...')\n with transaction.atomic():\n if force_update:\n for item in query_result.to_dict('records'):\n p, _ = Project.objects.update_or_create(**item)\n FinancialIndicator.objects.update_or_create(project=p)\n else:\n for item in query_result.to_dict('records'):\n p, _ = Project.objects.get_or_create(**item)\n FinancialIndicator.objects.update_or_create(project=p)\n", "role": "user" }, { "content": "execute_project_models_sql_scripts", "role": "assistant" } ]
def x(metrics: list, pronacs: list): missing = missing_metrics(metrics, pronacs) print(f'There are {len(missing)} missing metrics!') processors = mp.cpu_count() print(f'Using {processors} processors to calculate metrics!') indicators_qs = FinancialIndicator.objects.filter(project_id__in=[p for p, _ in missing]) indicators = {i.project_id: i for i in indicators_qs} pool = mp.Pool(processors) results = [pool.apply_async(create_metric, args=(indicators, metric_name, pronac)) for pronac, metric_name in missing] calculated_metrics = [p.get() for p in results] if calculated_metrics: Metric.objects.bulk_create(calculated_metrics) print('Bulk completed') for indicator in indicators.values(): indicator.fetch_weighted_complexity() print('Finished update indicators!') pool.close() print('Finished metrics calculation!')
create_finance_metrics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(metrics: list, pronacs: list):\n missing = missing_metrics(metrics, pronacs)\n print(f'There are {len(missing)} missing metrics!')\n processors = mp.cpu_count()\n print(f'Using {processors} processors to calculate metrics!')\n indicators_qs = FinancialIndicator.objects.filter(project_id__in=[p for\n p, _ in missing])\n indicators = {i.project_id: i for i in indicators_qs}\n pool = mp.Pool(processors)\n results = [pool.apply_async(create_metric, args=(indicators,\n metric_name, pronac)) for pronac, metric_name in missing]\n calculated_metrics = [p.get() for p in results]\n if calculated_metrics:\n Metric.objects.bulk_create(calculated_metrics)\n print('Bulk completed')\n for indicator in indicators.values():\n indicator.fetch_weighted_complexity()\n print('Finished update indicators!')\n pool.close()\n print('Finished metrics calculation!')\n", "role": "user" }, { "content": "create_finance_metrics", "role": "assistant" } ]
def x(pronac, dt): dataframe = data.planilha_comprovacao project = dataframe.loc[dataframe['PRONAC'] == pronac] segment_id = project.iloc[0]['idSegmento'] segments_cache = data.segment_projects_agg segments_cache = segments_cache.to_dict(orient='index') mean = segments_cache[segment_id]['mean'] std = segments_cache[segment_id]['<lambda>'] total_receipts = project.shape[0] is_outlier = gaussian_outlier.is_outlier(total_receipts, mean, std) maximum_expected = gaussian_outlier.maximum_expected_value(mean, std) return {'is_outlier': is_outlier, 'valor': total_receipts, 'maximo_esperado': maximum_expected, 'minimo_esperado': 0}
total_receipts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, dt):\n dataframe = data.planilha_comprovacao\n project = dataframe.loc[dataframe['PRONAC'] == pronac]\n segment_id = project.iloc[0]['idSegmento']\n segments_cache = data.segment_projects_agg\n segments_cache = segments_cache.to_dict(orient='index')\n mean = segments_cache[segment_id]['mean']\n std = segments_cache[segment_id]['<lambda>']\n total_receipts = project.shape[0]\n is_outlier = gaussian_outlier.is_outlier(total_receipts, mean, std)\n maximum_expected = gaussian_outlier.maximum_expected_value(mean, std)\n return {'is_outlier': is_outlier, 'valor': total_receipts,\n 'maximo_esperado': maximum_expected, 'minimo_esperado': 0}\n", "role": "user" }, { "content": "total_receipts", "role": "assistant" } ]
def x(): all_metrics = FinancialIndicator.METRICS for key in all_metrics: df = getattr(data, key) pronac = 'PRONAC' if key == 'planilha_captacao': pronac = 'Pronac' pronacs = df[pronac].unique().tolist() create_finance_metrics(all_metrics[key], pronacs)
load_project_metrics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n all_metrics = FinancialIndicator.METRICS\n for key in all_metrics:\n df = getattr(data, key)\n pronac = 'PRONAC'\n if key == 'planilha_captacao':\n pronac = 'Pronac'\n pronacs = df[pronac].unique().tolist()\n create_finance_metrics(all_metrics[key], pronacs)\n", "role": "user" }, { "content": "load_project_metrics", "role": "assistant" } ]
