source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSwappedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemSwappedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSwappedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemSwappedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSwapTargetMB(self.handle.value, byref (counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemSwapTargetMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSwapTargetMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemSwapTargetMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemTargetSizeMB(self.handle.value, byref (counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemTargetSizeMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemTargetSizeMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemTargetSizeMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemUsedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemUsedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemUsedMB(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemUsedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemZippedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemZippedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemZippedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemZippedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemZipSavedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemZipSavedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemZipSavedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemZipSavedMB", "role": "assistant" } ]
def x(t_int, C, deg, x, cov_C=None, M_spline=False, I_spline=False, n=0): C = scipy.asarray(C, dtype=float) t_int = scipy.asarray(t_int, dtype=float) if (t_int != scipy.sort(t_int)).any(): raise ValueError('Knots must be in increasing order!') if n > deg: return scipy.zeros_like(x, dtype=float) if I_spline: if cov_C is not None: cov_C = scipy.asarray(cov_C) if cov_C.ndim == 1: cov_C = cov_C[1:] elif cov_C.ndim == 2: cov_C = cov_C[1:, 1:] if n > 0: return spev(t_int, C[1:], deg - 1, x, cov_C=cov_C, M_spline= True, I_spline=False, n=n - 1) M_spline = True if n > 0: if M_spline: t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg)) C = (deg + 1.0) * (C[1:] / (t[deg + 2:len(t_int) + 2 * deg] - t [1:len(t_int) + deg - 1]) - C[:-1] / (t[deg + 1:len(t_int) + 2 * deg - 1] - t[:len(t_int) + deg - 2])) else: C = C[1:] - C[:-1] return spev(t_int, C, deg - 1, x, cov_C=cov_C, M_spline=True, I_spline=False, n=n - 1) if len(C) != len(t_int) + deg - 1: raise ValueError('Length of C must be equal to M + deg - 1!') t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg)) B = scipy.zeros((deg + 1, len(t) - 1, len(x))) d = 0 for i in xrange(deg, deg + len(t_int) - 2 + 1): mask = (t[i] <= x) & ((x < t[i + 1]) | (i == deg + len(t_int) - 2) & (x == t[-1])) B[d, i, mask] = 1.0 / (t[i + 1] - t[i]) if M_spline else 1.0 for d in xrange(1, deg + 1): for i in xrange(deg - d, deg + len(t_int) - 2 + 1): if t[i + d] != t[i]: v = (x - t[i]) * B[d - 1, i, :] if not M_spline: v /= t[i + d] - t[i] B[d, i, :] += v if t[i + d + 1] != t[i + 1]: v = (t[i + d + 1] - x) * B[d - 1, i + 1, :] if not M_spline: v /= t[i + d + 1] - t[i + 1] B[d, i, :] += v if M_spline and (t[i + d] != t[i] or t[i + d + 1] != t[i + 1]): B[d, i, :] *= (d + 1) / (d * (t[i + d + 1] - t[i])) B = B[deg, 0:len(C), :].T if I_spline: I = scipy.zeros_like(B) for i in xrange(0, len(C)): for m in xrange(i, len(C)): I[:, i] += (t[m + deg + 1] - t[m]) * B[:, m] / (deg + 1.0) B = I y = B.dot(C) if cov_C is not None: cov_C = scipy.asarray(cov_C) if cov_C.ndim == 1: cov_C = scipy.diag(cov_C) cov_y = B.dot(cov_C).dot(B.T) return y, cov_y else: return y
spev
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(t_int, C, deg, x, cov_C=None, M_spline=False, I_spline=False, n=0):\n C = scipy.asarray(C, dtype=float)\n t_int = scipy.asarray(t_int, dtype=float)\n if (t_int != scipy.sort(t_int)).any():\n raise ValueError('Knots must be in increasing order!')\n if n > deg:\n return scipy.zeros_like(x, dtype=float)\n if I_spline:\n if cov_C is not None:\n cov_C = scipy.asarray(cov_C)\n if cov_C.ndim == 1:\n cov_C = cov_C[1:]\n elif cov_C.ndim == 2:\n cov_C = cov_C[1:, 1:]\n if n > 0:\n return spev(t_int, C[1:], deg - 1, x, cov_C=cov_C, M_spline=\n True, I_spline=False, n=n - 1)\n M_spline = True\n if n > 0:\n if M_spline:\n t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))\n C = (deg + 1.0) * (C[1:] / (t[deg + 2:len(t_int) + 2 * deg] - t\n [1:len(t_int) + deg - 1]) - C[:-1] / (t[deg + 1:len(t_int) +\n 2 * deg - 1] - t[:len(t_int) + deg - 2]))\n else:\n C = C[1:] - C[:-1]\n return spev(t_int, C, deg - 1, x, cov_C=cov_C, M_spline=True,\n I_spline=False, n=n - 1)\n if len(C) != len(t_int) + deg - 1:\n raise ValueError('Length of C must be equal to M + deg - 1!')\n t = scipy.concatenate(([t_int[0]] * deg, t_int, [t_int[-1]] * deg))\n B = scipy.zeros((deg + 1, len(t) - 1, len(x)))\n d = 0\n for i in xrange(deg, deg + len(t_int) - 2 + 1):\n mask = (t[i] <= x) & ((x < t[i + 1]) | (i == deg + len(t_int) - 2) &\n (x == t[-1]))\n B[d, i, mask] = 1.0 / (t[i + 1] - t[i]) if M_spline else 1.0\n for d in xrange(1, deg + 1):\n for i in xrange(deg - d, deg + len(t_int) - 2 + 1):\n if t[i + d] != t[i]:\n v = (x - t[i]) * B[d - 1, i, :]\n if not M_spline:\n v /= t[i + d] - t[i]\n B[d, i, :] += v\n if t[i + d + 1] != t[i + 1]:\n v = (t[i + d + 1] - x) * B[d - 1, i + 1, :]\n if not M_spline:\n v /= t[i + d + 1] - t[i + 1]\n B[d, i, :] += v\n if M_spline and (t[i + d] != t[i] or t[i + d + 1] != t[i + 1]):\n B[d, i, :] *= (d + 1) / (d * (t[i + d + 1] - t[i]))\n B = B[deg, 0:len(C), :].T\n if I_spline:\n I = scipy.zeros_like(B)\n for i in xrange(0, len(C)):\n for m in xrange(i, len(C)):\n I[:, i] += (t[m + deg + 1] - t[m]) * B[:, m] / (deg + 1.0)\n B = I\n y = B.dot(C)\n if cov_C is not None:\n cov_C = scipy.asarray(cov_C)\n if cov_C.ndim == 1:\n cov_C = scipy.diag(cov_C)\n cov_y = B.dot(cov_C).dot(B.T)\n return y, cov_y\n else:\n return y\n", "role": "user" }, { "content": "spev", "role": "assistant" } ]
def x(subparsers): parser_version = subparsers.add_parser('version', help= 'Output the version of %(prog)s to the console.') parser_version.set_defaults(func=command_version) return parser_version
parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(subparsers):\n parser_version = subparsers.add_parser('version', help=\n 'Output the version of %(prog)s to the console.')\n parser_version.set_defaults(func=command_version)\n return parser_version\n", "role": "user" }, { "content": "parser", "role": "assistant" } ]
def x(context, helper_name): request = context.request module, class_name = helper_name.rsplit('.', 1) if module not in sys.modules: __import__(module) mod = sys.modules[module] class_ = getattr(mod, class_name) return class_(request=request)
wafer_form_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, helper_name):\n request = context.request\n module, class_name = helper_name.rsplit('.', 1)\n if module not in sys.modules:\n __import__(module)\n mod = sys.modules[module]\n class_ = getattr(mod, class_name)\n return class_(request=request)\n", "role": "user" }, { "content": "wafer_form_helper", "role": "assistant" } ]
def x(root_menu): for page in Page.objects.filter(include_in_menu=True): path = page.get_path() menu = path[0] if len(path) > 1 else None try: root_menu.add_item(page.name, page.get_absolute_url(), menu=menu) except MenuError as e: logger.error('Bad menu item %r for page with slug %r.' % (e, page.slug))
page_menus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(root_menu):\n for page in Page.objects.filter(include_in_menu=True):\n path = page.get_path()\n menu = path[0] if len(path) > 1 else None\n try:\n root_menu.add_item(page.name, page.get_absolute_url(), menu=menu)\n except MenuError as e:\n logger.error('Bad menu item %r for page with slug %r.' % (e,\n page.slug))\n", "role": "user" }, { "content": "page_menus", "role": "assistant" } ]
def x(request): if request.user.is_authenticated: return HttpResponseRedirect(reverse('wafer_user_profile', args=( request.user.username,))) else: return redirect_to_login(next=reverse(redirect_profile))
redirect_profile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n if request.user.is_authenticated:\n return HttpResponseRedirect(reverse('wafer_user_profile', args=(\n request.user.username,)))\n else:\n return redirect_to_login(next=reverse(redirect_profile))\n", "role": "user" }, { "content": "redirect_profile", "role": "assistant" } ]
def x(user, talk): context = {'reviewed': False} review = None if user and not user.is_anonymous(): review = talk.reviews.filter(reviewer=user).first() if review: context['reviewed'] = True context['review_is_current'] = review.is_current() return context
reviewed_badge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user, talk):\n context = {'reviewed': False}\n review = None\n if user and not user.is_anonymous():\n review = talk.reviews.filter(reviewer=user).first()\n if review:\n context['reviewed'] = True\n context['review_is_current'] = review.is_current()\n return context\n", "role": "user" }, { "content": "reviewed_badge", "role": "assistant" } ]
def x(X, d, n, *args): X = scipy.asarray(X) a = args[2 * d] b = args[2 * d + 1] if n == 0: return scipy.special.betainc(a, b, X) elif n == 1: return (1 - X) ** (b - 1) * X ** (a - 1) / scipy.special.beta(a, b) else: out = scipy.zeros_like(X) for k in range(0, n): out += (-1.0) ** (n - k) * scipy.special.binom(n - 1, k ) * fixed_poch(1.0 - b, k) * fixed_poch(1.0 - a, n - k - 1.0 ) * (X / (1.0 - X)) ** k return -(1.0 - X) ** (b - 1.0) * X ** (a - n ) * out / scipy.special.beta(a, b)
beta_cdf_warp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, d, n, *args):\n X = scipy.asarray(X)\n a = args[2 * d]\n b = args[2 * d + 1]\n if n == 0:\n return scipy.special.betainc(a, b, X)\n elif n == 1:\n return (1 - X) ** (b - 1) * X ** (a - 1) / scipy.special.beta(a, b)\n else:\n out = scipy.zeros_like(X)\n for k in range(0, n):\n out += (-1.0) ** (n - k) * scipy.special.binom(n - 1, k\n ) * fixed_poch(1.0 - b, k) * fixed_poch(1.0 - a, n - k - 1.0\n ) * (X / (1.0 - X)) ** k\n return -(1.0 - X) ** (b - 1.0) * X ** (a - n\n ) * out / scipy.special.beta(a, b)\n", "role": "user" }, { "content": "beta_cdf_warp", "role": "assistant" } ]
def x(X, d, n, *args): X = scipy.asarray(X, dtype=float) a = args[2 * d] b = args[2 * d + 1] if n == 0: return (X - a) / (b - a) elif n == 1: return 1.0 / (b - a) * scipy.ones_like(X) else: return scipy.zeros_like(X)
linear_warp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, d, n, *args):\n X = scipy.asarray(X, dtype=float)\n a = args[2 * d]\n b = args[2 * d + 1]\n if n == 0:\n return (X - a) / (b - a)\n elif n == 1:\n return 1.0 / (b - a) * scipy.ones_like(X)\n else:\n return scipy.zeros_like(X)\n", "role": "user" }, { "content": "linear_warp", "role": "assistant" } ]
def x(self, X, d, n): if n == 0: wX = self.w(X, d, 0) if isinstance(self.k, WarpedKernel): wX = self.k.w_func(wX, d, 0) return wX elif n == 1: wXn = self.w(X, d, n) if isinstance(self.k, WarpedKernel): wX = self.w_func(X, d, 0) wXn *= self.k.w_func(wX, d, n) return wXn else: raise ValueError( 'Derivative orders greater than one are not supported!')
