source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(ApplicationName=None, VersionLabel=None, TemplateName=None, EnvironmentId=None, EnvironmentName=None, PlatformArn=None, RequestId= None, Severity=None, StartTime=None, EndTime=None, MaxRecords=None, NextToken=None): pass
describe_events
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ApplicationName=None, VersionLabel=None, TemplateName=None,\n EnvironmentId=None, EnvironmentName=None, PlatformArn=None, RequestId=\n None, Severity=None, StartTime=None, EndTime=None, MaxRecords=None,\n NextToken=None):\n pass\n", "role": "user" }, { "content": "describe_events", "role": "assistant" } ]
def x(ApplicationName=None, EnvironmentId=None, EnvironmentName=None, GroupName=None, Description=None, Tier=None, VersionLabel=None, TemplateName=None, SolutionStackName=None, PlatformArn=None, OptionSettings=None, OptionsToRemove=None): pass
update_environment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ApplicationName=None, EnvironmentId=None, EnvironmentName=None,\n GroupName=None, Description=None, Tier=None, VersionLabel=None,\n TemplateName=None, SolutionStackName=None, PlatformArn=None,\n OptionSettings=None, OptionsToRemove=None):\n pass\n", "role": "user" }, { "content": "update_environment", "role": "assistant" } ]
def x(FunctionName=None, Runtime=None, Role=None, Handler=None, Code=None, Description=None, Timeout=None, MemorySize=None, Publish=None, VpcConfig=None, DeadLetterConfig=None, Environment=None, KMSKeyArn=None, TracingConfig=None, Tags=None): pass
create_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(FunctionName=None, Runtime=None, Role=None, Handler=None, Code=None,\n Description=None, Timeout=None, MemorySize=None, Publish=None,\n VpcConfig=None, DeadLetterConfig=None, Environment=None, KMSKeyArn=None,\n TracingConfig=None, Tags=None):\n pass\n", "role": "user" }, { "content": "create_function", "role": "assistant" } ]
def x(FunctionName=None, Role=None, Handler=None, Description=None, Timeout =None, MemorySize=None, VpcConfig=None, Environment=None, Runtime=None, DeadLetterConfig=None, KMSKeyArn=None, TracingConfig=None): pass
update_function_configuration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(FunctionName=None, Role=None, Handler=None, Description=None, Timeout\n =None, MemorySize=None, VpcConfig=None, Environment=None, Runtime=None,\n DeadLetterConfig=None, KMSKeyArn=None, TracingConfig=None):\n pass\n", "role": "user" }, { "content": "update_function_configuration", "role": "assistant" } ]
def x(Name=None, S3BucketName=None, S3KeyPrefix=None, SnsTopicName=None, IncludeGlobalServiceEvents=None, IsMultiRegionTrail=None, EnableLogFileValidation=None, CloudWatchLogsLogGroupArn=None, CloudWatchLogsRoleArn=None, KmsKeyId=None): pass
create_trail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Name=None, S3BucketName=None, S3KeyPrefix=None, SnsTopicName=None,\n IncludeGlobalServiceEvents=None, IsMultiRegionTrail=None,\n EnableLogFileValidation=None, CloudWatchLogsLogGroupArn=None,\n CloudWatchLogsRoleArn=None, KmsKeyId=None):\n pass\n", "role": "user" }, { "content": "create_trail", "role": "assistant" } ]
def x(DBName=None, ClusterIdentifier=None, ClusterType=None, NodeType=None, MasterUsername=None, MasterUserPassword=None, ClusterSecurityGroups= None, VpcSecurityGroupIds=None, ClusterSubnetGroupName=None, AvailabilityZone=None, PreferredMaintenanceWindow=None, ClusterParameterGroupName=None, AutomatedSnapshotRetentionPeriod=None, Port=None, ClusterVersion=None, AllowVersionUpgrade=None, NumberOfNodes =None, PubliclyAccessible=None, Encrypted=None, HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None, ElasticIp=None, Tags=None, KmsKeyId=None, EnhancedVpcRouting=None, AdditionalInfo=None, IamRoles=None): pass
create_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DBName=None, ClusterIdentifier=None, ClusterType=None, NodeType=None,\n MasterUsername=None, MasterUserPassword=None, ClusterSecurityGroups=\n None, VpcSecurityGroupIds=None, ClusterSubnetGroupName=None,\n AvailabilityZone=None, PreferredMaintenanceWindow=None,\n ClusterParameterGroupName=None, AutomatedSnapshotRetentionPeriod=None,\n Port=None, ClusterVersion=None, AllowVersionUpgrade=None, NumberOfNodes\n =None, PubliclyAccessible=None, Encrypted=None,\n HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,\n ElasticIp=None, Tags=None, KmsKeyId=None, EnhancedVpcRouting=None,\n AdditionalInfo=None, IamRoles=None):\n pass\n", "role": "user" }, { "content": "create_cluster", "role": "assistant" } ]
def x(ClusterIdentifier=None, SnapshotIdentifier=None, SnapshotType=None, StartTime=None, EndTime=None, MaxRecords=None, Marker=None, OwnerAccount=None, TagKeys=None, TagValues=None): pass
describe_cluster_snapshots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ClusterIdentifier=None, SnapshotIdentifier=None, SnapshotType=None,\n StartTime=None, EndTime=None, MaxRecords=None, Marker=None,\n OwnerAccount=None, TagKeys=None, TagValues=None):\n pass\n", "role": "user" }, { "content": "describe_cluster_snapshots", "role": "assistant" } ]
def x(ClusterIdentifier=None, ClusterType=None, NodeType=None, NumberOfNodes=None, ClusterSecurityGroups=None, VpcSecurityGroupIds= None, MasterUserPassword=None, ClusterParameterGroupName=None, AutomatedSnapshotRetentionPeriod=None, PreferredMaintenanceWindow=None, ClusterVersion=None, AllowVersionUpgrade=None, HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None, NewClusterIdentifier=None, PubliclyAccessible=None, ElasticIp=None, EnhancedVpcRouting=None): pass
modify_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ClusterIdentifier=None, ClusterType=None, NodeType=None,\n NumberOfNodes=None, ClusterSecurityGroups=None, VpcSecurityGroupIds=\n None, MasterUserPassword=None, ClusterParameterGroupName=None,\n AutomatedSnapshotRetentionPeriod=None, PreferredMaintenanceWindow=None,\n ClusterVersion=None, AllowVersionUpgrade=None,\n HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,\n NewClusterIdentifier=None, PubliclyAccessible=None, ElasticIp=None,\n EnhancedVpcRouting=None):\n pass\n", "role": "user" }, { "content": "modify_cluster", "role": "assistant" } ]
def x(ClusterIdentifier=None, SnapshotIdentifier=None, SnapshotClusterIdentifier=None, Port=None, AvailabilityZone=None, AllowVersionUpgrade=None, ClusterSubnetGroupName=None, PubliclyAccessible=None, OwnerAccount=None, HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None, ElasticIp=None, ClusterParameterGroupName=None, ClusterSecurityGroups= None, VpcSecurityGroupIds=None, PreferredMaintenanceWindow=None, AutomatedSnapshotRetentionPeriod=None, KmsKeyId=None, NodeType=None, EnhancedVpcRouting=None, AdditionalInfo=None, IamRoles=None): pass
restore_from_cluster_snapshot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ClusterIdentifier=None, SnapshotIdentifier=None,\n SnapshotClusterIdentifier=None, Port=None, AvailabilityZone=None,\n AllowVersionUpgrade=None, ClusterSubnetGroupName=None,\n PubliclyAccessible=None, OwnerAccount=None,\n HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,\n ElasticIp=None, ClusterParameterGroupName=None, ClusterSecurityGroups=\n None, VpcSecurityGroupIds=None, PreferredMaintenanceWindow=None,\n AutomatedSnapshotRetentionPeriod=None, KmsKeyId=None, NodeType=None,\n EnhancedVpcRouting=None, AdditionalInfo=None, IamRoles=None):\n pass\n", "role": "user" }, { "content": "restore_from_cluster_snapshot", "role": "assistant" } ]
def x(JobType=None, Resources=None, Description=None, AddressId=None, KmsKeyARN=None, RoleARN=None, SnowballType=None, ShippingOption=None, Notification=None, ForwardingAddressId=None): pass
create_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(JobType=None, Resources=None, Description=None, AddressId=None,\n KmsKeyARN=None, RoleARN=None, SnowballType=None, ShippingOption=None,\n Notification=None, ForwardingAddressId=None):\n pass\n", "role": "user" }, { "content": "create_cluster", "role": "assistant" } ]
def x(JobType=None, Resources=None, Description=None, AddressId=None, KmsKeyARN=None, RoleARN=None, SnowballCapacityPreference=None, ShippingOption=None, Notification=None, ClusterId=None, SnowballType= None, ForwardingAddressId=None): pass
create_job
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(JobType=None, Resources=None, Description=None, AddressId=None,\n KmsKeyARN=None, RoleARN=None, SnowballCapacityPreference=None,\n ShippingOption=None, Notification=None, ClusterId=None, SnowballType=\n None, ForwardingAddressId=None):\n pass\n", "role": "user" }, { "content": "create_job", "role": "assistant" } ]
def x(JobId=None, RoleARN=None, Notification=None, Resources=None, AddressId=None, ShippingOption=None, Description=None, SnowballCapacityPreference=None, ForwardingAddressId=None): pass
update_job
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(JobId=None, RoleARN=None, Notification=None, Resources=None,\n AddressId=None, ShippingOption=None, Description=None,\n SnowballCapacityPreference=None, ForwardingAddressId=None):\n pass\n", "role": "user" }, { "content": "update_job", "role": "assistant" } ]
def x(WindowId=None, Targets=None, TaskArn=None, ServiceRoleArn=None, TaskType=None, TaskParameters=None, Priority=None, MaxConcurrency=None, MaxErrors=None, LoggingInfo=None, ClientToken=None): pass
register_task_with_maintenance_window
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(WindowId=None, Targets=None, TaskArn=None, ServiceRoleArn=None,\n TaskType=None, TaskParameters=None, Priority=None, MaxConcurrency=None,\n MaxErrors=None, LoggingInfo=None, ClientToken=None):\n pass\n", "role": "user" }, { "content": "register_task_with_maintenance_window", "role": "assistant" } ]
def x(InstanceIds=None, Targets=None, DocumentName=None, DocumentHash=None, DocumentHashType=None, TimeoutSeconds=None, Comment=None, Parameters= None, OutputS3Region=None, OutputS3BucketName=None, OutputS3KeyPrefix= None, MaxConcurrency=None, MaxErrors=None, ServiceRoleArn=None, NotificationConfig=None): pass
send_command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(InstanceIds=None, Targets=None, DocumentName=None, DocumentHash=None,\n DocumentHashType=None, TimeoutSeconds=None, Comment=None, Parameters=\n None, OutputS3Region=None, OutputS3BucketName=None, OutputS3KeyPrefix=\n None, MaxConcurrency=None, MaxErrors=None, ServiceRoleArn=None,\n NotificationConfig=None):\n pass\n", "role": "user" }, { "content": "send_command", "role": "assistant" } ]
def x(AssociatePublicIpAddress=None, DisableAutomatedBackup=None, Engine= None, EngineModel=None, EngineVersion=None, EngineAttributes=None, BackupRetentionCount=None, ServerName=None, InstanceProfileArn=None, InstanceType=None, KeyPair=None, PreferredMaintenanceWindow=None, PreferredBackupWindow=None, SecurityGroupIds=None, ServiceRoleArn=None, SubnetIds=None, BackupId=None): pass
create_server
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AssociatePublicIpAddress=None, DisableAutomatedBackup=None, Engine=\n None, EngineModel=None, EngineVersion=None, EngineAttributes=None,\n BackupRetentionCount=None, ServerName=None, InstanceProfileArn=None,\n InstanceType=None, KeyPair=None, PreferredMaintenanceWindow=None,\n PreferredBackupWindow=None, SecurityGroupIds=None, ServiceRoleArn=None,\n SubnetIds=None, BackupId=None):\n pass\n", "role": "user" }, { "content": "create_server", "role": "assistant" } ]
def x(AcceptLanguage=None, Name=None, Owner=None, Description=None, Distributor=None, SupportDescription=None, SupportEmail=None, SupportUrl=None, ProductType=None, Tags=None, ProvisioningArtifactParameters=None, IdempotencyToken=None): pass
create_product
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AcceptLanguage=None, Name=None, Owner=None, Description=None,\n Distributor=None, SupportDescription=None, SupportEmail=None,\n SupportUrl=None, ProductType=None, Tags=None,\n ProvisioningArtifactParameters=None, IdempotencyToken=None):\n pass\n", "role": "user" }, { "content": "create_product", "role": "assistant" } ]
def x(AcceptLanguage=None, ProductId=None, ProvisioningArtifactId=None, PathId=None, ProvisionedProductName=None, ProvisioningParameters=None, Tags=None, NotificationArns=None, ProvisionToken=None): pass
provision_product
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AcceptLanguage=None, ProductId=None, ProvisioningArtifactId=None,\n PathId=None, ProvisionedProductName=None, ProvisioningParameters=None,\n Tags=None, NotificationArns=None, ProvisionToken=None):\n pass\n", "role": "user" }, { "content": "provision_product", "role": "assistant" } ]
def x(AcceptLanguage=None, Id=None, Name=None, Owner=None, Description=None, Distributor=None, SupportDescription=None, SupportEmail=None, SupportUrl=None, AddTags=None, RemoveTags=None): pass
update_product
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AcceptLanguage=None, Id=None, Name=None, Owner=None, Description=None,\n Distributor=None, SupportDescription=None, SupportEmail=None,\n SupportUrl=None, AddTags=None, RemoveTags=None):\n pass\n", "role": "user" }, { "content": "update_product", "role": "assistant" } ]
def x(domain=None, startTimeFilter=None, closeTimeFilter=None, executionFilter=None, closeStatusFilter=None, typeFilter=None, tagFilter=None, nextPageToken=None, maximumPageSize=None, reverseOrder=None ): pass
list_closed_workflow_executions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(domain=None, startTimeFilter=None, closeTimeFilter=None,\n executionFilter=None, closeStatusFilter=None, typeFilter=None,\n tagFilter=None, nextPageToken=None, maximumPageSize=None, reverseOrder=None\n ):\n pass\n", "role": "user" }, { "content": "list_closed_workflow_executions", "role": "assistant" } ]
