source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, start=None, end=None):
qs = self._entries_range(start=start, end=end)
qs_positive = qs.filter(amount__gt=Decimal('0.00')).all().aggregate(Sum
('amount'))
qs_negative = qs.filter(amount__lt=Decimal('0.00')).all().aggregate(Sum
('amount'))
positives = qs_positive['amount__sum'] if qs_positive['amount__sum'
] is not None else 0
negatives = -qs_negative['amount__sum'] if qs_negative['amount__sum'
] is not None else 0
if self._DEBIT_IN_DB() > 0:
debits = positives
credits = negatives
else:
debits = negatives
credits = positives
net = debits - credits
if self._positive_credit():
net = -net
return self.Totals(credits, debits, net)
|
totals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start=None, end=None):\n qs = self._entries_range(start=start, end=end)\n qs_positive = qs.filter(amount__gt=Decimal('0.00')).all().aggregate(Sum\n ('amount'))\n qs_negative = qs.filter(amount__lt=Decimal('0.00')).all().aggregate(Sum\n ('amount'))\n positives = qs_positive['amount__sum'] if qs_positive['amount__sum'\n ] is not None else 0\n negatives = -qs_negative['amount__sum'] if qs_negative['amount__sum'\n ] is not None else 0\n if self._DEBIT_IN_DB() > 0:\n debits = positives\n credits = negatives\n else:\n debits = negatives\n credits = positives\n net = debits - credits\n if self._positive_credit():\n net = -net\n return self.Totals(credits, debits, net)\n",
"role": "user"
},
{
"content": "totals",
"role": "assistant"
}
] |
def x(self, start=None, end=None):
DEBIT_IN_DB = self._DEBIT_IN_DB()
flip = 1
if self._positive_credit():
flip *= -1
qs = self._entries_range(start=start, end=end)
qs = qs.order_by('transaction__t_stamp', 'transaction__tid')
balance = Decimal('0.00')
if start:
balance = self.balance(start)
if not qs:
return []
def x(balance_in):
balance = balance_in
for e in qs.all():
amount = e.amount * DEBIT_IN_DB
o_balance = balance
balance += flip * amount
yield LedgerEntry(amount, e, o_balance, balance)
return helper(balance)
|
ledger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start=None, end=None):\n DEBIT_IN_DB = self._DEBIT_IN_DB()\n flip = 1\n if self._positive_credit():\n flip *= -1\n qs = self._entries_range(start=start, end=end)\n qs = qs.order_by('transaction__t_stamp', 'transaction__tid')\n balance = Decimal('0.00')\n if start:\n balance = self.balance(start)\n if not qs:\n return []\n\n def x(balance_in):\n balance = balance_in\n for e in qs.all():\n amount = e.amount * DEBIT_IN_DB\n o_balance = balance\n balance += flip * amount\n yield LedgerEntry(amount, e, o_balance, balance)\n return helper(balance)\n",
"role": "user"
},
{
"content": "ledger",
"role": "assistant"
}
] |
def x(self, third_party):
actual_account = third_party.get_account()
assert actual_account.get_bookset() == self
return ThirdPartySubAccount(actual_account, third_party=third_party)
|
get_third_party
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, third_party):\n actual_account = third_party.get_account()\n assert actual_account.get_bookset() == self\n return ThirdPartySubAccount(actual_account, third_party=third_party)\n",
"role": "user"
},
{
"content": "get_third_party",
"role": "assistant"
}
] |
def x(self, third_party):
actual_account = third_party.get_account()
assert actual_account.get_bookset() == self.get_bookset()
return ProjectAccount(actual_account, project=self, third_party=third_party
)
|
get_third_party
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, third_party):\n actual_account = third_party.get_account()\n assert actual_account.get_bookset() == self.get_bookset()\n return ProjectAccount(actual_account, project=self, third_party=third_party\n )\n",
"role": "user"
},
{
"content": "get_third_party",
"role": "assistant"
}
] |
def x(all_slots):
overlaps = set([])
for slot in all_slots:
start = slot.get_start_time()
end = slot.end_time
for other_slot in all_slots:
if other_slot.pk == slot.pk:
continue
if other_slot.get_day() != slot.get_day():
continue
other_start = other_slot.get_start_time()
other_end = other_slot.end_time
if start <= other_start and other_start < end:
overlaps.add(slot)
overlaps.add(other_slot)
elif start < other_end and other_end <= end:
overlaps.add(slot)
overlaps.add(other_slot)
return overlaps
|
find_overlapping_slots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_slots):\n overlaps = set([])\n for slot in all_slots:\n start = slot.get_start_time()\n end = slot.end_time\n for other_slot in all_slots:\n if other_slot.pk == slot.pk:\n continue\n if other_slot.get_day() != slot.get_day():\n continue\n other_start = other_slot.get_start_time()\n other_end = other_slot.end_time\n if start <= other_start and other_start < end:\n overlaps.add(slot)\n overlaps.add(other_slot)\n elif start < other_end and other_end <= end:\n overlaps.add(slot)\n overlaps.add(other_slot)\n return overlaps\n",
"role": "user"
},
{
"content": "find_overlapping_slots",
"role": "assistant"
}
] |
def x(all_items):
non_contiguous = []
for item in all_items:
if item.slots.count() < 2:
continue
last_slot = None
for slot in item.slots.all().order_by('end_time'):
if last_slot:
if last_slot.end_time != slot.get_start_time():
non_contiguous.append(item)
break
last_slot = slot
return non_contiguous
|
find_non_contiguous
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_items):\n non_contiguous = []\n for item in all_items:\n if item.slots.count() < 2:\n continue\n last_slot = None\n for slot in item.slots.all().order_by('end_time'):\n if last_slot:\n if last_slot.end_time != slot.get_start_time():\n non_contiguous.append(item)\n break\n last_slot = slot\n return non_contiguous\n",
"role": "user"
},
{
"content": "find_non_contiguous",
"role": "assistant"
}
] |
def x(all_items):
validation = []
for item in all_items:
if item.talk is not None and item.page is not None:
validation.append(item)
elif item.talk is None and item.page is None:
validation.append(item)
elif item.talk and item.talk.status not in [ACCEPTED, CANCELLED]:
validation.append(item)
return validation
|
validate_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_items):\n validation = []\n for item in all_items:\n if item.talk is not None and item.page is not None:\n validation.append(item)\n elif item.talk is None and item.page is None:\n validation.append(item)\n elif item.talk and item.talk.status not in [ACCEPTED, CANCELLED]:\n validation.append(item)\n return validation\n",
"role": "user"
},
{
"content": "validate_items",
"role": "assistant"
}
] |
def x(all_items):
duplicates = []
seen_talks = {}
for item in all_items:
if item.talk and item.talk in seen_talks:
duplicates.append(item)
if seen_talks[item.talk] not in duplicates:
duplicates.append(seen_talks[item.talk])
else:
seen_talks[item.talk] = item
return duplicates
|
find_duplicate_schedule_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_items):\n duplicates = []\n seen_talks = {}\n for item in all_items:\n if item.talk and item.talk in seen_talks:\n duplicates.append(item)\n if seen_talks[item.talk] not in duplicates:\n duplicates.append(seen_talks[item.talk])\n else:\n seen_talks[item.talk] = item\n return duplicates\n",
"role": "user"
},
{
"content": "find_duplicate_schedule_items",
"role": "assistant"
}
] |
def x(all_items):
clashes = {}
seen_venue_slots = {}
for item in all_items:
for slot in item.slots.all():
pos = item.venue, slot
if pos in seen_venue_slots:
if seen_venue_slots[pos] not in clashes:
clashes[pos] = [seen_venue_slots[pos]]
clashes[pos].append(item)
else:
seen_venue_slots[pos] = item
return clashes.items()
|
find_clashes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_items):\n clashes = {}\n seen_venue_slots = {}\n for item in all_items:\n for slot in item.slots.all():\n pos = item.venue, slot\n if pos in seen_venue_slots:\n if seen_venue_slots[pos] not in clashes:\n clashes[pos] = [seen_venue_slots[pos]]\n clashes[pos].append(item)\n else:\n seen_venue_slots[pos] = item\n return clashes.items()\n",
"role": "user"
},
{
"content": "find_clashes",
"role": "assistant"
}
] |
def x(all_items):
venues = {}
for item in all_items:
valid = False
item_days = list(item.venue.days.all())
for slot in item.slots.all():
for day in item_days:
if day == slot.get_day():
valid = True
break
if not valid:
venues.setdefault(item.venue, [])
venues[item.venue].append(item)
return venues.items()
|
find_invalid_venues
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(all_items):\n venues = {}\n for item in all_items:\n valid = False\n item_days = list(item.venue.days.all())\n for slot in item.slots.all():\n for day in item_days:\n if day == slot.get_day():\n valid = True\n break\n if not valid:\n venues.setdefault(item.venue, [])\n venues[item.venue].append(item)\n return venues.items()\n",
"role": "user"
},
{
"content": "find_invalid_venues",
"role": "assistant"
}
] |
def x():
all_items = prefetch_schedule_items()
for validator, _type, _msg in SCHEDULE_ITEM_VALIDATORS:
if validator(all_items):
return False
all_slots = prefetch_slots()
for validator, _type, _msg in SLOT_VALIDATORS:
if validator(all_slots):
return False
return True
|
check_schedule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n all_items = prefetch_schedule_items()\n for validator, _type, _msg in SCHEDULE_ITEM_VALIDATORS:\n if validator(all_items):\n return False\n all_slots = prefetch_slots()\n for validator, _type, _msg in SLOT_VALIDATORS:\n if validator(all_slots):\n return False\n return True\n",
"role": "user"
},
{
"content": "check_schedule",
"role": "assistant"
}
] |
def x():
all_items = prefetch_schedule_items()
errors = []
for validator, _type, msg in SCHEDULE_ITEM_VALIDATORS:
if validator(all_items):
errors.append(msg)
all_slots = prefetch_slots()
for validator, _type, msg in SLOT_VALIDATORS:
if validator(all_slots):
errors.append(msg)
return errors
|
validate_schedule
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n all_items = prefetch_schedule_items()\n errors = []\n for validator, _type, msg in SCHEDULE_ITEM_VALIDATORS:\n if validator(all_items):\n errors.append(msg)\n all_slots = prefetch_slots()\n for validator, _type, msg in SLOT_VALIDATORS:\n if validator(all_slots):\n errors.append(msg)\n return errors\n",
"role": "user"
},
{
"content": "validate_schedule",
"role": "assistant"
}
] |
def x(self, request, obj=None, **kwargs):
if obj is None:
kwargs['form'] = SlotAdminAddForm
return super(SlotAdmin, self).get_form(request, obj, **kwargs)
|
get_form
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, obj=None, **kwargs):\n if obj is None:\n kwargs['form'] = SlotAdminAddForm\n return super(SlotAdmin, self).get_form(request, obj, **kwargs)\n",
"role": "user"
},
{
"content": "get_form",
"role": "assistant"
}
] |
def x():
items = cache.get(CACHE_KEY)
if items is None:
menu = generate_menu()
cache.set(CACHE_KEY, menu.items)
else:
menu = Menu(items)
return menu
|
get_cached_menus
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n items = cache.get(CACHE_KEY)\n if items is None:\n menu = generate_menu()\n cache.set(CACHE_KEY, menu.items)\n else:\n menu = Menu(items)\n return menu\n",
"role": "user"
},
{
"content": "get_cached_menus",
"role": "assistant"
}
] |
def x(str_or_obj):
if not isinstance(str_or_obj, six.string_types):
return str_or_obj
parts = str_or_obj.split('.')
mod, modname = None, None
for p in parts:
modname = p if modname is None else '%s.%s' % (modname, p)
try:
mod = __import__(modname)
except ImportError:
if mod is None:
raise
break
obj = mod
for p in parts[1:]:
obj = getattr(obj, p)
return obj
|
maybe_obj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(str_or_obj):\n if not isinstance(str_or_obj, six.string_types):\n return str_or_obj\n parts = str_or_obj.split('.')\n mod, modname = None, None\n for p in parts:\n modname = p if modname is None else '%s.%s' % (modname, p)\n try:\n mod = __import__(modname)\n except ImportError:\n if mod is None:\n raise\n break\n obj = mod\n for p in parts[1:]:\n obj = getattr(obj, p)\n return obj\n",
"role": "user"
},
{
"content": "maybe_obj",
"role": "assistant"
}
] |
def x():
root_menu = Menu(list(copy.deepcopy(settings.WAFER_MENUS)))
for dynamic_menu_func in settings.WAFER_DYNAMIC_MENUS:
dynamic_menu_func = maybe_obj(dynamic_menu_func)
dynamic_menu_func(root_menu)
return root_menu
|
generate_menu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n root_menu = Menu(list(copy.deepcopy(settings.WAFER_MENUS)))\n for dynamic_menu_func in settings.WAFER_DYNAMIC_MENUS:\n dynamic_menu_func = maybe_obj(dynamic_menu_func)\n dynamic_menu_func(root_menu)\n return root_menu\n",
"role": "user"
},
{
"content": "generate_menu",
"role": "assistant"
}
] |
def x(self):
self.__fd = open(self.__lockfile, 'w')
if self.__locktype == 'wait':
fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX)
elif self.__locktype == 'lock':
try:
fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
except IOError:
raise AlreadyLocked('File is already locked')
|
lock
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.__fd = open(self.__lockfile, 'w')\n if self.__locktype == 'wait':\n fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX)\n elif self.__locktype == 'lock':\n try:\n fcntl.flock(self.__fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)\n except IOError:\n raise AlreadyLocked('File is already locked')\n",
"role": "user"
},
{
"content": "lock",
"role": "assistant"
}
] |
def x(state_token, done_function):
class LocalServerHandler(BaseHTTPServer.BaseHTTPRequestHandler):
def x(self, msg):
logging.warn('Error response: %(msg)s. %(path)s', msg=msg, path
=self.path)
self.send_response(400)
self.send_header('Content-type', 'text/plain')
self.end_headers()
self.wfile.write(msg)
def x(self):
parsed = urlparse.urlparse(self.path)
if len(parsed.query) == 0 or parsed.path != '/callback':
self.error_response(
'We encountered a problem with your request.')
return
params = urlparse.parse_qs(parsed.query)
if params['state'] != [state_token]:
self.error_response(
'Attack detected: state tokens did not match!')
return
if len(params['code']) != 1:
self.error_response('Wrong number of "code" query parameters.')
return
self.send_response(200)
self.send_header('Content-type', 'text/plain')
self.end_headers()
self.wfile.write(
"courseraoauth2client: we have captured Coursera's response code. Feel free to close this browser window now and return to your terminal. Thanks!"
