source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(ApplicationName=None, VersionLabel=None, TemplateName=None,
EnvironmentId=None, EnvironmentName=None, PlatformArn=None, RequestId=
None, Severity=None, StartTime=None, EndTime=None, MaxRecords=None,
NextToken=None):
pass
|
describe_events
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ApplicationName=None, VersionLabel=None, TemplateName=None,\n EnvironmentId=None, EnvironmentName=None, PlatformArn=None, RequestId=\n None, Severity=None, StartTime=None, EndTime=None, MaxRecords=None,\n NextToken=None):\n pass\n",
"role": "user"
},
{
"content": "describe_events",
"role": "assistant"
}
] |
def x(ApplicationName=None, EnvironmentId=None, EnvironmentName=None,
GroupName=None, Description=None, Tier=None, VersionLabel=None,
TemplateName=None, SolutionStackName=None, PlatformArn=None,
OptionSettings=None, OptionsToRemove=None):
pass
|
update_environment
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ApplicationName=None, EnvironmentId=None, EnvironmentName=None,\n GroupName=None, Description=None, Tier=None, VersionLabel=None,\n TemplateName=None, SolutionStackName=None, PlatformArn=None,\n OptionSettings=None, OptionsToRemove=None):\n pass\n",
"role": "user"
},
{
"content": "update_environment",
"role": "assistant"
}
] |
def x(FunctionName=None, Runtime=None, Role=None, Handler=None, Code=None,
Description=None, Timeout=None, MemorySize=None, Publish=None,
VpcConfig=None, DeadLetterConfig=None, Environment=None, KMSKeyArn=None,
TracingConfig=None, Tags=None):
pass
|
create_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(FunctionName=None, Runtime=None, Role=None, Handler=None, Code=None,\n Description=None, Timeout=None, MemorySize=None, Publish=None,\n VpcConfig=None, DeadLetterConfig=None, Environment=None, KMSKeyArn=None,\n TracingConfig=None, Tags=None):\n pass\n",
"role": "user"
},
{
"content": "create_function",
"role": "assistant"
}
] |
def x(FunctionName=None, Role=None, Handler=None, Description=None, Timeout
=None, MemorySize=None, VpcConfig=None, Environment=None, Runtime=None,
DeadLetterConfig=None, KMSKeyArn=None, TracingConfig=None):
pass
|
update_function_configuration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(FunctionName=None, Role=None, Handler=None, Description=None, Timeout\n =None, MemorySize=None, VpcConfig=None, Environment=None, Runtime=None,\n DeadLetterConfig=None, KMSKeyArn=None, TracingConfig=None):\n pass\n",
"role": "user"
},
{
"content": "update_function_configuration",
"role": "assistant"
}
] |
def x(Name=None, S3BucketName=None, S3KeyPrefix=None, SnsTopicName=None,
IncludeGlobalServiceEvents=None, IsMultiRegionTrail=None,
EnableLogFileValidation=None, CloudWatchLogsLogGroupArn=None,
CloudWatchLogsRoleArn=None, KmsKeyId=None):
pass
|
create_trail
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Name=None, S3BucketName=None, S3KeyPrefix=None, SnsTopicName=None,\n IncludeGlobalServiceEvents=None, IsMultiRegionTrail=None,\n EnableLogFileValidation=None, CloudWatchLogsLogGroupArn=None,\n CloudWatchLogsRoleArn=None, KmsKeyId=None):\n pass\n",
"role": "user"
},
{
"content": "create_trail",
"role": "assistant"
}
] |
def x(DBName=None, ClusterIdentifier=None, ClusterType=None, NodeType=None,
MasterUsername=None, MasterUserPassword=None, ClusterSecurityGroups=
None, VpcSecurityGroupIds=None, ClusterSubnetGroupName=None,
AvailabilityZone=None, PreferredMaintenanceWindow=None,
ClusterParameterGroupName=None, AutomatedSnapshotRetentionPeriod=None,
Port=None, ClusterVersion=None, AllowVersionUpgrade=None, NumberOfNodes
