source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, start=None, end=None): qs = self._entries_range(start=start, end=end) qs_positive = qs.filter(amount__gt=Decimal('0.00')).all().aggregate(Sum ('amount')) qs_negative = qs.filter(amount__lt=Decimal('0.00')).all().aggregate(Sum ('amount')) positives = qs_positive['amount__sum'] if qs_positive['amount__sum' ] is not None else 0 negatives = -qs_negative['amount__sum'] if qs_negative['amount__sum' ] is not None else 0 if self._DEBIT_IN_DB() > 0: debits = positives credits = negatives else: debits = negatives credits = positives net = debits - credits if self._positive_credit(): net = -net return self.Totals(credits, debits, net)
totals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start=None, end=None):\n qs = self._entries_range(start=start, end=end)\n qs_positive = qs.filter(amount__gt=Decimal('0.00')).all().aggregate(Sum\n ('amount'))\n qs_negative = qs.filter(amount__lt=Decimal('0.00')).all().aggregate(Sum\n ('amount'))\n positives = qs_positive['amount__sum'] if qs_positive['amount__sum'\n ] is not None else 0\n negatives = -qs_negative['amount__sum'] if qs_negative['amount__sum'\n ] is not None else 0\n if self._DEBIT_IN_DB() > 0:\n debits = positives\n credits = negatives\n else:\n debits = negatives\n credits = positives\n net = debits - credits\n if self._positive_credit():\n net = -net\n return self.Totals(credits, debits, net)\n", "role": "user" }, { "content": "totals", "role": "assistant" } ]
def x(self, start=None, end=None): DEBIT_IN_DB = self._DEBIT_IN_DB() flip = 1 if self._positive_credit(): flip *= -1 qs = self._entries_range(start=start, end=end) qs = qs.order_by('transaction__t_stamp', 'transaction__tid') balance = Decimal('0.00') if start: balance = self.balance(start) if not qs: return [] def x(balance_in): balance = balance_in for e in qs.all(): amount = e.amount * DEBIT_IN_DB o_balance = balance balance += flip * amount yield LedgerEntry(amount, e, o_balance, balance) return helper(balance)
ledger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start=None, end=None):\n DEBIT_IN_DB = self._DEBIT_IN_DB()\n flip = 1\n if self._positive_credit():\n flip *= -1\n qs = self._entries_range(start=start, end=end)\n qs = qs.order_by('transaction__t_stamp', 'transaction__tid')\n balance = Decimal('0.00')\n if start:\n balance = self.balance(start)\n if not qs:\n return []\n\n def x(balance_in):\n balance = balance_in\n for e in qs.all():\n amount = e.amount * DEBIT_IN_DB\n o_balance = balance\n balance += flip * amount\n yield LedgerEntry(amount, e, o_balance, balance)\n return helper(balance)\n", "role": "user" }, { "content": "ledger", "role": "assistant" } ]
def x(self, third_party): actual_account = third_party.get_account() assert actual_account.get_bookset() == self return ThirdPartySubAccount(actual_account, third_party=third_party)
get_third_party
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, third_party):\n actual_account = third_party.get_account()\n assert actual_account.get_bookset() == self\n return ThirdPartySubAccount(actual_account, third_party=third_party)\n", "role": "user" }, { "content": "get_third_party", "role": "assistant" } ]
def x(self, third_party): actual_account = third_party.get_account() assert actual_account.get_bookset() == self.get_bookset() return ProjectAccount(actual_account, project=self, third_party=third_party )
get_third_party
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, third_party):\n actual_account = third_party.get_account()\n assert actual_account.get_bookset() == self.get_bookset()\n return ProjectAccount(actual_account, project=self, third_party=third_party\n )\n", "role": "user" }, { "content": "get_third_party", "role": "assistant" } ]
def x(all_slots): overlaps = set([]) for slot in all_slots: start = slot.get_start_time() end = slot.end_time for other_slot in all_slots: if other_slot.pk == slot.pk: continue if other_slot.get_day() != slot.get_day(): continue other_start = other_slot.get_start_time() other_end = other_slot.end_time if start <= other_start and other_start < end: overlaps.add(slot) overlaps.add(other_slot) elif start < other_end and other_end <= end: overlaps.add(slot) overlaps.add(other_slot) return overlaps
find_overlapping_slots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_slots):\n overlaps = set([])\n for slot in all_slots:\n start = slot.get_start_time()\n end = slot.end_time\n for other_slot in all_slots:\n if other_slot.pk == slot.pk:\n continue\n if other_slot.get_day() != slot.get_day():\n continue\n other_start = other_slot.get_start_time()\n other_end = other_slot.end_time\n if start <= other_start and other_start < end:\n overlaps.add(slot)\n overlaps.add(other_slot)\n elif start < other_end and other_end <= end:\n overlaps.add(slot)\n overlaps.add(other_slot)\n return overlaps\n", "role": "user" }, { "content": "find_overlapping_slots", "role": "assistant" } ]
def x(all_items): non_contiguous = [] for item in all_items: if item.slots.count() < 2: continue last_slot = None for slot in item.slots.all().order_by('end_time'): if last_slot: if last_slot.end_time != slot.get_start_time(): non_contiguous.append(item) break last_slot = slot return non_contiguous
find_non_contiguous
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_items):\n non_contiguous = []\n for item in all_items:\n if item.slots.count() < 2:\n continue\n last_slot = None\n for slot in item.slots.all().order_by('end_time'):\n if last_slot:\n if last_slot.end_time != slot.get_start_time():\n non_contiguous.append(item)\n break\n last_slot = slot\n return non_contiguous\n", "role": "user" }, { "content": "find_non_contiguous", "role": "assistant" } ]
def x(all_items): validation = [] for item in all_items: if item.talk is not None and item.page is not None: validation.append(item) elif item.talk is None and item.page is None: validation.append(item) elif item.talk and item.talk.status not in [ACCEPTED, CANCELLED]: validation.append(item) return validation
validate_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_items):\n validation = []\n for item in all_items:\n if item.talk is not None and item.page is not None:\n validation.append(item)\n elif item.talk is None and item.page is None:\n validation.append(item)\n elif item.talk and item.talk.status not in [ACCEPTED, CANCELLED]:\n validation.append(item)\n return validation\n", "role": "user" }, { "content": "validate_items", "role": "assistant" } ]
def x(all_items): duplicates = [] seen_talks = {} for item in all_items: if item.talk and item.talk in seen_talks: duplicates.append(item) if seen_talks[item.talk] not in duplicates: duplicates.append(seen_talks[item.talk]) else: seen_talks[item.talk] = item return duplicates
find_duplicate_schedule_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_items):\n duplicates = []\n seen_talks = {}\n for item in all_items:\n if item.talk and item.talk in seen_talks:\n duplicates.append(item)\n if seen_talks[item.talk] not in duplicates:\n duplicates.append(seen_talks[item.talk])\n else:\n seen_talks[item.talk] = item\n return duplicates\n", "role": "user" }, { "content": "find_duplicate_schedule_items", "role": "assistant" } ]
def x(all_items): clashes = {} seen_venue_slots = {} for item in all_items: for slot in item.slots.all(): pos = item.venue, slot if pos in seen_venue_slots: if seen_venue_slots[pos] not in clashes: clashes[pos] = [seen_venue_slots[pos]] clashes[pos].append(item) else: seen_venue_slots[pos] = item return clashes.items()
find_clashes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_items):\n clashes = {}\n seen_venue_slots = {}\n for item in all_items:\n for slot in item.slots.all():\n pos = item.venue, slot\n if pos in seen_venue_slots:\n if seen_venue_slots[pos] not in clashes:\n clashes[pos] = [seen_venue_slots[pos]]\n clashes[pos].append(item)\n else:\n seen_venue_slots[pos] = item\n return clashes.items()\n", "role": "user" }, { "content": "find_clashes", "role": "assistant" } ]
def x(all_items): venues = {} for item in all_items: valid = False item_days = list(item.venue.days.all()) for slot in item.slots.all(): for day in item_days: if day == slot.get_day(): valid = True break if not valid: venues.setdefault(item.venue, []) venues[item.venue].append(item) return venues.items()
find_invalid_venues
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(all_items):\n venues = {}\n for item in all_items:\n valid = False\n item_days = list(item.venue.days.all())\n for slot in item.slots.all():\n for day in item_days:\n if day == slot.get_day():\n valid = True\n break\n if not valid:\n venues.setdefault(item.venue, [])\n venues[item.venue].append(item)\n return venues.items()\n", "role": "user" }, { "content": "find_invalid_venues", "role": "assistant" } ]
def x(): all_items = prefetch_schedule_items() for validator, _type, _msg in SCHEDULE_ITEM_VALIDATORS: if validator(all_items): return False all_slots = prefetch_slots() for validator, _type, _msg in SLOT_VALIDATORS: if validator(all_slots): return False return True
check_schedule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n all_items = prefetch_schedule_items()\n for validator, _type, _msg in SCHEDULE_ITEM_VALIDATORS:\n if validator(all_items):\n return False\n all_slots = prefetch_slots()\n for validator, _type, _msg in SLOT_VALIDATORS:\n if validator(all_slots):\n return False\n return True\n", "role": "user" }, { "content": "check_schedule", "role": "assistant" } ]
def x(): all_items = prefetch_schedule_items() errors = [] for validator, _type, msg in SCHEDULE_ITEM_VALIDATORS: if validator(all_items): errors.append(msg) all_slots = prefetch_slots() for validator, _type, msg in SLOT_VALIDATORS: if validator(all_slots): errors.append(msg) return errors
validate_schedule
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n all_items = prefetch_schedule_items()\n errors = []\n for validator, _type, msg in SCHEDULE_ITEM_VALIDATORS:\n if validator(all_items):\n errors.append(msg)\n all_slots = prefetch_slots()\n for validator, _type, msg in SLOT_VALIDATORS:\n if validator(all_slots):\n errors.append(msg)\n return errors\n", "role": "user" }, { "content": "validate_schedule", "role": "assistant" } ]
def x(self, request, obj=None, **kwargs): if obj is None: kwargs['form'] = SlotAdminAddForm return super(SlotAdmin, self).get_form(request, obj, **kwargs)
get_form
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, obj=None, **kwargs):\n if obj is None:\n kwargs['form'] = SlotAdminAddForm\n return super(SlotAdmin, self).get_form(request, obj, **kwargs)\n", "role": "user" }, { "content": "get_form", "role": "assistant" } ]
def x(): items = cache.get(CACHE_KEY) if items is None: menu = generate_menu() cache.set(CACHE_KEY, menu.items) else: menu = Menu(items) return menu
get_cached_menus
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n items = cache.get(CACHE_KEY)\n if items is None:\n menu = generate_menu()\n cache.set(CACHE_KEY, menu.items)\n else:\n menu = Menu(items)\n return menu\n", "role": "user" }, { "content": "get_cached_menus", "role": "assistant" } ]
def x(str_or_obj): if not isinstance(str_or_obj, six.string_types): return str_or_obj parts = str_or_obj.split('.') mod, modname = None, None for p in parts: modname = p if modname is None else '%s.%s' % (modname, p) try: mod = __import__(modname) except ImportError: if mod is None: raise break obj = mod for p in parts[1:]: obj = getattr(obj, p) return obj
maybe_obj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(str_or_obj):\n if not isinstance(str_or_obj, six.string_types):\n return str_or_obj\n parts = str_or_obj.split('.')\n mod, modname = None, None\n for p in parts:\n modname = p if modname is None else '%s.%s' % (modname, p)\n try:\n mod = __import__(modname)\n except ImportError:\n if mod is None:\n raise\n break\n obj = mod\n for p in parts[1:]:\n obj = getattr(obj, p)\n return obj\n", "role": "user" }, { "content": "maybe_obj", "role": "assistant" } ]
def x(): root_menu = Menu(list(copy.deepcopy(settings.WAFER_MENUS))) for dynamic_menu_func in settings.WAFER_DYNAMIC_MENUS: dynamic_menu_func = maybe_obj(dynamic_menu_func) dynamic_menu_func(root_menu) return root_menu
generate_menu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n root_menu = Menu(list(copy.deepcopy(settings.WAFER_MENUS)))\n for dynamic_menu_func in settings.WAFER_DYNAMIC_MENUS:\n dynamic_menu_func = maybe_obj(dynamic_menu_func)\n dynamic_menu_func(root_menu)\n return root_menu\n", "role": "user" }, { "content": "generate_menu", "role": "assistant" } ]
def x(self): self.__fd = open(self.__lockfile, 'w') if self.__locktype == 'wait': fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX) elif self.__locktype == 'lock': try: fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError: raise AlreadyLocked('File is already locked')
lock
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.__fd = open(self.__lockfile, 'w')\n if self.__locktype == 'wait':\n fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX)\n elif self.__locktype == 'lock':\n try:\n fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)\n except IOError:\n raise AlreadyLocked('File is already locked')\n", "role": "user" }, { "content": "lock", "role": "assistant" } ]
def x(state_token, done_function): class LocalServerHandler(BaseHTTPServer.BaseHTTPRequestHandler): def x(self, msg): logging.warn('Error response: %(msg)s. %(path)s', msg=msg, path =self.path) self.send_response(400) self.send_header('Content-type', 'text/plain') self.end_headers() self.wfile.write(msg) def x(self): parsed = urlparse.urlparse(self.path) if len(parsed.query) == 0 or parsed.path != '/callback': self.error_response( 'We encountered a problem with your request.') return params = urlparse.parse_qs(parsed.query) if params['state'] != [state_token]: self.error_response( 'Attack detected: state tokens did not match!') return if len(params['code']) != 1: self.error_response('Wrong number of "code" query parameters.') return self.send_response(200) self.send_header('Content-type', 'text/plain') self.end_headers() self.wfile.write( "courseraoauth2client: we have captured Coursera's response code. Feel free to close this browser window now and return to your terminal. Thanks!" ) done_function(params['code'][0]) return LocalServerHandler
make_handler
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(state_token, done_function):\n\n\n class LocalServerHandler(BaseHTTPServer.BaseHTTPRequestHandler):\n\n def x(self, msg):\n logging.warn('Error response: %(msg)s. %(path)s', msg=msg, path\n =self.path)\n self.send_response(400)\n self.send_header('Content-type', 'text/plain')\n self.end_headers()\n self.wfile.write(msg)\n\n def x(self):\n parsed = urlparse.urlparse(self.path)\n if len(parsed.query) == 0 or parsed.path != '/callback':\n self.error_response(\n 'We encountered a problem with your request.')\n return\n params = urlparse.parse_qs(parsed.query)\n if params['state'] != [state_token]:\n self.error_response(\n 'Attack detected: state tokens did not match!')\n return\n if len(params['code']) != 1:\n self.error_response('Wrong number of \"code\" query parameters.')\n return\n self.send_response(200)\n self.send_header('Content-type', 'text/plain')\n self.end_headers()\n self.wfile.write(\n \"courseraoauth2client: we have captured Coursera's response code. Feel free to close this browser window now and return to your terminal. Thanks!\"\n )\n done_function(params['code'][0])\n return LocalServerHandler\n", "role": "user" }, { "content": "make_handler", "role": "assistant" } ]
def x(): defaults = """ [oauth2] hostname = localhost port = 9876 api_endpoint = https://api.coursera.org auth_endpoint = https://accounts.coursera.org/oauth2/v1/auth token_endpoint = https://accounts.coursera.org/oauth2/v1/token verify_tls = True token_cache_base = ~/.coursera [manage_graders] client_id = NS8qaSX18X_Eu0pyNbLsnA client_secret = bUqKqGywnGXEJPFrcd4Jpw scopes = view_profile manage_graders [manage_research_exports] client_id = sDHC8Nfp-b1XMbzZx8Wa4w client_secret = pgD4adDd7lm-ksfG7UazUA scopes = view_profile manage_research_exports """ cfg = ConfigParser.SafeConfigParser() cfg.readfp(io.BytesIO(defaults)) cfg.read(['/etc/coursera/courseraoauth2client.cfg', os.path.expanduser( '~/.coursera/courseraoauth2client.cfg'), 'courseraoauth2client.cfg']) return cfg
configuration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n defaults = \"\"\"\n[oauth2]\nhostname = localhost\nport = 9876\napi_endpoint = https://api.coursera.org\nauth_endpoint = https://accounts.coursera.org/oauth2/v1/auth\ntoken_endpoint = https://accounts.coursera.org/oauth2/v1/token\nverify_tls = True\ntoken_cache_base = ~/.coursera\n\n[manage_graders]\nclient_id = NS8qaSX18X_Eu0pyNbLsnA\nclient_secret = bUqKqGywnGXEJPFrcd4Jpw\nscopes = view_profile manage_graders\n\n[manage_research_exports]\nclient_id = sDHC8Nfp-b1XMbzZx8Wa4w\nclient_secret = pgD4adDd7lm-ksfG7UazUA\nscopes = view_profile manage_research_exports\n\"\"\"\n cfg = ConfigParser.SafeConfigParser()\n cfg.readfp(io.BytesIO(defaults))\n cfg.read(['/etc/coursera/courseraoauth2client.cfg', os.path.expanduser(\n '~/.coursera/courseraoauth2client.cfg'), 'courseraoauth2client.cfg'])\n return cfg\n", "role": "user" }, { "content": "configuration", "role": "assistant" } ]
def x(self): try: logging.debug('About to read from local file cache file %s', self. token_cache_file) with open(self.token_cache_file, 'rb') as f: fs_cached = cPickle.load(f) if self._check_token_cache_type(fs_cached): logging.debug('Loaded from file system: %s', fs_cached) return fs_cached else: logging.warn('Found unexpected value in cache. %s', fs_cached) return None except IOError: logging.debug('Did not find file: %s on the file system.', self. token_cache_file) return None except: logging.info('Encountered exception loading from the file system.', exc_info=True) return None
load_token_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n try:\n logging.debug('About to read from local file cache file %s', self.\n token_cache_file)\n with open(self.token_cache_file, 'rb') as f:\n fs_cached = cPickle.load(f)\n if self._check_token_cache_type(fs_cached):\n logging.debug('Loaded from file system: %s', fs_cached)\n return fs_cached\n else:\n logging.warn('Found unexpected value in cache. %s', fs_cached)\n return None\n except IOError:\n logging.debug('Did not find file: %s on the file system.', self.\n token_cache_file)\n return None\n except:\n logging.info('Encountered exception loading from the file system.',\n exc_info=True)\n return None\n", "role": "user" }, { "content": "load_token_cache", "role": "assistant" } ]
def x(self, new_cache): logging.debug('Looking to write to local authentication cache...') if not self._check_token_cache_type(new_cache): logging.error('Attempt to save a bad value: %s', new_cache) return try: logging.debug('About to write to fs cache file: %s', self. token_cache_file) with open(self.token_cache_file, 'wb') as f: cPickle.dump(new_cache, f, protocol=cPickle.HIGHEST_PROTOCOL) logging.debug('Finished dumping cache_value to fs cache file.') except: logging.exception( 'Could not successfully cache OAuth2 secrets on the file system.')