)
done_function(params['code'][0])
return LocalServerHandler
|
make_handler
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(state_token, done_function):\n\n\n class LocalServerHandler(BaseHTTPServer.BaseHTTPRequestHandler):\n\n def x(self, msg):\n logging.warn('Error response: %(msg)s. %(path)s', msg=msg, path\n =self.path)\n self.send_response(400)\n self.send_header('Content-type', 'text/plain')\n self.end_headers()\n self.wfile.write(msg)\n\n def x(self):\n parsed = urlparse.urlparse(self.path)\n if len(parsed.query) == 0 or parsed.path != '/callback':\n self.error_response(\n 'We encountered a problem with your request.')\n return\n params = urlparse.parse_qs(parsed.query)\n if params['state'] != [state_token]:\n self.error_response(\n 'Attack detected: state tokens did not match!')\n return\n if len(params['code']) != 1:\n self.error_response('Wrong number of \"code\" query parameters.')\n return\n self.send_response(200)\n self.send_header('Content-type', 'text/plain')\n self.end_headers()\n self.wfile.write(\n \"courseraoauth2client: we have captured Coursera's response code. Feel free to close this browser window now and return to your terminal. Thanks!\"\n )\n done_function(params['code'][0])\n return LocalServerHandler\n",
"role": "user"
},
{
"content": "make_handler",
"role": "assistant"
}
] |
def x():
defaults = """
[oauth2]
hostname = localhost
port = 9876
api_endpoint = https://api.coursera.org
auth_endpoint = https://accounts.coursera.org/oauth2/v1/auth
token_endpoint = https://accounts.coursera.org/oauth2/v1/token
verify_tls = True
token_cache_base = ~/.coursera
[manage_graders]
client_id = NS8qaSX18X_Eu0pyNbLsnA
client_secret = bUqKqGywnGXEJPFrcd4Jpw
scopes = view_profile manage_graders
[manage_research_exports]
client_id = sDHC8Nfp-b1XMbzZx8Wa4w
client_secret = pgD4adDd7lm-ksfG7UazUA
scopes = view_profile manage_research_exports
"""
cfg = ConfigParser.SafeConfigParser()
cfg.readfp(io.BytesIO(defaults))
cfg.read(['/etc/coursera/courseraoauth2client.cfg', os.path.expanduser(
'~/.coursera/courseraoauth2client.cfg'), 'courseraoauth2client.cfg'])
return cfg
|
configuration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n defaults = \"\"\"\n[oauth2]\nhostname = localhost\nport = 9876\napi_endpoint = https://api.coursera.org\nauth_endpoint = https://accounts.coursera.org/oauth2/v1/auth\ntoken_endpoint = https://accounts.coursera.org/oauth2/v1/token\nverify_tls = True\ntoken_cache_base = ~/.coursera\n\n[manage_graders]\nclient_id = NS8qaSX18X_Eu0pyNbLsnA\nclient_secret = bUqKqGywnGXEJPFrcd4Jpw\nscopes = view_profile manage_graders\n\n[manage_research_exports]\nclient_id = sDHC8Nfp-b1XMbzZx8Wa4w\nclient_secret = pgD4adDd7lm-ksfG7UazUA\nscopes = view_profile manage_research_exports\n\"\"\"\n cfg = ConfigParser.SafeConfigParser()\n cfg.readfp(io.BytesIO(defaults))\n cfg.read(['/etc/coursera/courseraoauth2client.cfg', os.path.expanduser(\n '~/.coursera/courseraoauth2client.cfg'), 'courseraoauth2client.cfg'])\n return cfg\n",
"role": "user"
},
{
"content": "configuration",
"role": "assistant"
}
] |
def x(self):
try:
logging.debug('About to read from local file cache file %s', self.
token_cache_file)
with open(self.token_cache_file, 'rb') as f:
fs_cached = cPickle.load(f)
if self._check_token_cache_type(fs_cached):
logging.debug('Loaded from file system: %s', fs_cached)
return fs_cached
else:
logging.warn('Found unexpected value in cache. %s', fs_cached)
return None
except IOError:
logging.debug('Did not find file: %s on the file system.', self.
token_cache_file)
return None
except:
logging.info('Encountered exception loading from the file system.',
exc_info=True)
return None
|
load_token_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n logging.debug('About to read from local file cache file %s', self.\n token_cache_file)\n with open(self.token_cache_file, 'rb') as f:\n fs_cached = cPickle.load(f)\n if self._check_token_cache_type(fs_cached):\n logging.debug('Loaded from file system: %s', fs_cached)\n return fs_cached\n else:\n logging.warn('Found unexpected value in cache. %s', fs_cached)\n return None\n except IOError:\n logging.debug('Did not find file: %s on the file system.', self.\n token_cache_file)\n return None\n except:\n logging.info('Encountered exception loading from the file system.',\n exc_info=True)\n return None\n",
"role": "user"
},
{
"content": "load_token_cache",
"role": "assistant"
}
] |
def x(self, new_cache):
logging.debug('Looking to write to local authentication cache...')
if not self._check_token_cache_type(new_cache):
logging.error('Attempt to save a bad value: %s', new_cache)
return
try:
logging.debug('About to write to fs cache file: %s', self.
token_cache_file)
with open(self.token_cache_file, 'wb') as f:
cPickle.dump(new_cache, f, protocol=cPickle.HIGHEST_PROTOCOL)
logging.debug('Finished dumping cache_value to fs cache file.')
except:
logging.exception(
'Could not successfully cache OAuth2 secrets on the file system.')
|
save_token_cache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_cache):\n logging.debug('Looking to write to local authentication cache...')\n if not self._check_token_cache_type(new_cache):\n logging.error('Attempt to save a bad value: %s', new_cache)\n return\n try:\n logging.debug('About to write to fs cache file: %s', self.\n token_cache_file)\n with open(self.token_cache_file, 'wb') as f:\n cPickle.dump(new_cache, f, protocol=cPickle.HIGHEST_PROTOCOL)\n logging.debug('Finished dumping cache_value to fs cache file.')\n except:\n logging.exception(\n 'Could not successfully cache OAuth2 secrets on the file system.')\n",
"role": "user"
},
{
"content": "save_token_cache",
"role": "assistant"
}
] |
def x(self, cache_value):
def x(name):
return isinstance(cache_value[name], str) or isinstance(cache_value
[name], unicode)
def x():
if 'refresh' in cache_value:
return check_string_value('refresh')
else:
return True
return (isinstance(cache_value, dict) and 'token' in cache_value and
'expires' in cache_value and check_string_value('token') and
isinstance(cache_value['expires'], float) and check_refresh_token())
|
check_token_cache_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cache_value):\n\n def x(name):\n return isinstance(cache_value[name], str) or isinstance(cache_value\n [name], unicode)\n\n def x():\n if 'refresh' in cache_value:\n return check_string_value('refresh')\n else:\n return True\n return (isinstance(cache_value, dict) and 'token' in cache_value and \n 'expires' in cache_value and check_string_value('token') and\n isinstance(cache_value['expires'], float) and check_refresh_token())\n",
"role": "user"
},
{
"content": "check_token_cache_type",
"role": "assistant"
}
] |
def x(self):
logging.info('About to request new OAuth2 tokens from Coursera.')
state_token = uuid.uuid4().hex
authorization_url = self._build_authorizaton_url(state_token)
sys.stdout.write('Please visit the following URL to authorize this app:\n')
sys.stdout.write('\t%s\n\n' % authorization_url)
if _platform == 'darwin':
sys.stdout.write(
"""Mac OS X detected; attempting to auto-open the url in your default browser...
"""
)
try:
subprocess.check_call(['open', authorization_url])
except:
logging.exception('Could not call `open %(url)s`.', url=
authorization_url)
if self.local_webserver_port is not None:
server_address = '', self.local_webserver_port
code_holder = CodeHolder()
local_server = BaseHTTPServer.HTTPServer(server_address,
_make_handler(state_token, code_holder))
while not code_holder.has_code():
local_server.handle_request()
coursera_code = code_holder.code
else:
coursera_code = raw_input('Please enter the code from Coursera: ')
form_data = {'code': coursera_code, 'client_id': self.client_id,
'client_secret': self.client_secret, 'redirect_uri': self.
_redirect_uri, 'grant_type': 'authorization_code'}
return self._request_tokens_from_token_endpoint(form_data)
|
authorize_new_tokens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n logging.info('About to request new OAuth2 tokens from Coursera.')\n state_token = uuid.uuid4().hex\n authorization_url = self._build_authorizaton_url(state_token)\n sys.stdout.write('Please visit the following URL to authorize this app:\\n')\n sys.stdout.write('\\t%s\\n\\n' % authorization_url)\n if _platform == 'darwin':\n sys.stdout.write(\n \"\"\"Mac OS X detected; attempting to auto-open the url in your default browser...\n\"\"\"\n )\n try:\n subprocess.check_call(['open', authorization_url])\n except:\n logging.exception('Could not call `open %(url)s`.', url=\n authorization_url)\n if self.local_webserver_port is not None:\n server_address = '', self.local_webserver_port\n code_holder = CodeHolder()\n local_server = BaseHTTPServer.HTTPServer(server_address,\n _make_handler(state_token, code_holder))\n while not code_holder.has_code():\n local_server.handle_request()\n coursera_code = code_holder.code\n else:\n coursera_code = raw_input('Please enter the code from Coursera: ')\n form_data = {'code': coursera_code, 'client_id': self.client_id,\n 'client_secret': self.client_secret, 'redirect_uri': self.\n _redirect_uri, 'grant_type': 'authorization_code'}\n return self._request_tokens_from_token_endpoint(form_data)\n",
"role": "user"
},
{
"content": "authorize_new_tokens",
"role": "assistant"
}
] |
def x(self):
if self.token_cache is not None and 'refresh' in self.token_cache:
refresh_form = {'grant_type': 'refresh_token', 'refresh_token':
self.token_cache['refresh'], 'client_id': self.client_id,
'client_secret': self.client_secret}
try:
tokens = self._request_tokens_from_token_endpoint(refresh_form)
tokens['refresh'] = self.token_cache['refresh']
return tokens
except OAuth2Exception:
logging.exception(
'Encountered an exception during refresh token flow.')
return None
|
exchange_refresh_tokens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.token_cache is not None and 'refresh' in self.token_cache:\n refresh_form = {'grant_type': 'refresh_token', 'refresh_token':\n self.token_cache['refresh'], 'client_id': self.client_id,\n 'client_secret': self.client_secret}\n try:\n tokens = self._request_tokens_from_token_endpoint(refresh_form)\n tokens['refresh'] = self.token_cache['refresh']\n return tokens\n except OAuth2Exception:\n logging.exception(\n 'Encountered an exception during refresh token flow.')\n return None\n",
"role": "user"
},
{
"content": "exchange_refresh_tokens",
"role": "assistant"
}
] |
def x(element, exceptions):
label = element.field.__dict__['label']
try:
label = unicode(label)
except NameError:
pass
if not label or label in exceptions:
return False
else:
return '_queryset' in element.field.__dict__
|
foreignkey
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(element, exceptions):\n label = element.field.__dict__['label']\n try:\n label = unicode(label)\n except NameError:\n pass\n if not label or label in exceptions:\n return False\n else:\n return '_queryset' in element.field.__dict__\n",
"role": "user"
},
{
"content": "foreignkey",
"role": "assistant"
}
] |
def x(value, field):
if isinstance(field, forms.DateTimeField):
value = parse_datetime(value)
elif isinstance(field, forms.DateField):
value = parse_date(value)
elif isinstance(field, forms.TimeField):
value = parse_time(value)
return value
|
deserialize_by_field
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, field):\n if isinstance(field, forms.DateTimeField):\n value = parse_datetime(value)\n elif isinstance(field, forms.DateField):\n value = parse_date(value)\n elif isinstance(field, forms.TimeField):\n value = parse_time(value)\n return value\n",
"role": "user"
},
{
"content": "deserialize_by_field",
"role": "assistant"
}
] |
def x(self):
hp = self.k.hyperprior * self.noise_k.hyperprior
if self.mu is not None:
hp *= self.mu.hyperprior
return hp
|
hyperprior
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n hp = self.k.hyperprior * self.noise_k.hyperprior\n if self.mu is not None:\n hp *= self.mu.hyperprior\n return hp\n",
"role": "user"
},
{
"content": "hyperprior",
"role": "assistant"
}
] |
def x(self):
fp = CombinedBounds(self.k.fixed_params, self.noise_k.fixed_params)
if self.mu is not None:
fp = CombinedBounds(fp, self.mu.fixed_params)
return fp
|
fixed_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fp = CombinedBounds(self.k.fixed_params, self.noise_k.fixed_params)\n if self.mu is not None:\n fp = CombinedBounds(fp, self.mu.fixed_params)\n return fp\n",
"role": "user"
},
{
"content": "fixed_params",
"role": "assistant"
}
] |
def x(self):
p = CombinedBounds(self.k.params, self.noise_k.params)
if self.mu is not None:
p = CombinedBounds(p, self.mu.params)
return p
|
params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n p = CombinedBounds(self.k.params, self.noise_k.params)\n if self.mu is not None:\n p = CombinedBounds(p, self.mu.params)\n return p\n",
"role": "user"
},
{
"content": "params",
"role": "assistant"
}
] |
def x(self):
pn = CombinedBounds(self.k.param_names, self.noise_k.param_names)
if self.mu is not None:
pn = CombinedBounds(pn, self.mu.param_names)
return pn
|
param_names
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pn = CombinedBounds(self.k.param_names, self.noise_k.param_names)\n if self.mu is not None:\n pn = CombinedBounds(pn, self.mu.param_names)\n return pn\n",
"role": "user"
},
{
"content": "param_names",
"role": "assistant"
}
] |
def x(self):
p = CombinedBounds(self.k.free_params, self.noise_k.free_params)
if self.mu is not None:
p = CombinedBounds(p, self.mu.free_params)
return p
|
free_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n p = CombinedBounds(self.k.free_params, self.noise_k.free_params)\n if self.mu is not None:\n p = CombinedBounds(p, self.mu.free_params)\n return p\n",
"role": "user"
},
{
"content": "free_params",
"role": "assistant"
}
] |
def x(self, value):
value = scipy.asarray(value, dtype=float)
self.K_up_to_date = False
self.k.free_params = value[:self.k.num_free_params]
self.noise_k.free_params = value[self.k.num_free_params:self.k.
num_free_params + self.noise_k.num_free_params]
if self.mu is not None:
self.mu.free_params = value[self.k.num_free_params + self.noise_k.
num_free_params:]
|
free_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n value = scipy.asarray(value, dtype=float)\n self.K_up_to_date = False\n self.k.free_params = value[:self.k.num_free_params]\n self.noise_k.free_params = value[self.k.num_free_params:self.k.\n num_free_params + self.noise_k.num_free_params]\n if self.mu is not None:\n self.mu.free_params = value[self.k.num_free_params + self.noise_k.\n num_free_params:]\n",
"role": "user"
},
{
"content": "free_params",
"role": "assistant"
}
] |
def x(self):
fpb = CombinedBounds(self.k.free_param_bounds, self.noise_k.
free_param_bounds)
if self.mu is not None:
fpb = CombinedBounds(fpb, self.mu.free_param_bounds)
return fpb
|
free_param_bounds
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fpb = CombinedBounds(self.k.free_param_bounds, self.noise_k.\n free_param_bounds)\n if self.mu is not None:\n fpb = CombinedBounds(fpb, self.mu.free_param_bounds)\n return fpb\n",
"role": "user"
},
{
"content": "free_param_bounds",
"role": "assistant"
}
] |
def x(self):
p = CombinedBounds(self.k.free_param_names, self.noise_k.free_param_names)
if self.mu is not None:
p = CombinedBounds(p, self.mu.free_param_names)
return p
|
free_param_names
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n p = CombinedBounds(self.k.free_param_names, self.noise_k.free_param_names)\n if self.mu is not None:\n p = CombinedBounds(p, self.mu.free_param_names)\n return p\n",
"role": "user"
},
{
"content": "free_param_names",
"role": "assistant"
}
] |
def x(self, X, y, err_y=0, n=0, T=None):
y = scipy.atleast_1d(scipy.asarray(y, dtype=float))
if len(y.shape) != 1:
raise ValueError(
'Training targets y must have only one dimension with length greater than one! Shape of y given is %s'
% (y.shape,))
try:
iter(err_y)
except TypeError:
err_y = err_y * scipy.ones_like(y, dtype=float)
else:
err_y = scipy.asarray(err_y, dtype=float)
if err_y.shape != y.shape:
raise ValueError(
'When using array-like err_y, shape must match shape of y! Shape of err_y given is %s, shape of y given is %s.'