def x(pronac, dt): info = data.providers_info df = info[info['PRONAC'] == pronac] providers_count = data.providers_count.to_dict()[0] new_providers = [] segment_id = None for _, row in df.iterrows(): cnpj = row['nrCNPJCPF'] cnpj_count = providers_count.get(cnpj, 0) segment_id = row['idSegmento'] if cnpj_count <= 1: item_id = row['idPlanilhaAprovacao'] item_name = row['Item'] provider_name = row['nmFornecedor'] new_provider = {'nome': provider_name, 'cnpj': cnpj, 'itens': { item_id: {'nome': item_name, 'tem_comprovante': True}}} new_providers.append(new_provider) providers_amount = len(df['nrCNPJCPF'].unique()) new_providers_amount = len(new_providers) new_providers_percentage = new_providers_amount / providers_amount averages = data.average_percentage_of_new_providers.to_dict() segments_average = averages['segments_average_percentage'] all_projects_average = list(averages['all_projects_average'].values())[0] if new_providers: new_providers.sort(key=lambda provider: provider['nome']) return {'lista_de_novos_fornecedores': new_providers, 'valor': new_providers_amount, 'new_providers_percentage': new_providers_percentage, 'is_outlier': new_providers_percentage > segments_average[segment_id], 'segment_average_percentage': segments_average[segment_id], 'all_projects_average_percentage': all_projects_average}
new_providers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, dt):\n info = data.providers_info\n df = info[info['PRONAC'] == pronac]\n providers_count = data.providers_count.to_dict()[0]\n new_providers = []\n segment_id = None\n for _, row in df.iterrows():\n cnpj = row['nrCNPJCPF']\n cnpj_count = providers_count.get(cnpj, 0)\n segment_id = row['idSegmento']\n if cnpj_count <= 1:\n item_id = row['idPlanilhaAprovacao']\n item_name = row['Item']\n provider_name = row['nmFornecedor']\n new_provider = {'nome': provider_name, 'cnpj': cnpj, 'itens': {\n item_id: {'nome': item_name, 'tem_comprovante': True}}}\n new_providers.append(new_provider)\n providers_amount = len(df['nrCNPJCPF'].unique())\n new_providers_amount = len(new_providers)\n new_providers_percentage = new_providers_amount / providers_amount\n averages = data.average_percentage_of_new_providers.to_dict()\n segments_average = averages['segments_average_percentage']\n all_projects_average = list(averages['all_projects_average'].values())[0]\n if new_providers:\n new_providers.sort(key=lambda provider: provider['nome'])\n return {'lista_de_novos_fornecedores': new_providers, 'valor':\n new_providers_amount, 'new_providers_percentage':\n new_providers_percentage, 'is_outlier': new_providers_percentage >\n segments_average[segment_id], 'segment_average_percentage':\n segments_average[segment_id], 'all_projects_average_percentage':\n all_projects_average}\n", "role": "user" }, { "content": "new_providers", "role": "assistant" } ]
def x(providers_info, providers_count): segments_percentages = {} all_projects_percentages = [] providers_count = providers_count.to_dict()[0] for _, items in providers_info.groupby('PRONAC'): cnpj_array = items['nrCNPJCPF'].unique() new_providers = 0 for cnpj in cnpj_array: cnpj_count = providers_count.get(cnpj, 0) if cnpj_count <= 1: new_providers += 1 segment_id = items.iloc[0]['idSegmento'] new_providers_percent = new_providers / cnpj_array.size segments_percentages.setdefault(segment_id, []) segments_percentages[segment_id].append(new_providers_percent) all_projects_percentages.append(new_providers_percent) segments_average_percentage = {} for segment_id, percentages in segments_percentages.items(): mean = np.mean(percentages) segments_average_percentage[segment_id] = mean return pd.DataFrame.from_dict({'segments_average_percentage': segments_average_percentage, 'all_projects_average': np.mean( all_projects_percentages)})
average_percentage_of_new_providers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(providers_info, providers_count):\n segments_percentages = {}\n all_projects_percentages = []\n providers_count = providers_count.to_dict()[0]\n for _, items in providers_info.groupby('PRONAC'):\n cnpj_array = items['nrCNPJCPF'].unique()\n new_providers = 0\n for cnpj in cnpj_array:\n cnpj_count = providers_count.get(cnpj, 0)\n if cnpj_count <= 1:\n new_providers += 1\n segment_id = items.iloc[0]['idSegmento']\n new_providers_percent = new_providers / cnpj_array.size\n segments_percentages.setdefault(segment_id, [])\n segments_percentages[segment_id].append(new_providers_percent)\n all_projects_percentages.append(new_providers_percent)\n segments_average_percentage = {}\n for segment_id, percentages in segments_percentages.items():\n mean = np.mean(percentages)\n segments_average_percentage[segment_id] = mean\n return pd.DataFrame.from_dict({'segments_average_percentage':\n segments_average_percentage, 'all_projects_average': np.mean(\n all_projects_percentages)})\n", "role": "user" }, { "content": "average_percentage_of_new_providers", "role": "assistant" } ]
