source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, connection_port): vports = [] for vport in connection_port.virtual_ports: self._set_child_props(connection_port, vport) vports.append(vport) return vports
flat_vports
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, connection_port):\n vports = []\n for vport in connection_port.virtual_ports:\n self._set_child_props(connection_port, vport)\n vports.append(vport)\n return vports\n", "role": "user" }, { "content": "flat_vports", "role": "assistant" } ]
def x(self): return len(list(filter(lambda s: s.state != SnapStateEnum.DESTROYING, self.snapshots))) > 0
has_snap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return len(list(filter(lambda s: s.state != SnapStateEnum.DESTROYING,\n self.snapshots))) > 0\n", "role": "user" }, { "content": "has_snap", "role": "assistant" } ]
def x(const, bin1, label1, bin2, label2, data_label, returnData=False): if isinstance(const, pysat.Instrument): const = [const] elif not isinstance(const, pysat.Constellation): raise ValueError('Parameter must be an Instrument or a Constellation.') binx = np.linspace(bin1[0], bin1[1], bin1[2] + 1) biny = np.linspace(bin2[0], bin2[1], bin2[2] + 1) numx = len(binx) - 1 numy = len(biny) - 1 numz = len(data_label) yarr = np.arange(numy) xarr = np.arange(numx) zarr = np.arange(numz) ans = [[[collections.deque() for i in xarr] for j in yarr] for k in zarr] for inst in const: for inst in inst: if len(inst.data) != 0: xind = np.digitize(inst.data[label1], binx) - 1 for xi in xarr: xindex, = np.where(xind == xi) if len(xindex) > 0: yData = inst.data.iloc[xindex] yind = np.digitize(yData[label2], biny) - 1 for yj in yarr: yindex, = np.where(yind == yj) if len(yindex) > 0: for zk in zarr: ans[zk][yj][xi].extend(yData.ix[yindex, data_label[zk]].tolist()) return _calc_2d_median(ans, data_label, binx, biny, xarr, yarr, zarr, numx, numy, numz, returnData)
median2D
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(const, bin1, label1, bin2, label2, data_label, returnData=False):\n if isinstance(const, pysat.Instrument):\n const = [const]\n elif not isinstance(const, pysat.Constellation):\n raise ValueError('Parameter must be an Instrument or a Constellation.')\n binx = np.linspace(bin1[0], bin1[1], bin1[2] + 1)\n biny = np.linspace(bin2[0], bin2[1], bin2[2] + 1)\n numx = len(binx) - 1\n numy = len(biny) - 1\n numz = len(data_label)\n yarr = np.arange(numy)\n xarr = np.arange(numx)\n zarr = np.arange(numz)\n ans = [[[collections.deque() for i in xarr] for j in yarr] for k in zarr]\n for inst in const:\n for inst in inst:\n if len(inst.data) != 0:\n xind = np.digitize(inst.data[label1], binx) - 1\n for xi in xarr:\n xindex, = np.where(xind == xi)\n if len(xindex) > 0:\n yData = inst.data.iloc[xindex]\n yind = np.digitize(yData[label2], biny) - 1\n for yj in yarr:\n yindex, = np.where(yind == yj)\n if len(yindex) > 0:\n for zk in zarr:\n ans[zk][yj][xi].extend(yData.ix[yindex,\n data_label[zk]].tolist())\n return _calc_2d_median(ans, data_label, binx, biny, xarr, yarr, zarr,\n numx, numy, numz, returnData)\n", "role": "user" }, { "content": "median2D", "role": "assistant" } ]
def x(self, rsc_clz_list=None): rsc_list_2 = self._default_rsc_list_with_perf_stats() if rsc_clz_list is None: rsc_clz_list = ResourceList.get_rsc_clz_list(rsc_list_2) return [rsc_list for rsc_list in rsc_list_2 if rsc_list. get_resource_class() in rsc_clz_list]
get_rsc_list_2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rsc_clz_list=None):\n rsc_list_2 = self._default_rsc_list_with_perf_stats()\n if rsc_clz_list is None:\n rsc_clz_list = ResourceList.get_rsc_clz_list(rsc_list_2)\n return [rsc_list for rsc_list in rsc_list_2 if rsc_list.\n get_resource_class() in rsc_clz_list]\n", "role": "user" }, { "content": "get_rsc_list_2", "role": "assistant" } ]
def x(cosmicFiles, tag=None, sat_id=None): import netCDF4 num = len(cosmicFiles) if num != 0: output = pysat.DataFrame(load_files(cosmicFiles, tag=tag, sat_id= sat_id)) output.index = pysat.utils.create_datetime_index(year=output.year, month=output.month, day=output.day, uts=output.hour * 3600.0 + output.minute * 60.0 + output.second) output.sort_index(inplace=True) meta = pysat.Meta() ind = 0 repeat = True while repeat: try: data = netCDF4.Dataset(cosmicFiles[ind]) ncattrsList = data.ncattrs() for d in ncattrsList: meta[d] = {'units': '', 'long_name': d} keys = data.variables.keys() for key in keys: meta[key] = {'units': data.variables[key].units, 'long_name': data.variables[key].long_name} repeat = False except RuntimeError: ind += 1 return output, meta else: return pysat.DataFrame(None), pysat.Meta()
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cosmicFiles, tag=None, sat_id=None):\n import netCDF4\n num = len(cosmicFiles)\n if num != 0:\n output = pysat.DataFrame(load_files(cosmicFiles, tag=tag, sat_id=\n sat_id))\n output.index = pysat.utils.create_datetime_index(year=output.year,\n month=output.month, day=output.day, uts=output.hour * 3600.0 + \n output.minute * 60.0 + output.second)\n output.sort_index(inplace=True)\n meta = pysat.Meta()\n ind = 0\n repeat = True\n while repeat:\n try:\n data = netCDF4.Dataset(cosmicFiles[ind])\n ncattrsList = data.ncattrs()\n for d in ncattrsList:\n meta[d] = {'units': '', 'long_name': d}\n keys = data.variables.keys()\n for key in keys:\n meta[key] = {'units': data.variables[key].units,\n 'long_name': data.variables[key].long_name}\n repeat = False\n except RuntimeError:\n ind += 1\n return output, meta\n else:\n return pysat.DataFrame(None), pysat.Meta()\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(files, tag=None, sat_id=None): output = [None] * len(files) drop_idx = [] for i, file in enumerate(files): try: data = netCDF4.Dataset(file) new = {} ncattrsList = data.ncattrs() for d in ncattrsList: new[d] = data.getncattr(d) loadedVars = {} keys = data.variables.keys() for key in keys: loadedVars[key] = data.variables[key][:] new['profiles'] = pysat.DataFrame(loadedVars) if tag == 'ionprf': new['profiles'].index = new['profiles']['MSL_alt'] output[i] = new data.close() except RuntimeError: drop_idx.append(i) drop_idx.reverse() for i in drop_idx: del output[i] return output
load_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files, tag=None, sat_id=None):\n output = [None] * len(files)\n drop_idx = []\n for i, file in enumerate(files):\n try:\n data = netCDF4.Dataset(file)\n new = {}\n ncattrsList = data.ncattrs()\n for d in ncattrsList:\n new[d] = data.getncattr(d)\n loadedVars = {}\n keys = data.variables.keys()\n for key in keys:\n loadedVars[key] = data.variables[key][:]\n new['profiles'] = pysat.DataFrame(loadedVars)\n if tag == 'ionprf':\n new['profiles'].index = new['profiles']['MSL_alt']\n output[i] = new\n data.close()\n except RuntimeError:\n drop_idx.append(i)\n drop_idx.reverse()\n for i in drop_idx:\n del output[i]\n return output\n", "role": "user" }, { "content": "load_files", "role": "assistant" } ]
def x(date_array, tag, sat_id, data_path=None, user=None, password=None): import subprocess if user is None: print('No user information supplied for download.') user = 'pysat_testing' if password is None: print('Please provide email address in password field.') password = 'pysat_testing@not_real_email.org' a = subprocess.check_output(['globalDownload.py', '--verbose', '--url=http://cedar.openmadrigal.org', '--outputDir=' + data_path, '--user_fullname=' + user, '--user_email=' + password, '--user_affiliation=pysat', '--format=hdf5', '--startDate=' + date_array[0].strftime('%m/%d/%Y'), '--endDate=' + date_array[-1]. strftime('%m/%d/%Y'), '--inst=8100', '--kindat=' + str(madrigal_tag [sat_id])]) print('Feedback from openMadrigal ', a)
download
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date_array, tag, sat_id, data_path=None, user=None, password=None):\n import subprocess\n if user is None:\n print('No user information supplied for download.')\n user = 'pysat_testing'\n if password is None:\n print('Please provide email address in password field.')\n password = 'pysat_testing@not_real_email.org'\n a = subprocess.check_output(['globalDownload.py', '--verbose',\n '--url=http://cedar.openmadrigal.org', '--outputDir=' + data_path, \n '--user_fullname=' + user, '--user_email=' + password,\n '--user_affiliation=pysat', '--format=hdf5', '--startDate=' +\n date_array[0].strftime('%m/%d/%Y'), '--endDate=' + date_array[-1].\n strftime('%m/%d/%Y'), '--inst=8100', '--kindat=' + str(madrigal_tag\n [sat_id])])\n print('Feedback from openMadrigal ', a)\n", "role": "user" }, { "content": "download", "role": "assistant" } ]
def x(self): if self.clean_level == 'clean': idx, = np.where((self['rpa_flag_ut'] <= 1) & (self['idm_flag_ut'] <= 1) ) elif self.clean_level == 'dusty': idx, = np.where((self['rpa_flag_ut'] <= 2) & (self['idm_flag_ut'] <= 2) ) elif self.clean_level == 'dirty': idx, = np.where((self['rpa_flag_ut'] <= 3) & (self['idm_flag_ut'] <= 3) ) else: idx = [] self.data = self[idx] return
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.clean_level == 'clean':\n idx, = np.where((self['rpa_flag_ut'] <= 1) & (self['idm_flag_ut'] <= 1)\n )\n elif self.clean_level == 'dusty':\n idx, = np.where((self['rpa_flag_ut'] <= 2) & (self['idm_flag_ut'] <= 2)\n )\n elif self.clean_level == 'dirty':\n idx, = np.where((self['rpa_flag_ut'] <= 3) & (self['idm_flag_ut'] <= 3)\n )\n else:\n idx = []\n self.data = self[idx]\n return\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(cls, cli, management_address, local_username=None, local_password= None, remote_username=None, remote_password=None, connection_type=None): req_body = cli.make_body(managementAddress=management_address, localUsername=local_username, localPassword=local_password, remoteUsername=remote_username, remotePassword=remote_password, connectionType=connection_type) resp = cli.post(cls().resource_class, **req_body) resp.raise_if_err() return cls.get(cli, resp.resource_id)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, cli, management_address, local_username=None, local_password=\n None, remote_username=None, remote_password=None, connection_type=None):\n req_body = cli.make_body(managementAddress=management_address,\n localUsername=local_username, localPassword=local_password,\n remoteUsername=remote_username, remotePassword=remote_password,\n connectionType=connection_type)\n resp = cli.post(cls().resource_class, **req_body)\n resp.raise_if_err()\n return cls.get(cli, resp.resource_id)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, management_address=None, username=None, password=None, connection_type=None): req_body = self._cli.make_body(managementAddress=management_address, username=username, password=password, connectionType=connection_type) resp = self.action('modify', **req_body) resp.raise_if_err() return resp
modify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, management_address=None, username=None, password=None,\n connection_type=None):\n req_body = self._cli.make_body(managementAddress=management_address,\n username=username, password=password, connectionType=connection_type)\n resp = self.action('modify', **req_body)\n resp.raise_if_err()\n return resp\n", "role": "user" }, { "content": "modify", "role": "assistant" } ]
def x(self, connection_type=None): req_body = self._cli.make_body(connectionType=connection_type) resp = self.action('verify', **req_body) resp.raise_if_err() return resp
verify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, connection_type=None):\n req_body = self._cli.make_body(connectionType=connection_type)\n resp = self.action('verify', **req_body)\n resp.raise_if_err()\n return resp\n", "role": "user" }, { "content": "verify", "role": "assistant" } ]
def x(cls, cli, sp, ip_port, ip_address, netmask=None, v6_prefix_length= None, gateway=None, vlan_id=None): req_body = cli.make_body(sp=sp, ipPort=ip_port, ipAddress=ip_address, netmask=netmask, v6PrefixLength=v6_prefix_length, gateway=gateway, vlanId=vlan_id) resp = cli.post(cls().resource_class, **req_body) resp.raise_if_err() return cls.get(cli, resp.resource_id)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, cli, sp, ip_port, ip_address, netmask=None, v6_prefix_length=\n None, gateway=None, vlan_id=None):\n req_body = cli.make_body(sp=sp, ipPort=ip_port, ipAddress=ip_address,\n netmask=netmask, v6PrefixLength=v6_prefix_length, gateway=gateway,\n vlanId=vlan_id)\n resp = cli.post(cls().resource_class, **req_body)\n resp.raise_if_err()\n return cls.get(cli, resp.resource_id)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, sp=None, ip_port=None, ip_address=None, netmask=None, v6_prefix_length=None, gateway=None, vlan_id=None): req_body = self._cli.make_body(sp=sp, ipPort=ip_port, ipAddress= ip_address, netmask=netmask, v6PrefixLength=v6_prefix_length, gateway=gateway, vlanId=vlan_id) resp = self.action('modify', **req_body) resp.raise_if_err() return resp
modify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sp=None, ip_port=None, ip_address=None, netmask=None,\n v6_prefix_length=None, gateway=None, vlan_id=None):\n req_body = self._cli.make_body(sp=sp, ipPort=ip_port, ipAddress=\n ip_address, netmask=netmask, v6PrefixLength=v6_prefix_length,\n gateway=gateway, vlanId=vlan_id)\n resp = self.action('modify', **req_body)\n resp.raise_if_err()\n return resp\n", "role": "user" }, { "content": "modify", "role": "assistant" } ]
def x(self): if self.values is None: ret = IdValues() else: ret = IdValues({k: sum(int(x) for x in v.values()) for k, v in self .values.items()}) return ret