w_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, d, n):\n if n == 0:\n wX = self.w(X, d, 0)\n if isinstance(self.k, WarpedKernel):\n wX = self.k.w_func(wX, d, 0)\n return wX\n elif n == 1:\n wXn = self.w(X, d, n)\n if isinstance(self.k, WarpedKernel):\n wX = self.w_func(X, d, 0)\n wXn *= self.k.w_func(wX, d, n)\n return wXn\n else:\n raise ValueError(\n 'Derivative orders greater than one are not supported!')\n", "role": "user" }, { "content": "w_func", "role": "assistant" } ]
def x(self, v): self._enforce_bounds = v self.k.enforce_bounds = v self.w.enforce_bounds = v
enforce_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v):\n self._enforce_bounds = v\n self.k.enforce_bounds = v\n self.w.enforce_bounds = v\n", "role": "user" }, { "content": "enforce_bounds", "role": "assistant" } ]
def x(self, value): value = scipy.asarray(value, dtype=float) self.K_up_to_date = False self.k.free_params = value[:self.k.num_free_params] self.w.free_params = value[self.k.num_free_params:self.k. num_free_params + self.w.num_free_params]
free_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n value = scipy.asarray(value, dtype=float)\n self.K_up_to_date = False\n self.k.free_params = value[:self.k.num_free_params]\n self.w.free_params = value[self.k.num_free_params:self.k.\n num_free_params + self.w.num_free_params]\n", "role": "user" }, { "content": "free_params", "role": "assistant" } ]
def x(self, new_params): new_params = scipy.asarray(new_params, dtype=float) if len(new_params) == len(self.free_params): num_free_k = sum(~self.k.fixed_params) self.k.set_hyperparams(new_params[:num_free_k]) self.w.set_hyperparams(new_params[num_free_k:]) else: raise ValueError('Length of new_params must be %s!' % (len(self. free_params),))
set_hyperparams
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_params):\n new_params = scipy.asarray(new_params, dtype=float)\n if len(new_params) == len(self.free_params):\n num_free_k = sum(~self.k.fixed_params)\n self.k.set_hyperparams(new_params[:num_free_k])\n self.w.set_hyperparams(new_params[num_free_k:])\n else:\n raise ValueError('Length of new_params must be %s!' % (len(self.\n free_params),))\n", "role": "user" }, { "content": "set_hyperparams", "role": "assistant" } ]
def x(self, request, *args, **kwargs): if 'pk' in kwargs: self.object = self.get_object() else: self.object = None form_class = self.get_form_class() if 'field_prefix' in form_class.Meta.__dict__: field_prefix = form_class.Meta.field_prefix else: field_prefix = str(form_class).split("'")[1].split('.')[-1] self.field_prefix = field_prefix form = self.get_form(form_class) if 'groups' in dir(self): groups = self.groups form.__groups__ = lambda : groups fields = [] else: groups = None form.add_prefix = (lambda fields_name, field_prefix=field_prefix: '%s_%s' % (field_prefix, fields_name)) if 'autofill' not in dir(form.Meta): form.Meta.autofill = {} forms = [] position_form_default = 0 for formelement, linkerfield, modelfilter in self.forms: if formelement is None: formobj = form position_form_default = len(forms) else: if self.object: related_name = formelement._meta.model._meta.get_field( linkerfield).related_query_name() queryset = getattr(self.object, related_name) if modelfilter: queryset = queryset.filter(eval('Q(%s)' % modelfilter)) get_method = getattr(queryset, 'get', None) if get_method: instance = queryset.get() else: instance = queryset else: instance = None if 'autofill' in dir(formelement.Meta): formname = str(formelement).split('.')[-1].split("'")[0] for key in formelement.Meta.autofill: form.Meta.autofill['{}_{}'.format(formname, key) ] = formelement.Meta.autofill[key] if 'field_prefix' in formelement.Meta.__dict__: field_prefix = formelement.Meta.field_prefix else: field_prefix = str(formelement).split("'")[1].split('.')[-1] self.field_prefix = field_prefix formobj = formelement(instance=instance) formobj.form_name = form.form_name if 'exclude' not in formobj.Meta.__dict__: formobj.Meta.exclude = [linkerfield] elif linkerfield not in formobj.Meta.exclude: formobj.Meta.exclude.append(linkerfield) if linkerfield in formobj.fields: del formobj.fields[linkerfield] formobj.add_prefix = (lambda fields_name, field_prefix= field_prefix: '%s_%s' % (field_prefix, fields_name)) formobj.scope_prefix = field_prefix if groups: for field in formobj: fields.append(field) else: forms.append(formobj) if position_form_default == 0: open_tabs = 1 else: open_tabs = 0 if groups: form.list_fields = fields return self.render_to_response(self.get_context_data(form=form, forms= forms, open_tabs=open_tabs, position_form_default= position_form_default))
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, *args, **kwargs):\n if 'pk' in kwargs:\n self.object = self.get_object()\n else:\n self.object = None\n form_class = self.get_form_class()\n if 'field_prefix' in form_class.Meta.__dict__:\n field_prefix = form_class.Meta.field_prefix\n else:\n field_prefix = str(form_class).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n form = self.get_form(form_class)\n if 'groups' in dir(self):\n groups = self.groups\n form.__groups__ = lambda : groups\n fields = []\n else:\n groups = None\n form.add_prefix = (lambda fields_name, field_prefix=field_prefix: \n '%s_%s' % (field_prefix, fields_name))\n if 'autofill' not in dir(form.Meta):\n form.Meta.autofill = {}\n forms = []\n position_form_default = 0\n for formelement, linkerfield, modelfilter in self.forms:\n if formelement is None:\n formobj = form\n position_form_default = len(forms)\n else:\n if self.object:\n related_name = formelement._meta.model._meta.get_field(\n linkerfield).related_query_name()\n queryset = getattr(self.object, related_name)\n if modelfilter:\n queryset = queryset.filter(eval('Q(%s)' % modelfilter))\n get_method = getattr(queryset, 'get', None)\n if get_method:\n instance = queryset.get()\n else:\n instance = queryset\n else:\n instance = None\n if 'autofill' in dir(formelement.Meta):\n formname = str(formelement).split('.')[-1].split(\"'\")[0]\n for key in formelement.Meta.autofill:\n form.Meta.autofill['{}_{}'.format(formname, key)\n ] = formelement.Meta.autofill[key]\n if 'field_prefix' in formelement.Meta.__dict__:\n field_prefix = formelement.Meta.field_prefix\n else:\n field_prefix = str(formelement).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n formobj = formelement(instance=instance)\n formobj.form_name = form.form_name\n if 'exclude' not in formobj.Meta.__dict__:\n formobj.Meta.exclude = [linkerfield]\n elif linkerfield not in formobj.Meta.exclude:\n formobj.Meta.exclude.append(linkerfield)\n if linkerfield in formobj.fields:\n del formobj.fields[linkerfield]\n formobj.add_prefix = (lambda fields_name, field_prefix=\n field_prefix: '%s_%s' % (field_prefix, fields_name))\n formobj.scope_prefix = field_prefix\n if groups:\n for field in formobj:\n fields.append(field)\n else:\n forms.append(formobj)\n if position_form_default == 0:\n open_tabs = 1\n else:\n open_tabs = 0\n if groups:\n form.list_fields = fields\n return self.render_to_response(self.get_context_data(form=form, forms=\n forms, open_tabs=open_tabs, position_form_default=\n position_form_default))\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, request, *args, **kwargs): if 'pk' in kwargs: self.object = self.get_object() else: self.object = None form_class = self.get_form_class() if 'field_prefix' in form_class.Meta.__dict__: field_prefix = form_class.Meta.field_prefix else: field_prefix = str(form_class).split("'")[1].split('.')[-1] self.field_prefix = field_prefix form = self.get_form(form_class) if 'groups' in dir(self): groups = self.groups form.__groups__ = lambda : groups fields = [] else: groups = None form.add_prefix = (lambda fields_name, field_prefix=field_prefix: '%s_%s' % (field_prefix, fields_name)) valid = form.is_valid() if not valid and 'non_field_errors' in dir(self): errors = [element[5] for element in list(self.non_field_errors())[:-1]] elif form.errors.as_data(): errors = [] for element in form.errors.as_data(): for err in form.errors.as_data()[element][0]: errors.append(err) else: errors = [] temp_forms = [] position_form_default = 0 for formelement, linkerfield, modelfilter in self.forms: if formelement is None: formobj = form position_form_default = len(temp_forms) else: if self.object: related_name = formelement._meta.model._meta.get_field( linkerfield).related_query_name() queryset = getattr(self.object, related_name) if modelfilter: queryset = queryset.filter(eval('Q(%s)' % modelfilter)) get_method = getattr(queryset, 'get', None) if get_method: instance = queryset.get() else: instance = queryset else: instance = None if 'field_prefix' in formelement.Meta.__dict__: field_prefix = formelement.Meta.field_prefix else: field_prefix = str(formelement).split("'")[1].split('.')[-1] self.field_prefix = field_prefix formobj = formelement(instance=instance, data=self.request.POST) formobj.form_name = form.form_name if 'exclude' not in formobj.Meta.__dict__: formobj.Meta.exclude = [linkerfield] elif linkerfield not in formobj.Meta.exclude: formobj.Meta.exclude.append(linkerfield) if linkerfield in formobj.fields: del formobj.fields[linkerfield] formobj.add_prefix = (lambda fields_name, field_prefix= field_prefix: '%s_%s' % (field_prefix, fields_name)) valid *= formobj.is_valid() if not formobj.is_valid() and 'non_field_errors' in dir(formobj): errors += [element[5] for element in list(formobj. non_field_errors())[:-1]] if groups: for field in formobj: if 'unblock_t2ime' in field.html_name: raise Exception(field.field.__dict__) fields.append(field) temp_forms.append((formobj, linkerfield)) validate_forms = None if valid and 'validate' in dir(self): validate_forms = [tform[0] for tform in temp_forms] errors = self.validate(*validate_forms) valid = False if errors is None or len(errors) == 0: valid = True if groups: form.list_fields = fields forms = [] elif validate_forms: forms = validate_forms else: forms = [tform[0] for tform in temp_forms] if position_form_default == 0: open_tabs = 1 else: open_tabs = 0 if valid: return self.form_valid(form, temp_forms) else: form.list_errors = errors return self.form_invalid(form, forms, open_tabs, position_form_default)
post
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, *args, **kwargs):\n if 'pk' in kwargs:\n self.object = self.get_object()\n else:\n self.object = None\n form_class = self.get_form_class()\n if 'field_prefix' in form_class.Meta.__dict__:\n field_prefix = form_class.Meta.field_prefix\n else:\n field_prefix = str(form_class).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n form = self.get_form(form_class)\n if 'groups' in dir(self):\n groups = self.groups\n form.__groups__ = lambda : groups\n fields = []\n else:\n groups = None\n form.add_prefix = (lambda fields_name, field_prefix=field_prefix: \n '%s_%s' % (field_prefix, fields_name))\n valid = form.is_valid()\n if not valid and 'non_field_errors' in dir(self):\n errors = [element[5] for element in list(self.non_field_errors())[:-1]]\n elif form.errors.as_data():\n errors = []\n for element in form.errors.as_data():\n for err in form.errors.as_data()[element][0]:\n errors.append(err)\n else:\n errors = []\n temp_forms = []\n position_form_default = 0\n for formelement, linkerfield, modelfilter in self.forms:\n if formelement is None:\n formobj = form\n position_form_default = len(temp_forms)\n else:\n if self.object:\n related_name = formelement._meta.model._meta.get_field(\n linkerfield).related_query_name()\n queryset = getattr(self.object, related_name)\n if modelfilter:\n queryset = queryset.filter(eval('Q(%s)' % modelfilter))\n get_method = getattr(queryset, 'get', None)\n if get_method:\n instance = queryset.get()\n else:\n instance = queryset\n else:\n instance = None\n if 'field_prefix' in formelement.Meta.__dict__:\n field_prefix = formelement.Meta.field_prefix\n else:\n field_prefix = str(formelement).split(\"'\")[1].split('.')[-1]\n self.field_prefix = field_prefix\n formobj = formelement(instance=instance, data=self.request.POST)\n formobj.form_name = form.form_name\n if 'exclude' not in formobj.Meta.__dict__:\n formobj.Meta.exclude = [linkerfield]\n elif linkerfield not in formobj.Meta.exclude:\n formobj.Meta.exclude.append(linkerfield)\n if linkerfield in formobj.fields:\n del formobj.fields[linkerfield]\n formobj.add_prefix = (lambda fields_name, field_prefix=\n field_prefix: '%s_%s' % (field_prefix, fields_name))\n valid *= formobj.is_valid()\n if not formobj.is_valid() and 'non_field_errors' in dir(formobj):\n errors += [element[5] for element in list(formobj.\n non_field_errors())[:-1]]\n if groups:\n for field in formobj:\n if 'unblock_t2ime' in field.html_name:\n raise Exception(field.field.__dict__)\n fields.append(field)\n temp_forms.append((formobj, linkerfield))\n validate_forms = None\n if valid and 'validate' in dir(self):\n validate_forms = [tform[0] for tform in temp_forms]\n errors = self.validate(*validate_forms)\n valid = False\n if errors is None or len(errors) == 0:\n valid = True\n if groups:\n form.list_fields = fields\n forms = []\n elif validate_forms:\n forms = validate_forms\n else:\n forms = [tform[0] for tform in temp_forms]\n if position_form_default == 0:\n open_tabs = 1\n else:\n open_tabs = 0\n if valid:\n return self.form_valid(form, temp_forms)\n else:\n form.list_errors = errors\n return self.form_invalid(form, forms, open_tabs, position_form_default)\n", "role": "user" }, { "content": "post", "role": "assistant" } ]
def x(self, form, forms): if self.object: form.save() for formobj, linkerfield in forms: if form != formobj: formobj.save() else: self.object = form.save() for formobj, linkerfield in forms: if form != formobj: setattr(formobj.instance, linkerfield, self.object) formobj.save() return HttpResponseRedirect(self.get_success_url())
form_valid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, form, forms):\n if self.object:\n form.save()\n for formobj, linkerfield in forms:\n if form != formobj:\n formobj.save()\n else:\n self.object = form.save()\n for formobj, linkerfield in forms:\n if form != formobj:\n setattr(formobj.instance, linkerfield, self.object)\n formobj.save()\n return HttpResponseRedirect(self.get_success_url())\n", "role": "user" }, { "content": "form_valid", "role": "assistant" } ]
def x(self, form, forms, open_tabs, position_form_default): return self.render_to_response(self.get_context_data(form=form, forms= forms, open_tabs=open_tabs, position_form_default= position_form_default))
form_invalid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, form, forms, open_tabs, position_form_default):\n return self.render_to_response(self.get_context_data(form=form, forms=\n forms, open_tabs=open_tabs, position_form_default=\n position_form_default))\n", "role": "user" }, { "content": "form_invalid", "role": "assistant" } ]