def x(domain=None, name=None, version=None, description=None, defaultTaskStartToCloseTimeout=None, defaultTaskHeartbeatTimeout=None, defaultTaskList=None, defaultTaskPriority=None, defaultTaskScheduleToStartTimeout=None, defaultTaskScheduleToCloseTimeout=None): pass
register_activity_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(domain=None, name=None, version=None, description=None,\n defaultTaskStartToCloseTimeout=None, defaultTaskHeartbeatTimeout=None,\n defaultTaskList=None, defaultTaskPriority=None,\n defaultTaskScheduleToStartTimeout=None,\n defaultTaskScheduleToCloseTimeout=None):\n pass\n", "role": "user" }, { "content": "register_activity_type", "role": "assistant" } ]
def x(domain=None, name=None, version=None, description=None, defaultTaskStartToCloseTimeout=None, defaultExecutionStartToCloseTimeout=None, defaultTaskList=None, defaultTaskPriority=None, defaultChildPolicy=None, defaultLambdaRole=None): pass
register_workflow_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(domain=None, name=None, version=None, description=None,\n defaultTaskStartToCloseTimeout=None,\n defaultExecutionStartToCloseTimeout=None, defaultTaskList=None,\n defaultTaskPriority=None, defaultChildPolicy=None, defaultLambdaRole=None):\n pass\n", "role": "user" }, { "content": "register_workflow_type", "role": "assistant" } ]
def x(domain=None, workflowId=None, workflowType=None, taskList=None, taskPriority=None, input=None, executionStartToCloseTimeout=None, tagList=None, taskStartToCloseTimeout=None, childPolicy=None, lambdaRole=None): pass
start_workflow_execution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(domain=None, workflowId=None, workflowType=None, taskList=None,\n taskPriority=None, input=None, executionStartToCloseTimeout=None,\n tagList=None, taskStartToCloseTimeout=None, childPolicy=None,\n lambdaRole=None):\n pass\n", "role": "user" }, { "content": "start_workflow_execution", "role": "assistant" } ]
def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName= None, DatabaseName=None, DBClusterIdentifier=None, DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None, MasterUsername=None, MasterUserPassword=None, OptionGroupName=None, PreferredBackupWindow=None, PreferredMaintenanceWindow=None, ReplicationSourceIdentifier=None, Tags=None, StorageEncrypted=None, KmsKeyId=None, PreSignedUrl=None, EnableIAMDatabaseAuthentication=None, SourceRegion=None): pass
create_db_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName=\n None, DatabaseName=None, DBClusterIdentifier=None,\n DBClusterParameterGroupName=None, VpcSecurityGroupIds=None,\n DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None,\n MasterUsername=None, MasterUserPassword=None, OptionGroupName=None,\n PreferredBackupWindow=None, PreferredMaintenanceWindow=None,\n ReplicationSourceIdentifier=None, Tags=None, StorageEncrypted=None,\n KmsKeyId=None, PreSignedUrl=None, EnableIAMDatabaseAuthentication=None,\n SourceRegion=None):\n pass\n", "role": "user" }, { "content": "create_db_cluster", "role": "assistant" } ]
def x(DBName=None, DBInstanceIdentifier=None, AllocatedStorage=None, DBInstanceClass=None, Engine=None, MasterUsername=None, MasterUserPassword=None, DBSecurityGroups=None, VpcSecurityGroupIds= None, AvailabilityZone=None, DBSubnetGroupName=None, PreferredMaintenanceWindow=None, DBParameterGroupName=None, BackupRetentionPeriod=None, PreferredBackupWindow=None, Port=None, MultiAZ=None, EngineVersion=None, AutoMinorVersionUpgrade=None, LicenseModel=None, Iops=None, OptionGroupName=None, CharacterSetName= None, PubliclyAccessible=None, Tags=None, DBClusterIdentifier=None, StorageType=None, TdeCredentialArn=None, TdeCredentialPassword=None, StorageEncrypted=None, KmsKeyId=None, Domain=None, CopyTagsToSnapshot= None, MonitoringInterval=None, MonitoringRoleArn=None, DomainIAMRoleName=None, PromotionTier=None, Timezone=None, EnableIAMDatabaseAuthentication=None): pass
create_db_instance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DBName=None, DBInstanceIdentifier=None, AllocatedStorage=None,\n DBInstanceClass=None, Engine=None, MasterUsername=None,\n MasterUserPassword=None, DBSecurityGroups=None, VpcSecurityGroupIds=\n None, AvailabilityZone=None, DBSubnetGroupName=None,\n PreferredMaintenanceWindow=None, DBParameterGroupName=None,\n BackupRetentionPeriod=None, PreferredBackupWindow=None, Port=None,\n MultiAZ=None, EngineVersion=None, AutoMinorVersionUpgrade=None,\n LicenseModel=None, Iops=None, OptionGroupName=None, CharacterSetName=\n None, PubliclyAccessible=None, Tags=None, DBClusterIdentifier=None,\n StorageType=None, TdeCredentialArn=None, TdeCredentialPassword=None,\n StorageEncrypted=None, KmsKeyId=None, Domain=None, CopyTagsToSnapshot=\n None, MonitoringInterval=None, MonitoringRoleArn=None,\n DomainIAMRoleName=None, PromotionTier=None, Timezone=None,\n EnableIAMDatabaseAuthentication=None):\n pass\n", "role": "user" }, { "content": "create_db_instance", "role": "assistant" } ]
def x(DBInstanceIdentifier=None, SourceDBInstanceIdentifier=None, DBInstanceClass=None, AvailabilityZone=None, Port=None, AutoMinorVersionUpgrade=None, Iops=None, OptionGroupName=None, PubliclyAccessible=None, Tags=None, DBSubnetGroupName=None, StorageType =None, CopyTagsToSnapshot=None, MonitoringInterval=None, MonitoringRoleArn=None, KmsKeyId=None, PreSignedUrl=None, EnableIAMDatabaseAuthentication=None, SourceRegion=None): pass
create_db_instance_read_replica
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DBInstanceIdentifier=None, SourceDBInstanceIdentifier=None,\n DBInstanceClass=None, AvailabilityZone=None, Port=None,\n AutoMinorVersionUpgrade=None, Iops=None, OptionGroupName=None,\n PubliclyAccessible=None, Tags=None, DBSubnetGroupName=None, StorageType\n =None, CopyTagsToSnapshot=None, MonitoringInterval=None,\n MonitoringRoleArn=None, KmsKeyId=None, PreSignedUrl=None,\n EnableIAMDatabaseAuthentication=None, SourceRegion=None):\n pass\n", "role": "user" }, { "content": "create_db_instance_read_replica", "role": "assistant" } ]
def x(Engine=None, EngineVersion=None, DBParameterGroupFamily=None, Filters =None, MaxRecords=None, Marker=None, DefaultOnly=None, ListSupportedCharacterSets=None, ListSupportedTimezones=None): pass
describe_db_engine_versions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Engine=None, EngineVersion=None, DBParameterGroupFamily=None, Filters\n =None, MaxRecords=None, Marker=None, DefaultOnly=None,\n ListSupportedCharacterSets=None, ListSupportedTimezones=None):\n pass\n", "role": "user" }, { "content": "describe_db_engine_versions", "role": "assistant" } ]
def x(ReservedDBInstanceId=None, ReservedDBInstancesOfferingId=None, DBInstanceClass=None, Duration=None, ProductDescription=None, OfferingType=None, MultiAZ=None, Filters=None, MaxRecords=None, Marker=None ): pass
describe_reserved_db_instances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ReservedDBInstanceId=None, ReservedDBInstancesOfferingId=None,\n DBInstanceClass=None, Duration=None, ProductDescription=None,\n OfferingType=None, MultiAZ=None, Filters=None, MaxRecords=None, Marker=None\n ):\n pass\n", "role": "user" }, { "content": "describe_reserved_db_instances", "role": "assistant" } ]
def x(ReservedDBInstancesOfferingId=None, DBInstanceClass=None, Duration= None, ProductDescription=None, OfferingType=None, MultiAZ=None, Filters =None, MaxRecords=None, Marker=None): pass
describe_reserved_db_instances_offerings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ReservedDBInstancesOfferingId=None, DBInstanceClass=None, Duration=\n None, ProductDescription=None, OfferingType=None, MultiAZ=None, Filters\n =None, MaxRecords=None, Marker=None):\n pass\n", "role": "user" }, { "content": "describe_reserved_db_instances_offerings", "role": "assistant" } ]
def x(DBClusterIdentifier=None, NewDBClusterIdentifier=None, ApplyImmediately=None, BackupRetentionPeriod=None, DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, Port=None, MasterUserPassword=None, OptionGroupName=None, PreferredBackupWindow= None, PreferredMaintenanceWindow=None, EnableIAMDatabaseAuthentication=None ): pass
modify_db_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DBClusterIdentifier=None, NewDBClusterIdentifier=None,\n ApplyImmediately=None, BackupRetentionPeriod=None,\n DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, Port=None,\n MasterUserPassword=None, OptionGroupName=None, PreferredBackupWindow=\n None, PreferredMaintenanceWindow=None, EnableIAMDatabaseAuthentication=None\n ):\n pass\n", "role": "user" }, { "content": "modify_db_cluster", "role": "assistant" } ]
def x(DBInstanceIdentifier=None, AllocatedStorage=None, DBInstanceClass= None, DBSubnetGroupName=None, DBSecurityGroups=None, VpcSecurityGroupIds=None, ApplyImmediately=None, MasterUserPassword= None, DBParameterGroupName=None, BackupRetentionPeriod=None, PreferredBackupWindow=None, PreferredMaintenanceWindow=None, MultiAZ= None, EngineVersion=None, AllowMajorVersionUpgrade=None, AutoMinorVersionUpgrade=None, LicenseModel=None, Iops=None, OptionGroupName=None, NewDBInstanceIdentifier=None, StorageType=None, TdeCredentialArn=None, TdeCredentialPassword=None, CACertificateIdentifier=None, Domain=None, CopyTagsToSnapshot=None, MonitoringInterval=None, DBPortNumber=None, PubliclyAccessible=None, MonitoringRoleArn=None, DomainIAMRoleName=None, PromotionTier=None, EnableIAMDatabaseAuthentication=None): pass
modify_db_instance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DBInstanceIdentifier=None, AllocatedStorage=None, DBInstanceClass=\n None, DBSubnetGroupName=None, DBSecurityGroups=None,\n VpcSecurityGroupIds=None, ApplyImmediately=None, MasterUserPassword=\n None, DBParameterGroupName=None, BackupRetentionPeriod=None,\n PreferredBackupWindow=None, PreferredMaintenanceWindow=None, MultiAZ=\n None, EngineVersion=None, AllowMajorVersionUpgrade=None,\n AutoMinorVersionUpgrade=None, LicenseModel=None, Iops=None,\n OptionGroupName=None, NewDBInstanceIdentifier=None, StorageType=None,\n TdeCredentialArn=None, TdeCredentialPassword=None,\n CACertificateIdentifier=None, Domain=None, CopyTagsToSnapshot=None,\n MonitoringInterval=None, DBPortNumber=None, PubliclyAccessible=None,\n MonitoringRoleArn=None, DomainIAMRoleName=None, PromotionTier=None,\n EnableIAMDatabaseAuthentication=None):\n pass\n", "role": "user" }, { "content": "modify_db_instance", "role": "assistant" } ]
def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName= None, DatabaseName=None, DBClusterIdentifier=None, DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None, MasterUsername=None, MasterUserPassword=None, OptionGroupName=None, PreferredBackupWindow=None, PreferredMaintenanceWindow=None, Tags=None, StorageEncrypted=None, KmsKeyId=None, EnableIAMDatabaseAuthentication= None, SourceEngine=None, SourceEngineVersion=None, S3BucketName=None, S3Prefix=None, S3IngestionRoleArn=None): pass
restore_db_cluster_from_s3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName=\n None, DatabaseName=None, DBClusterIdentifier=None,\n DBClusterParameterGroupName=None, VpcSecurityGroupIds=None,\n DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None,\n MasterUsername=None, MasterUserPassword=None, OptionGroupName=None,\n PreferredBackupWindow=None, PreferredMaintenanceWindow=None, Tags=None,\n StorageEncrypted=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=\n None, SourceEngine=None, SourceEngineVersion=None, S3BucketName=None,\n S3Prefix=None, S3IngestionRoleArn=None):\n pass\n", "role": "user" }, { "content": "restore_db_cluster_from_s3", "role": "assistant" } ]
def x(AvailabilityZones=None, DBClusterIdentifier=None, SnapshotIdentifier= None, Engine=None, EngineVersion=None, Port=None, DBSubnetGroupName= None, DatabaseName=None, OptionGroupName=None, VpcSecurityGroupIds=None, Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None): pass
restore_db_cluster_from_snapshot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(AvailabilityZones=None, DBClusterIdentifier=None, SnapshotIdentifier=\n None, Engine=None, EngineVersion=None, Port=None, DBSubnetGroupName=\n None, DatabaseName=None, OptionGroupName=None, VpcSecurityGroupIds=None,\n Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None):\n pass\n", "role": "user" }, { "content": "restore_db_cluster_from_snapshot", "role": "assistant" } ]
def x(DBClusterIdentifier=None, SourceDBClusterIdentifier=None, RestoreToTime=None, UseLatestRestorableTime=None, Port=None, DBSubnetGroupName=None, OptionGroupName=None, VpcSecurityGroupIds=None, Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None): pass
restore_db_cluster_to_point_in_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DBClusterIdentifier=None, SourceDBClusterIdentifier=None,\n RestoreToTime=None, UseLatestRestorableTime=None, Port=None,\n DBSubnetGroupName=None, OptionGroupName=None, VpcSecurityGroupIds=None,\n Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None):\n pass\n", "role": "user" }, { "content": "restore_db_cluster_to_point_in_time", "role": "assistant" } ]
def x(DBInstanceIdentifier=None, DBSnapshotIdentifier=None, DBInstanceClass =None, Port=None, AvailabilityZone=None, DBSubnetGroupName=None, MultiAZ=None, PubliclyAccessible=None, AutoMinorVersionUpgrade=None, LicenseModel=None, DBName=None, Engine=None, Iops=None, OptionGroupName =None, Tags=None, StorageType=None, TdeCredentialArn=None, TdeCredentialPassword=None, Domain=None, CopyTagsToSnapshot=None, DomainIAMRoleName=None, EnableIAMDatabaseAuthentication=None): pass