sp_sum_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.values is None:\n ret = IdValues()\n else:\n ret = IdValues({k: sum(int(x) for x in v.values()) for k, v in self\n .values.items()})\n return ret\n", "role": "user" }, { "content": "sp_sum_values", "role": "assistant" } ]
def x(self): if self.values is None: ret = IdValues() else: ret = IdValues({'0': sum(int(x) for x in self.values.values())}) return ret
sum_sp_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.values is None:\n ret = IdValues()\n else:\n ret = IdValues({'0': sum(int(x) for x in self.values.values())})\n return ret\n", "role": "user" }, { "content": "sum_sp_values", "role": "assistant" } ]
def x(self, other): if self.values is None: ret = IdValues() else: ret = sum([IdValues({k: (int(v) * int(other.values[key])) for k, v in value.items()}) for key, value in self.values.items()]) return ret
combine_numeric_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if self.values is None:\n ret = IdValues()\n else:\n ret = sum([IdValues({k: (int(v) * int(other.values[key])) for k, v in\n value.items()}) for key, value in self.values.items()])\n return ret\n", "role": "user" }, { "content": "combine_numeric_values", "role": "assistant" } ]
def x(self, other): if self.values is None: ret = IdValues() else: ret = IdValues({k: (int(v) * int(other.values[k])) for k, v in self .values.items()}) return ret
combine_sp_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if self.values is None:\n ret = IdValues()\n else:\n ret = IdValues({k: (int(v) * int(other.values[k])) for k, v in self\n .values.items()})\n return ret\n", "role": "user" }, { "content": "combine_sp_values", "role": "assistant" } ]
def x(self, other): if self.values is None: ret = IdValues() else: ret = IdValues({'0': sum(int(x) for x in {k: (int(v) * int(other. values[k])) for k, v in self.values.items()}.values())}) return ret
sum_combined_sp_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if self.values is None:\n ret = IdValues()\n else:\n ret = IdValues({'0': sum(int(x) for x in {k: (int(v) * int(other.\n values[k])) for k, v in self.values.items()}.values())})\n return ret\n", "role": "user" }, { "content": "sum_combined_sp_values", "role": "assistant" } ]
def x(self, function, kind='add', at_pos='end', *args, **kwargs): if isinstance(function, str): function = eval(function) if (at_pos == 'end') | (at_pos == len(self._functions)): self._functions.append(function) self._args.append(args) self._kwargs.append(kwargs) self._kind.append(kind.lower()) elif at_pos < len(self._functions): self._functions.insert(at_pos, function) self._args.insert(at_pos, args) self._kwargs.insert(at_pos, kwargs) self._kind.insert(at_pos, kind) else: raise TypeError('Must enter an index between 0 and %i' % len(self. _functions))
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, function, kind='add', at_pos='end', *args, **kwargs):\n if isinstance(function, str):\n function = eval(function)\n if (at_pos == 'end') | (at_pos == len(self._functions)):\n self._functions.append(function)\n self._args.append(args)\n self._kwargs.append(kwargs)\n self._kind.append(kind.lower())\n elif at_pos < len(self._functions):\n self._functions.insert(at_pos, function)\n self._args.insert(at_pos, args)\n self._kwargs.insert(at_pos, kwargs)\n self._kind.insert(at_pos, kind)\n else:\n raise TypeError('Must enter an index between 0 and %i' % len(self.\n _functions))\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, sat): if len(self._functions) > 0: for func, arg, kwarg, kind in zip(self._functions, self._args, self ._kwargs, self._kind): if len(sat.data) > 0: if kind == 'add': tempd = sat.copy() newData = func(tempd, *arg, **kwarg) del tempd if isinstance(newData, dict): if isinstance(newData['data'], pds.DataFrame): sat[newData['data'].columns] = newData elif isinstance(newData['data'], pds.Series): if newData['data'].name is not None: sat[newData['data'].name] = newData elif 'name' in newData.keys(): name = newData.pop('name') sat[name] = newData else: raise ValueError('Must assign a name to ' + 'Series or return a ' + '"name" in dictionary.') elif hasattr(newData['data'], '__iter__'): if 'name' in newData.keys(): name = newData.pop('name') sat[name] = newData else: raise ValueError('Must include "name" in ' + 'returned dictionary.') elif isinstance(newData, pds.DataFrame): sat[newData.columns] = newData elif isinstance(newData, pds.Series): sat[newData.name] = newData elif hasattr(newData, '__iter__'): newName = newData[0] newData = newData[1] if len(newData) > 0: if isinstance(newName, str): sat[newName] = newData else: for name, data in zip(newName, newData): if len(data) > 0: sat[name] = data else: raise ValueError("kernel doesn't know what to do " + 'with returned data.') if kind == 'modify': t = func(sat, *arg, **kwarg) if t is not None: raise ValueError('Modify functions should not ' + 'return any information via ' + 'return. Information may only be' + ' propagated back by modifying ' + 'supplied pysat object.') if kind == 'pass': tempd = sat.copy() t = func(tempd, *arg, **kwarg) del tempd if t is not None: raise ValueError('Pass functions should not ' + 'return any information via ' + 'return.')
apply_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sat):\n if len(self._functions) > 0:\n for func, arg, kwarg, kind in zip(self._functions, self._args, self\n ._kwargs, self._kind):\n if len(sat.data) > 0:\n if kind == 'add':\n tempd = sat.copy()\n newData = func(tempd, *arg, **kwarg)\n del tempd\n if isinstance(newData, dict):\n if isinstance(newData['data'], pds.DataFrame):\n sat[newData['data'].columns] = newData\n elif isinstance(newData['data'], pds.Series):\n if newData['data'].name is not None:\n sat[newData['data'].name] = newData\n elif 'name' in newData.keys():\n name = newData.pop('name')\n sat[name] = newData\n else:\n raise ValueError('Must assign a name to ' +\n 'Series or return a ' +\n '\"name\" in dictionary.')\n elif hasattr(newData['data'], '__iter__'):\n if 'name' in newData.keys():\n name = newData.pop('name')\n sat[name] = newData\n else:\n raise ValueError('Must include \"name\" in ' +\n 'returned dictionary.')\n elif isinstance(newData, pds.DataFrame):\n sat[newData.columns] = newData\n elif isinstance(newData, pds.Series):\n sat[newData.name] = newData\n elif hasattr(newData, '__iter__'):\n newName = newData[0]\n newData = newData[1]\n if len(newData) > 0:\n if isinstance(newName, str):\n sat[newName] = newData\n else:\n for name, data in zip(newName, newData):\n if len(data) > 0:\n sat[name] = data\n else:\n raise ValueError(\"kernel doesn't know what to do \" +\n 'with returned data.')\n if kind == 'modify':\n t = func(sat, *arg, **kwarg)\n if t is not None:\n raise ValueError('Modify functions should not ' +\n 'return any information via ' +\n 'return. Information may only be' +\n ' propagated back by modifying ' +\n 'supplied pysat object.')\n if kind == 'pass':\n tempd = sat.copy()\n t = func(tempd, *arg, **kwarg)\n del tempd\n if t is not None:\n raise ValueError('Pass functions should not ' +\n 'return any information via ' + 'return.')\n", "role": "user" }, { "content": "apply_all", "role": "assistant" } ]
def x(self): self._functions = [] self._args = [] self._kwargs = [] self._kind = []
clear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._functions = []\n self._args = []\n self._kwargs = []\n self._kind = []\n", "role": "user" }, { "content": "clear", "role": "assistant" } ]
def x(tag='north', sat_id=None, data_path=None, format_str=None): if format_str is None and tag is not None: if tag == 'north' or tag == 'south': hemi_fmt = ''.join(('{year:4d}{month:02d}{day:02d}.', tag, '.grdex')) return pysat.Files.from_os(data_path=data_path, format_str=hemi_fmt ) else: estr = 'Unrecognized tag name for SuperDARN, north or south.' raise ValueError(estr) elif format_str is None: estr = 'A tag name must be passed to SuperDARN.' raise ValueError(estr) else: return pysat.Files.from_os(data_path=data_path, format_str=format_str)
list_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tag='north', sat_id=None, data_path=None, format_str=None):\n if format_str is None and tag is not None:\n if tag == 'north' or tag == 'south':\n hemi_fmt = ''.join(('{year:4d}{month:02d}{day:02d}.', tag,\n '.grdex'))\n return pysat.Files.from_os(data_path=data_path, format_str=hemi_fmt\n )\n else:\n estr = 'Unrecognized tag name for SuperDARN, north or south.'\n raise ValueError(estr)\n elif format_str is None:\n estr = 'A tag name must be passed to SuperDARN.'\n raise ValueError(estr)\n else:\n return pysat.Files.from_os(data_path=data_path, format_str=format_str)\n", "role": "user" }, { "content": "list_files", "role": "assistant" } ]
def x(date_array, tag, sat_id, data_path, user=None, password=None): import sys import os import pysftp import davitpy if user is None: user = os.environ['DBREADUSER'] if password is None: password = os.environ['DBREADPASS'] with pysftp.Connection(os.environ['VTDB'], username=user, password=password ) as sftp: for date in date_array: myDir = '/data/' + date.strftime('%Y') + '/grdex/' + tag + '/' fname = date.strftime('%Y%m%d') + '.' + tag + '.grdex' local_fname = fname + '.bz2' saved_fname = os.path.join(data_path, local_fname) full_fname = os.path.join(data_path, fname) try: print('Downloading file for ' + date.strftime('%D')) sys.stdout.flush() sftp.get(myDir + local_fname, saved_fname) os.system('bunzip2 -c ' + saved_fname + ' > ' + full_fname) os.system('rm ' + saved_fname) except IOError: print('File not available for ' + date.strftime('%D')) return
download
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date_array, tag, sat_id, data_path, user=None, password=None):\n import sys\n import os\n import pysftp\n import davitpy\n if user is None:\n user = os.environ['DBREADUSER']\n if password is None:\n password = os.environ['DBREADPASS']\n with pysftp.Connection(os.environ['VTDB'], username=user, password=password\n ) as sftp:\n for date in date_array:\n myDir = '/data/' + date.strftime('%Y') + '/grdex/' + tag + '/'\n fname = date.strftime('%Y%m%d') + '.' + tag + '.grdex'\n local_fname = fname + '.bz2'\n saved_fname = os.path.join(data_path, local_fname)\n full_fname = os.path.join(data_path, fname)\n try:\n print('Downloading file for ' + date.strftime('%D'))\n sys.stdout.flush()\n sftp.get(myDir + local_fname, saved_fname)\n os.system('bunzip2 -c ' + saved_fname + ' > ' + full_fname)\n os.system('rm ' + saved_fname)\n except IOError:\n print('File not available for ' + date.strftime('%D'))\n return\n", "role": "user" }, { "content": "download", "role": "assistant" } ]
def x(self, count=2): ret = self if len(self) > 0: type_counter = Counter(self.drive_type) drive_type, counts = type_counter.most_common()[0] self.set_drive_type(drive_type) if len(self) > 0: size_counter = Counter(self.capacity) size, counts = size_counter.most_common()[0] self.set_capacity(size) if len(self) >= count: indices = self.index[:count] self.set_indices(indices) else: self.set_indices('N/A') return ret
same_disks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, count=2):\n ret = self\n if len(self) > 0:\n type_counter = Counter(self.drive_type)\n drive_type, counts = type_counter.most_common()[0]\n self.set_drive_type(drive_type)\n if len(self) > 0:\n size_counter = Counter(self.capacity)\n size, counts = size_counter.most_common()[0]\n self.set_capacity(size)\n if len(self) >= count:\n indices = self.index[:count]\n self.set_indices(indices)\n else:\n self.set_indices('N/A')\n return ret\n", "role": "user" }, { "content": "same_disks", "role": "assistant" } ]
def x(self, start, stop): for instrument in self.instruments: instrument.bounds = start, stop
set_bounds
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, stop):\n for instrument in self.instruments:\n instrument.bounds = start, stop\n", "role": "user" }, { "content": "set_bounds", "role": "assistant" } ]
def x(self, *args, **kwargs): for instrument in self.instruments: instrument.custom.add(*args, **kwargs)
data_mod
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n for instrument in self.instruments:\n instrument.custom.add(*args, **kwargs)\n", "role": "user" }, { "content": "data_mod", "role": "assistant" } ]
def x(self, *args, **kwargs): for instrument in self.instruments: instrument.load(*args, **kwargs)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n for instrument in self.instruments:\n instrument.load(*args, **kwargs)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self, bounds1, label1, bounds2, label2, bin3, label3, data_label): if isinstance(data_label, str): data_label = [data_label] elif not isinstance(data_label, collections.Sequence): raise ValueError( 'Please pass data_label as a string or collection of strings.') biny = np.linspace(bin3[0], bin3[1], bin3[2] + 1) numy = len(biny) - 1 numz = len(data_label) yarr, zarr = map(np.arange, (numy, numz)) ans = [[[collections.deque()] for j in yarr] for k in zarr] for inst in self: for inst in inst: if len(inst.data) != 0: min1, max1 = bounds1 min2, max2 = bounds2 data1 = inst.data[label1] data2 = inst.data[label2] in_bounds, = np.where((min1 <= data1) & (data1 < max1) & ( min2 <= data2) & (data2 < max2)) data_considered = inst.data.iloc[in_bounds] y_indexes = np.digitize(data_considered[label3], biny) - 1 for yj in yarr: yindex, = np.where(y_indexes == yj) if len(yindex) > 0: for zk in zarr: ans[zk][yj][0].extend(data_considered.ix[yindex, data_label[zk]].tolist()) numx = 1 xarr = np.arange(numx) binx = None out_2d = _calc_2d_median(ans, data_label, binx, biny, xarr, yarr, zarr, numx, numy, numz) output = {} for i, label in enumerate(data_label): median = [r[0] for r in out_2d[label]['median']] count = [r[0] for r in out_2d[label]['count']] dev = [r[0] for r in out_2d[label]['avg_abs_dev']] output[label] = {'median': median, 'count': count, 'avg_abs_dev': dev, 'bin': out_2d[label]['bin_y']} return output