def x(fun, guess, opt_kwargs={}): opt_kwargs = dict(opt_kwargs) opt_kwargs.pop('method', None) eqcons = [] ieqcons = [] if 'constraints' in opt_kwargs: if isinstance(opt_kwargs['constraints'], dict): opt_kwargs['constraints'] = [opt_kwargs['constraints']] for con in opt_kwargs.pop('constraints'): if con['type'] == 'eq': eqcons += [con['fun']] elif con['type'] == 'ineq': ieqcons += [con['fun']] else: raise ValueError('Invalid constraint type %s!' % (con['type'],) ) if 'jac' in opt_kwargs: warnings.warn('Jacobian not supported for default solver SLSQP!', RuntimeWarning) opt_kwargs.pop('jac') if 'tol' in opt_kwargs: opt_kwargs['acc'] = opt_kwargs.pop('tol') if 'options' in opt_kwargs: opts = opt_kwargs.pop('options') opt_kwargs = dict(opt_kwargs.items() + opts.items()) opt_kwargs.pop('hess', None) opt_kwargs.pop('hessp', None) opt_kwargs.pop('callback', None) out, fx, its, imode, smode = scipy.optimize.fmin_slsqp(fun, guess, full_output=True, eqcons=eqcons, ieqcons=ieqcons, **opt_kwargs) Result = collections.namedtuple('Result', ['status', 'success', 'fun', 'x', 'message', 'nit']) return Result(status=imode, success=imode == 0, fun=fx, x=out, message= smode, nit=its)
wrap_fmin_slsqp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fun, guess, opt_kwargs={}):\n opt_kwargs = dict(opt_kwargs)\n opt_kwargs.pop('method', None)\n eqcons = []\n ieqcons = []\n if 'constraints' in opt_kwargs:\n if isinstance(opt_kwargs['constraints'], dict):\n opt_kwargs['constraints'] = [opt_kwargs['constraints']]\n for con in opt_kwargs.pop('constraints'):\n if con['type'] == 'eq':\n eqcons += [con['fun']]\n elif con['type'] == 'ineq':\n ieqcons += [con['fun']]\n else:\n raise ValueError('Invalid constraint type %s!' % (con['type'],)\n )\n if 'jac' in opt_kwargs:\n warnings.warn('Jacobian not supported for default solver SLSQP!',\n RuntimeWarning)\n opt_kwargs.pop('jac')\n if 'tol' in opt_kwargs:\n opt_kwargs['acc'] = opt_kwargs.pop('tol')\n if 'options' in opt_kwargs:\n opts = opt_kwargs.pop('options')\n opt_kwargs = dict(opt_kwargs.items() + opts.items())\n opt_kwargs.pop('hess', None)\n opt_kwargs.pop('hessp', None)\n opt_kwargs.pop('callback', None)\n out, fx, its, imode, smode = scipy.optimize.fmin_slsqp(fun, guess,\n full_output=True, eqcons=eqcons, ieqcons=ieqcons, **opt_kwargs)\n Result = collections.namedtuple('Result', ['status', 'success', 'fun',\n 'x', 'message', 'nit'])\n return Result(status=imode, success=imode == 0, fun=fx, x=out, message=\n smode, nit=its)\n", "role": "user" }, { "content": "wrap_fmin_slsqp", "role": "assistant" } ]
def x(a, n): if int(n) != n or n < 0: raise ValueError('Parameter n must be a nonnegative int!') n = int(n) terms = [(a + k) for k in range(0, n)] return scipy.prod(terms)
fixed_poch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, n):\n if int(n) != n or n < 0:\n raise ValueError('Parameter n must be a nonnegative int!')\n n = int(n)\n terms = [(a + k) for k in range(0, n)]\n return scipy.prod(terms)\n", "role": "user" }, { "content": "fixed_poch", "role": "assistant" } ]
def x(nu, y, n=0): n = int(n) y = scipy.asarray(y, dtype=float) sqrty = scipy.sqrt(y) if n == 0: K = scipy.special.kv(nu, sqrty) else: K = scipy.zeros_like(y) x = scipy.asarray([(fixed_poch(1.5 - j, j) * y ** (0.5 - j)) for j in scipy.arange(1.0, n + 1.0, dtype=float)]).T for k in scipy.arange(1.0, n + 1.0, dtype=float): K += scipy.special.kvp(nu, sqrty, n=int(k)) * incomplete_bell_poly( n, int(k), x) return K
Kn2Der
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nu, y, n=0):\n n = int(n)\n y = scipy.asarray(y, dtype=float)\n sqrty = scipy.sqrt(y)\n if n == 0:\n K = scipy.special.kv(nu, sqrty)\n else:\n K = scipy.zeros_like(y)\n x = scipy.asarray([(fixed_poch(1.5 - j, j) * y ** (0.5 - j)) for j in\n scipy.arange(1.0, n + 1.0, dtype=float)]).T\n for k in scipy.arange(1.0, n + 1.0, dtype=float):\n K += scipy.special.kvp(nu, sqrty, n=int(k)) * incomplete_bell_poly(\n n, int(k), x)\n return K\n", "role": "user" }, { "content": "Kn2Der", "role": "assistant" } ]
def x(nu, y, n=0, tol=0.0005, nterms=1, nu_step=0.001): n = int(n) y = scipy.asarray(y, dtype=float) if n == 0: K = y ** (nu / 2.0) * scipy.special.kv(nu, scipy.sqrt(y)) K[y == 0.0] = scipy.special.gamma(nu) / 2.0 ** (1.0 - nu) else: K = scipy.zeros_like(y) for k in scipy.arange(0.0, n + 1.0, dtype=float): K += scipy.special.binom(n, k) * fixed_poch(1.0 + nu / 2.0 - k, k ) * y ** (nu / 2.0 - k) * Kn2Der(nu, y, n=n - k) mask = y == 0.0 if mask.any(): if int(nu) == nu: K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol= tol, nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu + nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step= nu_step)) elif n > nu: K[mask] = scipy.special.gamma(-nu) * fixed_poch(1 + nu - n, n ) * scipy.inf else: K[mask] = scipy.special.gamma(nu) * scipy.special.gamma(n + 1.0 ) / (2.0 ** (1.0 - nu + 2.0 * n) * fixed_poch(1.0 - nu, n) * scipy.special.factorial(n)) if tol > 0.0: mask = (y <= tol) & (y > 0.0) K[mask] = 0.0 if int(nu) == nu: K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu + nu_step, y [mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step)) else: for k in scipy.arange(n, n + nterms, dtype=float): K[mask] += scipy.special.gamma(nu) * fixed_poch(1.0 + k - n, n ) * y[mask] ** (k - n) / (2.0 ** (1.0 - nu + 2 * k) * fixed_poch(1.0 - nu, k) * scipy.special.factorial(k)) for k in scipy.arange(0, nterms, dtype=float): K[mask] += scipy.special.gamma(-nu) * fixed_poch(1.0 + nu + k - n, n) * y[mask] ** (nu + k - n) / (2.0 ** (1.0 + nu + 2.0 * k) * fixed_poch(1.0 + nu, k) * scipy.special. factorial(k)) return K
yn2Kn2Der
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nu, y, n=0, tol=0.0005, nterms=1, nu_step=0.001):\n n = int(n)\n y = scipy.asarray(y, dtype=float)\n if n == 0:\n K = y ** (nu / 2.0) * scipy.special.kv(nu, scipy.sqrt(y))\n K[y == 0.0] = scipy.special.gamma(nu) / 2.0 ** (1.0 - nu)\n else:\n K = scipy.zeros_like(y)\n for k in scipy.arange(0.0, n + 1.0, dtype=float):\n K += scipy.special.binom(n, k) * fixed_poch(1.0 + nu / 2.0 - k, k\n ) * y ** (nu / 2.0 - k) * Kn2Der(nu, y, n=n - k)\n mask = y == 0.0\n if mask.any():\n if int(nu) == nu:\n K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=\n tol, nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu +\n nu_step, y[mask], n=n, tol=tol, nterms=nterms, nu_step=\n nu_step))\n elif n > nu:\n K[mask] = scipy.special.gamma(-nu) * fixed_poch(1 + nu - n, n\n ) * scipy.inf\n else:\n K[mask] = scipy.special.gamma(nu) * scipy.special.gamma(n + 1.0\n ) / (2.0 ** (1.0 - nu + 2.0 * n) * fixed_poch(1.0 - nu,\n n) * scipy.special.factorial(n))\n if tol > 0.0:\n mask = (y <= tol) & (y > 0.0)\n K[mask] = 0.0\n if int(nu) == nu:\n K[mask] = 0.5 * (yn2Kn2Der(nu - nu_step, y[mask], n=n, tol=tol,\n nterms=nterms, nu_step=nu_step) + yn2Kn2Der(nu + nu_step, y\n [mask], n=n, tol=tol, nterms=nterms, nu_step=nu_step))\n else:\n for k in scipy.arange(n, n + nterms, dtype=float):\n K[mask] += scipy.special.gamma(nu) * fixed_poch(1.0 + k - n, n\n ) * y[mask] ** (k - n) / (2.0 ** (1.0 - nu + 2 * k) *\n fixed_poch(1.0 - nu, k) * scipy.special.factorial(k))\n for k in scipy.arange(0, nterms, dtype=float):\n K[mask] += scipy.special.gamma(-nu) * fixed_poch(1.0 + nu +\n k - n, n) * y[mask] ** (nu + k - n) / (2.0 ** (1.0 + nu +\n 2.0 * k) * fixed_poch(1.0 + nu, k) * scipy.special.\n factorial(k))\n return K\n", "role": "user" }, { "content": "yn2Kn2Der", "role": "assistant" } ]
def x(n, k, x): if n == 0 and k == 0: return scipy.ones(x.shape[0], dtype=float) elif k == 0 and n >= 1: return scipy.zeros(x.shape[0], dtype=float) elif n == 0 and k >= 1: return scipy.zeros(x.shape[0], dtype=float) else: result = scipy.zeros(x.shape[0], dtype=float) for m in xrange(0, n - k + 1): result += x[:, m] * scipy.special.binom(n - 1, m ) * incomplete_bell_poly(n - (m + 1), k - 1, x) return result
incomplete_bell_poly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, k, x):\n if n == 0 and k == 0:\n return scipy.ones(x.shape[0], dtype=float)\n elif k == 0 and n >= 1:\n return scipy.zeros(x.shape[0], dtype=float)\n elif n == 0 and k >= 1:\n return scipy.zeros(x.shape[0], dtype=float)\n else:\n result = scipy.zeros(x.shape[0], dtype=float)\n for m in xrange(0, n - k + 1):\n result += x[:, m] * scipy.special.binom(n - 1, m\n ) * incomplete_bell_poly(n - (m + 1), k - 1, x)\n return result\n", "role": "user" }, { "content": "incomplete_bell_poly", "role": "assistant" } ]
def x(n): if n == 0: return [] elif n == 1: return [scipy.array([0])] partitions = [] a = scipy.zeros(n, dtype=int) b = scipy.ones(n, dtype=int) while True: partitions.append(a.copy()) if a[-1] == b[-1]: j = (a[:-1] != b[:-1]).nonzero()[0][-1] if j == 0: break else: a[j] += 1 b[-1] = b[j] + (a[j] == b[j]) a[j + 1:] = 0 b[j + 1:-1] = b[-1] else: a[-1] += 1 return partitions
generate_set_partition_strings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n):\n if n == 0:\n return []\n elif n == 1:\n return [scipy.array([0])]\n partitions = []\n a = scipy.zeros(n, dtype=int)\n b = scipy.ones(n, dtype=int)\n while True:\n partitions.append(a.copy())\n if a[-1] == b[-1]:\n j = (a[:-1] != b[:-1]).nonzero()[0][-1]\n if j == 0:\n break\n else:\n a[j] += 1\n b[-1] = b[j] + (a[j] == b[j])\n a[j + 1:] = 0\n b[j + 1:-1] = b[-1]\n else:\n a[-1] += 1\n return partitions\n", "role": "user" }, { "content": "generate_set_partition_strings", "role": "assistant" } ]
def x(set_): set_ = scipy.asarray(set_) strings = generate_set_partition_strings(len(set_)) partitions = [] for string in strings: blocks = [] for block_num in scipy.unique(string): blocks.append(set_[string == block_num]) partitions.append(blocks) return partitions
generate_set_partitions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(set_):\n set_ = scipy.asarray(set_)\n strings = generate_set_partition_strings(len(set_))\n partitions = []\n for string in strings:\n blocks = []\n for block_num in scipy.unique(string):\n blocks.append(set_[string == block_num])\n partitions.append(blocks)\n return partitions\n", "role": "user" }, { "content": "generate_set_partitions", "role": "assistant" } ]
def x(arr, return_index=False, return_inverse=False): b = scipy.ascontiguousarray(arr).view(scipy.dtype((scipy.void, arr. dtype.itemsize * arr.shape[1]))) try: out = scipy.unique(b, return_index=True, return_inverse=return_inverse) dum = out[0] idx = out[1] if return_inverse: inv = out[2] except TypeError: if return_inverse: raise RuntimeError( 'Error in scipy.unique on older versions of numpy prevents return_inverse from working!' ) rows = [_Row(row) for row in b] srt_idx = sorted(range(len(rows)), key=rows.__getitem__) rows = scipy.asarray(rows)[srt_idx] row_cmp = [-1] for k in xrange(1, len(srt_idx)): row_cmp.append(rows[k - 1].__cmp__(rows[k])) row_cmp = scipy.asarray(row_cmp) transition_idxs = scipy.where(row_cmp != 0)[0] idx = scipy.asarray(srt_idx)[transition_idxs] out = arr[idx] if return_index: out = out, idx elif return_inverse: out = out, inv elif return_index and return_inverse: out = out, idx, inv return out
unique_rows
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, return_index=False, return_inverse=False):\n b = scipy.ascontiguousarray(arr).view(scipy.dtype((scipy.void, arr.\n dtype.itemsize * arr.shape[1])))\n try:\n out = scipy.unique(b, return_index=True, return_inverse=return_inverse)\n dum = out[0]\n idx = out[1]\n if return_inverse:\n inv = out[2]\n except TypeError:\n if return_inverse:\n raise RuntimeError(\n 'Error in scipy.unique on older versions of numpy prevents return_inverse from working!'\n )\n rows = [_Row(row) for row in b]\n srt_idx = sorted(range(len(rows)), key=rows.__getitem__)\n rows = scipy.asarray(rows)[srt_idx]\n row_cmp = [-1]\n for k in xrange(1, len(srt_idx)):\n row_cmp.append(rows[k - 1].__cmp__(rows[k]))\n row_cmp = scipy.asarray(row_cmp)\n transition_idxs = scipy.where(row_cmp != 0)[0]\n idx = scipy.asarray(srt_idx)[transition_idxs]\n out = arr[idx]\n if return_index:\n out = out, idx\n elif return_inverse:\n out = out, inv\n elif return_index and return_inverse:\n out = out, idx, inv\n return out\n", "role": "user" }, { "content": "unique_rows", "role": "assistant" } ]
def x(vals, check_nan=False, robust=False, axis=1, plot_QQ=False, bins=15, name=''): if axis != 1 and robust: raise NotImplementedError( 'Values of axis other than 1 are not supported with the robust keyword at this time!' ) if robust: if check_nan: mean = scipy.stats.nanmedian(vals, axis=axis) std = scipy.zeros(vals.shape[0], dtype=float) for k in xrange(0, len(vals)): ch = vals[k] ok_idxs = ~scipy.isnan(ch) if ok_idxs.any(): std[k] = scipy.stats.scoreatpercentile(ch[ok_idxs], 75 ) - scipy.stats.scoreatpercentile(ch[ok_idxs], 25) else: std[k] = scipy.nan std /= IQR_TO_STD else: mean = scipy.median(vals, axis=axis) std = scipy.asarray([(scipy.stats.scoreatpercentile(ch, 75.0) - scipy.stats.scoreatpercentile(ch, 25.0)) for ch in vals] ) / IQR_TO_STD elif check_nan: mean = scipy.stats.nanmean(vals, axis=axis) std = scipy.stats.nanstd(vals, axis=axis) else: mean = scipy.mean(vals, axis=axis) std = scipy.std(vals, axis=axis) if plot_QQ: f = plt.figure() gs = mplgs.GridSpec(2, 2, height_ratios=[8, 1]) a_QQ = f.add_subplot(gs[0, 0]) a_hist = f.add_subplot(gs[0, 1]) a_slider = f.add_subplot(gs[1, :]) title = f.suptitle('') def x(val): a_QQ.clear() a_hist.clear() idx = slider.val title.set_text('%s, n=%d' % (name, idx)) nan_idxs = scipy.isnan(vals[idx, :]) if not nan_idxs.all(): osm, osr = scipy.stats.probplot(vals[idx, ~nan_idxs], dist= 'norm', plot=None, fit=False) a_QQ.plot(osm, osr, 'bo', markersize=10) a_QQ.set_title('QQ plot') a_QQ.set_xlabel('quantiles of $\\mathcal{N}(0,1)$') a_QQ.set_ylabel('quantiles of data') a_hist.hist(vals[idx, ~nan_idxs], bins=bins, normed=True) locs = scipy.linspace(vals[idx, ~nan_idxs].min(), vals[idx, ~nan_idxs].max()) a_hist.plot(locs, scipy.stats.norm.pdf(locs, loc=mean[idx], scale=std[idx])) a_hist.set_title('Normalized histogram and reported PDF') a_hist.set_xlabel('value') a_hist.set_ylabel('density') f.canvas.draw() def x(slider, event): if event.key == 'right': slider.set_val(min(slider.val + 1, slider.valmax)) elif event.key == 'left': slider.set_val(max(slider.val - 1, slider.valmin)) slider = mplw.Slider(a_slider, 'index', 0, len(vals) - 1, valinit=0, valfmt='%d') slider.on_changed(update) update(0) f.canvas.mpl_connect('key_press_event', lambda evt: arrow_respond( slider, evt)) return mean, std
compute_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vals, check_nan=False, robust=False, axis=1, plot_QQ=False, bins=15,\n name=''):\n if axis != 1 and robust:\n raise NotImplementedError(\n 'Values of axis other than 1 are not supported with the robust keyword at this time!'\n )\n if robust:\n if check_nan:\n mean = scipy.stats.nanmedian(vals, axis=axis)\n std = scipy.zeros(vals.shape[0], dtype=float)\n for k in xrange(0, len(vals)):\n ch = vals[k]\n ok_idxs = ~scipy.isnan(ch)\n if ok_idxs.any():\n std[k] = scipy.stats.scoreatpercentile(ch[ok_idxs], 75\n ) - scipy.stats.scoreatpercentile(ch[ok_idxs], 25)\n else:\n std[k] = scipy.nan\n std /= IQR_TO_STD\n else:\n mean = scipy.median(vals, axis=axis)\n std = scipy.asarray([(scipy.stats.scoreatpercentile(ch, 75.0) -\n scipy.stats.scoreatpercentile(ch, 25.0)) for ch in vals]\n ) / IQR_TO_STD\n elif check_nan:\n mean = scipy.stats.nanmean(vals, axis=axis)\n std = scipy.stats.nanstd(vals, axis=axis)\n else:\n mean = scipy.mean(vals, axis=axis)\n std = scipy.std(vals, axis=axis)\n if plot_QQ:\n f = plt.figure()\n gs = mplgs.GridSpec(2, 2, height_ratios=[8, 1])\n a_QQ = f.add_subplot(gs[0, 0])\n a_hist = f.add_subplot(gs[0, 1])\n a_slider = f.add_subplot(gs[1, :])\n title = f.suptitle('')\n\n def x(val):\n a_QQ.clear()\n a_hist.clear()\n idx = slider.val\n title.set_text('%s, n=%d' % (name, idx))\n nan_idxs = scipy.isnan(vals[idx, :])\n if not nan_idxs.all():\n osm, osr = scipy.stats.probplot(vals[idx, ~nan_idxs], dist=\n 'norm', plot=None, fit=False)\n a_QQ.plot(osm, osr, 'bo', markersize=10)\n a_QQ.set_title('QQ plot')\n a_QQ.set_xlabel('quantiles of $\\\\mathcal{N}(0,1)$')\n a_QQ.set_ylabel('quantiles of data')\n a_hist.hist(vals[idx, ~nan_idxs], bins=bins, normed=True)\n locs = scipy.linspace(vals[idx, ~nan_idxs].min(), vals[idx,\n ~nan_idxs].max())\n a_hist.plot(locs, scipy.stats.norm.pdf(locs, loc=mean[idx],\n scale=std[idx]))\n a_hist.set_title('Normalized histogram and reported PDF')\n a_hist.set_xlabel('value')\n a_hist.set_ylabel('density')\n f.canvas.draw()\n\n def x(slider, event):\n if event.key == 'right':\n slider.set_val(min(slider.val + 1, slider.valmax))\n elif event.key == 'left':\n slider.set_val(max(slider.val - 1, slider.valmin))\n slider = mplw.Slider(a_slider, 'index', 0, len(vals) - 1, valinit=0,\n valfmt='%d')\n slider.on_changed(update)\n update(0)\n f.canvas.mpl_connect('key_press_event', lambda evt: arrow_respond(\n slider, evt))\n return mean, std\n", "role": "user" }, { "content": "compute_stats", "role": "assistant" } ]