% (err_y.shape, y.shape))
if (err_y < 0).any():
raise ValueError('All elements of err_y must be non-negative!')
X = scipy.atleast_2d(scipy.asarray(X, dtype=float))
if self.num_dim == 1 and X.shape[0] == 1:
X = X.T
if T is None and X.shape != (len(y), self.num_dim):
raise ValueError(
'Shape of training inputs must be (len(y), k.num_dim)! X given has shape %s, shape of y is %s and num_dim=%d.'
% (X.shape, y.shape, self.num_dim))
try:
iter(n)
except TypeError:
n = n * scipy.ones_like(X, dtype=int)
else:
n = scipy.atleast_2d(scipy.asarray(n, dtype=int))
if self.num_dim == 1 and n.shape[1] != 1:
n = n.T
if n.shape != X.shape:
raise ValueError(
'When using array-like n, shape must be (len(y), k.num_dim)! Shape of n given is %s, shape of y given is %s and num_dim=%d.'
% (n.shape, y.shape, self.num_dim))
if (n < 0).any():
raise ValueError('All elements of n must be non-negative integers!')
if T is None and self.T is not None:
T = scipy.eye(len(y))
if T is not None:
T = scipy.atleast_2d(scipy.asarray(T, dtype=float))
if T.ndim != 2:
raise ValueError('T must have exactly 2 dimensions!')
if T.shape[0] != len(y):
raise ValueError(
'T must have as many rows are there are elements in y!')
if T.shape[1] != X.shape[0]:
raise ValueError(
'There must be as many columns in T as there are rows in X!')
if self.T is None and self.X is not None:
self.T = scipy.eye(len(self.y))
if self.T is None:
self.T = T
else:
self.T = scipy.linalg.block_diag(self.T, T)
if self.X is None:
self.X = X
else:
self.X = scipy.vstack((self.X, X))
self.y = scipy.append(self.y, y)
self.err_y = scipy.append(self.err_y, err_y)
if self.n is None:
self.n = n
else:
self.n = scipy.vstack((self.n, n))
self.K_up_to_date = False
|
add_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y, err_y=0, n=0, T=None):\n y = scipy.atleast_1d(scipy.asarray(y, dtype=float))\n if len(y.shape) != 1:\n raise ValueError(\n 'Training targets y must have only one dimension with length greater than one! Shape of y given is %s'\n % (y.shape,))\n try:\n iter(err_y)\n except TypeError:\n err_y = err_y * scipy.ones_like(y, dtype=float)\n else:\n err_y = scipy.asarray(err_y, dtype=float)\n if err_y.shape != y.shape:\n raise ValueError(\n 'When using array-like err_y, shape must match shape of y! Shape of err_y given is %s, shape of y given is %s.'\n % (err_y.shape, y.shape))\n if (err_y < 0).any():\n raise ValueError('All elements of err_y must be non-negative!')\n X = scipy.atleast_2d(scipy.asarray(X, dtype=float))\n if self.num_dim == 1 and X.shape[0] == 1:\n X = X.T\n if T is None and X.shape != (len(y), self.num_dim):\n raise ValueError(\n 'Shape of training inputs must be (len(y), k.num_dim)! X given has shape %s, shape of y is %s and num_dim=%d.'\n % (X.shape, y.shape, self.num_dim))\n try:\n iter(n)\n except TypeError:\n n = n * scipy.ones_like(X, dtype=int)\n else:\n n = scipy.atleast_2d(scipy.asarray(n, dtype=int))\n if self.num_dim == 1 and n.shape[1] != 1:\n n = n.T\n if n.shape != X.shape:\n raise ValueError(\n 'When using array-like n, shape must be (len(y), k.num_dim)! Shape of n given is %s, shape of y given is %s and num_dim=%d.'\n % (n.shape, y.shape, self.num_dim))\n if (n < 0).any():\n raise ValueError('All elements of n must be non-negative integers!')\n if T is None and self.T is not None:\n T = scipy.eye(len(y))\n if T is not None:\n T = scipy.atleast_2d(scipy.asarray(T, dtype=float))\n if T.ndim != 2:\n raise ValueError('T must have exactly 2 dimensions!')\n if T.shape[0] != len(y):\n raise ValueError(\n 'T must have as many rows are there are elements in y!')\n if T.shape[1] != X.shape[0]:\n raise ValueError(\n 'There must be as many columns in T as there are rows in X!')\n if self.T is None and self.X is not None:\n self.T = scipy.eye(len(self.y))\n if self.T is None:\n self.T = T\n else:\n self.T = scipy.linalg.block_diag(self.T, T)\n if self.X is None:\n self.X = X\n else:\n self.X = scipy.vstack((self.X, X))\n self.y = scipy.append(self.y, y)\n self.err_y = scipy.append(self.err_y, err_y)\n if self.n is None:\n self.n = n\n else:\n self.n = scipy.vstack((self.n, n))\n self.K_up_to_date = False\n",
"role": "user"
},
{
"content": "add_data",
"role": "assistant"
}
] |
def x(self):
unique, inv = unique_rows(scipy.hstack((self.X, self.n)),
return_inverse=True)
if len(unique) != len(self.X):
if self.T is None:
self.T = scipy.eye(len(self.y))
new_T = scipy.zeros((len(self.y), unique.shape[0]))
for j in xrange(0, len(inv)):
new_T[:, inv[j]] += self.T[:, j]
self.T = new_T
self.n = unique[:, self.X.shape[1]:]
self.X = unique[:, :self.X.shape[1]]
if self.T is not None:
good_cols = (self.T != 0.0).any(axis=0)
self.T = self.T[:, good_cols]
self.X = self.X[good_cols, :]
self.n = self.n[good_cols, :]
|
condense_duplicates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n unique, inv = unique_rows(scipy.hstack((self.X, self.n)),\n return_inverse=True)\n if len(unique) != len(self.X):\n if self.T is None:\n self.T = scipy.eye(len(self.y))\n new_T = scipy.zeros((len(self.y), unique.shape[0]))\n for j in xrange(0, len(inv)):\n new_T[:, inv[j]] += self.T[:, j]\n self.T = new_T\n self.n = unique[:, self.X.shape[1]:]\n self.X = unique[:, :self.X.shape[1]]\n if self.T is not None:\n good_cols = (self.T != 0.0).any(axis=0)\n self.T = self.T[:, good_cols]\n self.X = self.X[good_cols, :]\n self.n = self.n[good_cols, :]\n",
"role": "user"
},
{
"content": "condense_duplicates",
"role": "assistant"
}
] |
def x(self, thresh=3, **predict_kwargs):
mean = self.predict(self.X, n=self.n, noise=False, return_std=False,
output_transform=self.T, **predict_kwargs)
deltas = scipy.absolute(mean - self.y) / self.err_y
deltas[self.err_y == 0] = 0
bad_idxs = deltas >= thresh
good_idxs = ~bad_idxs
y_bad = self.y[bad_idxs]
err_y_bad = self.err_y[bad_idxs]
if self.T is not None:
T_bad = self.T[bad_idxs, :]
non_zero_cols = (T_bad != 0).all(axis=0)
T_bad = T_bad[:, non_zero_cols]
X_bad = self.X[non_zero_cols, :]
n_bad = self.n[non_zero_cols, :]
else:
X_bad = self.X[bad_idxs, :]
n_bad = self.n[bad_idxs, :]
if self.T is None:
self.X = self.X[good_idxs, :]
self.n = self.n[good_idxs, :]
else:
self.T = self.T[good_idxs, :]
non_zero_cols = (self.T != 0).all(axis=0)
self.T = self.T[:, non_zero_cols]
self.X = self.X[non_zero_cols, :]
self.n = self.n[non_zero_cols, :]
self.y = self.y[good_idxs]
self.err_y = self.err_y[good_idxs]
self.K_up_to_date = False
if self.T is None:
return X_bad, y_bad, err_y_bad, n_bad, bad_idxs
else:
return X_bad, y_bad, err_y_bad, n_bad, bad_idxs, T_bad
|
remove_outliers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, thresh=3, **predict_kwargs):\n mean = self.predict(self.X, n=self.n, noise=False, return_std=False,\n output_transform=self.T, **predict_kwargs)\n deltas = scipy.absolute(mean - self.y) / self.err_y\n deltas[self.err_y == 0] = 0\n bad_idxs = deltas >= thresh\n good_idxs = ~bad_idxs\n y_bad = self.y[bad_idxs]\n err_y_bad = self.err_y[bad_idxs]\n if self.T is not None:\n T_bad = self.T[bad_idxs, :]\n non_zero_cols = (T_bad != 0).all(axis=0)\n T_bad = T_bad[:, non_zero_cols]\n X_bad = self.X[non_zero_cols, :]\n n_bad = self.n[non_zero_cols, :]\n else:\n X_bad = self.X[bad_idxs, :]\n n_bad = self.n[bad_idxs, :]\n if self.T is None:\n self.X = self.X[good_idxs, :]\n self.n = self.n[good_idxs, :]\n else:\n self.T = self.T[good_idxs, :]\n non_zero_cols = (self.T != 0).all(axis=0)\n self.T = self.T[:, non_zero_cols]\n self.X = self.X[non_zero_cols, :]\n self.n = self.n[non_zero_cols, :]\n self.y = self.y[good_idxs]\n self.err_y = self.err_y[good_idxs]\n self.K_up_to_date = False\n if self.T is None:\n return X_bad, y_bad, err_y_bad, n_bad, bad_idxs\n else:\n return X_bad, y_bad, err_y_bad, n_bad, bad_idxs, T_bad\n",
"role": "user"
},
{
"content": "remove_outliers",
"role": "assistant"
}
] |
def x(self, method='SLSQP', opt_kwargs={}, verbose=False, random_starts=
None, num_proc=None, max_tries=1):
if opt_kwargs is None:
opt_kwargs = {}
else:
opt_kwargs = dict(opt_kwargs)
if 'method' in opt_kwargs:
method = opt_kwargs['method']
if self.verbose:
warnings.warn(
"Key 'method' is present in opt_kwargs, will override option specified with method kwarg."
, RuntimeWarning)
else:
opt_kwargs['method'] = method
if num_proc is None:
num_proc = multiprocessing.cpu_count()
param_ranges = scipy.asarray(self.free_param_bounds, dtype=float)
param_ranges[scipy.where(scipy.isnan(param_ranges[:, 0])), 0] = -1e+16
param_ranges[scipy.where(scipy.isnan(param_ranges[:, 1])), 1] = 1e+16
param_ranges[scipy.where(scipy.isinf(param_ranges[:, 0])), 0] = -1e+16
param_ranges[scipy.where(scipy.isinf(param_ranges[:, 1])), 1] = 1e+16
if random_starts == 0:
num_proc = 0
param_samples = [self.free_params[:]]
else:
if random_starts is None:
random_starts = max(num_proc, 1)
param_samples = self.hyperprior.random_draw(size=random_starts).T
param_samples = param_samples[:, ~self.fixed_params]
if 'bounds' not in opt_kwargs:
opt_kwargs['bounds'] = param_ranges
if self.use_hyper_deriv:
opt_kwargs['jac'] = True
trial = 0
res_min = None
while trial < max_tries and res_min is None:
if trial >= 1:
if self.verbose:
warnings.warn(
'No solutions found on trial %d, retrying random starts.' %
(trial - 1,), RuntimeWarning)
if random_starts != 0:
param_samples = self.hyperprior.random_draw(size=random_starts
).T
param_samples = param_samples[:, ~self.fixed_params]
trial += 1
if num_proc > 1:
pool = InterruptiblePool(processes=num_proc)
map_fun = pool.map
else:
map_fun = map
try:
res = map_fun(_OptimizeHyperparametersEval(self, opt_kwargs),
param_samples)
finally:
if num_proc > 1:
pool.close()
res = [r for r in res if r is not None]
try:
res_min = min(res, key=lambda r: r.fun)
if scipy.isnan(res_min.fun) or scipy.isinf(res_min.fun):
res_min = None
except ValueError:
res_min = None
if res_min is None:
raise ValueError(
'Optimizer failed to find a valid solution. Try changing the parameter bounds, picking a new initial guess or increasing the number of random starts.'
)
self.update_hyperparameters(res_min.x)
if verbose:
print('Got %d completed starts, optimal result is:' % (len(res),))
print(res_min)
print('\nLL\t%.3g' % (-1 * res_min.fun))
for v, l in zip(res_min.x, self.free_param_names):
print('%s\t%.3g' % (l.translate(None, '\\'), v))
if not res_min.success:
warnings.warn(
"Optimizer %s reports failure, selected hyperparameters are likely NOT optimal. Status: %d, Message: '%s'. Try adjusting bounds, initial guesses or the number of random starts used."
% (method, res_min.status, res_min.message), RuntimeWarning)
bounds = scipy.asarray(self.free_param_bounds)
if (res_min.x <= 1.001 * bounds[:, 0]).any() or (res_min.x >= 0.999 *
bounds[:, 1]).any():
warnings.warn(
"""Optimizer appears to have hit/exceeded the bounds. Bounds are:
%s
, solution is:
%s. Try adjusting bounds, initial guesses or the number of random starts used."""