restore_db_instance_from_db_snapshot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(DBInstanceIdentifier=None, DBSnapshotIdentifier=None, DBInstanceClass\n =None, Port=None, AvailabilityZone=None, DBSubnetGroupName=None,\n MultiAZ=None, PubliclyAccessible=None, AutoMinorVersionUpgrade=None,\n LicenseModel=None, DBName=None, Engine=None, Iops=None, OptionGroupName\n =None, Tags=None, StorageType=None, TdeCredentialArn=None,\n TdeCredentialPassword=None, Domain=None, CopyTagsToSnapshot=None,\n DomainIAMRoleName=None, EnableIAMDatabaseAuthentication=None):\n pass\n", "role": "user" }, { "content": "restore_db_instance_from_db_snapshot", "role": "assistant" } ]
def x(SourceDBInstanceIdentifier=None, TargetDBInstanceIdentifier=None, RestoreTime=None, UseLatestRestorableTime=None, DBInstanceClass=None, Port=None, AvailabilityZone=None, DBSubnetGroupName=None, MultiAZ=None, PubliclyAccessible=None, AutoMinorVersionUpgrade=None, LicenseModel= None, DBName=None, Engine=None, Iops=None, OptionGroupName=None, CopyTagsToSnapshot=None, Tags=None, StorageType=None, TdeCredentialArn= None, TdeCredentialPassword=None, Domain=None, DomainIAMRoleName=None, EnableIAMDatabaseAuthentication=None): pass
restore_db_instance_to_point_in_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(SourceDBInstanceIdentifier=None, TargetDBInstanceIdentifier=None,\n RestoreTime=None, UseLatestRestorableTime=None, DBInstanceClass=None,\n Port=None, AvailabilityZone=None, DBSubnetGroupName=None, MultiAZ=None,\n PubliclyAccessible=None, AutoMinorVersionUpgrade=None, LicenseModel=\n None, DBName=None, Engine=None, Iops=None, OptionGroupName=None,\n CopyTagsToSnapshot=None, Tags=None, StorageType=None, TdeCredentialArn=\n None, TdeCredentialPassword=None, Domain=None, DomainIAMRoleName=None,\n EnableIAMDatabaseAuthentication=None):\n pass\n", "role": "user" }, { "content": "restore_db_instance_to_point_in_time", "role": "assistant" } ]
def x(HealthCheckId=None, HealthCheckVersion=None, IPAddress=None, Port= None, ResourcePath=None, FullyQualifiedDomainName=None, SearchString= None, FailureThreshold=None, Inverted=None, HealthThreshold=None, ChildHealthChecks=None, EnableSNI=None, Regions=None, AlarmIdentifier= None, InsufficientDataHealthStatus=None): pass
update_health_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(HealthCheckId=None, HealthCheckVersion=None, IPAddress=None, Port=\n None, ResourcePath=None, FullyQualifiedDomainName=None, SearchString=\n None, FailureThreshold=None, Inverted=None, HealthThreshold=None,\n ChildHealthChecks=None, EnableSNI=None, Regions=None, AlarmIdentifier=\n None, InsufficientDataHealthStatus=None):\n pass\n", "role": "user" }, { "content": "update_health_check", "role": "assistant" } ]
def x(MaxAssignments=None, AutoApprovalDelayInSeconds=None, LifetimeInSeconds=None, AssignmentDurationInSeconds=None, Reward=None, Title=None, Keywords=None, Description=None, Question=None, RequesterAnnotation=None, QualificationRequirements=None, UniqueRequestToken=None, AssignmentReviewPolicy=None, HITReviewPolicy= None, HITLayoutId=None, HITLayoutParameters=None): pass
create_hit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(MaxAssignments=None, AutoApprovalDelayInSeconds=None,\n LifetimeInSeconds=None, AssignmentDurationInSeconds=None, Reward=None,\n Title=None, Keywords=None, Description=None, Question=None,\n RequesterAnnotation=None, QualificationRequirements=None,\n UniqueRequestToken=None, AssignmentReviewPolicy=None, HITReviewPolicy=\n None, HITLayoutId=None, HITLayoutParameters=None):\n pass\n", "role": "user" }, { "content": "create_hit", "role": "assistant" } ]
def x(HITTypeId=None, MaxAssignments=None, LifetimeInSeconds=None, Question =None, RequesterAnnotation=None, UniqueRequestToken=None, AssignmentReviewPolicy=None, HITReviewPolicy=None, HITLayoutId=None, HITLayoutParameters=None): pass
create_hit_with_hit_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(HITTypeId=None, MaxAssignments=None, LifetimeInSeconds=None, Question\n =None, RequesterAnnotation=None, UniqueRequestToken=None,\n AssignmentReviewPolicy=None, HITReviewPolicy=None, HITLayoutId=None,\n HITLayoutParameters=None):\n pass\n", "role": "user" }, { "content": "create_hit_with_hit_type", "role": "assistant" } ]
def x(Name=None, Keywords=None, Description=None, QualificationTypeStatus= None, RetryDelayInSeconds=None, Test=None, AnswerKey=None, TestDurationInSeconds=None, AutoGranted=None, AutoGrantedValue=None): pass
create_qualification_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(Name=None, Keywords=None, Description=None, QualificationTypeStatus=\n None, RetryDelayInSeconds=None, Test=None, AnswerKey=None,\n TestDurationInSeconds=None, AutoGranted=None, AutoGrantedValue=None):\n pass\n", "role": "user" }, { "content": "create_qualification_type", "role": "assistant" } ]
def x(QualificationTypeId=None, Description=None, QualificationTypeStatus= None, Test=None, AnswerKey=None, TestDurationInSeconds=None, RetryDelayInSeconds=None, AutoGranted=None, AutoGrantedValue=None): pass
update_qualification_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(QualificationTypeId=None, Description=None, QualificationTypeStatus=\n None, Test=None, AnswerKey=None, TestDurationInSeconds=None,\n RetryDelayInSeconds=None, AutoGranted=None, AutoGrantedValue=None):\n pass\n", "role": "user" }, { "content": "update_qualification_type", "role": "assistant" } ]
def x(description): algo = getattr(hashlib, description.lower(), None) if not callable(algo): raise ValueError('Unknown hash algorithm %s' % description) return algo
str2hashalgo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(description):\n algo = getattr(hashlib, description.lower(), None)\n if not callable(algo):\n raise ValueError('Unknown hash algorithm %s' % description)\n return algo\n", "role": "user" }, { "content": "str2hashalgo", "role": "assistant" } ]
def x(crypto_function_description): s = crypto_function_description.split('-') if len(s) != 3: raise ValueError( 'CryptoFunction description must be triplet separated by -') if s[0] != HOTP: raise ValueError('Unknown CryptoFunction kind %s' % s[0]) algo = str2hashalgo(s[1]) try: truncation_length = int(s[2]) if truncation_length < 0 or truncation_length > 10: raise ValueError() except ValueError: raise ValueError('Invalid truncation length %s' % s[2]) return CryptoFunction(algo, truncation_length)
str2cryptofunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(crypto_function_description):\n s = crypto_function_description.split('-')\n if len(s) != 3:\n raise ValueError(\n 'CryptoFunction description must be triplet separated by -')\n if s[0] != HOTP:\n raise ValueError('Unknown CryptoFunction kind %s' % s[0])\n algo = str2hashalgo(s[1])\n try:\n truncation_length = int(s[2])\n if truncation_length < 0 or truncation_length > 10:\n raise ValueError()\n except ValueError:\n raise ValueError('Invalid truncation length %s' % s[2])\n return CryptoFunction(algo, truncation_length)\n", "role": "user" }, { "content": "str2cryptofunction", "role": "assistant" } ]
def x(key, counter, format='dec6', hash=hashlib.sha1): bin_hotp = __hotp(key, counter, hash) if format == 'dec4': return dec(bin_hotp, 4) elif format == 'dec6': return dec(bin_hotp, 6) elif format == 'dec7': return dec(bin_hotp, 7) elif format == 'dec8': return dec(bin_hotp, 8) elif format == 'hex': return '%x' % truncated_value(bin_hotp) elif format == 'hex-notrunc': return _utils.tohex(bin_hotp) elif format == 'bin': return bin_hotp elif format == 'dec': return str(truncated_value(bin_hotp)) else: raise ValueError('unknown format')
hotp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, counter, format='dec6', hash=hashlib.sha1):\n bin_hotp = __hotp(key, counter, hash)\n if format == 'dec4':\n return dec(bin_hotp, 4)\n elif format == 'dec6':\n return dec(bin_hotp, 6)\n elif format == 'dec7':\n return dec(bin_hotp, 7)\n elif format == 'dec8':\n return dec(bin_hotp, 8)\n elif format == 'hex':\n return '%x' % truncated_value(bin_hotp)\n elif format == 'hex-notrunc':\n return _utils.tohex(bin_hotp)\n elif format == 'bin':\n return bin_hotp\n elif format == 'dec':\n return str(truncated_value(bin_hotp))\n else:\n raise ValueError('unknown format')\n", "role": "user" }, { "content": "hotp", "role": "assistant" } ]
def x(key, response, counter, format='dec6', hash=hashlib.sha1, drift=3, backward_drift=0): for i in range(-backward_drift, drift + 1): if _utils.compare_digest(hotp(key, counter + i, format=format, hash =hash), str(response)): return True, counter + i + 1 return False, counter
accept_hotp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, response, counter, format='dec6', hash=hashlib.sha1, drift=3,\n backward_drift=0):\n for i in range(-backward_drift, drift + 1):\n if _utils.compare_digest(hotp(key, counter + i, format=format, hash\n =hash), str(response)):\n return True, counter + i + 1\n return False, counter\n", "role": "user" }, { "content": "accept_hotp", "role": "assistant" } ]
def x(key, format='dec6', period=30, t=None, hash=hashlib.sha1): if t is None: t = int(time.time()) elif isinstance(t, datetime.datetime): t = calendar.timegm(t.utctimetuple()) else: t = int(t) T = int(t / period) return hotp(key, T, format=format, hash=hash)
totp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, format='dec6', period=30, t=None, hash=hashlib.sha1):\n if t is None:\n t = int(time.time())\n elif isinstance(t, datetime.datetime):\n t = calendar.timegm(t.utctimetuple())\n else:\n t = int(t)\n T = int(t / period)\n return hotp(key, T, format=format, hash=hash)\n", "role": "user" }, { "content": "totp", "role": "assistant" } ]
def x(key, response, format='dec6', period=30, t=None, hash=hashlib.sha1, forward_drift=1, backward_drift=1, drift=0): if t is None: t = int(time.time()) for i in range(max(-divmod(t, period)[0], -backward_drift), forward_drift + 1): d = (drift + i) * period if _utils.compare_digest(totp(key, format=format, period=period, hash=hash, t=t + d), response): return True, drift + i return False, 0
accept_totp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key, response, format='dec6', period=30, t=None, hash=hashlib.sha1,\n forward_drift=1, backward_drift=1, drift=0):\n if t is None:\n t = int(time.time())\n for i in range(max(-divmod(t, period)[0], -backward_drift), \n forward_drift + 1):\n d = (drift + i) * period\n if _utils.compare_digest(totp(key, format=format, period=period,\n hash=hash, t=t + d), response):\n return True, drift + i\n return False, 0\n", "role": "user" }, { "content": "accept_totp", "role": "assistant" } ]
def x(b32_key, state=None): try: lenient_b32decode(b32_key) except TypeError: raise ValueError('invalid base32 value') return GoogleAuthenticator('otpauth://totp/xxx?%s' % urlencode({ 'secret': b32_key}), state=state)
from_b32key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(b32_key, state=None):\n try:\n lenient_b32decode(b32_key)\n except TypeError:\n raise ValueError('invalid base32 value')\n return GoogleAuthenticator('otpauth://totp/xxx?%s' % urlencode({\n 'secret': b32_key}), state=state)\n", "role": "user" }, { "content": "from_b32key", "role": "assistant" } ]
def x(self, secret, type='totp', account='alex', issuer=None, algo='sha1', digits=6, init_counter=None): args = {} uri = 'otpauth://{0}/{1}?{2}' try: a = binascii.unhexlify(secret) args[SECRET] = base64.b32encode(a).decode('ascii') except binascii.Error as ex: raise ValueError(str(ex)) except Exception as ex: print(ex) raise ValueError('invalid secret format') if type not in [TOTP, HOTP]: raise ValueError('type should be totp or hotp, got ', type) if type != TOTP: args['type'] = type if algo not in ['sha1', 'sha256', 'sha512']: raise ValueError('algo should be sha1, sha256 or sha512, got ', algo) if algo != 'sha1': args['algorithm'] = algo if init_counter is not None: if type != HOTP: raise ValueError('type should be hotp when ', 'setting init_counter') if int(init_counter) < 0: raise ValueError('init_counter should be positive') args[COUNTER] = int(init_counter) digits = int(digits) if digits != 6 and digits != 8: raise ValueError('digits should be 6 or 8') if digits != 6: args[DIGITS] = digits args[PERIOD] = 30 account = quote(account) if issuer is not None: account = quote(issuer) + ':' + account args[ISSUER] = issuer uri = uri.format(type, account, urlencode(args).replace('+', '%20')) return uri
generate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, secret, type='totp', account='alex', issuer=None, algo='sha1',\n digits=6, init_counter=None):\n args = {}\n uri = 'otpauth://{0}/{1}?{2}'\n try:\n a = binascii.unhexlify(secret)\n args[SECRET] = base64.b32encode(a).decode('ascii')\n except binascii.Error as ex:\n raise ValueError(str(ex))\n except Exception as ex:\n print(ex)\n raise ValueError('invalid secret format')\n if type not in [TOTP, HOTP]:\n raise ValueError('type should be totp or hotp, got ', type)\n if type != TOTP:\n args['type'] = type\n if algo not in ['sha1', 'sha256', 'sha512']:\n raise ValueError('algo should be sha1, sha256 or sha512, got ', algo)\n if algo != 'sha1':\n args['algorithm'] = algo\n if init_counter is not None:\n if type != HOTP:\n raise ValueError('type should be hotp when ',\n 'setting init_counter')\n if int(init_counter) < 0:\n raise ValueError('init_counter should be positive')\n args[COUNTER] = int(init_counter)\n digits = int(digits)\n if digits != 6 and digits != 8:\n raise ValueError('digits should be 6 or 8')\n if digits != 6:\n args[DIGITS] = digits\n args[PERIOD] = 30\n account = quote(account)\n if issuer is not None:\n account = quote(issuer) + ':' + account\n args[ISSUER] = issuer\n uri = uri.format(type, account, urlencode(args).replace('+', '%20'))\n return uri\n", "role": "user" }, { "content": "generate", "role": "assistant" } ]
