source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSwappedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemSwappedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSwappedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemSwappedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSwapTargetMB(self.handle.value, byref
(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemSwapTargetMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSwapTargetMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemSwapTargetMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemTargetSizeMB(self.handle.value, byref
(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemTargetSizeMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemTargetSizeMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemTargetSizeMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemUsedMB(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemUsedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemUsedMB(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemUsedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemZippedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemZippedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemZippedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemZippedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemZipSavedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemZipSavedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemZipSavedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemZipSavedMB",
"role": "assistant"
}
] |
def x(t_int, C, deg, x, cov_C=None, M_spline=False, I_spline=False, n=0):
C = scipy.asarray(C, dtype=float)
t_int = scipy.asarray(t_int, dtype=float)
if (t_int != scipy.sort(t_int)).any():
raise ValueError('Knots must be in increasing order!')
if n > deg:
return scipy.zeros_like(x, dtype=float)
if I_spline:
if cov_C is not None:
cov_C = scipy.asarray(cov_C)
if cov_C.ndim == 1:
cov_C = cov_C[1:]
elif cov_C.ndim == 2:
cov_C = cov_C[1:, 1:]
if n > 0:
return spev(t_int, C[1:], deg - 1, x, cov_C=cov_C, M_spline=
True, I_spline=False, n=n - 1)
M_spline = True
if n > 0:
if M_spline:
t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))
C = (deg + 1.0) * (C[1:] / (t[deg + 2:len(t_int) + 2 * deg] - t
[1:len(t_int) + deg - 1]) - C[:-1] / (t[deg + 1:len(t_int) +
2 * deg - 1] - t[:len(t_int) + deg - 2]))
else:
C = C[1:] - C[:-1]
return spev(t_int, C, deg - 1, x, cov_C=cov_C, M_spline=True,
I_spline=False, n=n - 1)
if len(C) != len(t_int) + deg - 1:
raise ValueError('Length of C must be equal to M + deg - 1!')
t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))
B = scipy.zeros((deg + 1, len(t) - 1, len(x)))
d = 0
for i in xrange(deg, deg + len(t_int) - 2 + 1):
mask = (t[i] <= x) & ((x < t[i + 1]) | (i == deg + len(t_int) - 2) &
(x == t[-1]))
B[d, i, mask] = 1.0 / (t[i + 1] - t[i]) if M_spline else 1.0
for d in xrange(1, deg + 1):
for i in xrange(deg - d, deg + len(t_int) - 2 + 1):
if t[i + d] != t[i]:
v = (x - t[i]) * B[d - 1, i, :]
if not M_spline:
v /= t[i + d] - t[i]
B[d, i, :] += v
if t[i + d + 1] != t[i + 1]:
v = (t[i + d + 1] - x) * B[d - 1, i + 1, :]
if not M_spline:
v /= t[i + d + 1] - t[i + 1]
B[d, i, :] += v
if M_spline and (t[i + d] != t[i] or t[i + d + 1] != t[i + 1]):
B[d, i, :] *= (d + 1) / (d * (t[i + d + 1] - t[i]))
B = B[deg, 0:len(C), :].T
if I_spline:
I = scipy.zeros_like(B)
for i in xrange(0, len(C)):
for m in xrange(i, len(C)):
I[:, i] += (t[m + deg + 1] - t[m]) * B[:, m] / (deg + 1.0)
B = I
y = B.dot(C)
if cov_C is not None:
cov_C = scipy.asarray(cov_C)
if cov_C.ndim == 1:
cov_C = scipy.diag(cov_C)
cov_y = B.dot(cov_C).dot(B.T)
return y, cov_y
else:
return y
|
spev
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(t_int, C, deg, x, cov_C=None, M_spline=False, I_spline=False, n=0):\n C = scipy.asarray(C, dtype=float)\n t_int = scipy.asarray(t_int, dtype=float)\n if (t_int != scipy.sort(t_int)).any():\n raise ValueError('Knots must be in increasing order!')\n if n > deg:\n return scipy.zeros_like(x, dtype=float)\n if I_spline:\n if cov_C is not None:\n cov_C = scipy.asarray(cov_C)\n if cov_C.ndim == 1:\n cov_C = cov_C[1:]\n elif cov_C.ndim == 2:\n cov_C = cov_C[1:, 1:]\n if n > 0:\n return spev(t_int, C[1:], deg - 1, x, cov_C=cov_C, M_spline=\n True, I_spline=False, n=n - 1)\n M_spline = True\n if n > 0:\n if M_spline:\n t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))\n C = (deg + 1.0) * (C[1:] / (t[deg + 2:len(t_int) + 2 * deg] - t\n [1:len(t_int) + deg - 1]) - C[:-1] / (t[deg + 1:len(t_int) +\n 2 * deg - 1] - t[:len(t_int) + deg - 2]))\n else:\n C = C[1:] - C[:-1]\n return spev(t_int, C, deg - 1, x, cov_C=cov_C, M_spline=True,\n I_spline=False, n=n - 1)\n if len(C) != len(t_int) + deg - 1:\n raise ValueError('Length of C must be equal to M + deg - 1!')\n t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))\n B = scipy.zeros((deg + 1, len(t) - 1, len(x)))\n d = 0\n for i in xrange(deg, deg + len(t_int) - 2 + 1):\n mask = (t[i] <= x) & ((x < t[i + 1]) | (i == deg + len(t_int) - 2) &\n (x == t[-1]))\n B[d, i, mask] = 1.0 / (t[i + 1] - t[i]) if M_spline else 1.0\n for d in xrange(1, deg + 1):\n for i in xrange(deg - d, deg + len(t_int) - 2 + 1):\n if t[i + d] != t[i]:\n v = (x - t[i]) * B[d - 1, i, :]\n if not M_spline:\n v /= t[i + d] - t[i]\n B[d, i, :] += v\n if t[i + d + 1] != t[i + 1]:\n v = (t[i + d + 1] - x) * B[d - 1, i + 1, :]\n if not M_spline:\n v /= t[i + d + 1] - t[i + 1]\n B[d, i, :] += v\n if M_spline and (t[i + d] != t[i] or t[i + d + 1] != t[i + 1]):\n B[d, i, :] *= (d + 1) / (d * (t[i + d + 1] - t[i]))\n B = B[deg, 0:len(C), :].T\n if I_spline:\n I = scipy.zeros_like(B)\n for i in xrange(0, len(C)):\n for m in xrange(i, len(C)):\n I[:, i] += (t[m + deg + 1] - t[m]) * B[:, m] / (deg + 1.0)\n B = I\n y = B.dot(C)\n if cov_C is not None:\n cov_C = scipy.asarray(cov_C)\n if cov_C.ndim == 1:\n cov_C = scipy.diag(cov_C)\n cov_y = B.dot(cov_C).dot(B.T)\n return y, cov_y\n else:\n return y\n",
"role": "user"
},
{
"content": "spev",
"role": "assistant"
}
] |
def x(subparsers):
parser_version = subparsers.add_parser('version', help=
'Output the version of %(prog)s to the console.')
parser_version.set_defaults(func=command_version)
return parser_version
|
parser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(subparsers):\n parser_version = subparsers.add_parser('version', help=\n 'Output the version of %(prog)s to the console.')\n parser_version.set_defaults(func=command_version)\n return parser_version\n",
"role": "user"
},
{
"content": "parser",
"role": "assistant"
}
] |
def x(context, helper_name):
request = context.request
module, class_name = helper_name.rsplit('.', 1)
if module not in sys.modules:
__import__(module)
mod = sys.modules[module]
class_ = getattr(mod, class_name)
return class_(request=request)
|
wafer_form_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, helper_name):\n request = context.request\n module, class_name = helper_name.rsplit('.', 1)\n if module not in sys.modules:\n __import__(module)\n mod = sys.modules[module]\n class_ = getattr(mod, class_name)\n return class_(request=request)\n",
"role": "user"
},
{
"content": "wafer_form_helper",
"role": "assistant"
}
] |
def x(root_menu):
for page in Page.objects.filter(include_in_menu=True):
path = page.get_path()
menu = path[0] if len(path) > 1 else None
try:
root_menu.add_item(page.name, page.get_absolute_url(), menu=menu)
except MenuError as e:
logger.error('Bad menu item %r for page with slug %r.' % (e,
page.slug))
|
page_menus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root_menu):\n for page in Page.objects.filter(include_in_menu=True):\n path = page.get_path()\n menu = path[0] if len(path) > 1 else None\n try:\n root_menu.add_item(page.name, page.get_absolute_url(), menu=menu)\n except MenuError as e:\n logger.error('Bad menu item %r for page with slug %r.' % (e,\n page.slug))\n",
"role": "user"
},
{
"content": "page_menus",
"role": "assistant"
}
] |
def x(request):
if request.user.is_authenticated:
return HttpResponseRedirect(reverse('wafer_user_profile', args=(
request.user.username,)))
else:
return redirect_to_login(next=reverse(redirect_profile))
|
redirect_profile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n if request.user.is_authenticated:\n return HttpResponseRedirect(reverse('wafer_user_profile', args=(\n request.user.username,)))\n else:\n return redirect_to_login(next=reverse(redirect_profile))\n",
"role": "user"
},
{
"content": "redirect_profile",
"role": "assistant"
}
] |
def x(user, talk):
context = {'reviewed': False}
review = None
if user and not user.is_anonymous():
review = talk.reviews.filter(reviewer=user).first()
if review:
context['reviewed'] = True
context['review_is_current'] = review.is_current()
return context
|
reviewed_badge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user, talk):\n context = {'reviewed': False}\n review = None\n if user and not user.is_anonymous():\n review = talk.reviews.filter(reviewer=user).first()\n if review:\n context['reviewed'] = True\n context['review_is_current'] = review.is_current()\n return context\n",
"role": "user"
},
{
"content": "reviewed_badge",
"role": "assistant"
}
] |
def x(X, d, n, *args):
X = scipy.asarray(X)
a = args[2 * d]
b = args[2 * d + 1]
if n == 0:
return scipy.special.betainc(a, b, X)
elif n == 1:
return (1 - X) ** (b - 1) * X ** (a - 1) / scipy.special.beta(a, b)
else:
out = scipy.zeros_like(X)
for k in range(0, n):
out += (-1.0) ** (n - k) * scipy.special.binom(n - 1, k
) * fixed_poch(1.0 - b, k) * fixed_poch(1.0 - a, n - k - 1.0
) * (X / (1.0 - X)) ** k
return -(1.0 - X) ** (b - 1.0) * X ** (a - n
) * out / scipy.special.beta(a, b)
|
beta_cdf_warp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, d, n, *args):\n X = scipy.asarray(X)\n a = args[2 * d]\n b = args[2 * d + 1]\n if n == 0:\n return scipy.special.betainc(a, b, X)\n elif n == 1:\n return (1 - X) ** (b - 1) * X ** (a - 1) / scipy.special.beta(a, b)\n else:\n out = scipy.zeros_like(X)\n for k in range(0, n):\n out += (-1.0) ** (n - k) * scipy.special.binom(n - 1, k\n ) * fixed_poch(1.0 - b, k) * fixed_poch(1.0 - a, n - k - 1.0\n ) * (X / (1.0 - X)) ** k\n return -(1.0 - X) ** (b - 1.0) * X ** (a - n\n ) * out / scipy.special.beta(a, b)\n",
"role": "user"
},
{
"content": "beta_cdf_warp",
"role": "assistant"
}
] |
def x(X, d, n, *args):
X = scipy.asarray(X, dtype=float)
a = args[2 * d]
b = args[2 * d + 1]
if n == 0:
return (X - a) / (b - a)
elif n == 1:
return 1.0 / (b - a) * scipy.ones_like(X)
else:
return scipy.zeros_like(X)
|
linear_warp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, d, n, *args):\n X = scipy.asarray(X, dtype=float)\n a = args[2 * d]\n b = args[2 * d + 1]\n if n == 0:\n return (X - a) / (b - a)\n elif n == 1:\n return 1.0 / (b - a) * scipy.ones_like(X)\n else:\n return scipy.zeros_like(X)\n",
"role": "user"
},
{
"content": "linear_warp",
"role": "assistant"
}
] |
def x(self, X, d, n):
if n == 0:
wX = self.w(X, d, 0)
if isinstance(self.k, WarpedKernel):
wX = self.k.w_func(wX, d, 0)
return wX
elif n == 1:
wXn = self.w(X, d, n)
if isinstance(self.k, WarpedKernel):
wX = self.w_func(X, d, 0)
wXn *= self.k.w_func(wX, d, n)
return wXn
else:
raise ValueError(
'Derivative orders greater than one are not supported!')
|
w_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, d, n):\n if n == 0:\n wX = self.w(X, d, 0)\n if isinstance(self.k, WarpedKernel):\n wX = self.k.w_func(wX, d, 0)\n return wX\n elif n == 1:\n wXn = self.w(X, d, n)\n if isinstance(self.k, WarpedKernel):\n wX = self.w_func(X, d, 0)\n wXn *= self.k.w_func(wX, d, n)\n return wXn\n else:\n raise ValueError(\n 'Derivative orders greater than one are not supported!')\n",
"role": "user"
},
{
"content": "w_func",
"role": "assistant"
}
] |
def x(self, v):
self._enforce_bounds = v
self.k.enforce_bounds = v
self.w.enforce_bounds = v
|
enforce_bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v):\n self._enforce_bounds = v\n self.k.enforce_bounds = v\n self.w.enforce_bounds = v\n",
"role": "user"
},
{
"content": "enforce_bounds",
"role": "assistant"
}
] |
def x(self, value):
value = scipy.asarray(value, dtype=float)
self.K_up_to_date = False
self.k.free_params = value[:self.k.num_free_params]
self.w.free_params = value[self.k.num_free_params:self.k.
num_free_params + self.w.num_free_params]
|
free_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n value = scipy.asarray(value, dtype=float)\n self.K_up_to_date = False\n self.k.free_params = value[:self.k.num_free_params]\n self.w.free_params = value[self.k.num_free_params:self.k.\n num_free_params + self.w.num_free_params]\n",
"role": "user"
},
{
"content": "free_params",
"role": "assistant"
}
] |
def x(self, new_params):
new_params = scipy.asarray(new_params, dtype=float)
if len(new_params) == len(self.free_params):
num_free_k = sum(~self.k.fixed_params)
self.k.set_hyperparams(new_params[:num_free_k])
self.w.set_hyperparams(new_params[num_free_k:])
else:
raise ValueError('Length of new_params must be %s!' % (len(self.