=None, PubliclyAccessible=None, Encrypted=None,
HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,
ElasticIp=None, Tags=None, KmsKeyId=None, EnhancedVpcRouting=None,
AdditionalInfo=None, IamRoles=None):
pass
|
create_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DBName=None, ClusterIdentifier=None, ClusterType=None, NodeType=None,\n MasterUsername=None, MasterUserPassword=None, ClusterSecurityGroups=\n None, VpcSecurityGroupIds=None, ClusterSubnetGroupName=None,\n AvailabilityZone=None, PreferredMaintenanceWindow=None,\n ClusterParameterGroupName=None, AutomatedSnapshotRetentionPeriod=None,\n Port=None, ClusterVersion=None, AllowVersionUpgrade=None, NumberOfNodes\n =None, PubliclyAccessible=None, Encrypted=None,\n HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,\n ElasticIp=None, Tags=None, KmsKeyId=None, EnhancedVpcRouting=None,\n AdditionalInfo=None, IamRoles=None):\n pass\n",
"role": "user"
},
{
"content": "create_cluster",
"role": "assistant"
}
] |
def x(ClusterIdentifier=None, SnapshotIdentifier=None, SnapshotType=None,
StartTime=None, EndTime=None, MaxRecords=None, Marker=None,
OwnerAccount=None, TagKeys=None, TagValues=None):
pass
|
describe_cluster_snapshots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ClusterIdentifier=None, SnapshotIdentifier=None, SnapshotType=None,\n StartTime=None, EndTime=None, MaxRecords=None, Marker=None,\n OwnerAccount=None, TagKeys=None, TagValues=None):\n pass\n",
"role": "user"
},
{
"content": "describe_cluster_snapshots",
"role": "assistant"
}
] |
def x(ClusterIdentifier=None, ClusterType=None, NodeType=None,
NumberOfNodes=None, ClusterSecurityGroups=None, VpcSecurityGroupIds=
None, MasterUserPassword=None, ClusterParameterGroupName=None,
AutomatedSnapshotRetentionPeriod=None, PreferredMaintenanceWindow=None,
ClusterVersion=None, AllowVersionUpgrade=None,
HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,
NewClusterIdentifier=None, PubliclyAccessible=None, ElasticIp=None,
EnhancedVpcRouting=None):
pass
|
modify_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ClusterIdentifier=None, ClusterType=None, NodeType=None,\n NumberOfNodes=None, ClusterSecurityGroups=None, VpcSecurityGroupIds=\n None, MasterUserPassword=None, ClusterParameterGroupName=None,\n AutomatedSnapshotRetentionPeriod=None, PreferredMaintenanceWindow=None,\n ClusterVersion=None, AllowVersionUpgrade=None,\n HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,\n NewClusterIdentifier=None, PubliclyAccessible=None, ElasticIp=None,\n EnhancedVpcRouting=None):\n pass\n",
"role": "user"
},
{
"content": "modify_cluster",
"role": "assistant"
}
] |
def x(ClusterIdentifier=None, SnapshotIdentifier=None,
SnapshotClusterIdentifier=None, Port=None, AvailabilityZone=None,
AllowVersionUpgrade=None, ClusterSubnetGroupName=None,
PubliclyAccessible=None, OwnerAccount=None,
HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,
ElasticIp=None, ClusterParameterGroupName=None, ClusterSecurityGroups=
None, VpcSecurityGroupIds=None, PreferredMaintenanceWindow=None,
AutomatedSnapshotRetentionPeriod=None, KmsKeyId=None, NodeType=None,
EnhancedVpcRouting=None, AdditionalInfo=None, IamRoles=None):
pass
|
restore_from_cluster_snapshot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ClusterIdentifier=None, SnapshotIdentifier=None,\n SnapshotClusterIdentifier=None, Port=None, AvailabilityZone=None,\n AllowVersionUpgrade=None, ClusterSubnetGroupName=None,\n PubliclyAccessible=None, OwnerAccount=None,\n HsmClientCertificateIdentifier=None, HsmConfigurationIdentifier=None,\n ElasticIp=None, ClusterParameterGroupName=None, ClusterSecurityGroups=\n None, VpcSecurityGroupIds=None, PreferredMaintenanceWindow=None,\n AutomatedSnapshotRetentionPeriod=None, KmsKeyId=None, NodeType=None,\n EnhancedVpcRouting=None, AdditionalInfo=None, IamRoles=None):\n pass\n",