% (str(bounds), str(res_min.x)))
return res_min, len(res)
|
optimize_hyperparameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, method='SLSQP', opt_kwargs={}, verbose=False, random_starts=\n None, num_proc=None, max_tries=1):\n if opt_kwargs is None:\n opt_kwargs = {}\n else:\n opt_kwargs = dict(opt_kwargs)\n if 'method' in opt_kwargs:\n method = opt_kwargs['method']\n if self.verbose:\n warnings.warn(\n \"Key 'method' is present in opt_kwargs, will override option specified with method kwarg.\"\n , RuntimeWarning)\n else:\n opt_kwargs['method'] = method\n if num_proc is None:\n num_proc = multiprocessing.cpu_count()\n param_ranges = scipy.asarray(self.free_param_bounds, dtype=float)\n param_ranges[scipy.where(scipy.isnan(param_ranges[:, 0])), 0] = -1e+16\n param_ranges[scipy.where(scipy.isnan(param_ranges[:, 1])), 1] = 1e+16\n param_ranges[scipy.where(scipy.isinf(param_ranges[:, 0])), 0] = -1e+16\n param_ranges[scipy.where(scipy.isinf(param_ranges[:, 1])), 1] = 1e+16\n if random_starts == 0:\n num_proc = 0\n param_samples = [self.free_params[:]]\n else:\n if random_starts is None:\n random_starts = max(num_proc, 1)\n param_samples = self.hyperprior.random_draw(size=random_starts).T\n param_samples = param_samples[:, ~self.fixed_params]\n if 'bounds' not in opt_kwargs:\n opt_kwargs['bounds'] = param_ranges\n if self.use_hyper_deriv:\n opt_kwargs['jac'] = True\n trial = 0\n res_min = None\n while trial < max_tries and res_min is None:\n if trial >= 1:\n if self.verbose:\n warnings.warn(\n 'No solutions found on trial %d, retrying random starts.' %\n (trial - 1,), RuntimeWarning)\n if random_starts != 0:\n param_samples = self.hyperprior.random_draw(size=random_starts\n ).T\n param_samples = param_samples[:, ~self.fixed_params]\n trial += 1\n if num_proc > 1:\n pool = InterruptiblePool(processes=num_proc)\n map_fun = pool.map\n else:\n map_fun = map\n try:\n res = map_fun(_OptimizeHyperparametersEval(self, opt_kwargs),\n param_samples)\n finally:\n if num_proc > 1:\n pool.close()\n res = [r for r in res if r is not None]\n try:\n res_min = min(res, key=lambda r: r.fun)\n if scipy.isnan(res_min.fun) or scipy.isinf(res_min.fun):\n res_min = None\n except ValueError:\n res_min = None\n if res_min is None:\n raise ValueError(\n 'Optimizer failed to find a valid solution. Try changing the parameter bounds, picking a new initial guess or increasing the number of random starts.'\n )\n self.update_hyperparameters(res_min.x)\n if verbose:\n print('Got %d completed starts, optimal result is:' % (len(res),))\n print(res_min)\n print('\\nLL\\t%.3g' % (-1 * res_min.fun))\n for v, l in zip(res_min.x, self.free_param_names):\n print('%s\\t%.3g' % (l.translate(None, '\\\\'), v))\n if not res_min.success:\n warnings.warn(\n \"Optimizer %s reports failure, selected hyperparameters are likely NOT optimal. Status: %d, Message: '%s'. Try adjusting bounds, initial guesses or the number of random starts used.\"\n % (method, res_min.status, res_min.message), RuntimeWarning)\n bounds = scipy.asarray(self.free_param_bounds)\n if (res_min.x <= 1.001 * bounds[:, 0]).any() or (res_min.x >= 0.999 *\n bounds[:, 1]).any():\n warnings.warn(\n \"\"\"Optimizer appears to have hit/exceeded the bounds. Bounds are:\n%s\n, solution is:\n%s. Try adjusting bounds, initial guesses or the number of random starts used.\"\"\"\n % (str(bounds), str(res_min.x)))\n return res_min, len(res)\n",
"role": "user"
},
{
"content": "optimize_hyperparameters",
"role": "assistant"
}
] |
def x(self, Xstar, n=0, noise=False, return_std=True, return_cov=False,
full_output=False, return_samples=False, num_samples=1, samp_kwargs={},
return_mean_func=False, use_MCMC=False, full_MC=False, rejection_func=
None, ddof=1, output_transform=None, **kwargs):
if use_MCMC:
res = self.predict_MCMC(Xstar, n=n, noise=noise, return_std=
return_std or full_output, return_cov=return_cov or full_output,
return_samples=full_output and (return_samples or
rejection_func), return_mean_func=full_output and
return_mean_func, num_samples=num_samples, samp_kwargs=
samp_kwargs, full_MC=full_MC, rejection_func=rejection_func,
ddof=ddof, output_transform=output_transform, **kwargs)
if full_output:
return res
elif return_cov:
return res['mean'], res['cov']
elif return_std:
return res['mean'], res['std']
else:
return res['mean']
else:
Xstar = scipy.atleast_2d(scipy.asarray(Xstar, dtype=float))
if self.num_dim == 1 and Xstar.shape[0] == 1:
Xstar = Xstar.T
if Xstar.shape[1] != self.num_dim:
raise ValueError(
'Second dimension of Xstar must be equal to self.num_dim! Shape of Xstar given is %s, num_dim is %d.'
% (Xstar.shape, self.num_dim))
if output_transform is not None:
output_transform = scipy.atleast_2d(scipy.asarray(
output_transform, dtype=float))
if output_transform.ndim != 2:
raise ValueError(
'output_transform must have exactly 2 dimensions! Shape of output_transform given is %s.'
% (output_transform.shape,))
if output_transform.shape[1] != Xstar.shape[0]:
raise ValueError(
'output_transform must have the same number of columns the number of rows in Xstar! Shape of output_transform given is %s, shape of Xstar is %s.'
% (output_transform.shape, Xstar.shape))
try:
iter(n)
except TypeError:
n = n * scipy.ones(Xstar.shape, dtype=int)
else:
n = scipy.atleast_2d(scipy.asarray(n, dtype=int))
if self.num_dim == 1 and n.shape[0] == 1:
n = n.T
if n.shape != Xstar.shape:
raise ValueError(
'When using array-like n, shape must match shape of Xstar! Shape of n given is %s, shape of Xstar given is %s.'
% (n.shape, Xstar.shape))
if (n < 0).any():
raise ValueError('All elements of n must be non-negative integers!'
)
self.compute_K_L_alpha_ll()
Kstar = self.compute_Kij(self.X, Xstar, self.n, n)
if noise:
Kstar = Kstar + self.compute_Kij(self.X, Xstar, self.n, n,
noise=True)
if self.T is not None:
Kstar = self.T.dot(Kstar)
mean = Kstar.T.dot(self.alpha)
if self.mu is not None:
mean_func = scipy.atleast_2d(self.mu(Xstar, n)).T
mean += mean_func
if output_transform is not None:
mean = output_transform.dot(mean)
if return_mean_func and self.mu is not None:
mean_func = output_transform.dot(mean_func)
mean = mean.ravel()
if return_mean_func and self.mu is not None:
mean_func = mean_func.ravel()
if return_std or return_cov or full_output or full_MC:
v = scipy.linalg.solve_triangular(self.L, Kstar, lower=True)
Kstarstar = self.compute_Kij(Xstar, None, n, None)
if noise:
Kstarstar = Kstarstar + self.compute_Kij(Xstar, None, n,
None, noise=True)
covariance = Kstarstar - v.T.dot(v)
if output_transform is not None:
covariance = output_transform.dot(covariance.dot(
output_transform.T))
if return_samples or full_MC:
samps = self.draw_sample(Xstar, n=n, num_samp=num_samples,
mean=mean, cov=covariance, **samp_kwargs)
if rejection_func:
good_samps = []
for samp in samps.T:
if rejection_func(samp):
good_samps.append(samp)
if len(good_samps) == 0:
raise ValueError('Did not get any good samples!')
samps = scipy.asarray(good_samps, dtype=float).T
if full_MC:
mean = scipy.mean(samps, axis=1)
covariance = scipy.cov(samps, rowvar=1, ddof=ddof)
std = scipy.sqrt(scipy.diagonal(covariance))
if full_output:
out = {'mean': mean, 'std': std, 'cov': covariance}
if return_samples or full_MC:
out['samp'] = samps
if return_mean_func and self.mu is not None:
out['mean_func'] = mean_func
out['cov_func'] = scipy.zeros((len(mean_func), len(
mean_func)), dtype=float)
out['std_func'] = scipy.zeros_like(mean_func)
out['mean_without_func'] = mean - mean_func
out['cov_without_func'] = covariance
out['std_without_func'] = std
return out
elif return_cov:
return mean, covariance
elif return_std:
return mean, std
else:
return mean
else:
return mean
|
predict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Xstar, n=0, noise=False, return_std=True, return_cov=False,\n full_output=False, return_samples=False, num_samples=1, samp_kwargs={},\n return_mean_func=False, use_MCMC=False, full_MC=False, rejection_func=\n None, ddof=1, output_transform=None, **kwargs):\n if use_MCMC:\n res = self.predict_MCMC(Xstar, n=n, noise=noise, return_std=\n return_std or full_output, return_cov=return_cov or full_output,\n return_samples=full_output and (return_samples or\n rejection_func), return_mean_func=full_output and\n return_mean_func, num_samples=num_samples, samp_kwargs=\n samp_kwargs, full_MC=full_MC, rejection_func=rejection_func,\n ddof=ddof, output_transform=output_transform, **kwargs)\n if full_output:\n return res\n elif return_cov:\n return res['mean'], res['cov']\n elif return_std:\n return res['mean'], res['std']\n else:\n return res['mean']\n else:\n Xstar = scipy.atleast_2d(scipy.asarray(Xstar, dtype=float))\n if self.num_dim == 1 and Xstar.shape[0] == 1:\n Xstar = Xstar.T\n if Xstar.shape[1] != self.num_dim:\n raise ValueError(\n 'Second dimension of Xstar must be equal to self.num_dim! Shape of Xstar given is %s, num_dim is %d.'\n % (Xstar.shape, self.num_dim))\n if output_transform is not None:\n output_transform = scipy.atleast_2d(scipy.asarray(\n output_transform, dtype=float))\n if output_transform.ndim != 2:\n raise ValueError(\n 'output_transform must have exactly 2 dimensions! Shape of output_transform given is %s.'\n % (output_transform.shape,))\n if output_transform.shape[1] != Xstar.shape[0]:\n raise ValueError(\n 'output_transform must have the same number of columns the number of rows in Xstar! Shape of output_transform given is %s, shape of Xstar is %s.'\n % (output_transform.shape, Xstar.shape))\n try:\n iter(n)\n except TypeError:\n n = n * scipy.ones(Xstar.shape, dtype=int)\n else:\n n = scipy.atleast_2d(scipy.asarray(n, dtype=int))\n if self.num_dim == 1 and n.shape[0] == 1:\n n = n.T\n if n.shape != Xstar.shape:\n raise ValueError(\n 'When using array-like n, shape must match shape of Xstar! Shape of n given is %s, shape of Xstar given is %s.'\n % (n.shape, Xstar.shape))\n if (n < 0).any():\n raise ValueError('All elements of n must be non-negative integers!'\n )\n self.compute_K_L_alpha_ll()\n Kstar = self.compute_Kij(self.X, Xstar, self.n, n)\n if noise:\n Kstar = Kstar + self.compute_Kij(self.X, Xstar, self.n, n,\n noise=True)\n if self.T is not None:\n Kstar = self.T.dot(Kstar)\n mean = Kstar.T.dot(self.alpha)\n if self.mu is not None:\n mean_func = scipy.atleast_2d(self.mu(Xstar, n)).T\n mean += mean_func\n if output_transform is not None:\n mean = output_transform.dot(mean)\n if return_mean_func and self.mu is not None:\n mean_func = output_transform.dot(mean_func)\n mean = mean.ravel()\n if return_mean_func and self.mu is not None:\n mean_func = mean_func.ravel()\n if return_std or return_cov or full_output or full_MC:\n v = scipy.linalg.solve_triangular(self.L, Kstar, lower=True)\n Kstarstar = self.compute_Kij(Xstar, None, n, None)\n if noise:\n Kstarstar = Kstarstar + self.compute_Kij(Xstar, None, n,\n None, noise=True)\n covariance = Kstarstar - v.T.dot(v)\n if output_transform is not None:\n covariance = output_transform.dot(covariance.dot(\n output_transform.T))\n if return_samples or full_MC:\n samps = self.draw_sample(Xstar, n=n, num_samp=num_samples,\n mean=mean, cov=covariance, **samp_kwargs)\n if rejection_func:\n good_samps = []\n for samp in samps.T:\n if rejection_func(samp):\n good_samps.append(samp)\n if len(good_samps) == 0:\n raise ValueError('Did not get any good samples!')\n samps = scipy.asarray(good_samps, dtype=float).T\n if full_MC:\n mean = scipy.mean(samps, axis=1)\n covariance = scipy.cov(samps, rowvar=1, ddof=ddof)\n std = scipy.sqrt(scipy.diagonal(covariance))\n if full_output:\n out = {'mean': mean, 'std': std, 'cov': covariance}\n if return_samples or full_MC:\n out['samp'] = samps\n if return_mean_func and self.mu is not None:\n out['mean_func'] = mean_func\n out['cov_func'] = scipy.zeros((len(mean_func), len(\n mean_func)), dtype=float)\n out['std_func'] = scipy.zeros_like(mean_func)\n out['mean_without_func'] = mean - mean_func\n out['cov_without_func'] = covariance\n out['std_without_func'] = std\n return out\n elif return_cov:\n return mean, covariance\n elif return_std:\n return mean, std\n else:\n return mean\n else:\n return mean\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
] |
def x(self, X=None, n=0, ax=None, envelopes=[1, 3], base_alpha=0.375,
return_prediction=False, return_std=True, full_output=False,
plot_kwargs={}, **kwargs):
if self.num_dim > 2:
raise ValueError('Plotting is not supported for num_dim > 2!')
if self.num_dim == 1:
if X is None:
X = scipy.linspace(self.X.min(), self.X.max(), 100)
elif self.num_dim == 2:
if X is None:
x1 = scipy.linspace(self.X[:, 0].min(), self.X[:, 0].max(), 50)
x2 = scipy.linspace(self.X[:, 1].min(), self.X[:, 1].max(), 50)
X1, X2 = scipy.meshgrid(x1, x2)
X1 = X1.flatten()
X2 = X2.flatten()
X = scipy.hstack((scipy.atleast_2d(X1).T, scipy.atleast_2d(X2).T))
else:
X1 = scipy.asarray(X[:, 0]).flatten()
X2 = scipy.asarray(X[:, 1]).flatten()
if envelopes or return_prediction and (return_std or full_output):
out = self.predict(X, n=n, full_output=True, **kwargs)
mean = out['mean']
std = out['std']
else:
mean = self.predict(X, n=n, return_std=False, **kwargs)
std = None
if self.num_dim == 1:
univariate_envelope_plot(X, mean, std, ax=ax, base_alpha=base_alpha,
envelopes=envelopes, **plot_kwargs)
elif self.num_dim == 2:
if ax is None:
f = plt.figure()
ax = f.add_subplot(111, projection='3d')
elif ax == 'gca':
ax = plt.gca()
if 'linewidths' not in kwargs:
kwargs['linewidths'] = 0
s = ax.plot_trisurf(X1, X2, mean, **plot_kwargs)
for i in envelopes:
kwargs.pop('alpha', base_alpha)
ax.plot_trisurf(X1, X2, mean - std, alpha=base_alpha / i, **kwargs)
ax.plot_trisurf(X1, X2, mean + std, alpha=base_alpha / i, **kwargs)
if return_prediction:
if full_output:
return ax, out
elif return_std:
return ax, out['mean'], out['std']
else:
return ax, out['mean']
else:
return ax
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X=None, n=0, ax=None, envelopes=[1, 3], base_alpha=0.375,\n return_prediction=False, return_std=True, full_output=False,\n plot_kwargs={}, **kwargs):\n if self.num_dim > 2:\n raise ValueError('Plotting is not supported for num_dim > 2!')\n if self.num_dim == 1:\n if X is None:\n X = scipy.linspace(self.X.min(), self.X.max(), 100)\n elif self.num_dim == 2:\n if X is None:\n x1 = scipy.linspace(self.X[:, 0].min(), self.X[:, 0].max(), 50)\n x2 = scipy.linspace(self.X[:, 1].min(), self.X[:, 1].max(), 50)\n X1, X2 = scipy.meshgrid(x1, x2)\n X1 = X1.flatten()\n X2 = X2.flatten()\n X = scipy.hstack((scipy.atleast_2d(X1).T, scipy.atleast_2d(X2).T))\n else:\n X1 = scipy.asarray(X[:, 0]).flatten()\n X2 = scipy.asarray(X[:, 1]).flatten()\n if envelopes or return_prediction and (return_std or full_output):\n out = self.predict(X, n=n, full_output=True, **kwargs)\n mean = out['mean']\n std = out['std']\n else:\n mean = self.predict(X, n=n, return_std=False, **kwargs)\n std = None\n if self.num_dim == 1:\n univariate_envelope_plot(X, mean, std, ax=ax, base_alpha=base_alpha,\n envelopes=envelopes, **plot_kwargs)\n elif self.num_dim == 2:\n if ax is None:\n f = plt.figure()\n ax = f.add_subplot(111, projection='3d')\n elif ax == 'gca':\n ax = plt.gca()\n if 'linewidths' not in kwargs:\n kwargs['linewidths'] = 0\n s = ax.plot_trisurf(X1, X2, mean, **plot_kwargs)\n for i in envelopes:\n kwargs.pop('alpha', base_alpha)\n ax.plot_trisurf(X1, X2, mean - std, alpha=base_alpha / i, **kwargs)\n ax.plot_trisurf(X1, X2, mean + std, alpha=base_alpha / i, **kwargs)\n if return_prediction:\n if full_output:\n return ax, out\n elif return_std:\n return ax, out['mean'], out['std']\n else:\n return ax, out['mean']\n else:\n return ax\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self, Xstar, n=0, num_samp=1, rand_vars=None, rand_type=
'standard normal', diag_factor=1000.0, method='cholesky', num_eig=None,
mean=None, cov=None, modify_sign=None, **kwargs):
if mean is None or cov is None:
out = self.predict(Xstar, n=n, full_output=True, **kwargs)
mean = out['mean']
cov = out['cov']
if rand_vars is None and method != 'eig':
try:
return numpy.random.multivariate_normal(mean, cov, num_samp).T
except numpy.linalg.LinAlgError as e:
if self.verbose:
warnings.warn(
"""Failure when drawing from MVN! Falling back on eig. Exception was:
%s"""
% (e,), RuntimeWarning)
method = 'eig'
if num_eig is None or num_eig > len(mean):
num_eig = len(mean)
elif num_eig < 1:
num_eig = 1
if rand_vars is None:
rand_vars = numpy.random.standard_normal((num_eig, num_samp))
valid_types = 'standard normal', 'uniform'
if rand_type not in valid_types:
raise ValueError(
'rand_type %s not recognized! Valid options are: %s.' % (
rand_type, valid_types))
if rand_type == 'uniform':
rand_vars = scipy.stats.norm.ppf(rand_vars)
if method == 'cholesky':
L = scipy.linalg.cholesky(cov + diag_factor * sys.float_info.