free_params),))
|
set_hyperparams
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_params):\n new_params = scipy.asarray(new_params, dtype=float)\n if len(new_params) == len(self.free_params):\n num_free_k = sum(~self.k.fixed_params)\n self.k.set_hyperparams(new_params[:num_free_k])\n self.w.set_hyperparams(new_params[num_free_k:])\n else:\n raise ValueError('Length of new_params must be %s!' % (len(self.\n free_params),))\n",
"role": "user"
},
{
"content": "set_hyperparams",
"role": "assistant"
}
] |
def x(self, request, *args, **kwargs):
if 'pk' in kwargs:
self.object = self.get_object()
else:
self.object = None
form_class = self.get_form_class()
if 'field_prefix' in form_class.Meta.__dict__:
field_prefix = form_class.Meta.field_prefix
else:
field_prefix = str(form_class).split("'")[1].split('.')[-1]
self.field_prefix = field_prefix
form = self.get_form(form_class)
if 'groups' in dir(self):
groups = self.groups
form.__groups__ = lambda : groups
fields = []
else:
groups = None
form.add_prefix = (lambda fields_name, field_prefix=field_prefix:
'%s_%s' % (field_prefix, fields_name))
if 'autofill' not in dir(form.Meta):
form.Meta.autofill = {}
forms = []
position_form_default = 0
for formelement, linkerfield, modelfilter in self.forms:
if formelement is None:
formobj = form
position_form_default = len(forms)
else:
if self.object:
related_name = formelement._meta.model._meta.get_field(
linkerfield).related_query_name()
queryset = getattr(self.object, related_name)
if modelfilter:
queryset = queryset.filter(eval('Q(%s)' % modelfilter))
get_method = getattr(queryset, 'get', None)
if get_method:
instance = queryset.get()
else:
instance = queryset
else:
instance = None
if 'autofill' in dir(formelement.Meta):
formname = str(formelement).split('.')[-1].split("'")[0]
for key in formelement.Meta.autofill:
form.Meta.autofill['{}_{}'.format(formname, key)
] = formelement.Meta.autofill[key]
if 'field_prefix' in formelement.Meta.__dict__:
field_prefix = formelement.Meta.field_prefix
else:
field_prefix = str(formelement).split("'")[1].split('.')[-1]
self.field_prefix = field_prefix
formobj = formelement(instance=instance)
formobj.form_name = form.form_name
if 'exclude' not in formobj.Meta.__dict__:
formobj.Meta.exclude = [linkerfield]
elif linkerfield not in formobj.Meta.exclude:
formobj.Meta.exclude.append(linkerfield)
if linkerfield in formobj.fields:
del formobj.fields[linkerfield]
formobj.add_prefix = (lambda fields_name, field_prefix=
field_prefix: '%s_%s' % (field_prefix, fields_name))
formobj.scope_prefix = field_prefix
if groups:
for field in formobj:
fields.append(field)
else:
forms.append(formobj)
if position_form_default == 0:
open_tabs = 1
else:
open_tabs = 0
if groups:
form.list_fields = fields
return self.render_to_response(self.get_context_data(form=form, forms=
forms, open_tabs=open_tabs, position_form_default=
position_form_default))
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, *args, **kwargs):\n if 'pk' in kwargs:\n self.object = self.get_object()\n else:\n self.object = None\n form_class = self.get_form_class()\n if 'field_prefix' in form_class.Meta.__dict__:\n field_prefix = form_class.Meta.field_prefix\n else:\n field_prefix = str(form_class).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n form = self.get_form(form_class)\n if 'groups' in dir(self):\n groups = self.groups\n form.__groups__ = lambda : groups\n fields = []\n else:\n groups = None\n form.add_prefix = (lambda fields_name, field_prefix=field_prefix: \n '%s_%s' % (field_prefix, fields_name))\n if 'autofill' not in dir(form.Meta):\n form.Meta.autofill = {}\n forms = []\n position_form_default = 0\n for formelement, linkerfield, modelfilter in self.forms:\n if formelement is None:\n formobj = form\n position_form_default = len(forms)\n else:\n if self.object:\n related_name = formelement._meta.model._meta.get_field(\n linkerfield).related_query_name()\n queryset = getattr(self.object, related_name)\n if modelfilter:\n queryset = queryset.filter(eval('Q(%s)' % modelfilter))\n get_method = getattr(queryset, 'get', None)\n if get_method:\n instance = queryset.get()\n else:\n instance = queryset\n else:\n instance = None\n if 'autofill' in dir(formelement.Meta):\n formname = str(formelement).split('.')[-1].split(\"'\")[0]\n for key in formelement.Meta.autofill:\n form.Meta.autofill['{}_{}'.format(formname, key)\n ] = formelement.Meta.autofill[key]\n if 'field_prefix' in formelement.Meta.__dict__:\n field_prefix = formelement.Meta.field_prefix\n else:\n field_prefix = str(formelement).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n formobj = formelement(instance=instance)\n formobj.form_name = form.form_name\n if 'exclude' not in formobj.Meta.__dict__:\n formobj.Meta.exclude = [linkerfield]\n elif linkerfield not in formobj.Meta.exclude:\n formobj.Meta.exclude.append(linkerfield)\n if linkerfield in formobj.fields:\n del formobj.fields[linkerfield]\n formobj.add_prefix = (lambda fields_name, field_prefix=\n field_prefix: '%s_%s' % (field_prefix, fields_name))\n formobj.scope_prefix = field_prefix\n if groups:\n for field in formobj:\n fields.append(field)\n else:\n forms.append(formobj)\n if position_form_default == 0:\n open_tabs = 1\n else:\n open_tabs = 0\n if groups:\n form.list_fields = fields\n return self.render_to_response(self.get_context_data(form=form, forms=\n forms, open_tabs=open_tabs, position_form_default=\n position_form_default))\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, request, *args, **kwargs):
if 'pk' in kwargs:
self.object = self.get_object()
else:
self.object = None
form_class = self.get_form_class()
if 'field_prefix' in form_class.Meta.__dict__:
field_prefix = form_class.Meta.field_prefix
else:
field_prefix = str(form_class).split("'")[1].split('.')[-1]
self.field_prefix = field_prefix
form = self.get_form(form_class)
if 'groups' in dir(self):
groups = self.groups
form.__groups__ = lambda : groups
fields = []
else:
groups = None
form.add_prefix = (lambda fields_name, field_prefix=field_prefix:
'%s_%s' % (field_prefix, fields_name))
valid = form.is_valid()
if not valid and 'non_field_errors' in dir(self):
errors = [element[5] for element in list(self.non_field_errors())[:-1]]
elif form.errors.as_data():
errors = []
for element in form.errors.as_data():
for err in form.errors.as_data()[element][0]:
errors.append(err)
else:
errors = []
temp_forms = []
position_form_default = 0
for formelement, linkerfield, modelfilter in self.forms:
if formelement is None:
formobj = form
position_form_default = len(temp_forms)
else:
if self.object:
related_name = formelement._meta.model._meta.get_field(
linkerfield).related_query_name()
queryset = getattr(self.object, related_name)
if modelfilter:
queryset = queryset.filter(eval('Q(%s)' % modelfilter))
get_method = getattr(queryset, 'get', None)
if get_method:
instance = queryset.get()
else:
instance = queryset
else:
instance = None
if 'field_prefix' in formelement.Meta.__dict__:
field_prefix = formelement.Meta.field_prefix
else:
field_prefix = str(formelement).split("'")[1].split('.')[-1]
self.field_prefix = field_prefix
formobj = formelement(instance=instance, data=self.request.POST)
formobj.form_name = form.form_name
if 'exclude' not in formobj.Meta.__dict__:
formobj.Meta.exclude = [linkerfield]
elif linkerfield not in formobj.Meta.exclude:
formobj.Meta.exclude.append(linkerfield)
if linkerfield in formobj.fields:
del formobj.fields[linkerfield]
formobj.add_prefix = (lambda fields_name, field_prefix=
field_prefix: '%s_%s' % (field_prefix, fields_name))
valid *= formobj.is_valid()
if not formobj.is_valid() and 'non_field_errors' in dir(formobj):
errors += [element[5] for element in list(formobj.
non_field_errors())[:-1]]
if groups:
for field in formobj:
if 'unblock_t2ime' in field.html_name:
raise Exception(field.field.__dict__)
fields.append(field)
temp_forms.append((formobj, linkerfield))
validate_forms = None
if valid and 'validate' in dir(self):
validate_forms = [tform[0] for tform in temp_forms]
errors = self.validate(*validate_forms)
valid = False
if errors is None or len(errors) == 0:
valid = True
if groups:
form.list_fields = fields
forms = []
elif validate_forms:
forms = validate_forms
else:
forms = [tform[0] for tform in temp_forms]
if position_form_default == 0:
open_tabs = 1
else:
open_tabs = 0
if valid:
return self.form_valid(form, temp_forms)
else:
form.list_errors = errors
return self.form_invalid(form, forms, open_tabs, position_form_default)
|
post
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, *args, **kwargs):\n if 'pk' in kwargs:\n self.object = self.get_object()\n else:\n self.object = None\n form_class = self.get_form_class()\n if 'field_prefix' in form_class.Meta.__dict__:\n field_prefix = form_class.Meta.field_prefix\n else:\n field_prefix = str(form_class).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n form = self.get_form(form_class)\n if 'groups' in dir(self):\n groups = self.groups\n form.__groups__ = lambda : groups\n fields = []\n else:\n groups = None\n form.add_prefix = (lambda fields_name, field_prefix=field_prefix: \n '%s_%s' % (field_prefix, fields_name))\n valid = form.is_valid()\n if not valid and 'non_field_errors' in dir(self):\n errors = [element[5] for element in list(self.non_field_errors())[:-1]]\n elif form.errors.as_data():\n errors = []\n for element in form.errors.as_data():\n for err in form.errors.as_data()[element][0]:\n errors.append(err)\n else:\n errors = []\n temp_forms = []\n position_form_default = 0\n for formelement, linkerfield, modelfilter in self.forms:\n if formelement is None:\n formobj = form\n position_form_default = len(temp_forms)\n else:\n if self.object:\n related_name = formelement._meta.model._meta.get_field(\n linkerfield).related_query_name()\n queryset = getattr(self.object, related_name)\n if modelfilter:\n queryset = queryset.filter(eval('Q(%s)' % modelfilter))\n get_method = getattr(queryset, 'get', None)\n if get_method:\n instance = queryset.get()\n else:\n instance = queryset\n else:\n instance = None\n if 'field_prefix' in formelement.Meta.__dict__:\n field_prefix = formelement.Meta.field_prefix\n else:\n field_prefix = str(formelement).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n formobj = formelement(instance=instance, data=self.request.POST)\n formobj.form_name = form.form_name\n if 'exclude' not in formobj.Meta.__dict__:\n formobj.Meta.exclude = [linkerfield]\n elif linkerfield not in formobj.Meta.exclude:\n formobj.Meta.exclude.append(linkerfield)\n if linkerfield in formobj.fields:\n del formobj.fields[linkerfield]\n formobj.add_prefix = (lambda fields_name, field_prefix=\n field_prefix: '%s_%s' % (field_prefix, fields_name))\n valid *= formobj.is_valid()\n if not formobj.is_valid() and 'non_field_errors' in dir(formobj):\n errors += [element[5] for element in list(formobj.\n non_field_errors())[:-1]]\n if groups:\n for field in formobj:\n if 'unblock_t2ime' in field.html_name:\n raise Exception(field.field.__dict__)\n fields.append(field)\n temp_forms.append((formobj, linkerfield))\n validate_forms = None\n if valid and 'validate' in dir(self):\n validate_forms = [tform[0] for tform in temp_forms]\n errors = self.validate(*validate_forms)\n valid = False\n if errors is None or len(errors) == 0:\n valid = True\n if groups:\n form.list_fields = fields\n forms = []\n elif validate_forms:\n forms = validate_forms\n else:\n forms = [tform[0] for tform in temp_forms]\n if position_form_default == 0:\n open_tabs = 1\n else:\n open_tabs = 0\n if valid:\n return self.form_valid(form, temp_forms)\n else:\n form.list_errors = errors\n return self.form_invalid(form, forms, open_tabs, position_form_default)\n",
"role": "user"
},
{
"content": "post",
"role": "assistant"
}
] |
def x(self, form, forms):
if self.object:
form.save()
for formobj, linkerfield in forms:
if form != formobj:
formobj.save()
else:
self.object = form.save()
for formobj, linkerfield in forms:
if form != formobj:
setattr(formobj.instance, linkerfield, self.object)
formobj.save()
return HttpResponseRedirect(self.get_success_url())
|
form_valid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, form, forms):\n if self.object:\n form.save()\n for formobj, linkerfield in forms:\n if form != formobj:\n formobj.save()\n else:\n self.object = form.save()\n for formobj, linkerfield in forms:\n if form != formobj:\n setattr(formobj.instance, linkerfield, self.object)\n formobj.save()\n return HttpResponseRedirect(self.get_success_url())\n",
"role": "user"
},
{
"content": "form_valid",
"role": "assistant"
}
] |
def x(self, form, forms, open_tabs, position_form_default):
return self.render_to_response(self.get_context_data(form=form, forms=
forms, open_tabs=open_tabs, position_form_default=
position_form_default))
|
form_invalid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, form, forms, open_tabs, position_form_default):\n return self.render_to_response(self.get_context_data(form=form, forms=\n forms, open_tabs=open_tabs, position_form_default=\n position_form_default))\n",
"role": "user"
},
{
"content": "form_invalid",
"role": "assistant"
}
] |
def x(fun, guess, opt_kwargs={}):
opt_kwargs = dict(opt_kwargs)
opt_kwargs.pop('method', None)
eqcons = []
ieqcons = []
if 'constraints' in opt_kwargs:
if isinstance(opt_kwargs['constraints'], dict):
opt_kwargs['constraints'] = [opt_kwargs['constraints']]
for con in opt_kwargs.pop('constraints'):
if con['type'] == 'eq':
eqcons += [con['fun']]
elif con['type'] == 'ineq':
ieqcons += [con['fun']]
else:
raise ValueError('Invalid constraint type %s!' % (con['type'],)
)
if 'jac' in opt_kwargs:
warnings.warn('Jacobian not supported for default solver SLSQP!',
RuntimeWarning)
opt_kwargs.pop('jac')
if 'tol' in opt_kwargs:
opt_kwargs['acc'] = opt_kwargs.pop('tol')
if 'options' in opt_kwargs:
opts = opt_kwargs.pop('options')
opt_kwargs = dict(opt_kwargs.items() + opts.items())
opt_kwargs.pop('hess', None)
opt_kwargs.pop('hessp', None)
opt_kwargs.pop('callback', None)
out, fx, its, imode, smode = scipy.optimize.fmin_slsqp(fun, guess,
full_output=True, eqcons=eqcons, ieqcons=ieqcons, **opt_kwargs)
Result = collections.namedtuple('Result', ['status', 'success', 'fun',
'x', 'message', 'nit'])
return Result(status=imode, success=imode == 0, fun=fx, x=out, message=
smode, nit=its)
|
wrap_fmin_slsqp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fun, guess, opt_kwargs={}):\n opt_kwargs = dict(opt_kwargs)\n opt_kwargs.pop('method', None)\n eqcons = []\n ieqcons = []\n if 'constraints' in opt_kwargs:\n if isinstance(opt_kwargs['constraints'], dict):\n opt_kwargs['constraints'] = [opt_kwargs['constraints']]\n for con in opt_kwargs.pop('constraints'):\n if con['type'] == 'eq':\n eqcons += [con['fun']]\n elif con['type'] == 'ineq':\n ieqcons += [con['fun']]\n else:\n raise ValueError('Invalid constraint type %s!' % (con['type'],)\n )\n if 'jac' in opt_kwargs:\n warnings.warn('Jacobian not supported for default solver SLSQP!',\n RuntimeWarning)\n opt_kwargs.pop('jac')\n if 'tol' in opt_kwargs:\n opt_kwargs['acc'] = opt_kwargs.pop('tol')\n if 'options' in opt_kwargs:\n opts = opt_kwargs.pop('options')\n opt_kwargs = dict(opt_kwargs.items() + opts.items())\n opt_kwargs.pop('hess', None)\n opt_kwargs.pop('hessp', None)\n opt_kwargs.pop('callback', None)\n out, fx, its, imode, smode = scipy.optimize.fmin_slsqp(fun, guess,\n full_output=True, eqcons=eqcons, ieqcons=ieqcons, **opt_kwargs)\n Result = collections.namedtuple('Result', ['status', 'success', 'fun',\n 'x', 'message', 'nit'])\n return Result(status=imode, success=imode == 0, fun=fx, x=out, message=\n smode, nit=its)\n",
"role": "user"
},
{
"content": "wrap_fmin_slsqp",
"role": "assistant"
}
] |
def x(a, n):
if int(n) != n or n < 0:
raise ValueError('Parameter n must be a nonnegative int!')