def x(df): providers_count = {} cnpj_array = df.values for a in cnpj_array: cnpj = a[0] occurrences = providers_count.get(cnpj, 0) providers_count[cnpj] = occurrences + 1 return pd.DataFrame.from_dict(providers_count, orient='index')
providers_count
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n providers_count = {}\n cnpj_array = df.values\n for a in cnpj_array:\n cnpj = a[0]\n occurrences = providers_count.get(cnpj, 0)\n providers_count[cnpj] = occurrences + 1\n return pd.DataFrame.from_dict(providers_count, orient='index')\n", "role": "user" }, { "content": "providers_count", "role": "assistant" } ]
def x(df): cnpj_list = [] for _, items in df.groupby('PRONAC'): unique_cnpjs = items['nrCNPJCPF'].unique() cnpj_list += list(unique_cnpjs) return pd.DataFrame(cnpj_list)
all_providers_cnpj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n cnpj_list = []\n for _, items in df.groupby('PRONAC'):\n unique_cnpjs = items['nrCNPJCPF'].unique()\n cnpj_list += list(unique_cnpjs)\n return pd.DataFrame(cnpj_list)\n", "role": "user" }, { "content": "all_providers_cnpj", "role": "assistant" } ]
def x(pronac): df = data.providers_info grouped = df.groupby('PRONAC') return grouped.get_group(pronac)
get_providers_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac):\n df = data.providers_info\n grouped = df.groupby('PRONAC')\n return grouped.get_group(pronac)\n", "role": "user" }, { "content": "get_providers_info", "role": "assistant" } ]
def x(df, group, info=['mean', 'std']): agg = df.groupby(group).agg(info) agg.columns = agg.columns.droplevel(0) return agg
get_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, group, info=['mean', 'std']):\n agg = df.groupby(group).agg(info)\n agg.columns = agg.columns.droplevel(0)\n return agg\n", "role": "user" }, { "content": "get_info", "role": "assistant" } ]
def x(item, prefix, df_values=None): url_keys = {'pronac': 'idPronac', 'uf': 'uf', 'product': 'produto', 'county': 'idmunicipio', 'item_id': 'idPlanilhaItem', 'stage': 'etapa'} if df_values: values = [item[v] for v in df_values] url_values = dict(zip(url_keys.keys(), values)) else: url_values = {'pronac': item['idPronac'], 'uf': item['UfItem'], 'product': item['idProduto'], 'county': item['cdCidade'], 'item_id': item['idPlanilhaItens'], 'stage': item['cdEtapa']} item_data = [(value, url_values[key]) for key, value in url_keys.items()] url = prefix for k, v in item_data: url += f'/{str(k)}/{str(v)}' return url
get_salic_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(item, prefix, df_values=None):\n url_keys = {'pronac': 'idPronac', 'uf': 'uf', 'product': 'produto',\n 'county': 'idmunicipio', 'item_id': 'idPlanilhaItem', 'stage': 'etapa'}\n if df_values:\n values = [item[v] for v in df_values]\n url_values = dict(zip(url_keys.keys(), values))\n else:\n url_values = {'pronac': item['idPronac'], 'uf': item['UfItem'],\n 'product': item['idProduto'], 'county': item['cdCidade'],\n 'item_id': item['idPlanilhaItens'], 'stage': item['cdEtapa']}\n item_data = [(value, url_values[key]) for key, value in url_keys.items()]\n url = prefix\n for k, v in item_data:\n url += f'/{str(k)}/{str(v)}'\n return url\n", "role": "user" }, { "content": "get_salic_url", "role": "assistant" } ]
def x(pronac): df = data.planilha_projetos cpf_cnpj = None row_df = df[df['PRONAC'].astype(str) == str(pronac)] if not row_df.empty: cpf_cnpj = row_df.iloc[0]['CgcCpf'] return str(cpf_cnpj)
get_cpf_cnpj_by_pronac
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac):\n df = data.planilha_projetos\n cpf_cnpj = None\n row_df = df[df['PRONAC'].astype(str) == str(pronac)]\n if not row_df.empty:\n cpf_cnpj = row_df.iloc[0]['CgcCpf']\n return str(cpf_cnpj)\n", "role": "user" }, { "content": "get_cpf_cnpj_by_pronac", "role": "assistant" } ]
def x(item): pronac_id = str(item['idPronac']) item_id = str(item['idPlanilhaItens']) combined_id = f'{pronac_id}/{item_id}' return combined_id in data.receipt.index
has_receipt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(item):\n pronac_id = str(item['idPronac'])\n item_id = str(item['idPlanilhaItens'])\n combined_id = f'{pronac_id}/{item_id}'\n return combined_id in data.receipt.index\n", "role": "user" }, { "content": "has_receipt", "role": "assistant" } ]
def x(segment_id): df = data.all_items return df[df['idSegmento'] == str(segment_id)].drop_duplicates(['PRONAC'] ).values