save_token_cache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_cache):\n logging.debug('Looking to write to local authentication cache...')\n if not self._check_token_cache_type(new_cache):\n logging.error('Attempt to save a bad value: %s', new_cache)\n return\n try:\n logging.debug('About to write to fs cache file: %s', self.\n token_cache_file)\n with open(self.token_cache_file, 'wb') as f:\n cPickle.dump(new_cache, f, protocol=cPickle.HIGHEST_PROTOCOL)\n logging.debug('Finished dumping cache_value to fs cache file.')\n except:\n logging.exception(\n 'Could not successfully cache OAuth2 secrets on the file system.')\n", "role": "user" }, { "content": "save_token_cache", "role": "assistant" } ]
def x(self, cache_value): def x(name): return isinstance(cache_value[name], str) or isinstance(cache_value [name], unicode) def x(): if 'refresh' in cache_value: return check_string_value('refresh') else: return True return (isinstance(cache_value, dict) and 'token' in cache_value and 'expires' in cache_value and check_string_value('token') and isinstance(cache_value['expires'], float) and check_refresh_token())
check_token_cache_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cache_value):\n\n def x(name):\n return isinstance(cache_value[name], str) or isinstance(cache_value\n [name], unicode)\n\n def x():\n if 'refresh' in cache_value:\n return check_string_value('refresh')\n else:\n return True\n return (isinstance(cache_value, dict) and 'token' in cache_value and \n 'expires' in cache_value and check_string_value('token') and\n isinstance(cache_value['expires'], float) and check_refresh_token())\n", "role": "user" }, { "content": "check_token_cache_type", "role": "assistant" } ]
def x(self): logging.info('About to request new OAuth2 tokens from Coursera.') state_token = uuid.uuid4().hex authorization_url = self._build_authorizaton_url(state_token) sys.stdout.write('Please visit the following URL to authorize this app:\n') sys.stdout.write('\t%s\n\n' % authorization_url) if _platform == 'darwin': sys.stdout.write( """Mac OS X detected; attempting to auto-open the url in your default browser... """ ) try: subprocess.check_call(['open', authorization_url]) except: logging.exception('Could not call `open %(url)s`.', url= authorization_url) if self.local_webserver_port is not None: server_address = '', self.local_webserver_port code_holder = CodeHolder() local_server = BaseHTTPServer.HTTPServer(server_address, _make_handler(state_token, code_holder)) while not code_holder.has_code(): local_server.handle_request() coursera_code = code_holder.code else: coursera_code = raw_input('Please enter the code from Coursera: ') form_data = {'code': coursera_code, 'client_id': self.client_id, 'client_secret': self.client_secret, 'redirect_uri': self. _redirect_uri, 'grant_type': 'authorization_code'} return self._request_tokens_from_token_endpoint(form_data)
authorize_new_tokens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logging.info('About to request new OAuth2 tokens from Coursera.')\n state_token = uuid.uuid4().hex\n authorization_url = self._build_authorizaton_url(state_token)\n sys.stdout.write('Please visit the following URL to authorize this app:\\n')\n sys.stdout.write('\\t%s\\n\\n' % authorization_url)\n if _platform == 'darwin':\n sys.stdout.write(\n \"\"\"Mac OS X detected; attempting to auto-open the url in your default browser...\n\"\"\"\n )\n try:\n subprocess.check_call(['open', authorization_url])\n except:\n logging.exception('Could not call `open %(url)s`.', url=\n authorization_url)\n if self.local_webserver_port is not None:\n server_address = '', self.local_webserver_port\n code_holder = CodeHolder()\n local_server = BaseHTTPServer.HTTPServer(server_address,\n _make_handler(state_token, code_holder))\n while not code_holder.has_code():\n local_server.handle_request()\n coursera_code = code_holder.code\n else:\n coursera_code = raw_input('Please enter the code from Coursera: ')\n form_data = {'code': coursera_code, 'client_id': self.client_id,\n 'client_secret': self.client_secret, 'redirect_uri': self.\n _redirect_uri, 'grant_type': 'authorization_code'}\n return self._request_tokens_from_token_endpoint(form_data)\n", "role": "user" }, { "content": "authorize_new_tokens", "role": "assistant" } ]
def x(self): if self.token_cache is not None and 'refresh' in self.token_cache: refresh_form = {'grant_type': 'refresh_token', 'refresh_token': self.token_cache['refresh'], 'client_id': self.client_id, 'client_secret': self.client_secret} try: tokens = self._request_tokens_from_token_endpoint(refresh_form) tokens['refresh'] = self.token_cache['refresh'] return tokens except OAuth2Exception: logging.exception( 'Encountered an exception during refresh token flow.') return None
exchange_refresh_tokens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.token_cache is not None and 'refresh' in self.token_cache:\n refresh_form = {'grant_type': 'refresh_token', 'refresh_token':\n self.token_cache['refresh'], 'client_id': self.client_id,\n 'client_secret': self.client_secret}\n try:\n tokens = self._request_tokens_from_token_endpoint(refresh_form)\n tokens['refresh'] = self.token_cache['refresh']\n return tokens\n except OAuth2Exception:\n logging.exception(\n 'Encountered an exception during refresh token flow.')\n return None\n", "role": "user" }, { "content": "exchange_refresh_tokens", "role": "assistant" } ]
def x(element, exceptions): label = element.field.__dict__['label'] try: label = unicode(label) except NameError: pass if not label or label in exceptions: return False else: return '_queryset' in element.field.__dict__
foreignkey
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(element, exceptions):\n label = element.field.__dict__['label']\n try:\n label = unicode(label)\n except NameError:\n pass\n if not label or label in exceptions:\n return False\n else:\n return '_queryset' in element.field.__dict__\n", "role": "user" }, { "content": "foreignkey", "role": "assistant" } ]
def x(value, field): if isinstance(field, forms.DateTimeField): value = parse_datetime(value) elif isinstance(field, forms.DateField): value = parse_date(value) elif isinstance(field, forms.TimeField): value = parse_time(value) return value
deserialize_by_field
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, field):\n if isinstance(field, forms.DateTimeField):\n value = parse_datetime(value)\n elif isinstance(field, forms.DateField):\n value = parse_date(value)\n elif isinstance(field, forms.TimeField):\n value = parse_time(value)\n return value\n", "role": "user" }, { "content": "deserialize_by_field", "role": "assistant" } ]
def x(self): hp = self.k.hyperprior * self.noise_k.hyperprior if self.mu is not None: hp *= self.mu.hyperprior return hp
hyperprior
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n hp = self.k.hyperprior * self.noise_k.hyperprior\n if self.mu is not None:\n hp *= self.mu.hyperprior\n return hp\n", "role": "user" }, { "content": "hyperprior", "role": "assistant" } ]
def x(self): fp = CombinedBounds(self.k.fixed_params, self.noise_k.fixed_params) if self.mu is not None: fp = CombinedBounds(fp, self.mu.fixed_params) return fp
fixed_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fp = CombinedBounds(self.k.fixed_params, self.noise_k.fixed_params)\n if self.mu is not None:\n fp = CombinedBounds(fp, self.mu.fixed_params)\n return fp\n", "role": "user" }, { "content": "fixed_params", "role": "assistant" } ]
def x(self): p = CombinedBounds(self.k.params, self.noise_k.params) if self.mu is not None: p = CombinedBounds(p, self.mu.params) return p
params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n p = CombinedBounds(self.k.params, self.noise_k.params)\n if self.mu is not None:\n p = CombinedBounds(p, self.mu.params)\n return p\n", "role": "user" }, { "content": "params", "role": "assistant" } ]
def x(self): pn = CombinedBounds(self.k.param_names, self.noise_k.param_names) if self.mu is not None: pn = CombinedBounds(pn, self.mu.param_names) return pn
param_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pn = CombinedBounds(self.k.param_names, self.noise_k.param_names)\n if self.mu is not None:\n pn = CombinedBounds(pn, self.mu.param_names)\n return pn\n", "role": "user" }, { "content": "param_names", "role": "assistant" } ]
def x(self): p = CombinedBounds(self.k.free_params, self.noise_k.free_params) if self.mu is not None: p = CombinedBounds(p, self.mu.free_params) return p
free_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n p = CombinedBounds(self.k.free_params, self.noise_k.free_params)\n if self.mu is not None:\n p = CombinedBounds(p, self.mu.free_params)\n return p\n", "role": "user" }, { "content": "free_params", "role": "assistant" } ]
def x(self, value): value = scipy.asarray(value, dtype=float) self.K_up_to_date = False self.k.free_params = value[:self.k.num_free_params] self.noise_k.free_params = value[self.k.num_free_params:self.k. num_free_params + self.noise_k.num_free_params] if self.mu is not None: self.mu.free_params = value[self.k.num_free_params + self.noise_k. num_free_params:]
free_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n value = scipy.asarray(value, dtype=float)\n self.K_up_to_date = False\n self.k.free_params = value[:self.k.num_free_params]\n self.noise_k.free_params = value[self.k.num_free_params:self.k.\n num_free_params + self.noise_k.num_free_params]\n if self.mu is not None:\n self.mu.free_params = value[self.k.num_free_params + self.noise_k.\n num_free_params:]\n", "role": "user" }, { "content": "free_params", "role": "assistant" } ]
def x(self): fpb = CombinedBounds(self.k.free_param_bounds, self.noise_k. free_param_bounds) if self.mu is not None: fpb = CombinedBounds(fpb, self.mu.free_param_bounds) return fpb
free_param_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fpb = CombinedBounds(self.k.free_param_bounds, self.noise_k.\n free_param_bounds)\n if self.mu is not None:\n fpb = CombinedBounds(fpb, self.mu.free_param_bounds)\n return fpb\n", "role": "user" }, { "content": "free_param_bounds", "role": "assistant" } ]
def x(self): p = CombinedBounds(self.k.free_param_names, self.noise_k.free_param_names) if self.mu is not None: p = CombinedBounds(p, self.mu.free_param_names) return p
free_param_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n p = CombinedBounds(self.k.free_param_names, self.noise_k.free_param_names)\n if self.mu is not None:\n p = CombinedBounds(p, self.mu.free_param_names)\n return p\n", "role": "user" }, { "content": "free_param_names", "role": "assistant" } ]
def x(self, X, y, err_y=0, n=0, T=None): y = scipy.atleast_1d(scipy.asarray(y, dtype=float)) if len(y.shape) != 1: raise ValueError( 'Training targets y must have only one dimension with length greater than one! Shape of y given is %s' % (y.shape,)) try: iter(err_y) except TypeError: err_y = err_y * scipy.ones_like(y, dtype=float) else: err_y = scipy.asarray(err_y, dtype=float) if err_y.shape != y.shape: raise ValueError( 'When using array-like err_y, shape must match shape of y! Shape of err_y given is %s, shape of y given is %s.' % (err_y.shape, y.shape)) if (err_y < 0).any(): raise ValueError('All elements of err_y must be non-negative!') X = scipy.atleast_2d(scipy.asarray(X, dtype=float)) if self.num_dim == 1 and X.shape[0] == 1: X = X.T if T is None and X.shape != (len(y), self.num_dim): raise ValueError( 'Shape of training inputs must be (len(y), k.num_dim)! X given has shape %s, shape of y is %s and num_dim=%d.' % (X.shape, y.shape, self.num_dim)) try: iter(n) except TypeError: n = n * scipy.ones_like(X, dtype=int) else: n = scipy.atleast_2d(scipy.asarray(n, dtype=int)) if self.num_dim == 1 and n.shape[1] != 1: n = n.T if n.shape != X.shape: raise ValueError( 'When using array-like n, shape must be (len(y), k.num_dim)! Shape of n given is %s, shape of y given is %s and num_dim=%d.' % (n.shape, y.shape, self.num_dim)) if (n < 0).any(): raise ValueError('All elements of n must be non-negative integers!') if T is None and self.T is not None: T = scipy.eye(len(y)) if T is not None: T = scipy.atleast_2d(scipy.asarray(T, dtype=float)) if T.ndim != 2: raise ValueError('T must have exactly 2 dimensions!') if T.shape[0] != len(y): raise ValueError( 'T must have as many rows are there are elements in y!') if T.shape[1] != X.shape[0]: raise ValueError( 'There must be as many columns in T as there are rows in X!') if self.T is None and self.X is not None: self.T = scipy.eye(len(self.y)) if self.T is None: self.T = T else: self.T = scipy.linalg.block_diag(self.T, T) if self.X is None: self.X = X else: self.X = scipy.vstack((self.X, X)) self.y = scipy.append(self.y, y) self.err_y = scipy.append(self.err_y, err_y) if self.n is None: self.n = n else: self.n = scipy.vstack((self.n, n)) self.K_up_to_date = False