n = int(n)
terms = [(a + k) for k in range(0, n)]
return scipy.prod(terms)
|
fixed_poch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, n):\n if int(n) != n or n < 0:\n raise ValueError('Parameter n must be a nonnegative int!')\n n = int(n)\n terms = [(a + k) for k in range(0, n)]\n return scipy.prod(terms)\n",
"role": "user"
},
{
"content": "fixed_poch",
"role": "assistant"
}
] |
def x(nu, y, n=0):
n = int(n)
y = scipy.asarray(y, dtype=float)
sqrty = scipy.sqrt(y)
if n == 0:
K = scipy.special.kv(nu, sqrty)
else:
K = scipy.zeros_like(y)
x = scipy.asarray([(fixed_poch(1.5 - j, j) * y ** (0.5 - j)) for j in
scipy.arange(1.0, n + 1.0, dtype=float)]).T
for k in scipy.arange(1.0, n + 1.0, dtype=float):
K += scipy.special.kvp(nu, sqrty, n=int(k)) * incomplete_bell_poly(
n, int(k), x)
return K
|
Kn2Der
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nu, y, n=0):\n n = int(n)\n y = scipy.asarray(y, dtype=float)\n sqrty = scipy.sqrt(y)\n if n == 0:\n K = scipy.special.kv(nu, sqrty)\n else:\n K = scipy.zeros_like(y)\n x = scipy.asarray([(fixed_poch(1.5 - j, j) * y ** (0.5 - j)) for j in\n scipy.arange(1.0, n + 1.0, dtype=float)]).T\n for k in scipy.arange(1.0, n + 1.0, dtype=float):\n K += scipy.special.kvp(nu, sqrty, n=int(k)) * incomplete_bell_poly(\n n, int(k), x)\n return K\n",
"role": "user"
},
{
"content": "Kn2Der",
"role": "assistant"
}
] |
def x(nu, y, n=0, tol=0.0005, nterms=1, nu_step=0.001):
n = int(n)
y = scipy.asarray(y, dtype=float)
if n == 0:
K = y ** (nu / 2.0) * scipy.special.kv(nu, scipy.sqrt(y))
K[y == 0.0] = scipy.special.gamma(nu) / 2.0 ** (1.0 - nu)
else:
K = scipy.zeros_like(y)
for k in scipy.arange(0.0, n + 1.0, dtype=float):
K += scipy.special.binom(n, k) * fixed_poch(1.0 + nu / 2.0 - k, k
) * y ** (nu / 2.0 - k) * Kn2Der(nu, y, n=n - k)
mask = y == 0.0
if mask.any():
if int(nu) == nu:
K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=
tol, nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu +
nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=
nu_step))
elif n > nu:
K[mask] = scipy.special.gamma(-nu) * fixed_poch(1 + nu - n, n
) * scipy.inf
else:
K[mask] = scipy.special.gamma(nu) * scipy.special.gamma(n + 1.0
) / (2.0 ** (1.0 - nu + 2.0 * n) * fixed_poch(1.0 - nu,
n) * scipy.special.factorial(n))
if tol > 0.0:
mask = (y <= tol) & (y > 0.0)
K[mask] = 0.0
if int(nu) == nu:
K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=tol,
nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu + nu_step, y
[mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step))
else:
for k in scipy.arange(n, n + nterms, dtype=float):
K[mask] += scipy.special.gamma(nu) * fixed_poch(1.0 + k - n, n
) * y[mask] ** (k - n) / (2.0 ** (1.0 - nu + 2 * k) *
fixed_poch(1.0 - nu, k) * scipy.special.factorial(k))
for k in scipy.arange(0, nterms, dtype=float):
K[mask] += scipy.special.gamma(-nu) * fixed_poch(1.0 + nu +
k - n, n) * y[mask] ** (nu + k - n) / (2.0 ** (1.0 + nu +
2.0 * k) * fixed_poch(1.0 + nu, k) * scipy.special.
factorial(k))
return K
|
yn2Kn2Der
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nu, y, n=0, tol=0.0005, nterms=1, nu_step=0.001):\n n = int(n)\n y = scipy.asarray(y, dtype=float)\n if n == 0:\n K = y ** (nu / 2.0) * scipy.special.kv(nu, scipy.sqrt(y))\n K[y == 0.0] = scipy.special.gamma(nu) / 2.0 ** (1.0 - nu)\n else:\n K = scipy.zeros_like(y)\n for k in scipy.arange(0.0, n + 1.0, dtype=float):\n K += scipy.special.binom(n, k) * fixed_poch(1.0 + nu / 2.0 - k, k\n ) * y ** (nu / 2.0 - k) * Kn2Der(nu, y, n=n - k)\n mask = y == 0.0\n if mask.any():\n if int(nu) == nu:\n K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=\n tol, nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu +\n nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=\n nu_step))\n elif n > nu:\n K[mask] = scipy.special.gamma(-nu) * fixed_poch(1 + nu - n, n\n ) * scipy.inf\n else:\n K[mask] = scipy.special.gamma(nu) * scipy.special.gamma(n + 1.0\n ) / (2.0 ** (1.0 - nu + 2.0 * n) * fixed_poch(1.0 - nu,\n n) * scipy.special.factorial(n))\n if tol > 0.0:\n mask = (y <= tol) & (y > 0.0)\n K[mask] = 0.0\n if int(nu) == nu:\n K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=tol,\n nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu + nu_step, y\n [mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step))\n else:\n for k in scipy.arange(n, n + nterms, dtype=float):\n K[mask] += scipy.special.gamma(nu) * fixed_poch(1.0 + k - n, n\n ) * y[mask] ** (k - n) / (2.0 ** (1.0 - nu + 2 * k) *\n fixed_poch(1.0 - nu, k) * scipy.special.factorial(k))\n for k in scipy.arange(0, nterms, dtype=float):\n K[mask] += scipy.special.gamma(-nu) * fixed_poch(1.0 + nu +\n k - n, n) * y[mask] ** (nu + k - n) / (2.0 ** (1.0 + nu +\n 2.0 * k) * fixed_poch(1.0 + nu, k) * scipy.special.\n factorial(k))\n return K\n",
"role": "user"
},
{
"content": "yn2Kn2Der",
"role": "assistant"
}
] |
def x(n, k, x):
if n == 0 and k == 0:
return scipy.ones(x.shape[0], dtype=float)
elif k == 0 and n >= 1:
return scipy.zeros(x.shape[0], dtype=float)
elif n == 0 and k >= 1:
return scipy.zeros(x.shape[0], dtype=float)
else:
result = scipy.zeros(x.shape[0], dtype=float)
for m in xrange(0, n - k + 1):
result += x[:, m] * scipy.special.binom(n - 1, m
) * incomplete_bell_poly(n - (m + 1), k - 1, x)
return result
|
incomplete_bell_poly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, k, x):\n if n == 0 and k == 0:\n return scipy.ones(x.shape[0], dtype=float)\n elif k == 0 and n >= 1:\n return scipy.zeros(x.shape[0], dtype=float)\n elif n == 0 and k >= 1:\n return scipy.zeros(x.shape[0], dtype=float)\n else:\n result = scipy.zeros(x.shape[0], dtype=float)\n for m in xrange(0, n - k + 1):\n result += x[:, m] * scipy.special.binom(n - 1, m\n ) * incomplete_bell_poly(n - (m + 1), k - 1, x)\n return result\n",
"role": "user"
},
{
"content": "incomplete_bell_poly",
"role": "assistant"
}
] |
def x(n):
if n == 0:
return []
elif n == 1:
return [scipy.array([0])]
partitions = []
a = scipy.zeros(n, dtype=int)
b = scipy.ones(n, dtype=int)
while True:
partitions.append(a.copy())
if a[-1] == b[-1]:
j = (a[:-1] != b[:-1]).nonzero()[0][-1]
if j == 0:
break
else:
a[j] += 1
b[-1] = b[j] + (a[j] == b[j])
a[j + 1:] = 0
b[j + 1:-1] = b[-1]
else:
a[-1] += 1
return partitions
|
generate_set_partition_strings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n):\n if n == 0:\n return []\n elif n == 1:\n return [scipy.array([0])]\n partitions = []\n a = scipy.zeros(n, dtype=int)\n b = scipy.ones(n, dtype=int)\n while True:\n partitions.append(a.copy())\n if a[-1] == b[-1]:\n j = (a[:-1] != b[:-1]).nonzero()[0][-1]\n if j == 0:\n break\n else:\n a[j] += 1\n b[-1] = b[j] + (a[j] == b[j])\n a[j + 1:] = 0\n b[j + 1:-1] = b[-1]\n else:\n a[-1] += 1\n return partitions\n",
"role": "user"
},
{
"content": "generate_set_partition_strings",
"role": "assistant"
}
] |
def x(set_):
set_ = scipy.asarray(set_)
strings = generate_set_partition_strings(len(set_))
partitions = []
for string in strings:
blocks = []
for block_num in scipy.unique(string):
blocks.append(set_[string == block_num])
partitions.append(blocks)
return partitions
|
generate_set_partitions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(set_):\n set_ = scipy.asarray(set_)\n strings = generate_set_partition_strings(len(set_))\n partitions = []\n for string in strings:\n blocks = []\n for block_num in scipy.unique(string):\n blocks.append(set_[string == block_num])\n partitions.append(blocks)\n return partitions\n",
"role": "user"
},
{
"content": "generate_set_partitions",
"role": "assistant"
}
] |
def x(arr, return_index=False, return_inverse=False):
b = scipy.ascontiguousarray(arr).view(scipy.dtype((scipy.void, arr.
dtype.itemsize * arr.shape[1])))
try:
out = scipy.unique(b, return_index=True, return_inverse=return_inverse)
dum = out[0]
idx = out[1]
if return_inverse:
inv = out[2]
except TypeError:
if return_inverse:
raise RuntimeError(
'Error in scipy.unique on older versions of numpy prevents return_inverse from working!'
)
rows = [_Row(row) for row in b]
srt_idx = sorted(range(len(rows)), key=rows.__getitem__)
rows = scipy.asarray(rows)[srt_idx]
row_cmp = [-1]
for k in xrange(1, len(srt_idx)):
row_cmp.append(rows[k - 1].__cmp__(rows[k]))
row_cmp = scipy.asarray(row_cmp)
transition_idxs = scipy.where(row_cmp != 0)[0]
idx = scipy.asarray(srt_idx)[transition_idxs]
out = arr[idx]
if return_index:
out = out, idx
elif return_inverse:
out = out, inv
elif return_index and return_inverse:
out = out, idx, inv
return out
|
unique_rows
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, return_index=False, return_inverse=False):\n b = scipy.ascontiguousarray(arr).view(scipy.dtype((scipy.void, arr.\n dtype.itemsize * arr.shape[1])))\n try:\n out = scipy.unique(b, return_index=True, return_inverse=return_inverse)\n dum = out[0]\n idx = out[1]\n if return_inverse:\n inv = out[2]\n except TypeError:\n if return_inverse:\n raise RuntimeError(\n 'Error in scipy.unique on older versions of numpy prevents return_inverse from working!'\n )\n rows = [_Row(row) for row in b]\n srt_idx = sorted(range(len(rows)), key=rows.__getitem__)\n rows = scipy.asarray(rows)[srt_idx]\n row_cmp = [-1]\n for k in xrange(1, len(srt_idx)):\n row_cmp.append(rows[k - 1].__cmp__(rows[k]))\n row_cmp = scipy.asarray(row_cmp)\n transition_idxs = scipy.where(row_cmp != 0)[0]\n idx = scipy.asarray(srt_idx)[transition_idxs]\n out = arr[idx]\n if return_index:\n out = out, idx\n elif return_inverse:\n out = out, inv\n elif return_index and return_inverse:\n out = out, idx, inv\n return out\n",
"role": "user"
},
{
"content": "unique_rows",
"role": "assistant"
}
] |
def x(vals, check_nan=False, robust=False, axis=1, plot_QQ=False, bins=15,
name=''):
if axis != 1 and robust:
raise NotImplementedError(
'Values of axis other than 1 are not supported with the robust keyword at this time!'
)
if robust:
if check_nan:
mean = scipy.stats.nanmedian(vals, axis=axis)
std = scipy.zeros(vals.shape[0], dtype=float)
for k in xrange(0, len(vals)):
ch = vals[k]
ok_idxs = ~scipy.isnan(ch)
if ok_idxs.any():
std[k] = scipy.stats.scoreatpercentile(ch[ok_idxs], 75
) - scipy.stats.scoreatpercentile(ch[ok_idxs], 25)
else:
std[k] = scipy.nan
std /= IQR_TO_STD
else:
mean = scipy.median(vals, axis=axis)
std = scipy.asarray([(scipy.stats.scoreatpercentile(ch, 75.0) -
scipy.stats.scoreatpercentile(ch, 25.0)) for ch in vals]
) / IQR_TO_STD
elif check_nan:
mean = scipy.stats.nanmean(vals, axis=axis)
std = scipy.stats.nanstd(vals, axis=axis)
else:
mean = scipy.mean(vals, axis=axis)
std = scipy.std(vals, axis=axis)
if plot_QQ:
f = plt.figure()
gs = mplgs.GridSpec(2, 2, height_ratios=[8, 1])
a_QQ = f.add_subplot(gs[0, 0])
a_hist = f.add_subplot(gs[0, 1])
a_slider = f.add_subplot(gs[1, :])
title = f.suptitle('')
def x(val):
a_QQ.clear()
a_hist.clear()
idx = slider.val
title.set_text('%s, n=%d' % (name, idx))
nan_idxs = scipy.isnan(vals[idx, :])
if not nan_idxs.all():
osm, osr = scipy.stats.probplot(vals[idx, ~nan_idxs], dist=
'norm', plot=None, fit=False)
a_QQ.plot(osm, osr, 'bo', markersize=10)
a_QQ.set_title('QQ plot')
a_QQ.set_xlabel('quantiles of $\\mathcal{N}(0,1)$')
a_QQ.set_ylabel('quantiles of data')
a_hist.hist(vals[idx, ~nan_idxs], bins=bins, normed=True)
locs = scipy.linspace(vals[idx, ~nan_idxs].min(), vals[idx,
~nan_idxs].max())
a_hist.plot(locs, scipy.stats.norm.pdf(locs, loc=mean[idx],
scale=std[idx]))
a_hist.set_title('Normalized histogram and reported PDF')
a_hist.set_xlabel('value')
a_hist.set_ylabel('density')
f.canvas.draw()
def x(slider, event):
if event.key == 'right':
slider.set_val(min(slider.val + 1, slider.valmax))
elif event.key == 'left':
slider.set_val(max(slider.val - 1, slider.valmin))
slider = mplw.Slider(a_slider, 'index', 0, len(vals) - 1, valinit=0,
valfmt='%d')
slider.on_changed(update)
update(0)
f.canvas.mpl_connect('key_press_event', lambda evt: arrow_respond(
slider, evt))
return mean, std
|
compute_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vals, check_nan=False, robust=False, axis=1, plot_QQ=False, bins=15,\n name=''):\n if axis != 1 and robust:\n raise NotImplementedError(\n 'Values of axis other than 1 are not supported with the robust keyword at this time!'\n )\n if robust:\n if check_nan:\n mean = scipy.stats.nanmedian(vals, axis=axis)\n std = scipy.zeros(vals.shape[0], dtype=float)\n for k in xrange(0, len(vals)):\n ch = vals[k]\n ok_idxs = ~scipy.isnan(ch)\n if ok_idxs.any():\n std[k] = scipy.stats.scoreatpercentile(ch[ok_idxs], 75\n ) - scipy.stats.scoreatpercentile(ch[ok_idxs], 25)\n else:\n std[k] = scipy.nan\n std /= IQR_TO_STD\n else:\n mean = scipy.median(vals, axis=axis)\n std = scipy.asarray([(scipy.stats.scoreatpercentile(ch, 75.0) -\n scipy.stats.scoreatpercentile(ch, 25.0)) for ch in vals]\n ) / IQR_TO_STD\n elif check_nan:\n mean = scipy.stats.nanmean(vals, axis=axis)\n std = scipy.stats.nanstd(vals, axis=axis)\n else:\n mean = scipy.mean(vals, axis=axis)\n std = scipy.std(vals, axis=axis)\n if plot_QQ:\n f = plt.figure()\n gs = mplgs.GridSpec(2, 2, height_ratios=[8, 1])\n a_QQ = f.add_subplot(gs[0, 0])\n a_hist = f.add_subplot(gs[0, 1])\n a_slider = f.add_subplot(gs[1, :])\n title = f.suptitle('')\n\n def x(val):\n a_QQ.clear()\n a_hist.clear()\n idx = slider.val\n title.set_text('%s, n=%d' % (name, idx))\n nan_idxs = scipy.isnan(vals[idx, :])\n if not nan_idxs.all():\n osm, osr = scipy.stats.probplot(vals[idx, ~nan_idxs], dist=\n 'norm', plot=None, fit=False)\n a_QQ.plot(osm, osr, 'bo', markersize=10)\n a_QQ.set_title('QQ plot')\n a_QQ.set_xlabel('quantiles of $\\\\mathcal{N}(0,1)$')\n a_QQ.set_ylabel('quantiles of data')\n a_hist.hist(vals[idx, ~nan_idxs], bins=bins, normed=True)\n locs = scipy.linspace(vals[idx, ~nan_idxs].min(), vals[idx,\n ~nan_idxs].max())\n a_hist.plot(locs, scipy.stats.norm.pdf(locs, loc=mean[idx],\n scale=std[idx]))\n a_hist.set_title('Normalized histogram and reported PDF')\n a_hist.set_xlabel('value')\n a_hist.set_ylabel('density')\n f.canvas.draw()\n\n def x(slider, event):\n if event.key == 'right':\n slider.set_val(min(slider.val + 1, slider.valmax))\n elif event.key == 'left':\n slider.set_val(max(slider.val - 1, slider.valmin))\n slider = mplw.Slider(a_slider, 'index', 0, len(vals) - 1, valinit=0,\n valfmt='%d')\n slider.on_changed(update)\n update(0)\n f.canvas.mpl_connect('key_press_event', lambda evt: arrow_respond(\n slider, evt))\n return mean, std\n",
"role": "user"
},
{
"content": "compute_stats",
"role": "assistant"
}
] |
def x(x, mean, std, ax=None, base_alpha=0.375, envelopes=[1, 3], lb=None,
ub=None, expansion=10, **kwargs):
if ax is None:
f = plt.figure()
ax = f.add_subplot(1, 1, 1)
elif ax == 'gca':
ax = plt.gca()
mean = scipy.asarray(mean, dtype=float).copy()
std = scipy.asarray(std, dtype=float).copy()
if lb is not None and ub is not None and expansion != 1.0:
expansion *= ub - lb
ub = ub + expansion
lb = lb - expansion
if ub is not None:
mean[mean > ub] = ub
if lb is not None:
mean[mean < lb] = lb
l = ax.plot(x, mean, **kwargs)
color = plt.getp(l[0], 'color')
e = []
for i in envelopes:
lower = mean - i * std
upper = mean + i * std
if ub is not None:
lower[lower > ub] = ub
upper[upper > ub] = ub
if lb is not None:
lower[lower < lb] = lb
upper[upper < lb] = lb
e.append(ax.fill_between(x, lower, upper, facecolor=color, alpha=
base_alpha / i))
return l, e
|
univariate_envelope_plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, mean, std, ax=None, base_alpha=0.375, envelopes=[1, 3], lb=None,\n ub=None, expansion=10, **kwargs):\n if ax is None:\n f = plt.figure()\n ax = f.add_subplot(1, 1, 1)\n elif ax == 'gca':\n ax = plt.gca()\n mean = scipy.asarray(mean, dtype=float).copy()\n std = scipy.asarray(std, dtype=float).copy()\n if lb is not None and ub is not None and expansion != 1.0:\n expansion *= ub - lb\n ub = ub + expansion\n lb = lb - expansion\n if ub is not None:\n mean[mean > ub] = ub\n if lb is not None:\n mean[mean < lb] = lb\n l = ax.plot(x, mean, **kwargs)\n color = plt.getp(l[0], 'color')\n e = []\n for i in envelopes:\n lower = mean - i * std\n upper = mean + i * std\n if ub is not None:\n lower[lower > ub] = ub\n upper[upper > ub] = ub\n if lb is not None:\n lower[lower < lb] = lb\n upper[upper < lb] = lb\n e.append(ax.fill_between(x, lower, upper, facecolor=color, alpha=\n base_alpha / i))\n return l, e\n",