"role": "user"
},
{
"content": "restore_from_cluster_snapshot",
"role": "assistant"
}
] |
def x(JobType=None, Resources=None, Description=None, AddressId=None,
KmsKeyARN=None, RoleARN=None, SnowballType=None, ShippingOption=None,
Notification=None, ForwardingAddressId=None):
pass
|
create_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(JobType=None, Resources=None, Description=None, AddressId=None,\n KmsKeyARN=None, RoleARN=None, SnowballType=None, ShippingOption=None,\n Notification=None, ForwardingAddressId=None):\n pass\n",
"role": "user"
},
{
"content": "create_cluster",
"role": "assistant"
}
] |
def x(JobType=None, Resources=None, Description=None, AddressId=None,
KmsKeyARN=None, RoleARN=None, SnowballCapacityPreference=None,
ShippingOption=None, Notification=None, ClusterId=None, SnowballType=
None, ForwardingAddressId=None):
pass
|
create_job
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(JobType=None, Resources=None, Description=None, AddressId=None,\n KmsKeyARN=None, RoleARN=None, SnowballCapacityPreference=None,\n ShippingOption=None, Notification=None, ClusterId=None, SnowballType=\n None, ForwardingAddressId=None):\n pass\n",
"role": "user"
},
{
"content": "create_job",
"role": "assistant"
}
] |
def x(JobId=None, RoleARN=None, Notification=None, Resources=None,
AddressId=None, ShippingOption=None, Description=None,
SnowballCapacityPreference=None, ForwardingAddressId=None):
pass
|
update_job
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(JobId=None, RoleARN=None, Notification=None, Resources=None,\n AddressId=None, ShippingOption=None, Description=None,\n SnowballCapacityPreference=None, ForwardingAddressId=None):\n pass\n",
"role": "user"
},
{
"content": "update_job",
"role": "assistant"
}
] |
def x(WindowId=None, Targets=None, TaskArn=None, ServiceRoleArn=None,
TaskType=None, TaskParameters=None, Priority=None, MaxConcurrency=None,
MaxErrors=None, LoggingInfo=None, ClientToken=None):
pass
|
register_task_with_maintenance_window
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(WindowId=None, Targets=None, TaskArn=None, ServiceRoleArn=None,\n TaskType=None, TaskParameters=None, Priority=None, MaxConcurrency=None,\n MaxErrors=None, LoggingInfo=None, ClientToken=None):\n pass\n",
"role": "user"
},
{
"content": "register_task_with_maintenance_window",
"role": "assistant"
}
] |
def x(InstanceIds=None, Targets=None, DocumentName=None, DocumentHash=None,
DocumentHashType=None, TimeoutSeconds=None, Comment=None, Parameters=
None, OutputS3Region=None, OutputS3BucketName=None, OutputS3KeyPrefix=
None, MaxConcurrency=None, MaxErrors=None, ServiceRoleArn=None,
NotificationConfig=None):
pass
|
send_command
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(InstanceIds=None, Targets=None, DocumentName=None, DocumentHash=None,\n DocumentHashType=None, TimeoutSeconds=None, Comment=None, Parameters=\n None, OutputS3Region=None, OutputS3BucketName=None, OutputS3KeyPrefix=\n None, MaxConcurrency=None, MaxErrors=None, ServiceRoleArn=None,\n NotificationConfig=None):\n pass\n",
"role": "user"
},
{
"content": "send_command",
"role": "assistant"
}
] |
def x(AssociatePublicIpAddress=None, DisableAutomatedBackup=None, Engine=
None, EngineModel=None, EngineVersion=None, EngineAttributes=None,
BackupRetentionCount=None, ServerName=None, InstanceProfileArn=None,