def x(x, mean, std, ax=None, base_alpha=0.375, envelopes=[1, 3], lb=None, ub=None, expansion=10, **kwargs): if ax is None: f = plt.figure() ax = f.add_subplot(1, 1, 1) elif ax == 'gca': ax = plt.gca() mean = scipy.asarray(mean, dtype=float).copy() std = scipy.asarray(std, dtype=float).copy() if lb is not None and ub is not None and expansion != 1.0: expansion *= ub - lb ub = ub + expansion lb = lb - expansion if ub is not None: mean[mean > ub] = ub if lb is not None: mean[mean < lb] = lb l = ax.plot(x, mean, **kwargs) color = plt.getp(l[0], 'color') e = [] for i in envelopes: lower = mean - i * std upper = mean + i * std if ub is not None: lower[lower > ub] = ub upper[upper > ub] = ub if lb is not None: lower[lower < lb] = lb upper[upper < lb] = lb e.append(ax.fill_between(x, lower, upper, facecolor=color, alpha= base_alpha / i)) return l, e
univariate_envelope_plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, mean, std, ax=None, base_alpha=0.375, envelopes=[1, 3], lb=None,\n ub=None, expansion=10, **kwargs):\n if ax is None:\n f = plt.figure()\n ax = f.add_subplot(1, 1, 1)\n elif ax == 'gca':\n ax = plt.gca()\n mean = scipy.asarray(mean, dtype=float).copy()\n std = scipy.asarray(std, dtype=float).copy()\n if lb is not None and ub is not None and expansion != 1.0:\n expansion *= ub - lb\n ub = ub + expansion\n lb = lb - expansion\n if ub is not None:\n mean[mean > ub] = ub\n if lb is not None:\n mean[mean < lb] = lb\n l = ax.plot(x, mean, **kwargs)\n color = plt.getp(l[0], 'color')\n e = []\n for i in envelopes:\n lower = mean - i * std\n upper = mean + i * std\n if ub is not None:\n lower[lower > ub] = ub\n upper[upper > ub] = ub\n if lb is not None:\n lower[lower < lb] = lb\n upper[upper < lb] = lb\n e.append(ax.fill_between(x, lower, upper, facecolor=color, alpha=\n base_alpha / i))\n return l, e\n", "role": "user" }, { "content": "univariate_envelope_plot", "role": "assistant" } ]
def x(sampler, weights=None, burn=0, ci=0.95, chain_mask=None): try: k = sampler.flatchain.shape[-1] except AttributeError: k = sampler.shape[-1] if isinstance(sampler, emcee.EnsembleSampler): if chain_mask is None: chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool) flat_trace = sampler.chain[chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) elif isinstance(sampler, emcee.PTSampler): if chain_mask is None: chain_mask = scipy.ones(sampler.nwalkers, dtype=bool) flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) elif isinstance(sampler, scipy.ndarray): if sampler.ndim == 4: if chain_mask is None: chain_mask = scipy.ones(sampler.shape[1], dtype=bool) flat_trace = sampler[temp_idx, chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[temp_idx, chain_mask, burn:] weights = weights.ravel() elif sampler.ndim == 3: if chain_mask is None: chain_mask = scipy.ones(sampler.shape[0], dtype=bool) flat_trace = sampler[chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[chain_mask, burn:] weights = weights.ravel() elif sampler.ndim == 2: flat_trace = sampler[burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[burn:] weights = weights.ravel() else: raise ValueError('Unknown sampler class: %s' % (type(sampler),)) cibdry = 100.0 * (1.0 - ci) / 2.0 if weights is None: mean = scipy.mean(flat_trace, axis=0) ci_l, ci_u = scipy.percentile(flat_trace, [cibdry, 100.0 - cibdry], axis=0) else: mean = weights.dot(flat_trace) / weights.sum() ci_l = scipy.zeros(k) ci_u = scipy.zeros(k) p = scipy.asarray([cibdry, 100.0 - cibdry]) for i in range(0, k): srt = flat_trace[:, i].argsort() x = flat_trace[srt, i] w = weights[srt] Sn = w.cumsum() pn = 100.0 / Sn[-1] * (Sn - w / 2.0) j = scipy.digitize(p, pn) - 1 ci_l[i], ci_u[i] = x[j] + (p - pn[j]) / (pn[j + 1] - pn[j]) * (x [j + 1] - x[j]) return mean, ci_l, ci_u
summarize_sampler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sampler, weights=None, burn=0, ci=0.95, chain_mask=None):\n try:\n k = sampler.flatchain.shape[-1]\n except AttributeError:\n k = sampler.shape[-1]\n if isinstance(sampler, emcee.EnsembleSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)\n flat_trace = sampler.chain[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, emcee.PTSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)\n flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, scipy.ndarray):\n if sampler.ndim == 4:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[1], dtype=bool)\n flat_trace = sampler[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[temp_idx, chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 3:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[0], dtype=bool)\n flat_trace = sampler[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 2:\n flat_trace = sampler[burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[burn:]\n weights = weights.ravel()\n else:\n raise ValueError('Unknown sampler class: %s' % (type(sampler),))\n cibdry = 100.0 * (1.0 - ci) / 2.0\n if weights is None:\n mean = scipy.mean(flat_trace, axis=0)\n ci_l, ci_u = scipy.percentile(flat_trace, [cibdry, 100.0 - cibdry],\n axis=0)\n else:\n mean = weights.dot(flat_trace) / weights.sum()\n ci_l = scipy.zeros(k)\n ci_u = scipy.zeros(k)\n p = scipy.asarray([cibdry, 100.0 - cibdry])\n for i in range(0, k):\n srt = flat_trace[:, i].argsort()\n x = flat_trace[srt, i]\n w = weights[srt]\n Sn = w.cumsum()\n pn = 100.0 / Sn[-1] * (Sn - w / 2.0)\n j = scipy.digitize(p, pn) - 1\n ci_l[i], ci_u[i] = x[j] + (p - pn[j]) / (pn[j + 1] - pn[j]) * (x\n [j + 1] - x[j])\n return mean, ci_l, ci_u\n", "role": "user" }, { "content": "summarize_sampler", "role": "assistant" } ]
def x(sampler, hyperprior, weights=None, cutoff_weight=None, nbins=None, labels=None, burn=0, chain_mask=None, temp_idx=0, points=None, plot_samples=False, sample_color='k', point_color=None, point_lw=3, title='', rot_x_labels=False, figsize=None): try: k = sampler.flatchain.shape[-1] except AttributeError: k = sampler.shape[-1] if isinstance(sampler, emcee.EnsembleSampler): if chain_mask is None: chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool) flat_trace = sampler.chain[chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) elif isinstance(sampler, emcee.PTSampler): if chain_mask is None: chain_mask = scipy.ones(sampler.nwalkers, dtype=bool) flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) elif isinstance(sampler, scipy.ndarray): if sampler.ndim == 4: if chain_mask is None: chain_mask = scipy.ones(sampler.shape[1], dtype=bool) flat_trace = sampler[temp_idx, chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[temp_idx, chain_mask, burn:] weights = weights.ravel() elif sampler.ndim == 3: if chain_mask is None: chain_mask = scipy.ones(sampler.shape[0], dtype=bool) flat_trace = sampler[chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[chain_mask, burn:] weights = weights.ravel() elif sampler.ndim == 2: flat_trace = sampler[burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[burn:] weights = weights.ravel() if cutoff_weight is not None and weights is not None: mask = weights >= cutoff_weight * weights.max() flat_trace = flat_trace[mask, :] weights = weights[mask] else: raise ValueError('Unknown sampler class: %s' % (type(sampler),)) if labels is None: labels = [''] * k u = scipy.asarray([hyperprior.elementwise_cdf(p) for p in flat_trace], dtype=float).T if nbins is None: lq, uq = scipy.stats.scoreatpercentile(u, [25, 75], axis=1) h = 2.0 * (uq - lq) / u.shape[0] ** (1.0 / 3.0) n = scipy.asarray(scipy.ceil(1.0 / h), dtype=int) else: try: iter(nbins) n = nbins except TypeError: n = nbins * scipy.ones(u.shape[0]) hist = [scipy.stats.histogram(uv, numbins=nv, defaultlimits=[0, 1], weights=weights) for uv, nv in zip(u, n)] max_ct = max([max(h.count) for h in hist]) min_ct = min([min(h.count) for h in hist]) f = plt.figure(figsize=figsize) a = f.add_subplot(1, 1, 1) for i, (h, pn) in enumerate(zip(hist, labels)): a.imshow(scipy.atleast_2d(scipy.asarray(h.count[::-1], dtype=float) ).T, cmap='gray_r', interpolation='nearest', vmin=min_ct, vmax= max_ct, extent=(i, i + 1, 0, 1), aspect='auto') if plot_samples: for p in u: for i, uv in enumerate(p): a.plot([i, i + 1], [uv, uv], sample_color, alpha=0.1) if points is not None: points = scipy.atleast_2d(scipy.asarray(points, dtype=float)) u_points = [hyperprior.elementwise_cdf(p) for p in points] if point_color is None: c_cycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k']) else: c_cycle = itertools.cycle(scipy.atleast_1d(point_color)) for p in u_points: c = c_cycle.next() for i, uv in enumerate(p): a.plot([i, i + 1], [uv, uv], color=c, lw=point_lw) a.set_xlim(0, len(hist)) a.set_ylim(0, 1) a.set_xticks(0.5 + scipy.arange(0, len(hist), dtype=float)) a.set_xticklabels(labels) if rot_x_labels: plt.setp(a.xaxis.get_majorticklabels(), rotation=90) a.set_xlabel('parameter') a.set_ylabel('$u=F_P(p)$') a.set_title(title) return f, a
plot_sampler_fingerprint
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sampler, hyperprior, weights=None, cutoff_weight=None, nbins=None,\n labels=None, burn=0, chain_mask=None, temp_idx=0, points=None,\n plot_samples=False, sample_color='k', point_color=None, point_lw=3,\n title='', rot_x_labels=False, figsize=None):\n try:\n k = sampler.flatchain.shape[-1]\n except AttributeError:\n k = sampler.shape[-1]\n if isinstance(sampler, emcee.EnsembleSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)\n flat_trace = sampler.chain[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, emcee.PTSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)\n flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, scipy.ndarray):\n if sampler.ndim == 4:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[1], dtype=bool)\n flat_trace = sampler[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[temp_idx, chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 3:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[0], dtype=bool)\n flat_trace = sampler[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 2:\n flat_trace = sampler[burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[burn:]\n weights = weights.ravel()\n if cutoff_weight is not None and weights is not None:\n mask = weights >= cutoff_weight * weights.max()\n flat_trace = flat_trace[mask, :]\n weights = weights[mask]\n else:\n raise ValueError('Unknown sampler class: %s' % (type(sampler),))\n if labels is None:\n labels = [''] * k\n u = scipy.asarray([hyperprior.elementwise_cdf(p) for p in flat_trace],\n dtype=float).T\n if nbins is None:\n lq, uq = scipy.stats.scoreatpercentile(u, [25, 75], axis=1)\n h = 2.0 * (uq - lq) / u.shape[0] ** (1.0 / 3.0)\n n = scipy.asarray(scipy.ceil(1.0 / h), dtype=int)\n else:\n try:\n iter(nbins)\n n = nbins\n except TypeError:\n n = nbins * scipy.ones(u.shape[0])\n hist = [scipy.stats.histogram(uv, numbins=nv, defaultlimits=[0, 1],\n weights=weights) for uv, nv in zip(u, n)]\n max_ct = max([max(h.count) for h in hist])\n min_ct = min([min(h.count) for h in hist])\n f = plt.figure(figsize=figsize)\n a = f.add_subplot(1, 1, 1)\n for i, (h, pn) in enumerate(zip(hist, labels)):\n a.imshow(scipy.atleast_2d(scipy.asarray(h.count[::-1], dtype=float)\n ).T, cmap='gray_r', interpolation='nearest', vmin=min_ct, vmax=\n max_ct, extent=(i, i + 1, 0, 1), aspect='auto')\n if plot_samples:\n for p in u:\n for i, uv in enumerate(p):\n a.plot([i, i + 1], [uv, uv], sample_color, alpha=0.1)\n if points is not None:\n points = scipy.atleast_2d(scipy.asarray(points, dtype=float))\n u_points = [hyperprior.elementwise_cdf(p) for p in points]\n if point_color is None:\n c_cycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y', 'k'])\n else:\n c_cycle = itertools.cycle(scipy.atleast_1d(point_color))\n for p in u_points:\n c = c_cycle.next()\n for i, uv in enumerate(p):\n a.plot([i, i + 1], [uv, uv], color=c, lw=point_lw)\n a.set_xlim(0, len(hist))\n a.set_ylim(0, 1)\n a.set_xticks(0.5 + scipy.arange(0, len(hist), dtype=float))\n a.set_xticklabels(labels)\n if rot_x_labels:\n plt.setp(a.xaxis.get_majorticklabels(), rotation=90)\n a.set_xlabel('parameter')\n a.set_ylabel('$u=F_P(p)$')\n a.set_title(title)\n return f, a\n", "role": "user" }, { "content": "plot_sampler_fingerprint", "role": "assistant" } ]
def x(sampler, method='corr', weights=None, cutoff_weight=None, labels=None, burn=0, chain_mask=None, temp_idx=0, cbar_label=None, title='', rot_x_labels=False, figsize=None, xlabel_on_top=True): try: k = sampler.flatchain.shape[-1] except AttributeError: k = sampler.shape[-1] if isinstance(sampler, emcee.EnsembleSampler): if chain_mask is None: chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool) flat_trace = sampler.chain[chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) elif isinstance(sampler, emcee.PTSampler): if chain_mask is None: chain_mask = scipy.ones(sampler.nwalkers, dtype=bool) flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) elif isinstance(sampler, scipy.ndarray): if sampler.ndim == 4: if chain_mask is None: chain_mask = scipy.ones(sampler.shape[1], dtype=bool) flat_trace = sampler[temp_idx, chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[temp_idx, chain_mask, burn:] weights = weights.ravel() elif sampler.ndim == 3: if chain_mask is None: chain_mask = scipy.ones(sampler.shape[0], dtype=bool) flat_trace = sampler[chain_mask, burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[chain_mask, burn:] weights = weights.ravel() elif sampler.ndim == 2: flat_trace = sampler[burn:, :] flat_trace = flat_trace.reshape((-1, k)) if weights is not None: weights = weights[burn:] weights = weights.ravel() if cutoff_weight is not None and weights is not None: mask = weights >= cutoff_weight * weights.max() flat_trace = flat_trace[mask, :] weights = weights[mask] else: raise ValueError('Unknown sampler class: %s' % (type(sampler),)) if labels is None: labels = [''] * k if cbar_label is None: cbar_label = ('$\\mathrm{cov}(p_1, p_2)$' if method == 'cov' else '$\\mathrm{corr}(p_1, p_2)$') if weights is None: if method == 'corr': cov = scipy.corrcoef(flat_trace, rowvar=0, ddof=1) else: cov = scipy.cov(flat_trace, rowvar=0, ddof=1) else: cov = scipy.cov(flat_trace, rowvar=0, aweights=weights) if method == 'corr': stds = scipy.sqrt(scipy.diag(cov)) STD_1, STD_2 = scipy.meshgrid(stds, stds) cov = cov / (STD_1 * STD_2) f_cov = plt.figure(figsize=figsize) a_cov = f_cov.add_subplot(1, 1, 1) a_cov.set_title(title) if method == 'cov': vmax = scipy.absolute(cov).max() else: vmax = 1.0 cax = a_cov.pcolor(cov, cmap='seismic', vmin=-1 * vmax, vmax=vmax) divider = make_axes_locatable(a_cov) a_cb = divider.append_axes('right', size='10%', pad=0.05) cbar = f_cov.colorbar(cax, cax=a_cb, label=cbar_label) a_cov.set_xlabel('parameter') a_cov.set_ylabel('parameter') a_cov.axis('square') a_cov.invert_yaxis() if xlabel_on_top: a_cov.xaxis.tick_top() a_cov.xaxis.set_label_position('top') a_cov.set_xticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float)) a_cov.set_yticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float)) a_cov.set_xticklabels(labels) if rot_x_labels: plt.setp(a_cov.xaxis.get_majorticklabels(), rotation=90) a_cov.set_yticklabels(labels) a_cov.set_xlim(0, flat_trace.shape[1]) a_cov.set_ylim(flat_trace.shape[1], 0) return f_cov, a_cov