def x(op_name, attrs, identity_list=None, convert_map=None): identity_list = identity_list if identity_list else _identity_list convert_map = convert_map if convert_map else _convert_map if op_name in identity_list: pass elif op_name in convert_map: op_name, attrs = convert_map[op_name](attrs) else: raise NotImplementedError('Operator {} not implemented.'.format( op_name)) op = getattr(mx.sym, op_name, None) if not op: raise RuntimeError('Unable to map op_name {} to sym'.format(op_name)) return op, attrs
convert_operator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(op_name, attrs, identity_list=None, convert_map=None):\n identity_list = identity_list if identity_list else _identity_list\n convert_map = convert_map if convert_map else _convert_map\n if op_name in identity_list:\n pass\n elif op_name in convert_map:\n op_name, attrs = convert_map[op_name](attrs)\n else:\n raise NotImplementedError('Operator {} not implemented.'.format(\n op_name))\n op = getattr(mx.sym, op_name, None)\n if not op:\n raise RuntimeError('Unable to map op_name {} to sym'.format(op_name))\n return op, attrs\n", "role": "user" }, { "content": "convert_operator", "role": "assistant" } ]
def x(self, graph): for init_tensor in graph.initializer: if not init_tensor.name.strip(): raise ValueError("Tensor's name is required.") self._params[init_tensor.name] = self._parse_array(init_tensor) for i in graph.input: if i.name in self._params: name_param = 'param_{}'.format(self._num_param) self._num_param += 1 self._params[name_param] = self._params.pop(i.name) self._nodes[name_param] = mx.sym.Variable(name=name_param, shape=self._params[name_param].shape) self._renames[i.name] = name_param else: name_input = 'input_{}'.format(self._num_input) self._num_input += 1 self._nodes[name_input] = mx.sym.Variable(name=name_input) self._renames[i.name] = name_input for node in graph.node: op_name = node.op_type node_name = node.name.strip() node_name = node_name if node_name else None onnx_attr = self._parse_attr(node.attribute) new_op, mx_attr = _convert_operator(op_name, onnx_attr) inputs = [self._nodes[self._renames.get(i, i)] for i in node.input] mx_attr = self._fix_bias(new_op, mx_attr, len(inputs)) mx_attr = self._fix_channels(new_op, mx_attr, list(node.input)) self._fix_bias_shape(node.op_type, node.input, onnx_attr) inputs = [self._nodes[self._renames.get(i, i)] for i in node.input] if op_name == 'Gemm': new_op, inputs, mx_attr = self._fix_gemm('FullyConnected', inputs, onnx_attr) if op_name == 'Slice': op = self._fix_slice(inputs, mx_attr) elif op_name == 'AveragePool' and onnx_attr.get('pads' ) is not None or op_name == 'MaxPool' and onnx_attr.get('pads' ) is not None: op = self._fix_pooling(op_name, inputs, onnx_attr) elif op_name == 'Squeeze': op = self._fix_squeeze(inputs, mx_attr) elif op_name == 'Max' or op_name == 'Min': op = self._fix_max_min(op_name, inputs) elif node_name is None: op = new_op(*inputs, **mx_attr) else: op = new_op(*inputs, name=node_name, **mx_attr) node_output = self._fix_outputs(op_name, node.output) assert len(node_output) == len(op.list_outputs() ), 'Number of output mismatch {} vs {} in {}.'.format(len( node_output), len(op.list_outputs()), op_name) for k, i in zip(list(node_output), range(len(node_output))): self._nodes[k] = op[i] out = [self._nodes[i.name] for i in graph.output] if len(out) > 1: out = mx.sym.Group(out) else: out = out[0] return out, self._params
from_onnx
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, graph):\n for init_tensor in graph.initializer:\n if not init_tensor.name.strip():\n raise ValueError(\"Tensor's name is required.\")\n self._params[init_tensor.name] = self._parse_array(init_tensor)\n for i in graph.input:\n if i.name in self._params:\n name_param = 'param_{}'.format(self._num_param)\n self._num_param += 1\n self._params[name_param] = self._params.pop(i.name)\n self._nodes[name_param] = mx.sym.Variable(name=name_param,\n shape=self._params[name_param].shape)\n self._renames[i.name] = name_param\n else:\n name_input = 'input_{}'.format(self._num_input)\n self._num_input += 1\n self._nodes[name_input] = mx.sym.Variable(name=name_input)\n self._renames[i.name] = name_input\n for node in graph.node:\n op_name = node.op_type\n node_name = node.name.strip()\n node_name = node_name if node_name else None\n onnx_attr = self._parse_attr(node.attribute)\n new_op, mx_attr = _convert_operator(op_name, onnx_attr)\n inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]\n mx_attr = self._fix_bias(new_op, mx_attr, len(inputs))\n mx_attr = self._fix_channels(new_op, mx_attr, list(node.input))\n self._fix_bias_shape(node.op_type, node.input, onnx_attr)\n inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]\n if op_name == 'Gemm':\n new_op, inputs, mx_attr = self._fix_gemm('FullyConnected',\n inputs, onnx_attr)\n if op_name == 'Slice':\n op = self._fix_slice(inputs, mx_attr)\n elif op_name == 'AveragePool' and onnx_attr.get('pads'\n ) is not None or op_name == 'MaxPool' and onnx_attr.get('pads'\n ) is not None:\n op = self._fix_pooling(op_name, inputs, onnx_attr)\n elif op_name == 'Squeeze':\n op = self._fix_squeeze(inputs, mx_attr)\n elif op_name == 'Max' or op_name == 'Min':\n op = self._fix_max_min(op_name, inputs)\n elif node_name is None:\n op = new_op(*inputs, **mx_attr)\n else:\n op = new_op(*inputs, name=node_name, **mx_attr)\n node_output = self._fix_outputs(op_name, node.output)\n assert len(node_output) == len(op.list_outputs()\n ), 'Number of output mismatch {} vs {} in {}.'.format(len(\n node_output), len(op.list_outputs()), op_name)\n for k, i in zip(list(node_output), range(len(node_output))):\n self._nodes[k] = op[i]\n out = [self._nodes[i.name] for i in graph.output]\n if len(out) > 1:\n out = mx.sym.Group(out)\n else:\n out = out[0]\n return out, self._params\n", "role": "user" }, { "content": "from_onnx", "role": "assistant" } ]
def x(self, op_name, inputs, new_attr): pool_type = 'avg' if op_name == 'AveragePool' else 'max' stride = new_attr.get('strides') kernel = new_attr.get('kernel_shape') padding = new_attr.get('pads') pad_width = (0, 0, 0, 0) + _pad_sequence_fix(padding, len(kernel)) new_pad_op = mx.sym.pad(inputs[0], mode='constant', pad_width=pad_width) new_pooling_op = mx.sym.Pooling(new_pad_op, pool_type=pool_type, stride =stride, kernel=kernel) return new_pooling_op
fix_pooling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op_name, inputs, new_attr):\n pool_type = 'avg' if op_name == 'AveragePool' else 'max'\n stride = new_attr.get('strides')\n kernel = new_attr.get('kernel_shape')\n padding = new_attr.get('pads')\n pad_width = (0, 0, 0, 0) + _pad_sequence_fix(padding, len(kernel))\n new_pad_op = mx.sym.pad(inputs[0], mode='constant', pad_width=pad_width)\n new_pooling_op = mx.sym.Pooling(new_pad_op, pool_type=pool_type, stride\n =stride, kernel=kernel)\n return new_pooling_op\n", "role": "user" }, { "content": "fix_pooling", "role": "assistant" } ]
def x(self, inputs, new_attr): begin = new_attr.get('begin') end = new_attr.get('end') axes = new_attr.get('axis', tuple(range(len(begin)))) slice_op = mx.sym.slice_axis(inputs[0], axis=axes[0], begin=begin[0], end=end[0]) if len(axes) > 1: for i, axis in enumerate(axes): slice_op = mx.sym.slice_axis(slice_op, axis=axis, begin=begin[i ], end=end[i]) return slice_op
fix_slice
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inputs, new_attr):\n begin = new_attr.get('begin')\n end = new_attr.get('end')\n axes = new_attr.get('axis', tuple(range(len(begin))))\n slice_op = mx.sym.slice_axis(inputs[0], axis=axes[0], begin=begin[0],\n end=end[0])\n if len(axes) > 1:\n for i, axis in enumerate(axes):\n slice_op = mx.sym.slice_axis(slice_op, axis=axis, begin=begin[i\n ], end=end[i])\n return slice_op\n", "role": "user" }, { "content": "fix_slice", "role": "assistant" } ]
def x(self, inputs, new_attr): axes = new_attr.get('axis') op = mx.sym.split(inputs[0], axis=axes[0], num_outputs=1, squeeze_axis=1) for i in axes[1:]: op = mx.sym.split(op, axis=i - 1, num_outputs=1, squeeze_axis=1) return op
fix_squeeze
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inputs, new_attr):\n axes = new_attr.get('axis')\n op = mx.sym.split(inputs[0], axis=axes[0], num_outputs=1, squeeze_axis=1)\n for i in axes[1:]:\n op = mx.sym.split(op, axis=i - 1, num_outputs=1, squeeze_axis=1)\n return op\n", "role": "user" }, { "content": "fix_squeeze", "role": "assistant" } ]
def x(self, op_name, inputs): if len(inputs) > 1: if op_name == 'Max': op = mx.sym.maximum(inputs[0], inputs[1]) for ip in inputs[2:]: op = mx.sym.maximum(op, ip) elif op_name == 'Min': op = mx.sym.minimum(inputs[0], inputs[1]) for ip in inputs[2:]: op = mx.sym.minimum(op, ip) else: op = inputs[0] return op
fix_max_min
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op_name, inputs):\n if len(inputs) > 1:\n if op_name == 'Max':\n op = mx.sym.maximum(inputs[0], inputs[1])\n for ip in inputs[2:]:\n op = mx.sym.maximum(op, ip)\n elif op_name == 'Min':\n op = mx.sym.minimum(inputs[0], inputs[1])\n for ip in inputs[2:]:\n op = mx.sym.minimum(op, ip)\n else:\n op = inputs[0]\n return op\n", "role": "user" }, { "content": "fix_max_min", "role": "assistant" } ]
def x(self, op_name, inputs, old_attr): op = getattr(mx.sym, op_name, None) alpha = float(old_attr.get('alpha', 1.0)) beta = float(old_attr.get('beta', 1.0)) transA = int(old_attr.get('transA', 0)) transB = int(old_attr.get('transB', 0)) if transA: inputs[0] = mx.sym.transpose(inputs[0], axes=(1, 0)) if not transB: inputs[1] = mx.sym.transpose(inputs[1], axes=(1, 0)) new_inputs = [alpha * inputs[0], inputs[1], beta * inputs[2]] new_attr = {'num_hidden': self._params[inputs[2].name].shape[0]} return op, new_inputs, new_attr
fix_gemm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op_name, inputs, old_attr):\n op = getattr(mx.sym, op_name, None)\n alpha = float(old_attr.get('alpha', 1.0))\n beta = float(old_attr.get('beta', 1.0))\n transA = int(old_attr.get('transA', 0))\n transB = int(old_attr.get('transB', 0))\n if transA:\n inputs[0] = mx.sym.transpose(inputs[0], axes=(1, 0))\n if not transB:\n inputs[1] = mx.sym.transpose(inputs[1], axes=(1, 0))\n new_inputs = [alpha * inputs[0], inputs[1], beta * inputs[2]]\n new_attr = {'num_hidden': self._params[inputs[2].name].shape[0]}\n return op, new_inputs, new_attr\n", "role": "user" }, { "content": "fix_gemm", "role": "assistant" } ]
def x(self, tensor_proto): try: from onnx.numpy_helper import to_array except ImportError as e: raise ImportError('Unable to import onnx which is required {}'. format(e)) np_array = to_array(tensor_proto).reshape(tuple(tensor_proto.dims)) return mx.nd.array(np_array)
parse_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tensor_proto):\n try:\n from onnx.numpy_helper import to_array\n except ImportError as e:\n raise ImportError('Unable to import onnx which is required {}'.\n format(e))\n np_array = to_array(tensor_proto).reshape(tuple(tensor_proto.dims))\n return mx.nd.array(np_array)\n", "role": "user" }, { "content": "parse_array", "role": "assistant" } ]
def x(self, attr_proto): attrs = {} for a in attr_proto: for f in ['f', 'i', 's']: if a.HasField(f): attrs[a.name] = getattr(a, f) for f in ['floats', 'ints', 'strings']: if list(getattr(a, f)): assert a.name not in attrs, 'Only one type of attr is allowed' attrs[a.name] = tuple(getattr(a, f)) for f in ['t', 'g']: if a.HasField(f): attrs[a.name] = getattr(a, f) for f in ['tensors', 'graphs']: if list(getattr(a, f)): raise NotImplementedError('Filed {} is not supported in mxnet.' .format(f)) if a.name not in attrs: raise ValueError('Cannot parse attribute: \n{}\n.'.format(a)) return attrs
parse_attr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr_proto):\n attrs = {}\n for a in attr_proto:\n for f in ['f', 'i', 's']:\n if a.HasField(f):\n attrs[a.name] = getattr(a, f)\n for f in ['floats', 'ints', 'strings']:\n if list(getattr(a, f)):\n assert a.name not in attrs, 'Only one type of attr is allowed'\n attrs[a.name] = tuple(getattr(a, f))\n for f in ['t', 'g']:\n if a.HasField(f):\n attrs[a.name] = getattr(a, f)\n for f in ['tensors', 'graphs']:\n if list(getattr(a, f)):\n raise NotImplementedError('Filed {} is not supported in mxnet.'\n .format(f))\n if a.name not in attrs:\n raise ValueError('Cannot parse attribute: \\n{}\\n.'.format(a))\n return attrs\n", "role": "user" }, { "content": "parse_attr", "role": "assistant" } ]
def x(self, op, outputs): if op == 'Dropout': assert len(outputs) == 2, 'ONNX have two outputs for dropout layer.' outputs = outputs[:-1] return outputs
fix_outputs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op, outputs):\n if op == 'Dropout':\n assert len(outputs) == 2, 'ONNX have two outputs for dropout layer.'\n outputs = outputs[:-1]\n return outputs\n", "role": "user" }, { "content": "fix_outputs", "role": "assistant" } ]
def x(self, op, attrs, num_inputs): if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym. FullyConnected]: return attrs if num_inputs == 3: attrs['no_bias'] = False elif num_inputs == 2: attrs['no_bias'] = True else: raise ValueError('Unexpected number of inputs for: {}'.format(op)) return attrs
fix_bias
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op, attrs, num_inputs):\n if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym.\n FullyConnected]:\n return attrs\n if num_inputs == 3:\n attrs['no_bias'] = False\n elif num_inputs == 2:\n attrs['no_bias'] = True\n else:\n raise ValueError('Unexpected number of inputs for: {}'.format(op))\n return attrs\n", "role": "user" }, { "content": "fix_bias", "role": "assistant" } ]