"role": "user"
},
{
"content": "univariate_envelope_plot",
"role": "assistant"
}
] |
def x(sampler, weights=None, burn=0, ci=0.95, chain_mask=None):
try:
k = sampler.flatchain.shape[-1]
except AttributeError:
k = sampler.shape[-1]
if isinstance(sampler, emcee.EnsembleSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)
flat_trace = sampler.chain[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, emcee.PTSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)
flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, scipy.ndarray):
if sampler.ndim == 4:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[1], dtype=bool)
flat_trace = sampler[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[temp_idx, chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 3:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[0], dtype=bool)
flat_trace = sampler[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 2:
flat_trace = sampler[burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[burn:]
weights = weights.ravel()
else:
raise ValueError('Unknown sampler class: %s' % (type(sampler),))
cibdry = 100.0 * (1.0 - ci) / 2.0
if weights is None:
mean = scipy.mean(flat_trace, axis=0)
ci_l, ci_u = scipy.percentile(flat_trace, [cibdry, 100.0 - cibdry],
axis=0)
else:
mean = weights.dot(flat_trace) / weights.sum()
ci_l = scipy.zeros(k)
ci_u = scipy.zeros(k)
p = scipy.asarray([cibdry, 100.0 - cibdry])
for i in range(0, k):
srt = flat_trace[:, i].argsort()
x = flat_trace[srt, i]
w = weights[srt]
Sn = w.cumsum()
pn = 100.0 / Sn[-1] * (Sn - w / 2.0)
j = scipy.digitize(p, pn) - 1
ci_l[i], ci_u[i] = x[j] + (p - pn[j]) / (pn[j + 1] - pn[j]) * (x
[j + 1] - x[j])
return mean, ci_l, ci_u
|
summarize_sampler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sampler, weights=None, burn=0, ci=0.95, chain_mask=None):\n try:\n k = sampler.flatchain.shape[-1]\n except AttributeError:\n k = sampler.shape[-1]\n if isinstance(sampler, emcee.EnsembleSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)\n flat_trace = sampler.chain[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, emcee.PTSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)\n flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, scipy.ndarray):\n if sampler.ndim == 4:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[1], dtype=bool)\n flat_trace = sampler[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[temp_idx, chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 3:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[0], dtype=bool)\n flat_trace = sampler[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 2:\n flat_trace = sampler[burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[burn:]\n weights = weights.ravel()\n else:\n raise ValueError('Unknown sampler class: %s' % (type(sampler),))\n cibdry = 100.0 * (1.0 - ci) / 2.0\n if weights is None:\n mean = scipy.mean(flat_trace, axis=0)\n ci_l, ci_u = scipy.percentile(flat_trace, [cibdry, 100.0 - cibdry],\n axis=0)\n else:\n mean = weights.dot(flat_trace) / weights.sum()\n ci_l = scipy.zeros(k)\n ci_u = scipy.zeros(k)\n p = scipy.asarray([cibdry, 100.0 - cibdry])\n for i in range(0, k):\n srt = flat_trace[:, i].argsort()\n x = flat_trace[srt, i]\n w = weights[srt]\n Sn = w.cumsum()\n pn = 100.0 / Sn[-1] * (Sn - w / 2.0)\n j = scipy.digitize(p, pn) - 1\n ci_l[i], ci_u[i] = x[j] + (p - pn[j]) / (pn[j + 1] - pn[j]) * (x\n [j + 1] - x[j])\n return mean, ci_l, ci_u\n",
"role": "user"
},
{
"content": "summarize_sampler",
"role": "assistant"
}
] |
def x(sampler, hyperprior, weights=None, cutoff_weight=None, nbins=None,
labels=None, burn=0, chain_mask=None, temp_idx=0, points=None,
plot_samples=False, sample_color='k', point_color=None, point_lw=3,
title='', rot_x_labels=False, figsize=None):
try:
k = sampler.flatchain.shape[-1]
except AttributeError:
k = sampler.shape[-1]
if isinstance(sampler, emcee.EnsembleSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)
flat_trace = sampler.chain[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, emcee.PTSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)
flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, scipy.ndarray):
if sampler.ndim == 4:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[1], dtype=bool)
flat_trace = sampler[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[temp_idx, chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 3:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[0], dtype=bool)
flat_trace = sampler[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 2:
flat_trace = sampler[burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[burn:]
weights = weights.ravel()
if cutoff_weight is not None and weights is not None:
mask = weights >= cutoff_weight * weights.max()
flat_trace = flat_trace[mask, :]
weights = weights[mask]
else:
raise ValueError('Unknown sampler class: %s' % (type(sampler),))
if labels is None:
labels = [''] * k
u = scipy.asarray([hyperprior.elementwise_cdf(p) for p in flat_trace],
dtype=float).T
if nbins is None:
lq, uq = scipy.stats.scoreatpercentile(u, [25, 75], axis=1)
h = 2.0 * (uq - lq) / u.shape[0] ** (1.0 / 3.0)
n = scipy.asarray(scipy.ceil(1.0 / h), dtype=int)
else:
try:
iter(nbins)
n = nbins
except TypeError:
n = nbins * scipy.ones(u.shape[0])
hist = [scipy.stats.histogram(uv, numbins=nv, defaultlimits=[0, 1],
weights=weights) for uv, nv in zip(u, n)]
max_ct = max([max(h.count) for h in hist])
min_ct = min([min(h.count) for h in hist])
f = plt.figure(figsize=figsize)
a = f.add_subplot(1, 1, 1)
for i, (h, pn) in enumerate(zip(hist, labels)):
a.imshow(scipy.atleast_2d(scipy.asarray(h.count[::-1], dtype=float)
).T, cmap='gray_r', interpolation='nearest', vmin=min_ct, vmax=
max_ct, extent=(i, i + 1, 0, 1), aspect='auto')
if plot_samples:
for p in u:
for i, uv in enumerate(p):
a.plot([i, i + 1], [uv, uv], sample_color, alpha=0.1)
if points is not None:
points = scipy.atleast_2d(scipy.asarray(points, dtype=float))
u_points = [hyperprior.elementwise_cdf(p) for p in points]
if point_color is None:
c_cycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k'])
else:
c_cycle = itertools.cycle(scipy.atleast_1d(point_color))
for p in u_points:
c = c_cycle.next()
for i, uv in enumerate(p):
a.plot([i, i + 1], [uv, uv], color=c, lw=point_lw)
a.set_xlim(0, len(hist))
a.set_ylim(0, 1)
a.set_xticks(0.5 + scipy.arange(0, len(hist), dtype=float))
a.set_xticklabels(labels)
if rot_x_labels:
plt.setp(a.xaxis.get_majorticklabels(), rotation=90)
a.set_xlabel('parameter')
a.set_ylabel('$u=F_P(p)$')
a.set_title(title)
return f, a
|
plot_sampler_fingerprint
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sampler, hyperprior, weights=None, cutoff_weight=None, nbins=None,\n labels=None, burn=0, chain_mask=None, temp_idx=0, points=None,\n plot_samples=False, sample_color='k', point_color=None, point_lw=3,\n title='', rot_x_labels=False, figsize=None):\n try:\n k = sampler.flatchain.shape[-1]\n except AttributeError:\n k = sampler.shape[-1]\n if isinstance(sampler, emcee.EnsembleSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)\n flat_trace = sampler.chain[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, emcee.PTSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)\n flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, scipy.ndarray):\n if sampler.ndim == 4:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[1], dtype=bool)\n flat_trace = sampler[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[temp_idx, chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 3:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[0], dtype=bool)\n flat_trace = sampler[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 2:\n flat_trace = sampler[burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[burn:]\n weights = weights.ravel()\n if cutoff_weight is not None and weights is not None:\n mask = weights >= cutoff_weight * weights.max()\n flat_trace = flat_trace[mask, :]\n weights = weights[mask]\n else:\n raise ValueError('Unknown sampler class: %s' % (type(sampler),))\n if labels is None:\n labels = [''] * k\n u = scipy.asarray([hyperprior.elementwise_cdf(p) for p in flat_trace],\n dtype=float).T\n if nbins is None:\n lq, uq = scipy.stats.scoreatpercentile(u, [25, 75], axis=1)\n h = 2.0 * (uq - lq) / u.shape[0] ** (1.0 / 3.0)\n n = scipy.asarray(scipy.ceil(1.0 / h), dtype=int)\n else:\n try:\n iter(nbins)\n n = nbins\n except TypeError:\n n = nbins * scipy.ones(u.shape[0])\n hist = [scipy.stats.histogram(uv, numbins=nv, defaultlimits=[0, 1],\n weights=weights) for uv, nv in zip(u, n)]\n max_ct = max([max(h.count) for h in hist])\n min_ct = min([min(h.count) for h in hist])\n f = plt.figure(figsize=figsize)\n a = f.add_subplot(1, 1, 1)\n for i, (h, pn) in enumerate(zip(hist, labels)):\n a.imshow(scipy.atleast_2d(scipy.asarray(h.count[::-1], dtype=float)\n ).T, cmap='gray_r', interpolation='nearest', vmin=min_ct, vmax=\n max_ct, extent=(i, i + 1, 0, 1), aspect='auto')\n if plot_samples:\n for p in u:\n for i, uv in enumerate(p):\n a.plot([i, i + 1], [uv, uv], sample_color, alpha=0.1)\n if points is not None:\n points = scipy.atleast_2d(scipy.asarray(points, dtype=float))\n u_points = [hyperprior.elementwise_cdf(p) for p in points]\n if point_color is None:\n c_cycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k'])\n else:\n c_cycle = itertools.cycle(scipy.atleast_1d(point_color))\n for p in u_points:\n c = c_cycle.next()\n for i, uv in enumerate(p):\n a.plot([i, i + 1], [uv, uv], color=c, lw=point_lw)\n a.set_xlim(0, len(hist))\n a.set_ylim(0, 1)\n a.set_xticks(0.5 + scipy.arange(0, len(hist), dtype=float))\n a.set_xticklabels(labels)\n if rot_x_labels:\n plt.setp(a.xaxis.get_majorticklabels(), rotation=90)\n a.set_xlabel('parameter')\n a.set_ylabel('$u=F_P(p)$')\n a.set_title(title)\n return f, a\n",
"role": "user"
},
{
"content": "plot_sampler_fingerprint",
"role": "assistant"
}
] |
def x(sampler, method='corr', weights=None, cutoff_weight=None, labels=None,
burn=0, chain_mask=None, temp_idx=0, cbar_label=None, title='',
rot_x_labels=False, figsize=None, xlabel_on_top=True):
try:
k = sampler.flatchain.shape[-1]
except AttributeError:
k = sampler.shape[-1]
if isinstance(sampler, emcee.EnsembleSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)
flat_trace = sampler.chain[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, emcee.PTSampler):
if chain_mask is None:
chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)
flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
elif isinstance(sampler, scipy.ndarray):
if sampler.ndim == 4:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[1], dtype=bool)
flat_trace = sampler[temp_idx, chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[temp_idx, chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 3:
if chain_mask is None:
chain_mask = scipy.ones(sampler.shape[0], dtype=bool)
flat_trace = sampler[chain_mask, burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[chain_mask, burn:]
weights = weights.ravel()
elif sampler.ndim == 2:
flat_trace = sampler[burn:, :]
flat_trace = flat_trace.reshape((-1, k))
if weights is not None:
weights = weights[burn:]
weights = weights.ravel()
if cutoff_weight is not None and weights is not None:
mask = weights >= cutoff_weight * weights.max()
flat_trace = flat_trace[mask, :]
weights = weights[mask]
else:
raise ValueError('Unknown sampler class: %s' % (type(sampler),))
if labels is None:
labels = [''] * k
if cbar_label is None:
cbar_label = ('$\\mathrm{cov}(p_1, p_2)$' if method == 'cov' else
'$\\mathrm{corr}(p_1, p_2)$')
if weights is None:
if method == 'corr':
cov = scipy.corrcoef(flat_trace, rowvar=0, ddof=1)
else:
cov = scipy.cov(flat_trace, rowvar=0, ddof=1)
else:
cov = scipy.cov(flat_trace, rowvar=0, aweights=weights)
if method == 'corr':
stds = scipy.sqrt(scipy.diag(cov))
STD_1, STD_2 = scipy.meshgrid(stds, stds)
cov = cov / (STD_1 * STD_2)
f_cov = plt.figure(figsize=figsize)
a_cov = f_cov.add_subplot(1, 1, 1)
a_cov.set_title(title)
if method == 'cov':
vmax = scipy.absolute(cov).max()
else:
vmax = 1.0
cax = a_cov.pcolor(cov, cmap='seismic', vmin=-1 * vmax, vmax=vmax)
divider = make_axes_locatable(a_cov)
a_cb = divider.append_axes('right', size='10%', pad=0.05)
cbar = f_cov.colorbar(cax, cax=a_cb, label=cbar_label)
a_cov.set_xlabel('parameter')
a_cov.set_ylabel('parameter')
a_cov.axis('square')
a_cov.invert_yaxis()
if xlabel_on_top:
a_cov.xaxis.tick_top()
a_cov.xaxis.set_label_position('top')
a_cov.set_xticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))
a_cov.set_yticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))
a_cov.set_xticklabels(labels)
if rot_x_labels:
plt.setp(a_cov.xaxis.get_majorticklabels(), rotation=90)
a_cov.set_yticklabels(labels)
a_cov.set_xlim(0, flat_trace.shape[1])
a_cov.set_ylim(flat_trace.shape[1], 0)
return f_cov, a_cov
|
plot_sampler_cov
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sampler, method='corr', weights=None, cutoff_weight=None, labels=None,\n burn=0, chain_mask=None, temp_idx=0, cbar_label=None, title='',\n rot_x_labels=False, figsize=None, xlabel_on_top=True):\n try:\n k = sampler.flatchain.shape[-1]\n except AttributeError:\n k = sampler.shape[-1]\n if isinstance(sampler, emcee.EnsembleSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)\n flat_trace = sampler.chain[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, emcee.PTSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)\n flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, scipy.ndarray):\n if sampler.ndim == 4:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[1], dtype=bool)\n flat_trace = sampler[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[temp_idx, chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 3:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[0], dtype=bool)\n flat_trace = sampler[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 2:\n flat_trace = sampler[burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[burn:]\n weights = weights.ravel()\n if cutoff_weight is not None and weights is not None:\n mask = weights >= cutoff_weight * weights.max()\n flat_trace = flat_trace[mask, :]\n weights = weights[mask]\n else:\n raise ValueError('Unknown sampler class: %s' % (type(sampler),))\n if labels is None:\n labels = [''] * k\n if cbar_label is None:\n cbar_label = ('$\\\\mathrm{cov}(p_1, p_2)$' if method == 'cov' else\n '$\\\\mathrm{corr}(p_1, p_2)$')\n if weights is None:\n if method == 'corr':\n cov = scipy.corrcoef(flat_trace, rowvar=0, ddof=1)\n else:\n cov = scipy.cov(flat_trace, rowvar=0, ddof=1)\n else:\n cov = scipy.cov(flat_trace, rowvar=0, aweights=weights)\n if method == 'corr':\n stds = scipy.sqrt(scipy.diag(cov))\n STD_1, STD_2 = scipy.meshgrid(stds, stds)\n cov = cov / (STD_1 * STD_2)\n f_cov = plt.figure(figsize=figsize)\n a_cov = f_cov.add_subplot(1, 1, 1)\n a_cov.set_title(title)\n if method == 'cov':\n vmax = scipy.absolute(cov).max()\n else:\n vmax = 1.0\n cax = a_cov.pcolor(cov, cmap='seismic', vmin=-1 * vmax, vmax=vmax)\n divider = make_axes_locatable(a_cov)\n a_cb = divider.append_axes('right', size='10%', pad=0.05)\n cbar = f_cov.colorbar(cax, cax=a_cb, label=cbar_label)\n a_cov.set_xlabel('parameter')\n a_cov.set_ylabel('parameter')\n a_cov.axis('square')\n a_cov.invert_yaxis()\n if xlabel_on_top:\n a_cov.xaxis.tick_top()\n a_cov.xaxis.set_label_position('top')\n a_cov.set_xticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))\n a_cov.set_yticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))\n a_cov.set_xticklabels(labels)\n if rot_x_labels:\n plt.setp(a_cov.xaxis.get_majorticklabels(), rotation=90)\n a_cov.set_yticklabels(labels)\n a_cov.set_xlim(0, flat_trace.shape[1])\n a_cov.set_ylim(flat_trace.shape[1], 0)\n return f_cov, a_cov\n",
"role": "user"
},
{
"content": "plot_sampler_cov",
"role": "assistant"
}
] |
def x(self, q):
p1_num_params = len(self.p1.bounds)
return scipy.concatenate((self.p1.sample_u(q[:p1_num_params]), self.p2.