plot_sampler_cov
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sampler, method='corr', weights=None, cutoff_weight=None, labels=None,\n burn=0, chain_mask=None, temp_idx=0, cbar_label=None, title='',\n rot_x_labels=False, figsize=None, xlabel_on_top=True):\n try:\n k = sampler.flatchain.shape[-1]\n except AttributeError:\n k = sampler.shape[-1]\n if isinstance(sampler, emcee.EnsembleSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.chain.shape[0], dtype=bool)\n flat_trace = sampler.chain[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, emcee.PTSampler):\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.nwalkers, dtype=bool)\n flat_trace = sampler.chain[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n elif isinstance(sampler, scipy.ndarray):\n if sampler.ndim == 4:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[1], dtype=bool)\n flat_trace = sampler[temp_idx, chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[temp_idx, chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 3:\n if chain_mask is None:\n chain_mask = scipy.ones(sampler.shape[0], dtype=bool)\n flat_trace = sampler[chain_mask, burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[chain_mask, burn:]\n weights = weights.ravel()\n elif sampler.ndim == 2:\n flat_trace = sampler[burn:, :]\n flat_trace = flat_trace.reshape((-1, k))\n if weights is not None:\n weights = weights[burn:]\n weights = weights.ravel()\n if cutoff_weight is not None and weights is not None:\n mask = weights >= cutoff_weight * weights.max()\n flat_trace = flat_trace[mask, :]\n weights = weights[mask]\n else:\n raise ValueError('Unknown sampler class: %s' % (type(sampler),))\n if labels is None:\n labels = [''] * k\n if cbar_label is None:\n cbar_label = ('$\\\\mathrm{cov}(p_1, p_2)$' if method == 'cov' else\n '$\\\\mathrm{corr}(p_1, p_2)$')\n if weights is None:\n if method == 'corr':\n cov = scipy.corrcoef(flat_trace, rowvar=0, ddof=1)\n else:\n cov = scipy.cov(flat_trace, rowvar=0, ddof=1)\n else:\n cov = scipy.cov(flat_trace, rowvar=0, aweights=weights)\n if method == 'corr':\n stds = scipy.sqrt(scipy.diag(cov))\n STD_1, STD_2 = scipy.meshgrid(stds, stds)\n cov = cov / (STD_1 * STD_2)\n f_cov = plt.figure(figsize=figsize)\n a_cov = f_cov.add_subplot(1, 1, 1)\n a_cov.set_title(title)\n if method == 'cov':\n vmax = scipy.absolute(cov).max()\n else:\n vmax = 1.0\n cax = a_cov.pcolor(cov, cmap='seismic', vmin=-1 * vmax, vmax=vmax)\n divider = make_axes_locatable(a_cov)\n a_cb = divider.append_axes('right', size='10%', pad=0.05)\n cbar = f_cov.colorbar(cax, cax=a_cb, label=cbar_label)\n a_cov.set_xlabel('parameter')\n a_cov.set_ylabel('parameter')\n a_cov.axis('square')\n a_cov.invert_yaxis()\n if xlabel_on_top:\n a_cov.xaxis.tick_top()\n a_cov.xaxis.set_label_position('top')\n a_cov.set_xticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))\n a_cov.set_yticks(0.5 + scipy.arange(0, flat_trace.shape[1], dtype=float))\n a_cov.set_xticklabels(labels)\n if rot_x_labels:\n plt.setp(a_cov.xaxis.get_majorticklabels(), rotation=90)\n a_cov.set_yticklabels(labels)\n a_cov.set_xlim(0, flat_trace.shape[1])\n a_cov.set_ylim(flat_trace.shape[1], 0)\n return f_cov, a_cov\n", "role": "user" }, { "content": "plot_sampler_cov", "role": "assistant" } ]
def x(self, q): p1_num_params = len(self.p1.bounds) return scipy.concatenate((self.p1.sample_u(q[:p1_num_params]), self.p2. sample_u(q[p1_num_params:])))
sample_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n p1_num_params = len(self.p1.bounds)\n return scipy.concatenate((self.p1.sample_u(q[:p1_num_params]), self.p2.\n sample_u(q[p1_num_params:])))\n", "role": "user" }, { "content": "sample_u", "role": "assistant" } ]
def x(self, p): p1_num_params = len(self.p1.bounds) return scipy.concatenate((self.p1.elementwise_cdf(p[:p1_num_params]), self.p2.elementwise_cdf(p[p1_num_params:])))
elementwise_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n p1_num_params = len(self.p1.bounds)\n return scipy.concatenate((self.p1.elementwise_cdf(p[:p1_num_params]),\n self.p2.elementwise_cdf(p[p1_num_params:])))\n", "role": "user" }, { "content": "elementwise_cdf", "role": "assistant" } ]
def x(self, size=None): draw_1 = self.p1.random_draw(size=size) draw_2 = self.p2.random_draw(size=size) if draw_1.ndim == 1: return scipy.hstack((draw_1, draw_2)) else: return scipy.vstack((draw_1, draw_2))
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n draw_1 = self.p1.random_draw(size=size)\n draw_2 = self.p2.random_draw(size=size)\n if draw_1.ndim == 1:\n return scipy.hstack((draw_1, draw_2))\n else:\n return scipy.vstack((draw_1, draw_2))\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(self, q): q = scipy.atleast_1d(q) if len(q) != len(self.bounds): raise ValueError('length of q must equal the number of parameters!') if q.ndim != 1: raise ValueError('q must be one-dimensional!') if (q < 0).any() or (q > 1).any(): raise ValueError('q must be within [0, 1]!') return scipy.asarray([((b[1] - b[0]) * v + b[0]) for v, b in zip(q, self.bounds)])
sample_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.bounds):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([((b[1] - b[0]) * v + b[0]) for v, b in zip(q,\n self.bounds)])\n", "role": "user" }, { "content": "sample_u", "role": "assistant" } ]
def x(self, p): p = scipy.atleast_1d(p) if len(p) != len(self.bounds): raise ValueError('length of p must equal the number of parameters!') if p.ndim != 1: raise ValueError('p must be one-dimensional!') c = scipy.zeros(len(self.bounds)) for k in xrange(0, len(self.bounds)): if p[k] <= self.bounds[k][0]: c[k] = 0.0 elif p[k] >= self.bounds[k][1]: c[k] = 1.0 else: c[k] = (p[k] - self.bounds[k][0]) / (self.bounds[k][1] - self. bounds[k][0]) return c
elementwise_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.bounds):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n c = scipy.zeros(len(self.bounds))\n for k in xrange(0, len(self.bounds)):\n if p[k] <= self.bounds[k][0]:\n c[k] = 0.0\n elif p[k] >= self.bounds[k][1]:\n c[k] = 1.0\n else:\n c[k] = (p[k] - self.bounds[k][0]) / (self.bounds[k][1] - self.\n bounds[k][0])\n return c\n", "role": "user" }, { "content": "elementwise_cdf", "role": "assistant" } ]
def x(self, size=None): return scipy.asarray([numpy.random.uniform(low=b[0], high=b[1], size= size) for b in self.bounds])
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n return scipy.asarray([numpy.random.uniform(low=b[0], high=b[1], size=\n size) for b in self.bounds])\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(self, size=None): if size is None: size = 1 single_val = True else: single_val = False out_shape = [len(self.bounds)] try: out_shape.extend(size) except TypeError: out_shape.append(size) out = scipy.zeros(out_shape) for j in xrange(0, len(self.bounds)): if j != 2: out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high= self.bounds[j][1], size=size) else: out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high= out[j - 1, :], size=size) if not single_val: return out else: return out.ravel()
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n if size is None:\n size = 1\n single_val = True\n else:\n single_val = False\n out_shape = [len(self.bounds)]\n try:\n out_shape.extend(size)\n except TypeError:\n out_shape.append(size)\n out = scipy.zeros(out_shape)\n for j in xrange(0, len(self.bounds)):\n if j != 2:\n out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high=\n self.bounds[j][1], size=size)\n else:\n out[j, :] = numpy.random.uniform(low=self.bounds[j][0], high=\n out[j - 1, :], size=size)\n if not single_val:\n return out\n else:\n return out.ravel()\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(self, q): q = scipy.atleast_1d(q) if len(q) != len(self.univariate_priors): raise ValueError('length of q must equal the number of parameters!') if q.ndim != 1: raise ValueError('q must be one-dimensional!') if (q < 0).any() or (q > 1).any(): raise ValueError('q must be within [0, 1]!') return scipy.asarray([p.ppf(v) for v, p in zip(q, self.univariate_priors)])
sample_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.univariate_priors):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([p.ppf(v) for v, p in zip(q, self.univariate_priors)])\n", "role": "user" }, { "content": "sample_u", "role": "assistant" } ]
def x(self, p): p = scipy.atleast_1d(p) if len(p) != len(self.univariate_priors): raise ValueError('length of p must equal the number of parameters!') if p.ndim != 1: raise ValueError('p must be one-dimensional!') return scipy.asarray([pr.cdf(v) for v, pr in zip(p, self. univariate_priors)])
elementwise_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.univariate_priors):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([pr.cdf(v) for v, pr in zip(p, self.\n univariate_priors)])\n", "role": "user" }, { "content": "elementwise_cdf", "role": "assistant" } ]
def x(self, size=None): return scipy.asarray([p.rvs(size=size) for p in self.univariate_priors])
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n return scipy.asarray([p.rvs(size=size) for p in self.univariate_priors])\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(self): return [scipy.stats.norm.interval(self.i, loc=m, scale=s) for s, m in zip(self.sigma, self.mu)]
bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return [scipy.stats.norm.interval(self.i, loc=m, scale=s) for s, m in\n zip(self.sigma, self.mu)]\n", "role": "user" }, { "content": "bounds", "role": "assistant" } ]
def x(self, q): q = scipy.atleast_1d(q) if len(q) != len(self.sigma): raise ValueError('length of q must equal the number of parameters!') if q.ndim != 1: raise ValueError('q must be one-dimensional!') if (q < 0).any() or (q > 1).any(): raise ValueError('q must be within [0, 1]!') return scipy.asarray([scipy.stats.norm.ppf(v, loc=m, scale=s) for v, s, m in zip(q, self.sigma, self.mu)])
sample_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.sigma):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([scipy.stats.norm.ppf(v, loc=m, scale=s) for v, s,\n m in zip(q, self.sigma, self.mu)])\n", "role": "user" }, { "content": "sample_u", "role": "assistant" } ]
def x(self, p): p = scipy.atleast_1d(p) if len(p) != len(self.sigma): raise ValueError('length of p must equal the number of parameters!') if p.ndim != 1: raise ValueError('p must be one-dimensional!') return scipy.asarray([scipy.stats.norm.cdf(v, loc=m, scale=s) for v, s, m in zip(p, self.sigma, self.mu)])
elementwise_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.sigma):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([scipy.stats.norm.cdf(v, loc=m, scale=s) for v, s,\n m in zip(p, self.sigma, self.mu)])\n", "role": "user" }, { "content": "elementwise_cdf", "role": "assistant" } ]
def x(self, size=None): return scipy.asarray([scipy.stats.norm.rvs(loc=m, scale=s, size=size) for s, m in zip(self.sigma, self.mu)])
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n return scipy.asarray([scipy.stats.norm.rvs(loc=m, scale=s, size=size) for\n s, m in zip(self.sigma, self.mu)])\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(self): return [scipy.stats.lognorm.interval(self.i, s, loc=0, scale=em) for s, em in zip(self.sigma, self.emu)]
bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return [scipy.stats.lognorm.interval(self.i, s, loc=0, scale=em) for s,\n em in zip(self.sigma, self.emu)]\n", "role": "user" }, { "content": "bounds", "role": "assistant" } ]
def x(self, q): q = scipy.atleast_1d(q) if len(q) != len(self.sigma): raise ValueError('length of q must equal the number of parameters!') if q.ndim != 1: raise ValueError('q must be one-dimensional!') if (q < 0).any() or (q > 1).any(): raise ValueError('q must be within [0, 1]!') return scipy.asarray([scipy.stats.lognorm.ppf(v, s, loc=0, scale=em) for v, s, em in zip(q, self.sigma, self.emu)])
sample_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.sigma):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([scipy.stats.lognorm.ppf(v, s, loc=0, scale=em) for\n v, s, em in zip(q, self.sigma, self.emu)])\n", "role": "user" }, { "content": "sample_u", "role": "assistant" } ]
def x(self, p): p = scipy.atleast_1d(p) if len(p) != len(self.sigma): raise ValueError('length of p must equal the number of parameters!') if p.ndim != 1: raise ValueError('p must be one-dimensional!') return scipy.asarray([scipy.stats.lognorm.cdf(v, s, loc=0, scale=em) for v, s, em in zip(p, self.sigma, self.emu)])
elementwise_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.sigma):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([scipy.stats.lognorm.cdf(v, s, loc=0, scale=em) for\n v, s, em in zip(p, self.sigma, self.emu)])\n", "role": "user" }, { "content": "elementwise_cdf", "role": "assistant" } ]
def x(self, size=None): return scipy.asarray([scipy.stats.lognorm.rvs(s, loc=0, scale=em, size= size) for s, em in zip(self.sigma, self.emu)])
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n return scipy.asarray([scipy.stats.lognorm.rvs(s, loc=0, scale=em, size=\n size) for s, em in zip(self.sigma, self.emu)])\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(self): return [scipy.stats.gamma.interval(self.i, a, loc=0, scale=1.0 / b) for a, b in zip(self.a, self.b)]
bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return [scipy.stats.gamma.interval(self.i, a, loc=0, scale=1.0 / b) for\n a, b in zip(self.a, self.b)]\n", "role": "user" }, { "content": "bounds", "role": "assistant" } ]
def x(self, q): q = scipy.atleast_1d(q) if len(q) != len(self.a): raise ValueError('length of q must equal the number of parameters!') if q.ndim != 1: raise ValueError('q must be one-dimensional!') if (q < 0).any() or (q > 1).any(): raise ValueError('q must be within [0, 1]!') return scipy.asarray([scipy.stats.gamma.ppf(v, a, loc=0, scale=1.0 / b) for v, a, b in zip(q, self.a, self.b)])
sample_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != len(self.a):\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n return scipy.asarray([scipy.stats.gamma.ppf(v, a, loc=0, scale=1.0 / b) for\n v, a, b in zip(q, self.a, self.b)])\n", "role": "user" }, { "content": "sample_u", "role": "assistant" } ]
def x(self, p): p = scipy.atleast_1d(p) if len(p) != len(self.a): raise ValueError('length of p must equal the number of parameters!') if p.ndim != 1: raise ValueError('p must be one-dimensional!') return scipy.asarray([scipy.stats.gamma.cdf(v, a, loc=0, scale=1.0 / b) for v, a, b in zip(p, self.a, self.b)])