get_segment_projects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(segment_id):\n df = data.all_items\n return df[df['idSegmento'] == str(segment_id)].drop_duplicates(['PRONAC']\n ).values\n", "role": "user" }, { "content": "get_segment_projects", "role": "assistant" } ]
def x(df): mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str) mutated_df['pronac_planilha_itens' ] = f"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}" return mutated_df.set_index(['pronac_planilha_itens'])
receipt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n mutated_df = df[['IdPRONAC', 'idPlanilhaItem']].astype(str)\n mutated_df['pronac_planilha_itens'\n ] = f\"{mutated_df['IdPRONAC']}/{mutated_df['idPlanilhaItem']}\"\n return mutated_df.set_index(['pronac_planilha_itens'])\n", "role": "user" }, { "content": "receipt", "role": "assistant" } ]
def x(ctx, models=True, pickles=False, f=False): if pickles: save_sql_to_files(f) if models: if f: manage(ctx, 'create_models_from_sql --force True', env={}) else: manage(ctx, 'create_models_from_sql', env={})
update_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, models=True, pickles=False, f=False):\n if pickles:\n save_sql_to_files(f)\n if models:\n if f:\n manage(ctx, 'create_models_from_sql --force True', env={})\n else:\n manage(ctx, 'create_models_from_sql', env={})\n", "role": "user" }, { "content": "update_data", "role": "assistant" } ]
def x(ctx, f=False): if f: manage(ctx, 'create_models_from_sql --force True', env={}) else: manage(ctx, 'create_models_from_sql', env={})
update_models
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, f=False):\n if f:\n manage(ctx, 'create_models_from_sql --force True', env={})\n else:\n manage(ctx, 'create_models_from_sql', env={})\n", "role": "user" }, { "content": "update_models", "role": "assistant" } ]
def x(self, project, is_valid, metrics_list): project = Project.objects.get(pronac=project) indicator, _ = FinancialIndicator.objects.update_or_create(project=project) indicator.is_valid = is_valid if indicator.is_valid: p_metrics = metrics_calc.get_project(project.pronac) for metric_name in metrics_list: print('calculando a metrica ', metric_name) x = getattr(p_metrics.finance, metric_name) print('do projeto: ', project) Metric.objects.create_metric(metric_name, x, indicator) indicator.fetch_weighted_complexity() return indicator
create_indicator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, project, is_valid, metrics_list):\n project = Project.objects.get(pronac=project)\n indicator, _ = FinancialIndicator.objects.update_or_create(project=project)\n indicator.is_valid = is_valid\n if indicator.is_valid:\n p_metrics = metrics_calc.get_project(project.pronac)\n for metric_name in metrics_list:\n print('calculando a metrica ', metric_name)\n x = getattr(p_metrics.finance, metric_name)\n print('do projeto: ', project)\n Metric.objects.create_metric(metric_name, x, indicator)\n indicator.fetch_weighted_complexity()\n return indicator\n", "role": "user" }, { "content": "create_indicator", "role": "assistant" } ]
def x(overwrite=False): ext_size = len(SQL_EXTENSION) path = DATA_PATH / 'scripts' save_dir = DATA_PATH / 'raw' for file in os.listdir(path): if file.endswith(SQL_EXTENSION): file_path = os.path.join(save_dir, file[:-ext_size] + '.' + FILE_EXTENSION) if not os.path.isfile(file_path) or overwrite: query_result = make_query(path / file) save_dataframe_as_pickle(query_result, file_path) else: print( 'file {} already exists, if you would like to update it, use -f flag\n' .format(file_path))
save_sql_to_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(overwrite=False):\n ext_size = len(SQL_EXTENSION)\n path = DATA_PATH / 'scripts'\n save_dir = DATA_PATH / 'raw'\n for file in os.listdir(path):\n if file.endswith(SQL_EXTENSION):\n file_path = os.path.join(save_dir, file[:-ext_size] + '.' +\n FILE_EXTENSION)\n if not os.path.isfile(file_path) or overwrite:\n query_result = make_query(path / file)\n save_dataframe_as_pickle(query_result, file_path)\n else:\n print(\n 'file {} already exists, if you would like to update it, use -f flag\\n'\n .format(file_path))\n", "role": "user" }, { "content": "save_sql_to_files", "role": "assistant" } ]
def x(self, recalculate_metrics=False): max_total = sum([self.metrics_weights[metric_name] for metric_name in self.metrics_weights]) total = 0 if recalculate_metrics: self.calculate_indicator_metrics() for metric in self.metrics.all(): if metric.name in self.metrics_weights and metric.is_outlier: total += self.metrics_weights[metric.name] value = total / max_total final_value = '{:.1f}'.format(value * 10) if final_value[-1] == '0': final_value = '{:.0f}'.format(value * 10) final_value = int(final_value) else: final_value = float(final_value) self.value = float(final_value) self.is_valid = True self.updated_at = datetime.datetime.now() self.save() return final_value