add_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, y, err_y=0, n=0, T=None):\n y = scipy.atleast_1d(scipy.asarray(y, dtype=float))\n if len(y.shape) != 1:\n raise ValueError(\n 'Training targets y must have only one dimension with length greater than one! Shape of y given is %s'\n % (y.shape,))\n try:\n iter(err_y)\n except TypeError:\n err_y = err_y * scipy.ones_like(y, dtype=float)\n else:\n err_y = scipy.asarray(err_y, dtype=float)\n if err_y.shape != y.shape:\n raise ValueError(\n 'When using array-like err_y, shape must match shape of y! Shape of err_y given is %s, shape of y given is %s.'\n % (err_y.shape, y.shape))\n if (err_y < 0).any():\n raise ValueError('All elements of err_y must be non-negative!')\n X = scipy.atleast_2d(scipy.asarray(X, dtype=float))\n if self.num_dim == 1 and X.shape[0] == 1:\n X = X.T\n if T is None and X.shape != (len(y), self.num_dim):\n raise ValueError(\n 'Shape of training inputs must be (len(y), k.num_dim)! X given has shape %s, shape of y is %s and num_dim=%d.'\n % (X.shape, y.shape, self.num_dim))\n try:\n iter(n)\n except TypeError:\n n = n * scipy.ones_like(X, dtype=int)\n else:\n n = scipy.atleast_2d(scipy.asarray(n, dtype=int))\n if self.num_dim == 1 and n.shape[1] != 1:\n n = n.T\n if n.shape != X.shape:\n raise ValueError(\n 'When using array-like n, shape must be (len(y), k.num_dim)! Shape of n given is %s, shape of y given is %s and num_dim=%d.'\n % (n.shape, y.shape, self.num_dim))\n if (n < 0).any():\n raise ValueError('All elements of n must be non-negative integers!')\n if T is None and self.T is not None:\n T = scipy.eye(len(y))\n if T is not None:\n T = scipy.atleast_2d(scipy.asarray(T, dtype=float))\n if T.ndim != 2:\n raise ValueError('T must have exactly 2 dimensions!')\n if T.shape[0] != len(y):\n raise ValueError(\n 'T must have as many rows are there are elements in y!')\n if T.shape[1] != X.shape[0]:\n raise ValueError(\n 'There must be as many columns in T as there are rows in X!')\n if self.T is None and self.X is not None:\n self.T = scipy.eye(len(self.y))\n if self.T is None:\n self.T = T\n else:\n self.T = scipy.linalg.block_diag(self.T, T)\n if self.X is None:\n self.X = X\n else:\n self.X = scipy.vstack((self.X, X))\n self.y = scipy.append(self.y, y)\n self.err_y = scipy.append(self.err_y, err_y)\n if self.n is None:\n self.n = n\n else:\n self.n = scipy.vstack((self.n, n))\n self.K_up_to_date = False\n", "role": "user" }, { "content": "add_data", "role": "assistant" } ]
def x(self): unique, inv = unique_rows(scipy.hstack((self.X, self.n)), return_inverse=True) if len(unique) != len(self.X): if self.T is None: self.T = scipy.eye(len(self.y)) new_T = scipy.zeros((len(self.y), unique.shape[0])) for j in xrange(0, len(inv)): new_T[:, inv[j]] += self.T[:, j] self.T = new_T self.n = unique[:, self.X.shape[1]:] self.X = unique[:, :self.X.shape[1]] if self.T is not None: good_cols = (self.T != 0.0).any(axis=0) self.T = self.T[:, good_cols] self.X = self.X[good_cols, :] self.n = self.n[good_cols, :]
condense_duplicates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n unique, inv = unique_rows(scipy.hstack((self.X, self.n)),\n return_inverse=True)\n if len(unique) != len(self.X):\n if self.T is None:\n self.T = scipy.eye(len(self.y))\n new_T = scipy.zeros((len(self.y), unique.shape[0]))\n for j in xrange(0, len(inv)):\n new_T[:, inv[j]] += self.T[:, j]\n self.T = new_T\n self.n = unique[:, self.X.shape[1]:]\n self.X = unique[:, :self.X.shape[1]]\n if self.T is not None:\n good_cols = (self.T != 0.0).any(axis=0)\n self.T = self.T[:, good_cols]\n self.X = self.X[good_cols, :]\n self.n = self.n[good_cols, :]\n", "role": "user" }, { "content": "condense_duplicates", "role": "assistant" } ]
def x(self, thresh=3, **predict_kwargs): mean = self.predict(self.X, n=self.n, noise=False, return_std=False, output_transform=self.T, **predict_kwargs) deltas = scipy.absolute(mean - self.y) / self.err_y deltas[self.err_y == 0] = 0 bad_idxs = deltas >= thresh good_idxs = ~bad_idxs y_bad = self.y[bad_idxs] err_y_bad = self.err_y[bad_idxs] if self.T is not None: T_bad = self.T[bad_idxs, :] non_zero_cols = (T_bad != 0).all(axis=0) T_bad = T_bad[:, non_zero_cols] X_bad = self.X[non_zero_cols, :] n_bad = self.n[non_zero_cols, :] else: X_bad = self.X[bad_idxs, :] n_bad = self.n[bad_idxs, :] if self.T is None: self.X = self.X[good_idxs, :] self.n = self.n[good_idxs, :] else: self.T = self.T[good_idxs, :] non_zero_cols = (self.T != 0).all(axis=0) self.T = self.T[:, non_zero_cols] self.X = self.X[non_zero_cols, :] self.n = self.n[non_zero_cols, :] self.y = self.y[good_idxs] self.err_y = self.err_y[good_idxs] self.K_up_to_date = False if self.T is None: return X_bad, y_bad, err_y_bad, n_bad, bad_idxs else: return X_bad, y_bad, err_y_bad, n_bad, bad_idxs, T_bad
remove_outliers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, thresh=3, **predict_kwargs):\n mean = self.predict(self.X, n=self.n, noise=False, return_std=False,\n output_transform=self.T, **predict_kwargs)\n deltas = scipy.absolute(mean - self.y) / self.err_y\n deltas[self.err_y == 0] = 0\n bad_idxs = deltas >= thresh\n good_idxs = ~bad_idxs\n y_bad = self.y[bad_idxs]\n err_y_bad = self.err_y[bad_idxs]\n if self.T is not None:\n T_bad = self.T[bad_idxs, :]\n non_zero_cols = (T_bad != 0).all(axis=0)\n T_bad = T_bad[:, non_zero_cols]\n X_bad = self.X[non_zero_cols, :]\n n_bad = self.n[non_zero_cols, :]\n else:\n X_bad = self.X[bad_idxs, :]\n n_bad = self.n[bad_idxs, :]\n if self.T is None:\n self.X = self.X[good_idxs, :]\n self.n = self.n[good_idxs, :]\n else:\n self.T = self.T[good_idxs, :]\n non_zero_cols = (self.T != 0).all(axis=0)\n self.T = self.T[:, non_zero_cols]\n self.X = self.X[non_zero_cols, :]\n self.n = self.n[non_zero_cols, :]\n self.y = self.y[good_idxs]\n self.err_y = self.err_y[good_idxs]\n self.K_up_to_date = False\n if self.T is None:\n return X_bad, y_bad, err_y_bad, n_bad, bad_idxs\n else:\n return X_bad, y_bad, err_y_bad, n_bad, bad_idxs, T_bad\n", "role": "user" }, { "content": "remove_outliers", "role": "assistant" } ]
def x(self, method='SLSQP', opt_kwargs={}, verbose=False, random_starts= None, num_proc=None, max_tries=1): if opt_kwargs is None: opt_kwargs = {} else: opt_kwargs = dict(opt_kwargs) if 'method' in opt_kwargs: method = opt_kwargs['method'] if self.verbose: warnings.warn( "Key 'method' is present in opt_kwargs, will override option specified with method kwarg." , RuntimeWarning) else: opt_kwargs['method'] = method if num_proc is None: num_proc = multiprocessing.cpu_count() param_ranges = scipy.asarray(self.free_param_bounds, dtype=float) param_ranges[scipy.where(scipy.isnan(param_ranges[:, 0])), 0] = -1e+16 param_ranges[scipy.where(scipy.isnan(param_ranges[:, 1])), 1] = 1e+16 param_ranges[scipy.where(scipy.isinf(param_ranges[:, 0])), 0] = -1e+16 param_ranges[scipy.where(scipy.isinf(param_ranges[:, 1])), 1] = 1e+16 if random_starts == 0: num_proc = 0 param_samples = [self.free_params[:]] else: if random_starts is None: random_starts = max(num_proc, 1) param_samples = self.hyperprior.random_draw(size=random_starts).T param_samples = param_samples[:, ~self.fixed_params] if 'bounds' not in opt_kwargs: opt_kwargs['bounds'] = param_ranges if self.use_hyper_deriv: opt_kwargs['jac'] = True trial = 0 res_min = None while trial < max_tries and res_min is None: if trial >= 1: if self.verbose: warnings.warn( 'No solutions found on trial %d, retrying random starts.' % (trial - 1,), RuntimeWarning) if random_starts != 0: param_samples = self.hyperprior.random_draw(size=random_starts ).T param_samples = param_samples[:, ~self.fixed_params] trial += 1 if num_proc > 1: pool = InterruptiblePool(processes=num_proc) map_fun = pool.map else: map_fun = map try: res = map_fun(_OptimizeHyperparametersEval(self, opt_kwargs), param_samples) finally: if num_proc > 1: pool.close() res = [r for r in res if r is not None] try: res_min = min(res, key=lambda r: r.fun) if scipy.isnan(res_min.fun) or scipy.isinf(res_min.fun): res_min = None except ValueError: res_min = None if res_min is None: raise ValueError( 'Optimizer failed to find a valid solution. Try changing the parameter bounds, picking a new initial guess or increasing the number of random starts.' ) self.update_hyperparameters(res_min.x) if verbose: print('Got %d completed starts, optimal result is:' % (len(res),)) print(res_min) print('\nLL\t%.3g' % (-1 * res_min.fun)) for v, l in zip(res_min.x, self.free_param_names): print('%s\t%.3g' % (l.translate(None, '\\'), v)) if not res_min.success: warnings.warn( "Optimizer %s reports failure, selected hyperparameters are likely NOT optimal. Status: %d, Message: '%s'. Try adjusting bounds, initial guesses or the number of random starts used." % (method, res_min.status, res_min.message), RuntimeWarning) bounds = scipy.asarray(self.free_param_bounds) if (res_min.x <= 1.001 * bounds[:, 0]).any() or (res_min.x >= 0.999 * bounds[:, 1]).any(): warnings.warn( """Optimizer appears to have hit/exceeded the bounds. Bounds are: %s , solution is: %s. Try adjusting bounds, initial guesses or the number of random starts used.""" % (str(bounds), str(res_min.x))) return res_min, len(res)
optimize_hyperparameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, method='SLSQP', opt_kwargs={}, verbose=False, random_starts=\n None, num_proc=None, max_tries=1):\n if opt_kwargs is None:\n opt_kwargs = {}\n else:\n opt_kwargs = dict(opt_kwargs)\n if 'method' in opt_kwargs:\n method = opt_kwargs['method']\n if self.verbose:\n warnings.warn(\n \"Key 'method' is present in opt_kwargs, will override option specified with method kwarg.\"\n , RuntimeWarning)\n else:\n opt_kwargs['method'] = method\n if num_proc is None:\n num_proc = multiprocessing.cpu_count()\n param_ranges = scipy.asarray(self.free_param_bounds, dtype=float)\n param_ranges[scipy.where(scipy.isnan(param_ranges[:, 0])), 0] = -1e+16\n param_ranges[scipy.where(scipy.isnan(param_ranges[:, 1])), 1] = 1e+16\n param_ranges[scipy.where(scipy.isinf(param_ranges[:, 0])), 0] = -1e+16\n param_ranges[scipy.where(scipy.isinf(param_ranges[:, 1])), 1] = 1e+16\n if random_starts == 0:\n num_proc = 0\n param_samples = [self.free_params[:]]\n else:\n if random_starts is None:\n random_starts = max(num_proc, 1)\n param_samples = self.hyperprior.random_draw(size=random_starts).T\n param_samples = param_samples[:, ~self.fixed_params]\n if 'bounds' not in opt_kwargs:\n opt_kwargs['bounds'] = param_ranges\n if self.use_hyper_deriv:\n opt_kwargs['jac'] = True\n trial = 0\n res_min = None\n while trial < max_tries and res_min is None:\n if trial >= 1:\n if self.verbose:\n warnings.warn(\n 'No solutions found on trial %d, retrying random starts.' %\n (trial - 1,), RuntimeWarning)\n if random_starts != 0:\n param_samples = self.hyperprior.random_draw(size=random_starts\n ).T\n param_samples = param_samples[:, ~self.fixed_params]\n trial += 1\n if num_proc > 1:\n pool = InterruptiblePool(processes=num_proc)\n map_fun = pool.map\n else:\n map_fun = map\n try:\n res = map_fun(_OptimizeHyperparametersEval(self, opt_kwargs),\n param_samples)\n finally:\n if num_proc > 1:\n pool.close()\n res = [r for r in res if r is not None]\n try:\n res_min = min(res, key=lambda r: r.fun)\n if scipy.isnan(res_min.fun) or scipy.isinf(res_min.fun):\n res_min = None\n except ValueError:\n res_min = None\n if res_min is None:\n raise ValueError(\n 'Optimizer failed to find a valid solution. Try changing the parameter bounds, picking a new initial guess or increasing the number of random starts.'\n )\n self.update_hyperparameters(res_min.x)\n if verbose:\n print('Got %d completed starts, optimal result is:' % (len(res),))\n print(res_min)\n print('\\nLL\\t%.3g' % (-1 * res_min.fun))\n for v, l in zip(res_min.x, self.free_param_names):\n print('%s\\t%.3g' % (l.translate(None, '\\\\'), v))\n if not res_min.success:\n warnings.warn(\n \"Optimizer %s reports failure, selected hyperparameters are likely NOT optimal. Status: %d, Message: '%s'. Try adjusting bounds, initial guesses or the number of random starts used.\"\n % (method, res_min.status, res_min.message), RuntimeWarning)\n bounds = scipy.asarray(self.free_param_bounds)\n if (res_min.x <= 1.001 * bounds[:, 0]).any() or (res_min.x >= 0.999 *\n bounds[:, 1]).any():\n warnings.warn(\n \"\"\"Optimizer appears to have hit/exceeded the bounds. Bounds are:\n%s\n, solution is:\n%s. Try adjusting bounds, initial guesses or the number of random starts used.\"\"\"\n % (str(bounds), str(res_min.x)))\n return res_min, len(res)\n", "role": "user" }, { "content": "optimize_hyperparameters", "role": "assistant" } ]