InstanceType=None, KeyPair=None, PreferredMaintenanceWindow=None,
PreferredBackupWindow=None, SecurityGroupIds=None, ServiceRoleArn=None,
SubnetIds=None, BackupId=None):
pass
|
create_server
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AssociatePublicIpAddress=None, DisableAutomatedBackup=None, Engine=\n None, EngineModel=None, EngineVersion=None, EngineAttributes=None,\n BackupRetentionCount=None, ServerName=None, InstanceProfileArn=None,\n InstanceType=None, KeyPair=None, PreferredMaintenanceWindow=None,\n PreferredBackupWindow=None, SecurityGroupIds=None, ServiceRoleArn=None,\n SubnetIds=None, BackupId=None):\n pass\n",
"role": "user"
},
{
"content": "create_server",
"role": "assistant"
}
] |
def x(AcceptLanguage=None, Name=None, Owner=None, Description=None,
Distributor=None, SupportDescription=None, SupportEmail=None,
SupportUrl=None, ProductType=None, Tags=None,
ProvisioningArtifactParameters=None, IdempotencyToken=None):
pass
|
create_product
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AcceptLanguage=None, Name=None, Owner=None, Description=None,\n Distributor=None, SupportDescription=None, SupportEmail=None,\n SupportUrl=None, ProductType=None, Tags=None,\n ProvisioningArtifactParameters=None, IdempotencyToken=None):\n pass\n",
"role": "user"
},
{
"content": "create_product",
"role": "assistant"
}
] |
def x(AcceptLanguage=None, ProductId=None, ProvisioningArtifactId=None,
PathId=None, ProvisionedProductName=None, ProvisioningParameters=None,
Tags=None, NotificationArns=None, ProvisionToken=None):
pass
|
provision_product
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AcceptLanguage=None, ProductId=None, ProvisioningArtifactId=None,\n PathId=None, ProvisionedProductName=None, ProvisioningParameters=None,\n Tags=None, NotificationArns=None, ProvisionToken=None):\n pass\n",
"role": "user"
},
{
"content": "provision_product",
"role": "assistant"
}
] |
def x(AcceptLanguage=None, Id=None, Name=None, Owner=None, Description=None,
Distributor=None, SupportDescription=None, SupportEmail=None,
SupportUrl=None, AddTags=None, RemoveTags=None):
pass
|
update_product
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AcceptLanguage=None, Id=None, Name=None, Owner=None, Description=None,\n Distributor=None, SupportDescription=None, SupportEmail=None,\n SupportUrl=None, AddTags=None, RemoveTags=None):\n pass\n",
"role": "user"
},
{
"content": "update_product",
"role": "assistant"
}
] |
def x(domain=None, startTimeFilter=None, closeTimeFilter=None,
executionFilter=None, closeStatusFilter=None, typeFilter=None,
tagFilter=None, nextPageToken=None, maximumPageSize=None, reverseOrder=None
):
pass
|
list_closed_workflow_executions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(domain=None, startTimeFilter=None, closeTimeFilter=None,\n executionFilter=None, closeStatusFilter=None, typeFilter=None,\n tagFilter=None, nextPageToken=None, maximumPageSize=None, reverseOrder=None\n ):\n pass\n",
"role": "user"
},
{
"content": "list_closed_workflow_executions",
"role": "assistant"
}
] |
def x(domain=None, name=None, version=None, description=None,
defaultTaskStartToCloseTimeout=None, defaultTaskHeartbeatTimeout=None,
defaultTaskList=None, defaultTaskPriority=None,
defaultTaskScheduleToStartTimeout=None,
defaultTaskScheduleToCloseTimeout=None):
pass
|
register_activity_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(domain=None, name=None, version=None, description=None,\n defaultTaskStartToCloseTimeout=None, defaultTaskHeartbeatTimeout=None,\n defaultTaskList=None, defaultTaskPriority=None,\n defaultTaskScheduleToStartTimeout=None,\n defaultTaskScheduleToCloseTimeout=None):\n pass\n",