epsilon * scipy.eye(cov.shape[0]), lower=True, check_finite=False)
elif method == 'eig':
eig, Q = scipy.linalg.eigh(cov + diag_factor * sys.float_info.
epsilon * scipy.eye(cov.shape[0]), eigvals=(len(mean) - 1 - (
num_eig - 1), len(mean) - 1))
if modify_sign is not None:
if modify_sign == 'left value':
modify_mask = Q[0, :] < 0.0
elif modify_sign == 'right value':
modify_mask = Q[-1, :] < 0.0
elif modify_sign == 'left slope':
modify_mask = Q[1, :] - Q[0, :] < 0.0
elif modify_sign == 'right slope':
modify_mask = Q[-1, :] - Q[-2, :] < 0.0
elif modify_sign == 'left concavity':
modify_mask = Q[2, :] - 2 * Q[1, :] + Q[0, :] < 0.0
elif modify_sign == 'right concavity':
modify_mask = Q[-1, :] - 2 * Q[-2, :] + Q[-3, :] < 0.0
else:
raise ValueError('modify_sign %s not recognized!' % (
modify_sign,))
Q[:, modify_mask] *= -1.0
Lam_1_2 = scipy.diag(scipy.sqrt(eig))
L = Q.dot(Lam_1_2)
else:
raise ValueError('method %s not recognized!' % (method,))
return scipy.atleast_2d(mean).T + L.dot(rand_vars[:num_eig, :])
|
draw_sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Xstar, n=0, num_samp=1, rand_vars=None, rand_type=\n 'standard normal', diag_factor=1000.0, method='cholesky', num_eig=None,\n mean=None, cov=None, modify_sign=None, **kwargs):\n if mean is None or cov is None:\n out = self.predict(Xstar, n=n, full_output=True, **kwargs)\n mean = out['mean']\n cov = out['cov']\n if rand_vars is None and method != 'eig':\n try:\n return numpy.random.multivariate_normal(mean, cov, num_samp).T\n except numpy.linalg.LinAlgError as e:\n if self.verbose:\n warnings.warn(\n \"\"\"Failure when drawing from MVN! Falling back on eig. Exception was:\n%s\"\"\"\n % (e,), RuntimeWarning)\n method = 'eig'\n if num_eig is None or num_eig > len(mean):\n num_eig = len(mean)\n elif num_eig < 1:\n num_eig = 1\n if rand_vars is None:\n rand_vars = numpy.random.standard_normal((num_eig, num_samp))\n valid_types = 'standard normal', 'uniform'\n if rand_type not in valid_types:\n raise ValueError(\n 'rand_type %s not recognized! Valid options are: %s.' % (\n rand_type, valid_types))\n if rand_type == 'uniform':\n rand_vars = scipy.stats.norm.ppf(rand_vars)\n if method == 'cholesky':\n L = scipy.linalg.cholesky(cov + diag_factor * sys.float_info.\n epsilon * scipy.eye(cov.shape[0]), lower=True, check_finite=False)\n elif method == 'eig':\n eig, Q = scipy.linalg.eigh(cov + diag_factor * sys.float_info.\n epsilon * scipy.eye(cov.shape[0]), eigvals=(len(mean) - 1 - (\n num_eig - 1), len(mean) - 1))\n if modify_sign is not None:\n if modify_sign == 'left value':\n modify_mask = Q[0, :] < 0.0\n elif modify_sign == 'right value':\n modify_mask = Q[-1, :] < 0.0\n elif modify_sign == 'left slope':\n modify_mask = Q[1, :] - Q[0, :] < 0.0\n elif modify_sign == 'right slope':\n modify_mask = Q[-1, :] - Q[-2, :] < 0.0\n elif modify_sign == 'left concavity':\n modify_mask = Q[2, :] - 2 * Q[1, :] + Q[0, :] < 0.0\n elif modify_sign == 'right concavity':\n modify_mask = Q[-1, :] - 2 * Q[-2, :] + Q[-3, :] < 0.0\n else:\n raise ValueError('modify_sign %s not recognized!' % (\n modify_sign,))\n Q[:, modify_mask] *= -1.0\n Lam_1_2 = scipy.diag(scipy.sqrt(eig))\n L = Q.dot(Lam_1_2)\n else:\n raise ValueError('method %s not recognized!' % (method,))\n return scipy.atleast_2d(mean).T + L.dot(rand_vars[:num_eig, :])\n",
"role": "user"
},
{
"content": "draw_sample",
"role": "assistant"
}
] |
def x(self, new_params, hyper_deriv_handling='default', exit_on_bounds=True,
inf_on_error=True):
use_hyper_deriv = self.use_hyper_deriv
if hyper_deriv_handling == 'value':
self.use_hyper_deriv = False
elif hyper_deriv_handling == 'deriv':
self.use_hyper_deriv = True
self.k.set_hyperparams(new_params[:len(self.k.free_params)])
self.noise_k.set_hyperparams(new_params[len(self.k.free_params):len(
self.k.free_params) + len(self.noise_k.free_params)])
if self.mu is not None:
self.mu.set_hyperparams(new_params[len(self.k.free_params) + len(
self.noise_k.free_params):])
self.K_up_to_date = False
try:
if exit_on_bounds:
if scipy.isinf(self.hyperprior(self.params)):
raise GPImpossibleParamsError('Impossible values for params!')
self.compute_K_L_alpha_ll()
except Exception as e:
if inf_on_error:
if not isinstance(e, GPImpossibleParamsError) and self.verbose:
warnings.warn(
"""Unhandled exception when updating GP! Exception was:
%s
State of params is: %s"""
% (traceback.format_exc(), str(self.free_params[:])))
self.use_hyper_deriv = use_hyper_deriv
if use_hyper_deriv and hyper_deriv_handling == 'default':
return scipy.inf, scipy.zeros(len(self.free_params))
elif hyper_deriv_handling == 'deriv':
return scipy.zeros(len(self.free_params))
else:
return scipy.inf
else:
self.use_hyper_deriv = use_hyper_deriv
raise e
self.use_hyper_deriv = use_hyper_deriv
if use_hyper_deriv and hyper_deriv_handling == 'default':
return -1.0 * self.ll, -1.0 * self.ll_deriv
elif hyper_deriv_handling == 'deriv':
return -1.0 * self.ll_deriv
else:
return -1.0 * self.ll
|
update_hyperparameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new_params, hyper_deriv_handling='default', exit_on_bounds=True,\n inf_on_error=True):\n use_hyper_deriv = self.use_hyper_deriv\n if hyper_deriv_handling == 'value':\n self.use_hyper_deriv = False\n elif hyper_deriv_handling == 'deriv':\n self.use_hyper_deriv = True\n self.k.set_hyperparams(new_params[:len(self.k.free_params)])\n self.noise_k.set_hyperparams(new_params[len(self.k.free_params):len(\n self.k.free_params) + len(self.noise_k.free_params)])\n if self.mu is not None:\n self.mu.set_hyperparams(new_params[len(self.k.free_params) + len(\n self.noise_k.free_params):])\n self.K_up_to_date = False\n try:\n if exit_on_bounds:\n if scipy.isinf(self.hyperprior(self.params)):\n raise GPImpossibleParamsError('Impossible values for params!')\n self.compute_K_L_alpha_ll()\n except Exception as e:\n if inf_on_error:\n if not isinstance(e, GPImpossibleParamsError) and self.verbose:\n warnings.warn(\n \"\"\"Unhandled exception when updating GP! Exception was:\n%s\nState of params is: %s\"\"\"\n % (traceback.format_exc(), str(self.free_params[:])))\n self.use_hyper_deriv = use_hyper_deriv\n if use_hyper_deriv and hyper_deriv_handling == 'default':\n return scipy.inf, scipy.zeros(len(self.free_params))\n elif hyper_deriv_handling == 'deriv':\n return scipy.zeros(len(self.free_params))\n else:\n return scipy.inf\n else:\n self.use_hyper_deriv = use_hyper_deriv\n raise e\n self.use_hyper_deriv = use_hyper_deriv\n if use_hyper_deriv and hyper_deriv_handling == 'default':\n return -1.0 * self.ll, -1.0 * self.ll_deriv\n elif hyper_deriv_handling == 'deriv':\n return -1.0 * self.ll_deriv\n else:\n return -1.0 * self.ll\n",
"role": "user"
},
{
"content": "update_hyperparameters",
"role": "assistant"
}
] |
def x(self):
if not self.K_up_to_date:
y = self.y
err_y = self.err_y
self.K = self.compute_Kij(self.X, None, self.n, None, noise=False)
if isinstance(self.noise_k, ZeroKernel):
self.noise_K = scipy.zeros((self.X.shape[0], self.X.shape[0]))
elif isinstance(self.noise_k, DiagonalNoiseKernel):
self.noise_K = self.noise_k.params[0] ** 2.0 * scipy.eye(self.X
.shape[0])
else:
self.noise_K = self.compute_Kij(self.X, None, self.n, None,
noise=True)
K = self.K
noise_K = self.noise_K
if self.T is not None:
KnK = self.T.dot(K + noise_K).dot(self.T.T)
else:
KnK = K + noise_K
K_tot = KnK + scipy.diag(err_y ** 2.0
) + self.diag_factor * sys.float_info.epsilon * scipy.eye(len(y))
self.L = scipy.linalg.cholesky(K_tot, lower=True)
if self.mu is not None:
mu_alph = self.mu(self.X, self.n)
if self.T is not None:
mu_alph = self.T.dot(mu_alph)
y_alph = self.y - mu_alph
else:
y_alph = self.y
self.alpha = scipy.linalg.cho_solve((self.L, True), scipy.
atleast_2d(y_alph).T)
self.ll = (-0.5 * scipy.atleast_2d(y_alph).dot(self.alpha) - scipy.
log(scipy.diag(self.L)).sum() - 0.5 * len(y) * scipy.log(2.0 *
scipy.pi))[0, 0]
self.ll += self.hyperprior(self.params)
if self.use_hyper_deriv:
warnings.warn('Use of hyperparameter derivatives is experimental!')
self.ll_deriv = scipy.zeros(len(self.free_params))
if isinstance(self.noise_k, ZeroKernel):
knk = self.k
elif isinstance(self.noise_k, DiagonalNoiseKernel):
knk = self.k
if not self.noise_k.fixed_params[0]:
dK_dtheta_i = 2.0 * self.noise_k.params[0] * scipy.eye(len
(y))
self.ll_deriv[len(self.k.free_params)] = 0.5 * (self.
alpha.T.dot(dK_dtheta_i.dot(self.alpha)) - scipy.