def x(self, Xstar, n=0, noise=False, return_std=True, return_cov=False, full_output=False, return_samples=False, num_samples=1, samp_kwargs={}, return_mean_func=False, use_MCMC=False, full_MC=False, rejection_func= None, ddof=1, output_transform=None, **kwargs): if use_MCMC: res = self.predict_MCMC(Xstar, n=n, noise=noise, return_std= return_std or full_output, return_cov=return_cov or full_output, return_samples=full_output and (return_samples or rejection_func), return_mean_func=full_output and return_mean_func, num_samples=num_samples, samp_kwargs= samp_kwargs, full_MC=full_MC, rejection_func=rejection_func, ddof=ddof, output_transform=output_transform, **kwargs) if full_output: return res elif return_cov: return res['mean'], res['cov'] elif return_std: return res['mean'], res['std'] else: return res['mean'] else: Xstar = scipy.atleast_2d(scipy.asarray(Xstar, dtype=float)) if self.num_dim == 1 and Xstar.shape[0] == 1: Xstar = Xstar.T if Xstar.shape[1] != self.num_dim: raise ValueError( 'Second dimension of Xstar must be equal to self.num_dim! Shape of Xstar given is %s, num_dim is %d.' % (Xstar.shape, self.num_dim)) if output_transform is not None: output_transform = scipy.atleast_2d(scipy.asarray( output_transform, dtype=float)) if output_transform.ndim != 2: raise ValueError( 'output_transform must have exactly 2 dimensions! Shape of output_transform given is %s.' % (output_transform.shape,)) if output_transform.shape[1] != Xstar.shape[0]: raise ValueError( 'output_transform must have the same number of columns the number of rows in Xstar! Shape of output_transform given is %s, shape of Xstar is %s.' % (output_transform.shape, Xstar.shape)) try: iter(n) except TypeError: n = n * scipy.ones(Xstar.shape, dtype=int) else: n = scipy.atleast_2d(scipy.asarray(n, dtype=int)) if self.num_dim == 1 and n.shape[0] == 1: n = n.T if n.shape != Xstar.shape: raise ValueError( 'When using array-like n, shape must match shape of Xstar! Shape of n given is %s, shape of Xstar given is %s.' % (n.shape, Xstar.shape)) if (n < 0).any(): raise ValueError('All elements of n must be non-negative integers!' ) self.compute_K_L_alpha_ll() Kstar = self.compute_Kij(self.X, Xstar, self.n, n) if noise: Kstar = Kstar + self.compute_Kij(self.X, Xstar, self.n, n, noise=True) if self.T is not None: Kstar = self.T.dot(Kstar) mean = Kstar.T.dot(self.alpha) if self.mu is not None: mean_func = scipy.atleast_2d(self.mu(Xstar, n)).T mean += mean_func if output_transform is not None: mean = output_transform.dot(mean) if return_mean_func and self.mu is not None: mean_func = output_transform.dot(mean_func) mean = mean.ravel() if return_mean_func and self.mu is not None: mean_func = mean_func.ravel() if return_std or return_cov or full_output or full_MC: v = scipy.linalg.solve_triangular(self.L, Kstar, lower=True) Kstarstar = self.compute_Kij(Xstar, None, n, None) if noise: Kstarstar = Kstarstar + self.compute_Kij(Xstar, None, n, None, noise=True) covariance = Kstarstar - v.T.dot(v) if output_transform is not None: covariance = output_transform.dot(covariance.dot( output_transform.T)) if return_samples or full_MC: samps = self.draw_sample(Xstar, n=n, num_samp=num_samples, mean=mean, cov=covariance, **samp_kwargs) if rejection_func: good_samps = [] for samp in samps.T: if rejection_func(samp): good_samps.append(samp) if len(good_samps) == 0: raise ValueError('Did not get any good samples!') samps = scipy.asarray(good_samps, dtype=float).T if full_MC: mean = scipy.mean(samps, axis=1) covariance = scipy.cov(samps, rowvar=1, ddof=ddof) std = scipy.sqrt(scipy.diagonal(covariance)) if full_output: out = {'mean': mean, 'std': std, 'cov': covariance} if return_samples or full_MC: out['samp'] = samps if return_mean_func and self.mu is not None: out['mean_func'] = mean_func out['cov_func'] = scipy.zeros((len(mean_func), len( mean_func)), dtype=float) out['std_func'] = scipy.zeros_like(mean_func) out['mean_without_func'] = mean - mean_func out['cov_without_func'] = covariance out['std_without_func'] = std return out elif return_cov: return mean, covariance elif return_std: return mean, std else: return mean else: return mean
predict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Xstar, n=0, noise=False, return_std=True, return_cov=False,\n full_output=False, return_samples=False, num_samples=1, samp_kwargs={},\n return_mean_func=False, use_MCMC=False, full_MC=False, rejection_func=\n None, ddof=1, output_transform=None, **kwargs):\n if use_MCMC:\n res = self.predict_MCMC(Xstar, n=n, noise=noise, return_std=\n return_std or full_output, return_cov=return_cov or full_output,\n return_samples=full_output and (return_samples or\n rejection_func), return_mean_func=full_output and\n return_mean_func, num_samples=num_samples, samp_kwargs=\n samp_kwargs, full_MC=full_MC, rejection_func=rejection_func,\n ddof=ddof, output_transform=output_transform, **kwargs)\n if full_output:\n return res\n elif return_cov:\n return res['mean'], res['cov']\n elif return_std:\n return res['mean'], res['std']\n else:\n return res['mean']\n else:\n Xstar = scipy.atleast_2d(scipy.asarray(Xstar, dtype=float))\n if self.num_dim == 1 and Xstar.shape[0] == 1:\n Xstar = Xstar.T\n if Xstar.shape[1] != self.num_dim:\n raise ValueError(\n 'Second dimension of Xstar must be equal to self.num_dim! Shape of Xstar given is %s, num_dim is %d.'\n % (Xstar.shape, self.num_dim))\n if output_transform is not None:\n output_transform = scipy.atleast_2d(scipy.asarray(\n output_transform, dtype=float))\n if output_transform.ndim != 2:\n raise ValueError(\n 'output_transform must have exactly 2 dimensions! Shape of output_transform given is %s.'\n % (output_transform.shape,))\n if output_transform.shape[1] != Xstar.shape[0]:\n raise ValueError(\n 'output_transform must have the same number of columns the number of rows in Xstar! Shape of output_transform given is %s, shape of Xstar is %s.'\n % (output_transform.shape, Xstar.shape))\n try:\n iter(n)\n except TypeError:\n n = n * scipy.ones(Xstar.shape, dtype=int)\n else:\n n = scipy.atleast_2d(scipy.asarray(n, dtype=int))\n if self.num_dim == 1 and n.shape[0] == 1:\n n = n.T\n if n.shape != Xstar.shape:\n raise ValueError(\n 'When using array-like n, shape must match shape of Xstar! Shape of n given is %s, shape of Xstar given is %s.'\n % (n.shape, Xstar.shape))\n if (n < 0).any():\n raise ValueError('All elements of n must be non-negative integers!'\n )\n self.compute_K_L_alpha_ll()\n Kstar = self.compute_Kij(self.X, Xstar, self.n, n)\n if noise:\n Kstar = Kstar + self.compute_Kij(self.X, Xstar, self.n, n,\n noise=True)\n if self.T is not None:\n Kstar = self.T.dot(Kstar)\n mean = Kstar.T.dot(self.alpha)\n if self.mu is not None:\n mean_func = scipy.atleast_2d(self.mu(Xstar, n)).T\n mean += mean_func\n if output_transform is not None:\n mean = output_transform.dot(mean)\n if return_mean_func and self.mu is not None:\n mean_func = output_transform.dot(mean_func)\n mean = mean.ravel()\n if return_mean_func and self.mu is not None:\n mean_func = mean_func.ravel()\n if return_std or return_cov or full_output or full_MC:\n v = scipy.linalg.solve_triangular(self.L, Kstar, lower=True)\n Kstarstar = self.compute_Kij(Xstar, None, n, None)\n if noise:\n Kstarstar = Kstarstar + self.compute_Kij(Xstar, None, n,\n None, noise=True)\n covariance = Kstarstar - v.T.dot(v)\n if output_transform is not None:\n covariance = output_transform.dot(covariance.dot(\n output_transform.T))\n if return_samples or full_MC:\n samps = self.draw_sample(Xstar, n=n, num_samp=num_samples,\n mean=mean, cov=covariance, **samp_kwargs)\n if rejection_func:\n good_samps = []\n for samp in samps.T:\n if rejection_func(samp):\n good_samps.append(samp)\n if len(good_samps) == 0:\n raise ValueError('Did not get any good samples!')\n samps = scipy.asarray(good_samps, dtype=float).T\n if full_MC:\n mean = scipy.mean(samps, axis=1)\n covariance = scipy.cov(samps, rowvar=1, ddof=ddof)\n std = scipy.sqrt(scipy.diagonal(covariance))\n if full_output:\n out = {'mean': mean, 'std': std, 'cov': covariance}\n if return_samples or full_MC:\n out['samp'] = samps\n if return_mean_func and self.mu is not None:\n out['mean_func'] = mean_func\n out['cov_func'] = scipy.zeros((len(mean_func), len(\n mean_func)), dtype=float)\n out['std_func'] = scipy.zeros_like(mean_func)\n out['mean_without_func'] = mean - mean_func\n out['cov_without_func'] = covariance\n out['std_without_func'] = std\n return out\n elif return_cov:\n return mean, covariance\n elif return_std:\n return mean, std\n else:\n return mean\n else:\n return mean\n", "role": "user" }, { "content": "predict", "role": "assistant" } ]
def x(self, X=None, n=0, ax=None, envelopes=[1, 3], base_alpha=0.375, return_prediction=False, return_std=True, full_output=False, plot_kwargs={}, **kwargs): if self.num_dim > 2: raise ValueError('Plotting is not supported for num_dim > 2!') if self.num_dim == 1: if X is None: X = scipy.linspace(self.X.min(), self.X.max(), 100) elif self.num_dim == 2: if X is None: x1 = scipy.linspace(self.X[:, 0].min(), self.X[:, 0].max(), 50) x2 = scipy.linspace(self.X[:, 1].min(), self.X[:, 1].max(), 50) X1, X2 = scipy.meshgrid(x1, x2) X1 = X1.flatten() X2 = X2.flatten() X = scipy.hstack((scipy.atleast_2d(X1).T, scipy.atleast_2d(X2).T)) else: X1 = scipy.asarray(X[:, 0]).flatten() X2 = scipy.asarray(X[:, 1]).flatten() if envelopes or return_prediction and (return_std or full_output): out = self.predict(X, n=n, full_output=True, **kwargs) mean = out['mean'] std = out['std'] else: mean = self.predict(X, n=n, return_std=False, **kwargs) std = None if self.num_dim == 1: univariate_envelope_plot(X, mean, std, ax=ax, base_alpha=base_alpha, envelopes=envelopes, **plot_kwargs) elif self.num_dim == 2: if ax is None: f = plt.figure() ax = f.add_subplot(111, projection='3d') elif ax == 'gca': ax = plt.gca() if 'linewidths' not in kwargs: kwargs['linewidths'] = 0 s = ax.plot_trisurf(X1, X2, mean, **plot_kwargs) for i in envelopes: kwargs.pop('alpha', base_alpha) ax.plot_trisurf(X1, X2, mean - std, alpha=base_alpha / i, **kwargs) ax.plot_trisurf(X1, X2, mean + std, alpha=base_alpha / i, **kwargs) if return_prediction: if full_output: return ax, out elif return_std: return ax, out['mean'], out['std'] else: return ax, out['mean'] else: return ax
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X=None, n=0, ax=None, envelopes=[1, 3], base_alpha=0.375,\n return_prediction=False, return_std=True, full_output=False,\n plot_kwargs={}, **kwargs):\n if self.num_dim > 2:\n raise ValueError('Plotting is not supported for num_dim > 2!')\n if self.num_dim == 1:\n if X is None:\n X = scipy.linspace(self.X.min(), self.X.max(), 100)\n elif self.num_dim == 2:\n if X is None:\n x1 = scipy.linspace(self.X[:, 0].min(), self.X[:, 0].max(), 50)\n x2 = scipy.linspace(self.X[:, 1].min(), self.X[:, 1].max(), 50)\n X1, X2 = scipy.meshgrid(x1, x2)\n X1 = X1.flatten()\n X2 = X2.flatten()\n X = scipy.hstack((scipy.atleast_2d(X1).T, scipy.atleast_2d(X2).T))\n else:\n X1 = scipy.asarray(X[:, 0]).flatten()\n X2 = scipy.asarray(X[:, 1]).flatten()\n if envelopes or return_prediction and (return_std or full_output):\n out = self.predict(X, n=n, full_output=True, **kwargs)\n mean = out['mean']\n std = out['std']\n else:\n mean = self.predict(X, n=n, return_std=False, **kwargs)\n std = None\n if self.num_dim == 1:\n univariate_envelope_plot(X, mean, std, ax=ax, base_alpha=base_alpha,\n envelopes=envelopes, **plot_kwargs)\n elif self.num_dim == 2:\n if ax is None:\n f = plt.figure()\n ax = f.add_subplot(111, projection='3d')\n elif ax == 'gca':\n ax = plt.gca()\n if 'linewidths' not in kwargs:\n kwargs['linewidths'] = 0\n s = ax.plot_trisurf(X1, X2, mean, **plot_kwargs)\n for i in envelopes:\n kwargs.pop('alpha', base_alpha)\n ax.plot_trisurf(X1, X2, mean - std, alpha=base_alpha / i, **kwargs)\n ax.plot_trisurf(X1, X2, mean + std, alpha=base_alpha / i, **kwargs)\n if return_prediction:\n if full_output:\n return ax, out\n elif return_std:\n return ax, out['mean'], out['std']\n else:\n return ax, out['mean']\n else:\n return ax\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self, Xstar, n=0, num_samp=1, rand_vars=None, rand_type= 'standard normal', diag_factor=1000.0, method='cholesky', num_eig=None, mean=None, cov=None, modify_sign=None, **kwargs): if mean is None or cov is None: out = self.predict(Xstar, n=n, full_output=True, **kwargs) mean = out['mean'] cov = out['cov'] if rand_vars is None and method != 'eig': try: return numpy.random.multivariate_normal(mean, cov, num_samp).T except numpy.linalg.LinAlgError as e: if self.verbose: warnings.warn( """Failure when drawing from MVN! Falling back on eig. Exception was: %s""" % (e,), RuntimeWarning) method = 'eig' if num_eig is None or num_eig > len(mean): num_eig = len(mean) elif num_eig < 1: num_eig = 1 if rand_vars is None: rand_vars = numpy.random.standard_normal((num_eig, num_samp)) valid_types = 'standard normal', 'uniform' if rand_type not in valid_types: raise ValueError( 'rand_type %s not recognized! Valid options are: %s.' % ( rand_type, valid_types)) if rand_type == 'uniform': rand_vars = scipy.stats.norm.ppf(rand_vars) if method == 'cholesky': L = scipy.linalg.cholesky(cov + diag_factor * sys.float_info. epsilon * scipy.eye(cov.shape[0]), lower=True, check_finite=False) elif method == 'eig': eig, Q = scipy.linalg.eigh(cov + diag_factor * sys.float_info. epsilon * scipy.eye(cov.shape[0]), eigvals=(len(mean) - 1 - ( num_eig - 1), len(mean) - 1)) if modify_sign is not None: if modify_sign == 'left value': modify_mask = Q[0, :] < 0.0 elif modify_sign == 'right value': modify_mask = Q[-1, :] < 0.0 elif modify_sign == 'left slope': modify_mask = Q[1, :] - Q[0, :] < 0.0 elif modify_sign == 'right slope': modify_mask = Q[-1, :] - Q[-2, :] < 0.0 elif modify_sign == 'left concavity': modify_mask = Q[2, :] - 2 * Q[1, :] + Q[0, :] < 0.0 elif modify_sign == 'right concavity': modify_mask = Q[-1, :] - 2 * Q[-2, :] + Q[-3, :] < 0.0 else: raise ValueError('modify_sign %s not recognized!' % ( modify_sign,)) Q[:, modify_mask] *= -1.0 Lam_1_2 = scipy.diag(scipy.sqrt(eig)) L = Q.dot(Lam_1_2) else: raise ValueError('method %s not recognized!' % (method,)) return scipy.atleast_2d(mean).T + L.dot(rand_vars[:num_eig, :])