fetch_weighted_complexity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, recalculate_metrics=False):\n max_total = sum([self.metrics_weights[metric_name] for metric_name in\n self.metrics_weights])\n total = 0\n if recalculate_metrics:\n self.calculate_indicator_metrics()\n for metric in self.metrics.all():\n if metric.name in self.metrics_weights and metric.is_outlier:\n total += self.metrics_weights[metric.name]\n value = total / max_total\n final_value = '{:.1f}'.format(value * 10)\n if final_value[-1] == '0':\n final_value = '{:.0f}'.format(value * 10)\n final_value = int(final_value)\n else:\n final_value = float(final_value)\n self.value = float(final_value)\n self.is_valid = True\n self.updated_at = datetime.datetime.now()\n self.save()\n return final_value\n", "role": "user" }, { "content": "fetch_weighted_complexity", "role": "assistant" } ]
def x(pronac, data): threshold = 0.1 outlier_info = get_outliers_percentage(pronac) outlier_info['is_outlier'] = outlier_info['percentage'] > threshold outlier_info['maximum_expected'] = threshold * outlier_info['total_items'] return outlier_info
item_prices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, data):\n threshold = 0.1\n outlier_info = get_outliers_percentage(pronac)\n outlier_info['is_outlier'] = outlier_info['percentage'] > threshold\n outlier_info['maximum_expected'] = threshold * outlier_info['total_items']\n return outlier_info\n", "role": "user" }, { "content": "item_prices", "role": "assistant" } ]
def x(df, item_id, segment_id, price): if (segment_id, item_id) not in df.index: return False mean = df.loc[segment_id, item_id]['mean'] std = df.loc[segment_id, item_id]['std'] return gaussian_outlier.is_outlier(x=price, mean=mean, standard_deviation=std)
is_outlier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, item_id, segment_id, price):\n if (segment_id, item_id) not in df.index:\n return False\n mean = df.loc[segment_id, item_id]['mean']\n std = df.loc[segment_id, item_id]['std']\n return gaussian_outlier.is_outlier(x=price, mean=mean,\n standard_deviation=std)\n", "role": "user" }, { "content": "is_outlier", "role": "assistant" } ]
def x(raw_df): df = raw_df[['idSegmento', 'idPlanilhaItens', 'VlUnitarioAprovado'] ].groupby(by=['idSegmento', 'idPlanilhaItens']).agg([np.mean, lambda x: np.std(x, ddof=0)]) df.columns = df.columns.droplevel(0) return df.rename(columns={'<lambda>': 'std'})
aggregated_relevant_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(raw_df):\n df = raw_df[['idSegmento', 'idPlanilhaItens', 'VlUnitarioAprovado']\n ].groupby(by=['idSegmento', 'idPlanilhaItens']).agg([np.mean, lambda\n x: np.std(x, ddof=0)])\n df.columns = df.columns.droplevel(0)\n return df.rename(columns={'<lambda>': 'std'})\n", "role": "user" }, { "content": "aggregated_relevant_items", "role": "assistant" } ]
def x(df): start_date = datetime(2013, 1, 1) df['DataProjeto'] = pd.to_datetime(df['DataProjeto']) df = df[df.DataProjeto >= start_date] df = df[df.VlUnitarioAprovado > 0.0] return df
relevant_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n start_date = datetime(2013, 1, 1)\n df['DataProjeto'] = pd.to_datetime(df['DataProjeto'])\n df = df[df.DataProjeto >= start_date]\n df = df[df.VlUnitarioAprovado > 0.0]\n return df\n", "role": "user" }, { "content": "relevant_items", "role": "assistant" } ]
def x(raw_df): df = raw_df[['PRONAC', 'idPlanilhaAprovacao', 'Item', 'idPlanilhaItens', 'VlUnitarioAprovado', 'idSegmento', 'DataProjeto', 'idPronac', 'UfItem', 'idProduto', 'cdCidade', 'cdEtapa']].copy() df['VlUnitarioAprovado'] = df['VlUnitarioAprovado'].apply(pd.to_numeric) return df
items_with_price
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(raw_df):\n df = raw_df[['PRONAC', 'idPlanilhaAprovacao', 'Item', 'idPlanilhaItens',\n 'VlUnitarioAprovado', 'idSegmento', 'DataProjeto', 'idPronac',\n 'UfItem', 'idProduto', 'cdCidade', 'cdEtapa']].copy()\n df['VlUnitarioAprovado'] = df['VlUnitarioAprovado'].apply(pd.to_numeric)\n return df\n", "role": "user" }, { "content": "items_with_price", "role": "assistant" } ]