trace(scipy.linalg.cho_solve((self.L, True),
dK_dtheta_i)))
else:
knk = self.k + self.noise_k
free_param_idxs = scipy.arange(0, len(knk.params), dtype=int)[~
knk.fixed_params]
for i, pi in enumerate(free_param_idxs):
dK_dtheta_i = self.compute_Kij(self.X, None, self.n, None,
k=knk, hyper_deriv=pi)
if self.T is not None:
dK_dtheta_i = self.T.dot(dK_dtheta_i).dot(self.T.T)
self.ll_deriv[i] = 0.5 * (self.alpha.T.dot(dK_dtheta_i.dot(
self.alpha)) - scipy.trace(scipy.linalg.cho_solve((self
.L, True), dK_dtheta_i)))
if self.mu is not None:
free_param_idxs = scipy.arange(0, len(self.mu.params),
dtype=int)[~self.mu.fixed_params]
for i, pi in enumerate(free_param_idxs):
dmu_dtheta_i = scipy.atleast_2d(self.mu(self.X, self.n,
hyper_deriv=pi)).T
if self.T is not None:
dmu_dtheta_i = self.T.dot(dmu_dtheta_i)
self.ll_deriv[i + len(knk.free_params)
] = dmu_dtheta_i.T.dot(self.alpha)
free_param_idxs = scipy.arange(0, len(self.params), dtype=int)[
~self.fixed_params]
for i, pi in enumerate(free_param_idxs):
self.ll_deriv[i] += self.hyperprior(self.params, hyper_deriv=pi
)
self.K_up_to_date = True
|
compute_K_L_alpha_ll
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.K_up_to_date:\n y = self.y\n err_y = self.err_y\n self.K = self.compute_Kij(self.X, None, self.n, None, noise=False)\n if isinstance(self.noise_k, ZeroKernel):\n self.noise_K = scipy.zeros((self.X.shape[0], self.X.shape[0]))\n elif isinstance(self.noise_k, DiagonalNoiseKernel):\n self.noise_K = self.noise_k.params[0] ** 2.0 * scipy.eye(self.X\n .shape[0])\n else:\n self.noise_K = self.compute_Kij(self.X, None, self.n, None,\n noise=True)\n K = self.K\n noise_K = self.noise_K\n if self.T is not None:\n KnK = self.T.dot(K + noise_K).dot(self.T.T)\n else:\n KnK = K + noise_K\n K_tot = KnK + scipy.diag(err_y ** 2.0\n ) + self.diag_factor * sys.float_info.epsilon * scipy.eye(len(y))\n self.L = scipy.linalg.cholesky(K_tot, lower=True)\n if self.mu is not None:\n mu_alph = self.mu(self.X, self.n)\n if self.T is not None:\n mu_alph = self.T.dot(mu_alph)\n y_alph = self.y - mu_alph\n else:\n y_alph = self.y\n self.alpha = scipy.linalg.cho_solve((self.L, True), scipy.\n atleast_2d(y_alph).T)\n self.ll = (-0.5 * scipy.atleast_2d(y_alph).dot(self.alpha) - scipy.\n log(scipy.diag(self.L)).sum() - 0.5 * len(y) * scipy.log(2.0 *\n scipy.pi))[0, 0]\n self.ll += self.hyperprior(self.params)\n if self.use_hyper_deriv:\n warnings.warn('Use of hyperparameter derivatives is experimental!')\n self.ll_deriv = scipy.zeros(len(self.free_params))\n if isinstance(self.noise_k, ZeroKernel):\n knk = self.k\n elif isinstance(self.noise_k, DiagonalNoiseKernel):\n knk = self.k\n if not self.noise_k.fixed_params[0]:\n dK_dtheta_i = 2.0 * self.noise_k.params[0] * scipy.eye(len\n (y))\n self.ll_deriv[len(self.k.free_params)] = 0.5 * (self.\n alpha.T.dot(dK_dtheta_i.dot(self.alpha)) - scipy.\n trace(scipy.linalg.cho_solve((self.L, True),\n dK_dtheta_i)))\n else:\n knk = self.k + self.noise_k\n free_param_idxs = scipy.arange(0, len(knk.params), dtype=int)[~\n knk.fixed_params]\n for i, pi in enumerate(free_param_idxs):\n dK_dtheta_i = self.compute_Kij(self.X, None, self.n, None,\n k=knk, hyper_deriv=pi)\n if self.T is not None:\n dK_dtheta_i = self.T.dot(dK_dtheta_i).dot(self.T.T)\n self.ll_deriv[i] = 0.5 * (self.alpha.T.dot(dK_dtheta_i.dot(\n self.alpha)) - scipy.trace(scipy.linalg.cho_solve((self\n .L, True), dK_dtheta_i)))\n if self.mu is not None:\n free_param_idxs = scipy.arange(0, len(self.mu.params),\n dtype=int)[~self.mu.fixed_params]\n for i, pi in enumerate(free_param_idxs):\n dmu_dtheta_i = scipy.atleast_2d(self.mu(self.X, self.n,\n hyper_deriv=pi)).T\n if self.T is not None:\n dmu_dtheta_i = self.T.dot(dmu_dtheta_i)\n self.ll_deriv[i + len(knk.free_params)\n ] = dmu_dtheta_i.T.dot(self.alpha)\n free_param_idxs = scipy.arange(0, len(self.params), dtype=int)[\n ~self.fixed_params]\n for i, pi in enumerate(free_param_idxs):\n self.ll_deriv[i] += self.hyperprior(self.params, hyper_deriv=pi\n )\n self.K_up_to_date = True\n",
"role": "user"
},
{
"content": "compute_K_L_alpha_ll",
"role": "assistant"
}
] |
def x(self, Xi, Xj, ni, nj, noise=False, hyper_deriv=None, k=None):
if k is None:
if not noise:
k = self.k
else:
k = self.noise_k
if Xj is None:
symmetric = True
Xj = Xi
nj = ni
else:
symmetric = False
Xi_tile = scipy.repeat(Xi, Xj.shape[0], axis=0)
ni_tile = scipy.repeat(ni, Xj.shape[0], axis=0)
Xj_tile = scipy.tile(Xj, (Xi.shape[0], 1))
nj_tile = scipy.tile(nj, (Xi.shape[0], 1))
Kij = k(Xi_tile, Xj_tile, ni_tile, nj_tile, hyper_deriv=hyper_deriv,
symmetric=symmetric)
Kij = scipy.reshape(Kij, (Xi.shape[0], -1))
return Kij
|
compute_Kij
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, Xi, Xj, ni, nj, noise=False, hyper_deriv=None, k=None):\n if k is None:\n if not noise:\n k = self.k\n else:\n k = self.noise_k\n if Xj is None:\n symmetric = True\n Xj = Xi\n nj = ni\n else:\n symmetric = False\n Xi_tile = scipy.repeat(Xi, Xj.shape[0], axis=0)\n ni_tile = scipy.repeat(ni, Xj.shape[0], axis=0)\n Xj_tile = scipy.tile(Xj, (Xi.shape[0], 1))\n nj_tile = scipy.tile(nj, (Xi.shape[0], 1))\n Kij = k(Xi_tile, Xj_tile, ni_tile, nj_tile, hyper_deriv=hyper_deriv,\n symmetric=symmetric)\n Kij = scipy.reshape(Kij, (Xi.shape[0], -1))\n return Kij\n",
"role": "user"
},
{
"content": "compute_Kij",
"role": "assistant"
}
] |
def x(self, bounds, num_pts):
present_free_params = self.free_params[:]
bounds = scipy.atleast_2d(scipy.asarray(bounds, dtype=float))
if bounds.shape[1] != 2:
raise ValueError('Argument bounds must have shape (n, 2)!')
if bounds.shape[0] == 1:
bounds = scipy.tile(bounds, (len(present_free_params), 1))
try:
iter(num_pts)
except TypeError:
num_pts = num_pts * scipy.ones(bounds.shape[0], dtype=int)
else:
num_pts = scipy.asarray(num_pts, dtype=int)
if len(num_pts) != len(present_free_params):
raise ValueError(
'Length of num_pts must match the number of free parameters!')
param_vals = []
for k in xrange(0, len(present_free_params)):
param_vals.append(scipy.linspace(bounds[k, 0], bounds[k, 1],
num_pts[k]))
ll_vals = self._compute_ll_matrix(0, param_vals, num_pts)
self.update_hyperparameters(scipy.asarray(present_free_params, dtype=float)
)
return ll_vals, param_vals
|
compute_ll_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bounds, num_pts):\n present_free_params = self.free_params[:]\n bounds = scipy.atleast_2d(scipy.asarray(bounds, dtype=float))\n if bounds.shape[1] != 2:\n raise ValueError('Argument bounds must have shape (n, 2)!')\n if bounds.shape[0] == 1:\n bounds = scipy.tile(bounds, (len(present_free_params), 1))\n try:\n iter(num_pts)\n except TypeError:\n num_pts = num_pts * scipy.ones(bounds.shape[0], dtype=int)\n else:\n num_pts = scipy.asarray(num_pts, dtype=int)\n if len(num_pts) != len(present_free_params):\n raise ValueError(\n 'Length of num_pts must match the number of free parameters!')\n param_vals = []\n for k in xrange(0, len(present_free_params)):\n param_vals.append(scipy.linspace(bounds[k, 0], bounds[k, 1],\n num_pts[k]))\n ll_vals = self._compute_ll_matrix(0, param_vals, num_pts)\n self.update_hyperparameters(scipy.asarray(present_free_params, dtype=float)\n )\n return ll_vals, param_vals\n",
"role": "user"
},
{
"content": "compute_ll_matrix",
"role": "assistant"
}
] |
def x(self, idx, param_vals, num_pts):
if idx >= len(num_pts):
return -1.0 * self.update_hyperparameters(scipy.asarray(param_vals,
dtype=float))
else:
vals = scipy.zeros(num_pts[idx:], dtype=float)
for k in xrange(0, len(param_vals[idx])):
specific_param_vals = list(param_vals)
specific_param_vals[idx] = param_vals[idx][k]
vals[k] = self._compute_ll_matrix(idx + 1, specific_param_vals,
num_pts)
return vals
|
compute_ll_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, idx, param_vals, num_pts):\n if idx >= len(num_pts):\n return -1.0 * self.update_hyperparameters(scipy.asarray(param_vals,\n dtype=float))\n else:\n vals = scipy.zeros(num_pts[idx:], dtype=float)\n for k in xrange(0, len(param_vals[idx])):\n specific_param_vals = list(param_vals)\n specific_param_vals[idx] = param_vals[idx][k]\n vals[k] = self._compute_ll_matrix(idx + 1, specific_param_vals,\n num_pts)\n return vals\n",
"role": "user"
},
{
"content": "compute_ll_matrix",
"role": "assistant"
}
] |
def x(self, nwalkers=200, nsamp=500, burn=0, thin=1, num_proc=None, sampler
=None, plot_posterior=False, plot_chains=False, sampler_type='ensemble',
ntemps=20, sampler_a=2.0, **plot_kwargs):
if num_proc is None:
num_proc = multiprocessing.cpu_count()
if num_proc == 0:
num_proc = 1
ndim = len(self.free_params)
if sampler is None:
if sampler_type == 'ensemble':
sampler = emcee.EnsembleSampler(nwalkers, ndim,
_ComputeLnProbEval(self), threads=num_proc, a=sampler_a)
elif sampler_type == 'pt':
raise NotImplementedError('PTSampler not done yet!')
sampler = emcee.PTSampler(ntemps, nwalkers, ndim, logl, logp)
else:
raise NotImplementedError('Sampler type %s not supported!' % (
sampler_type,))
else:
sampler.a = sampler_a
if sampler.chain.size == 0:
theta0 = self.hyperprior.random_draw(size=nwalkers).T
theta0 = theta0[:, ~self.fixed_params]
else:
theta0 = sampler.chain[:, -1, :]
sampler.run_mcmc(theta0, nsamp)
if plot_posterior or plot_chains:
flat_trace = sampler.chain[:, burn::thin, :]
flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))
if plot_posterior and plot_chains:
plot_sampler(sampler, labels=[('$%s$' % (l,)) for l in self.
free_param_names], burn=burn, **plot_kwargs)
else:
if plot_posterior:
triangle.corner(flat_trace, plot_datapoints=False, labels=[(
'$%s$' % (l,)) for l in self.free_param_names])
if plot_chains:
f = plt.figure()
for k in xrange(0, ndim):
a = f.add_subplot(ndim, 1, 0 * ndim + k + 1)
for chain in sampler.chain[:, :, k]:
a.plot(chain)
a.set_xlabel('sample')
a.set_ylabel('$%s$' % (self.free_param_names[k],))
a.set_title('$%s$ all chains' % (self.free_param_names[k],))
a.axvline(burn, color='r', linewidth=3, ls='--')
print('MCMC parameter summary:')
print('param\tmean\t95% posterior interval')
mean, ci_l, ci_u = summarize_sampler(sampler, burn=burn)
names = self.free_param_names[:]
for n, m, l, u in zip(names, mean, ci_l, ci_u):
print('%s\t%4.4g\t[%4.4g, %4.4g]' % (n, m, l, u))
return sampler
|
sample_hyperparameter_posterior
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nwalkers=200, nsamp=500, burn=0, thin=1, num_proc=None, sampler\n =None, plot_posterior=False, plot_chains=False, sampler_type='ensemble',\n ntemps=20, sampler_a=2.0, **plot_kwargs):\n if num_proc is None:\n num_proc = multiprocessing.cpu_count()\n if num_proc == 0:\n num_proc = 1\n ndim = len(self.free_params)\n if sampler is None:\n if sampler_type == 'ensemble':\n sampler = emcee.EnsembleSampler(nwalkers, ndim,\n _ComputeLnProbEval(self), threads=num_proc, a=sampler_a)\n elif sampler_type == 'pt':\n raise NotImplementedError('PTSampler not done yet!')\n sampler = emcee.PTSampler(ntemps, nwalkers, ndim, logl, logp)\n else:\n raise NotImplementedError('Sampler type %s not supported!' % (\n sampler_type,))\n else:\n sampler.a = sampler_a\n if sampler.chain.size == 0:\n theta0 = self.hyperprior.random_draw(size=nwalkers).T\n theta0 = theta0[:, ~self.fixed_params]\n else:\n theta0 = sampler.chain[:, -1, :]\n sampler.run_mcmc(theta0, nsamp)\n if plot_posterior or plot_chains:\n flat_trace = sampler.chain[:, burn::thin, :]\n flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))\n if plot_posterior and plot_chains:\n plot_sampler(sampler, labels=[('$%s$' % (l,)) for l in self.\n free_param_names], burn=burn, **plot_kwargs)\n else:\n if plot_posterior:\n triangle.corner(flat_trace, plot_datapoints=False, labels=[(\n '$%s$' % (l,)) for l in self.free_param_names])\n if plot_chains:\n f = plt.figure()\n for k in xrange(0, ndim):\n a = f.add_subplot(ndim, 1, 0 * ndim + k + 1)\n for chain in sampler.chain[:, :, k]:\n a.plot(chain)\n a.set_xlabel('sample')\n a.set_ylabel('$%s$' % (self.free_param_names[k],))\n a.set_title('$%s$ all chains' % (self.free_param_names[k],))\n a.axvline(burn, color='r', linewidth=3, ls='--')\n print('MCMC parameter summary:')\n print('param\\tmean\\t95% posterior interval')\n mean, ci_l, ci_u = summarize_sampler(sampler, burn=burn)\n names = self.free_param_names[:]\n for n, m, l, u in zip(names, mean, ci_l, ci_u):\n print('%s\\t%4.4g\\t[%4.4g, %4.4g]' % (n, m, l, u))\n return sampler\n",
"role": "user"
},
{
"content": "sample_hyperparameter_posterior",
"role": "assistant"
}
] |
def x(self, X, n=0, return_mean=True, return_std=True, return_cov=False,
return_samples=False, return_mean_func=False, num_samples=1, noise=
False, samp_kwargs={}, sampler=None, flat_trace=None, burn=0, thin=1,
**kwargs):
output_transform = kwargs.pop('output_transform', None)
if flat_trace is None:
if sampler is None:
sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs)
try:
sampler.pool.close()
except AttributeError:
pass
flat_trace = sampler.chain[:, burn::thin, :]
flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))
else:
flat_trace = flat_trace[burn::thin, :]
num_proc = kwargs.get('num_proc', multiprocessing.cpu_count())
if num_proc > 1:
pool = InterruptiblePool(processes=num_proc)
map_fun = pool.map
else:
map_fun = map
try:
res = map_fun(_ComputeGPWrapper(self, X, n, return_mean, return_std,
return_cov, return_samples, return_mean_func, num_samples,
noise, samp_kwargs, output_transform), flat_trace)
finally:
if num_proc > 1:
pool.close()
out = dict()
if return_mean:
out['mean'] = [r['mean'] for r in res if r is not None]
if return_std:
out['std'] = [r['std'] for r in res if r is not None]
if return_cov:
out['cov'] = [r['cov'] for r in res if r is not None]
if return_samples:
out['samp'] = [r['samp'] for r in res if r is not None]
if return_mean_func and self.mu is not None:
out['mean_func'] = [r['mean_func'] for r in res if r is not None]
out['cov_func'] = [r['cov_func'] for r in res if r is not None]
out['std_func'] = [r['std_func'] for r in res if r is not None]
out['mean_without_func'] = [r['mean_without_func'] for r in res if
r is not None]
out['cov_without_func'] = [r['cov_without_func'] for r in res if r
is not None]
out['std_without_func'] = [r['std_without_func'] for r in res if r
is not None]
return out
|
compute_from_MCMC
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, n=0, return_mean=True, return_std=True, return_cov=False,\n return_samples=False, return_mean_func=False, num_samples=1, noise=\n False, samp_kwargs={}, sampler=None, flat_trace=None, burn=0, thin=1,\n **kwargs):\n output_transform = kwargs.pop('output_transform', None)\n if flat_trace is None:\n if sampler is None:\n sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs)\n try:\n sampler.pool.close()\n except AttributeError:\n pass\n flat_trace = sampler.chain[:, burn::thin, :]\n flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))\n else:\n flat_trace = flat_trace[burn::thin, :]\n num_proc = kwargs.get('num_proc', multiprocessing.cpu_count())\n if num_proc > 1:\n pool = InterruptiblePool(processes=num_proc)\n map_fun = pool.map\n else:\n map_fun = map\n try:\n res = map_fun(_ComputeGPWrapper(self, X, n, return_mean, return_std,\n return_cov, return_samples, return_mean_func, num_samples,\n noise, samp_kwargs, output_transform), flat_trace)\n finally:\n if num_proc > 1:\n pool.close()\n out = dict()\n if return_mean:\n out['mean'] = [r['mean'] for r in res if r is not None]\n if return_std:\n out['std'] = [r['std'] for r in res if r is not None]\n if return_cov:\n out['cov'] = [r['cov'] for r in res if r is not None]\n if return_samples:\n out['samp'] = [r['samp'] for r in res if r is not None]\n if return_mean_func and self.mu is not None:\n out['mean_func'] = [r['mean_func'] for r in res if r is not None]\n out['cov_func'] = [r['cov_func'] for r in res if r is not None]\n out['std_func'] = [r['std_func'] for r in res if r is not None]\n out['mean_without_func'] = [r['mean_without_func'] for r in res if \n r is not None]\n out['cov_without_func'] = [r['cov_without_func'] for r in res if r\n is not None]\n out['std_without_func'] = [r['std_without_func'] for r in res if r\n is not None]\n return out\n",
"role": "user"
},
{
"content": "compute_from_MCMC",
"role": "assistant"
}
] |
def x(self, X, n=0, sampler=None, flat_trace=None, burn=0, thin=1, **kwargs):
if flat_trace is None:
if sampler is None:
sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs)
try:
sampler.pool.close()
except AttributeError:
pass
flat_trace = sampler.chain[:, burn::thin, :]
flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))
else:
flat_trace = flat_trace[burn::thin, :]
num_proc = kwargs.get('num_proc', multiprocessing.cpu_count())
if num_proc > 1:
pool = InterruptiblePool(processes=num_proc)
try:
res = pool.map(_ComputeLWrapper(self, X, n), flat_trace)
finally:
pool.close()
else:
res = map(_ComputeLWrapper(self, X, n), flat_trace)
return res
|
compute_l_from_MCMC
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, n=0, sampler=None, flat_trace=None, burn=0, thin=1, **kwargs):\n if flat_trace is None:\n if sampler is None:\n sampler = self.sample_hyperparameter_posterior(burn=burn, **kwargs)\n try:\n sampler.pool.close()\n except AttributeError:\n pass\n flat_trace = sampler.chain[:, burn::thin, :]\n flat_trace = flat_trace.reshape((-1, flat_trace.shape[2]))\n else:\n flat_trace = flat_trace[burn::thin, :]\n num_proc = kwargs.get('num_proc', multiprocessing.cpu_count())\n if num_proc > 1:\n pool = InterruptiblePool(processes=num_proc)\n try:\n res = pool.map(_ComputeLWrapper(self, X, n), flat_trace)\n finally:\n pool.close()\n else:\n res = map(_ComputeLWrapper(self, X, n), flat_trace)\n return res\n",
"role": "user"
},
{
"content": "compute_l_from_MCMC",
"role": "assistant"
}
] |
def x(self, X, ddof=1, full_MC=False, rejection_func=None, **kwargs):
return_std = kwargs.get('return_std', True)
return_cov = kwargs.get('return_cov', False)
if full_MC:
kwargs['return_mean'] = False
kwargs['return_std'] = False
kwargs['return_cov'] = False
kwargs['return_samples'] = True
else:
kwargs['return_mean'] = True
return_samples = kwargs.get('return_samples', True)
res = self.compute_from_MCMC(X, **kwargs)
out = {}
if return_samples:
samps = scipy.asarray(scipy.hstack(res['samp']))
if full_MC:
if rejection_func:
good_samps = []
for samp in samps.T:
if rejection_func(samp):
good_samps.append(samp)
if len(good_samps) == 0:
raise ValueError('Did not get any good samples!')