draw_sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Xstar, n=0, num_samp=1, rand_vars=None, rand_type=\n 'standard normal', diag_factor=1000.0, method='cholesky', num_eig=None,\n mean=None, cov=None, modify_sign=None, **kwargs):\n if mean is None or cov is None:\n out = self.predict(Xstar, n=n, full_output=True, **kwargs)\n mean = out['mean']\n cov = out['cov']\n if rand_vars is None and method != 'eig':\n try:\n return numpy.random.multivariate_normal(mean, cov, num_samp).T\n except numpy.linalg.LinAlgError as e:\n if self.verbose:\n warnings.warn(\n \"\"\"Failure when drawing from MVN! Falling back on eig. Exception was:\n%s\"\"\"\n % (e,), RuntimeWarning)\n method = 'eig'\n if num_eig is None or num_eig > len(mean):\n num_eig = len(mean)\n elif num_eig < 1:\n num_eig = 1\n if rand_vars is None:\n rand_vars = numpy.random.standard_normal((num_eig, num_samp))\n valid_types = 'standard normal', 'uniform'\n if rand_type not in valid_types:\n raise ValueError(\n 'rand_type %s not recognized! Valid options are: %s.' % (\n rand_type, valid_types))\n if rand_type == 'uniform':\n rand_vars = scipy.stats.norm.ppf(rand_vars)\n if method == 'cholesky':\n L = scipy.linalg.cholesky(cov + diag_factor * sys.float_info.\n epsilon * scipy.eye(cov.shape[0]), lower=True, check_finite=False)\n elif method == 'eig':\n eig, Q = scipy.linalg.eigh(cov + diag_factor * sys.float_info.\n epsilon * scipy.eye(cov.shape[0]), eigvals=(len(mean) - 1 - (\n num_eig - 1), len(mean) - 1))\n if modify_sign is not None:\n if modify_sign == 'left value':\n modify_mask = Q[0, :] < 0.0\n elif modify_sign == 'right value':\n modify_mask = Q[-1, :] < 0.0\n elif modify_sign == 'left slope':\n modify_mask = Q[1, :] - Q[0, :] < 0.0\n elif modify_sign == 'right slope':\n modify_mask = Q[-1, :] - Q[-2, :] < 0.0\n elif modify_sign == 'left concavity':\n modify_mask = Q[2, :] - 2 * Q[1, :] + Q[0, :] < 0.0\n elif modify_sign == 'right concavity':\n modify_mask = Q[-1, :] - 2 * Q[-2, :] + Q[-3, :] < 0.0\n else:\n raise ValueError('modify_sign %s not recognized!' % (\n modify_sign,))\n Q[:, modify_mask] *= -1.0\n Lam_1_2 = scipy.diag(scipy.sqrt(eig))\n L = Q.dot(Lam_1_2)\n else:\n raise ValueError('method %s not recognized!' % (method,))\n return scipy.atleast_2d(mean).T + L.dot(rand_vars[:num_eig, :])\n", "role": "user" }, { "content": "draw_sample", "role": "assistant" } ]
def x(self, new_params, hyper_deriv_handling='default', exit_on_bounds=True, inf_on_error=True): use_hyper_deriv = self.use_hyper_deriv if hyper_deriv_handling == 'value': self.use_hyper_deriv = False elif hyper_deriv_handling == 'deriv': self.use_hyper_deriv = True self.k.set_hyperparams(new_params[:len(self.k.free_params)]) self.noise_k.set_hyperparams(new_params[len(self.k.free_params):len( self.k.free_params) + len(self.noise_k.free_params)]) if self.mu is not None: self.mu.set_hyperparams(new_params[len(self.k.free_params) + len( self.noise_k.free_params):]) self.K_up_to_date = False try: if exit_on_bounds: if scipy.isinf(self.hyperprior(self.params)): raise GPImpossibleParamsError('Impossible values for params!') self.compute_K_L_alpha_ll() except Exception as e: if inf_on_error: if not isinstance(e, GPImpossibleParamsError) and self.verbose: warnings.warn( """Unhandled exception when updating GP! Exception was: %s State of params is: %s""" % (traceback.format_exc(), str(self.free_params[:]))) self.use_hyper_deriv = use_hyper_deriv if use_hyper_deriv and hyper_deriv_handling == 'default': return scipy.inf, scipy.zeros(len(self.free_params)) elif hyper_deriv_handling == 'deriv': return scipy.zeros(len(self.free_params)) else: return scipy.inf else: self.use_hyper_deriv = use_hyper_deriv raise e self.use_hyper_deriv = use_hyper_deriv if use_hyper_deriv and hyper_deriv_handling == 'default': return -1.0 * self.ll, -1.0 * self.ll_deriv elif hyper_deriv_handling == 'deriv': return -1.0 * self.ll_deriv else: return -1.0 * self.ll
update_hyperparameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_params, hyper_deriv_handling='default', exit_on_bounds=True,\n inf_on_error=True):\n use_hyper_deriv = self.use_hyper_deriv\n if hyper_deriv_handling == 'value':\n self.use_hyper_deriv = False\n elif hyper_deriv_handling == 'deriv':\n self.use_hyper_deriv = True\n self.k.set_hyperparams(new_params[:len(self.k.free_params)])\n self.noise_k.set_hyperparams(new_params[len(self.k.free_params):len(\n self.k.free_params) + len(self.noise_k.free_params)])\n if self.mu is not None:\n self.mu.set_hyperparams(new_params[len(self.k.free_params) + len(\n self.noise_k.free_params):])\n self.K_up_to_date = False\n try:\n if exit_on_bounds:\n if scipy.isinf(self.hyperprior(self.params)):\n raise GPImpossibleParamsError('Impossible values for params!')\n self.compute_K_L_alpha_ll()\n except Exception as e:\n if inf_on_error:\n if not isinstance(e, GPImpossibleParamsError) and self.verbose:\n warnings.warn(\n \"\"\"Unhandled exception when updating GP! Exception was:\n%s\nState of params is: %s\"\"\"\n % (traceback.format_exc(), str(self.free_params[:])))\n self.use_hyper_deriv = use_hyper_deriv\n if use_hyper_deriv and hyper_deriv_handling == 'default':\n return scipy.inf, scipy.zeros(len(self.free_params))\n elif hyper_deriv_handling == 'deriv':\n return scipy.zeros(len(self.free_params))\n else:\n return scipy.inf\n else:\n self.use_hyper_deriv = use_hyper_deriv\n raise e\n self.use_hyper_deriv = use_hyper_deriv\n if use_hyper_deriv and hyper_deriv_handling == 'default':\n return -1.0 * self.ll, -1.0 * self.ll_deriv\n elif hyper_deriv_handling == 'deriv':\n return -1.0 * self.ll_deriv\n else:\n return -1.0 * self.ll\n", "role": "user" }, { "content": "update_hyperparameters", "role": "assistant" } ]
def x(self): if not self.K_up_to_date: y = self.y err_y = self.err_y self.K = self.compute_Kij(self.X, None, self.n, None, noise=False) if isinstance(self.noise_k, ZeroKernel): self.noise_K = scipy.zeros((self.X.shape[0], self.X.shape[0])) elif isinstance(self.noise_k, DiagonalNoiseKernel): self.noise_K = self.noise_k.params[0] ** 2.0 * scipy.eye(self.X .shape[0]) else: self.noise_K = self.compute_Kij(self.X, None, self.n, None, noise=True) K = self.K noise_K = self.noise_K if self.T is not None: KnK = self.T.dot(K + noise_K).dot(self.T.T) else: KnK = K + noise_K K_tot = KnK + scipy.diag(err_y ** 2.0 ) + self.diag_factor * sys.float_info.epsilon * scipy.eye(len(y)) self.L = scipy.linalg.cholesky(K_tot, lower=True) if self.mu is not None: mu_alph = self.mu(self.X, self.n) if self.T is not None: mu_alph = self.T.dot(mu_alph) y_alph = self.y - mu_alph else: y_alph = self.y self.alpha = scipy.linalg.cho_solve((self.L, True), scipy. atleast_2d(y_alph).T) self.ll = (-0.5 * scipy.atleast_2d(y_alph).dot(self.alpha) - scipy. log(scipy.diag(self.L)).sum() - 0.5 * len(y) * scipy.log(2.0 * scipy.pi))[0, 0] self.ll += self.hyperprior(self.params) if self.use_hyper_deriv: warnings.warn('Use of hyperparameter derivatives is experimental!') self.ll_deriv = scipy.zeros(len(self.free_params)) if isinstance(self.noise_k, ZeroKernel): knk = self.k elif isinstance(self.noise_k, DiagonalNoiseKernel): knk = self.k if not self.noise_k.fixed_params[0]: dK_dtheta_i = 2.0 * self.noise_k.params[0] * scipy.eye(len (y)) self.ll_deriv[len(self.k.free_params)] = 0.5 * (self. alpha.T.dot(dK_dtheta_i.dot(self.alpha)) - scipy. trace(scipy.linalg.cho_solve((self.L, True), dK_dtheta_i))) else: knk = self.k + self.noise_k free_param_idxs = scipy.arange(0, len(knk.params), dtype=int)[~ knk.fixed_params] for i, pi in enumerate(free_param_idxs): dK_dtheta_i = self.compute_Kij(self.X, None, self.n, None, k=knk, hyper_deriv=pi) if self.T is not None: dK_dtheta_i = self.T.dot(dK_dtheta_i).dot(self.T.T) self.ll_deriv[i] = 0.5 * (self.alpha.T.dot(dK_dtheta_i.dot( self.alpha)) - scipy.trace(scipy.linalg.cho_solve((self .L, True), dK_dtheta_i))) if self.mu is not None: free_param_idxs = scipy.arange(0, len(self.mu.params), dtype=int)[~self.mu.fixed_params] for i, pi in enumerate(free_param_idxs): dmu_dtheta_i = scipy.atleast_2d(self.mu(self.X, self.n, hyper_deriv=pi)).T if self.T is not None: dmu_dtheta_i = self.T.dot(dmu_dtheta_i) self.ll_deriv[i + len(knk.free_params) ] = dmu_dtheta_i.T.dot(self.alpha) free_param_idxs = scipy.arange(0, len(self.params), dtype=int)[ ~self.fixed_params] for i, pi in enumerate(free_param_idxs): self.ll_deriv[i] += self.hyperprior(self.params, hyper_deriv=pi ) self.K_up_to_date = True
compute_K_L_alpha_ll
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.K_up_to_date:\n y = self.y\n err_y = self.err_y\n self.K = self.compute_Kij(self.X, None, self.n, None, noise=False)\n if isinstance(self.noise_k, ZeroKernel):\n self.noise_K = scipy.zeros((self.X.shape[0], self.X.shape[0]))\n elif isinstance(self.noise_k, DiagonalNoiseKernel):\n self.noise_K = self.noise_k.params[0] ** 2.0 * scipy.eye(self.X\n .shape[0])\n else:\n self.noise_K = self.compute_Kij(self.X, None, self.n, None,\n noise=True)\n K = self.K\n noise_K = self.noise_K\n if self.T is not None:\n KnK = self.T.dot(K + noise_K).dot(self.T.T)\n else:\n KnK = K + noise_K\n K_tot = KnK + scipy.diag(err_y ** 2.0\n ) + self.diag_factor * sys.float_info.epsilon * scipy.eye(len(y))\n self.L = scipy.linalg.cholesky(K_tot, lower=True)\n if self.mu is not None:\n mu_alph = self.mu(self.X, self.n)\n if self.T is not None:\n mu_alph = self.T.dot(mu_alph)\n y_alph = self.y - mu_alph\n else:\n y_alph = self.y\n self.alpha = scipy.linalg.cho_solve((self.L, True), scipy.\n atleast_2d(y_alph).T)\n self.ll = (-0.5 * scipy.atleast_2d(y_alph).dot(self.alpha) - scipy.\n log(scipy.diag(self.L)).sum() - 0.5 * len(y) * scipy.log(2.0 *\n scipy.pi))[0, 0]\n self.ll += self.hyperprior(self.params)\n if self.use_hyper_deriv:\n warnings.warn('Use of hyperparameter derivatives is experimental!')\n self.ll_deriv = scipy.zeros(len(self.free_params))\n if isinstance(self.noise_k, ZeroKernel):\n knk = self.k\n elif isinstance(self.noise_k, DiagonalNoiseKernel):\n knk = self.k\n if not self.noise_k.fixed_params[0]:\n dK_dtheta_i = 2.0 * self.noise_k.params[0] * scipy.eye(len\n (y))\n self.ll_deriv[len(self.k.free_params)] = 0.5 * (self.\n alpha.T.dot(dK_dtheta_i.dot(self.alpha)) - scipy.\n trace(scipy.linalg.cho_solve((self.L, True),\n dK_dtheta_i)))\n else:\n knk = self.k + self.noise_k\n free_param_idxs = scipy.arange(0, len(knk.params), dtype=int)[~\n knk.fixed_params]\n for i, pi in enumerate(free_param_idxs):\n dK_dtheta_i = self.compute_Kij(self.X, None, self.n, None,\n k=knk, hyper_deriv=pi)\n if self.T is not None:\n dK_dtheta_i = self.T.dot(dK_dtheta_i).dot(self.T.T)\n self.ll_deriv[i] = 0.5 * (self.alpha.T.dot(dK_dtheta_i.dot(\n self.alpha)) - scipy.trace(scipy.linalg.cho_solve((self\n .L, True), dK_dtheta_i)))\n if self.mu is not None:\n free_param_idxs = scipy.arange(0, len(self.mu.params),\n dtype=int)[~self.mu.fixed_params]\n for i, pi in enumerate(free_param_idxs):\n dmu_dtheta_i = scipy.atleast_2d(self.mu(self.X, self.n,\n hyper_deriv=pi)).T\n if self.T is not None:\n dmu_dtheta_i = self.T.dot(dmu_dtheta_i)\n self.ll_deriv[i + len(knk.free_params)\n ] = dmu_dtheta_i.T.dot(self.alpha)\n free_param_idxs = scipy.arange(0, len(self.params), dtype=int)[\n ~self.fixed_params]\n for i, pi in enumerate(free_param_idxs):\n self.ll_deriv[i] += self.hyperprior(self.params, hyper_deriv=pi\n )\n self.K_up_to_date = True\n", "role": "user" }, { "content": "compute_K_L_alpha_ll", "role": "assistant" } ]
def x(self, Xi, Xj, ni, nj, noise=False, hyper_deriv=None, k=None): if k is None: if not noise: k = self.k else: k = self.noise_k if Xj is None: symmetric = True Xj = Xi nj = ni else: symmetric = False Xi_tile = scipy.repeat(Xi, Xj.shape[0], axis=0) ni_tile = scipy.repeat(ni, Xj.shape[0], axis=0) Xj_tile = scipy.tile(Xj, (Xi.shape[0], 1)) nj_tile = scipy.tile(nj, (Xi.shape[0], 1)) Kij = k(Xi_tile, Xj_tile, ni_tile, nj_tile, hyper_deriv=hyper_deriv, symmetric=symmetric) Kij = scipy.reshape(Kij, (Xi.shape[0], -1)) return Kij
compute_Kij
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, Xi, Xj, ni, nj, noise=False, hyper_deriv=None, k=None):\n if k is None:\n if not noise:\n k = self.k\n else:\n k = self.noise_k\n if Xj is None:\n symmetric = True\n Xj = Xi\n nj = ni\n else:\n symmetric = False\n Xi_tile = scipy.repeat(Xi, Xj.shape[0], axis=0)\n ni_tile = scipy.repeat(ni, Xj.shape[0], axis=0)\n Xj_tile = scipy.tile(Xj, (Xi.shape[0], 1))\n nj_tile = scipy.tile(nj, (Xi.shape[0], 1))\n Kij = k(Xi_tile, Xj_tile, ni_tile, nj_tile, hyper_deriv=hyper_deriv,\n symmetric=symmetric)\n Kij = scipy.reshape(Kij, (Xi.shape[0], -1))\n return Kij\n", "role": "user" }, { "content": "compute_Kij", "role": "assistant" } ]
def x(self, bounds, num_pts): present_free_params = self.free_params[:] bounds = scipy.atleast_2d(scipy.asarray(bounds, dtype=float)) if bounds.shape[1] != 2: raise ValueError('Argument bounds must have shape (n, 2)!') if bounds.shape[0] == 1: bounds = scipy.tile(bounds, (len(present_free_params), 1)) try: iter(num_pts) except TypeError: num_pts = num_pts * scipy.ones(bounds.shape[0], dtype=int) else: num_pts = scipy.asarray(num_pts, dtype=int) if len(num_pts) != len(present_free_params): raise ValueError( 'Length of num_pts must match the number of free parameters!') param_vals = [] for k in xrange(0, len(present_free_params)): param_vals.append(scipy.linspace(bounds[k, 0], bounds[k, 1], num_pts[k])) ll_vals = self._compute_ll_matrix(0, param_vals, num_pts) self.update_hyperparameters(scipy.asarray(present_free_params, dtype=float) ) return ll_vals, param_vals
compute_ll_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bounds, num_pts):\n present_free_params = self.free_params[:]\n bounds = scipy.atleast_2d(scipy.asarray(bounds, dtype=float))\n if bounds.shape[1] != 2:\n raise ValueError('Argument bounds must have shape (n, 2)!')\n if bounds.shape[0] == 1:\n bounds = scipy.tile(bounds, (len(present_free_params), 1))\n try:\n iter(num_pts)\n except TypeError:\n num_pts = num_pts * scipy.ones(bounds.shape[0], dtype=int)\n else:\n num_pts = scipy.asarray(num_pts, dtype=int)\n if len(num_pts) != len(present_free_params):\n raise ValueError(\n 'Length of num_pts must match the number of free parameters!')\n param_vals = []\n for k in xrange(0, len(present_free_params)):\n param_vals.append(scipy.linspace(bounds[k, 0], bounds[k, 1],\n num_pts[k]))\n ll_vals = self._compute_ll_matrix(0, param_vals, num_pts)\n self.update_hyperparameters(scipy.asarray(present_free_params, dtype=float)\n )\n return ll_vals, param_vals\n", "role": "user" }, { "content": "compute_ll_matrix", "role": "assistant" } ]