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bounds1, label1, bounds2, label2, bin3, label3, data_label):\n if isinstance(data_label, str):\n data_label = [data_label]\n elif not isinstance(data_label, collections.Sequence):\n raise ValueError(\n 'Please pass data_label as a string or collection of strings.')\n biny = np.linspace(bin3[0], bin3[1], bin3[2] + 1)\n numy = len(biny) - 1\n numz = len(data_label)\n yarr, zarr = map(np.arange, (numy, numz))\n ans = [[[collections.deque()] for j in yarr] for k in zarr]\n for inst in self:\n for inst in inst:\n if len(inst.data) != 0:\n min1, max1 = bounds1\n min2, max2 = bounds2\n data1 = inst.data[label1]\n data2 = inst.data[label2]\n in_bounds, = np.where((min1 <= data1) & (data1 < max1) & (\n min2 <= data2) & (data2 < max2))\n data_considered = inst.data.iloc[in_bounds]\n y_indexes = np.digitize(data_considered[label3], biny) - 1\n for yj in yarr:\n yindex, = np.where(y_indexes == yj)\n if len(yindex) > 0:\n for zk in zarr:\n ans[zk][yj][0].extend(data_considered.ix[yindex,\n data_label[zk]].tolist())\n numx = 1\n xarr = np.arange(numx)\n binx = None\n out_2d = _calc_2d_median(ans, data_label, binx, biny, xarr, yarr, zarr,\n numx, numy, numz)\n output = {}\n for i, label in enumerate(data_label):\n median = [r[0] for r in out_2d[label]['median']]\n count = [r[0] for r in out_2d[label]['count']]\n dev = [r[0] for r in out_2d[label]['avg_abs_dev']]\n output[label] = {'median': median, 'count': count, 'avg_abs_dev':\n dev, 'bin': out_2d[label]['bin_y']}\n return output\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, instrument1, instrument2, bounds, data_labels, cost_function): """ Draft Pseudocode ---------------- Check integrity of inputs. Let STD_LABELS be the constant tuple: ("time", "lat", "long", "alt") Note: modify so that user can override labels for time, lat, long, data for each satelite. // We only care about the data currently loaded into each object. Let start be the later of the datetime of the first piece of data loaded into s1, the first piece of data loaded into s2, and the user supplied start bound. Let end be the later of the datetime of the first piece of data loaded into s1, the first piece of data loaded into s2, and the user supplied end bound. If start is after end, raise an error. // Let data be the 2D array of deques holding each piece // of data, sorted into bins by lat/long/alt. Let s1_data (resp s2_data) be data from s1.data, s2.data filtered by user-provided lat/long/alt bounds, time bounds calculated. Let data be a dictionary of lists with the keys [ dl1 for dl1, dl2 in data_labels ] + STD_LABELS + [ lb+"2" for lb in STD_LABELS ] For each piece of data s1_point in s1_data: # Hopefully np.where is very good, because this # runs O(n) times. # We could try reusing selections, maybe, if needed. # This would probably involve binning. Let s2_near be the data from s2.data within certain bounds on lat/long/alt/time using 8 statements to numpy.where. We can probably get those defaults from the user or handy constants / config? # We could try a different algorithm for closest pairs # of points. Let distance be the numpy array representing the distance between s1_point and each point in s2_near. # S: Difference for others: change this line. For each of those, calculate the spatial difference from the s1 using lat/long/alt. If s2_near is empty; break loop. Let s2_nearest be the point in s2_near corresponding to the lowest distance. Append to data: a point, indexed by the time from s1_point, containing the following data: # note Let n be the length of data["time"]. For each key in data: Assert len(data[key]) == n End for. # Create data row to pass to pandas. Let row be an empty dict. For dl1, dl2 in data_labels: Append s1_point[dl1] - s2_nearest[dl2] to data[dl1]. For key in STD_LABELS: Append s1_point[translate[key]] to data[key] key = key+"2" Append s2_nearest[translate[key]] to data[key] Let data_df be a pandas dataframe created from the data in data. return { 'data': data_df, 'start':start, 'end':end } """ labels = [dl1 for dl1, dl2 in data_labels] + [('1_' + b[0]) for b in bounds ] + [('2_' + b[1]) for b in bounds] + ['dist'] data = {label: [] for label in labels} inst1 = instrument1.data inst2 = instrument2.data for b in bounds: label1 = b[0] label2 = b[1] low = b[2] high = b[3] data1 = inst1[label1] ind1 = np.where((data1 >= low) & (data1 < high)) inst1 = inst1.iloc[ind1] data2 = inst2[label2] ind2 = np.where((data2 >= low) & (data2 < high)) inst2 = inst2.iloc[ind2] for i, s1_point in inst1.iterrows(): s2_near = instrument2.data for b in bounds: label1 = b[0] label2 = b[1] s1_val = s1_point[label1] max_dist = b[4] minbound = s1_val - max_dist maxbound = s1_val + max_dist data2 = s2_near[label2] indices = np.where((data2 >= minbound) & (data2 < maxbound)) s2_near = s2_near.iloc[indices] s2_nearest = None min_dist = float('NaN') for j, s2_point in s2_near.iterrows(): dist = cost_function(s1_point, s2_point) if dist < min_dist or min_dist != min_dist: min_dist = dist s2_nearest = s2_point data['dist'].append(min_dist) for dl1, dl2 in data_labels: if s2_nearest is not None: data[dl1].append(s1_point[dl1] - s2_nearest[dl2]) else: data[dl1].append(float('NaN')) for b in bounds: label1 = b[0] label2 = b[1] data['1_' + label1].append(s1_point[label1]) if s2_nearest is not None: data['2_' + label2].append(s2_nearest[label2]) else: data['2_' + label2].append(float('NaN')) data_df = pds.DataFrame(data=data) return data_df
difference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instrument1, instrument2, bounds, data_labels, cost_function):\n \"\"\"\n Draft Pseudocode\n ----------------\n Check integrity of inputs.\n\n Let STD_LABELS be the constant tuple:\n (\"time\", \"lat\", \"long\", \"alt\")\n\n Note: modify so that user can override labels for time,\n lat, long, data for each satelite.\n\n // We only care about the data currently loaded\n into each object.\n\n Let start be the later of the datetime of the\n first piece of data loaded into s1, the first\n piece of data loaded into s2, and the user\n supplied start bound.\n\n Let end be the later of the datetime of the first\n piece of data loaded into s1, the first piece\n of data loaded into s2, and the user supplied\n end bound.\n\n If start is after end, raise an error.\n\n // Let data be the 2D array of deques holding each piece\n // of data, sorted into bins by lat/long/alt.\n\n Let s1_data (resp s2_data) be data from s1.data, s2.data\n filtered by user-provided lat/long/alt bounds, time bounds\n calculated.\n\n Let data be a dictionary of lists with the keys\n [ dl1 for dl1, dl2 in data_labels ] +\n STD_LABELS +\n [ lb+\"2\" for lb in STD_LABELS ]\n\n For each piece of data s1_point in s1_data:\n\n # Hopefully np.where is very good, because this\n # runs O(n) times.\n # We could try reusing selections, maybe, if needed.\n # This would probably involve binning.\n Let s2_near be the data from s2.data within certain\n bounds on lat/long/alt/time using 8 statements to\n numpy.where. We can probably get those defaults from\n the user or handy constants / config?\n\n # We could try a different algorithm for closest pairs\n # of points.\n\n Let distance be the numpy array representing the\n distance between s1_point and each point in s2_near.\n\n # S: Difference for others: change this line.\n For each of those, calculate the spatial difference\n from the s1 using lat/long/alt. If s2_near is\n empty; break loop.\n\n Let s2_nearest be the point in s2_near corresponding\n to the lowest distance.\n\n Append to data: a point, indexed by the time from\n s1_point, containing the following data:\n\n # note\n Let n be the length of data[\"time\"].\n For each key in data:\n Assert len(data[key]) == n\n End for.\n\n # Create data row to pass to pandas.\n Let row be an empty dict.\n For dl1, dl2 in data_labels:\n Append s1_point[dl1] - s2_nearest[dl2] to data[dl1].\n\n For key in STD_LABELS:\n Append s1_point[translate[key]] to data[key]\n key = key+\"2\"\n Append s2_nearest[translate[key]] to data[key]\n\n Let data_df be a pandas dataframe created from the data\n in data.\n\n return { 'data': data_df, 'start':start, 'end':end }\n \"\"\"\n labels = [dl1 for dl1, dl2 in data_labels] + [('1_' + b[0]) for b in bounds\n ] + [('2_' + b[1]) for b in bounds] + ['dist']\n data = {label: [] for label in labels}\n inst1 = instrument1.data\n inst2 = instrument2.data\n for b in bounds:\n label1 = b[0]\n label2 = b[1]\n low = b[2]\n high = b[3]\n data1 = inst1[label1]\n ind1 = np.where((data1 >= low) & (data1 < high))\n inst1 = inst1.iloc[ind1]\n data2 = inst2[label2]\n ind2 = np.where((data2 >= low) & (data2 < high))\n inst2 = inst2.iloc[ind2]\n for i, s1_point in inst1.iterrows():\n s2_near = instrument2.data\n for b in bounds:\n label1 = b[0]\n label2 = b[1]\n s1_val = s1_point[label1]\n max_dist = b[4]\n minbound = s1_val - max_dist\n maxbound = s1_val + max_dist\n data2 = s2_near[label2]\n indices = np.where((data2 >= minbound) & (data2 < maxbound))\n s2_near = s2_near.iloc[indices]\n s2_nearest = None\n min_dist = float('NaN')\n for j, s2_point in s2_near.iterrows():\n dist = cost_function(s1_point, s2_point)\n if dist < min_dist or min_dist != min_dist:\n min_dist = dist\n s2_nearest = s2_point\n data['dist'].append(min_dist)\n for dl1, dl2 in data_labels:\n if s2_nearest is not None:\n data[dl1].append(s1_point[dl1] - s2_nearest[dl2])\n else:\n data[dl1].append(float('NaN'))\n for b in bounds:\n label1 = b[0]\n label2 = b[1]\n data['1_' + label1].append(s1_point[label1])\n if s2_nearest is not None:\n data['2_' + label2].append(s2_nearest[label2])\n else:\n data['2_' + label2].append(float('NaN'))\n data_df = pds.DataFrame(data=data)\n return data_df\n", "role": "user" }, { "content": "difference", "role": "assistant" } ]
def x(inst, bin1, label1, bin2, label2, data_label, gate, returnBins=False): return _occurrence2D(inst, bin1, label1, bin2, label2, data_label, gate, by_orbit=False, returnBins=returnBins)
daily2D
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst, bin1, label1, bin2, label2, data_label, gate, returnBins=False):\n return _occurrence2D(inst, bin1, label1, bin2, label2, data_label, gate,\n by_orbit=False, returnBins=returnBins)\n", "role": "user" }, { "content": "daily2D", "role": "assistant" } ]
def x(inst, bin1, label1, bin2, label2, data_label, gate, returnBins=False): return _occurrence2D(inst, bin1, label1, bin2, label2, data_label, gate, by_orbit=True, returnBins=returnBins)
by_orbit2D
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst, bin1, label1, bin2, label2, data_label, gate, returnBins=False):\n return _occurrence2D(inst, bin1, label1, bin2, label2, data_label, gate,\n by_orbit=True, returnBins=returnBins)\n", "role": "user" }, { "content": "by_orbit2D", "role": "assistant" } ]
def x(inst, bin1, label1, bin2, label2, bin3, label3, data_label, gate, returnBins=False): return _occurrence3D(inst, bin1, label1, bin2, label2, bin3, label3, data_label, gate, returnBins=returnBins, by_orbit=False)
daily3D
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst, bin1, label1, bin2, label2, bin3, label3, data_label, gate,\n returnBins=False):\n return _occurrence3D(inst, bin1, label1, bin2, label2, bin3, label3,\n data_label, gate, returnBins=returnBins, by_orbit=False)\n", "role": "user" }, { "content": "daily3D", "role": "assistant" } ]
def x(data): if isinstance(data.iloc[0], DataFrame): dslice = Panel.from_dict(dict([(i, data.iloc[i]) for i in xrange( len(data))])) elif isinstance(data.iloc[0], Series): dslice = DataFrame(data.tolist()) dslice.index = data.index else: dslice = data return dslice
computational_form
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n if isinstance(data.iloc[0], DataFrame):\n dslice = Panel.from_dict(dict([(i, data.iloc[i]) for i in xrange(\n len(data))]))\n elif isinstance(data.iloc[0], Series):\n dslice = DataFrame(data.tolist())\n dslice.index = data.index\n else:\n dslice = data\n return dslice\n", "role": "user" }, { "content": "computational_form", "role": "assistant" } ]
def x(path=None, store=None): import sys import os import pysat if sys.version_info[0] >= 3: if sys.version_info[1] < 4: import imp re_load = imp.reload else: import importlib re_load = importlib.reload else: re_load = reload if store is None: store = True if os.path.isdir(path): if store: with open(os.path.join(os.path.expanduser('~'), '.pysat', 'data_path.txt'), 'w') as f: f.write(path) pysat.data_dir = path pysat._files = re_load(pysat._files) pysat._instrument = re_load(pysat._instrument) else: raise ValueError('Path %s does not lead to a valid directory.' % path)
set_data_dir
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path=None, store=None):\n import sys\n import os\n import pysat\n if sys.version_info[0] >= 3:\n if sys.version_info[1] < 4:\n import imp\n re_load = imp.reload\n else:\n import importlib\n re_load = importlib.reload\n else:\n re_load = reload\n if store is None:\n store = True\n if os.path.isdir(path):\n if store:\n with open(os.path.join(os.path.expanduser('~'), '.pysat',\n 'data_path.txt'), 'w') as f:\n f.write(path)\n pysat.data_dir = path\n pysat._files = re_load(pysat._files)\n pysat._instrument = re_load(pysat._instrument)\n else:\n raise ValueError('Path %s does not lead to a valid directory.' % path)\n", "role": "user" }, { "content": "set_data_dir", "role": "assistant" } ]