def x(pronac): items = data.items_with_price.groupby(['PRONAC']).get_group(pronac) df = data.aggregated_relevant_items outlier_items = {} url_prefix = '/prestacao-contas/analisar/comprovante' for _, item in items.iterrows(): item_id = item['idPlanilhaItens'] price = item['VlUnitarioAprovado'] segment_id = item['idSegmento'] item_name = item['Item'] if is_outlier(df, item_id, segment_id, price): outlier_items[item_id] = {'name': item_name, 'salic_url': get_salic_url(item, url_prefix), 'has_receipt': has_receipt (item)} total_items = items.shape[0] outliers_amount = len(outlier_items) percentage = outliers_amount / total_items return {'items': outlier_items, 'valor': outliers_amount, 'total_items': total_items, 'percentage': percentage, 'is_outlier': outliers_amount > 0}
get_outliers_percentage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac):\n items = data.items_with_price.groupby(['PRONAC']).get_group(pronac)\n df = data.aggregated_relevant_items\n outlier_items = {}\n url_prefix = '/prestacao-contas/analisar/comprovante'\n for _, item in items.iterrows():\n item_id = item['idPlanilhaItens']\n price = item['VlUnitarioAprovado']\n segment_id = item['idSegmento']\n item_name = item['Item']\n if is_outlier(df, item_id, segment_id, price):\n outlier_items[item_id] = {'name': item_name, 'salic_url':\n get_salic_url(item, url_prefix), 'has_receipt': has_receipt\n (item)}\n total_items = items.shape[0]\n outliers_amount = len(outlier_items)\n percentage = outliers_amount / total_items\n return {'items': outlier_items, 'valor': outliers_amount, 'total_items':\n total_items, 'percentage': percentage, 'is_outlier': \n outliers_amount > 0}\n", "role": "user" }, { "content": "get_outliers_percentage", "role": "assistant" } ]
def x(pronac, dt): df = data.items_by_project project = df.loc[df['PRONAC'] == pronac] seg = project.iloc[0]['idSegmento'] info = data.items_by_project_agg.to_dict(orient='index')[seg] mean, std = info.values() threshold = mean + 1.5 * std project_items_count = project.shape[0] is_outlier = project_items_count > threshold return {'is_outlier': is_outlier, 'valor': project_items_count, 'maximo_esperado': mean, 'desvio_padrao': std}
number_of_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, dt):\n df = data.items_by_project\n project = df.loc[df['PRONAC'] == pronac]\n seg = project.iloc[0]['idSegmento']\n info = data.items_by_project_agg.to_dict(orient='index')[seg]\n mean, std = info.values()\n threshold = mean + 1.5 * std\n project_items_count = project.shape[0]\n is_outlier = project_items_count > threshold\n return {'is_outlier': is_outlier, 'valor': project_items_count,\n 'maximo_esperado': mean, 'desvio_padrao': std}\n", "role": "user" }, { "content": "number_of_items", "role": "assistant" } ]
def x(df): percentage = 0.1 return df.groupby(['idSegmento', 'idPlanilhaItens']).count().rename(columns ={'PRONAC': 'itemOccurrences'}).sort_values('itemOccurrences', ascending=False).reset_index(['idSegmento', 'idPlanilhaItens'] ).groupby('idSegmento').apply(lambda x: x[None:max(2, int(len(x) * percentage))]).reset_index(['idSegmento'], drop=True).set_index([ 'idSegmento'])
common_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n percentage = 0.1\n return df.groupby(['idSegmento', 'idPlanilhaItens']).count().rename(columns\n ={'PRONAC': 'itemOccurrences'}).sort_values('itemOccurrences',\n ascending=False).reset_index(['idSegmento', 'idPlanilhaItens']\n ).groupby('idSegmento').apply(lambda x: x[None:max(2, int(len(x) *\n percentage))]).reset_index(['idSegmento'], drop=True).set_index([\n 'idSegmento'])\n", "role": "user" }, { "content": "common_items", "role": "assistant" } ]
def x(pronac, seg_common_items): if len(seg_common_items) == 0: return 0 project_items = get_project_items(pronac).values[:, 0] project_items_amount = len(project_items) if project_items_amount == 0: return 1 common_found_items = sum(seg_common_items.isin(project_items)[ 'idPlanilhaItens']) return common_found_items / project_items_amount
common_items_percentage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, seg_common_items):\n if len(seg_common_items) == 0:\n return 0\n project_items = get_project_items(pronac).values[:, 0]\n project_items_amount = len(project_items)\n if project_items_amount == 0:\n return 1\n common_found_items = sum(seg_common_items.isin(project_items)[\n 'idPlanilhaItens'])\n return common_found_items / project_items_amount\n", "role": "user" }, { "content": "common_items_percentage", "role": "assistant" } ]
def x(all_items, common_items): segments = common_items.index.unique() metrics = {} for seg in segments: seg_common_items = segment_common_items(seg) projects = get_segment_projects(seg) metric_values = [] for proj in projects: pronac = proj[0] percentage = common_items_percentage(pronac, seg_common_items) metric_values.append(percentage) metrics[seg] = {'mean': np.mean(metric_values), 'std': np.std( metric_values)} return pd.DataFrame.from_dict(metrics, orient='index')