def x(self, idx, param_vals, num_pts): if idx >= len(num_pts): return -1.0 * self.update_hyperparameters(scipy.asarray(param_vals, dtype=float)) else: vals = scipy.zeros(num_pts[idx:], dtype=float) for k in xrange(0, len(param_vals[idx])): specific_param_vals = list(param_vals) specific_param_vals[idx] = param_vals[idx][k] vals[k] = self._compute_ll_matrix(idx + 1, specific_param_vals, num_pts) return vals
compute_ll_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, idx, param_vals, num_pts):\n if idx >= len(num_pts):\n return -1.0 * self.update_hyperparameters(scipy.asarray(param_vals,\n dtype=float))\n else:\n vals = scipy.zeros(num_pts[idx:], dtype=float)\n for k in xrange(0, len(param_vals[idx])):\n specific_param_vals = list(param_vals)\n specific_param_vals[idx] = param_vals[idx][k]\n vals[k] = self._compute_ll_matrix(idx + 1, specific_param_vals,\n num_pts)\n return vals\n", "role": "user" }, { "content": "compute_ll_matrix", "role": "assistant" } ]
def x(self, nwalkers=200, nsamp=500, burn=0, thin=1, num_proc=None, sampler =None, plot_posterior=False, plot_chains=False, sampler_type='ensemble', ntemps=20, sampler_a=2.0, **plot_kwargs): if num_proc is None: num_proc = multiprocessing.cpu_count() if num_proc == 0: num_proc = 1 ndim = len(self.free_params) if sampler is None: if sampler_type == 'ensemble': sampler = emcee.EnsembleSampler(nwalkers, ndim, _ComputeLnProbEval(self), threads=num_proc, a=sampler_a) elif sampler_type == 'pt': raise NotImplementedError('PTSampler not done yet!') sampler = emcee.PTSampler(ntemps, nwalkers, ndim, logl, logp) else: raise NotImplementedError('Sampler type %s not supported!' % ( sampler_type,)) else: sampler.a = sampler_a if sampler.chain.size == 0: theta0 = self.hyperprior.random_draw(size=nwalkers).T theta0 = theta0[:, ~self.fixed_params] else: theta0 = sampler.chain[:, -1, :] sampler.run_mcmc(theta0, nsamp) if plot_posterior or plot_chains: flat_trace = sampler.chain[:, burn::thin, :] flat_trace = flat_trace.reshape((-1, flat_trace.shape[2])) if plot_posterior and plot_chains: plot_sampler(sampler, labels=[('$%s$' % (l,)) for l in self. free_param_names], burn=burn, **plot_kwargs) else: if plot_posterior: triangle.corner(flat_trace, plot_datapoints=False, labels=[( '$%s$' % (l,)) for l in self.free_param_names]) if plot_chains: f = plt.figure() for k in xrange(0, ndim): a = f.add_subplot(ndim, 1, 0 * ndim + k + 1) for chain in sampler.chain[:, :, k]: a.plot(chain) a.set_xlabel('sample') a.set_ylabel('$%s$' % (self.free_param_names[k],)) a.set_title('$%s$ all chains' % (self.free_param_names[k],)) a.axvline(burn, color='r', linewidth=3, ls='--') print('MCMC parameter summary:') print('param\tmean\t95% posterior interval') mean, ci_l, ci_u = summarize_sampler(sampler, burn=burn) names = self.free_param_names[:] for n, m, l, u in zip(names, mean, ci_l, ci_u): print('%s\t%4.4g\t[%4.4g, %4.4g]' % (n, m, l, u)) return sampler
sample_hyperparameter_posterior
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nwalkers=200, nsamp=500, burn=0, thin=1, num_proc=None, sampler\n =None, plot_posterior=False, plot_chains=False, sampler_type='ensemble',\n ntemps=20, sampler_a=2.0, **plot_kwargs):\n if num_proc is None:\n num_proc = multiprocessing.cpu_count()\n if num_proc == 0:\n num_proc = 1\n ndim = len(self.free_params)\n if sampler is None:\n if sampler_type == 'ensemble':\n sampler = emcee.EnsembleSampler(nwalkers, ndim,\n _ComputeLnProbEval(self), threads=num_proc, a=sampler_a)\n elif sampler_type == 'pt':\n raise NotImplementedError('PTSampler not done yet!')\n sampler = emcee.PTSampler(ntemps, nwalkers, ndim, logl, logp)\n else:\n raise NotImplementedError('Sampler type %s not supported!' % (\n sampler_type,))\n else:\n sampler.a = sampler_a\n if sampler.chain.size == 0:\n theta0 = self.hyperprior.random_draw(size=nwalkers).T\n theta0 = theta0[:, ~self.fixed_params]\n else:\n theta0 = sampler.chain[:, -1, :]\n sampler.run_mcmc(theta0, nsamp)\n if plot_posterior or plot_chains:\n flat_trace = sampler.chain[:, burn::thin, :]\n flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))\n if plot_posterior and plot_chains:\n plot_sampler(sampler, labels=[('$%s$' % (l,)) for l in self.\n free_param_names], burn=burn, **plot_kwargs)\n else:\n if plot_posterior:\n triangle.corner(flat_trace, plot_datapoints=False, labels=[(\n '$%s$' % (l,)) for l in self.free_param_names])\n if plot_chains:\n f = plt.figure()\n for k in xrange(0, ndim):\n a = f.add_subplot(ndim, 1, 0 * ndim + k + 1)\n for chain in sampler.chain[:, :, k]:\n a.plot(chain)\n a.set_xlabel('sample')\n a.set_ylabel('$%s$' % (self.free_param_names[k],))\n a.set_title('$%s$ all chains' % (self.free_param_names[k],))\n a.axvline(burn, color='r', linewidth=3, ls='--')\n print('MCMC parameter summary:')\n print('param\\tmean\\t95% posterior interval')\n mean, ci_l, ci_u = summarize_sampler(sampler, burn=burn)\n names = self.free_param_names[:]\n for n, m, l, u in zip(names, mean, ci_l, ci_u):\n print('%s\\t%4.4g\\t[%4.4g, %4.4g]' % (n, m, l, u))\n return sampler\n", "role": "user" }, { "content": "sample_hyperparameter_posterior", "role": "assistant" } ]
def x(self, X, n=0, return_mean=True, return_std=True, return_cov=False, return_samples=False, return_mean_func=False, num_samples=1, noise= False, samp_kwargs={}, sampler=None, flat_trace=None, burn=0, thin=1, **kwargs): output_transform = kwargs.pop('output_transform', None) if flat_trace is None: if sampler is None: sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs) try: sampler.pool.close() except AttributeError: pass flat_trace = sampler.chain[:, burn::thin, :] flat_trace = flat_trace.reshape((-1, flat_trace.shape[2])) else: flat_trace = flat_trace[burn::thin, :] num_proc = kwargs.get('num_proc', multiprocessing.cpu_count()) if num_proc > 1: pool = InterruptiblePool(processes=num_proc) map_fun = pool.map else: map_fun = map try: res = map_fun(_ComputeGPWrapper(self, X, n, return_mean, return_std, return_cov, return_samples, return_mean_func, num_samples, noise, samp_kwargs, output_transform), flat_trace) finally: if num_proc > 1: pool.close() out = dict() if return_mean: out['mean'] = [r['mean'] for r in res if r is not None] if return_std: out['std'] = [r['std'] for r in res if r is not None] if return_cov: out['cov'] = [r['cov'] for r in res if r is not None] if return_samples: out['samp'] = [r['samp'] for r in res if r is not None] if return_mean_func and self.mu is not None: out['mean_func'] = [r['mean_func'] for r in res if r is not None] out['cov_func'] = [r['cov_func'] for r in res if r is not None] out['std_func'] = [r['std_func'] for r in res if r is not None] out['mean_without_func'] = [r['mean_without_func'] for r in res if r is not None] out['cov_without_func'] = [r['cov_without_func'] for r in res if r is not None] out['std_without_func'] = [r['std_without_func'] for r in res if r is not None] return out
compute_from_MCMC
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, n=0, return_mean=True, return_std=True, return_cov=False,\n return_samples=False, return_mean_func=False, num_samples=1, noise=\n False, samp_kwargs={}, sampler=None, flat_trace=None, burn=0, thin=1,\n **kwargs):\n output_transform = kwargs.pop('output_transform', None)\n if flat_trace is None:\n if sampler is None:\n sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs)\n try:\n sampler.pool.close()\n except AttributeError:\n pass\n flat_trace = sampler.chain[:, burn::thin, :]\n flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))\n else:\n flat_trace = flat_trace[burn::thin, :]\n num_proc = kwargs.get('num_proc', multiprocessing.cpu_count())\n if num_proc > 1:\n pool = InterruptiblePool(processes=num_proc)\n map_fun = pool.map\n else:\n map_fun = map\n try:\n res = map_fun(_ComputeGPWrapper(self, X, n, return_mean, return_std,\n return_cov, return_samples, return_mean_func, num_samples,\n noise, samp_kwargs, output_transform), flat_trace)\n finally:\n if num_proc > 1:\n pool.close()\n out = dict()\n if return_mean:\n out['mean'] = [r['mean'] for r in res if r is not None]\n if return_std:\n out['std'] = [r['std'] for r in res if r is not None]\n if return_cov:\n out['cov'] = [r['cov'] for r in res if r is not None]\n if return_samples:\n out['samp'] = [r['samp'] for r in res if r is not None]\n if return_mean_func and self.mu is not None:\n out['mean_func'] = [r['mean_func'] for r in res if r is not None]\n out['cov_func'] = [r['cov_func'] for r in res if r is not None]\n out['std_func'] = [r['std_func'] for r in res if r is not None]\n out['mean_without_func'] = [r['mean_without_func'] for r in res if \n r is not None]\n out['cov_without_func'] = [r['cov_without_func'] for r in res if r\n is not None]\n out['std_without_func'] = [r['std_without_func'] for r in res if r\n is not None]\n return out\n", "role": "user" }, { "content": "compute_from_MCMC", "role": "assistant" } ]
def x(self, X, n=0, sampler=None, flat_trace=None, burn=0, thin=1, **kwargs): if flat_trace is None: if sampler is None: sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs) try: sampler.pool.close() except AttributeError: pass flat_trace = sampler.chain[:, burn::thin, :] flat_trace = flat_trace.reshape((-1, flat_trace.shape[2])) else: flat_trace = flat_trace[burn::thin, :] num_proc = kwargs.get('num_proc', multiprocessing.cpu_count()) if num_proc > 1: pool = InterruptiblePool(processes=num_proc) try: res = pool.map(_ComputeLWrapper(self, X, n), flat_trace) finally: pool.close() else: res = map(_ComputeLWrapper(self, X, n), flat_trace) return res
compute_l_from_MCMC
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, n=0, sampler=None, flat_trace=None, burn=0, thin=1, **kwargs):\n if flat_trace is None:\n if sampler is None:\n sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs)\n try:\n sampler.pool.close()\n except AttributeError:\n pass\n flat_trace = sampler.chain[:, burn::thin, :]\n flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))\n else:\n flat_trace = flat_trace[burn::thin, :]\n num_proc = kwargs.get('num_proc', multiprocessing.cpu_count())\n if num_proc > 1:\n pool = InterruptiblePool(processes=num_proc)\n try:\n res = pool.map(_ComputeLWrapper(self, X, n), flat_trace)\n finally:\n pool.close()\n else:\n res = map(_ComputeLWrapper(self, X, n), flat_trace)\n return res\n", "role": "user" }, { "content": "compute_l_from_MCMC", "role": "assistant" } ]
def x(self, X, ddof=1, full_MC=False, rejection_func=None, **kwargs): return_std = kwargs.get('return_std', True) return_cov = kwargs.get('return_cov', False) if full_MC: kwargs['return_mean'] = False kwargs['return_std'] = False kwargs['return_cov'] = False kwargs['return_samples'] = True else: kwargs['return_mean'] = True return_samples = kwargs.get('return_samples', True) res = self.compute_from_MCMC(X, **kwargs) out = {} if return_samples: samps = scipy.asarray(scipy.hstack(res['samp'])) if full_MC: if rejection_func: good_samps = [] for samp in samps.T: if rejection_func(samp): good_samps.append(samp) if len(good_samps) == 0: raise ValueError('Did not get any good samples!') samps = scipy.asarray(good_samps, dtype=float).T mean = scipy.mean(samps, axis=1) cov = scipy.cov(samps, rowvar=1, ddof=ddof) std = scipy.sqrt(scipy.diagonal(cov)) else: means = scipy.asarray(res['mean']) mean = scipy.mean(means, axis=0) if 'cov' in res: covs = scipy.asarray(res['cov']) cov = scipy.mean(covs, axis=0) + scipy.cov(means, rowvar=0, ddof=ddof) std = scipy.sqrt(scipy.diagonal(cov)) elif 'std' in res: vars_ = scipy.asarray(scipy.asarray(res['std'])) ** 2 std = scipy.sqrt(scipy.mean(vars_, axis=0) + scipy.var(means, axis=0, ddof=ddof)) if 'mean_func' in res: mean_funcs = scipy.asarray(res['mean_func']) cov_funcs = scipy.asarray(res['cov_func']) mean_func = scipy.mean(mean_funcs, axis=0) cov_func = scipy.mean(cov_funcs, axis=0) + scipy.cov(mean_funcs, rowvar=0, ddof=ddof) std_func = scipy.sqrt(scipy.diagonal(cov_func)) mean_without_funcs = scipy.asarray(res['mean_without_func']) cov_without_funcs = scipy.asarray(res['cov_without_func']) mean_without_func = scipy.mean(mean_without_funcs, axis=0) cov_without_func = scipy.mean(cov_without_funcs, axis=0 ) + scipy.cov(mean_without_funcs, rowvar=0, ddof=ddof) std_without_func = scipy.sqrt(scipy.diagonal(cov_without_func)) out['mean_func'] = mean_func out['cov_func'] = cov_func out['std_func'] = std_func out['mean_without_func'] = mean_without_func out['cov_without_func'] = cov_without_func out['std_without_func'] = std_without_func out['mean'] = mean if return_samples: out['samp'] = samps if return_std or return_cov: out['std'] = std if return_cov: out['cov'] = cov return out
predict_MCMC