def x(date): try: doy = date.toordinal() - datetime(date.year, 1, 1).toordinal() + 1 except AttributeError: raise AttributeError('Must supply a pandas datetime object or ' + 'equivalent') else: return date.year, doy
getyrdoy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date):\n try:\n doy = date.toordinal() - datetime(date.year, 1, 1).toordinal() + 1\n except AttributeError:\n raise AttributeError('Must supply a pandas datetime object or ' +\n 'equivalent')\n else:\n return date.year, doy\n", "role": "user" }, { "content": "getyrdoy", "role": "assistant" } ]
def x(start, stop, freq='D'): if hasattr(start, '__iter__'): season = pds.date_range(start[0], stop[0], freq=freq) for sta, stp in zip(start[1:], stop[1:]): season = season.append(pds.date_range(sta, stp, freq=freq)) else: season = pds.date_range(start, stop, freq=freq) return season
season_date_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, stop, freq='D'):\n if hasattr(start, '__iter__'):\n season = pds.date_range(start[0], stop[0], freq=freq)\n for sta, stp in zip(start[1:], stop[1:]):\n season = season.append(pds.date_range(sta, stp, freq=freq))\n else:\n season = pds.date_range(start, stop, freq=freq)\n return season\n", "role": "user" }, { "content": "season_date_range", "role": "assistant" } ]
def x(year=None, month=None, day=None, uts=None): if not hasattr(year, '__iter__'): raise ValueError('Must provide an iterable for all inputs.') if len(year) == 0: raise ValueError('Length of array must be larger than 0.') year = year.astype(int) if month is None: month = np.ones(len(year), dtype=int) else: month = month.astype(int) if uts is None: uts = np.zeros(len(year)) if day is None: day = np.ones(len(year)) day = day.astype(int) uts_del = uts.copy().astype(float) _, idx = np.unique(year * 100.0 + month, return_index=True) idx2 = np.hstack((idx, len(year) + 1)) for _idx, _idx2 in zip(idx[1:], idx2[2:]): temp = datetime(year[_idx], month[_idx], 1) - datetime(year[0], month[0], 1) uts_del[_idx:_idx2] += temp.total_seconds() uts_del += (day - 1) * 86400 uts_del += (datetime(year[0], month[0], 1) - datetime(1970, 1, 1) ).total_seconds() uts_del *= 1000000000.0 return pds.to_datetime(uts_del)
create_datetime_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(year=None, month=None, day=None, uts=None):\n if not hasattr(year, '__iter__'):\n raise ValueError('Must provide an iterable for all inputs.')\n if len(year) == 0:\n raise ValueError('Length of array must be larger than 0.')\n year = year.astype(int)\n if month is None:\n month = np.ones(len(year), dtype=int)\n else:\n month = month.astype(int)\n if uts is None:\n uts = np.zeros(len(year))\n if day is None:\n day = np.ones(len(year))\n day = day.astype(int)\n uts_del = uts.copy().astype(float)\n _, idx = np.unique(year * 100.0 + month, return_index=True)\n idx2 = np.hstack((idx, len(year) + 1))\n for _idx, _idx2 in zip(idx[1:], idx2[2:]):\n temp = datetime(year[_idx], month[_idx], 1) - datetime(year[0],\n month[0], 1)\n uts_del[_idx:_idx2] += temp.total_seconds()\n uts_del += (day - 1) * 86400\n uts_del += (datetime(year[0], month[0], 1) - datetime(1970, 1, 1)\n ).total_seconds()\n uts_del *= 1000000000.0\n return pds.to_datetime(uts_del)\n", "role": "user" }, { "content": "create_datetime_index", "role": "assistant" } ]
def x(samples, high=2.0 * np.pi, low=0.0, axis=None): samples = np.asarray(samples) samples = samples[~np.isnan(samples)] if samples.size == 0: return np.nan ang = (samples - low) * 2.0 * np.pi / (high - low) ssum = np.sin(ang).sum(axis=axis) csum = np.cos(ang).sum(axis=axis) res = np.arctan2(ssum, csum) mask = res < 0.0 if mask.ndim > 0: res[mask] += 2.0 * np.pi elif mask: res += 2.0 * np.pi circmean = res * (high - low) / (2.0 * np.pi) + low return circmean
nan_circmean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, high=2.0 * np.pi, low=0.0, axis=None):\n samples = np.asarray(samples)\n samples = samples[~np.isnan(samples)]\n if samples.size == 0:\n return np.nan\n ang = (samples - low) * 2.0 * np.pi / (high - low)\n ssum = np.sin(ang).sum(axis=axis)\n csum = np.cos(ang).sum(axis=axis)\n res = np.arctan2(ssum, csum)\n mask = res < 0.0\n if mask.ndim > 0:\n res[mask] += 2.0 * np.pi\n elif mask:\n res += 2.0 * np.pi\n circmean = res * (high - low) / (2.0 * np.pi) + low\n return circmean\n", "role": "user" }, { "content": "nan_circmean", "role": "assistant" } ]
def x(samples, high=2.0 * np.pi, low=0.0, axis=None): samples = np.asarray(samples) samples = samples[~np.isnan(samples)] if samples.size == 0: return np.nan ang = (samples - low) * 2.0 * np.pi / (high - low) smean = np.sin(ang).mean(axis=axis) cmean = np.cos(ang).mean(axis=axis) rmean = np.sqrt(smean ** 2 + cmean ** 2) circstd = (high - low) * np.sqrt(-2.0 * np.log(rmean)) / (2.0 * np.pi) return circstd
nan_circstd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, high=2.0 * np.pi, low=0.0, axis=None):\n samples = np.asarray(samples)\n samples = samples[~np.isnan(samples)]\n if samples.size == 0:\n return np.nan\n ang = (samples - low) * 2.0 * np.pi / (high - low)\n smean = np.sin(ang).mean(axis=axis)\n cmean = np.cos(ang).mean(axis=axis)\n rmean = np.sqrt(smean ** 2 + cmean ** 2)\n circstd = (high - low) * np.sqrt(-2.0 * np.log(rmean)) / (2.0 * np.pi)\n return circstd\n", "role": "user" }, { "content": "nan_circstd", "role": "assistant" } ]
def x(inst): import pysat.instruments.icon_ivm as icivm inst.tag = 'level_2' icivm.remove_icon_names(inst, target='ICON_L2_EUV_Daytime_OP_')
default
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst):\n import pysat.instruments.icon_ivm as icivm\n inst.tag = 'level_2'\n icivm.remove_icon_names(inst, target='ICON_L2_EUV_Daytime_OP_')\n", "role": "user" }, { "content": "default", "role": "assistant" } ]
def x(tag=None, sat_id=None, data_path=None, format_str=None): desc = None level = tag if level == 'level_1': code = 'L1' desc = None elif level == 'level_2': code = 'L2' desc = None else: raise ValueError('Unsupported level supplied: ' + level) if format_str is None: format_str = 'ICON_' + code + '_EUV_Daytime' if desc is not None: format_str += '_' + desc + '_' format_str += ( '_{year:4d}-{month:02d}-{day:02d}_v{version:02d}r{revision:03d}.NC' ) return pysat.Files.from_os(data_path=data_path, format_str=format_str)
list_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tag=None, sat_id=None, data_path=None, format_str=None):\n desc = None\n level = tag\n if level == 'level_1':\n code = 'L1'\n desc = None\n elif level == 'level_2':\n code = 'L2'\n desc = None\n else:\n raise ValueError('Unsupported level supplied: ' + level)\n if format_str is None:\n format_str = 'ICON_' + code + '_EUV_Daytime'\n if desc is not None:\n format_str += '_' + desc + '_'\n format_str += (\n '_{year:4d}-{month:02d}-{day:02d}_v{version:02d}r{revision:03d}.NC'\n )\n return pysat.Files.from_os(data_path=data_path, format_str=format_str)\n", "role": "user" }, { "content": "list_files", "role": "assistant" } ]
def x(self): ret = self.__class__() if not self._is_updated(): self.update() ret._parsed_resource = self._parsed_resource return ret
shadow_copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ret = self.__class__()\n if not self._is_updated():\n self.update()\n ret._parsed_resource = self._parsed_resource\n return ret\n", "role": "user" }, { "content": "shadow_copy", "role": "assistant" } ]
def x(fnames, tag=None, sat_id=None, **kwargs): return pysat.utils.load_netcdf4(fnames, **kwargs)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fnames, tag=None, sat_id=None, **kwargs):\n return pysat.utils.load_netcdf4(fnames, **kwargs)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(tag=None, sat_id=None, data_path=None, format_str=None): return pysat.Files.from_os(data_path=data_path, format_str=format_str)
list_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tag=None, sat_id=None, data_path=None, format_str=None):\n return pysat.Files.from_os(data_path=data_path, format_str=format_str)\n", "role": "user" }, { "content": "list_files", "role": "assistant" } ]
def x(f): @functools.wraps(f) def x(self, *argv, **kwargs): if 'ip' in kwargs: ip = kwargs['ip'] del kwargs['ip'] else: ip = None commands = _get_commands(f, self, *argv, **kwargs) return self.execute(commands, ip=ip) return func_wrapper
command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f):\n\n @functools.wraps(f)\n def x(self, *argv, **kwargs):\n if 'ip' in kwargs:\n ip = kwargs['ip']\n del kwargs['ip']\n else:\n ip = None\n commands = _get_commands(f, self, *argv, **kwargs)\n return self.execute(commands, ip=ip)\n return func_wrapper\n", "role": "user" }, { "content": "command", "role": "assistant" } ]
def x(f): @functools.wraps(f) def x(self, *argv, **kwargs): commands = _get_commands(f, self, *argv, **kwargs) return self.execute_dual(commands) return func_wrapper
duel_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f):\n\n @functools.wraps(f)\n def x(self, *argv, **kwargs):\n commands = _get_commands(f, self, *argv, **kwargs)\n return self.execute_dual(commands)\n return func_wrapper\n", "role": "user" }, { "content": "duel_command", "role": "assistant" } ]
def x(old_size, user_cap=False): new_size = old_size if user_cap: if old_size <= _GiB_to_Byte(1.5): new_size = _GiB_to_Byte(3) else: new_size += _GiB_to_Byte(1.5) return int(new_size)
supplement_filesystem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(old_size, user_cap=False):\n new_size = old_size\n if user_cap:\n if old_size <= _GiB_to_Byte(1.5):\n new_size = _GiB_to_Byte(3)\n else:\n new_size += _GiB_to_Byte(1.5)\n return int(new_size)\n", "role": "user" }, { "content": "supplement_filesystem", "role": "assistant" } ]
def x(cls, obj=None): def x(f, o): if o is None: key = hash(f) else: key = hash(o) return key def x(f, o): key = get_key(f, o) if key not in cls.lock_map: with cls.lock_map_lock: if key not in cls.lock_map: cls.lock_map[key] = _init_lock() return cls.lock_map[key] def x(f): @functools.wraps(f) def x(*args, **kw): with get_lock(f, obj): return f(*args, **kw) return new_func return wrap
synchronized
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, obj=None):\n\n def x(f, o):\n if o is None:\n key = hash(f)\n else:\n key = hash(o)\n return key\n\n def x(f, o):\n key = get_key(f, o)\n if key not in cls.lock_map:\n with cls.lock_map_lock:\n if key not in cls.lock_map:\n cls.lock_map[key] = _init_lock()\n return cls.lock_map[key]\n\n def x(f):\n\n @functools.wraps(f)\n def x(*args, **kw):\n with get_lock(f, obj):\n return f(*args, **kw)\n return new_func\n return wrap\n", "role": "user" }, { "content": "synchronized", "role": "assistant" } ]
def x(self, item): if 'retries' in item: retries = item['retries'] if retries >= self.MAX_RETRIES: log.warn('Failed to execute {} after {} retries, give it up.'. format(item['method'], retries)) else: retries += 1 item['retries'] = retries self._q.put_nowait(item) else: item['retries'] = 1 self._q.put_nowait(item)
re_enqueue
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item):\n if 'retries' in item:\n retries = item['retries']\n if retries >= self.MAX_RETRIES:\n log.warn('Failed to execute {} after {} retries, give it up.'.\n format(item['method'], retries))\n else:\n retries += 1\n item['retries'] = retries\n self._q.put_nowait(item)\n else:\n item['retries'] = 1\n self._q.put_nowait(item)\n", "role": "user" }, { "content": "re_enqueue", "role": "assistant" } ]
def x(*args): def x(func): for one_arg in args: _op_mapping_[one_arg] = func return func return inner
support_op
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*args):\n\n def x(func):\n for one_arg in args:\n _op_mapping_[one_arg] = func\n return func\n return inner\n", "role": "user" }, { "content": "support_op", "role": "assistant" } ]
def x(inst): if (inst.clean_level == 'dusty') | (inst.clean_level == 'clean'): idx, = np.where(inst['B_flag'] == 0) inst.data = inst[idx, :] return None
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst):\n if (inst.clean_level == 'dusty') | (inst.clean_level == 'clean'):\n idx, = np.where(inst['B_flag'] == 0)\n inst.data = inst[idx, :]\n return None\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(inst, target=None): if target is None: lev = inst.tag if lev == 'level_2': lev = 'L2' elif lev == 'level_0': lev = 'L0' elif lev == 'level_0p': lev = 'L0P' elif lev == 'level_1.5': lev = 'L1-5' elif lev == 'level_1': lev = 'L1' else: raise ValueError('Uknown ICON data level') sid = inst.sat_id.lower() if sid == 'a': sid = 'IVM_A' elif sid == 'b': sid = 'IVM_B' else: raise ValueError('Unknown ICON satellite ID') prepend_str = '_'.join(('ICON', lev, sid)) + '_' else: prepend_str = target inst.data.rename(columns=lambda x: x.split(prepend_str)[-1], inplace=True) inst.meta.data.rename(index=lambda x: x.split(prepend_str)[-1], inplace =True) orig_keys = inst.meta.keys_nD() for key in orig_keys: new_key = key.split(prepend_str)[-1] new_meta = inst.meta.pop(key) new_meta.data.rename(index=lambda x: x.split(prepend_str)[-1], inplace=True) inst.meta[new_key] = new_meta return
remove_icon_names