def x(self, op_name, inputs, attrs): if (op_name == 'Add' or op_name == 'Mul') and int(len(self._params) ) > 0 and ('broadcast' in attrs and attrs['broadcast'] == 1): assert len(list(inputs)) == 2 bias_name = self._renames.get(inputs[1], inputs[1]) bias = self._params[bias_name] assert len(bias.shape) == 1 bias = mx.nd.array(bias.asnumpy().reshape((1, -1, 1, 1))) self._nodes[bias_name] = mx.sym.Variable(name=bias_name, shape=bias .shape) self._params[bias_name] = bias
fix_bias_shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op_name, inputs, attrs):\n if (op_name == 'Add' or op_name == 'Mul') and int(len(self._params)\n ) > 0 and ('broadcast' in attrs and attrs['broadcast'] == 1):\n assert len(list(inputs)) == 2\n bias_name = self._renames.get(inputs[1], inputs[1])\n bias = self._params[bias_name]\n assert len(bias.shape) == 1\n bias = mx.nd.array(bias.asnumpy().reshape((1, -1, 1, 1)))\n self._nodes[bias_name] = mx.sym.Variable(name=bias_name, shape=bias\n .shape)\n self._params[bias_name] = bias\n", "role": "user" }, { "content": "fix_bias_shape", "role": "assistant" } ]
def x(self, op, attrs, inputs): if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym. FullyConnected]: return attrs weight_name = self._renames[inputs[1]] if not weight_name in self._params: raise ValueError('Unable to get channels/units attr from onnx graph.') else: wshape = self._params[weight_name].shape assert len(wshape) >= 2, 'Weights shape is invalid: {}'.format(wshape) if op in [mx.sym.FullyConnected]: attrs['num_hidden'] = wshape[0] elif op == mx.sym.Convolution: attrs['num_filter'] = wshape[0] elif op == mx.sym.Deconvolution: attrs['num_filter'] = wshape[1] return attrs
fix_channels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, op, attrs, inputs):\n if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym.\n FullyConnected]:\n return attrs\n weight_name = self._renames[inputs[1]]\n if not weight_name in self._params:\n raise ValueError('Unable to get channels/units attr from onnx graph.')\n else:\n wshape = self._params[weight_name].shape\n assert len(wshape) >= 2, 'Weights shape is invalid: {}'.format(wshape)\n if op in [mx.sym.FullyConnected]:\n attrs['num_hidden'] = wshape[0]\n elif op == mx.sym.Convolution:\n attrs['num_filter'] = wshape[0]\n elif op == mx.sym.Deconvolution:\n attrs['num_filter'] = wshape[1]\n return attrs\n", "role": "user" }, { "content": "fix_channels", "role": "assistant" } ]
def x(self, inputs, **kwargs): input_data = np.asarray(inputs[0], dtype='f') if self.device == 'CPU': ctx = mx.cpu() else: raise NotImplementedError('Only CPU context is supported for now') mod = mx.mod.Module(symbol=self.symbol, data_names=['input_0'], context =ctx, label_names=None) mod.bind(for_training=False, data_shapes=[('input_0', input_data.shape) ], label_shapes=None) mod.set_params(arg_params=self.params, aux_params=None) batch = namedtuple('Batch', ['data']) mod.forward(batch([mx.nd.array(input_data)])) result = mod.get_outputs()[0].asnumpy() return [result]
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inputs, **kwargs):\n input_data = np.asarray(inputs[0], dtype='f')\n if self.device == 'CPU':\n ctx = mx.cpu()\n else:\n raise NotImplementedError('Only CPU context is supported for now')\n mod = mx.mod.Module(symbol=self.symbol, data_names=['input_0'], context\n =ctx, label_names=None)\n mod.bind(for_training=False, data_shapes=[('input_0', input_data.shape)\n ], label_shapes=None)\n mod.set_params(arg_params=self.params, aux_params=None)\n batch = namedtuple('Batch', ['data'])\n mod.forward(batch([mx.nd.array(input_data)]))\n result = mod.get_outputs()[0].asnumpy()\n return [result]\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, target): if not isinstance(target, (list, tuple)): k, v, t = target, None, lambda x: x elif len(target) == 1: k, v, t = target[0], None, lambda x: x elif len(target) == 2: k, v, t = target[0], target[1], lambda x: x elif len(target) > 2: k, v, t = target[0], target[1], target[2] else: k = None if not isinstance(k, string_types): msg = '{} is not a valid target, (name, default) expected.'.format( target) raise ValueError(msg) return k, v, t
parse_default
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, target):\n if not isinstance(target, (list, tuple)):\n k, v, t = target, None, lambda x: x\n elif len(target) == 1:\n k, v, t = target[0], None, lambda x: x\n elif len(target) == 2:\n k, v, t = target[0], target[1], lambda x: x\n elif len(target) > 2:\n k, v, t = target[0], target[1], target[2]\n else:\n k = None\n if not isinstance(k, string_types):\n msg = '{} is not a valid target, (name, default) expected.'.format(\n target)\n raise ValueError(msg)\n return k, v, t\n", "role": "user" }, { "content": "parse_default", "role": "assistant" } ]
def x(self, value): if isinstance(value, string_types): return value.strip().lower() in ['true', '1', 't', 'y', 'yes'] return bool(value)
parse_bool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if isinstance(value, string_types):\n return value.strip().lower() in ['true', '1', 't', 'y', 'yes']\n return bool(value)\n", "role": "user" }, { "content": "parse_bool", "role": "assistant" } ]
def x(self, attr, key): assert isinstance(attr, dict) if key not in attr: raise AttributeError('Required attribute {} not found.'.format(key)) return attr[key]
required_attr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, attr, key):\n assert isinstance(attr, dict)\n if key not in attr:\n raise AttributeError('Required attribute {} not found.'.format(key))\n return attr[key]\n", "role": "user" }, { "content": "required_attr", "role": "assistant" } ]
def x(node, inputs): initializer = [] tensor_input_info = [] tensor_output_info = [] for index in range(len(node.input)): tensor_input_info.append(helper.make_tensor_value_info(str(node. input[index]), TensorProto.FLOAT, [1])) if node.input[index] == 'W': dim = inputs[index].shape param_tensor = helper.make_tensor(name=node.input[index], data_type=TensorProto.FLOAT, dims=dim, vals=inputs[index]. flatten()) initializer.append(param_tensor) for index in range(len(node.output)): tensor_output_info.append(helper.make_tensor_value_info(str(node. output[index]), TensorProto.FLOAT, [1])) graph_proto = helper.make_graph([node], 'test', tensor_input_info, tensor_output_info, initializer=initializer) return graph_proto
make_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(node, inputs):\n initializer = []\n tensor_input_info = []\n tensor_output_info = []\n for index in range(len(node.input)):\n tensor_input_info.append(helper.make_tensor_value_info(str(node.\n input[index]), TensorProto.FLOAT, [1]))\n if node.input[index] == 'W':\n dim = inputs[index].shape\n param_tensor = helper.make_tensor(name=node.input[index],\n data_type=TensorProto.FLOAT, dims=dim, vals=inputs[index].\n flatten())\n initializer.append(param_tensor)\n for index in range(len(node.output)):\n tensor_output_info.append(helper.make_tensor_value_info(str(node.\n output[index]), TensorProto.FLOAT, [1]))\n graph_proto = helper.make_graph([node], 'test', tensor_input_info,\n tensor_output_info, initializer=initializer)\n return graph_proto\n", "role": "user" }, { "content": "make_graph", "role": "assistant" } ]
def x(cls, node, inputs, device='CPU'): graph = GraphProto() sym, _ = graph.from_onnx(MXNetBackend.make_graph(node, inputs)) data_names = [i for i in sym.get_internals().list_inputs()] data_shapes = [] reduce_op_types = set(['ReduceMin', 'ReduceMax', 'ReduceMean', 'ReduceProd', 'ReduceSum', 'Slice', 'Pad', 'Squeeze', 'Upsample', 'Reshape', 'Conv', 'ConvTranspose']) for idx, input_name in enumerate(data_names): batch_size = 1 if len(inputs[idx].shape) < 4 and len(inputs) > 1 and len(set(x. shape[0] for x in inputs)) != 1: tuples = (batch_size,), inputs[idx].shape new_shape = sum(tuples, ()) data_shapes.append((input_name, new_shape)) else: data_shapes.append((input_name, inputs[idx].shape)) if device == 'CPU': ctx = mx.cpu() else: raise NotImplementedError('Only CPU context is supported for now') mod = mx.mod.Module(symbol=sym, data_names=data_names, context=ctx, label_names=None) mod.bind(for_training=False, data_shapes=data_shapes, label_shapes=None) mod.init_params() data_forward = [] for idx, input_name in enumerate(data_names): val = inputs[idx] if node.op_type in reduce_op_types: data_forward.append(mx.nd.array(val)) else: data_forward.append(mx.nd.array([val])) mod.forward(mx.io.DataBatch(data_forward)) result = mod.get_outputs()[0].asnumpy() if node.op_type in reduce_op_types: return [result] return result
run_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, node, inputs, device='CPU'):\n graph = GraphProto()\n sym, _ = graph.from_onnx(MXNetBackend.make_graph(node, inputs))\n data_names = [i for i in sym.get_internals().list_inputs()]\n data_shapes = []\n reduce_op_types = set(['ReduceMin', 'ReduceMax', 'ReduceMean',\n 'ReduceProd', 'ReduceSum', 'Slice', 'Pad', 'Squeeze', 'Upsample',\n 'Reshape', 'Conv', 'ConvTranspose'])\n for idx, input_name in enumerate(data_names):\n batch_size = 1\n if len(inputs[idx].shape) < 4 and len(inputs) > 1 and len(set(x.\n shape[0] for x in inputs)) != 1:\n tuples = (batch_size,), inputs[idx].shape\n new_shape = sum(tuples, ())\n data_shapes.append((input_name, new_shape))\n else:\n data_shapes.append((input_name, inputs[idx].shape))\n if device == 'CPU':\n ctx = mx.cpu()\n else:\n raise NotImplementedError('Only CPU context is supported for now')\n mod = mx.mod.Module(symbol=sym, data_names=data_names, context=ctx,\n label_names=None)\n mod.bind(for_training=False, data_shapes=data_shapes, label_shapes=None)\n mod.init_params()\n data_forward = []\n for idx, input_name in enumerate(data_names):\n val = inputs[idx]\n if node.op_type in reduce_op_types:\n data_forward.append(mx.nd.array(val))\n else:\n data_forward.append(mx.nd.array([val]))\n mod.forward(mx.io.DataBatch(data_forward))\n result = mod.get_outputs()[0].asnumpy()\n if node.op_type in reduce_op_types:\n return [result]\n return result\n", "role": "user" }, { "content": "run_node", "role": "assistant" } ]
def x(cls, model, device='CPU', **kwargs): graph = GraphProto() sym, params = graph.from_onnx(model.graph) return MXNetBackendRep(sym, params, device)
prepare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, model, device='CPU', **kwargs):\n graph = GraphProto()\n sym, params = graph.from_onnx(model.graph)\n return MXNetBackendRep(sym, params, device)\n", "role": "user" }, { "content": "prepare", "role": "assistant" } ]
def x(attr): if len(attr) == 4: attr = attr[:2] elif len(attr) == 2: pass else: raise ValueError('Invalid caffe2 type padding: {}'.format(attr)) return attr
revert_caffe2_pad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(attr):\n if len(attr) == 4:\n attr = attr[:2]\n elif len(attr) == 2:\n pass\n else:\n raise ValueError('Invalid caffe2 type padding: {}'.format(attr))\n return attr\n", "role": "user" }, { "content": "revert_caffe2_pad", "role": "assistant" } ]
def x(attr, kernelDim=None): new_attr = () if len(attr) % 2 == 0: for index in range(int(len(attr) / 2)): new_attr = new_attr + attr[index::int(len(attr) / 2)] if kernelDim is not None: while len(new_attr) < kernelDim * 2: new_attr = new_attr + (0, 0) return new_attr
pad_sequence_fix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(attr, kernelDim=None):\n new_attr = ()\n if len(attr) % 2 == 0:\n for index in range(int(len(attr) / 2)):\n new_attr = new_attr + attr[index::int(len(attr) / 2)]\n if kernelDim is not None:\n while len(new_attr) < kernelDim * 2:\n new_attr = new_attr + (0, 0)\n return new_attr\n", "role": "user" }, { "content": "pad_sequence_fix", "role": "assistant" } ]
def x(model_file): graph = GraphProto() model_proto = onnx.load(model_file) sym, params = graph.from_onnx(model_proto.graph) return sym, params
import_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model_file):\n graph = GraphProto()\n model_proto = onnx.load(model_file)\n sym, params = graph.from_onnx(model_proto.graph)\n return sym, params\n", "role": "user" }, { "content": "import_model", "role": "assistant" } ]
def x(filepath): fr = FileReader(filepath) data = fr.read_bin() return _calculate_sha256(data)
generate_hash
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filepath):\n fr = FileReader(filepath)\n data = fr.read_bin()\n return _calculate_sha256(data)\n", "role": "user" }, { "content": "generate_hash", "role": "assistant" } ]
def x(directory_list): tar_file_list = [] for directory in directory_list: if dir_exists(directory): _generate_tar(directory) tar_file_list.append(directory + '.tar') else: stderr("The directory '" + directory + "' does not exist and a tar archive could not be created from it." , exit=1) return tar_file_list
generate_tar_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directory_list):\n tar_file_list = []\n for directory in directory_list:\n if dir_exists(directory):\n _generate_tar(directory)\n tar_file_list.append(directory + '.tar')\n else:\n stderr(\"The directory '\" + directory +\n \"' does not exist and a tar archive could not be created from it.\"\n , exit=1)\n return tar_file_list\n", "role": "user" }, { "content": "generate_tar_files", "role": "assistant" } ]
def x(file_list): for f in file_list: if file_exists(f) and f.endswith('.tar'): os.remove(f)
remove_tar_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_list):\n for f in file_list:\n if file_exists(f) and f.endswith('.tar'):\n os.remove(f)\n", "role": "user" }, { "content": "remove_tar_files", "role": "assistant" } ]