common_items_metrics
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_items, common_items):\n segments = common_items.index.unique()\n metrics = {}\n for seg in segments:\n seg_common_items = segment_common_items(seg)\n projects = get_segment_projects(seg)\n metric_values = []\n for proj in projects:\n pronac = proj[0]\n percentage = common_items_percentage(pronac, seg_common_items)\n metric_values.append(percentage)\n metrics[seg] = {'mean': np.mean(metric_values), 'std': np.std(\n metric_values)}\n return pd.DataFrame.from_dict(metrics, orient='index')\n", "role": "user" }, { "content": "common_items_metrics", "role": "assistant" } ]
def x(pronac): df = data.all_items return df[df['PRONAC'] == pronac].drop(columns=['PRONAC', 'idSegmento'])
get_project_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac):\n df = data.all_items\n return df[df['PRONAC'] == pronac].drop(columns=['PRONAC', 'idSegmento'])\n", "role": "user" }, { "content": "get_project_items", "role": "assistant" } ]
def x(segment_id): df = data.common_items return df.loc[str(segment_id)].reset_index(drop=1).drop(columns=[ 'itemOccurrences'])
segment_common_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(segment_id):\n df = data.common_items\n return df.loc[str(segment_id)].reset_index(drop=1).drop(columns=[\n 'itemOccurrences'])\n", "role": "user" }, { "content": "segment_common_items", "role": "assistant" } ]
def x(pronac): segment_id = get_segment_id(str(pronac)) seg_common_items = segment_common_items(segment_id).set_index( 'idPlanilhaItens').index project_items = get_project_items(pronac).set_index('idPlanilhaItens' ).index diff = list(project_items.difference(seg_common_items)) return data.distinct_items.loc[diff].to_dict()['Item']
get_uncommon_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac):\n segment_id = get_segment_id(str(pronac))\n seg_common_items = segment_common_items(segment_id).set_index(\n 'idPlanilhaItens').index\n project_items = get_project_items(pronac).set_index('idPlanilhaItens'\n ).index\n diff = list(project_items.difference(seg_common_items))\n return data.distinct_items.loc[diff].to_dict()['Item']\n", "role": "user" }, { "content": "get_uncommon_items", "role": "assistant" } ]
def x(filtered_items, uncommon_items): result = uncommon_items url_prefix = '/prestacao-contas/analisar/comprovante' for _, item in filtered_items.iterrows(): item_id = item['idPlanilhaItens'] item_name = uncommon_items[item_id] result[item_id] = {'name': item_name, 'salic_url': get_salic_url( item, url_prefix), 'has_recepit': has_receipt(item)} return result
add_info_to_uncommon_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filtered_items, uncommon_items):\n result = uncommon_items\n url_prefix = '/prestacao-contas/analisar/comprovante'\n for _, item in filtered_items.iterrows():\n item_id = item['idPlanilhaItens']\n item_name = uncommon_items[item_id]\n result[item_id] = {'name': item_name, 'salic_url': get_salic_url(\n item, url_prefix), 'has_recepit': has_receipt(item)}\n return result\n", "role": "user" }, { "content": "add_info_to_uncommon_items", "role": "assistant" } ]
def x(pronac, dt): segment_id = get_segment_id(str(pronac)) metrics = data.common_items_metrics.to_dict(orient='index')[segment_id] ratio = common_items_percentage(pronac, segment_common_items(segment_id)) k = 1.5 threshold = metrics['mean'] - k * metrics['std'] uncommon_items = get_uncommon_items(pronac) pronac_filter = data.all_items['PRONAC'] == pronac uncommon_items_filter = data.all_items['idPlanilhaItens'].isin( uncommon_items) items_filter = pronac_filter & uncommon_items_filter filtered_items = data.all_items[items_filter].drop_duplicates(subset= 'idPlanilhaItens') uncommon_items = add_info_to_uncommon_items(filtered_items, uncommon_items) return {'is_outlier': ratio < threshold, 'valor': ratio, 'maximo_esperado': metrics['mean'], 'desvio_padrao': metrics['std'], 'items_incomuns': uncommon_items, 'items_comuns_que_o_projeto_nao_possui': get_common_items_not_present(pronac)}