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, X, ddof=1, full_MC=False, rejection_func=None, **kwargs):\n return_std = kwargs.get('return_std', True)\n return_cov = kwargs.get('return_cov', False)\n if full_MC:\n kwargs['return_mean'] = False\n kwargs['return_std'] = False\n kwargs['return_cov'] = False\n kwargs['return_samples'] = True\n else:\n kwargs['return_mean'] = True\n return_samples = kwargs.get('return_samples', True)\n res = self.compute_from_MCMC(X, **kwargs)\n out = {}\n if return_samples:\n samps = scipy.asarray(scipy.hstack(res['samp']))\n if full_MC:\n if rejection_func:\n good_samps = []\n for samp in samps.T:\n if rejection_func(samp):\n good_samps.append(samp)\n if len(good_samps) == 0:\n raise ValueError('Did not get any good samples!')\n samps = scipy.asarray(good_samps, dtype=float).T\n mean = scipy.mean(samps, axis=1)\n cov = scipy.cov(samps, rowvar=1, ddof=ddof)\n std = scipy.sqrt(scipy.diagonal(cov))\n else:\n means = scipy.asarray(res['mean'])\n mean = scipy.mean(means, axis=0)\n if 'cov' in res:\n covs = scipy.asarray(res['cov'])\n cov = scipy.mean(covs, axis=0) + scipy.cov(means, rowvar=0,\n ddof=ddof)\n std = scipy.sqrt(scipy.diagonal(cov))\n elif 'std' in res:\n vars_ = scipy.asarray(scipy.asarray(res['std'])) ** 2\n std = scipy.sqrt(scipy.mean(vars_, axis=0) + scipy.var(means,\n axis=0, ddof=ddof))\n if 'mean_func' in res:\n mean_funcs = scipy.asarray(res['mean_func'])\n cov_funcs = scipy.asarray(res['cov_func'])\n mean_func = scipy.mean(mean_funcs, axis=0)\n cov_func = scipy.mean(cov_funcs, axis=0) + scipy.cov(mean_funcs,\n rowvar=0, ddof=ddof)\n std_func = scipy.sqrt(scipy.diagonal(cov_func))\n mean_without_funcs = scipy.asarray(res['mean_without_func'])\n cov_without_funcs = scipy.asarray(res['cov_without_func'])\n mean_without_func = scipy.mean(mean_without_funcs, axis=0)\n cov_without_func = scipy.mean(cov_without_funcs, axis=0\n ) + scipy.cov(mean_without_funcs, rowvar=0, ddof=ddof)\n std_without_func = scipy.sqrt(scipy.diagonal(cov_without_func))\n out['mean_func'] = mean_func\n out['cov_func'] = cov_func\n out['std_func'] = std_func\n out['mean_without_func'] = mean_without_func\n out['cov_without_func'] = cov_without_func\n out['std_without_func'] = std_without_func\n out['mean'] = mean\n if return_samples:\n out['samp'] = samps\n if return_std or return_cov:\n out['std'] = std\n if return_cov:\n out['cov'] = cov\n return out\n", "role": "user" }, { "content": "predict_MCMC", "role": "assistant" } ]
def x(): parser = argparse.ArgumentParser(description= """Coursera OAuth2 client CLI. This tool helps users of the Coursera App Platform to programmatically access Coursera APIs.""" , epilog= """Please file bugs on github at: https://github.com/coursera/courseraoauth2client/issues. If you would like to contribute to this tool's development, check us out at: https://github.com/coursera/courseraoauth2client""" ) parser.add_argument('-c', '--config', help='the configuration file to use') utils.add_logging_parser(parser) subparsers = parser.add_subparsers() commands.config.parser(subparsers) commands.version.parser(subparsers) return parser
build_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = argparse.ArgumentParser(description=\n \"\"\"Coursera OAuth2 client CLI. This tool\n helps users of the Coursera App Platform to programmatically access\n Coursera APIs.\"\"\"\n , epilog=\n \"\"\"Please file bugs on github at:\n https://github.com/coursera/courseraoauth2client/issues. If you\n would like to contribute to this tool's development, check us out at:\n https://github.com/coursera/courseraoauth2client\"\"\"\n )\n parser.add_argument('-c', '--config', help='the configuration file to use')\n utils.add_logging_parser(parser)\n subparsers = parser.add_subparsers()\n commands.config.parser(subparsers)\n commands.version.parser(subparsers)\n return parser\n", "role": "user" }, { "content": "build_parser", "role": "assistant" } ]
def x(): logging.captureWarnings(True) args = build_parser().parse_args() args.setup_logging(args) try: return args.func(args) except SystemExit: raise except: logging.exception('Problem when running command. Sorry!') sys.exit(1)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n logging.captureWarnings(True)\n args = build_parser().parse_args()\n args.setup_logging(args)\n try:\n return args.func(args)\n except SystemExit:\n raise\n except:\n logging.exception('Problem when running command. Sorry!')\n sys.exit(1)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(root_menu, menu='sponsors', label=_('Sponsors'), sponsors_item=_( 'Our sponsors'), packages_item=_('Sponsorship packages')): root_menu.add_menu(menu, label, items=[]) for sponsor in Sponsor.objects.all().order_by('packages', 'order', 'id' ).prefetch_related('packages'): symbols = sponsor.symbols() if symbols: item_name = u'» %s %s' % (sponsor.name, symbols) else: item_name = u'» %s' % (sponsor.name,) with menu_logger(logger, 'sponsor %r' % (sponsor.name,)): root_menu.add_item(item_name, sponsor.get_absolute_url(), menu=menu ) if sponsors_item: with menu_logger(logger, 'sponsors page link'): root_menu.add_item(sponsors_item, reverse('wafer_sponsors'), menu) if packages_item: with menu_logger(logger, 'sponsorship package page link'): root_menu.add_item(packages_item, reverse( 'wafer_sponsorship_packages'), menu)
sponsor_menu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(root_menu, menu='sponsors', label=_('Sponsors'), sponsors_item=_(\n 'Our sponsors'), packages_item=_('Sponsorship packages')):\n root_menu.add_menu(menu, label, items=[])\n for sponsor in Sponsor.objects.all().order_by('packages', 'order', 'id'\n ).prefetch_related('packages'):\n symbols = sponsor.symbols()\n if symbols:\n item_name = u'» %s %s' % (sponsor.name, symbols)\n else:\n item_name = u'» %s' % (sponsor.name,)\n with menu_logger(logger, 'sponsor %r' % (sponsor.name,)):\n root_menu.add_item(item_name, sponsor.get_absolute_url(), menu=menu\n )\n if sponsors_item:\n with menu_logger(logger, 'sponsors page link'):\n root_menu.add_item(sponsors_item, reverse('wafer_sponsors'), menu)\n if packages_item:\n with menu_logger(logger, 'sponsorship package page link'):\n root_menu.add_item(packages_item, reverse(\n 'wafer_sponsorship_packages'), menu)\n", "role": "user" }, { "content": "sponsor_menu", "role": "assistant" } ]
def x(instance, atrib): atrib = atrib.replace('__', '.') atribs = [] atribs = atrib.split('.') obj = instance for atrib in atribs: if type(obj) == dict: result = obj[atrib] else: try: result = getattr(obj, atrib)() except Exception: result = getattr(obj, atrib) obj = result return result
objectatrib
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instance, atrib):\n atrib = atrib.replace('__', '.')\n atribs = []\n atribs = atrib.split('.')\n obj = instance\n for atrib in atribs:\n if type(obj) == dict:\n result = obj[atrib]\n else:\n try:\n result = getattr(obj, atrib)()\n except Exception:\n result = getattr(obj, atrib)\n obj = result\n return result\n", "role": "user" }, { "content": "objectatrib", "role": "assistant" } ]
def x(self, widget=None, attrs=None, only_initial=False): attrs = attrs or {} attrs.update(self.form.get_widget_attrs(self)) if hasattr(self.field, 'widget_css_classes'): css_classes = self.field.widget_css_classes else: css_classes = getattr(self.form, 'widget_css_classes', None) if css_classes: attrs.update({'class': css_classes}) widget_classes = self.form.fields[self.name].widget.attrs.get('class', None ) if widget_classes: if attrs.get('class', None): attrs['class'] += ' ' + widget_classes else: attrs.update({'class': widget_classes}) return super(NgBoundField, self).as_widget(widget, attrs, only_initial)
as_widget
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, widget=None, attrs=None, only_initial=False):\n attrs = attrs or {}\n attrs.update(self.form.get_widget_attrs(self))\n if hasattr(self.field, 'widget_css_classes'):\n css_classes = self.field.widget_css_classes\n else:\n css_classes = getattr(self.form, 'widget_css_classes', None)\n if css_classes:\n attrs.update({'class': css_classes})\n widget_classes = self.form.fields[self.name].widget.attrs.get('class', None\n )\n if widget_classes:\n if attrs.get('class', None):\n attrs['class'] += ' ' + widget_classes\n else:\n attrs.update({'class': widget_classes})\n return super(NgBoundField, self).as_widget(widget, attrs, only_initial)\n", "role": "user" }, { "content": "as_widget", "role": "assistant" } ]
def x(self): for field in self.base_fields.values(): try: new_widget = field.get_converted_widget() except AttributeError: pass else: if new_widget: field.widget = new_widget
convert_widgets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for field in self.base_fields.values():\n try:\n new_widget = field.get_converted_widget()\n except AttributeError:\n pass\n else:\n if new_widget:\n field.widget = new_widget\n", "role": "user" }, { "content": "convert_widgets", "role": "assistant" } ]
def x(timestamp): dt = datetime.fromtimestamp(float(timestamp)).timetuple() fecha = '{0:d}-{1:02d}-{2:02d}'.format(dt.tm_year, dt.tm_mon, dt.tm_mday) hora = '{0:02d}:{1:02d}:{2:02d}'.format(dt.tm_hour, dt.tm_min, dt.tm_sec) return fecha, hora
epochdate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(timestamp):\n dt = datetime.fromtimestamp(float(timestamp)).timetuple()\n fecha = '{0:d}-{1:02d}-{2:02d}'.format(dt.tm_year, dt.tm_mon, dt.tm_mday)\n hora = '{0:02d}:{1:02d}:{2:02d}'.format(dt.tm_hour, dt.tm_min, dt.tm_sec)\n return fecha, hora\n", "role": "user" }, { "content": "epochdate", "role": "assistant" } ]
def x(obj): info = {} if hasattr(obj, '_meta'): info['verbose_name'] = getattr(obj._meta, 'verbose_name', None) else: info['verbose_name'] = None if hasattr(obj, 'model') and obj.model: model = obj.model else: model = obj.__class__ namesp = str(model) namesp = namesp.replace('<class ', '').replace('>', '').replace("'", '' ).split('.') info['appname'] = namesp[-3] info['modelname'] = namesp[-1] info['model'] = model return info
model_inspect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n info = {}\n if hasattr(obj, '_meta'):\n info['verbose_name'] = getattr(obj._meta, 'verbose_name', None)\n else:\n info['verbose_name'] = None\n if hasattr(obj, 'model') and obj.model:\n model = obj.model\n else:\n model = obj.__class__\n namesp = str(model)\n namesp = namesp.replace('<class ', '').replace('>', '').replace(\"'\", ''\n ).split('.')\n info['appname'] = namesp[-3]\n info['modelname'] = namesp[-1]\n info['model'] = model\n return info\n", "role": "user" }, { "content": "model_inspect", "role": "assistant" } ]
def x(instance, filename): path_separator = '/' date_separator = '-' ext_separator = '.' empty_string = '' model_name = model_inspect(instance)['modelname'] date = datetime.now().strftime('%Y-%m-%d').split(date_separator) curr_day = date[2] curr_month = date[1] curr_year = date[0] split_filename = filename.split(ext_separator) filename = empty_string.join(split_filename[:-1]) file_ext = split_filename[-1] new_filename = empty_string.join([filename, str(random.random()).split( ext_separator)[1]]) new_filename = ext_separator.join([new_filename, file_ext]) string_path = path_separator.join([model_name, curr_year, curr_month, curr_day, new_filename]) return string_path
upload_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instance, filename):\n path_separator = '/'\n date_separator = '-'\n ext_separator = '.'\n empty_string = ''\n model_name = model_inspect(instance)['modelname']\n date = datetime.now().strftime('%Y-%m-%d').split(date_separator)\n curr_day = date[2]\n curr_month = date[1]\n curr_year = date[0]\n split_filename = filename.split(ext_separator)\n filename = empty_string.join(split_filename[:-1])\n file_ext = split_filename[-1]\n new_filename = empty_string.join([filename, str(random.random()).split(\n ext_separator)[1]])\n new_filename = ext_separator.join([new_filename, file_ext])\n string_path = path_separator.join([model_name, curr_year, curr_month,\n curr_day, new_filename])\n return string_path\n", "role": "user" }, { "content": "upload_path", "role": "assistant" } ]
def x(field_name): str_ini = 'get_' str_end = '_display' if str_ini == field_name[0:len(str_ini)] and str_end == field_name[-1 * len(str_end):]: field_name = field_name[len(str_ini):-1 * len(str_end)] return field_name
remove_getdisplay
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(field_name):\n str_ini = 'get_'\n str_end = '_display'\n if str_ini == field_name[0:len(str_ini)] and str_end == field_name[-1 *\n len(str_end):]:\n field_name = field_name[len(str_ini):-1 * len(str_end)]\n return field_name\n", "role": "user" }, { "content": "remove_getdisplay", "role": "assistant" } ]
def x(kind=['uuid', 'datetime', 'time', 'decimal']): JSONEncoder_olddefault = json.JSONEncoder.default def x(self, o): if 'uuid' in kind and isinstance(o, UUID): return str(o) if 'datetime' in kind and isinstance(o, datetime): return str(o) if 'time' in kind and isinstance(o, time.struct_time): return datetime.fromtimestamp(time.mktime(o)) if 'decimal' in kind and isinstance(o, decimal.Decimal): return str(o) return JSONEncoder_olddefault(self, o) json.JSONEncoder.default = JSONEncoder_wrapped
JSONEncoder_newdefault
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kind=['uuid', 'datetime', 'time', 'decimal']):\n JSONEncoder_olddefault = json.JSONEncoder.default\n\n def x(self, o):\n if 'uuid' in kind and isinstance(o, UUID):\n return str(o)\n if 'datetime' in kind and isinstance(o, datetime):\n return str(o)\n if 'time' in kind and isinstance(o, time.struct_time):\n return datetime.fromtimestamp(time.mktime(o))\n if 'decimal' in kind and isinstance(o, decimal.Decimal):\n return str(o)\n return JSONEncoder_olddefault(self, o)\n json.JSONEncoder.default = JSONEncoder_wrapped\n", "role": "user" }, { "content": "JSONEncoder_newdefault", "role": "assistant" } ]
def x(context, request): for template in settings.TEMPLATES: for context_processor in template['OPTIONS']['context_processors']: path = context_processor.split('.') name = path.pop(-1) processor = getattr(importlib.import_module('.'.join(path)), name, None) if processor: context.update(processor(request)) return context