sample_u(q[p1_num_params:])))
|
sample_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n p1_num_params = len(self.p1.bounds)\n return scipy.concatenate((self.p1.sample_u(q[:p1_num_params]), self.p2.\n sample_u(q[p1_num_params:])))\n",
"role": "user"
},
{
"content": "sample_u",
"role": "assistant"
}
] |
def x(self, p):
p1_num_params = len(self.p1.bounds)
return scipy.concatenate((self.p1.elementwise_cdf(p[:p1_num_params]),
self.p2.elementwise_cdf(p[p1_num_params:])))
|
elementwise_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n p1_num_params = len(self.p1.bounds)\n return scipy.concatenate((self.p1.elementwise_cdf(p[:p1_num_params]),\n self.p2.elementwise_cdf(p[p1_num_params:])))\n",
"role": "user"
},
{
"content": "elementwise_cdf",
"role": "assistant"
}
] |
def x(self, size=None):
draw_1 = self.p1.random_draw(size=size)
draw_2 = self.p2.random_draw(size=size)
if draw_1.ndim == 1:
return scipy.hstack((draw_1, draw_2))
else:
return scipy.vstack((draw_1, draw_2))
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n draw_1 = self.p1.random_draw(size=size)\n draw_2 = self.p2.random_draw(size=size)\n if draw_1.ndim == 1:\n return scipy.hstack((draw_1, draw_2))\n else:\n return scipy.vstack((draw_1, draw_2))\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(self, q):
q = scipy.atleast_1d(q)
if len(q) != len(self.bounds):
raise ValueError('length of q must equal the number of parameters!')
if q.ndim != 1:
raise ValueError('q must be one-dimensional!')
if (q < 0).any() or (q > 1).any():
raise ValueError('q must be within [0, 1]!')
return scipy.asarray([((b[1] - b[0]) * v + b[0]) for v, b in zip(q,
self.bounds)])
|
sample_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.bounds):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([((b[1] - b[0]) * v + b[0]) for v, b in zip(q,\n self.bounds)])\n",
"role": "user"
},
{
"content": "sample_u",
"role": "assistant"
}
] |
def x(self, p):
p = scipy.atleast_1d(p)
if len(p) != len(self.bounds):
raise ValueError('length of p must equal the number of parameters!')
if p.ndim != 1:
raise ValueError('p must be one-dimensional!')
c = scipy.zeros(len(self.bounds))
for k in xrange(0, len(self.bounds)):
if p[k] <= self.bounds[k][0]:
c[k] = 0.0
elif p[k] >= self.bounds[k][1]:
c[k] = 1.0
else:
c[k] = (p[k] - self.bounds[k][0]) / (self.bounds[k][1] - self.
bounds[k][0])
return c
|
elementwise_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.bounds):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n c = scipy.zeros(len(self.bounds))\n for k in xrange(0, len(self.bounds)):\n if p[k] <= self.bounds[k][0]:\n c[k] = 0.0\n elif p[k] >= self.bounds[k][1]:\n c[k] = 1.0\n else:\n c[k] = (p[k] - self.bounds[k][0]) / (self.bounds[k][1] - self.\n bounds[k][0])\n return c\n",
"role": "user"
},
{
"content": "elementwise_cdf",
"role": "assistant"
}
] |
def x(self, size=None):
return scipy.asarray([numpy.random.uniform(low=b[0], high=b[1], size=
size) for b in self.bounds])
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n return scipy.asarray([numpy.random.uniform(low=b[0], high=b[1], size=\n size) for b in self.bounds])\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(self, size=None):
if size is None:
size = 1
single_val = True
else:
single_val = False
out_shape = [len(self.bounds)]
try:
out_shape.extend(size)
except TypeError:
out_shape.append(size)
out = scipy.zeros(out_shape)
for j in xrange(0, len(self.bounds)):
if j != 2:
out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high=
self.bounds[j][1], size=size)
else:
out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high=
out[j - 1, :], size=size)
if not single_val:
return out
else:
return out.ravel()
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n if size is None:\n size = 1\n single_val = True\n else:\n single_val = False\n out_shape = [len(self.bounds)]\n try:\n out_shape.extend(size)\n except TypeError:\n out_shape.append(size)\n out = scipy.zeros(out_shape)\n for j in xrange(0, len(self.bounds)):\n if j != 2:\n out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high=\n self.bounds[j][1], size=size)\n else:\n out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high=\n out[j - 1, :], size=size)\n if not single_val:\n return out\n else:\n return out.ravel()\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(self, q):
q = scipy.atleast_1d(q)
if len(q) != len(self.univariate_priors):
raise ValueError('length of q must equal the number of parameters!')
if q.ndim != 1:
raise ValueError('q must be one-dimensional!')
if (q < 0).any() or (q > 1).any():
raise ValueError('q must be within [0, 1]!')
return scipy.asarray([p.ppf(v) for v, p in zip(q, self.univariate_priors)])
|
sample_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.univariate_priors):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([p.ppf(v) for v, p in zip(q, self.univariate_priors)])\n",
"role": "user"
},
{
"content": "sample_u",
"role": "assistant"
}
] |
def x(self, p):
p = scipy.atleast_1d(p)
if len(p) != len(self.univariate_priors):
raise ValueError('length of p must equal the number of parameters!')
if p.ndim != 1:
raise ValueError('p must be one-dimensional!')
return scipy.asarray([pr.cdf(v) for v, pr in zip(p, self.
univariate_priors)])
|
elementwise_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.univariate_priors):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([pr.cdf(v) for v, pr in zip(p, self.\n univariate_priors)])\n",
"role": "user"
},
{
"content": "elementwise_cdf",
"role": "assistant"
}
] |
def x(self, size=None):
return scipy.asarray([p.rvs(size=size) for p in self.univariate_priors])
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n return scipy.asarray([p.rvs(size=size) for p in self.univariate_priors])\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(self):
return [scipy.stats.norm.interval(self.i, loc=m, scale=s) for s, m in
zip(self.sigma, self.mu)]
|
bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return [scipy.stats.norm.interval(self.i, loc=m, scale=s) for s, m in\n zip(self.sigma, self.mu)]\n",
"role": "user"
},
{
"content": "bounds",
"role": "assistant"
}
] |
def x(self, q):
q = scipy.atleast_1d(q)
if len(q) != len(self.sigma):
raise ValueError('length of q must equal the number of parameters!')
if q.ndim != 1:
raise ValueError('q must be one-dimensional!')
if (q < 0).any() or (q > 1).any():
raise ValueError('q must be within [0, 1]!')
return scipy.asarray([scipy.stats.norm.ppf(v, loc=m, scale=s) for v, s,
m in zip(q, self.sigma, self.mu)])
|
sample_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.sigma):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([scipy.stats.norm.ppf(v, loc=m, scale=s) for v, s,\n m in zip(q, self.sigma, self.mu)])\n",
"role": "user"
},
{
"content": "sample_u",
"role": "assistant"
}
] |
def x(self, p):
p = scipy.atleast_1d(p)
if len(p) != len(self.sigma):
raise ValueError('length of p must equal the number of parameters!')
if p.ndim != 1:
raise ValueError('p must be one-dimensional!')
return scipy.asarray([scipy.stats.norm.cdf(v, loc=m, scale=s) for v, s,
m in zip(p, self.sigma, self.mu)])
|
elementwise_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.sigma):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([scipy.stats.norm.cdf(v, loc=m, scale=s) for v, s,\n m in zip(p, self.sigma, self.mu)])\n",
"role": "user"
},
{
"content": "elementwise_cdf",
"role": "assistant"
}
] |
def x(self, size=None):
return scipy.asarray([scipy.stats.norm.rvs(loc=m, scale=s, size=size) for
s, m in zip(self.sigma, self.mu)])
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n return scipy.asarray([scipy.stats.norm.rvs(loc=m, scale=s, size=size) for\n s, m in zip(self.sigma, self.mu)])\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(self):
return [scipy.stats.lognorm.interval(self.i, s, loc=0, scale=em) for s,
em in zip(self.sigma, self.emu)]
|
bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return [scipy.stats.lognorm.interval(self.i, s, loc=0, scale=em) for s,\n em in zip(self.sigma, self.emu)]\n",
"role": "user"
},
{
"content": "bounds",
"role": "assistant"
}
] |
def x(self, q):
q = scipy.atleast_1d(q)
if len(q) != len(self.sigma):
raise ValueError('length of q must equal the number of parameters!')
if q.ndim != 1:
raise ValueError('q must be one-dimensional!')
if (q < 0).any() or (q > 1).any():
raise ValueError('q must be within [0, 1]!')
return scipy.asarray([scipy.stats.lognorm.ppf(v, s, loc=0, scale=em) for
v, s, em in zip(q, self.sigma, self.emu)])
|
sample_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.sigma):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([scipy.stats.lognorm.ppf(v, s, loc=0, scale=em) for\n v, s, em in zip(q, self.sigma, self.emu)])\n",
"role": "user"
},
{
"content": "sample_u",
"role": "assistant"
}
] |
def x(self, p):
p = scipy.atleast_1d(p)
if len(p) != len(self.sigma):
raise ValueError('length of p must equal the number of parameters!')
if p.ndim != 1:
raise ValueError('p must be one-dimensional!')
return scipy.asarray([scipy.stats.lognorm.cdf(v, s, loc=0, scale=em) for
v, s, em in zip(p, self.sigma, self.emu)])
|
elementwise_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.sigma):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([scipy.stats.lognorm.cdf(v, s, loc=0, scale=em) for\n v, s, em in zip(p, self.sigma, self.emu)])\n",
"role": "user"
},
{
"content": "elementwise_cdf",
"role": "assistant"
}
] |
def x(self, size=None):
return scipy.asarray([scipy.stats.lognorm.rvs(s, loc=0, scale=em, size=
size) for s, em in zip(self.sigma, self.emu)])
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n return scipy.asarray([scipy.stats.lognorm.rvs(s, loc=0, scale=em, size=\n size) for s, em in zip(self.sigma, self.emu)])\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(self):
return [scipy.stats.gamma.interval(self.i, a, loc=0, scale=1.0 / b) for
a, b in zip(self.a, self.b)]
|
bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return [scipy.stats.gamma.interval(self.i, a, loc=0, scale=1.0 / b) for\n a, b in zip(self.a, self.b)]\n",
"role": "user"
},
{
"content": "bounds",
"role": "assistant"
}
] |
def x(self, q):
q = scipy.atleast_1d(q)
if len(q) != len(self.a):
raise ValueError('length of q must equal the number of parameters!')
if q.ndim != 1:
raise ValueError('q must be one-dimensional!')
if (q < 0).any() or (q > 1).any():
raise ValueError('q must be within [0, 1]!')
return scipy.asarray([scipy.stats.gamma.ppf(v, a, loc=0, scale=1.0 / b) for
v, a, b in zip(q, self.a, self.b)])
|
sample_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.a):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([scipy.stats.gamma.ppf(v, a, loc=0, scale=1.0 / b) for\n v, a, b in zip(q, self.a, self.b)])\n",
"role": "user"
},
{
"content": "sample_u",
"role": "assistant"
}
] |
def x(self, p):
p = scipy.atleast_1d(p)
if len(p) != len(self.a):
raise ValueError('length of p must equal the number of parameters!')
if p.ndim != 1:
raise ValueError('p must be one-dimensional!')
return scipy.asarray([scipy.stats.gamma.cdf(v, a, loc=0, scale=1.0 / b) for
v, a, b in zip(p, self.a, self.b)])
|
elementwise_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.a):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([scipy.stats.gamma.cdf(v, a, loc=0, scale=1.0 / b) for\n v, a, b in zip(p, self.a, self.b)])\n",
"role": "user"
},
{
"content": "elementwise_cdf",
"role": "assistant"
}
] |
def x(self, size=None):
return scipy.asarray([scipy.stats.gamma.rvs(a, loc=0, scale=1.0 / b,
size=size) for a, b in zip(self.a, self.b)])
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n return scipy.asarray([scipy.stats.gamma.rvs(a, loc=0, scale=1.0 / b,\n size=size) for a, b in zip(self.a, self.b)])\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(self, q):
q = scipy.atleast_1d(q)
if len(q) != self.num_var:
raise ValueError('length of q must equal the number of parameters!')
if q.ndim != 1:
raise ValueError('q must be one-dimensional!')