common_items_ratio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, dt):\n segment_id = get_segment_id(str(pronac))\n metrics = data.common_items_metrics.to_dict(orient='index')[segment_id]\n ratio = common_items_percentage(pronac, segment_common_items(segment_id))\n k = 1.5\n threshold = metrics['mean'] - k * metrics['std']\n uncommon_items = get_uncommon_items(pronac)\n pronac_filter = data.all_items['PRONAC'] == pronac\n uncommon_items_filter = data.all_items['idPlanilhaItens'].isin(\n uncommon_items)\n items_filter = pronac_filter & uncommon_items_filter\n filtered_items = data.all_items[items_filter].drop_duplicates(subset=\n 'idPlanilhaItens')\n uncommon_items = add_info_to_uncommon_items(filtered_items, uncommon_items)\n return {'is_outlier': ratio < threshold, 'valor': ratio,\n 'maximo_esperado': metrics['mean'], 'desvio_padrao': metrics['std'],\n 'items_incomuns': uncommon_items,\n 'items_comuns_que_o_projeto_nao_possui':\n get_common_items_not_present(pronac)}\n", "role": "user" }, { "content": "common_items_ratio", "role": "assistant" } ]
def x(pronac, dt): dataframe = data.planilha_comprovacao project = dataframe.loc[dataframe['PRONAC'] == pronac] segment_id = project.iloc[0]['idSegmento'] pronac_funds = project[['idPlanilhaAprovacao', 'PRONAC', 'vlComprovacao', 'idSegmento']] funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby([ 'PRONAC']) project_funds = funds_grp.sum().loc[pronac]['vlComprovacao'] segments_info = data.verified_funds_by_segment_agg.to_dict(orient='index') mean = segments_info[segment_id]['mean'] std = segments_info[segment_id]['std'] is_outlier = gaussian_outlier.is_outlier(project_funds, mean, std) maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std) return {'is_outlier': is_outlier, 'valor': project_funds, 'maximo_esperado': maximum_expected_funds, 'minimo_esperado': 0}
verified_funds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, dt):\n dataframe = data.planilha_comprovacao\n project = dataframe.loc[dataframe['PRONAC'] == pronac]\n segment_id = project.iloc[0]['idSegmento']\n pronac_funds = project[['idPlanilhaAprovacao', 'PRONAC',\n 'vlComprovacao', 'idSegmento']]\n funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby([\n 'PRONAC'])\n project_funds = funds_grp.sum().loc[pronac]['vlComprovacao']\n segments_info = data.verified_funds_by_segment_agg.to_dict(orient='index')\n mean = segments_info[segment_id]['mean']\n std = segments_info[segment_id]['std']\n is_outlier = gaussian_outlier.is_outlier(project_funds, mean, std)\n maximum_expected_funds = gaussian_outlier.maximum_expected_value(mean, std)\n return {'is_outlier': is_outlier, 'valor': project_funds,\n 'maximo_esperado': maximum_expected_funds, 'minimo_esperado': 0}\n", "role": "user" }, { "content": "verified_funds", "role": "assistant" } ]
def x(df): df['CaptacaoReal'] = df['CaptacaoReal'].apply(pd.to_numeric) return df[['Pronac', 'CaptacaoReal']].groupby(['Pronac']).sum()
raised_funds_by_project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df):\n df['CaptacaoReal'] = df['CaptacaoReal'].apply(pd.to_numeric)\n return df[['Pronac', 'CaptacaoReal']].groupby(['Pronac']).sum()\n", "role": "user" }, { "content": "raised_funds_by_project", "role": "assistant" } ]
def x(pronac, dt): project_raised_funds = data.raised_funds_by_project.loc[pronac][ 'CaptacaoReal'] dataframe = data.planilha_comprovacao project_verified = dataframe.loc[dataframe['PRONAC'] == str(pronac)] if project_verified.empty: project_verified_funds = 0 else: pronac_funds = project_verified[['idPlanilhaAprovacao', 'PRONAC', 'vlComprovacao', 'idSegmento']] funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby( ['PRONAC']) project_verified_funds = funds_grp.sum().loc[pronac]['vlComprovacao'] to_verify_value = project_raised_funds - float(project_verified_funds) is_outlier = to_verify_value != 0 return {'is_outlier': is_outlier, 'valor': to_verify_value, 'valor_captado': project_raised_funds, 'valor_comprovado': project_verified_funds, 'minimo_esperado': 0}
to_verify_funds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pronac, dt):\n project_raised_funds = data.raised_funds_by_project.loc[pronac][\n 'CaptacaoReal']\n dataframe = data.planilha_comprovacao\n project_verified = dataframe.loc[dataframe['PRONAC'] == str(pronac)]\n if project_verified.empty:\n project_verified_funds = 0\n else:\n pronac_funds = project_verified[['idPlanilhaAprovacao', 'PRONAC',\n 'vlComprovacao', 'idSegmento']]\n funds_grp = pronac_funds.drop(columns=['idPlanilhaAprovacao']).groupby(\n ['PRONAC'])\n project_verified_funds = funds_grp.sum().loc[pronac]['vlComprovacao']\n to_verify_value = project_raised_funds - float(project_verified_funds)\n is_outlier = to_verify_value != 0\n return {'is_outlier': is_outlier, 'valor': to_verify_value,\n 'valor_captado': project_raised_funds, 'valor_comprovado':\n project_verified_funds, 'minimo_esperado': 0}\n", "role": "user" }, { "content": "to_verify_funds", "role": "assistant" } ]