context_processors_update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, request):\n for template in settings.TEMPLATES:\n for context_processor in template['OPTIONS']['context_processors']:\n path = context_processor.split('.')\n name = path.pop(-1)\n processor = getattr(importlib.import_module('.'.join(path)),\n name, None)\n if processor:\n context.update(processor(request))\n return context\n", "role": "user" }, { "content": "context_processors_update", "role": "assistant" } ]
def x(self, filename_in_zip, file_contents): self.in_memory_zip.seek(-1, io.SEEK_END) zf = zipfile.ZipFile(self.in_memory_zip, 'a', zipfile.ZIP_DEFLATED, False) zf.writestr(filename_in_zip, file_contents) for zfile in zf.filelist: zfile.create_system = 0 zf.close() self.in_memory_zip.seek(0) return self
append
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename_in_zip, file_contents):\n self.in_memory_zip.seek(-1, io.SEEK_END)\n zf = zipfile.ZipFile(self.in_memory_zip, 'a', zipfile.ZIP_DEFLATED, False)\n zf.writestr(filename_in_zip, file_contents)\n for zfile in zf.filelist:\n zfile.create_system = 0\n zf.close()\n self.in_memory_zip.seek(0)\n return self\n", "role": "user" }, { "content": "append", "role": "assistant" } ]
def x(self, filename): f = open(filename, 'w') f.write(self.read()) f.close()
writetofile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n f = open(filename, 'w')\n f.write(self.read())\n f.close()\n", "role": "user" }, { "content": "writetofile", "role": "assistant" } ]
def x(sponsor, name): if sponsor.files.filter(name=name).exists(): return sponsor.files.filter(name=name).first().item.url return ''
sponsor_image_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sponsor, name):\n if sponsor.files.filter(name=name).exists():\n return sponsor.files.filter(name=name).first().item.url\n return ''\n", "role": "user" }, { "content": "sponsor_image_url", "role": "assistant" } ]
def x(sponsor, tag): if sponsor.files.filter(tag_name=tag).exists(): return sponsor.files.filter(tag_name=tag).first().tagged_file.item.url return ''
sponsor_tagged_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sponsor, tag):\n if sponsor.files.filter(tag_name=tag).exists():\n return sponsor.files.filter(tag_name=tag).first().tagged_file.item.url\n return ''\n", "role": "user" }, { "content": "sponsor_tagged_image", "role": "assistant" } ]
def x(parser, token): try: tokensp = token.split_contents() groups = [] groups += tokensp[1:] except ValueError: raise template.TemplateSyntaxError( "Tag 'ifusergroup' requires at least 1 argument.") nodelist_true = parser.parse(('else', 'endifusergroup')) token = parser.next_token() if token.contents == 'else': nodelist_false = parser.parse(tuple(['endifusergroup'])) parser.delete_first_token() else: nodelist_false = NodeList() return GroupCheckNode(groups, nodelist_true, nodelist_false)
ifusergroup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parser, token):\n try:\n tokensp = token.split_contents()\n groups = []\n groups += tokensp[1:]\n except ValueError:\n raise template.TemplateSyntaxError(\n \"Tag 'ifusergroup' requires at least 1 argument.\")\n nodelist_true = parser.parse(('else', 'endifusergroup'))\n token = parser.next_token()\n if token.contents == 'else':\n nodelist_false = parser.parse(tuple(['endifusergroup']))\n parser.delete_first_token()\n else:\n nodelist_false = NodeList()\n return GroupCheckNode(groups, nodelist_true, nodelist_false)\n", "role": "user" }, { "content": "ifusergroup", "role": "assistant" } ]
def x(self): if hasattr(self, 'handle'): return self.handle else: handle = c_void_p() ret = vmGuestLib.VMGuestLib_OpenHandle(byref(handle)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return handle
OpenHandle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if hasattr(self, 'handle'):\n return self.handle\n else:\n handle = c_void_p()\n ret = vmGuestLib.VMGuestLib_OpenHandle(byref(handle))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return handle\n", "role": "user" }, { "content": "OpenHandle", "role": "assistant" } ]
def x(self): if hasattr(self, 'handle'): ret = vmGuestLib.VMGuestLib_CloseHandle(self.handle.value) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) del self.handle
CloseHandle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if hasattr(self, 'handle'):\n ret = vmGuestLib.VMGuestLib_CloseHandle(self.handle.value)\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n del self.handle\n", "role": "user" }, { "content": "CloseHandle", "role": "assistant" } ]
def x(self): ret = vmGuestLib.VMGuestLib_UpdateInfo(self.handle.value) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret)
UpdateInfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ret = vmGuestLib.VMGuestLib_UpdateInfo(self.handle.value)\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n", "role": "user" }, { "content": "UpdateInfo", "role": "assistant" } ]
def x(self): sid = c_void_p() ret = vmGuestLib.VMGuestLib_GetSessionId(self.handle.value, byref(sid)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return sid
GetSessionId
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n sid = c_void_p()\n ret = vmGuestLib.VMGuestLib_GetSessionId(self.handle.value, byref(sid))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return sid\n", "role": "user" }, { "content": "GetSessionId", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetCpuLimitMHz(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetCpuLimitMHz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetCpuLimitMHz(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetCpuLimitMHz", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetCpuReservationMHz(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetCpuReservationMHz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetCpuReservationMHz(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetCpuReservationMHz", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetCpuShares(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetCpuShares
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetCpuShares(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetCpuShares", "role": "assistant" } ]
def x(self): counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetCpuStolenMs(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetCpuStolenMs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetCpuStolenMs(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetCpuStolenMs", "role": "assistant" } ]
def x(self): counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetCpuUsedMs(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetCpuUsedMs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetCpuUsedMs(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetCpuUsedMs", "role": "assistant" } ]
def x(self): counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetElapsedMs(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetElapsedMs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetElapsedMs(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetElapsedMs", "role": "assistant" } ]
def x(self): counter = c_uint64() ret = vmGuestLib.VMGuestLib_GetHostCpuUsedMs(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostCpuUsedMs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetHostCpuUsedMs(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostCpuUsedMs", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemKernOvhdMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemKernOvhdMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemKernOvhdMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemKernOvhdMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemMappedMB(self.handle.value, byref (counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemMappedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemMappedMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemMappedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemPhysFreeMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemPhysFreeMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemPhysFreeMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemPhysFreeMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemPhysMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemPhysMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemPhysMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemPhysMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemSharedMB(self.handle.value, byref (counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemSharedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemSharedMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemSharedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemSwappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemSwappedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemSwappedMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemSwappedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemUnmappedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemUnmappedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemUnmappedMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemUnmappedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostMemUsedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostMemUsedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemUsedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostMemUsedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostNumCpuCores(self.handle.value, byref (counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostNumCpuCores
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostNumCpuCores(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostNumCpuCores", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetHostProcessorSpeed(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetHostProcessorSpeed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostProcessorSpeed(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetHostProcessorSpeed", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemActiveMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemActiveMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemActiveMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemActiveMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemBalloonedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemBalloonedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemBalloonedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemBalloonedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemBalloonMaxMB(self.handle.value, byref (counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemBalloonMaxMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemBalloonMaxMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemBalloonMaxMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemBalloonTargetMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemBalloonTargetMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemBalloonTargetMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemBalloonTargetMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemLimitMB(self.handle.value, byref(counter) ) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemLimitMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemLimitMB(self.handle.value, byref(counter)\n )\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemLimitMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemLLSwappedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemLLSwappedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemLLSwappedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemLLSwappedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemMappedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemMappedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemMappedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemMappedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemOverheadMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemOverheadMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemOverheadMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemOverheadMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemReservationMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemReservationMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemReservationMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemReservationMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSharedMB(self.handle.value, byref( counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemSharedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSharedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemSharedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemSharedSavedMB(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemSharedSavedMB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSharedSavedMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemSharedSavedMB", "role": "assistant" } ]
def x(self): counter = c_uint() ret = vmGuestLib.VMGuestLib_GetMemShares(self.handle.value, byref(counter)) if ret != VMGUESTLIB_ERROR_SUCCESS: raise VMGuestLibException(ret) return counter.value
GetMemShares
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemShares(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n", "role": "user" }, { "content": "GetMemShares", "role": "assistant" } ]