if (q < 0).any() or (q > 1).any():
raise ValueError('q must be within [0, 1]!')
out = scipy.zeros_like(q, dtype=float)
out[0] = self.lb
for d in xrange(0, len(out)):
out[d] = (1.0 - (1.0 - q[d]) ** (1.0 / (self.num_var - d))) * (self
.ub - out[max(d - 1, 0)]) + out[max(d - 1, 0)]
return out
|
sample_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != self.num_var:\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n out = scipy.zeros_like(q, dtype=float)\n out[0] = self.lb\n for d in xrange(0, len(out)):\n out[d] = (1.0 - (1.0 - q[d]) ** (1.0 / (self.num_var - d))) * (self\n .ub - out[max(d - 1, 0)]) + out[max(d - 1, 0)]\n return out\n",
"role": "user"
},
{
"content": "sample_u",
"role": "assistant"
}
] |
def x(self, p):
p = scipy.atleast_1d(p)
if len(p) != len(self.bounds):
raise ValueError('length of p must equal the number of parameters!')
if p.ndim != 1:
raise ValueError('p must be one-dimensional!')
c = scipy.zeros(len(self.bounds))
for d in xrange(0, len(c)):
pdm1 = p[d - 1] if d > 0 else self.lb
if p[d] <= pdm1:
c[d] = 0.0
elif p[d] >= self.ub:
c[d] = 1.0
else:
c[d] = 1.0 - (1.0 - (p[d] - pdm1) / (self.ub - pdm1)) ** (self.
num_var - d)
return c
|
elementwise_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.bounds):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n c = scipy.zeros(len(self.bounds))\n for d in xrange(0, len(c)):\n pdm1 = p[d - 1] if d > 0 else self.lb\n if p[d] <= pdm1:\n c[d] = 0.0\n elif p[d] >= self.ub:\n c[d] = 1.0\n else:\n c[d] = 1.0 - (1.0 - (p[d] - pdm1) / (self.ub - pdm1)) ** (self.\n num_var - d)\n return c\n",
"role": "user"
},
{
"content": "elementwise_cdf",
"role": "assistant"
}
] |
def x(self, size=None):
if size is None:
size = 1
single_val = True
else:
single_val = False
out_shape = [self.num_var]
try:
out_shape.extend(size)
except TypeError:
out_shape.append(size)
out = scipy.sort(numpy.random.uniform(low=self.lb, high=self.ub, size=
out_shape), axis=0)
if not single_val:
return out
else:
return out.ravel()
|
random_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size=None):\n if size is None:\n size = 1\n single_val = True\n else:\n single_val = False\n out_shape = [self.num_var]\n try:\n out_shape.extend(size)\n except TypeError:\n out_shape.append(size)\n out = scipy.sort(numpy.random.uniform(low=self.lb, high=self.ub, size=\n out_shape), axis=0)\n if not single_val:\n return out\n else:\n return out.ravel()\n",
"role": "user"
},
{
"content": "random_draw",
"role": "assistant"
}
] |
def x(request):
if request.META.get('HTTP_X_ZAPIER_SECRET', None
) != settings.WAFER_TICKETS_SECRET:
raise PermissionDenied('Incorrect secret')
payload = json.loads(request.body.decode('utf8'))
ticket = Ticket.objects.filter(barcode=payload['barcode'])
if ticket.exists():
ticket.delete()
return HttpResponse('Cancelled\n', content_type='text/plain')
|
zapier_cancel_hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n if request.META.get('HTTP_X_ZAPIER_SECRET', None\n ) != settings.WAFER_TICKETS_SECRET:\n raise PermissionDenied('Incorrect secret')\n payload = json.loads(request.body.decode('utf8'))\n ticket = Ticket.objects.filter(barcode=payload['barcode'])\n if ticket.exists():\n ticket.delete()\n return HttpResponse('Cancelled\\n', content_type='text/plain')\n",
"role": "user"
},
{
"content": "zapier_cancel_hook",
"role": "assistant"
}
] |
def x(request):
if request.META.get('HTTP_X_ZAPIER_SECRET', None
) != settings.WAFER_TICKETS_SECRET:
raise PermissionDenied('Incorrect secret')
payload = json.loads(request.body.decode('utf8'))
import_ticket(payload['barcode'], payload['ticket_type'], payload['email'])
return HttpResponse('Noted\n', content_type='text/plain')
|
zapier_guest_hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n if request.META.get('HTTP_X_ZAPIER_SECRET', None\n ) != settings.WAFER_TICKETS_SECRET:\n raise PermissionDenied('Incorrect secret')\n payload = json.loads(request.body.decode('utf8'))\n import_ticket(payload['barcode'], payload['ticket_type'], payload['email'])\n return HttpResponse('Noted\\n', content_type='text/plain')\n",
"role": "user"
},
{
"content": "zapier_guest_hook",
"role": "assistant"
}
] |
def x(self):
grant_type = 'client_credentials'
channel = yield self._tvm.ticket_full(self._client_id, self.
_client_secret, grant_type, {})
ticket = yield channel.rx.get()
raise gen.Return(self._make_token(ticket))
|
fetch_token
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n grant_type = 'client_credentials'\n channel = yield self._tvm.ticket_full(self._client_id, self.\n _client_secret, grant_type, {})\n ticket = yield channel.rx.get()\n raise gen.Return(self._make_token(ticket))\n",
"role": "user"
},
{
"content": "fetch_token",
"role": "assistant"
}
] |
def x(service, mod, client_id, client_secret, tok_update_sec=None):
if mod == 'TVM':
return SecureServiceAdaptor(service, TVM(client_id, client_secret),
tok_update_sec)
return SecureServiceAdaptor(service, Promiscuous(), tok_update_sec)
|
make_secure_adaptor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(service, mod, client_id, client_secret, tok_update_sec=None):\n if mod == 'TVM':\n return SecureServiceAdaptor(service, TVM(client_id, client_secret),\n tok_update_sec)\n return SecureServiceAdaptor(service, Promiscuous(), tok_update_sec)\n",
"role": "user"
},
{
"content": "make_secure_adaptor",
"role": "assistant"
}
] |
def x(summaryfile, **kwargs):
logging.info(
'Nanoget: Collecting metrics from summary file {} for {} sequencing'
.format(summaryfile, kwargs['readtype']))
ut.check_existance(summaryfile)
if kwargs['readtype'] == '1D':
cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration',
'sequence_length_template', 'mean_qscore_template']
elif kwargs['readtype'] in ['2D', '1D2']:
cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration',
'sequence_length_2d', 'mean_qscore_2d']
if kwargs['barcoded']:
cols.append('barcode_arrangement')
logging.info('Nanoget: Extracting metrics per barcode.')
try:
datadf = pd.read_csv(filepath_or_buffer=summaryfile, sep='\t',
usecols=cols)
except ValueError:
logging.error(
'Nanoget: did not find expected columns in summary file {}:\n {}'
.format(summaryfile, ', '.join(cols)))
sys.exit('ERROR: expected columns in summary file {} not found:\n {}'
.format(summaryfile, ', '.join(cols)))
if kwargs['barcoded']:
datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time',
'duration', 'lengths', 'quals', 'barcode']
else:
datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time',
'duration', 'lengths', 'quals']
logging.info('Nanoget: Finished collecting statistics from summary file {}'
.format(summaryfile))
return ut.reduce_memory_usage(datadf.loc[datadf['lengths'] != 0].copy())
|
process_summary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(summaryfile, **kwargs):\n logging.info(\n 'Nanoget: Collecting metrics from summary file {} for {} sequencing'\n .format(summaryfile, kwargs['readtype']))\n ut.check_existance(summaryfile)\n if kwargs['readtype'] == '1D':\n cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration',\n 'sequence_length_template', 'mean_qscore_template']\n elif kwargs['readtype'] in ['2D', '1D2']:\n cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration',\n 'sequence_length_2d', 'mean_qscore_2d']\n if kwargs['barcoded']:\n cols.append('barcode_arrangement')\n logging.info('Nanoget: Extracting metrics per barcode.')\n try:\n datadf = pd.read_csv(filepath_or_buffer=summaryfile, sep='\\t',\n usecols=cols)\n except ValueError:\n logging.error(\n 'Nanoget: did not find expected columns in summary file {}:\\n {}'\n .format(summaryfile, ', '.join(cols)))\n sys.exit('ERROR: expected columns in summary file {} not found:\\n {}'\n .format(summaryfile, ', '.join(cols)))\n if kwargs['barcoded']:\n datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time',\n 'duration', 'lengths', 'quals', 'barcode']\n else:\n datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time',\n 'duration', 'lengths', 'quals']\n logging.info('Nanoget: Finished collecting statistics from summary file {}'\n .format(summaryfile))\n return ut.reduce_memory_usage(datadf.loc[datadf['lengths'] != 0].copy())\n",
"role": "user"
},
{
"content": "process_summary",
"role": "assistant"
}
] |
def x(bam, samtype='bam'):
ut.check_existance(bam)
samfile = pysam.AlignmentFile(bam, 'rb')
if not samfile.has_index():
pysam.index(bam)
samfile = pysam.AlignmentFile(bam, 'rb')
logging.info(
'Nanoget: No index for bam file could be found, created index.')
if not samfile.header['HD']['SO'] == 'coordinate':
logging.error('Nanoget: Bam file {} not sorted by coordinate!.'.
format(bam))
sys.exit('Please use a bam file sorted by coordinate.')
if samtype == 'bam':
logging.info(
'Nanoget: Bam file {} contains {} mapped and {} unmapped reads.'
.format(bam, samfile.mapped, samfile.unmapped))
if samfile.mapped == 0:
logging.error(
'Nanoget: Bam file {} does not contain aligned reads.'.
format(bam))
sys.exit('FATAL: not a single read was mapped in bam file {}'.
format(bam))
return samfile
|
check_bam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bam, samtype='bam'):\n ut.check_existance(bam)\n samfile = pysam.AlignmentFile(bam, 'rb')\n if not samfile.has_index():\n pysam.index(bam)\n samfile = pysam.AlignmentFile(bam, 'rb')\n logging.info(\n 'Nanoget: No index for bam file could be found, created index.')\n if not samfile.header['HD']['SO'] == 'coordinate':\n logging.error('Nanoget: Bam file {} not sorted by coordinate!.'.\n format(bam))\n sys.exit('Please use a bam file sorted by coordinate.')\n if samtype == 'bam':\n logging.info(\n 'Nanoget: Bam file {} contains {} mapped and {} unmapped reads.'\n .format(bam, samfile.mapped, samfile.unmapped))\n if samfile.mapped == 0:\n logging.error(\n 'Nanoget: Bam file {} does not contain aligned reads.'.\n format(bam))\n sys.exit('FATAL: not a single read was mapped in bam file {}'.\n format(bam))\n return samfile\n",
"role": "user"
},
{
"content": "check_bam",
"role": "assistant"
}
] |
def x(bam, **kwargs):
logging.info('Nanoget: Starting to collect statistics from ubam file {}.'
.format(bam))
samfile = pysam.AlignmentFile(bam, 'rb', check_sq=False)
if not samfile.has_index():
pysam.index(bam)
samfile = pysam.AlignmentFile(bam, 'rb')
logging.info(
'Nanoget: No index for bam file could be found, created index.')
datadf = pd.DataFrame(data=[(read.query_name, nanomath.ave_qual(read.
query_qualities), read.query_length) for read in samfile.fetch(
until_eof=True)], columns=['readIDs', 'quals', 'lengths']).dropna(axis
='columns', how='all').dropna(axis='index', how='any')
logging.info('Nanoget: ubam {} contains {} reads.'.format(bam, datadf[
'lengths'].size))
return ut.reduce_memory_usage(datadf)
|
process_ubam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bam, **kwargs):\n logging.info('Nanoget: Starting to collect statistics from ubam file {}.'\n .format(bam))\n samfile = pysam.AlignmentFile(bam, 'rb', check_sq=False)\n if not samfile.has_index():\n pysam.index(bam)\n samfile = pysam.AlignmentFile(bam, 'rb')\n logging.info(\n 'Nanoget: No index for bam file could be found, created index.')\n datadf = pd.DataFrame(data=[(read.query_name, nanomath.ave_qual(read.\n query_qualities), read.query_length) for read in samfile.fetch(\n until_eof=True)], columns=['readIDs', 'quals', 'lengths']).dropna(axis\n ='columns', how='all').dropna(axis='index', how='any')\n logging.info('Nanoget: ubam {} contains {} reads.'.format(bam, datadf[\n 'lengths'].size))\n return ut.reduce_memory_usage(datadf)\n",
"role": "user"
},
{
"content": "process_ubam",
"role": "assistant"
}
] |
def x(bam, **kwargs):
logging.info('Nanoget: Starting to collect statistics from bam file {}.'
.format(bam))
samfile = check_bam(bam)
chromosomes = samfile.references
params = zip([bam] * len(chromosomes), chromosomes)
with cfutures.ProcessPoolExecutor() as executor:
datadf = pd.DataFrame(data=[res for sublist in executor.map(
extract_from_bam, params) for res in sublist], columns=[
'readIDs', 'quals', 'aligned_quals', 'lengths',
'aligned_lengths', 'mapQ', 'percentIdentity']).dropna(axis=
'columns', how='all').dropna(axis='index', how='any')
logging.info('Nanoget: bam {} contains {} primary alignments.'.format(
bam, datadf['lengths'].size))
return ut.reduce_memory_usage(datadf)
|
process_bam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bam, **kwargs):\n logging.info('Nanoget: Starting to collect statistics from bam file {}.'\n .format(bam))\n samfile = check_bam(bam)\n chromosomes = samfile.references\n params = zip([bam] * len(chromosomes), chromosomes)\n with cfutures.ProcessPoolExecutor() as executor:\n datadf = pd.DataFrame(data=[res for sublist in executor.map(\n extract_from_bam, params) for res in sublist], columns=[\n 'readIDs', 'quals', 'aligned_quals', 'lengths',\n 'aligned_lengths', 'mapQ', 'percentIdentity']).dropna(axis=\n 'columns', how='all').dropna(axis='index', how='any')\n logging.info('Nanoget: bam {} contains {} primary alignments.'.format(\n bam, datadf['lengths'].size))\n return ut.reduce_memory_usage(datadf)\n",
"role": "user"
},
{
"content": "process_bam",
"role": "assistant"
}
] |
def x(params):
bam, chromosome = params
samfile = pysam.AlignmentFile(bam, 'rb')
return [(read.query_name, nanomath.ave_qual(read.query_qualities),
nanomath.ave_qual(read.query_alignment_qualities), read.