samps = scipy.asarray(good_samps, dtype=float).T
mean = scipy.mean(samps, axis=1)
cov = scipy.cov(samps, rowvar=1, ddof=ddof)
std = scipy.sqrt(scipy.diagonal(cov))
else:
means = scipy.asarray(res['mean'])
mean = scipy.mean(means, axis=0)
if 'cov' in res:
covs = scipy.asarray(res['cov'])
cov = scipy.mean(covs, axis=0) + scipy.cov(means, rowvar=0,
ddof=ddof)
std = scipy.sqrt(scipy.diagonal(cov))
elif 'std' in res:
vars_ = scipy.asarray(scipy.asarray(res['std'])) ** 2
std = scipy.sqrt(scipy.mean(vars_, axis=0) + scipy.var(means,
axis=0, ddof=ddof))
if 'mean_func' in res:
mean_funcs = scipy.asarray(res['mean_func'])
cov_funcs = scipy.asarray(res['cov_func'])
mean_func = scipy.mean(mean_funcs, axis=0)
cov_func = scipy.mean(cov_funcs, axis=0) + scipy.cov(mean_funcs,
rowvar=0, ddof=ddof)
std_func = scipy.sqrt(scipy.diagonal(cov_func))
mean_without_funcs = scipy.asarray(res['mean_without_func'])
cov_without_funcs = scipy.asarray(res['cov_without_func'])
mean_without_func = scipy.mean(mean_without_funcs, axis=0)
cov_without_func = scipy.mean(cov_without_funcs, axis=0
) + scipy.cov(mean_without_funcs, rowvar=0, ddof=ddof)
std_without_func = scipy.sqrt(scipy.diagonal(cov_without_func))
out['mean_func'] = mean_func
out['cov_func'] = cov_func
out['std_func'] = std_func
out['mean_without_func'] = mean_without_func
out['cov_without_func'] = cov_without_func
out['std_without_func'] = std_without_func
out['mean'] = mean
if return_samples:
out['samp'] = samps
if return_std or return_cov:
out['std'] = std
if return_cov:
out['cov'] = cov
return out
|
predict_MCMC
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, ddof=1, full_MC=False, rejection_func=None, **kwargs):\n return_std = kwargs.get('return_std', True)\n return_cov = kwargs.get('return_cov', False)\n if full_MC:\n kwargs['return_mean'] = False\n kwargs['return_std'] = False\n kwargs['return_cov'] = False\n kwargs['return_samples'] = True\n else:\n kwargs['return_mean'] = True\n return_samples = kwargs.get('return_samples', True)\n res = self.compute_from_MCMC(X, **kwargs)\n out = {}\n if return_samples:\n samps = scipy.asarray(scipy.hstack(res['samp']))\n if full_MC:\n if rejection_func:\n good_samps = []\n for samp in samps.T:\n if rejection_func(samp):\n good_samps.append(samp)\n if len(good_samps) == 0:\n raise ValueError('Did not get any good samples!')\n samps = scipy.asarray(good_samps, dtype=float).T\n mean = scipy.mean(samps, axis=1)\n cov = scipy.cov(samps, rowvar=1, ddof=ddof)\n std = scipy.sqrt(scipy.diagonal(cov))\n else:\n means = scipy.asarray(res['mean'])\n mean = scipy.mean(means, axis=0)\n if 'cov' in res:\n covs = scipy.asarray(res['cov'])\n cov = scipy.mean(covs, axis=0) + scipy.cov(means, rowvar=0,\n ddof=ddof)\n std = scipy.sqrt(scipy.diagonal(cov))\n elif 'std' in res:\n vars_ = scipy.asarray(scipy.asarray(res['std'])) ** 2\n std = scipy.sqrt(scipy.mean(vars_, axis=0) + scipy.var(means,\n axis=0, ddof=ddof))\n if 'mean_func' in res:\n mean_funcs = scipy.asarray(res['mean_func'])\n cov_funcs = scipy.asarray(res['cov_func'])\n mean_func = scipy.mean(mean_funcs, axis=0)\n cov_func = scipy.mean(cov_funcs, axis=0) + scipy.cov(mean_funcs,\n rowvar=0, ddof=ddof)\n std_func = scipy.sqrt(scipy.diagonal(cov_func))\n mean_without_funcs = scipy.asarray(res['mean_without_func'])\n cov_without_funcs = scipy.asarray(res['cov_without_func'])\n mean_without_func = scipy.mean(mean_without_funcs, axis=0)\n cov_without_func = scipy.mean(cov_without_funcs, axis=0\n ) + scipy.cov(mean_without_funcs, rowvar=0, ddof=ddof)\n std_without_func = scipy.sqrt(scipy.diagonal(cov_without_func))\n out['mean_func'] = mean_func\n out['cov_func'] = cov_func\n out['std_func'] = std_func\n out['mean_without_func'] = mean_without_func\n out['cov_without_func'] = cov_without_func\n out['std_without_func'] = std_without_func\n out['mean'] = mean\n if return_samples:\n out['samp'] = samps\n if return_std or return_cov:\n out['std'] = std\n if return_cov:\n out['cov'] = cov\n return out\n",
"role": "user"
},
{
"content": "predict_MCMC",
"role": "assistant"
}
] |
def x():
parser = argparse.ArgumentParser(description=
"""Coursera OAuth2 client CLI. This tool
helps users of the Coursera App Platform to programmatically access
Coursera APIs."""
, epilog=
"""Please file bugs on github at:
https://github.com/coursera/courseraoauth2client/issues. If you
would like to contribute to this tool's development, check us out at:
https://github.com/coursera/courseraoauth2client"""
)
parser.add_argument('-c', '--config', help='the configuration file to use')
utils.add_logging_parser(parser)
subparsers = parser.add_subparsers()
commands.config.parser(subparsers)
commands.version.parser(subparsers)
return parser
|
build_parser
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = argparse.ArgumentParser(description=\n \"\"\"Coursera OAuth2 client CLI. This tool\n helps users of the Coursera App Platform to programmatically access\n Coursera APIs.\"\"\"\n , epilog=\n \"\"\"Please file bugs on github at:\n https://github.com/coursera/courseraoauth2client/issues. If you\n would like to contribute to this tool's development, check us out at:\n https://github.com/coursera/courseraoauth2client\"\"\"\n )\n parser.add_argument('-c', '--config', help='the configuration file to use')\n utils.add_logging_parser(parser)\n subparsers = parser.add_subparsers()\n commands.config.parser(subparsers)\n commands.version.parser(subparsers)\n return parser\n",
"role": "user"
},
{
"content": "build_parser",
"role": "assistant"
}
] |
def x():
logging.captureWarnings(True)
args = build_parser().parse_args()
args.setup_logging(args)
try:
return args.func(args)
except SystemExit:
raise
except:
logging.exception('Problem when running command. Sorry!')
sys.exit(1)
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n logging.captureWarnings(True)\n args = build_parser().parse_args()\n args.setup_logging(args)\n try:\n return args.func(args)\n except SystemExit:\n raise\n except:\n logging.exception('Problem when running command. Sorry!')\n sys.exit(1)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(root_menu, menu='sponsors', label=_('Sponsors'), sponsors_item=_(
'Our sponsors'), packages_item=_('Sponsorship packages')):
root_menu.add_menu(menu, label, items=[])
for sponsor in Sponsor.objects.all().order_by('packages', 'order', 'id'
).prefetch_related('packages'):
symbols = sponsor.symbols()
if symbols:
item_name = u'» %s %s' % (sponsor.name, symbols)
else:
item_name = u'» %s' % (sponsor.name,)
with menu_logger(logger, 'sponsor %r' % (sponsor.name,)):
root_menu.add_item(item_name, sponsor.get_absolute_url(), menu=menu
)
if sponsors_item:
with menu_logger(logger, 'sponsors page link'):
root_menu.add_item(sponsors_item, reverse('wafer_sponsors'), menu)
if packages_item:
with menu_logger(logger, 'sponsorship package page link'):
root_menu.add_item(packages_item, reverse(
'wafer_sponsorship_packages'), menu)
|
sponsor_menu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(root_menu, menu='sponsors', label=_('Sponsors'), sponsors_item=_(\n 'Our sponsors'), packages_item=_('Sponsorship packages')):\n root_menu.add_menu(menu, label, items=[])\n for sponsor in Sponsor.objects.all().order_by('packages', 'order', 'id'\n ).prefetch_related('packages'):\n symbols = sponsor.symbols()\n if symbols:\n item_name = u'» %s %s' % (sponsor.name, symbols)\n else:\n item_name = u'» %s' % (sponsor.name,)\n with menu_logger(logger, 'sponsor %r' % (sponsor.name,)):\n root_menu.add_item(item_name, sponsor.get_absolute_url(), menu=menu\n )\n if sponsors_item:\n with menu_logger(logger, 'sponsors page link'):\n root_menu.add_item(sponsors_item, reverse('wafer_sponsors'), menu)\n if packages_item:\n with menu_logger(logger, 'sponsorship package page link'):\n root_menu.add_item(packages_item, reverse(\n 'wafer_sponsorship_packages'), menu)\n",
"role": "user"
},
{
"content": "sponsor_menu",
"role": "assistant"
}
] |
def x(instance, atrib):
atrib = atrib.replace('__', '.')
atribs = []
atribs = atrib.split('.')
obj = instance
for atrib in atribs:
if type(obj) == dict:
result = obj[atrib]
else:
try:
result = getattr(obj, atrib)()
except Exception:
result = getattr(obj, atrib)
obj = result
return result
|
objectatrib
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(instance, atrib):\n atrib = atrib.replace('__', '.')\n atribs = []\n atribs = atrib.split('.')\n obj = instance\n for atrib in atribs:\n if type(obj) == dict:\n result = obj[atrib]\n else:\n try:\n result = getattr(obj, atrib)()\n except Exception:\n result = getattr(obj, atrib)\n obj = result\n return result\n",
"role": "user"
},
{
"content": "objectatrib",
"role": "assistant"
}
] |
def x(self, widget=None, attrs=None, only_initial=False):
attrs = attrs or {}
attrs.update(self.form.get_widget_attrs(self))
if hasattr(self.field, 'widget_css_classes'):
css_classes = self.field.widget_css_classes
else:
css_classes = getattr(self.form, 'widget_css_classes', None)
if css_classes:
attrs.update({'class': css_classes})
widget_classes = self.form.fields[self.name].widget.attrs.get('class', None
)
if widget_classes:
if attrs.get('class', None):
attrs['class'] += ' ' + widget_classes
else:
attrs.update({'class': widget_classes})
return super(NgBoundField, self).as_widget(widget, attrs, only_initial)
|
as_widget
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, widget=None, attrs=None, only_initial=False):\n attrs = attrs or {}\n attrs.update(self.form.get_widget_attrs(self))\n if hasattr(self.field, 'widget_css_classes'):\n css_classes = self.field.widget_css_classes\n else:\n css_classes = getattr(self.form, 'widget_css_classes', None)\n if css_classes:\n attrs.update({'class': css_classes})\n widget_classes = self.form.fields[self.name].widget.attrs.get('class', None\n )\n if widget_classes:\n if attrs.get('class', None):\n attrs['class'] += ' ' + widget_classes\n else:\n attrs.update({'class': widget_classes})\n return super(NgBoundField, self).as_widget(widget, attrs, only_initial)\n",
"role": "user"
},
{
"content": "as_widget",
"role": "assistant"
}
] |
def x(self):
for field in self.base_fields.values():
try:
new_widget = field.get_converted_widget()
except AttributeError:
pass
else:
if new_widget:
field.widget = new_widget
|
convert_widgets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for field in self.base_fields.values():\n try:\n new_widget = field.get_converted_widget()\n except AttributeError:\n pass\n else:\n if new_widget:\n field.widget = new_widget\n",
"role": "user"
},
{
"content": "convert_widgets",
"role": "assistant"
}
] |
def x(timestamp):
dt = datetime.fromtimestamp(float(timestamp)).timetuple()
fecha = '{0:d}-{1:02d}-{2:02d}'.format(dt.tm_year, dt.tm_mon, dt.tm_mday)
hora = '{0:02d}:{1:02d}:{2:02d}'.format(dt.tm_hour, dt.tm_min, dt.tm_sec)
return fecha, hora
|
epochdate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(timestamp):\n dt = datetime.fromtimestamp(float(timestamp)).timetuple()\n fecha = '{0:d}-{1:02d}-{2:02d}'.format(dt.tm_year, dt.tm_mon, dt.tm_mday)\n hora = '{0:02d}:{1:02d}:{2:02d}'.format(dt.tm_hour, dt.tm_min, dt.tm_sec)\n return fecha, hora\n",
"role": "user"
},
{
"content": "epochdate",
"role": "assistant"
}
] |
def x(obj):
info = {}
if hasattr(obj, '_meta'):
info['verbose_name'] = getattr(obj._meta, 'verbose_name', None)
else:
info['verbose_name'] = None
if hasattr(obj, 'model') and obj.model:
model = obj.model
else:
model = obj.__class__
namesp = str(model)
namesp = namesp.replace('<class ', '').replace('>', '').replace("'", ''
).split('.')