elementwise_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.a):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n return scipy.asarray([scipy.stats.gamma.cdf(v, a, loc=0, scale=1.0 / b) for\n v, a, b in zip(p, self.a, self.b)])\n", "role": "user" }, { "content": "elementwise_cdf", "role": "assistant" } ]
def x(self, size=None): return scipy.asarray([scipy.stats.gamma.rvs(a, loc=0, scale=1.0 / b, size=size) for a, b in zip(self.a, self.b)])
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n return scipy.asarray([scipy.stats.gamma.rvs(a, loc=0, scale=1.0 / b,\n size=size) for a, b in zip(self.a, self.b)])\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(self, q): q = scipy.atleast_1d(q) if len(q) != self.num_var: raise ValueError('length of q must equal the number of parameters!') if q.ndim != 1: raise ValueError('q must be one-dimensional!') if (q < 0).any() or (q > 1).any(): raise ValueError('q must be within [0, 1]!') out = scipy.zeros_like(q, dtype=float) out[0] = self.lb for d in xrange(0, len(out)): out[d] = (1.0 - (1.0 - q[d]) ** (1.0 / (self.num_var - d))) * (self .ub - out[max(d - 1, 0)]) + out[max(d - 1, 0)] return out
sample_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q):\n q = scipy.atleast_1d(q)\n if len(q) != self.num_var:\n raise ValueError('length of q must equal the number of parameters!')\n if q.ndim != 1:\n raise ValueError('q must be one-dimensional!')\n if (q < 0).any() or (q > 1).any():\n raise ValueError('q must be within [0, 1]!')\n out = scipy.zeros_like(q, dtype=float)\n out[0] = self.lb\n for d in xrange(0, len(out)):\n out[d] = (1.0 - (1.0 - q[d]) ** (1.0 / (self.num_var - d))) * (self\n .ub - out[max(d - 1, 0)]) + out[max(d - 1, 0)]\n return out\n", "role": "user" }, { "content": "sample_u", "role": "assistant" } ]
def x(self, p): p = scipy.atleast_1d(p) if len(p) != len(self.bounds): raise ValueError('length of p must equal the number of parameters!') if p.ndim != 1: raise ValueError('p must be one-dimensional!') c = scipy.zeros(len(self.bounds)) for d in xrange(0, len(c)): pdm1 = p[d - 1] if d > 0 else self.lb if p[d] <= pdm1: c[d] = 0.0 elif p[d] >= self.ub: c[d] = 1.0 else: c[d] = 1.0 - (1.0 - (p[d] - pdm1) / (self.ub - pdm1)) ** (self. num_var - d) return c
elementwise_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, p):\n p = scipy.atleast_1d(p)\n if len(p) != len(self.bounds):\n raise ValueError('length of p must equal the number of parameters!')\n if p.ndim != 1:\n raise ValueError('p must be one-dimensional!')\n c = scipy.zeros(len(self.bounds))\n for d in xrange(0, len(c)):\n pdm1 = p[d - 1] if d > 0 else self.lb\n if p[d] <= pdm1:\n c[d] = 0.0\n elif p[d] >= self.ub:\n c[d] = 1.0\n else:\n c[d] = 1.0 - (1.0 - (p[d] - pdm1) / (self.ub - pdm1)) ** (self.\n num_var - d)\n return c\n", "role": "user" }, { "content": "elementwise_cdf", "role": "assistant" } ]
def x(self, size=None): if size is None: size = 1 single_val = True else: single_val = False out_shape = [self.num_var] try: out_shape.extend(size) except TypeError: out_shape.append(size) out = scipy.sort(numpy.random.uniform(low=self.lb, high=self.ub, size= out_shape), axis=0) if not single_val: return out else: return out.ravel()
random_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, size=None):\n if size is None:\n size = 1\n single_val = True\n else:\n single_val = False\n out_shape = [self.num_var]\n try:\n out_shape.extend(size)\n except TypeError:\n out_shape.append(size)\n out = scipy.sort(numpy.random.uniform(low=self.lb, high=self.ub, size=\n out_shape), axis=0)\n if not single_val:\n return out\n else:\n return out.ravel()\n", "role": "user" }, { "content": "random_draw", "role": "assistant" } ]
def x(request): if request.META.get('HTTP_X_ZAPIER_SECRET', None ) != settings.WAFER_TICKETS_SECRET: raise PermissionDenied('Incorrect secret') payload = json.loads(request.body.decode('utf8')) ticket = Ticket.objects.filter(barcode=payload['barcode']) if ticket.exists(): ticket.delete() return HttpResponse('Cancelled\n', content_type='text/plain')
zapier_cancel_hook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n if request.META.get('HTTP_X_ZAPIER_SECRET', None\n ) != settings.WAFER_TICKETS_SECRET:\n raise PermissionDenied('Incorrect secret')\n payload = json.loads(request.body.decode('utf8'))\n ticket = Ticket.objects.filter(barcode=payload['barcode'])\n if ticket.exists():\n ticket.delete()\n return HttpResponse('Cancelled\\n', content_type='text/plain')\n", "role": "user" }, { "content": "zapier_cancel_hook", "role": "assistant" } ]
def x(request): if request.META.get('HTTP_X_ZAPIER_SECRET', None ) != settings.WAFER_TICKETS_SECRET: raise PermissionDenied('Incorrect secret') payload = json.loads(request.body.decode('utf8')) import_ticket(payload['barcode'], payload['ticket_type'], payload['email']) return HttpResponse('Noted\n', content_type='text/plain')
zapier_guest_hook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n if request.META.get('HTTP_X_ZAPIER_SECRET', None\n ) != settings.WAFER_TICKETS_SECRET:\n raise PermissionDenied('Incorrect secret')\n payload = json.loads(request.body.decode('utf8'))\n import_ticket(payload['barcode'], payload['ticket_type'], payload['email'])\n return HttpResponse('Noted\\n', content_type='text/plain')\n", "role": "user" }, { "content": "zapier_guest_hook", "role": "assistant" } ]
def x(self): grant_type = 'client_credentials' channel = yield self._tvm.ticket_full(self._client_id, self. _client_secret, grant_type, {}) ticket = yield channel.rx.get() raise gen.Return(self._make_token(ticket))
fetch_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n grant_type = 'client_credentials'\n channel = yield self._tvm.ticket_full(self._client_id, self.\n _client_secret, grant_type, {})\n ticket = yield channel.rx.get()\n raise gen.Return(self._make_token(ticket))\n", "role": "user" }, { "content": "fetch_token", "role": "assistant" } ]
def x(service, mod, client_id, client_secret, tok_update_sec=None): if mod == 'TVM': return SecureServiceAdaptor(service, TVM(client_id, client_secret), tok_update_sec) return SecureServiceAdaptor(service, Promiscuous(), tok_update_sec)
make_secure_adaptor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(service, mod, client_id, client_secret, tok_update_sec=None):\n if mod == 'TVM':\n return SecureServiceAdaptor(service, TVM(client_id, client_secret),\n tok_update_sec)\n return SecureServiceAdaptor(service, Promiscuous(), tok_update_sec)\n", "role": "user" }, { "content": "make_secure_adaptor", "role": "assistant" } ]
def x(summaryfile, **kwargs): logging.info( 'Nanoget: Collecting metrics from summary file {} for {} sequencing' .format(summaryfile, kwargs['readtype'])) ut.check_existance(summaryfile) if kwargs['readtype'] == '1D': cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration', 'sequence_length_template', 'mean_qscore_template'] elif kwargs['readtype'] in ['2D', '1D2']: cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration', 'sequence_length_2d', 'mean_qscore_2d'] if kwargs['barcoded']: cols.append('barcode_arrangement') logging.info('Nanoget: Extracting metrics per barcode.') try: datadf = pd.read_csv(filepath_or_buffer=summaryfile, sep='\t', usecols=cols) except ValueError: logging.error( 'Nanoget: did not find expected columns in summary file {}:\n {}' .format(summaryfile, ', '.join(cols))) sys.exit('ERROR: expected columns in summary file {} not found:\n {}' .format(summaryfile, ', '.join(cols))) if kwargs['barcoded']: datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time', 'duration', 'lengths', 'quals', 'barcode'] else: datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time', 'duration', 'lengths', 'quals'] logging.info('Nanoget: Finished collecting statistics from summary file {}' .format(summaryfile)) return ut.reduce_memory_usage(datadf.loc[datadf['lengths'] != 0].copy())
process_summary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(summaryfile, **kwargs):\n logging.info(\n 'Nanoget: Collecting metrics from summary file {} for {} sequencing'\n .format(summaryfile, kwargs['readtype']))\n ut.check_existance(summaryfile)\n if kwargs['readtype'] == '1D':\n cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration',\n 'sequence_length_template', 'mean_qscore_template']\n elif kwargs['readtype'] in ['2D', '1D2']:\n cols = ['read_id', 'run_id', 'channel', 'start_time', 'duration',\n 'sequence_length_2d', 'mean_qscore_2d']\n if kwargs['barcoded']:\n cols.append('barcode_arrangement')\n logging.info('Nanoget: Extracting metrics per barcode.')\n try:\n datadf = pd.read_csv(filepath_or_buffer=summaryfile, sep='\\t',\n usecols=cols)\n except ValueError:\n logging.error(\n 'Nanoget: did not find expected columns in summary file {}:\\n {}'\n .format(summaryfile, ', '.join(cols)))\n sys.exit('ERROR: expected columns in summary file {} not found:\\n {}'\n .format(summaryfile, ', '.join(cols)))\n if kwargs['barcoded']:\n datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time',\n 'duration', 'lengths', 'quals', 'barcode']\n else:\n datadf.columns = ['readIDs', 'runIDs', 'channelIDs', 'time',\n 'duration', 'lengths', 'quals']\n logging.info('Nanoget: Finished collecting statistics from summary file {}'\n .format(summaryfile))\n return ut.reduce_memory_usage(datadf.loc[datadf['lengths'] != 0].copy())\n", "role": "user" }, { "content": "process_summary", "role": "assistant" } ]
def x(bam, samtype='bam'): ut.check_existance(bam) samfile = pysam.AlignmentFile(bam, 'rb') if not samfile.has_index(): pysam.index(bam) samfile = pysam.AlignmentFile(bam, 'rb') logging.info( 'Nanoget: No index for bam file could be found, created index.') if not samfile.header['HD']['SO'] == 'coordinate': logging.error('Nanoget: Bam file {} not sorted by coordinate!.'. format(bam)) sys.exit('Please use a bam file sorted by coordinate.') if samtype == 'bam': logging.info( 'Nanoget: Bam file {} contains {} mapped and {} unmapped reads.' .format(bam, samfile.mapped, samfile.unmapped)) if samfile.mapped == 0: logging.error( 'Nanoget: Bam file {} does not contain aligned reads.'. format(bam)) sys.exit('FATAL: not a single read was mapped in bam file {}'. format(bam)) return samfile
check_bam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bam, samtype='bam'):\n ut.check_existance(bam)\n samfile = pysam.AlignmentFile(bam, 'rb')\n if not samfile.has_index():\n pysam.index(bam)\n samfile = pysam.AlignmentFile(bam, 'rb')\n logging.info(\n 'Nanoget: No index for bam file could be found, created index.')\n if not samfile.header['HD']['SO'] == 'coordinate':\n logging.error('Nanoget: Bam file {} not sorted by coordinate!.'.\n format(bam))\n sys.exit('Please use a bam file sorted by coordinate.')\n if samtype == 'bam':\n logging.info(\n 'Nanoget: Bam file {} contains {} mapped and {} unmapped reads.'\n .format(bam, samfile.mapped, samfile.unmapped))\n if samfile.mapped == 0:\n logging.error(\n 'Nanoget: Bam file {} does not contain aligned reads.'.\n format(bam))\n sys.exit('FATAL: not a single read was mapped in bam file {}'.\n format(bam))\n return samfile\n", "role": "user" }, { "content": "check_bam", "role": "assistant" } ]
def x(bam, **kwargs): logging.info('Nanoget: Starting to collect statistics from ubam file {}.' .format(bam)) samfile = pysam.AlignmentFile(bam, 'rb', check_sq=False) if not samfile.has_index(): pysam.index(bam) samfile = pysam.AlignmentFile(bam, 'rb') logging.info( 'Nanoget: No index for bam file could be found, created index.') datadf = pd.DataFrame(data=[(read.query_name, nanomath.ave_qual(read. query_qualities), read.query_length) for read in samfile.fetch( until_eof=True)], columns=['readIDs', 'quals', 'lengths']).dropna(axis ='columns', how='all').dropna(axis='index', how='any') logging.info('Nanoget: ubam {} contains {} reads.'.format(bam, datadf[ 'lengths'].size)) return ut.reduce_memory_usage(datadf)
process_ubam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bam, **kwargs):\n logging.info('Nanoget: Starting to collect statistics from ubam file {}.'\n .format(bam))\n samfile = pysam.AlignmentFile(bam, 'rb', check_sq=False)\n if not samfile.has_index():\n pysam.index(bam)\n samfile = pysam.AlignmentFile(bam, 'rb')\n logging.info(\n 'Nanoget: No index for bam file could be found, created index.')\n datadf = pd.DataFrame(data=[(read.query_name, nanomath.ave_qual(read.\n query_qualities), read.query_length) for read in samfile.fetch(\n until_eof=True)], columns=['readIDs', 'quals', 'lengths']).dropna(axis\n ='columns', how='all').dropna(axis='index', how='any')\n logging.info('Nanoget: ubam {} contains {} reads.'.format(bam, datadf[\n 'lengths'].size))\n return ut.reduce_memory_usage(datadf)\n", "role": "user" }, { "content": "process_ubam", "role": "assistant" } ]
def x(bam, **kwargs): logging.info('Nanoget: Starting to collect statistics from bam file {}.' .format(bam)) samfile = check_bam(bam) chromosomes = samfile.references params = zip([bam] * len(chromosomes), chromosomes) with cfutures.ProcessPoolExecutor() as executor: datadf = pd.DataFrame(data=[res for sublist in executor.map( extract_from_bam, params) for res in sublist], columns=[ 'readIDs', 'quals', 'aligned_quals', 'lengths', 'aligned_lengths', 'mapQ', 'percentIdentity']).dropna(axis= 'columns', how='all').dropna(axis='index', how='any') logging.info('Nanoget: bam {} contains {} primary alignments.'.format( bam, datadf['lengths'].size)) return ut.reduce_memory_usage(datadf)
process_bam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bam, **kwargs):\n logging.info('Nanoget: Starting to collect statistics from bam file {}.'\n .format(bam))\n samfile = check_bam(bam)\n chromosomes = samfile.references\n params = zip([bam] * len(chromosomes), chromosomes)\n with cfutures.ProcessPoolExecutor() as executor:\n datadf = pd.DataFrame(data=[res for sublist in executor.map(\n extract_from_bam, params) for res in sublist], columns=[\n 'readIDs', 'quals', 'aligned_quals', 'lengths',\n 'aligned_lengths', 'mapQ', 'percentIdentity']).dropna(axis=\n 'columns', how='all').dropna(axis='index', how='any')\n logging.info('Nanoget: bam {} contains {} primary alignments.'.format(\n bam, datadf['lengths'].size))\n return ut.reduce_memory_usage(datadf)\n", "role": "user" }, { "content": "process_bam", "role": "assistant" } ]
def x(params): bam, chromosome = params samfile = pysam.AlignmentFile(bam, 'rb') return [(read.query_name, nanomath.ave_qual(read.query_qualities), nanomath.ave_qual(read.query_alignment_qualities), read. query_length, read.query_alignment_length, read.mapping_quality, get_pID(read)) for read in samfile.fetch(reference=chromosome, multiple_iterators=True) if not read.is_secondary]
extract_from_bam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params):\n bam, chromosome = params\n samfile = pysam.AlignmentFile(bam, 'rb')\n return [(read.query_name, nanomath.ave_qual(read.query_qualities),\n nanomath.ave_qual(read.query_alignment_qualities), read.\n query_length, read.query_alignment_length, read.mapping_quality,\n get_pID(read)) for read in samfile.fetch(reference=chromosome,\n multiple_iterators=True) if not read.is_secondary]\n", "role": "user" }, { "content": "extract_from_bam", "role": "assistant" } ]