query_length, read.query_alignment_length, read.mapping_quality,
get_pID(read)) for read in samfile.fetch(reference=chromosome,
multiple_iterators=True) if not read.is_secondary]
|
extract_from_bam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params):\n bam, chromosome = params\n samfile = pysam.AlignmentFile(bam, 'rb')\n return [(read.query_name, nanomath.ave_qual(read.query_qualities),\n nanomath.ave_qual(read.query_alignment_qualities), read.\n query_length, read.query_alignment_length, read.mapping_quality,\n get_pID(read)) for read in samfile.fetch(reference=chromosome,\n multiple_iterators=True) if not read.is_secondary]\n",
"role": "user"
},
{
"content": "extract_from_bam",
"role": "assistant"
}
] |
def x(read):
try:
return 100 * (1 - read.get_tag('NM') / read.query_alignment_length)
except KeyError:
try:
return 100 * (1 - (parse_MD(read.get_tag('MD')) + parse_CIGAR(
read.cigartuples)) / read.query_alignment_length)
except KeyError:
return None
except ZeroDivisionError:
return None
|
get_pID
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(read):\n try:\n return 100 * (1 - read.get_tag('NM') / read.query_alignment_length)\n except KeyError:\n try:\n return 100 * (1 - (parse_MD(read.get_tag('MD')) + parse_CIGAR(\n read.cigartuples)) / read.query_alignment_length)\n except KeyError:\n return None\n except ZeroDivisionError:\n return None\n",
"role": "user"
},
{
"content": "get_pID",
"role": "assistant"
}
] |
def x(inputfq, file_type='fastq'):
ut.check_existance(inputfq)
if inputfq.endswith(('.gz', 'bgz')):
import gzip
logging.info('Nanoget: Decompressing gzipped {} {}'.format(
file_type, inputfq))
return gzip.open(inputfq, 'rt')
elif inputfq.endswith('.bz2'):
import bz2
logging.info('Nanoget: Decompressing bz2 compressed {} {}'.format(
file_type, inputfq))
return bz2.open(inputfq, 'rt')
elif inputfq.endswith(('.fastq', '.fq', 'fasta', '.fa', '.fas')):
return open(inputfq, 'r')
else:
logging.error('INPUT ERROR: Unrecognized file extension {}'.format(
inputfq))
sys.exit(
"""INPUT ERROR:
Unrecognized file extension in {}
Supported are gz, bz2, bgz, fastq, fq, fasta, fa and fas"""
.format(inputfq))
|
handle_compressed_input
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(inputfq, file_type='fastq'):\n ut.check_existance(inputfq)\n if inputfq.endswith(('.gz', 'bgz')):\n import gzip\n logging.info('Nanoget: Decompressing gzipped {} {}'.format(\n file_type, inputfq))\n return gzip.open(inputfq, 'rt')\n elif inputfq.endswith('.bz2'):\n import bz2\n logging.info('Nanoget: Decompressing bz2 compressed {} {}'.format(\n file_type, inputfq))\n return bz2.open(inputfq, 'rt')\n elif inputfq.endswith(('.fastq', '.fq', 'fasta', '.fa', '.fas')):\n return open(inputfq, 'r')\n else:\n logging.error('INPUT ERROR: Unrecognized file extension {}'.format(\n inputfq))\n sys.exit(\n \"\"\"INPUT ERROR:\nUnrecognized file extension in {}\nSupported are gz, bz2, bgz, fastq, fq, fasta, fa and fas\"\"\"\n .format(inputfq))\n",
"role": "user"
},
{
"content": "handle_compressed_input",
"role": "assistant"
}
] |
def x(fasta, **kwargs):
logging.info('Nanoget: Starting to collect statistics from a fasta file.')
inputfasta = handle_compressed_input(fasta, file_type='fasta')
return ut.reduce_memory_usage(pd.DataFrame(data=[len(rec) for rec in
SeqIO.parse(inputfasta, 'fasta')], columns=['lengths']).dropna())
|
process_fasta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fasta, **kwargs):\n logging.info('Nanoget: Starting to collect statistics from a fasta file.')\n inputfasta = handle_compressed_input(fasta, file_type='fasta')\n return ut.reduce_memory_usage(pd.DataFrame(data=[len(rec) for rec in\n SeqIO.parse(inputfasta, 'fasta')], columns=['lengths']).dropna())\n",
"role": "user"
},
{
"content": "process_fasta",
"role": "assistant"
}
] |
def x(fastq, **kwargs):
logging.info(
'Nanoget: Starting to collect statistics from plain fastq file.')
inputfastq = handle_compressed_input(fastq)
return ut.reduce_memory_usage(pd.DataFrame(data=[res for res in
extract_from_fastq(inputfastq) if res], columns=['quals', 'lengths'
]).dropna())
|
process_fastq_plain
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fastq, **kwargs):\n logging.info(\n 'Nanoget: Starting to collect statistics from plain fastq file.')\n inputfastq = handle_compressed_input(fastq)\n return ut.reduce_memory_usage(pd.DataFrame(data=[res for res in\n extract_from_fastq(inputfastq) if res], columns=['quals', 'lengths'\n ]).dropna())\n",
"role": "user"
},
{
"content": "process_fastq_plain",
"role": "assistant"
}
] |
def x(fq):
for rec in SeqIO.parse(fq, 'fastq'):
yield nanomath.ave_qual(rec.letter_annotations['phred_quality']), len(
rec)
|
extract_from_fastq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fq):\n for rec in SeqIO.parse(fq, 'fastq'):\n yield nanomath.ave_qual(rec.letter_annotations['phred_quality']), len(\n rec)\n",
"role": "user"
},
{
"content": "extract_from_fastq",
"role": "assistant"
}
] |
def x(fastq, threads):
logging.info(
'Nanoget: Starting to collect full metrics from plain fastq file.')
inputfastq = handle_compressed_input(fastq)
with cfutures.ProcessPoolExecutor(max_workers=threads) as executor:
for results in executor.map(extract_all_from_fastq, SeqIO.parse(
inputfastq, 'fastq')):
yield results
logging.info(
'Nanoget: Finished collecting statistics from plain fastq file.')
|
stream_fastq_full
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fastq, threads):\n logging.info(\n 'Nanoget: Starting to collect full metrics from plain fastq file.')\n inputfastq = handle_compressed_input(fastq)\n with cfutures.ProcessPoolExecutor(max_workers=threads) as executor:\n for results in executor.map(extract_all_from_fastq, SeqIO.parse(\n inputfastq, 'fastq')):\n yield results\n logging.info(\n 'Nanoget: Finished collecting statistics from plain fastq file.')\n",
"role": "user"
},
{
"content": "stream_fastq_full",
"role": "assistant"
}
] |
def x(rec):
return rec.id, len(rec), nanomath.ave_qual(rec.letter_annotations[
'phred_quality']), nanomath.median_qual(rec.letter_annotations[
'phred_quality'])
|
extract_all_from_fastq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rec):\n return rec.id, len(rec), nanomath.ave_qual(rec.letter_annotations[\n 'phred_quality']), nanomath.median_qual(rec.letter_annotations[\n 'phred_quality'])\n",
"role": "user"
},
{
"content": "extract_all_from_fastq",
"role": "assistant"
}
] |
def x(fastq, **kwargs):
logging.info(
'Nanoget: Starting to collect statistics from rich fastq file.')
inputfastq = handle_compressed_input(fastq)
res = []
for record in SeqIO.parse(inputfastq, 'fastq'):
try:
read_info = info_to_dict(record.description)
res.append((nanomath.ave_qual(record.letter_annotations[
'phred_quality']), len(record), read_info['ch'], read_info[
'start_time'], read_info['runid']))
except KeyError:
logging.error('Nanoget: keyerror when processing record {}'.
format(record.description))
sys.exit(
"""Unexpected fastq identifier:
{}
missing one or more of expected fields 'ch', 'start_time' or 'runid'"""
.format(record.description))
df = pd.DataFrame(data=res, columns=['quals', 'lengths', 'channelIDs',
'timestamp', 'runIDs']).dropna()
df['channelIDs'] = df['channelIDs'].astype('int64')
return ut.reduce_memory_usage(df)
|
process_fastq_rich
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fastq, **kwargs):\n logging.info(\n 'Nanoget: Starting to collect statistics from rich fastq file.')\n inputfastq = handle_compressed_input(fastq)\n res = []\n for record in SeqIO.parse(inputfastq, 'fastq'):\n try:\n read_info = info_to_dict(record.description)\n res.append((nanomath.ave_qual(record.letter_annotations[\n 'phred_quality']), len(record), read_info['ch'], read_info[\n 'start_time'], read_info['runid']))\n except KeyError:\n logging.error('Nanoget: keyerror when processing record {}'.\n format(record.description))\n sys.exit(\n \"\"\"Unexpected fastq identifier:\n{}\n\n missing one or more of expected fields 'ch', 'start_time' or 'runid'\"\"\"\n .format(record.description))\n df = pd.DataFrame(data=res, columns=['quals', 'lengths', 'channelIDs',\n 'timestamp', 'runIDs']).dropna()\n df['channelIDs'] = df['channelIDs'].astype('int64')\n return ut.reduce_memory_usage(df)\n",
"role": "user"
},
{
"content": "process_fastq_rich",
"role": "assistant"
}
] |
def x(fp):
last = None
while True:
if not last:
for l in fp:
if l[0] in '>@':
last = l[:-1]
break
if not last:
break
name, seqs, last = last[1:].partition(' ')[0], [], None
for l in fp:
if l[0] in '@+>':
last = l[:-1]
break
seqs.append(l[:-1])
if not last or last[0] != '+':
yield name, ''.join(seqs), None
if not last:
break
else:
seq, leng, seqs = ''.join(seqs), 0, []
for l in fp:
seqs.append(l[:-1])
leng += len(l) - 1
if leng >= len(seq):
last = None
yield name, seq, ''.join(seqs)
break
if last:
yield name, seq, None
break
|
readfq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fp):\n last = None\n while True:\n if not last:\n for l in fp:\n if l[0] in '>@':\n last = l[:-1]\n break\n if not last:\n break\n name, seqs, last = last[1:].partition(' ')[0], [], None\n for l in fp:\n if l[0] in '@+>':\n last = l[:-1]\n break\n seqs.append(l[:-1])\n if not last or last[0] != '+':\n yield name, ''.join(seqs), None\n if not last:\n break\n else:\n seq, leng, seqs = ''.join(seqs), 0, []\n for l in fp:\n seqs.append(l[:-1])\n leng += len(l) - 1\n if leng >= len(seq):\n last = None\n yield name, seq, ''.join(seqs)\n break\n if last:\n yield name, seq, None\n break\n",
"role": "user"
},
{
"content": "readfq",
"role": "assistant"
}
] |
def x(fq):
try:
while True:
time = next(fq)[1:].split(' ')[4][11:-1]
length = len(next(fq))
next(fq)
next(fq)
yield time, length
except StopIteration:
yield None
|
fq_minimal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fq):\n try:\n while True:\n time = next(fq)[1:].split(' ')[4][11:-1]\n length = len(next(fq))\n next(fq)\n next(fq)\n yield time, length\n except StopIteration:\n yield None\n",
"role": "user"
},
{
"content": "fq_minimal",
"role": "assistant"
}
] |
def x(fastq, **kwargs):
infastq = handle_compressed_input(fastq)
try:
df = pd.DataFrame(data=[rec for rec in fq_minimal(infastq) if rec],
columns=['timestamp', 'lengths'])
except IndexError:
logging.error('Fatal: Incorrect file structure for fastq_minimal')
sys.exit(
'Error: file does not match expected structure for fastq_minimal')
return ut.reduce_memory_usage(df)
|
process_fastq_minimal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fastq, **kwargs):\n infastq = handle_compressed_input(fastq)\n try:\n df = pd.DataFrame(data=[rec for rec in fq_minimal(infastq) if rec],\n columns=['timestamp', 'lengths'])\n except IndexError:\n logging.error('Fatal: Incorrect file structure for fastq_minimal')\n sys.exit(\n 'Error: file does not match expected structure for fastq_minimal')\n return ut.reduce_memory_usage(df)\n",
"role": "user"
},
{
"content": "process_fastq_minimal",
"role": "assistant"
}
] |
def x(string, index):
piece = string[index].strip()
piece = piece.upper()
piece_dict = {'R': Rook, 'P': Pawn, 'B': Bishop, 'N': Knight, 'Q':
Queen, 'K': King}
try:
return piece_dict[piece]
except KeyError:
raise ValueError('Piece {} is invalid'.format(piece))
|
get_piece
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string, index):\n piece = string[index].strip()\n piece = piece.upper()\n piece_dict = {'R': Rook, 'P': Pawn, 'B': Bishop, 'N': Knight, 'Q':\n Queen, 'K': King}\n try:\n return piece_dict[piece]\n except KeyError:\n raise ValueError('Piece {} is invalid'.format(piece))\n",
"role": "user"
},
{
"content": "get_piece",
"role": "assistant"
}
] |
def x(move, position):
assert isinstance(move, Move)
for legal_move in position.all_possible_moves(move.color):
if move.status == notation_const.LONG_ALG:
if (move.end_loc == legal_move.end_loc and move.start_loc ==
legal_move.start_loc):
return legal_move
elif move == legal_move:
return legal_move
raise ValueError('Move {} not legal in \n{}'.format(repr(move), position))
|
make_legal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(move, position):\n assert isinstance(move, Move)\n for legal_move in position.all_possible_moves(move.color):\n if move.status == notation_const.LONG_ALG:\n if (move.end_loc == legal_move.end_loc and move.start_loc ==\n legal_move.start_loc):\n return legal_move\n elif move == legal_move:\n return legal_move\n raise ValueError('Move {} not legal in \\n{}'.format(repr(move), position))\n",
"role": "user"
},
{
"content": "make_legal",
"role": "assistant"
}
] |
def x(algebraic_string, input_color, position):
return make_legal(incomplete_alg(algebraic_string, input_color,
position), position)
|
short_alg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(algebraic_string, input_color, position):\n return make_legal(incomplete_alg(algebraic_string, input_color,\n position), position)\n",
"role": "user"
},
{
"content": "short_alg",
"role": "assistant"
}
] |
def x(alg_str, position):
if alg_str is None or len(alg_str) < 4 or len(alg_str) > 6:
raise ValueError('Invalid string input {}'.format(alg_str))
end = Location.from_string(alg_str[2:])
start = Location.from_string(alg_str[:2])
piece = position.piece_at_square(start)
if len(alg_str) == 4:
return make_legal(Move(end_loc=end, piece=piece, status=
notation_const.LONG_ALG, start_loc=start), position)
promoted_to = _get_piece(alg_str, 4)
if promoted_to is None or promoted_to is King or promoted_to is Pawn:
raise Exception('Invalid move input')
return make_legal(Move(end_loc=end, piece=piece, status=notation_const.
LONG_ALG, start_loc=start, promoted_to_piece=promoted_to), position)
|
long_alg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(alg_str, position):\n if alg_str is None or len(alg_str) < 4 or len(alg_str) > 6:\n raise ValueError('Invalid string input {}'.format(alg_str))\n end = Location.from_string(alg_str[2:])\n start = Location.from_string(alg_str[:2])\n piece = position.piece_at_square(start)\n if len(alg_str) == 4:\n return make_legal(Move(end_loc=end, piece=piece, status=\n notation_const.LONG_ALG, start_loc=start), position)\n promoted_to = _get_piece(alg_str, 4)\n if promoted_to is None or promoted_to is King or promoted_to is Pawn:\n raise Exception('Invalid move input')\n return make_legal(Move(end_loc=end, piece=piece, status=notation_const.\n LONG_ALG, start_loc=start, promoted_to_piece=promoted_to), position)\n",
"role": "user"
},
{
"content": "long_alg",
"role": "assistant"
}
] |
def x(self):
for i, atom in self.atoms():
neighbors = 0
hybridization = 1
for j, bond in self._adj[i].items():
if self._node[j].element != 'H':
neighbors += 1
if hybridization in (3, 4):
continue
order = bond.order
if order == 4:
hybridization = 4
elif order == 3:
hybridization = 3
elif order == 2:
if hybridization == 2:
hybridization = 3
else:
hybridization = 2
atom._neighbors = neighbors
atom._hybridization = hybridization
self.flush_cache()
|
reset_query_marks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i, atom in self.atoms():\n neighbors = 0\n hybridization = 1\n for j, bond in self._adj[i].items():\n if self._node[j].element != 'H':\n neighbors += 1\n if hybridization in (3, 4):\n continue\n order = bond.order\n if order == 4:\n hybridization = 4\n elif order == 3:\n hybridization = 3\n elif order == 2:\n if hybridization == 2:\n hybridization = 3\n else:\n hybridization = 2\n atom._neighbors = neighbors\n atom._hybridization = hybridization\n self.flush_cache()\n",
"role": "user"
},
{
"content": "reset_query_marks",
"role": "assistant"
}
] |
def x(self):
explicit = defaultdict(list)
c = 0
for n, atom in self.atoms():
if atom.element == 'H':
for m in self.neighbors(n):
if self._node[m].element != 'H':
explicit[m].append(n)
for n, h in explicit.items():
atom = self._node[n]
len_h = len(h)
for i in range(len_h, 0, -1):
hi = h[:i]
if atom.get_implicit_h([y.order for x, y in self._adj[n].items(
) if x not in hi]) == i:
for x in hi:
self.remove_node(x)
c += 1
break
self.flush_cache()
return c
|
implicify_hydrogens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n explicit = defaultdict(list)\n c = 0\n for n, atom in self.atoms():\n if atom.element == 'H':\n for m in self.neighbors(n):\n if self._node[m].element != 'H':\n explicit[m].append(n)\n for n, h in explicit.items():\n atom = self._node[n]\n len_h = len(h)\n for i in range(len_h, 0, -1):\n hi = h[:i]\n if atom.get_implicit_h([y.order for x, y in self._adj[n].items(\n ) if x not in hi]) == i:\n for x in hi:\n self.remove_node(x)\n c += 1\n break\n self.flush_cache()\n return c\n",
"role": "user"
},
{
"content": "implicify_hydrogens",
"role": "assistant"
}
] |
def x(self):
tmp = []
for n, atom in self.atoms():
if atom.element != 'H':
for _ in range(atom.get_implicit_h([x.order for x in self._adj[
n].values()])):
tmp.append(n)
for n in tmp:
self.add_bond(n, self.add_atom(H), Bond())
self.flush_cache()
return len(tmp)
|
explicify_hydrogens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n tmp = []\n for n, atom in self.atoms():\n if atom.element != 'H':\n for _ in range(atom.get_implicit_h([x.order for x in self._adj[\n n].values()])):\n tmp.append(n)\n for n in tmp:\n self.add_bond(n, self.add_atom(H), Bond())\n self.flush_cache()\n return len(tmp)\n",
"role": "user"
},
{
"content": "explicify_hydrogens",
"role": "assistant"
}
] |
def x(self, atoms, meta=False, as_view=True):
s = super().substructure(atoms, meta, as_view)
if as_view:
(s.check_valence) = (s.explicify_hydrogens) = (s.implicify_hydrogens
) = (s.reset_query_marks) = frozen
s.standardize = s.aromatize = frozen
return s
|
substructure
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, atoms, meta=False, as_view=True):\n s = super().substructure(atoms, meta, as_view)\n if as_view:\n (s.check_valence) = (s.explicify_hydrogens) = (s.implicify_hydrogens\n ) = (s.reset_query_marks) = frozen\n s.standardize = s.aromatize = frozen\n return s\n",
"role": "user"
},
{
"content": "substructure",
"role": "assistant"
}
] |
def x(self):
return [x for x, atom in self.atoms() if not atom.check_valence(self.