def x(dir_path): try: with tarfile.open(dir_path + '.tar', 'w') as tar: tar.add(dir_path) except tarfile.TarError as e: stderr('Error: tar archive creation failed [' + str(e) + ']', exit=1)
generate_tar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dir_path):\n try:\n with tarfile.open(dir_path + '.tar', 'w') as tar:\n tar.add(dir_path)\n except tarfile.TarError as e:\n stderr('Error: tar archive creation failed [' + str(e) + ']', exit=1)\n", "role": "user" }, { "content": "generate_tar", "role": "assistant" } ]
def x(self, inpath, force_nocompress=False, force_compress=False, armored= False, checksum=False): if armored: if force_compress: command_stub = self.command_maxcompress_armored elif force_nocompress: command_stub = self.command_nocompress_armored elif self._is_compress_filetype(inpath): command_stub = self.command_default_armored else: command_stub = self.command_nocompress_armored elif force_compress: command_stub = self.command_maxcompress elif force_nocompress: command_stub = self.command_nocompress elif self._is_compress_filetype(inpath): command_stub = self.command_default else: command_stub = self.command_nocompress encrypted_outpath = self._create_outfilepath(inpath) system_command = (command_stub + encrypted_outpath + ' --passphrase ' + quote(self.passphrase) + ' --symmetric ' + quote(inpath)) try: response = muterun(system_command) if response.exitcode == 0: stdout(encrypted_outpath + ' was generated from ' + inpath) if checksum: from crypto.library import hash encrypted_file_hash = hash.generate_hash(encrypted_outpath) if len(encrypted_file_hash) == 64: stdout('SHA256 hash digest for ' + encrypted_outpath + ' :' ) stdout(encrypted_file_hash) else: stdout( 'Unable to generate a SHA256 hash digest for the file ' + encrypted_outpath) else: stderr(response.stderr, 0) stderr('Encryption failed') sys.exit(1) except Exception as e: stderr( 'There was a problem with the execution of gpg. Encryption failed. Error: [' + str(e) + ']') sys.exit(1)
encrypt_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inpath, force_nocompress=False, force_compress=False, armored=\n False, checksum=False):\n if armored:\n if force_compress:\n command_stub = self.command_maxcompress_armored\n elif force_nocompress:\n command_stub = self.command_nocompress_armored\n elif self._is_compress_filetype(inpath):\n command_stub = self.command_default_armored\n else:\n command_stub = self.command_nocompress_armored\n elif force_compress:\n command_stub = self.command_maxcompress\n elif force_nocompress:\n command_stub = self.command_nocompress\n elif self._is_compress_filetype(inpath):\n command_stub = self.command_default\n else:\n command_stub = self.command_nocompress\n encrypted_outpath = self._create_outfilepath(inpath)\n system_command = (command_stub + encrypted_outpath + ' --passphrase ' +\n quote(self.passphrase) + ' --symmetric ' + quote(inpath))\n try:\n response = muterun(system_command)\n if response.exitcode == 0:\n stdout(encrypted_outpath + ' was generated from ' + inpath)\n if checksum:\n from crypto.library import hash\n encrypted_file_hash = hash.generate_hash(encrypted_outpath)\n if len(encrypted_file_hash) == 64:\n stdout('SHA256 hash digest for ' + encrypted_outpath + ' :'\n )\n stdout(encrypted_file_hash)\n else:\n stdout(\n 'Unable to generate a SHA256 hash digest for the file '\n + encrypted_outpath)\n else:\n stderr(response.stderr, 0)\n stderr('Encryption failed')\n sys.exit(1)\n except Exception as e:\n stderr(\n 'There was a problem with the execution of gpg. Encryption failed. Error: ['\n + str(e) + ']')\n sys.exit(1)\n", "role": "user" }, { "content": "encrypt_file", "role": "assistant" } ]
def x(self, file_list, force_nocompress=False, force_compress=False, armored=False, checksum=False): for the_file in file_list: self.encrypt_file(the_file, force_nocompress, force_compress, armored, checksum)
encrypt_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, file_list, force_nocompress=False, force_compress=False,\n armored=False, checksum=False):\n for the_file in file_list:\n self.encrypt_file(the_file, force_nocompress, force_compress,\n armored, checksum)\n", "role": "user" }, { "content": "encrypt_files", "role": "assistant" } ]
def x(self, inpath): if self._is_common_binary(inpath): return False elif self._is_common_text(inpath): return True else: the_file_size = file_size(inpath) if the_file_size > 10240: if the_file_size > 512000: try: system_command = 'file --mime-type -b ' + quote(inpath) response = muterun(system_command) if response.stdout[0:5] == 'text/': return True else: return False except Exception: return False else: return True else: return False
is_compress_filetype
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inpath):\n if self._is_common_binary(inpath):\n return False\n elif self._is_common_text(inpath):\n return True\n else:\n the_file_size = file_size(inpath)\n if the_file_size > 10240:\n if the_file_size > 512000:\n try:\n system_command = 'file --mime-type -b ' + quote(inpath)\n response = muterun(system_command)\n if response.stdout[0:5] == 'text/':\n return True\n else:\n return False\n except Exception:\n return False\n else:\n return True\n else:\n return False\n", "role": "user" }, { "content": "is_compress_filetype", "role": "assistant" } ]
def x(self, inpath): two_suffix = inpath[-3:] three_suffix = inpath[-4:] four_suffix = inpath[-5:] if two_suffix in self.common_binaries: return True elif three_suffix in self.common_binaries: return True elif four_suffix in self.common_binaries: return True else: return False
is_common_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inpath):\n two_suffix = inpath[-3:]\n three_suffix = inpath[-4:]\n four_suffix = inpath[-5:]\n if two_suffix in self.common_binaries:\n return True\n elif three_suffix in self.common_binaries:\n return True\n elif four_suffix in self.common_binaries:\n return True\n else:\n return False\n", "role": "user" }, { "content": "is_common_binary", "role": "assistant" } ]
def x(self, inpath): one_suffix = inpath[-2:] two_suffix = inpath[-3:] three_suffix = inpath[-4:] four_suffix = inpath[-5:] if one_suffix in self.common_text: return True elif two_suffix in self.common_text: return True elif three_suffix in self.common_text: return True elif four_suffix in self.common_text: return True else: return False
is_common_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inpath):\n one_suffix = inpath[-2:]\n two_suffix = inpath[-3:]\n three_suffix = inpath[-4:]\n four_suffix = inpath[-5:]\n if one_suffix in self.common_text:\n return True\n elif two_suffix in self.common_text:\n return True\n elif three_suffix in self.common_text:\n return True\n elif four_suffix in self.common_text:\n return True\n else:\n return False\n", "role": "user" }, { "content": "is_common_text", "role": "assistant" } ]
def x(X, missing_mask, k, verbose=False, print_interval=100): start_t = time.time() n_rows, n_cols = X.shape missing_mask_column_major = np.asarray(missing_mask, order='F') observed_mask_column_major = ~missing_mask_column_major X_column_major = X.copy(order='F') X_row_major, D, effective_infinity = knn_initialize(X, missing_mask, verbose=verbose) D_sorted = np.argsort(D, axis=1) inv_D = 1.0 / D D_valid_mask = D < effective_infinity valid_distances_per_row = D_valid_mask.sum(axis=1) D_sorted = [D_sorted[i, :count] for i, count in enumerate( valid_distances_per_row)] dot = np.dot for i in range(n_rows): missing_row = missing_mask[i, :] missing_indices = np.where(missing_row)[0] row_weights = inv_D[i, :] if verbose and i % print_interval == 0: print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' % (i + 1, n_rows, len(missing_indices), time.time() - start_t)) candidate_neighbor_indices = D_sorted[i] for j in missing_indices: observed = observed_mask_column_major[:, j] sorted_observed = observed[candidate_neighbor_indices] observed_neighbor_indices = candidate_neighbor_indices[ sorted_observed] k_nearest_indices = observed_neighbor_indices[:k] weights = row_weights[k_nearest_indices] weight_sum = weights.sum() if weight_sum > 0: column = X_column_major[:, j] values = column[k_nearest_indices] X_row_major[i, j] = dot(values, weights) / weight_sum return X_row_major
knn_impute_few_observed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n start_t = time.time()\n n_rows, n_cols = X.shape\n missing_mask_column_major = np.asarray(missing_mask, order='F')\n observed_mask_column_major = ~missing_mask_column_major\n X_column_major = X.copy(order='F')\n X_row_major, D, effective_infinity = knn_initialize(X, missing_mask,\n verbose=verbose)\n D_sorted = np.argsort(D, axis=1)\n inv_D = 1.0 / D\n D_valid_mask = D < effective_infinity\n valid_distances_per_row = D_valid_mask.sum(axis=1)\n D_sorted = [D_sorted[i, :count] for i, count in enumerate(\n valid_distances_per_row)]\n dot = np.dot\n for i in range(n_rows):\n missing_row = missing_mask[i, :]\n missing_indices = np.where(missing_row)[0]\n row_weights = inv_D[i, :]\n if verbose and i % print_interval == 0:\n print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %\n (i + 1, n_rows, len(missing_indices), time.time() - start_t))\n candidate_neighbor_indices = D_sorted[i]\n for j in missing_indices:\n observed = observed_mask_column_major[:, j]\n sorted_observed = observed[candidate_neighbor_indices]\n observed_neighbor_indices = candidate_neighbor_indices[\n sorted_observed]\n k_nearest_indices = observed_neighbor_indices[:k]\n weights = row_weights[k_nearest_indices]\n weight_sum = weights.sum()\n if weight_sum > 0:\n column = X_column_major[:, j]\n values = column[k_nearest_indices]\n X_row_major[i, j] = dot(values, weights) / weight_sum\n return X_row_major\n", "role": "user" }, { "content": "knn_impute_few_observed", "role": "assistant" } ]
def x(X, missing_mask, verbose=False, min_dist=1e-06, max_dist_multiplier= 1000000.0): X_row_major = X.copy('C') if missing_mask.sum() != np.isnan(X_row_major).sum(): X_row_major[missing_mask] = np.nan D = all_pairs_normalized_distances(X_row_major) D_finite_flat = D[np.isfinite(D)] if len(D_finite_flat) > 0: max_dist = max_dist_multiplier * max(1, D_finite_flat.max()) else: max_dist = max_dist_multiplier np.fill_diagonal(D, max_dist) D[D < min_dist] = min_dist D[D > max_dist] = max_dist return X_row_major, D, max_dist
knn_initialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, missing_mask, verbose=False, min_dist=1e-06, max_dist_multiplier=\n 1000000.0):\n X_row_major = X.copy('C')\n if missing_mask.sum() != np.isnan(X_row_major).sum():\n X_row_major[missing_mask] = np.nan\n D = all_pairs_normalized_distances(X_row_major)\n D_finite_flat = D[np.isfinite(D)]\n if len(D_finite_flat) > 0:\n max_dist = max_dist_multiplier * max(1, D_finite_flat.max())\n else:\n max_dist = max_dist_multiplier\n np.fill_diagonal(D, max_dist)\n D[D < min_dist] = min_dist\n D[D > max_dist] = max_dist\n return X_row_major, D, max_dist\n", "role": "user" }, { "content": "knn_initialize", "role": "assistant" } ]
def x(X, missing_mask, k, verbose=False, print_interval=100): start_t = time.time() n_rows, n_cols = X.shape X_row_major, D, _ = knn_initialize(X, missing_mask, verbose=verbose) D_sorted_indices = np.argsort(D, axis=1) X_column_major = X_row_major.copy(order='F') dot = np.dot neighbor_weights = np.ones(k, dtype=X.dtype) missing_mask_column_major = np.asarray(missing_mask, order='F') observed_mask_column_major = ~missing_mask_column_major for i in range(n_rows): missing_columns = np.where(missing_mask[i])[0] if verbose and i % print_interval == 0: print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' % (i + 1, n_rows, len(missing_columns), time.time() - start_t)) n_missing_columns = len(missing_columns) if n_missing_columns == 0: continue row_distances = D[i, :] neighbor_indices = D_sorted_indices[i, :] X_missing_columns = X_column_major[:, missing_columns] k_nearest_indices = neighbor_indices[:k] np.divide(1.0, row_distances[k_nearest_indices], out=neighbor_weights) X_knn = X_missing_columns[k_nearest_indices, :] weighted_average_of_neighboring_rows = dot(X_knn.T, neighbor_weights) sum_weights = neighbor_weights.sum() weighted_average_of_neighboring_rows /= sum_weights imputed_values = weighted_average_of_neighboring_rows observed_mask_missing_columns = observed_mask_column_major[:, missing_columns] observed_mask_missing_columns_sorted = observed_mask_missing_columns[ neighbor_indices, :] observed_cumulative_sum = observed_mask_missing_columns_sorted.cumsum( axis=0) sufficient_rows = observed_cumulative_sum == k n_rows_needed = sufficient_rows.argmax(axis=0) + 1 max_rows_needed = n_rows_needed.max() if max_rows_needed == k: X[i, missing_columns] = imputed_values continue necessary_indices = neighbor_indices[:max_rows_needed] d_sorted = row_distances[necessary_indices] X_missing_columns_sorted = X_missing_columns[necessary_indices, :] observed_mask_missing_columns_sorted = ( observed_mask_missing_columns_sorted[:max_rows_needed, :]) for missing_column_idx in range(n_missing_columns): if n_rows_needed[missing_column_idx] == k: assert np.isfinite(imputed_values[missing_column_idx] ), 'Expected finite imputed value #%d (column #%d for row %d)' % ( missing_column_idx, missing_columns[missing_column_idx], i) continue row_mask = observed_mask_missing_columns_sorted[:, missing_column_idx] sorted_column_values = X_missing_columns_sorted[:, missing_column_idx] neighbor_distances = d_sorted[row_mask][:k] k_or_less = len(neighbor_distances) usable_weights = neighbor_weights[:k_or_less] np.divide(1.0, neighbor_distances, out=usable_weights) neighbor_values = sorted_column_values[row_mask][:k_or_less] imputed_values[missing_column_idx] = dot(neighbor_values, usable_weights) / usable_weights.sum() X[i, missing_columns] = imputed_values return X