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst, target=None):\n if target is None:\n lev = inst.tag\n if lev == 'level_2':\n lev = 'L2'\n elif lev == 'level_0':\n lev = 'L0'\n elif lev == 'level_0p':\n lev = 'L0P'\n elif lev == 'level_1.5':\n lev = 'L1-5'\n elif lev == 'level_1':\n lev = 'L1'\n else:\n raise ValueError('Uknown ICON data level')\n sid = inst.sat_id.lower()\n if sid == 'a':\n sid = 'IVM_A'\n elif sid == 'b':\n sid = 'IVM_B'\n else:\n raise ValueError('Unknown ICON satellite ID')\n prepend_str = '_'.join(('ICON', lev, sid)) + '_'\n else:\n prepend_str = target\n inst.data.rename(columns=lambda x: x.split(prepend_str)[-1], inplace=True)\n inst.meta.data.rename(index=lambda x: x.split(prepend_str)[-1], inplace\n =True)\n orig_keys = inst.meta.keys_nD()\n for key in orig_keys:\n new_key = key.split(prepend_str)[-1]\n new_meta = inst.meta.pop(key)\n new_meta.data.rename(index=lambda x: x.split(prepend_str)[-1],\n inplace=True)\n inst.meta[new_key] = new_meta\n return\n", "role": "user" }, { "content": "remove_icon_names", "role": "assistant" } ]
def x(tag=None, sat_id=None, data_path=None, format_str=None): if format_str is None and data_path is not None: if (tag == '1min') | (tag == '5min'): min_fmt = ''.join(['omni_hro_', tag, '{year:4d}{month:02d}{day:02d}_v01.cdf']) files = pysat.Files.from_os(data_path=data_path, format_str=min_fmt ) if not files.empty: files.ix[files.index[-1] + pds.DateOffset(months=1) - pds. DateOffset(days=1)] = files.iloc[-1] files = files.asfreq('D', 'pad') files = files + '_' + files.index.strftime('%Y-%m-%d') return files else: raise ValueError('Unknown tag') elif format_str is None: estr = 'A directory must be passed to the loading routine for OMNI HRO' raise ValueError(estr) else: return pysat.Files.from_os(data_path=data_path, format_str=format_str)
list_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tag=None, sat_id=None, data_path=None, format_str=None):\n if format_str is None and data_path is not None:\n if (tag == '1min') | (tag == '5min'):\n min_fmt = ''.join(['omni_hro_', tag,\n '{year:4d}{month:02d}{day:02d}_v01.cdf'])\n files = pysat.Files.from_os(data_path=data_path, format_str=min_fmt\n )\n if not files.empty:\n files.ix[files.index[-1] + pds.DateOffset(months=1) - pds.\n DateOffset(days=1)] = files.iloc[-1]\n files = files.asfreq('D', 'pad')\n files = files + '_' + files.index.strftime('%Y-%m-%d')\n return files\n else:\n raise ValueError('Unknown tag')\n elif format_str is None:\n estr = 'A directory must be passed to the loading routine for OMNI HRO'\n raise ValueError(estr)\n else:\n return pysat.Files.from_os(data_path=data_path, format_str=format_str)\n", "role": "user" }, { "content": "list_files", "role": "assistant" } ]
def x(inst): inst['Vx'] = inst['Vx'].interpolate('nearest') inst['Vx'] = inst['Vx'].fillna(method='backfill') inst['Vx'] = inst['Vx'].fillna(method='pad') inst['BSN_x'] = inst['BSN_x'].interpolate('nearest') inst['BSN_x'] = inst['BSN_x'].fillna(method='backfill') inst['BSN_x'] = inst['BSN_x'].fillna(method='pad') inst.data = inst.data.resample('1T').interpolate('time') time_x = inst['BSN_x'] * 6371.2 / -inst['Vx'] idx, = np.where(np.isnan(time_x)) if len(idx) > 0: print(time_x[idx]) print(time_x) time_x_offset = [pds.DateOffset(seconds=time) for time in time_x.astype (int)] new_index = [] for i, time in enumerate(time_x_offset): new_index.append(inst.data.index[i] + time) inst.data.index = new_index inst.data = inst.data.sort_index() return
time_shift_to_magnetic_poles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst):\n inst['Vx'] = inst['Vx'].interpolate('nearest')\n inst['Vx'] = inst['Vx'].fillna(method='backfill')\n inst['Vx'] = inst['Vx'].fillna(method='pad')\n inst['BSN_x'] = inst['BSN_x'].interpolate('nearest')\n inst['BSN_x'] = inst['BSN_x'].fillna(method='backfill')\n inst['BSN_x'] = inst['BSN_x'].fillna(method='pad')\n inst.data = inst.data.resample('1T').interpolate('time')\n time_x = inst['BSN_x'] * 6371.2 / -inst['Vx']\n idx, = np.where(np.isnan(time_x))\n if len(idx) > 0:\n print(time_x[idx])\n print(time_x)\n time_x_offset = [pds.DateOffset(seconds=time) for time in time_x.astype\n (int)]\n new_index = []\n for i, time in enumerate(time_x_offset):\n new_index.append(inst.data.index[i] + time)\n inst.data.index = new_index\n inst.data = inst.data.sort_index()\n return\n", "role": "user" }, { "content": "time_shift_to_magnetic_poles", "role": "assistant" } ]
def x(inst): clock_angle = np.degrees(np.arctan2(inst['BY_GSM'], inst['BZ_GSM'])) clock_angle[clock_angle < 0.0] += 360.0 inst['clock_angle'] = pds.Series(clock_angle, index=inst.data.index) inst['BYZ_GSM'] = pds.Series(np.sqrt(inst['BY_GSM'] ** 2 + inst[ 'BZ_GSM'] ** 2), index=inst.data.index) return
calculate_clock_angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst):\n clock_angle = np.degrees(np.arctan2(inst['BY_GSM'], inst['BZ_GSM']))\n clock_angle[clock_angle < 0.0] += 360.0\n inst['clock_angle'] = pds.Series(clock_angle, index=inst.data.index)\n inst['BYZ_GSM'] = pds.Series(np.sqrt(inst['BY_GSM'] ** 2 + inst[\n 'BZ_GSM'] ** 2), index=inst.data.index)\n return\n", "role": "user" }, { "content": "calculate_clock_angle", "role": "assistant" } ]
def x(inst, steady_window=15, min_window_frac=0.75, max_clock_angle_std= 90.0 / np.pi, max_bmag_cv=0.5): sample_rate = int(inst.tag[0]) max_wnum = np.floor(steady_window / sample_rate) if max_wnum != steady_window / sample_rate: steady_window = max_wnum * sample_rate print('WARNING: sample rate is not a factor of the statistical window') print('new statistical window is {:.1f}'.format(steady_window)) min_wnum = int(np.ceil(max_wnum * min_window_frac)) byz_mean = inst['BYZ_GSM'].rolling(min_periods=min_wnum, center=True, window=steady_window).mean() byz_std = inst['BYZ_GSM'].rolling(min_periods=min_wnum, center=True, window=steady_window).std() inst['BYZ_CV'] = pds.Series(byz_std / byz_mean, index=inst.data.index) circ_kwargs = {'high': 360.0, 'low': 0.0} ca = inst['clock_angle'][~np.isnan(inst['clock_angle'])] ca_std = inst['clock_angle'].rolling(min_periods=min_wnum, window= steady_window, center=True).apply(pysat.utils.nan_circstd, kwargs= circ_kwargs) inst['clock_angle_std'] = pds.Series(ca_std, index=inst.data.index) imf_steady = np.zeros(shape=inst.data.index.shape) steady = False for i, cv in enumerate(inst.data['BYZ_CV']): if steady: del_min = int((inst.data.index[i] - inst.data.index[i - 1]). total_seconds() / 60.0) if np.isnan(cv) or np.isnan(ca_std[i]) or del_min > sample_rate: steady = False if cv <= max_bmag_cv and ca_std[i] <= max_clock_angle_std: if steady: imf_steady[i] = imf_steady[i - 1] imf_steady[i] += sample_rate steady = True inst['IMF_Steady'] = pds.Series(imf_steady, index=inst.data.index) return
calculate_imf_steadiness
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst, steady_window=15, min_window_frac=0.75, max_clock_angle_std=\n 90.0 / np.pi, max_bmag_cv=0.5):\n sample_rate = int(inst.tag[0])\n max_wnum = np.floor(steady_window / sample_rate)\n if max_wnum != steady_window / sample_rate:\n steady_window = max_wnum * sample_rate\n print('WARNING: sample rate is not a factor of the statistical window')\n print('new statistical window is {:.1f}'.format(steady_window))\n min_wnum = int(np.ceil(max_wnum * min_window_frac))\n byz_mean = inst['BYZ_GSM'].rolling(min_periods=min_wnum, center=True,\n window=steady_window).mean()\n byz_std = inst['BYZ_GSM'].rolling(min_periods=min_wnum, center=True,\n window=steady_window).std()\n inst['BYZ_CV'] = pds.Series(byz_std / byz_mean, index=inst.data.index)\n circ_kwargs = {'high': 360.0, 'low': 0.0}\n ca = inst['clock_angle'][~np.isnan(inst['clock_angle'])]\n ca_std = inst['clock_angle'].rolling(min_periods=min_wnum, window=\n steady_window, center=True).apply(pysat.utils.nan_circstd, kwargs=\n circ_kwargs)\n inst['clock_angle_std'] = pds.Series(ca_std, index=inst.data.index)\n imf_steady = np.zeros(shape=inst.data.index.shape)\n steady = False\n for i, cv in enumerate(inst.data['BYZ_CV']):\n if steady:\n del_min = int((inst.data.index[i] - inst.data.index[i - 1]).\n total_seconds() / 60.0)\n if np.isnan(cv) or np.isnan(ca_std[i]) or del_min > sample_rate:\n steady = False\n if cv <= max_bmag_cv and ca_std[i] <= max_clock_angle_std:\n if steady:\n imf_steady[i] = imf_steady[i - 1]\n imf_steady[i] += sample_rate\n steady = True\n inst['IMF_Steady'] = pds.Series(imf_steady, index=inst.data.index)\n return\n", "role": "user" }, { "content": "calculate_imf_steadiness", "role": "assistant" } ]
def x(inst): rearth = 6371008.8 sin_htheta = np.power(np.sin(np.radians(0.5 * inst['clock_angle'])), 4.5) byz = inst['BYZ_GSM'] * 1e-09 vx = inst['flow_speed'] * 1000.0 recon_day = 3.8 * rearth * vx * byz * sin_htheta * np.power(vx / 400000.0, 1.0 / 3.0) inst['recon_day'] = pds.Series(recon_day, index=inst.data.index) return
calculate_dayside_reconnection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst):\n rearth = 6371008.8\n sin_htheta = np.power(np.sin(np.radians(0.5 * inst['clock_angle'])), 4.5)\n byz = inst['BYZ_GSM'] * 1e-09\n vx = inst['flow_speed'] * 1000.0\n recon_day = 3.8 * rearth * vx * byz * sin_htheta * np.power(vx / \n 400000.0, 1.0 / 3.0)\n inst['recon_day'] = pds.Series(recon_day, index=inst.data.index)\n return\n", "role": "user" }, { "content": "calculate_dayside_reconnection", "role": "assistant" } ]
def x(self, white_list=None): access_entries = self.get_ace_list() sid_list = access_entries.sid_list if white_list: sid_white_list = [UnityAclUser.get_sid(self._cli, user, self. cifs_server.domain) for user in white_list] sid_list = list(set(sid_list) - set(sid_white_list)) resp = self.delete_ace(sid=sid_list) resp.raise_if_err() return sid_list
clear_access
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, white_list=None):\n access_entries = self.get_ace_list()\n sid_list = access_entries.sid_list\n if white_list:\n sid_white_list = [UnityAclUser.get_sid(self._cli, user, self.\n cifs_server.domain) for user in white_list]\n sid_list = list(set(sid_list) - set(sid_white_list))\n resp = self.delete_ace(sid=sid_list)\n resp.raise_if_err()\n return sid_list\n", "role": "user" }, { "content": "clear_access", "role": "assistant" } ]
def x(self, domain=None, user=None, sid=None): if sid is None: if domain is None: domain = self.cifs_server.domain sid = UnityAclUser.get_sid(self._cli, user=user, domain=domain) if isinstance(sid, six.string_types): sid = [sid] ace_list = [self._make_remove_ace_entry(s) for s in sid] resp = self.action('setACEs', cifsShareACEs=ace_list) resp.raise_if_err() return resp
delete_ace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, domain=None, user=None, sid=None):\n if sid is None:\n if domain is None:\n domain = self.cifs_server.domain\n sid = UnityAclUser.get_sid(self._cli, user=user, domain=domain)\n if isinstance(sid, six.string_types):\n sid = [sid]\n ace_list = [self._make_remove_ace_entry(s) for s in sid]\n resp = self.action('setACEs', cifsShareACEs=ace_list)\n resp.raise_if_err()\n return resp\n", "role": "user" }, { "content": "delete_ace", "role": "assistant" } ]
def x(self): lun_list, smp_list = [], [] if self.ioclass_luns: lun_list = map(lambda l: VNXLun(lun_id=l.lun_id, name=l.name, cli= self._cli), self.ioclass_luns) if self.ioclass_snapshots: smp_list = map(lambda smp: VNXLun(name=smp.name, cli=self._cli), self.ioclass_snapshots) return list(lun_list) + list(smp_list)
luns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n lun_list, smp_list = [], []\n if self.ioclass_luns:\n lun_list = map(lambda l: VNXLun(lun_id=l.lun_id, name=l.name, cli=\n self._cli), self.ioclass_luns)\n if self.ioclass_snapshots:\n smp_list = map(lambda smp: VNXLun(name=smp.name, cli=self._cli),\n self.ioclass_snapshots)\n return list(lun_list) + list(smp_list)\n", "role": "user" }, { "content": "luns", "role": "assistant" } ]
def x(self): policies = VNXIOPolicy.get(cli=self._cli) ret = None for policy in policies: contained = policy.ioclasses.name if self._get_name() in contained: ret = VNXIOPolicy.get(name=policy.name, cli=self._cli) break return ret
policy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n policies = VNXIOPolicy.get(cli=self._cli)\n ret = None\n for policy in policies:\n contained = policy.ioclasses.name\n if self._get_name() in contained:\n ret = VNXIOPolicy.get(name=policy.name, cli=self._cli)\n break\n return ret\n", "role": "user" }, { "content": "policy", "role": "assistant" } ]
def x(self, new_name=None, iotype=None, lun_ids=None, smp_names=None, ctrlmethod=None, minsize=None, maxsize=None): if not any([new_name, iotype, lun_ids, smp_names, ctrlmethod]): raise ValueError( 'Cannot apply modification, please specify parameters to modify.') def x(): out = self._cli.modify_ioclass(self._get_name(), new_name, iotype, lun_ids, smp_names, ctrlmethod, minsize, maxsize) ex.raise_if_err(out, default=ex.VNXIOClassError) try: _do_modify() except ex.VNXIOCLassRunningError: with restart_policy(self.policy): _do_modify() return VNXIOClass(new_name if new_name else self._get_name(), self._cli)
modify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_name=None, iotype=None, lun_ids=None, smp_names=None,\n ctrlmethod=None, minsize=None, maxsize=None):\n if not any([new_name, iotype, lun_ids, smp_names, ctrlmethod]):\n raise ValueError(\n 'Cannot apply modification, please specify parameters to modify.')\n\n def x():\n out = self._cli.modify_ioclass(self._get_name(), new_name, iotype,\n lun_ids, smp_names, ctrlmethod, minsize, maxsize)\n ex.raise_if_err(out, default=ex.VNXIOClassError)\n try:\n _do_modify()\n except ex.VNXIOCLassRunningError:\n with restart_policy(self.policy):\n _do_modify()\n return VNXIOClass(new_name if new_name else self._get_name(), self._cli)\n", "role": "user" }, { "content": "modify", "role": "assistant" } ]