info['appname'] = namesp[-3]
info['modelname'] = namesp[-1]
info['model'] = model
return info
|
model_inspect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n info = {}\n if hasattr(obj, '_meta'):\n info['verbose_name'] = getattr(obj._meta, 'verbose_name', None)\n else:\n info['verbose_name'] = None\n if hasattr(obj, 'model') and obj.model:\n model = obj.model\n else:\n model = obj.__class__\n namesp = str(model)\n namesp = namesp.replace('<class ', '').replace('>', '').replace(\"'\", ''\n ).split('.')\n info['appname'] = namesp[-3]\n info['modelname'] = namesp[-1]\n info['model'] = model\n return info\n",
"role": "user"
},
{
"content": "model_inspect",
"role": "assistant"
}
] |
def x(instance, filename):
path_separator = '/'
date_separator = '-'
ext_separator = '.'
empty_string = ''
model_name = model_inspect(instance)['modelname']
date = datetime.now().strftime('%Y-%m-%d').split(date_separator)
curr_day = date[2]
curr_month = date[1]
curr_year = date[0]
split_filename = filename.split(ext_separator)
filename = empty_string.join(split_filename[:-1])
file_ext = split_filename[-1]
new_filename = empty_string.join([filename, str(random.random()).split(
ext_separator)[1]])
new_filename = ext_separator.join([new_filename, file_ext])
string_path = path_separator.join([model_name, curr_year, curr_month,
curr_day, new_filename])
return string_path
|
upload_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(instance, filename):\n path_separator = '/'\n date_separator = '-'\n ext_separator = '.'\n empty_string = ''\n model_name = model_inspect(instance)['modelname']\n date = datetime.now().strftime('%Y-%m-%d').split(date_separator)\n curr_day = date[2]\n curr_month = date[1]\n curr_year = date[0]\n split_filename = filename.split(ext_separator)\n filename = empty_string.join(split_filename[:-1])\n file_ext = split_filename[-1]\n new_filename = empty_string.join([filename, str(random.random()).split(\n ext_separator)[1]])\n new_filename = ext_separator.join([new_filename, file_ext])\n string_path = path_separator.join([model_name, curr_year, curr_month,\n curr_day, new_filename])\n return string_path\n",
"role": "user"
},
{
"content": "upload_path",
"role": "assistant"
}
] |
def x(field_name):
str_ini = 'get_'
str_end = '_display'
if str_ini == field_name[0:len(str_ini)] and str_end == field_name[-1 *
len(str_end):]:
field_name = field_name[len(str_ini):-1 * len(str_end)]
return field_name
|
remove_getdisplay
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(field_name):\n str_ini = 'get_'\n str_end = '_display'\n if str_ini == field_name[0:len(str_ini)] and str_end == field_name[-1 *\n len(str_end):]:\n field_name = field_name[len(str_ini):-1 * len(str_end)]\n return field_name\n",
"role": "user"
},
{
"content": "remove_getdisplay",
"role": "assistant"
}
] |
def x(kind=['uuid', 'datetime', 'time', 'decimal']):
JSONEncoder_olddefault = json.JSONEncoder.default
def x(self, o):
if 'uuid' in kind and isinstance(o, UUID):
return str(o)
if 'datetime' in kind and isinstance(o, datetime):
return str(o)
if 'time' in kind and isinstance(o, time.struct_time):
return datetime.fromtimestamp(time.mktime(o))
if 'decimal' in kind and isinstance(o, decimal.Decimal):
return str(o)
return JSONEncoder_olddefault(self, o)
json.JSONEncoder.default = JSONEncoder_wrapped
|
JSONEncoder_newdefault
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kind=['uuid', 'datetime', 'time', 'decimal']):\n JSONEncoder_olddefault = json.JSONEncoder.default\n\n def x(self, o):\n if 'uuid' in kind and isinstance(o, UUID):\n return str(o)\n if 'datetime' in kind and isinstance(o, datetime):\n return str(o)\n if 'time' in kind and isinstance(o, time.struct_time):\n return datetime.fromtimestamp(time.mktime(o))\n if 'decimal' in kind and isinstance(o, decimal.Decimal):\n return str(o)\n return JSONEncoder_olddefault(self, o)\n json.JSONEncoder.default = JSONEncoder_wrapped\n",
"role": "user"
},
{
"content": "JSONEncoder_newdefault",
"role": "assistant"
}
] |
def x(context, request):
for template in settings.TEMPLATES:
for context_processor in template['OPTIONS']['context_processors']:
path = context_processor.split('.')
name = path.pop(-1)
processor = getattr(importlib.import_module('.'.join(path)),
name, None)
if processor:
context.update(processor(request))
return context
|
context_processors_update
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, request):\n for template in settings.TEMPLATES:\n for context_processor in template['OPTIONS']['context_processors']:\n path = context_processor.split('.')\n name = path.pop(-1)\n processor = getattr(importlib.import_module('.'.join(path)),\n name, None)\n if processor:\n context.update(processor(request))\n return context\n",
"role": "user"
},
{
"content": "context_processors_update",
"role": "assistant"
}
] |
def x(self, filename_in_zip, file_contents):
self.in_memory_zip.seek(-1, io.SEEK_END)
zf = zipfile.ZipFile(self.in_memory_zip, 'a', zipfile.ZIP_DEFLATED, False)
zf.writestr(filename_in_zip, file_contents)
for zfile in zf.filelist:
zfile.create_system = 0
zf.close()
self.in_memory_zip.seek(0)
return self
|
append
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename_in_zip, file_contents):\n self.in_memory_zip.seek(-1, io.SEEK_END)\n zf = zipfile.ZipFile(self.in_memory_zip, 'a', zipfile.ZIP_DEFLATED, False)\n zf.writestr(filename_in_zip, file_contents)\n for zfile in zf.filelist:\n zfile.create_system = 0\n zf.close()\n self.in_memory_zip.seek(0)\n return self\n",
"role": "user"
},
{
"content": "append",
"role": "assistant"
}
] |
def x(self, filename):
f = open(filename, 'w')
f.write(self.read())
f.close()
|
writetofile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n f = open(filename, 'w')\n f.write(self.read())\n f.close()\n",
"role": "user"
},
{
"content": "writetofile",
"role": "assistant"
}
] |
def x(sponsor, name):
if sponsor.files.filter(name=name).exists():
return sponsor.files.filter(name=name).first().item.url
return ''
|
sponsor_image_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sponsor, name):\n if sponsor.files.filter(name=name).exists():\n return sponsor.files.filter(name=name).first().item.url\n return ''\n",
"role": "user"
},
{
"content": "sponsor_image_url",
"role": "assistant"
}
] |
def x(sponsor, tag):
if sponsor.files.filter(tag_name=tag).exists():
return sponsor.files.filter(tag_name=tag).first().tagged_file.item.url
return ''
|
sponsor_tagged_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sponsor, tag):\n if sponsor.files.filter(tag_name=tag).exists():\n return sponsor.files.filter(tag_name=tag).first().tagged_file.item.url\n return ''\n",
"role": "user"
},
{
"content": "sponsor_tagged_image",
"role": "assistant"
}
] |
def x(parser, token):
try:
tokensp = token.split_contents()
groups = []
groups += tokensp[1:]
except ValueError:
raise template.TemplateSyntaxError(
"Tag 'ifusergroup' requires at least 1 argument.")
nodelist_true = parser.parse(('else', 'endifusergroup'))
token = parser.next_token()
if token.contents == 'else':
nodelist_false = parser.parse(tuple(['endifusergroup']))
parser.delete_first_token()
else:
nodelist_false = NodeList()
return GroupCheckNode(groups, nodelist_true, nodelist_false)
|
ifusergroup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parser, token):\n try:\n tokensp = token.split_contents()\n groups = []\n groups += tokensp[1:]\n except ValueError:\n raise template.TemplateSyntaxError(\n \"Tag 'ifusergroup' requires at least 1 argument.\")\n nodelist_true = parser.parse(('else', 'endifusergroup'))\n token = parser.next_token()\n if token.contents == 'else':\n nodelist_false = parser.parse(tuple(['endifusergroup']))\n parser.delete_first_token()\n else:\n nodelist_false = NodeList()\n return GroupCheckNode(groups, nodelist_true, nodelist_false)\n",
"role": "user"
},
{
"content": "ifusergroup",
"role": "assistant"
}
] |
def x(self):
if hasattr(self, 'handle'):
return self.handle
else:
handle = c_void_p()
ret = vmGuestLib.VMGuestLib_OpenHandle(byref(handle))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return handle
|
OpenHandle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if hasattr(self, 'handle'):\n return self.handle\n else:\n handle = c_void_p()\n ret = vmGuestLib.VMGuestLib_OpenHandle(byref(handle))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return handle\n",
"role": "user"
},
{
"content": "OpenHandle",
"role": "assistant"
}
] |
def x(self):
if hasattr(self, 'handle'):
ret = vmGuestLib.VMGuestLib_CloseHandle(self.handle.value)
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
del self.handle
|
CloseHandle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if hasattr(self, 'handle'):\n ret = vmGuestLib.VMGuestLib_CloseHandle(self.handle.value)\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n del self.handle\n",
"role": "user"
},
{
"content": "CloseHandle",
"role": "assistant"
}
] |
def x(self):
ret = vmGuestLib.VMGuestLib_UpdateInfo(self.handle.value)
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
|
UpdateInfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ret = vmGuestLib.VMGuestLib_UpdateInfo(self.handle.value)\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n",
"role": "user"
},
{
"content": "UpdateInfo",
"role": "assistant"
}
] |
def x(self):
sid = c_void_p()
ret = vmGuestLib.VMGuestLib_GetSessionId(self.handle.value, byref(sid))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return sid
|
GetSessionId
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n sid = c_void_p()\n ret = vmGuestLib.VMGuestLib_GetSessionId(self.handle.value, byref(sid))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return sid\n",
"role": "user"
},
{
"content": "GetSessionId",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetCpuLimitMHz(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetCpuLimitMHz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetCpuLimitMHz(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetCpuLimitMHz",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetCpuReservationMHz(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetCpuReservationMHz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetCpuReservationMHz(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetCpuReservationMHz",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetCpuShares(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetCpuShares
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetCpuShares(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetCpuShares",
"role": "assistant"
}
] |
def x(self):
counter = c_uint64()
ret = vmGuestLib.VMGuestLib_GetCpuStolenMs(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetCpuStolenMs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetCpuStolenMs(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetCpuStolenMs",
"role": "assistant"
}
] |
def x(self):
counter = c_uint64()
ret = vmGuestLib.VMGuestLib_GetCpuUsedMs(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetCpuUsedMs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetCpuUsedMs(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetCpuUsedMs",
"role": "assistant"
}
] |
def x(self):
counter = c_uint64()
ret = vmGuestLib.VMGuestLib_GetElapsedMs(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetElapsedMs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetElapsedMs(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetElapsedMs",
"role": "assistant"
}
] |
def x(self):
counter = c_uint64()
ret = vmGuestLib.VMGuestLib_GetHostCpuUsedMs(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostCpuUsedMs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint64()\n ret = vmGuestLib.VMGuestLib_GetHostCpuUsedMs(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostCpuUsedMs",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemKernOvhdMB(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemKernOvhdMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemKernOvhdMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemKernOvhdMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemMappedMB(self.handle.value, byref
(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemMappedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemMappedMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemMappedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemPhysFreeMB(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemPhysFreeMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemPhysFreeMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemPhysFreeMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemPhysMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemPhysMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemPhysMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemPhysMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemSharedMB(self.handle.value, byref
(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemSharedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemSharedMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemSharedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemSwappedMB(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemSwappedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemSwappedMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemSwappedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemUnmappedMB(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemUnmappedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemUnmappedMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemUnmappedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostMemUsedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostMemUsedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostMemUsedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostMemUsedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostNumCpuCores(self.handle.value, byref
(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostNumCpuCores
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostNumCpuCores(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostNumCpuCores",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetHostProcessorSpeed(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetHostProcessorSpeed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetHostProcessorSpeed(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetHostProcessorSpeed",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemActiveMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemActiveMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemActiveMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemActiveMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemBalloonedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemBalloonedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemBalloonedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemBalloonedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemBalloonMaxMB(self.handle.value, byref
(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemBalloonMaxMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemBalloonMaxMB(self.handle.value, byref\n (counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemBalloonMaxMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemBalloonTargetMB(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemBalloonTargetMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemBalloonTargetMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemBalloonTargetMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemLimitMB(self.handle.value, byref(counter)
)
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemLimitMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemLimitMB(self.handle.value, byref(counter)\n )\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemLimitMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemLLSwappedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemLLSwappedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemLLSwappedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemLLSwappedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemMappedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemMappedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemMappedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemMappedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemOverheadMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemOverheadMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemOverheadMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemOverheadMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemReservationMB(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemReservationMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemReservationMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemReservationMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSharedMB(self.handle.value, byref(
counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemSharedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSharedMB(self.handle.value, byref(\n counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemSharedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemSharedSavedMB(self.handle.value,
byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemSharedSavedMB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemSharedSavedMB(self.handle.value,\n byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemSharedSavedMB",
"role": "assistant"
}
] |
def x(self):
counter = c_uint()
ret = vmGuestLib.VMGuestLib_GetMemShares(self.handle.value, byref(counter))
if ret != VMGUESTLIB_ERROR_SUCCESS:
raise VMGuestLibException(ret)
return counter.value
|
GetMemShares
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n counter = c_uint()\n ret = vmGuestLib.VMGuestLib_GetMemShares(self.handle.value, byref(counter))\n if ret != VMGUESTLIB_ERROR_SUCCESS:\n raise VMGuestLibException(ret)\n return counter.value\n",
"role": "user"
},
{
"content": "GetMemShares",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.