knn_impute_optimistic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n start_t = time.time()\n n_rows, n_cols = X.shape\n X_row_major, D, _ = knn_initialize(X, missing_mask, verbose=verbose)\n D_sorted_indices = np.argsort(D, axis=1)\n X_column_major = X_row_major.copy(order='F')\n dot = np.dot\n neighbor_weights = np.ones(k, dtype=X.dtype)\n missing_mask_column_major = np.asarray(missing_mask, order='F')\n observed_mask_column_major = ~missing_mask_column_major\n for i in range(n_rows):\n missing_columns = np.where(missing_mask[i])[0]\n if verbose and i % print_interval == 0:\n print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %\n (i + 1, n_rows, len(missing_columns), time.time() - start_t))\n n_missing_columns = len(missing_columns)\n if n_missing_columns == 0:\n continue\n row_distances = D[i, :]\n neighbor_indices = D_sorted_indices[i, :]\n X_missing_columns = X_column_major[:, missing_columns]\n k_nearest_indices = neighbor_indices[:k]\n np.divide(1.0, row_distances[k_nearest_indices], out=neighbor_weights)\n X_knn = X_missing_columns[k_nearest_indices, :]\n weighted_average_of_neighboring_rows = dot(X_knn.T, neighbor_weights)\n sum_weights = neighbor_weights.sum()\n weighted_average_of_neighboring_rows /= sum_weights\n imputed_values = weighted_average_of_neighboring_rows\n observed_mask_missing_columns = observed_mask_column_major[:,\n missing_columns]\n observed_mask_missing_columns_sorted = observed_mask_missing_columns[\n neighbor_indices, :]\n observed_cumulative_sum = observed_mask_missing_columns_sorted.cumsum(\n axis=0)\n sufficient_rows = observed_cumulative_sum == k\n n_rows_needed = sufficient_rows.argmax(axis=0) + 1\n max_rows_needed = n_rows_needed.max()\n if max_rows_needed == k:\n X[i, missing_columns] = imputed_values\n continue\n necessary_indices = neighbor_indices[:max_rows_needed]\n d_sorted = row_distances[necessary_indices]\n X_missing_columns_sorted = X_missing_columns[necessary_indices, :]\n observed_mask_missing_columns_sorted = (\n observed_mask_missing_columns_sorted[:max_rows_needed, :])\n for missing_column_idx in range(n_missing_columns):\n if n_rows_needed[missing_column_idx] == k:\n assert np.isfinite(imputed_values[missing_column_idx]\n ), 'Expected finite imputed value #%d (column #%d for row %d)' % (\n missing_column_idx, missing_columns[missing_column_idx], i)\n continue\n row_mask = observed_mask_missing_columns_sorted[:,\n missing_column_idx]\n sorted_column_values = X_missing_columns_sorted[:,\n missing_column_idx]\n neighbor_distances = d_sorted[row_mask][:k]\n k_or_less = len(neighbor_distances)\n usable_weights = neighbor_weights[:k_or_less]\n np.divide(1.0, neighbor_distances, out=usable_weights)\n neighbor_values = sorted_column_values[row_mask][:k_or_less]\n imputed_values[missing_column_idx] = dot(neighbor_values,\n usable_weights) / usable_weights.sum()\n X[i, missing_columns] = imputed_values\n return X\n", "role": "user" }, { "content": "knn_impute_optimistic", "role": "assistant" } ]
def x(X): n_rows, n_cols = X.shape D = np.ones((n_rows, n_rows), dtype='float32', order='C') * np.inf observed_elements = np.isfinite(X).astype(int) n_shared_features_for_pairs_of_rows = np.dot(observed_elements, observed_elements.T) no_overlapping_features_rows = n_shared_features_for_pairs_of_rows == 0 number_incomparable_rows = no_overlapping_features_rows.sum(axis=1) row_overlaps_every_other_row = number_incomparable_rows == 0 row_overlaps_no_other_rows = number_incomparable_rows == n_rows valid_rows_mask = ~row_overlaps_no_other_rows valid_row_indices = np.where(valid_rows_mask)[0] diffs = np.zeros_like(X) missing_differences = np.zeros_like(diffs, dtype=bool) valid_rows = np.zeros(n_rows, dtype=bool) ssd = np.zeros(n_rows, dtype=X.dtype) for i in valid_row_indices: x = X[i, :] np.subtract(X, x.reshape((1, n_cols)), out=diffs) np.isnan(diffs, out=missing_differences) diffs[missing_differences] = 0 diffs **= 2 observed_counts_per_row = n_shared_features_for_pairs_of_rows[i] if row_overlaps_every_other_row[i]: diffs.sum(axis=1, out=D[i, :]) D[i, :] /= observed_counts_per_row else: np.logical_not(no_overlapping_features_rows[i], out=valid_rows) diffs.sum(axis=1, out=ssd) ssd[valid_rows] /= observed_counts_per_row[valid_rows] D[i, valid_rows] = ssd[valid_rows] return D
all_pairs_normalized_distances
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X):\n n_rows, n_cols = X.shape\n D = np.ones((n_rows, n_rows), dtype='float32', order='C') * np.inf\n observed_elements = np.isfinite(X).astype(int)\n n_shared_features_for_pairs_of_rows = np.dot(observed_elements,\n observed_elements.T)\n no_overlapping_features_rows = n_shared_features_for_pairs_of_rows == 0\n number_incomparable_rows = no_overlapping_features_rows.sum(axis=1)\n row_overlaps_every_other_row = number_incomparable_rows == 0\n row_overlaps_no_other_rows = number_incomparable_rows == n_rows\n valid_rows_mask = ~row_overlaps_no_other_rows\n valid_row_indices = np.where(valid_rows_mask)[0]\n diffs = np.zeros_like(X)\n missing_differences = np.zeros_like(diffs, dtype=bool)\n valid_rows = np.zeros(n_rows, dtype=bool)\n ssd = np.zeros(n_rows, dtype=X.dtype)\n for i in valid_row_indices:\n x = X[i, :]\n np.subtract(X, x.reshape((1, n_cols)), out=diffs)\n np.isnan(diffs, out=missing_differences)\n diffs[missing_differences] = 0\n diffs **= 2\n observed_counts_per_row = n_shared_features_for_pairs_of_rows[i]\n if row_overlaps_every_other_row[i]:\n diffs.sum(axis=1, out=D[i, :])\n D[i, :] /= observed_counts_per_row\n else:\n np.logical_not(no_overlapping_features_rows[i], out=valid_rows)\n diffs.sum(axis=1, out=ssd)\n ssd[valid_rows] /= observed_counts_per_row[valid_rows]\n D[i, valid_rows] = ssd[valid_rows]\n return D\n", "role": "user" }, { "content": "all_pairs_normalized_distances", "role": "assistant" } ]
def x(X): n_samples, n_cols = X.shape D = np.ones((n_samples, n_samples), dtype='float32') * np.inf for i in range(n_samples): diffs = X - X[i, :].reshape((1, n_cols)) missing_diffs = np.isnan(diffs) missing_counts_per_row = missing_diffs.sum(axis=1) valid_rows = missing_counts_per_row < n_cols D[i, valid_rows] = np.nanmean(diffs[valid_rows, :] ** 2, axis=1) return D
all_pairs_normalized_distances_reference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X):\n n_samples, n_cols = X.shape\n D = np.ones((n_samples, n_samples), dtype='float32') * np.inf\n for i in range(n_samples):\n diffs = X - X[i, :].reshape((1, n_cols))\n missing_diffs = np.isnan(diffs)\n missing_counts_per_row = missing_diffs.sum(axis=1)\n valid_rows = missing_counts_per_row < n_cols\n D[i, valid_rows] = np.nanmean(diffs[valid_rows, :] ** 2, axis=1)\n return D\n", "role": "user" }, { "content": "all_pairs_normalized_distances_reference", "role": "assistant" } ]
def x(X, missing_mask, k, verbose=False, print_interval=100): start_t = time.time() n_rows, n_cols = X.shape missing_mask_column_major = np.asarray(missing_mask, order='F') X_row_major, D, effective_infinity = knn_initialize(X, missing_mask, verbose=verbose) D_reciprocal = 1.0 / D dot = np.dot array = np.array argpartition = np.argpartition for i in range(n_rows): missing_indices = np.where(missing_mask[i])[0] if verbose and i % print_interval == 0: print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' % (i + 1, n_rows, len(missing_indices), time.time() - start_t)) d = D[i, :] inv_d = D_reciprocal[i, :] for j in missing_indices: d_copy = d.copy() d_copy[missing_mask_column_major[:, j]] = effective_infinity neighbor_indices = argpartition(d_copy, k)[:k] if d_copy[neighbor_indices].max() >= effective_infinity: neighbor_indices = array([neighbor_index for neighbor_index in neighbor_indices if d_copy[neighbor_index] < effective_infinity]) n_current_neighbors = len(neighbor_indices) if n_current_neighbors > 0: neighbor_weights = inv_d[neighbor_indices] X_row_major[i, j] = dot(X[:, j][neighbor_indices], neighbor_weights) / neighbor_weights.sum() return X_row_major
knn_impute_with_argpartition
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n start_t = time.time()\n n_rows, n_cols = X.shape\n missing_mask_column_major = np.asarray(missing_mask, order='F')\n X_row_major, D, effective_infinity = knn_initialize(X, missing_mask,\n verbose=verbose)\n D_reciprocal = 1.0 / D\n dot = np.dot\n array = np.array\n argpartition = np.argpartition\n for i in range(n_rows):\n missing_indices = np.where(missing_mask[i])[0]\n if verbose and i % print_interval == 0:\n print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %\n (i + 1, n_rows, len(missing_indices), time.time() - start_t))\n d = D[i, :]\n inv_d = D_reciprocal[i, :]\n for j in missing_indices:\n d_copy = d.copy()\n d_copy[missing_mask_column_major[:, j]] = effective_infinity\n neighbor_indices = argpartition(d_copy, k)[:k]\n if d_copy[neighbor_indices].max() >= effective_infinity:\n neighbor_indices = array([neighbor_index for neighbor_index in\n neighbor_indices if d_copy[neighbor_index] <\n effective_infinity])\n n_current_neighbors = len(neighbor_indices)\n if n_current_neighbors > 0:\n neighbor_weights = inv_d[neighbor_indices]\n X_row_major[i, j] = dot(X[:, j][neighbor_indices],\n neighbor_weights) / neighbor_weights.sum()\n return X_row_major\n", "role": "user" }, { "content": "knn_impute_with_argpartition", "role": "assistant" } ]
def x(X, missing_mask, k, verbose=False, print_interval=100): n_rows, n_cols = X.shape X_result, D, effective_infinity = knn_initialize(X, missing_mask, verbose=verbose) for i in range(n_rows): for j in np.where(missing_mask[i, :])[0]: distances = D[i, :].copy() distances[missing_mask[:, j]] = effective_infinity neighbor_indices = np.argsort(distances) neighbor_distances = distances[neighbor_indices] valid_distances = neighbor_distances < effective_infinity neighbor_distances = neighbor_distances[valid_distances][:k] neighbor_indices = neighbor_indices[valid_distances][:k] weights = 1.0 / neighbor_distances weight_sum = weights.sum() if weight_sum > 0: column = X[:, j] values = column[neighbor_indices] X_result[i, j] = np.dot(values, weights) / weight_sum return X_result
knn_impute_reference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n n_rows, n_cols = X.shape\n X_result, D, effective_infinity = knn_initialize(X, missing_mask,\n verbose=verbose)\n for i in range(n_rows):\n for j in np.where(missing_mask[i, :])[0]:\n distances = D[i, :].copy()\n distances[missing_mask[:, j]] = effective_infinity\n neighbor_indices = np.argsort(distances)\n neighbor_distances = distances[neighbor_indices]\n valid_distances = neighbor_distances < effective_infinity\n neighbor_distances = neighbor_distances[valid_distances][:k]\n neighbor_indices = neighbor_indices[valid_distances][:k]\n weights = 1.0 / neighbor_distances\n weight_sum = weights.sum()\n if weight_sum > 0:\n column = X[:, j]\n values = column[neighbor_indices]\n X_result[i, j] = np.dot(values, weights) / weight_sum\n return X_result\n", "role": "user" }, { "content": "knn_impute_reference", "role": "assistant" } ]
def x(self, registered_only=True): visitors = self.filter(expiry_time__gt=timezone.now(), end_time=None) if registered_only: visitors = visitors.filter(user__isnull=False) return visitors
active
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, registered_only=True):\n visitors = self.filter(expiry_time__gt=timezone.now(), end_time=None)\n if registered_only:\n visitors = visitors.filter(user__isnull=False)\n return visitors\n", "role": "user" }, { "content": "active", "role": "assistant" } ]
def x(self, start_date, end_date, registered_only=False): visitors = self.filter(start_time__gte=start_date, start_time__lt=end_date) stats = {'total': 0, 'unique': 0, 'return_ratio': 0} stats['total'] = total_count = visitors.count() unique_count = 0 if not total_count: return stats total_time_on_site = visitors.aggregate(avg_tos=Avg('time_on_site'))[ 'avg_tos'] stats['time_on_site'] = timedelta(seconds=int(total_time_on_site)) registered_visitors = visitors.filter(user__isnull=False) registered_total_count = registered_visitors.count() if registered_total_count: registered_unique_count = registered_visitors.values('user').distinct( ).count() time_on_site = registered_visitors.aggregate(avg_tos=Avg( 'time_on_site'))['avg_tos'] unique_count += registered_unique_count returns = registered_total_count - registered_unique_count stats['registered'] = {'total': registered_total_count, 'unique': registered_unique_count, 'return_ratio': returns / registered_total_count * 100, 'time_on_site': timedelta(seconds =int(time_on_site))} if TRACK_ANONYMOUS_USERS and not registered_only: guests = visitors.filter(user__isnull=True) guest_total_count = guests.count() if guest_total_count: guest_unique_count = guests.values('ip_address').distinct().count() guest_time_on_site = guests.aggregate(avg_tos=Avg('time_on_site'))[ 'avg_tos'] returns = guest_total_count - guest_unique_count return_ratio = returns / guest_total_count * 100 time_on_site = timedelta(seconds=int(guest_time_on_site)) else: guest_total_count = 0 guest_unique_count = 0 return_ratio = 0.0 time_on_site = timedelta(0) unique_count += guest_unique_count stats['guests'] = {'total': guest_total_count, 'unique': guest_unique_count, 'return_ratio': return_ratio, 'time_on_site': time_on_site} returns = total_count - unique_count stats['unique'] = unique_count stats['return_ratio'] = returns / total_count * 100 if TRACK_PAGEVIEWS: if 'registered' in stats: pages_per_visit = registered_visitors.annotate(page_count=Count ('pageviews')).filter(page_count__gt=0).aggregate( pages_per_visit=Avg('page_count'))['pages_per_visit'] stats['registered']['pages_per_visit'] = pages_per_visit if TRACK_ANONYMOUS_USERS and not registered_only: stats['guests']['pages_per_visit'] = guests.annotate(page_count =Count('pageviews')).filter(page_count__gt=0).aggregate( pages_per_visit=Avg('page_count'))['pages_per_visit'] total_per_visit = visitors.annotate(page_count=Count('pageviews') ).filter(page_count__gt=0).aggregate(pages_per_visit=Avg( 'page_count'))['pages_per_visit'] elif 'registered' in stats: total_per_visit = stats['registered']['pages_per_visit'] else: total_per_visit = 0 stats['pages_per_visit'] = total_per_visit return stats
stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start_date, end_date, registered_only=False):\n visitors = self.filter(start_time__gte=start_date, start_time__lt=end_date)\n stats = {'total': 0, 'unique': 0, 'return_ratio': 0}\n stats['total'] = total_count = visitors.count()\n unique_count = 0\n if not total_count:\n return stats\n total_time_on_site = visitors.aggregate(avg_tos=Avg('time_on_site'))[\n 'avg_tos']\n stats['time_on_site'] = timedelta(seconds=int(total_time_on_site))\n registered_visitors = visitors.filter(user__isnull=False)\n registered_total_count = registered_visitors.count()\n if registered_total_count:\n registered_unique_count = registered_visitors.values('user').distinct(\n ).count()\n time_on_site = registered_visitors.aggregate(avg_tos=Avg(\n 'time_on_site'))['avg_tos']\n unique_count += registered_unique_count\n returns = registered_total_count - registered_unique_count\n stats['registered'] = {'total': registered_total_count, 'unique':\n registered_unique_count, 'return_ratio': returns /\n registered_total_count * 100, 'time_on_site': timedelta(seconds\n =int(time_on_site))}\n if TRACK_ANONYMOUS_USERS and not registered_only:\n guests = visitors.filter(user__isnull=True)\n guest_total_count = guests.count()\n if guest_total_count:\n guest_unique_count = guests.values('ip_address').distinct().count()\n guest_time_on_site = guests.aggregate(avg_tos=Avg('time_on_site'))[\n 'avg_tos']\n returns = guest_total_count - guest_unique_count\n return_ratio = returns / guest_total_count * 100\n time_on_site = timedelta(seconds=int(guest_time_on_site))\n else:\n guest_total_count = 0\n guest_unique_count = 0\n return_ratio = 0.0\n time_on_site = timedelta(0)\n unique_count += guest_unique_count\n stats['guests'] = {'total': guest_total_count, 'unique':\n guest_unique_count, 'return_ratio': return_ratio,\n 'time_on_site': time_on_site}\n returns = total_count - unique_count\n stats['unique'] = unique_count\n stats['return_ratio'] = returns / total_count * 100\n if TRACK_PAGEVIEWS:\n if 'registered' in stats:\n pages_per_visit = registered_visitors.annotate(page_count=Count\n ('pageviews')).filter(page_count__gt=0).aggregate(\n pages_per_visit=Avg('page_count'))['pages_per_visit']\n stats['registered']['pages_per_visit'] = pages_per_visit\n if TRACK_ANONYMOUS_USERS and not registered_only:\n stats['guests']['pages_per_visit'] = guests.annotate(page_count\n =Count('pageviews')).filter(page_count__gt=0).aggregate(\n pages_per_visit=Avg('page_count'))['pages_per_visit']\n total_per_visit = visitors.annotate(page_count=Count('pageviews')\n ).filter(page_count__gt=0).aggregate(pages_per_visit=Avg(\n 'page_count'))['pages_per_visit']\n elif 'registered' in stats:\n total_per_visit = stats['registered']['pages_per_visit']\n else:\n total_per_visit = 0\n stats['pages_per_visit'] = total_per_visit\n return stats\n", "role": "user" }, { "content": "stats", "role": "assistant" } ]
def x(self, start_date=None, end_date=None, registered_only=False): pageviews = self.filter(visitor__start_time__lt=end_date, visitor__start_time__gte=start_date).select_related('visitor') stats = {'total': 0, 'unique': 0} stats['total'] = total_views = pageviews.count() unique_count = 0 if not total_views: return stats registered_pageviews = pageviews.filter(visitor__user__isnull=False) registered_count = registered_pageviews.count() if registered_count: registered_unique_count = registered_pageviews.values('visitor', 'url' ).distinct().count() unique_count += registered_unique_count stats['registered'] = {'total': registered_count, 'unique': registered_unique_count} if TRACK_ANONYMOUS_USERS and not registered_only: guest_pageviews = pageviews.filter(visitor__user__isnull=True) guest_count = guest_pageviews.count() if guest_count: guest_unique_count = guest_pageviews.values('visitor', 'url' ).distinct().count() unique_count += guest_unique_count stats['guests'] = {'total': guest_count, 'unique': guest_unique_count} stats['unique'] = unique_count return stats
stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start_date=None, end_date=None, registered_only=False):\n pageviews = self.filter(visitor__start_time__lt=end_date,\n visitor__start_time__gte=start_date).select_related('visitor')\n stats = {'total': 0, 'unique': 0}\n stats['total'] = total_views = pageviews.count()\n unique_count = 0\n if not total_views:\n return stats\n registered_pageviews = pageviews.filter(visitor__user__isnull=False)\n registered_count = registered_pageviews.count()\n if registered_count:\n registered_unique_count = registered_pageviews.values('visitor', 'url'\n ).distinct().count()\n unique_count += registered_unique_count\n stats['registered'] = {'total': registered_count, 'unique':\n registered_unique_count}\n if TRACK_ANONYMOUS_USERS and not registered_only:\n guest_pageviews = pageviews.filter(visitor__user__isnull=True)\n guest_count = guest_pageviews.count()\n if guest_count:\n guest_unique_count = guest_pageviews.values('visitor', 'url'\n ).distinct().count()\n unique_count += guest_unique_count\n stats['guests'] = {'total': guest_count, 'unique':\n guest_unique_count}\n stats['unique'] = unique_count\n return stats\n", "role": "user" }, { "content": "stats", "role": "assistant" } ]
def x(request): end_time = now() start_time = end_time - timedelta(days=7) defaults = {'start': start_time, 'end': end_time} form = DashboardForm(data=request.GET or defaults) if form.is_valid(): start_time = form.cleaned_data['start'] end_time = form.cleaned_data['end'] try: obj = Visitor.objects.order_by('start_time')[0] track_start_time = obj.start_time except (IndexError, Visitor.DoesNotExist): track_start_time = now() warn_incomplete = start_time < track_start_time user_stats = Visitor.objects.user_stats(start_time, end_time) visitor_stats = Visitor.objects.stats(start_time, end_time) if TRACK_PAGEVIEWS: pageview_stats = Pageview.objects.stats(start_time, end_time) else: pageview_stats = None context = {'form': form, 'track_start_time': track_start_time, 'warn_incomplete': warn_incomplete, 'user_stats': user_stats, 'visitor_stats': visitor_stats, 'pageview_stats': pageview_stats} return render(request, 'tracking/dashboard.html', context)
dashboard
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n end_time = now()\n start_time = end_time - timedelta(days=7)\n defaults = {'start': start_time, 'end': end_time}\n form = DashboardForm(data=request.GET or defaults)\n if form.is_valid():\n start_time = form.cleaned_data['start']\n end_time = form.cleaned_data['end']\n try:\n obj = Visitor.objects.order_by('start_time')[0]\n track_start_time = obj.start_time\n except (IndexError, Visitor.DoesNotExist):\n track_start_time = now()\n warn_incomplete = start_time < track_start_time\n user_stats = Visitor.objects.user_stats(start_time, end_time)\n visitor_stats = Visitor.objects.stats(start_time, end_time)\n if TRACK_PAGEVIEWS:\n pageview_stats = Pageview.objects.stats(start_time, end_time)\n else:\n pageview_stats = None\n context = {'form': form, 'track_start_time': track_start_time,\n 'warn_incomplete': warn_incomplete, 'user_stats': user_stats,\n 'visitor_stats': visitor_stats, 'pageview_stats': pageview_stats}\n return render(request, 'tracking/dashboard.html', context)\n", "role": "user" }, { "content": "dashboard", "role": "assistant" } ]
def x(self): if not HAS_GEOIP or not TRACK_USING_GEOIP: return if not hasattr(self, '_geoip_data'): self._geoip_data = None try: gip = GeoIP(cache=GEOIP_CACHE_TYPE) self._geoip_data = gip.city(self.ip_address) except GeoIPException: msg = 'Error getting GeoIP data for IP "{0}"'.format(self. ip_address) log.exception(msg) return self._geoip_data
geoip_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not HAS_GEOIP or not TRACK_USING_GEOIP:\n return\n if not hasattr(self, '_geoip_data'):\n self._geoip_data = None\n try:\n gip = GeoIP(cache=GEOIP_CACHE_TYPE)\n self._geoip_data = gip.city(self.ip_address)\n except GeoIPException:\n msg = 'Error getting GeoIP data for IP \"{0}\"'.format(self.\n ip_address)\n log.exception(msg)\n return self._geoip_data\n", "role": "user" }, { "content": "geoip_data", "role": "assistant" } ]
def x(s): if hasattr(s, '__html__'): return s.__html__() if isinstance(s, six.binary_type): s = six.text_type(str(s), 'utf8') elif isinstance(s, six.text_type): s = s else: s = str(s) return s.replace('&', '&amp;').replace('>', '&gt;').replace('<', '&lt;' ).replace("'", '&#39;').replace('"', '&#34;')
escape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n if hasattr(s, '__html__'):\n return s.__html__()\n if isinstance(s, six.binary_type):\n s = six.text_type(str(s), 'utf8')\n elif isinstance(s, six.text_type):\n s = s\n else:\n s = str(s)\n return s.replace('&', '&amp;').replace('>', '&gt;').replace('<', '&lt;'\n ).replace(\"'\", '&#39;').replace('\"', '&#34;')\n", "role": "user" }, { "content": "escape", "role": "assistant" } ]
def x(obj, num_keys): if is_mapping(obj): return obj _marker = [] iter_obj = iter(obj) head = next(iter_obj, _marker) iter_obj = chain([head], iter_obj) if head is _marker: return [] if is_iterable(head): if num_keys == get_cardinality(head) + 1: return (tuple(item) + (ix,) for ix, item in enumerate(iter_obj)) else: return iter_obj elif num_keys == 2: return ((item, ix) for ix, item in enumerate(iter_obj)) else: return iter_obj
iteration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj, num_keys):\n if is_mapping(obj):\n return obj\n _marker = []\n iter_obj = iter(obj)\n head = next(iter_obj, _marker)\n iter_obj = chain([head], iter_obj)\n if head is _marker:\n return []\n if is_iterable(head):\n if num_keys == get_cardinality(head) + 1:\n return (tuple(item) + (ix,) for ix, item in enumerate(iter_obj))\n else:\n return iter_obj\n elif num_keys == 2:\n return ((item, ix) for ix, item in enumerate(iter_obj))\n else:\n return iter_obj\n", "role": "user" }, { "content": "iteration", "role": "assistant" } ]
def x(parser, token): code = token.contents firstspace = code.find(' ') if firstspace >= 0: code = code[firstspace + 1:] return Evaluator(code)
do_evaluate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parser, token):\n code = token.contents\n firstspace = code.find(' ')\n if firstspace >= 0:\n code = code[firstspace + 1:]\n return Evaluator(code)\n", "role": "user" }, { "content": "do_evaluate", "role": "assistant" } ]
def x(parser, token): code = token.contents firstspace = code.find(' ') if firstspace >= 0: code = code[firstspace + 1:] return Setter(code)
do_set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parser, token):\n code = token.contents\n firstspace = code.find(' ')\n if firstspace >= 0:\n code = code[firstspace + 1:]\n return Setter(code)\n", "role": "user" }, { "content": "do_set", "role": "assistant" } ]
def x(self, context): modules = {'pyjade': __import__('pyjade')} context['false'] = False context['true'] = True try: return six.text_type(eval('pyjade.runtime.attrs(%s)' % self.code, modules, context)) except NameError: return ''
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n modules = {'pyjade': __import__('pyjade')}\n context['false'] = False\n context['true'] = True\n try:\n return six.text_type(eval('pyjade.runtime.attrs(%s)' % self.code,\n modules, context))\n except NameError:\n return ''\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(self, context): modules = {} context['false'] = False context['true'] = True new_ctx = eval('dict(%s)' % self.code, modules, context) context.update(new_ctx) return ''
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, context):\n modules = {}\n context['false'] = False\n context['true'] = True\n new_ctx = eval('dict(%s)' % self.code, modules, context)\n context.update(new_ctx)\n return ''\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(sprite_type, sprite_id, **kwargs): options = parse_sprite_options(sprite_type, **kwargs) filename = '.'.join([str(sprite_id), SPRITE_EXT]) filepath = os.path.join(sprite_type, *options, filename) return filepath
sprite_filepath_build
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sprite_type, sprite_id, **kwargs):\n options = parse_sprite_options(sprite_type, **kwargs)\n filename = '.'.join([str(sprite_id), SPRITE_EXT])\n filepath = os.path.join(sprite_type, *options, filename)\n return filepath\n", "role": "user" }, { "content": "sprite_filepath_build", "role": "assistant" } ]
def x(obj): if isinstance(obj, dict): if 'url' in obj.keys(): url = obj['url'] id_ = int(url.split('/')[-2]) endpoint = url.split('/')[-3] return APIResource(endpoint, id_, lazy_load=True) return APIMetadata(obj) return obj
make_obj
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n if isinstance(obj, dict):\n if 'url' in obj.keys():\n url = obj['url']\n id_ = int(url.split('/')[-2])\n endpoint = url.split('/')[-3]\n return APIResource(endpoint, id_, lazy_load=True)\n return APIMetadata(obj)\n return obj\n", "role": "user" }, { "content": "make_obj", "role": "assistant" } ]