def x(self, luns): curr_lun_ids, curr_smp_names = self._get_current_names() luns = normalize_lun(luns, self._cli) new_ids, new_smps = convert_lun(luns) if new_ids: curr_lun_ids.extend(new_ids) if new_smps: curr_smp_names.extend(new_smps) return self.modify(lun_ids=curr_lun_ids, smp_names=curr_smp_names)
add_lun
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, luns):\n curr_lun_ids, curr_smp_names = self._get_current_names()\n luns = normalize_lun(luns, self._cli)\n new_ids, new_smps = convert_lun(luns)\n if new_ids:\n curr_lun_ids.extend(new_ids)\n if new_smps:\n curr_smp_names.extend(new_smps)\n return self.modify(lun_ids=curr_lun_ids, smp_names=curr_smp_names)\n", "role": "user" }, { "content": "add_lun", "role": "assistant" } ]
def x(self, ioclass): current_ioclasses = self.ioclasses if ioclass.name in current_ioclasses.name: return current_ioclasses.append(ioclass) self.modify(new_ioclasses=current_ioclasses)
add_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ioclass):\n current_ioclasses = self.ioclasses\n if ioclass.name in current_ioclasses.name:\n return\n current_ioclasses.append(ioclass)\n self.modify(new_ioclasses=current_ioclasses)\n", "role": "user" }, { "content": "add_class", "role": "assistant" } ]
def x(self, ioclass): current_ioclasses = self.ioclasses new_ioclasses = filter(lambda x: x.name != ioclass.name, current_ioclasses) self.modify(new_ioclasses=new_ioclasses)
remove_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ioclass):\n current_ioclasses = self.ioclasses\n new_ioclasses = filter(lambda x: x.name != ioclass.name, current_ioclasses)\n self.modify(new_ioclasses=new_ioclasses)\n", "role": "user" }, { "content": "remove_class", "role": "assistant" } ]
def x(self, *lun_list): lun_add = self._prepare_luns_add(lun_list) lun_remove = self._prepare_luns_remove(lun_list, False) return self.modify(lun_add=lun_add, lun_remove=lun_remove)
replace_lun
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *lun_list):\n lun_add = self._prepare_luns_add(lun_list)\n lun_remove = self._prepare_luns_remove(lun_list, False)\n return self.modify(lun_add=lun_add, lun_remove=lun_remove)\n", "role": "user" }, { "content": "replace_lun", "role": "assistant" } ]
def x(self, add_luns=None, remove_luns=None): if not add_luns and not remove_luns: log.debug('Empty add_luns and remove_luns passed in, skip update_lun.') return RESP_OK lun_add = self._prepare_luns_add(add_luns) lun_remove = self._prepare_luns_remove(remove_luns, True) return self.modify(lun_add=lun_add, lun_remove=lun_remove)
update_lun
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, add_luns=None, remove_luns=None):\n if not add_luns and not remove_luns:\n log.debug('Empty add_luns and remove_luns passed in, skip update_lun.')\n return RESP_OK\n lun_add = self._prepare_luns_add(add_luns)\n lun_remove = self._prepare_luns_remove(remove_luns, True)\n return self.modify(lun_add=lun_add, lun_remove=lun_remove)\n", "role": "user" }, { "content": "update_lun", "role": "assistant" } ]
def x(inst): inst.data.replace(-999.0, np.nan, inplace=True) inst.data.replace(-9.9999998e+30, np.nan, inplace=True) return None
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(inst):\n inst.data.replace(-999.0, np.nan, inplace=True)\n inst.data.replace(-9.9999998e+30, np.nan, inplace=True)\n return None\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(self, files_info): if not files_info.empty: if len(files_info.index.unique()) != len(files_info): estr = 'WARNING! Duplicate datetimes in provided file ' estr = '{:s}information.\nKeeping one of each '.format(estr) estr = '{:s}of the duplicates, dropping the rest.'.format(estr) print(estr) print(files_info.index.get_duplicates()) idx = np.unique(files_info.index, return_index=True) files_info = files_info.ix[idx[1]] self.files = files_info.sort_index() date = files_info.index[0] self.start_date = pds.datetime(date.year, date.month, date.day) date = files_info.index[-1] self.stop_date = pds.datetime(date.year, date.month, date.day) else: self.start_date = None self.stop_date = None self.files = files_info.astype(np.dtype('O'))
attach_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, files_info):\n if not files_info.empty:\n if len(files_info.index.unique()) != len(files_info):\n estr = 'WARNING! Duplicate datetimes in provided file '\n estr = '{:s}information.\\nKeeping one of each '.format(estr)\n estr = '{:s}of the duplicates, dropping the rest.'.format(estr)\n print(estr)\n print(files_info.index.get_duplicates())\n idx = np.unique(files_info.index, return_index=True)\n files_info = files_info.ix[idx[1]]\n self.files = files_info.sort_index()\n date = files_info.index[0]\n self.start_date = pds.datetime(date.year, date.month, date.day)\n date = files_info.index[-1]\n self.stop_date = pds.datetime(date.year, date.month, date.day)\n else:\n self.start_date = None\n self.stop_date = None\n self.files = files_info.astype(np.dtype('O'))\n", "role": "user" }, { "content": "attach_files", "role": "assistant" } ]
def x(self): name = self.stored_file_name stored_files = self._load() if len(stored_files) != len(self.files): new_flag = True elif len(stored_files) == len(self.files): if stored_files.eq(self.files).all(): new_flag = False else: new_flag = True if new_flag: if self.write_to_disk: stored_files.to_csv(os.path.join(self.home_path, 'previous_' + name), date_format='%Y-%m-%d %H:%M:%S.%f') self.files.to_csv(os.path.join(self.home_path, name), date_format='%Y-%m-%d %H:%M:%S.%f') else: self._previous_file_list = stored_files self._current_file_list = self.files.copy() return
store
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n name = self.stored_file_name\n stored_files = self._load()\n if len(stored_files) != len(self.files):\n new_flag = True\n elif len(stored_files) == len(self.files):\n if stored_files.eq(self.files).all():\n new_flag = False\n else:\n new_flag = True\n if new_flag:\n if self.write_to_disk:\n stored_files.to_csv(os.path.join(self.home_path, 'previous_' +\n name), date_format='%Y-%m-%d %H:%M:%S.%f')\n self.files.to_csv(os.path.join(self.home_path, name),\n date_format='%Y-%m-%d %H:%M:%S.%f')\n else:\n self._previous_file_list = stored_files\n self._current_file_list = self.files.copy()\n return\n", "role": "user" }, { "content": "store", "role": "assistant" } ]
def x(self, prev_version=False): fname = self.stored_file_name if prev_version: fname = os.path.join(self.home_path, 'previous_' + fname) else: fname = os.path.join(self.home_path, fname) if os.path.isfile(fname) and os.path.getsize(fname) > 0: if self.write_to_disk: return pds.read_csv(fname, index_col=0, parse_dates=True, squeeze=True, header=None) elif prev_version: return self._previous_file_list else: return self._current_file_list else: return pds.Series([], dtype='a')
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prev_version=False):\n fname = self.stored_file_name\n if prev_version:\n fname = os.path.join(self.home_path, 'previous_' + fname)\n else:\n fname = os.path.join(self.home_path, fname)\n if os.path.isfile(fname) and os.path.getsize(fname) > 0:\n if self.write_to_disk:\n return pds.read_csv(fname, index_col=0, parse_dates=True,\n squeeze=True, header=None)\n elif prev_version:\n return self._previous_file_list\n else:\n return self._current_file_list\n else:\n return pds.Series([], dtype='a')\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self): output_str = '{platform} {name} {tag} {sat_id}' output_str = output_str.format(platform=self._sat.platform, name=self. _sat.name, tag=self._sat.tag, sat_id=self._sat.sat_id) output_str = ' '.join(('pysat is searching for', output_str, 'files.')) output_str = ' '.join(output_str.split()) print(output_str) info = self._sat._list_rtn(tag=self._sat.tag, sat_id=self._sat.sat_id, data_path=self.data_path, format_str=self.file_format) if not info.empty: print('Found {ll:d} of them.'.format(ll=len(info))) else: estr = 'Unable to find any files that match the supplied template. ' estr += 'If you have the necessary files please check pysat ' estr += 'settings and file locations (e.g. pysat.pysat_dir).' print(estr) info = self._remove_data_dir_path(info) self._attach_files(info) self._store()
refresh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n output_str = '{platform} {name} {tag} {sat_id}'\n output_str = output_str.format(platform=self._sat.platform, name=self.\n _sat.name, tag=self._sat.tag, sat_id=self._sat.sat_id)\n output_str = ' '.join(('pysat is searching for', output_str, 'files.'))\n output_str = ' '.join(output_str.split())\n print(output_str)\n info = self._sat._list_rtn(tag=self._sat.tag, sat_id=self._sat.sat_id,\n data_path=self.data_path, format_str=self.file_format)\n if not info.empty:\n print('Found {ll:d} of them.'.format(ll=len(info)))\n else:\n estr = 'Unable to find any files that match the supplied template. '\n estr += 'If you have the necessary files please check pysat '\n estr += 'settings and file locations (e.g. pysat.pysat_dir).'\n print(estr)\n info = self._remove_data_dir_path(info)\n self._attach_files(info)\n self._store()\n", "role": "user" }, { "content": "refresh", "role": "assistant" } ]
def x(self): self.refresh() new_info = self._load() old_info = self._load(prev_version=True) new_files = new_info[-new_info.isin(old_info)] return new_files
get_new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.refresh()\n new_info = self._load()\n old_info = self._load(prev_version=True)\n new_files = new_info[-new_info.isin(old_info)]\n return new_files\n", "role": "user" }, { "content": "get_new", "role": "assistant" } ]
def x(self, fname): idx, = np.where(fname == self.files) if len(idx) == 0: self.refresh() idx, = np.where(fname == np.array(self.files)) if len(idx) == 0: raise ValueError('Could not find "' + fname + '" in available file list. Valid Example: ' + self.files. iloc[0]) return idx[0]
get_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname):\n idx, = np.where(fname == self.files)\n if len(idx) == 0:\n self.refresh()\n idx, = np.where(fname == np.array(self.files))\n if len(idx) == 0:\n raise ValueError('Could not find \"' + fname +\n '\" in available file list. Valid Example: ' + self.files.\n iloc[0])\n return idx[0]\n", "role": "user" }, { "content": "get_index", "role": "assistant" } ]
def x(self, start, end): if hasattr(start, '__iter__') & hasattr(end, '__iter__'): files = [] for sta, stp in zip(start, end): id1 = self.get_index(sta) id2 = self.get_index(stp) files.extend(self.files.iloc[id1:id2 + 1]) elif hasattr(start, '__iter__') | hasattr(end, '__iter__'): estr = 'Either both or none of the inputs need to be iterable' raise ValueError(estr) else: id1 = self.get_index(start) id2 = self.get_index(end) files = self.files[id1:id2 + 1].to_list() return files
get_file_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start, end):\n if hasattr(start, '__iter__') & hasattr(end, '__iter__'):\n files = []\n for sta, stp in zip(start, end):\n id1 = self.get_index(sta)\n id2 = self.get_index(stp)\n files.extend(self.files.iloc[id1:id2 + 1])\n elif hasattr(start, '__iter__') | hasattr(end, '__iter__'):\n estr = 'Either both or none of the inputs need to be iterable'\n raise ValueError(estr)\n else:\n id1 = self.get_index(start)\n id2 = self.get_index(end)\n files = self.files[id1:id2 + 1].to_list()\n return files\n", "role": "user" }, { "content": "get_file_array", "role": "assistant" } ]
def x(self, inp=None): if inp is not None: split_str = os.path.join(self.data_path, '') return inp.apply(lambda x: x.split(split_str)[-1])
remove_data_dir_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inp=None):\n if inp is not None:\n split_str = os.path.join(self.data_path, '')\n return inp.apply(lambda x: x.split(split_str)[-1])\n", "role": "user" }, { "content": "remove_data_dir_path", "role": "assistant" } ]
def x(cls, data_path=None, format_str=None, two_digit_year_break=None): import collections from pysat.utils import create_datetime_index if format_str is None: raise ValueError('Must supply a filename template (format_str).') if data_path is None: raise ValueError('Must supply instrument directory path (dir_path)') search_str = '' form = string.Formatter() keys = [] snips = [] length = [] stored = collections.OrderedDict() stored['year'] = [] stored['month'] = [] stored['day'] = [] stored['hour'] = [] stored['min'] = [] stored['sec'] = [] stored['version'] = [] stored['revision'] = [] for snip in form.parse(format_str): search_str += snip[0] snips.append(snip[0]) if snip[1] is not None: keys.append(snip[1]) search_str += '*' temp = re.findall('\\d+', snip[2]) if temp: for i in temp: if i != 0: length.append(int(i)) break else: raise ValueError("Couldn't determine formatting width") abs_search_str = os.path.join(data_path, search_str) files = glob.glob(abs_search_str) if len(files) > 0: idx = 0 begin_key = [] end_key = [] for i, snip in enumerate(snips): idx += len(snip) if i < len(length): begin_key.append(idx) idx += length[i] end_key.append(idx) max_len = idx key_str_idx = [np.array(begin_key, dtype=int) - max_len, np.array( end_key, dtype=int) - max_len] for i, temp in enumerate(files): for j, key in enumerate(keys): val = temp[key_str_idx[0][j]:key_str_idx[1][j]] stored[key].append(val) for key in stored.keys(): stored[key] = np.array(stored[key]).astype(int) if len(stored[key]) == 0: stored[key] = None if two_digit_year_break is not None: idx, = np.where(np.array(stored['year']) >= two_digit_year_break) stored['year'][idx] = stored['year'][idx] + 1900 idx, = np.where(np.array(stored['year']) < two_digit_year_break) stored['year'][idx] = stored['year'][idx] + 2000 rec_arr = [stored[key] for key in keys] rec_arr.append(files) val_keys = keys + ['files'] rec_arr = np.rec.fromarrays(rec_arr, names=val_keys) rec_arr.sort(order=val_keys, axis=0) for key in keys: stored[key] = rec_arr[key] files = rec_arr['files'] if stored['sec'] is None: stored['sec'] = np.zeros(len(files)) if stored['hour'] is not None: stored['sec'] += 3600 * stored['hour'] if stored['min'] is not None: stored['sec'] += 60 * stored['min'] if stored['revision'] is None: stored['revision'] = np.zeros(len(files)) index = create_datetime_index(year=stored['year'], month=stored[ 'month'], day=stored['day'], uts=stored['sec']) dups = index.get_duplicates() if len(dups) > 0 and stored['version'] is not None: version = pds.Series(stored['version'], index=index) revision = pds.Series(stored['revision'], index=index) revive = version * 100000.0 + revision frame = pds.DataFrame({'files': files, 'revive': revive, 'time': index}, index=index) frame = frame.sort_values(by=['time', 'revive'], ascending=[ True, False]) frame = frame.drop_duplicates(subset='time', keep='first') return frame['files'] else: return pds.Series(files, index=index) else: return pds.Series(None)