environment(x))]
|
check_valence
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return [x for x, atom in self.atoms() if not atom.check_valence(self.\n environment(x))]\n",
"role": "user"
},
{
"content": "check_valence",
"role": "assistant"
}
] |
def x(self, other):
if isinstance(other, (self._get_subclass('CGRContainer'),
MoleculeContainer)):
return GraphMatcher(other, self, lambda x, y: x == y, lambda x, y:
x == y)
raise TypeError('only cgr-cgr possible')
|
matcher
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n if isinstance(other, (self._get_subclass('CGRContainer'),\n MoleculeContainer)):\n return GraphMatcher(other, self, lambda x, y: x == y, lambda x, y: \n x == y)\n raise TypeError('only cgr-cgr possible')\n",
"role": "user"
},
{
"content": "matcher",
"role": "assistant"
}
] |
def x(date):
return datetime.datetime.combine(date, datetime.datetime.min.time())
|
to_datetime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date):\n return datetime.datetime.combine(date, datetime.datetime.min.time())\n",
"role": "user"
},
{
"content": "to_datetime",
"role": "assistant"
}
] |
def x(self, issue):
try:
size_changes = list(filter(lambda h: h.field == 'Story Points',
itertools.chain.from_iterable([c.items for c in issue.changelog
.histories])))
except AttributeError:
return
try:
current_size = issue.fields.__dict__[self.fields['StoryPoints']]
except:
current_size = None
size = size_changes[0].fromString if len(size_changes) else current_size
yield IssueSizeSnapshot(change=None, key=issue.key, date=dateutil.
parser.parse(issue.fields.created), size=size)
for change in issue.changelog.histories:
change_date = dateutil.parser.parse(change.created)
for item in change.items:
if item.field == 'Story Points':
size = item.toString
yield IssueSizeSnapshot(change=item.field, key=issue.key,
date=change_date, size=size)
|
iter_size_changes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, issue):\n try:\n size_changes = list(filter(lambda h: h.field == 'Story Points',\n itertools.chain.from_iterable([c.items for c in issue.changelog\n .histories])))\n except AttributeError:\n return\n try:\n current_size = issue.fields.__dict__[self.fields['StoryPoints']]\n except:\n current_size = None\n size = size_changes[0].fromString if len(size_changes) else current_size\n yield IssueSizeSnapshot(change=None, key=issue.key, date=dateutil.\n parser.parse(issue.fields.created), size=size)\n for change in issue.changelog.histories:\n change_date = dateutil.parser.parse(change.created)\n for item in change.items:\n if item.field == 'Story Points':\n size = item.toString\n yield IssueSizeSnapshot(change=item.field, key=issue.key,\n date=change_date, size=size)\n",
"role": "user"
},
{
"content": "iter_size_changes",
"role": "assistant"
}
] |
def x(self, issue, include_resolution_changes=True):
is_resolved = False
try:
status_changes = list(filter(lambda h: h.field == 'status',
itertools.chain.from_iterable([c.items for c in issue.changelog
.histories])))
except AttributeError:
return
last_status = status_changes[0].fromString if len(status_changes
) > 0 else issue.fields.status.name
last_resolution = None
yield IssueSnapshot(change=None, key=issue.key, date=dateutil.parser.
parse(issue.fields.created), status=last_status, resolution=None,
is_resolved=is_resolved)
for change in issue.changelog.histories:
change_date = dateutil.parser.parse(change.created)
resolutions = list(filter(lambda i: i.field == 'resolution', change
.items))
is_resolved = resolutions[-1].to is not None if len(resolutions
) > 0 else is_resolved
for item in change.items:
if item.field == 'status':
last_status = item.toString
yield IssueSnapshot(change=item.field, key=issue.key, date=
change_date, status=last_status, resolution=
last_resolution, is_resolved=is_resolved)
elif item.field == 'resolution':
last_resolution = item.toString
if include_resolution_changes:
yield IssueSnapshot(change=item.field, key=issue.key,
date=change_date, status=last_status, resolution=
last_resolution, is_resolved=is_resolved)
|
iter_changes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, issue, include_resolution_changes=True):\n is_resolved = False\n try:\n status_changes = list(filter(lambda h: h.field == 'status',\n itertools.chain.from_iterable([c.items for c in issue.changelog\n .histories])))\n except AttributeError:\n return\n last_status = status_changes[0].fromString if len(status_changes\n ) > 0 else issue.fields.status.name\n last_resolution = None\n yield IssueSnapshot(change=None, key=issue.key, date=dateutil.parser.\n parse(issue.fields.created), status=last_status, resolution=None,\n is_resolved=is_resolved)\n for change in issue.changelog.histories:\n change_date = dateutil.parser.parse(change.created)\n resolutions = list(filter(lambda i: i.field == 'resolution', change\n .items))\n is_resolved = resolutions[-1].to is not None if len(resolutions\n ) > 0 else is_resolved\n for item in change.items:\n if item.field == 'status':\n last_status = item.toString\n yield IssueSnapshot(change=item.field, key=issue.key, date=\n change_date, status=last_status, resolution=\n last_resolution, is_resolved=is_resolved)\n elif item.field == 'resolution':\n last_resolution = item.toString\n if include_resolution_changes:\n yield IssueSnapshot(change=item.field, key=issue.key,\n date=change_date, status=last_status, resolution=\n last_resolution, is_resolved=is_resolved)\n",
"role": "user"
},
{
"content": "iter_changes",
"role": "assistant"
}
] |
def x(self, criteria={}, jql=None, order='KEY ASC', verbose=False,
changelog=True):
query = []
if criteria.get('project', False):
query.append('project IN (%s)' % ', '.join([('"%s"' % p) for p in
criteria['project']]))
if criteria.get('issue_types', False):
query.append('issueType IN (%s)' % ', '.join([('"%s"' % t) for t in
criteria['issue_types']]))
if criteria.get('valid_resolutions', False):
query.append('(resolution IS EMPTY OR resolution IN (%s))' % ', '.
join([('"%s"' % r) for r in criteria['valid_resolutions']]))
if criteria.get('jql_filter') is not None:
query.append('(%s)' % criteria['jql_filter'])
if jql is not None:
query.append('(%s)' % jql)
queryString = '%s ORDER BY %s' % (' AND '.join(query), order)
if verbose:
print('Fetching issues with query:', queryString)
fromRow = 0
issues = []
while True:
try:
if changelog:
pageofissues = self.jira.search_issues(queryString, expand=
'changelog', maxResults=self.settings['max_results'],
startAt=fromRow)
else:
pageofissues = self.jira.search_issues(queryString,
maxResults=self.settings['max_results'], startAt=fromRow)
fromRow = fromRow + int(self.settings['max_results'])
issues += pageofissues
if verbose:
print(
'Got %s lines per jira query from result starting at line number %s '
% (self.settings['max_results'], fromRow))
if len(pageofissues) == 0:
break
except JIRAError as e:
print('Jira query error with: {}\n{}'.format(queryString, e))
return []
if verbose:
print('Fetched', len(issues), 'issues')
return issues
|
find_issues
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, criteria={}, jql=None, order='KEY ASC', verbose=False,\n changelog=True):\n query = []\n if criteria.get('project', False):\n query.append('project IN (%s)' % ', '.join([('\"%s\"' % p) for p in\n criteria['project']]))\n if criteria.get('issue_types', False):\n query.append('issueType IN (%s)' % ', '.join([('\"%s\"' % t) for t in\n criteria['issue_types']]))\n if criteria.get('valid_resolutions', False):\n query.append('(resolution IS EMPTY OR resolution IN (%s))' % ', '.\n join([('\"%s\"' % r) for r in criteria['valid_resolutions']]))\n if criteria.get('jql_filter') is not None:\n query.append('(%s)' % criteria['jql_filter'])\n if jql is not None:\n query.append('(%s)' % jql)\n queryString = '%s ORDER BY %s' % (' AND '.join(query), order)\n if verbose:\n print('Fetching issues with query:', queryString)\n fromRow = 0\n issues = []\n while True:\n try:\n if changelog:\n pageofissues = self.jira.search_issues(queryString, expand=\n 'changelog', maxResults=self.settings['max_results'],\n startAt=fromRow)\n else:\n pageofissues = self.jira.search_issues(queryString,\n maxResults=self.settings['max_results'], startAt=fromRow)\n fromRow = fromRow + int(self.settings['max_results'])\n issues += pageofissues\n if verbose:\n print(\n 'Got %s lines per jira query from result starting at line number %s '\n % (self.settings['max_results'], fromRow))\n if len(pageofissues) == 0:\n break\n except JIRAError as e:\n print('Jira query error with: {}\\n{}'.format(queryString, e))\n return []\n if verbose:\n print('Fetched', len(issues), 'issues')\n return issues\n",
"role": "user"
},
{
"content": "find_issues",
"role": "assistant"
}
] |
def x(self):
_form = CatalogSelectForm(current=self.current)
_form.set_choices_of('catalog', [(i, i) for i in fixture_bucket.get_keys()]
)
self.form_out(_form)
|
list_catalogs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n _form = CatalogSelectForm(current=self.current)\n _form.set_choices_of('catalog', [(i, i) for i in fixture_bucket.get_keys()]\n )\n self.form_out(_form)\n",
"role": "user"
},
{
"content": "list_catalogs",
"role": "assistant"
}
] |
def x(self):
catalog_data = fixture_bucket.get(self.input['form']['catalog'])
add_or_edit = 'Edit' if catalog_data.exists else 'Add'
catalog_edit_form = CatalogEditForm(current=self.current, title=
'%s: %s' % (add_or_edit, self.input['form']['catalog']))
if catalog_data.exists:
if type(catalog_data.data) == list:
for key, data in enumerate(catalog_data.data):
catalog_edit_form.CatalogDatas(catalog_key=key or '0', en=
'', tr=data)
if type(catalog_data.data) == dict:
for key, data in catalog_data.data.items():
catalog_edit_form.CatalogDatas(catalog_key=key, en=data[
'en'], tr=data['tr'])
else:
catalog_edit_form.CatalogDatas(catalog_key='0', en='', tr='')
self.form_out(catalog_edit_form)
self.output['object_key'] = self.input['form']['catalog']
|
get_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n catalog_data = fixture_bucket.get(self.input['form']['catalog'])\n add_or_edit = 'Edit' if catalog_data.exists else 'Add'\n catalog_edit_form = CatalogEditForm(current=self.current, title=\n '%s: %s' % (add_or_edit, self.input['form']['catalog']))\n if catalog_data.exists:\n if type(catalog_data.data) == list:\n for key, data in enumerate(catalog_data.data):\n catalog_edit_form.CatalogDatas(catalog_key=key or '0', en=\n '', tr=data)\n if type(catalog_data.data) == dict:\n for key, data in catalog_data.data.items():\n catalog_edit_form.CatalogDatas(catalog_key=key, en=data[\n 'en'], tr=data['tr'])\n else:\n catalog_edit_form.CatalogDatas(catalog_key='0', en='', tr='')\n self.form_out(catalog_edit_form)\n self.output['object_key'] = self.input['form']['catalog']\n",
"role": "user"
},
{
"content": "get_catalog",
"role": "assistant"
}
] |
def x(self):
if self.input['cmd'] == 'save_catalog':
try:
edited_object = dict()
for i in self.input['form']['CatalogDatas']:
edited_object[i['catalog_key']] = {'en': i['en'], 'tr': i['tr']
}
newobj = fixture_bucket.get(self.input['object_key'])
newobj.data = edited_object
newobj.store()
self.output['notify'
] = 'catalog: %s successfully updated.' % self.input[
'object_key']
except:
raise HTTPError(500, 'Form object could not be saved')
if self.input['cmd'] == 'cancel':
self.output['notify'] = 'catalog: %s canceled.' % self.input[
'object_key']
|
save_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.input['cmd'] == 'save_catalog':\n try:\n edited_object = dict()\n for i in self.input['form']['CatalogDatas']:\n edited_object[i['catalog_key']] = {'en': i['en'], 'tr': i['tr']\n }\n newobj = fixture_bucket.get(self.input['object_key'])\n newobj.data = edited_object\n newobj.store()\n self.output['notify'\n ] = 'catalog: %s successfully updated.' % self.input[\n 'object_key']\n except:\n raise HTTPError(500, 'Form object could not be saved')\n if self.input['cmd'] == 'cancel':\n self.output['notify'] = 'catalog: %s canceled.' % self.input[\n 'object_key']\n",
"role": "user"
},
{
"content": "save_catalog",
"role": "assistant"
}
] |
def x(d):
return '{y}-{m}-{day}T00:00:00Z'.format(day=d[:2], m=d[3:5], y=d[6:]
) if d else d
|
date_to_solr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n return '{y}-{m}-{day}T00:00:00Z'.format(day=d[:2], m=d[3:5], y=d[6:]\n ) if d else d\n",
"role": "user"
},
{
"content": "date_to_solr",
"role": "assistant"
}
] |
def x(d):
return '{day}:{m}:{y}'.format(y=d[:4], m=d[5:7], day=d[8:10]) if d else d
|
solr_to_date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d):\n return '{day}:{m}:{y}'.format(y=d[:4], m=d[5:7], day=d[8:10]) if d else d\n",
"role": "user"
},
{
"content": "solr_to_date",
"role": "assistant"
}
] |
def x(s):
return re.sub('[^0-9a-zA-Z]+', '_', s.strip().replace(u'ğ', 'g').
replace(u'ö', 'o').replace(u'ç', 'c').replace(u'Ç', 'c').replace(
u'Ö', u'O').replace(u'Ş', 's').replace(u'Ü', 'u').replace(u'ı', 'i'
).replace(u'İ', 'i').replace(u'Ğ', 'g').replace(u'ö', 'o').replace(
u'ş', 's').replace(u'ü', 'u').lower(), re.UNICODE)
|
to_safe_str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n return re.sub('[^0-9a-zA-Z]+', '_', s.strip().replace(u'ğ', 'g').\n replace(u'ö', 'o').replace(u'ç', 'c').replace(u'Ç', 'c').replace(\n u'Ö', u'O').replace(u'Ş', 's').replace(u'Ü', 'u').replace(u'ı', 'i'\n ).replace(u'İ', 'i').replace(u'Ğ', 'g').replace(u'ö', 'o').replace(\n u'ş', 's').replace(u'ü', 'u').lower(), re.UNICODE)\n",
"role": "user"
},
{
"content": "to_safe_str",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.