def x(read): try: return 100 * (1 - read.get_tag('NM') / read.query_alignment_length) except KeyError: try: return 100 * (1 - (parse_MD(read.get_tag('MD')) + parse_CIGAR( read.cigartuples)) / read.query_alignment_length) except KeyError: return None except ZeroDivisionError: return None
get_pID
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(read):\n try:\n return 100 * (1 - read.get_tag('NM') / read.query_alignment_length)\n except KeyError:\n try:\n return 100 * (1 - (parse_MD(read.get_tag('MD')) + parse_CIGAR(\n read.cigartuples)) / read.query_alignment_length)\n except KeyError:\n return None\n except ZeroDivisionError:\n return None\n", "role": "user" }, { "content": "get_pID", "role": "assistant" } ]
def x(inputfq, file_type='fastq'): ut.check_existance(inputfq) if inputfq.endswith(('.gz', 'bgz')): import gzip logging.info('Nanoget: Decompressing gzipped {} {}'.format( file_type, inputfq)) return gzip.open(inputfq, 'rt') elif inputfq.endswith('.bz2'): import bz2 logging.info('Nanoget: Decompressing bz2 compressed {} {}'.format( file_type, inputfq)) return bz2.open(inputfq, 'rt') elif inputfq.endswith(('.fastq', '.fq', 'fasta', '.fa', '.fas')): return open(inputfq, 'r') else: logging.error('INPUT ERROR: Unrecognized file extension {}'.format( inputfq)) sys.exit( """INPUT ERROR: Unrecognized file extension in {} Supported are gz, bz2, bgz, fastq, fq, fasta, fa and fas""" .format(inputfq))
handle_compressed_input
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inputfq, file_type='fastq'):\n ut.check_existance(inputfq)\n if inputfq.endswith(('.gz', 'bgz')):\n import gzip\n logging.info('Nanoget: Decompressing gzipped {} {}'.format(\n file_type, inputfq))\n return gzip.open(inputfq, 'rt')\n elif inputfq.endswith('.bz2'):\n import bz2\n logging.info('Nanoget: Decompressing bz2 compressed {} {}'.format(\n file_type, inputfq))\n return bz2.open(inputfq, 'rt')\n elif inputfq.endswith(('.fastq', '.fq', 'fasta', '.fa', '.fas')):\n return open(inputfq, 'r')\n else:\n logging.error('INPUT ERROR: Unrecognized file extension {}'.format(\n inputfq))\n sys.exit(\n \"\"\"INPUT ERROR:\nUnrecognized file extension in {}\nSupported are gz, bz2, bgz, fastq, fq, fasta, fa and fas\"\"\"\n .format(inputfq))\n", "role": "user" }, { "content": "handle_compressed_input", "role": "assistant" } ]
def x(fasta, **kwargs): logging.info('Nanoget: Starting to collect statistics from a fasta file.') inputfasta = handle_compressed_input(fasta, file_type='fasta') return ut.reduce_memory_usage(pd.DataFrame(data=[len(rec) for rec in SeqIO.parse(inputfasta, 'fasta')], columns=['lengths']).dropna())
process_fasta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fasta, **kwargs):\n logging.info('Nanoget: Starting to collect statistics from a fasta file.')\n inputfasta = handle_compressed_input(fasta, file_type='fasta')\n return ut.reduce_memory_usage(pd.DataFrame(data=[len(rec) for rec in\n SeqIO.parse(inputfasta, 'fasta')], columns=['lengths']).dropna())\n", "role": "user" }, { "content": "process_fasta", "role": "assistant" } ]
def x(fastq, **kwargs): logging.info( 'Nanoget: Starting to collect statistics from plain fastq file.') inputfastq = handle_compressed_input(fastq) return ut.reduce_memory_usage(pd.DataFrame(data=[res for res in extract_from_fastq(inputfastq) if res], columns=['quals', 'lengths' ]).dropna())
process_fastq_plain
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fastq, **kwargs):\n logging.info(\n 'Nanoget: Starting to collect statistics from plain fastq file.')\n inputfastq = handle_compressed_input(fastq)\n return ut.reduce_memory_usage(pd.DataFrame(data=[res for res in\n extract_from_fastq(inputfastq) if res], columns=['quals', 'lengths'\n ]).dropna())\n", "role": "user" }, { "content": "process_fastq_plain", "role": "assistant" } ]
def x(fq): for rec in SeqIO.parse(fq, 'fastq'): yield nanomath.ave_qual(rec.letter_annotations['phred_quality']), len( rec)
extract_from_fastq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fq):\n for rec in SeqIO.parse(fq, 'fastq'):\n yield nanomath.ave_qual(rec.letter_annotations['phred_quality']), len(\n rec)\n", "role": "user" }, { "content": "extract_from_fastq", "role": "assistant" } ]
def x(fastq, threads): logging.info( 'Nanoget: Starting to collect full metrics from plain fastq file.') inputfastq = handle_compressed_input(fastq) with cfutures.ProcessPoolExecutor(max_workers=threads) as executor: for results in executor.map(extract_all_from_fastq, SeqIO.parse( inputfastq, 'fastq')): yield results logging.info( 'Nanoget: Finished collecting statistics from plain fastq file.')
stream_fastq_full
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fastq, threads):\n logging.info(\n 'Nanoget: Starting to collect full metrics from plain fastq file.')\n inputfastq = handle_compressed_input(fastq)\n with cfutures.ProcessPoolExecutor(max_workers=threads) as executor:\n for results in executor.map(extract_all_from_fastq, SeqIO.parse(\n inputfastq, 'fastq')):\n yield results\n logging.info(\n 'Nanoget: Finished collecting statistics from plain fastq file.')\n", "role": "user" }, { "content": "stream_fastq_full", "role": "assistant" } ]
def x(rec): return rec.id, len(rec), nanomath.ave_qual(rec.letter_annotations[ 'phred_quality']), nanomath.median_qual(rec.letter_annotations[ 'phred_quality'])
extract_all_from_fastq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rec):\n return rec.id, len(rec), nanomath.ave_qual(rec.letter_annotations[\n 'phred_quality']), nanomath.median_qual(rec.letter_annotations[\n 'phred_quality'])\n", "role": "user" }, { "content": "extract_all_from_fastq", "role": "assistant" } ]
def x(fastq, **kwargs): logging.info( 'Nanoget: Starting to collect statistics from rich fastq file.') inputfastq = handle_compressed_input(fastq) res = [] for record in SeqIO.parse(inputfastq, 'fastq'): try: read_info = info_to_dict(record.description) res.append((nanomath.ave_qual(record.letter_annotations[ 'phred_quality']), len(record), read_info['ch'], read_info[ 'start_time'], read_info['runid'])) except KeyError: logging.error('Nanoget: keyerror when processing record {}'. format(record.description)) sys.exit( """Unexpected fastq identifier: {} missing one or more of expected fields 'ch', 'start_time' or 'runid'""" .format(record.description)) df = pd.DataFrame(data=res, columns=['quals', 'lengths', 'channelIDs', 'timestamp', 'runIDs']).dropna() df['channelIDs'] = df['channelIDs'].astype('int64') return ut.reduce_memory_usage(df)
process_fastq_rich
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fastq, **kwargs):\n logging.info(\n 'Nanoget: Starting to collect statistics from rich fastq file.')\n inputfastq = handle_compressed_input(fastq)\n res = []\n for record in SeqIO.parse(inputfastq, 'fastq'):\n try:\n read_info = info_to_dict(record.description)\n res.append((nanomath.ave_qual(record.letter_annotations[\n 'phred_quality']), len(record), read_info['ch'], read_info[\n 'start_time'], read_info['runid']))\n except KeyError:\n logging.error('Nanoget: keyerror when processing record {}'.\n format(record.description))\n sys.exit(\n \"\"\"Unexpected fastq identifier:\n{}\n\n missing one or more of expected fields 'ch', 'start_time' or 'runid'\"\"\"\n .format(record.description))\n df = pd.DataFrame(data=res, columns=['quals', 'lengths', 'channelIDs',\n 'timestamp', 'runIDs']).dropna()\n df['channelIDs'] = df['channelIDs'].astype('int64')\n return ut.reduce_memory_usage(df)\n", "role": "user" }, { "content": "process_fastq_rich", "role": "assistant" } ]
def x(fp): last = None while True: if not last: for l in fp: if l[0] in '>@': last = l[:-1] break if not last: break name, seqs, last = last[1:].partition(' ')[0], [], None for l in fp: if l[0] in '@+>': last = l[:-1] break seqs.append(l[:-1]) if not last or last[0] != '+': yield name, ''.join(seqs), None if not last: break else: seq, leng, seqs = ''.join(seqs), 0, [] for l in fp: seqs.append(l[:-1]) leng += len(l) - 1 if leng >= len(seq): last = None yield name, seq, ''.join(seqs) break if last: yield name, seq, None break
readfq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fp):\n last = None\n while True:\n if not last:\n for l in fp:\n if l[0] in '>@':\n last = l[:-1]\n break\n if not last:\n break\n name, seqs, last = last[1:].partition(' ')[0], [], None\n for l in fp:\n if l[0] in '@+>':\n last = l[:-1]\n break\n seqs.append(l[:-1])\n if not last or last[0] != '+':\n yield name, ''.join(seqs), None\n if not last:\n break\n else:\n seq, leng, seqs = ''.join(seqs), 0, []\n for l in fp:\n seqs.append(l[:-1])\n leng += len(l) - 1\n if leng >= len(seq):\n last = None\n yield name, seq, ''.join(seqs)\n break\n if last:\n yield name, seq, None\n break\n", "role": "user" }, { "content": "readfq", "role": "assistant" } ]
def x(fq): try: while True: time = next(fq)[1:].split(' ')[4][11:-1] length = len(next(fq)) next(fq) next(fq) yield time, length except StopIteration: yield None
fq_minimal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fq):\n try:\n while True:\n time = next(fq)[1:].split(' ')[4][11:-1]\n length = len(next(fq))\n next(fq)\n next(fq)\n yield time, length\n except StopIteration:\n yield None\n", "role": "user" }, { "content": "fq_minimal", "role": "assistant" } ]
def x(fastq, **kwargs): infastq = handle_compressed_input(fastq) try: df = pd.DataFrame(data=[rec for rec in fq_minimal(infastq) if rec], columns=['timestamp', 'lengths']) except IndexError: logging.error('Fatal: Incorrect file structure for fastq_minimal') sys.exit( 'Error: file does not match expected structure for fastq_minimal') return ut.reduce_memory_usage(df)
process_fastq_minimal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fastq, **kwargs):\n infastq = handle_compressed_input(fastq)\n try:\n df = pd.DataFrame(data=[rec for rec in fq_minimal(infastq) if rec],\n columns=['timestamp', 'lengths'])\n except IndexError:\n logging.error('Fatal: Incorrect file structure for fastq_minimal')\n sys.exit(\n 'Error: file does not match expected structure for fastq_minimal')\n return ut.reduce_memory_usage(df)\n", "role": "user" }, { "content": "process_fastq_minimal", "role": "assistant" } ]
def x(string, index): piece = string[index].strip() piece = piece.upper() piece_dict = {'R': Rook, 'P': Pawn, 'B': Bishop, 'N': Knight, 'Q': Queen, 'K': King} try: return piece_dict[piece] except KeyError: raise ValueError('Piece {} is invalid'.format(piece))
get_piece
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string, index):\n piece = string[index].strip()\n piece = piece.upper()\n piece_dict = {'R': Rook, 'P': Pawn, 'B': Bishop, 'N': Knight, 'Q':\n Queen, 'K': King}\n try:\n return piece_dict[piece]\n except KeyError:\n raise ValueError('Piece {} is invalid'.format(piece))\n", "role": "user" }, { "content": "get_piece", "role": "assistant" } ]
def x(move, position): assert isinstance(move, Move) for legal_move in position.all_possible_moves(move.color): if move.status == notation_const.LONG_ALG: if (move.end_loc == legal_move.end_loc and move.start_loc == legal_move.start_loc): return legal_move elif move == legal_move: return legal_move raise ValueError('Move {} not legal in \n{}'.format(repr(move), position))
make_legal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(move, position):\n assert isinstance(move, Move)\n for legal_move in position.all_possible_moves(move.color):\n if move.status == notation_const.LONG_ALG:\n if (move.end_loc == legal_move.end_loc and move.start_loc ==\n legal_move.start_loc):\n return legal_move\n elif move == legal_move:\n return legal_move\n raise ValueError('Move {} not legal in \\n{}'.format(repr(move), position))\n", "role": "user" }, { "content": "make_legal", "role": "assistant" } ]
def x(algebraic_string, input_color, position): return make_legal(incomplete_alg(algebraic_string, input_color, position), position)
short_alg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(algebraic_string, input_color, position):\n return make_legal(incomplete_alg(algebraic_string, input_color,\n position), position)\n", "role": "user" }, { "content": "short_alg", "role": "assistant" } ]
def x(alg_str, position): if alg_str is None or len(alg_str) < 4 or len(alg_str) > 6: raise ValueError('Invalid string input {}'.format(alg_str)) end = Location.from_string(alg_str[2:]) start = Location.from_string(alg_str[:2]) piece = position.piece_at_square(start) if len(alg_str) == 4: return make_legal(Move(end_loc=end, piece=piece, status= notation_const.LONG_ALG, start_loc=start), position) promoted_to = _get_piece(alg_str, 4) if promoted_to is None or promoted_to is King or promoted_to is Pawn: raise Exception('Invalid move input') return make_legal(Move(end_loc=end, piece=piece, status=notation_const. LONG_ALG, start_loc=start, promoted_to_piece=promoted_to), position)
long_alg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alg_str, position):\n if alg_str is None or len(alg_str) < 4 or len(alg_str) > 6:\n raise ValueError('Invalid string input {}'.format(alg_str))\n end = Location.from_string(alg_str[2:])\n start = Location.from_string(alg_str[:2])\n piece = position.piece_at_square(start)\n if len(alg_str) == 4:\n return make_legal(Move(end_loc=end, piece=piece, status=\n notation_const.LONG_ALG, start_loc=start), position)\n promoted_to = _get_piece(alg_str, 4)\n if promoted_to is None or promoted_to is King or promoted_to is Pawn:\n raise Exception('Invalid move input')\n return make_legal(Move(end_loc=end, piece=piece, status=notation_const.\n LONG_ALG, start_loc=start, promoted_to_piece=promoted_to), position)\n", "role": "user" }, { "content": "long_alg", "role": "assistant" } ]
def x(self): for i, atom in self.atoms(): neighbors = 0 hybridization = 1 for j, bond in self._adj[i].items(): if self._node[j].element != 'H': neighbors += 1 if hybridization in (3, 4): continue order = bond.order if order == 4: hybridization = 4 elif order == 3: hybridization = 3 elif order == 2: if hybridization == 2: hybridization = 3 else: hybridization = 2 atom._neighbors = neighbors atom._hybridization = hybridization self.flush_cache()
reset_query_marks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i, atom in self.atoms():\n neighbors = 0\n hybridization = 1\n for j, bond in self._adj[i].items():\n if self._node[j].element != 'H':\n neighbors += 1\n if hybridization in (3, 4):\n continue\n order = bond.order\n if order == 4:\n hybridization = 4\n elif order == 3:\n hybridization = 3\n elif order == 2:\n if hybridization == 2:\n hybridization = 3\n else:\n hybridization = 2\n atom._neighbors = neighbors\n atom._hybridization = hybridization\n self.flush_cache()\n", "role": "user" }, { "content": "reset_query_marks", "role": "assistant" } ]
def x(self): explicit = defaultdict(list) c = 0 for n, atom in self.atoms(): if atom.element == 'H': for m in self.neighbors(n): if self._node[m].element != 'H': explicit[m].append(n) for n, h in explicit.items(): atom = self._node[n] len_h = len(h) for i in range(len_h, 0, -1): hi = h[:i] if atom.get_implicit_h([y.order for x, y in self._adj[n].items( ) if x not in hi]) == i: for x in hi: self.remove_node(x) c += 1 break self.flush_cache() return c