from_os
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, data_path=None, format_str=None, two_digit_year_break=None):\n import collections\n from pysat.utils import create_datetime_index\n if format_str is None:\n raise ValueError('Must supply a filename template (format_str).')\n if data_path is None:\n raise ValueError('Must supply instrument directory path (dir_path)')\n search_str = ''\n form = string.Formatter()\n keys = []\n snips = []\n length = []\n stored = collections.OrderedDict()\n stored['year'] = []\n stored['month'] = []\n stored['day'] = []\n stored['hour'] = []\n stored['min'] = []\n stored['sec'] = []\n stored['version'] = []\n stored['revision'] = []\n for snip in form.parse(format_str):\n search_str += snip[0]\n snips.append(snip[0])\n if snip[1] is not None:\n keys.append(snip[1])\n search_str += '*'\n temp = re.findall('\\\\d+', snip[2])\n if temp:\n for i in temp:\n if i != 0:\n length.append(int(i))\n break\n else:\n raise ValueError(\"Couldn't determine formatting width\")\n abs_search_str = os.path.join(data_path, search_str)\n files = glob.glob(abs_search_str)\n if len(files) > 0:\n idx = 0\n begin_key = []\n end_key = []\n for i, snip in enumerate(snips):\n idx += len(snip)\n if i < len(length):\n begin_key.append(idx)\n idx += length[i]\n end_key.append(idx)\n max_len = idx\n key_str_idx = [np.array(begin_key, dtype=int) - max_len, np.array(\n end_key, dtype=int) - max_len]\n for i, temp in enumerate(files):\n for j, key in enumerate(keys):\n val = temp[key_str_idx[0][j]:key_str_idx[1][j]]\n stored[key].append(val)\n for key in stored.keys():\n stored[key] = np.array(stored[key]).astype(int)\n if len(stored[key]) == 0:\n stored[key] = None\n if two_digit_year_break is not None:\n idx, = np.where(np.array(stored['year']) >= two_digit_year_break)\n stored['year'][idx] = stored['year'][idx] + 1900\n idx, = np.where(np.array(stored['year']) < two_digit_year_break)\n stored['year'][idx] = stored['year'][idx] + 2000\n rec_arr = [stored[key] for key in keys]\n rec_arr.append(files)\n val_keys = keys + ['files']\n rec_arr = np.rec.fromarrays(rec_arr, names=val_keys)\n rec_arr.sort(order=val_keys, axis=0)\n for key in keys:\n stored[key] = rec_arr[key]\n files = rec_arr['files']\n if stored['sec'] is None:\n stored['sec'] = np.zeros(len(files))\n if stored['hour'] is not None:\n stored['sec'] += 3600 * stored['hour']\n if stored['min'] is not None:\n stored['sec'] += 60 * stored['min']\n if stored['revision'] is None:\n stored['revision'] = np.zeros(len(files))\n index = create_datetime_index(year=stored['year'], month=stored[\n 'month'], day=stored['day'], uts=stored['sec'])\n dups = index.get_duplicates()\n if len(dups) > 0 and stored['version'] is not None:\n version = pds.Series(stored['version'], index=index)\n revision = pds.Series(stored['revision'], index=index)\n revive = version * 100000.0 + revision\n frame = pds.DataFrame({'files': files, 'revive': revive, 'time':\n index}, index=index)\n frame = frame.sort_values(by=['time', 'revive'], ascending=[\n True, False])\n frame = frame.drop_duplicates(subset='time', keep='first')\n return frame['files']\n else:\n return pds.Series(files, index=index)\n else:\n return pds.Series(None)\n", "role": "user" }, { "content": "from_os", "role": "assistant" } ]
def x(self, other): for key in other.keys(): if key not in self: self[key] = other[key]
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n for key in other.keys():\n if key not in self:\n self[key] = other[key]\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(self, names): self._data = self._data.drop(names, axis=0) for name in names: if name in self._ho_data: _ = self._ho_data.pop(name)
drop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, names):\n self._data = self._data.drop(names, axis=0)\n for name in names:\n if name in self._ho_data:\n _ = self._ho_data.pop(name)\n", "role": "user" }, { "content": "drop", "role": "assistant" } ]
def x(self, keep_names): current_names = self._data.columns drop_names = [] for name in current_names: if name not in keep_names: drop_names.append(name) self.drop(drop_names)
keep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keep_names):\n current_names = self._data.columns\n drop_names = []\n for name in current_names:\n if name not in keep_names:\n drop_names.append(name)\n self.drop(drop_names)\n", "role": "user" }, { "content": "keep", "role": "assistant" } ]
def x(self, other): other_updated = other.copy() other_updated.units_label = self.units_label other_updated.name_label = self.name_label other_updated.notes_label = self.notes_label other_updated.desc_label = self.desc_label other_updated.plot_label = self.plot_label other_updated.axis_label = self.axis_label other_updated.scale_label = self.scale_label other_updated.min_label = self.min_label other_updated.max_label = self.max_label other_updated.fill_label = self.fill_label return other
apply_default_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n other_updated = other.copy()\n other_updated.units_label = self.units_label\n other_updated.name_label = self.name_label\n other_updated.notes_label = self.notes_label\n other_updated.desc_label = self.desc_label\n other_updated.plot_label = self.plot_label\n other_updated.axis_label = self.axis_label\n other_updated.scale_label = self.scale_label\n other_updated.min_label = self.min_label\n other_updated.max_label = self.max_label\n other_updated.fill_label = self.fill_label\n return other\n", "role": "user" }, { "content": "apply_default_labels", "role": "assistant" } ]
def x(self, other): self.units_label = other.units_label self.name_label = other.name_label self.notes_label = other.notes_label self.desc_label = other.desc_label self.plot_label = other.plot_label self.axis_label = other.axis_label self.scale_label = other.scale_label self.min_label = other.min_label self.max_label = other.max_label self.fill_label = other.fill_label return
accept_default_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n self.units_label = other.units_label\n self.name_label = other.name_label\n self.notes_label = other.notes_label\n self.desc_label = other.desc_label\n self.plot_label = other.plot_label\n self.axis_label = other.axis_label\n self.scale_label = other.scale_label\n self.min_label = other.min_label\n self.max_label = other.max_label\n self.fill_label = other.fill_label\n return\n", "role": "user" }, { "content": "accept_default_labels", "role": "assistant" } ]
def x(self, new_label, current_label, attr_label, default=np.NaN, use_names_default=False): if new_label not in self.attrs(): if current_label in self.attrs(): self.data.loc[:, new_label] = self.data.loc[:, current_label] self.data.drop(current_label, axis=1, inplace=True) elif self.has_attr(current_label): current_label = self.attr_case_name(current_label) self.data.loc[:, new_label] = self.data.loc[:, current_label] self.data.drop(current_label, axis=1, inplace=True) elif use_names_default: self.data[new_label] = self.data.index else: self.data[new_label] = default for key in self.keys_nD(): setattr(self.ho_data[key], attr_label, new_label) setattr(self, ''.join(('_', attr_label)), new_label)
label_setter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new_label, current_label, attr_label, default=np.NaN,\n use_names_default=False):\n if new_label not in self.attrs():\n if current_label in self.attrs():\n self.data.loc[:, new_label] = self.data.loc[:, current_label]\n self.data.drop(current_label, axis=1, inplace=True)\n elif self.has_attr(current_label):\n current_label = self.attr_case_name(current_label)\n self.data.loc[:, new_label] = self.data.loc[:, current_label]\n self.data.drop(current_label, axis=1, inplace=True)\n elif use_names_default:\n self.data[new_label] = self.data.index\n else:\n self.data[new_label] = default\n for key in self.keys_nD():\n setattr(self.ho_data[key], attr_label, new_label)\n setattr(self, ''.join(('_', attr_label)), new_label)\n", "role": "user" }, { "content": "label_setter", "role": "assistant" } ]
def x(self, name): lower_name = name.lower() if name in self: for i in self.keys(): if lower_name == i.lower(): return i for i in self.keys_nD(): if lower_name == i.lower(): return i return name
var_case_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n lower_name = name.lower()\n if name in self:\n for i in self.keys():\n if lower_name == i.lower():\n return i\n for i in self.keys_nD():\n if lower_name == i.lower():\n return i\n return name\n", "role": "user" }, { "content": "var_case_name", "role": "assistant" } ]
def x(self, name): if name.lower() in [i.lower() for i in self.data.columns]: return True return False
has_attr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n if name.lower() in [i.lower() for i in self.data.columns]:\n return True\n return False\n", "role": "user" }, { "content": "has_attr", "role": "assistant" } ]
def x(self, name): lower_name = name.lower() for i in self.attrs(): if lower_name == i.lower(): return i for key in self.keys_nD(): for i in self[key].children.attrs(): if lower_name == i.lower(): return i return name
attr_case_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n lower_name = name.lower()\n for i in self.attrs():\n if lower_name == i.lower():\n return i\n for key in self.keys_nD():\n for i in self[key].children.attrs():\n if lower_name == i.lower():\n return i\n return name\n", "role": "user" }, { "content": "attr_case_name", "role": "assistant" } ]
def x(self, other, strict=False): mdata = self.copy() if strict: for key in other.keys(): if key in mdata: raise RuntimeError('Duplicated keys (variable names) ' + 'across Meta objects in keys().') for key in other.keys_nD(): if key in mdata: raise RuntimeError( 'Duplicated keys (variable names) across Meta objects in keys_nD().' ) other_updated = self.apply_default_labels(other) for key in other_updated.keys(): mdata.data.loc[key] = other.data.loc[key] for key in other_updated.keys_nD(): mdata.ho_data[key] = other.ho_data[key] return mdata
concat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, strict=False):\n mdata = self.copy()\n if strict:\n for key in other.keys():\n if key in mdata:\n raise RuntimeError('Duplicated keys (variable names) ' +\n 'across Meta objects in keys().')\n for key in other.keys_nD():\n if key in mdata:\n raise RuntimeError(\n 'Duplicated keys (variable names) across Meta objects in keys_nD().'\n )\n other_updated = self.apply_default_labels(other)\n for key in other_updated.keys():\n mdata.data.loc[key] = other.data.loc[key]\n for key in other_updated.keys_nD():\n mdata.ho_data[key] = other.ho_data[key]\n return mdata\n", "role": "user" }, { "content": "concat", "role": "assistant" } ]
def x(self, name): if name in self: new_name = self.var_case_name(name) if new_name in self.keys(): output = self[new_name] self.data.drop(new_name, inplace=True, axis=0) else: output = self.ho_data.pop(new_name) return output else: raise KeyError('Key not present in metadata variables')
pop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n if name in self:\n new_name = self.var_case_name(name)\n if new_name in self.keys():\n output = self[new_name]\n self.data.drop(new_name, inplace=True, axis=0)\n else:\n output = self.ho_data.pop(new_name)\n return output\n else:\n raise KeyError('Key not present in metadata variables')\n", "role": "user" }, { "content": "pop", "role": "assistant" } ]
def x(self, inst, strict_names=False): banned = inst._base_attr base_attrb = self._base_attr this_attrb = dir(self) adict = {} transfer_key = [] for key in this_attrb: if key not in banned: if key not in base_attrb: if key[0] != '_': adict[key] = self.__getattribute__(key) transfer_key.append(key) inst_attr = dir(inst) for key in transfer_key: if key not in banned: if key not in inst_attr: inst.__setattr__(key, adict[key]) elif not strict_names: inst.__setattr__(key, adict[key]) else: raise RuntimeError('Attribute ' + key + 'attached to Meta object can not be ' + 'transferred as it already exists' + ' in the Instrument object.')
transfer_attributes_to_instrument
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inst, strict_names=False):\n banned = inst._base_attr\n base_attrb = self._base_attr\n this_attrb = dir(self)\n adict = {}\n transfer_key = []\n for key in this_attrb:\n if key not in banned:\n if key not in base_attrb:\n if key[0] != '_':\n adict[key] = self.__getattribute__(key)\n transfer_key.append(key)\n inst_attr = dir(inst)\n for key in transfer_key:\n if key not in banned:\n if key not in inst_attr:\n inst.__setattr__(key, adict[key])\n elif not strict_names:\n inst.__setattr__(key, adict[key])\n else:\n raise RuntimeError('Attribute ' + key +\n 'attached to Meta object can not be ' +\n 'transferred as it already exists' +\n ' in the Instrument object.')\n", "role": "user" }, { "content": "transfer_attributes_to_instrument", "role": "assistant" } ]
def x(cls, name=None, col_names=None, sep=None, **kwargs): import pysat req_names = ['name', 'long_name', 'units'] if col_names is None: col_names = req_names elif not all([(i in col_names) for i in req_names]): raise ValueError('col_names must include name, long_name, units.') if sep is None: sep = ',' if name is None: raise ValueError('Must supply an instrument name or file path.') elif not isinstance(name, str): raise ValueError('keyword name must be related to a string') elif not os.path.isfile(name): test = os.path.join(pysat.__path__[0], 'instruments', name) if os.path.isfile(test): name = test else: test = os.path.abspath(name) if not os.path.isfile(test): raise ValueError('Unable to create valid file path.') else: name = test mdata = pds.read_csv(name, names=col_names, sep=sep, **kwargs) if not mdata.empty: mdata.index = mdata['name'] del mdata['name'] return cls(metadata=mdata) else: raise ValueError('Unable to retrieve information from ' + name)
from_csv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, name=None, col_names=None, sep=None, **kwargs):\n import pysat\n req_names = ['name', 'long_name', 'units']\n if col_names is None:\n col_names = req_names\n elif not all([(i in col_names) for i in req_names]):\n raise ValueError('col_names must include name, long_name, units.')\n if sep is None:\n sep = ','\n if name is None:\n raise ValueError('Must supply an instrument name or file path.')\n elif not isinstance(name, str):\n raise ValueError('keyword name must be related to a string')\n elif not os.path.isfile(name):\n test = os.path.join(pysat.__path__[0], 'instruments', name)\n if os.path.isfile(test):\n name = test\n else:\n test = os.path.abspath(name)\n if not os.path.isfile(test):\n raise ValueError('Unable to create valid file path.')\n else:\n name = test\n mdata = pds.read_csv(name, names=col_names, sep=sep, **kwargs)\n if not mdata.empty:\n mdata.index = mdata['name']\n del mdata['name']\n return cls(metadata=mdata)\n else:\n raise ValueError('Unable to retrieve information from ' + name)\n", "role": "user" }, { "content": "from_csv", "role": "assistant" } ]
def x(self): if self.clean_level == 'clean': idx, = np.where(self.data.altitude <= 550) self.data = self[idx, :] self.data.replace(-999999.0, np.nan, inplace=True) if (self.clean_level == 'clean') | (self.clean_level == 'dusty'): try: idx, = np.where(np.abs(self.data.ionVelmeridional) < 10000.0) self.data = self[idx, :] except AttributeError: pass if self.clean_level == 'dusty': idx, = np.where(self.data.RPAflag <= 1) self.data = self[idx, :] self.data = self.data[self.data.driftMeterflag <= 3] else: idx, = np.where(self.data.RPAflag <= 0) self.data = self[idx, :] self.data = self.data[self.data.driftMeterflag <= 0] if self.clean_level == 'dirty': idx, = np.where(self.data.RPAflag <= 4) self.data = self[idx, :] self.data = self.data[self.data.driftMeterflag <= 6] idx, = np.where(self.data.time <= 86400.0) self.data = self[idx, :] idx, = np.where((self.data.mlt >= 0) & (self.data.mlt <= 24.0)) self.data = self[idx, :] return
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.clean_level == 'clean':\n idx, = np.where(self.data.altitude <= 550)\n self.data = self[idx, :]\n self.data.replace(-999999.0, np.nan, inplace=True)\n if (self.clean_level == 'clean') | (self.clean_level == 'dusty'):\n try:\n idx, = np.where(np.abs(self.data.ionVelmeridional) < 10000.0)\n self.data = self[idx, :]\n except AttributeError:\n pass\n if self.clean_level == 'dusty':\n idx, = np.where(self.data.RPAflag <= 1)\n self.data = self[idx, :]\n self.data = self.data[self.data.driftMeterflag <= 3]\n else:\n idx, = np.where(self.data.RPAflag <= 0)\n self.data = self[idx, :]\n self.data = self.data[self.data.driftMeterflag <= 0]\n if self.clean_level == 'dirty':\n idx, = np.where(self.data.RPAflag <= 4)\n self.data = self[idx, :]\n self.data = self.data[self.data.driftMeterflag <= 6]\n idx, = np.where(self.data.time <= 86400.0)\n self.data = self[idx, :]\n idx, = np.where((self.data.mlt >= 0) & (self.data.mlt <= 24.0))\n self.data = self[idx, :]\n return\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(receiver): @wraps(receiver) def x(sender, instance, raw, using, **kwargs): if raw: instance = sender._default_manager.using(using).get(pk=instance.pk) return receiver(sender=sender, raw=raw, instance=instance, using= using, **kwargs) return wrapper
nonraw_instance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(receiver):\n\n @wraps(receiver)\n def x(sender, instance, raw, using, **kwargs):\n if raw:\n instance = sender._default_manager.using(using).get(pk=instance.pk)\n return receiver(sender=sender, raw=raw, instance=instance, using=\n using, **kwargs)\n return wrapper\n", "role": "user" }, { "content": "nonraw_instance", "role": "assistant" } ]
def x(sender, instance, **kwargs): cascade_deletion_origin = popattr(instance._state, '_cascade_deletion_origin', None) if cascade_deletion_origin == 'model_def': return if instance.base and issubclass(instance.base, models.Model ) and instance.base._meta.abstract: instance._state._deletion = instance.model_def.model_class( ).render_state()
base_definition_pre_delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, instance, **kwargs):\n cascade_deletion_origin = popattr(instance._state,\n '_cascade_deletion_origin', None)\n if cascade_deletion_origin == 'model_def':\n return\n if instance.base and issubclass(instance.base, models.Model\n ) and instance.base._meta.abstract:\n instance._state._deletion = instance.model_def.model_class(\n ).render_state()\n", "role": "user" }, { "content": "base_definition_pre_delete", "role": "assistant" } ]
def x(sender, instance, **kwargs): if hasattr(instance._state, '_deletion'): model = popattr(instance._state, '_deletion') for field in instance.base._meta.fields: perform_ddl('remove_field', model, field)
base_definition_post_delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, instance, **kwargs):\n if hasattr(instance._state, '_deletion'):\n model = popattr(instance._state, '_deletion')\n for field in instance.base._meta.fields:\n perform_ddl('remove_field', model, field)\n", "role": "user" }, { "content": "base_definition_post_delete", "role": "assistant" } ]
def x(sender, instance, raw, **kwargs): if raw: model_class = instance.content_type.model_class() opts = model_class._meta if opts.proxy and opts.concrete_model is sender: field_definition_post_save(sender=model_class, instance= instance.type_cast(), raw=raw, **kwargs)
raw_field_definition_proxy_post_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, instance, raw, **kwargs):\n if raw:\n model_class = instance.content_type.model_class()\n opts = model_class._meta\n if opts.proxy and opts.concrete_model is sender:\n field_definition_post_save(sender=model_class, instance=\n instance.type_cast(), raw=raw, **kwargs)\n", "role": "user" }, { "content": "raw_field_definition_proxy_post_save", "role": "assistant" } ]
def x(sender, instance, created, raw, **kwargs): model_class = instance.model_def.model_class().render_state() field = instance.construct_for_migrate() field.model = model_class if created: if hasattr(instance._state, '_creation_default_value'): field.default = instance._state._creation_default_value delattr(instance._state, '_creation_default_value') add_column = popattr(instance._state, '_add_column', True) if add_column: perform_ddl('add_field', model_class, field) if raw: instance.model_def.model_class().mark_as_obsolete() else: old_field = instance._state._pre_save_field delattr(instance._state, '_pre_save_field') perform_ddl('alter_field', model_class, old_field, field, strict=True)
field_definition_post_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, instance, created, raw, **kwargs):\n model_class = instance.model_def.model_class().render_state()\n field = instance.construct_for_migrate()\n field.model = model_class\n if created:\n if hasattr(instance._state, '_creation_default_value'):\n field.default = instance._state._creation_default_value\n delattr(instance._state, '_creation_default_value')\n add_column = popattr(instance._state, '_add_column', True)\n if add_column:\n perform_ddl('add_field', model_class, field)\n if raw:\n instance.model_def.model_class().mark_as_obsolete()\n else:\n old_field = instance._state._pre_save_field\n delattr(instance._state, '_pre_save_field')\n perform_ddl('alter_field', model_class, old_field, field, strict=True)\n", "role": "user" }, { "content": "field_definition_post_save", "role": "assistant" } ]
def x(obj, attr, default=NOT_PROVIDED): val = getattr(obj, attr, default) try: delattr(obj, attr) except AttributeError: if default is NOT_PROVIDED: raise return val
popattr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj, attr, default=NOT_PROVIDED):\n val = getattr(obj, attr, default)\n try:\n delattr(obj, attr)\n except AttributeError:\n if default is NOT_PROVIDED:\n raise\n return val\n", "role": "user" }, { "content": "popattr", "role": "assistant" } ]
def x(obj): if isinstance(obj, defaultdict): return deepcopy(obj) elif isinstance(obj, dict): return type(obj)((_app_cache_deepcopy(key), _app_cache_deepcopy(val )) for key, val in obj.items()) elif isinstance(obj, list): return list(_app_cache_deepcopy(val) for val in obj) elif isinstance(obj, AppConfig): app_conf = Empty() app_conf.__class__ = AppConfig app_conf.__dict__ = _app_cache_deepcopy(obj.__dict__) return app_conf return obj
app_cache_deepcopy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n if isinstance(obj, defaultdict):\n return deepcopy(obj)\n elif isinstance(obj, dict):\n return type(obj)((_app_cache_deepcopy(key), _app_cache_deepcopy(val\n )) for key, val in obj.items())\n elif isinstance(obj, list):\n return list(_app_cache_deepcopy(val) for val in obj)\n elif isinstance(obj, AppConfig):\n app_conf = Empty()\n app_conf.__class__ = AppConfig\n app_conf.__dict__ = _app_cache_deepcopy(obj.__dict__)\n return app_conf\n return obj\n", "role": "user" }, { "content": "app_cache_deepcopy", "role": "assistant" } ]
def x(): state = _app_cache_deepcopy(apps.__dict__) try: yield state finally: with apps_lock(): apps.__dict__ = state for app_conf in apps.get_app_configs(): app_conf.models = apps.all_models[app_conf.label] apps.clear_cache()
app_cache_restorer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n state = _app_cache_deepcopy(apps.__dict__)\n try:\n yield state\n finally:\n with apps_lock():\n apps.__dict__ = state\n for app_conf in apps.get_app_configs():\n app_conf.models = apps.all_models[app_conf.label]\n apps.clear_cache()\n", "role": "user" }, { "content": "app_cache_restorer", "role": "assistant" } ]
def x(collector, field, sub_objs, using): CASCADE(collector, field, sub_objs, using) if sub_objs: for obj in sub_objs: obj._state._cascade_deletion_origin = field.name
CASCADE_MARK_ORIGIN
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(collector, field, sub_objs, using):\n CASCADE(collector, field, sub_objs, using)\n if sub_objs:\n for obj in sub_objs:\n obj._state._cascade_deletion_origin = field.name\n", "role": "user" }, { "content": "CASCADE_MARK_ORIGIN", "role": "assistant" } ]