implicify_hydrogens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n explicit = defaultdict(list)\n c = 0\n for n, atom in self.atoms():\n if atom.element == 'H':\n for m in self.neighbors(n):\n if self._node[m].element != 'H':\n explicit[m].append(n)\n for n, h in explicit.items():\n atom = self._node[n]\n len_h = len(h)\n for i in range(len_h, 0, -1):\n hi = h[:i]\n if atom.get_implicit_h([y.order for x, y in self._adj[n].items(\n ) if x not in hi]) == i:\n for x in hi:\n self.remove_node(x)\n c += 1\n break\n self.flush_cache()\n return c\n", "role": "user" }, { "content": "implicify_hydrogens", "role": "assistant" } ]
def x(self): tmp = [] for n, atom in self.atoms(): if atom.element != 'H': for _ in range(atom.get_implicit_h([x.order for x in self._adj[ n].values()])): tmp.append(n) for n in tmp: self.add_bond(n, self.add_atom(H), Bond()) self.flush_cache() return len(tmp)
explicify_hydrogens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n tmp = []\n for n, atom in self.atoms():\n if atom.element != 'H':\n for _ in range(atom.get_implicit_h([x.order for x in self._adj[\n n].values()])):\n tmp.append(n)\n for n in tmp:\n self.add_bond(n, self.add_atom(H), Bond())\n self.flush_cache()\n return len(tmp)\n", "role": "user" }, { "content": "explicify_hydrogens", "role": "assistant" } ]
def x(self, atoms, meta=False, as_view=True): s = super().substructure(atoms, meta, as_view) if as_view: (s.check_valence) = (s.explicify_hydrogens) = (s.implicify_hydrogens ) = (s.reset_query_marks) = frozen s.standardize = s.aromatize = frozen return s
substructure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, atoms, meta=False, as_view=True):\n s = super().substructure(atoms, meta, as_view)\n if as_view:\n (s.check_valence) = (s.explicify_hydrogens) = (s.implicify_hydrogens\n ) = (s.reset_query_marks) = frozen\n s.standardize = s.aromatize = frozen\n return s\n", "role": "user" }, { "content": "substructure", "role": "assistant" } ]
def x(self): return [x for x, atom in self.atoms() if not atom.check_valence(self. environment(x))]
check_valence
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return [x for x, atom in self.atoms() if not atom.check_valence(self.\n environment(x))]\n", "role": "user" }, { "content": "check_valence", "role": "assistant" } ]
def x(self, other): if isinstance(other, (self._get_subclass('CGRContainer'), MoleculeContainer)): return GraphMatcher(other, self, lambda x, y: x == y, lambda x, y: x == y) raise TypeError('only cgr-cgr possible')
matcher
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if isinstance(other, (self._get_subclass('CGRContainer'),\n MoleculeContainer)):\n return GraphMatcher(other, self, lambda x, y: x == y, lambda x, y: \n x == y)\n raise TypeError('only cgr-cgr possible')\n", "role": "user" }, { "content": "matcher", "role": "assistant" } ]
def x(date): return datetime.datetime.combine(date, datetime.datetime.min.time())
to_datetime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date):\n return datetime.datetime.combine(date, datetime.datetime.min.time())\n", "role": "user" }, { "content": "to_datetime", "role": "assistant" } ]
def x(self, issue): try: size_changes = list(filter(lambda h: h.field == 'Story Points', itertools.chain.from_iterable([c.items for c in issue.changelog .histories]))) except AttributeError: return try: current_size = issue.fields.__dict__[self.fields['StoryPoints']] except: current_size = None size = size_changes[0].fromString if len(size_changes) else current_size yield IssueSizeSnapshot(change=None, key=issue.key, date=dateutil. parser.parse(issue.fields.created), size=size) for change in issue.changelog.histories: change_date = dateutil.parser.parse(change.created) for item in change.items: if item.field == 'Story Points': size = item.toString yield IssueSizeSnapshot(change=item.field, key=issue.key, date=change_date, size=size)
iter_size_changes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, issue):\n try:\n size_changes = list(filter(lambda h: h.field == 'Story Points',\n itertools.chain.from_iterable([c.items for c in issue.changelog\n .histories])))\n except AttributeError:\n return\n try:\n current_size = issue.fields.__dict__[self.fields['StoryPoints']]\n except:\n current_size = None\n size = size_changes[0].fromString if len(size_changes) else current_size\n yield IssueSizeSnapshot(change=None, key=issue.key, date=dateutil.\n parser.parse(issue.fields.created), size=size)\n for change in issue.changelog.histories:\n change_date = dateutil.parser.parse(change.created)\n for item in change.items:\n if item.field == 'Story Points':\n size = item.toString\n yield IssueSizeSnapshot(change=item.field, key=issue.key,\n date=change_date, size=size)\n", "role": "user" }, { "content": "iter_size_changes", "role": "assistant" } ]
def x(self, issue, include_resolution_changes=True): is_resolved = False try: status_changes = list(filter(lambda h: h.field == 'status', itertools.chain.from_iterable([c.items for c in issue.changelog .histories]))) except AttributeError: return last_status = status_changes[0].fromString if len(status_changes ) > 0 else issue.fields.status.name last_resolution = None yield IssueSnapshot(change=None, key=issue.key, date=dateutil.parser. parse(issue.fields.created), status=last_status, resolution=None, is_resolved=is_resolved) for change in issue.changelog.histories: change_date = dateutil.parser.parse(change.created) resolutions = list(filter(lambda i: i.field == 'resolution', change .items)) is_resolved = resolutions[-1].to is not None if len(resolutions ) > 0 else is_resolved for item in change.items: if item.field == 'status': last_status = item.toString yield IssueSnapshot(change=item.field, key=issue.key, date= change_date, status=last_status, resolution= last_resolution, is_resolved=is_resolved) elif item.field == 'resolution': last_resolution = item.toString if include_resolution_changes: yield IssueSnapshot(change=item.field, key=issue.key, date=change_date, status=last_status, resolution= last_resolution, is_resolved=is_resolved)
iter_changes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, issue, include_resolution_changes=True):\n is_resolved = False\n try:\n status_changes = list(filter(lambda h: h.field == 'status',\n itertools.chain.from_iterable([c.items for c in issue.changelog\n .histories])))\n except AttributeError:\n return\n last_status = status_changes[0].fromString if len(status_changes\n ) > 0 else issue.fields.status.name\n last_resolution = None\n yield IssueSnapshot(change=None, key=issue.key, date=dateutil.parser.\n parse(issue.fields.created), status=last_status, resolution=None,\n is_resolved=is_resolved)\n for change in issue.changelog.histories:\n change_date = dateutil.parser.parse(change.created)\n resolutions = list(filter(lambda i: i.field == 'resolution', change\n .items))\n is_resolved = resolutions[-1].to is not None if len(resolutions\n ) > 0 else is_resolved\n for item in change.items:\n if item.field == 'status':\n last_status = item.toString\n yield IssueSnapshot(change=item.field, key=issue.key, date=\n change_date, status=last_status, resolution=\n last_resolution, is_resolved=is_resolved)\n elif item.field == 'resolution':\n last_resolution = item.toString\n if include_resolution_changes:\n yield IssueSnapshot(change=item.field, key=issue.key,\n date=change_date, status=last_status, resolution=\n last_resolution, is_resolved=is_resolved)\n", "role": "user" }, { "content": "iter_changes", "role": "assistant" } ]
def x(self, criteria={}, jql=None, order='KEY ASC', verbose=False, changelog=True): query = [] if criteria.get('project', False): query.append('project IN (%s)' % ', '.join([('"%s"' % p) for p in criteria['project']])) if criteria.get('issue_types', False): query.append('issueType IN (%s)' % ', '.join([('"%s"' % t) for t in criteria['issue_types']])) if criteria.get('valid_resolutions', False): query.append('(resolution IS EMPTY OR resolution IN (%s))' % ', '. join([('"%s"' % r) for r in criteria['valid_resolutions']])) if criteria.get('jql_filter') is not None: query.append('(%s)' % criteria['jql_filter']) if jql is not None: query.append('(%s)' % jql) queryString = '%s ORDER BY %s' % (' AND '.join(query), order) if verbose: print('Fetching issues with query:', queryString) fromRow = 0 issues = [] while True: try: if changelog: pageofissues = self.jira.search_issues(queryString, expand= 'changelog', maxResults=self.settings['max_results'], startAt=fromRow) else: pageofissues = self.jira.search_issues(queryString, maxResults=self.settings['max_results'], startAt=fromRow) fromRow = fromRow + int(self.settings['max_results']) issues += pageofissues if verbose: print( 'Got %s lines per jira query from result starting at line number %s ' % (self.settings['max_results'], fromRow)) if len(pageofissues) == 0: break except JIRAError as e: print('Jira query error with: {}\n{}'.format(queryString, e)) return [] if verbose: print('Fetched', len(issues), 'issues') return issues
find_issues
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, criteria={}, jql=None, order='KEY ASC', verbose=False,\n changelog=True):\n query = []\n if criteria.get('project', False):\n query.append('project IN (%s)' % ', '.join([('\"%s\"' % p) for p in\n criteria['project']]))\n if criteria.get('issue_types', False):\n query.append('issueType IN (%s)' % ', '.join([('\"%s\"' % t) for t in\n criteria['issue_types']]))\n if criteria.get('valid_resolutions', False):\n query.append('(resolution IS EMPTY OR resolution IN (%s))' % ', '.\n join([('\"%s\"' % r) for r in criteria['valid_resolutions']]))\n if criteria.get('jql_filter') is not None:\n query.append('(%s)' % criteria['jql_filter'])\n if jql is not None:\n query.append('(%s)' % jql)\n queryString = '%s ORDER BY %s' % (' AND '.join(query), order)\n if verbose:\n print('Fetching issues with query:', queryString)\n fromRow = 0\n issues = []\n while True:\n try:\n if changelog:\n pageofissues = self.jira.search_issues(queryString, expand=\n 'changelog', maxResults=self.settings['max_results'],\n startAt=fromRow)\n else:\n pageofissues = self.jira.search_issues(queryString,\n maxResults=self.settings['max_results'], startAt=fromRow)\n fromRow = fromRow + int(self.settings['max_results'])\n issues += pageofissues\n if verbose:\n print(\n 'Got %s lines per jira query from result starting at line number %s '\n % (self.settings['max_results'], fromRow))\n if len(pageofissues) == 0:\n break\n except JIRAError as e:\n print('Jira query error with: {}\\n{}'.format(queryString, e))\n return []\n if verbose:\n print('Fetched', len(issues), 'issues')\n return issues\n", "role": "user" }, { "content": "find_issues", "role": "assistant" } ]
def x(self): _form = CatalogSelectForm(current=self.current) _form.set_choices_of('catalog', [(i, i) for i in fixture_bucket.get_keys()] ) self.form_out(_form)
list_catalogs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n _form = CatalogSelectForm(current=self.current)\n _form.set_choices_of('catalog', [(i, i) for i in fixture_bucket.get_keys()]\n )\n self.form_out(_form)\n", "role": "user" }, { "content": "list_catalogs", "role": "assistant" } ]
def x(self): catalog_data = fixture_bucket.get(self.input['form']['catalog']) add_or_edit = 'Edit' if catalog_data.exists else 'Add' catalog_edit_form = CatalogEditForm(current=self.current, title= '%s: %s' % (add_or_edit, self.input['form']['catalog'])) if catalog_data.exists: if type(catalog_data.data) == list: for key, data in enumerate(catalog_data.data): catalog_edit_form.CatalogDatas(catalog_key=key or '0', en= '', tr=data) if type(catalog_data.data) == dict: for key, data in catalog_data.data.items(): catalog_edit_form.CatalogDatas(catalog_key=key, en=data[ 'en'], tr=data['tr']) else: catalog_edit_form.CatalogDatas(catalog_key='0', en='', tr='') self.form_out(catalog_edit_form) self.output['object_key'] = self.input['form']['catalog']
get_catalog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n catalog_data = fixture_bucket.get(self.input['form']['catalog'])\n add_or_edit = 'Edit' if catalog_data.exists else 'Add'\n catalog_edit_form = CatalogEditForm(current=self.current, title=\n '%s: %s' % (add_or_edit, self.input['form']['catalog']))\n if catalog_data.exists:\n if type(catalog_data.data) == list:\n for key, data in enumerate(catalog_data.data):\n catalog_edit_form.CatalogDatas(catalog_key=key or '0', en=\n '', tr=data)\n if type(catalog_data.data) == dict:\n for key, data in catalog_data.data.items():\n catalog_edit_form.CatalogDatas(catalog_key=key, en=data[\n 'en'], tr=data['tr'])\n else:\n catalog_edit_form.CatalogDatas(catalog_key='0', en='', tr='')\n self.form_out(catalog_edit_form)\n self.output['object_key'] = self.input['form']['catalog']\n", "role": "user" }, { "content": "get_catalog", "role": "assistant" } ]
def x(self): if self.input['cmd'] == 'save_catalog': try: edited_object = dict() for i in self.input['form']['CatalogDatas']: edited_object[i['catalog_key']] = {'en': i['en'], 'tr': i['tr'] } newobj = fixture_bucket.get(self.input['object_key']) newobj.data = edited_object newobj.store() self.output['notify' ] = 'catalog: %s successfully updated.' % self.input[ 'object_key'] except: raise HTTPError(500, 'Form object could not be saved') if self.input['cmd'] == 'cancel': self.output['notify'] = 'catalog: %s canceled.' % self.input[ 'object_key']
save_catalog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.input['cmd'] == 'save_catalog':\n try:\n edited_object = dict()\n for i in self.input['form']['CatalogDatas']:\n edited_object[i['catalog_key']] = {'en': i['en'], 'tr': i['tr']\n }\n newobj = fixture_bucket.get(self.input['object_key'])\n newobj.data = edited_object\n newobj.store()\n self.output['notify'\n ] = 'catalog: %s successfully updated.' % self.input[\n 'object_key']\n except:\n raise HTTPError(500, 'Form object could not be saved')\n if self.input['cmd'] == 'cancel':\n self.output['notify'] = 'catalog: %s canceled.' % self.input[\n 'object_key']\n", "role": "user" }, { "content": "save_catalog", "role": "assistant" } ]
def x(d): return '{y}-{m}-{day}T00:00:00Z'.format(day=d[:2], m=d[3:5], y=d[6:] ) if d else d
date_to_solr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n return '{y}-{m}-{day}T00:00:00Z'.format(day=d[:2], m=d[3:5], y=d[6:]\n ) if d else d\n", "role": "user" }, { "content": "date_to_solr", "role": "assistant" } ]
def x(d): return '{day}:{m}:{y}'.format(y=d[:4], m=d[5:7], day=d[8:10]) if d else d
solr_to_date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d):\n return '{day}:{m}:{y}'.format(y=d[:4], m=d[5:7], day=d[8:10]) if d else d\n", "role": "user" }, { "content": "solr_to_date", "role": "assistant" } ]
def x(s): return re.sub('[^0-9a-zA-Z]+', '_', s.strip().replace(u'ğ', 'g'). replace(u'ö', 'o').replace(u'ç', 'c').replace(u'Ç', 'c').replace( u'Ö', u'O').replace(u'Ş', 's').replace(u'Ü', 'u').replace(u'ı', 'i' ).replace(u'İ', 'i').replace(u'Ğ', 'g').replace(u'ö', 'o').replace( u'ş', 's').replace(u'ü', 'u').lower(), re.UNICODE)
to_safe_str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n return re.sub('[^0-9a-zA-Z]+', '_', s.strip().replace(u'ğ', 'g').\n replace(u'ö', 'o').replace(u'ç', 'c').replace(u'Ç', 'c').replace(\n u'Ö', u'O').replace(u'Ş', 's').replace(u'Ü', 'u').replace(u'ı', 'i'\n ).replace(u'İ', 'i').replace(u'Ğ', 'g').replace(u'ö', 'o').replace(\n u'ş', 's').replace(u'ü', 'u').lower(), re.UNICODE)\n", "role": "user" }, { "content": "to_safe_str", "role": "assistant" } ]