"role": "user"
},
{
"content": "register_activity_type",
"role": "assistant"
}
] |
def x(domain=None, name=None, version=None, description=None,
defaultTaskStartToCloseTimeout=None,
defaultExecutionStartToCloseTimeout=None, defaultTaskList=None,
defaultTaskPriority=None, defaultChildPolicy=None, defaultLambdaRole=None):
pass
|
register_workflow_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(domain=None, name=None, version=None, description=None,\n defaultTaskStartToCloseTimeout=None,\n defaultExecutionStartToCloseTimeout=None, defaultTaskList=None,\n defaultTaskPriority=None, defaultChildPolicy=None, defaultLambdaRole=None):\n pass\n",
"role": "user"
},
{
"content": "register_workflow_type",
"role": "assistant"
}
] |
def x(domain=None, workflowId=None, workflowType=None, taskList=None,
taskPriority=None, input=None, executionStartToCloseTimeout=None,
tagList=None, taskStartToCloseTimeout=None, childPolicy=None,
lambdaRole=None):
pass
|
start_workflow_execution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(domain=None, workflowId=None, workflowType=None, taskList=None,\n taskPriority=None, input=None, executionStartToCloseTimeout=None,\n tagList=None, taskStartToCloseTimeout=None, childPolicy=None,\n lambdaRole=None):\n pass\n",
"role": "user"
},
{
"content": "start_workflow_execution",
"role": "assistant"
}
] |
def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName=
None, DatabaseName=None, DBClusterIdentifier=None,
DBClusterParameterGroupName=None, VpcSecurityGroupIds=None,
DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None,
MasterUsername=None, MasterUserPassword=None, OptionGroupName=None,
PreferredBackupWindow=None, PreferredMaintenanceWindow=None,
ReplicationSourceIdentifier=None, Tags=None, StorageEncrypted=None,
KmsKeyId=None, PreSignedUrl=None, EnableIAMDatabaseAuthentication=None,
SourceRegion=None):
pass
|
create_db_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName=\n None, DatabaseName=None, DBClusterIdentifier=None,\n DBClusterParameterGroupName=None, VpcSecurityGroupIds=None,\n DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None,\n MasterUsername=None, MasterUserPassword=None, OptionGroupName=None,\n PreferredBackupWindow=None, PreferredMaintenanceWindow=None,\n ReplicationSourceIdentifier=None, Tags=None, StorageEncrypted=None,\n KmsKeyId=None, PreSignedUrl=None, EnableIAMDatabaseAuthentication=None,\n SourceRegion=None):\n pass\n",
"role": "user"
},
{
"content": "create_db_cluster",
"role": "assistant"
}
] |
def x(DBName=None, DBInstanceIdentifier=None, AllocatedStorage=None,
DBInstanceClass=None, Engine=None, MasterUsername=None,
MasterUserPassword=None, DBSecurityGroups=None, VpcSecurityGroupIds=
None, AvailabilityZone=None, DBSubnetGroupName=None,
PreferredMaintenanceWindow=None, DBParameterGroupName=None,
BackupRetentionPeriod=None, PreferredBackupWindow=None, Port=None,
MultiAZ=None, EngineVersion=None, AutoMinorVersionUpgrade=None,
LicenseModel=None, Iops=None, OptionGroupName=None, CharacterSetName=
None, PubliclyAccessible=None, Tags=None, DBClusterIdentifier=None,
StorageType=None, TdeCredentialArn=None, TdeCredentialPassword=None,
StorageEncrypted=None, KmsKeyId=None, Domain=None, CopyTagsToSnapshot=
None, MonitoringInterval=None, MonitoringRoleArn=None,
DomainIAMRoleName=None, PromotionTier=None, Timezone=None,
EnableIAMDatabaseAuthentication=None):
pass
|
create_db_instance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DBName=None, DBInstanceIdentifier=None, AllocatedStorage=None,\n DBInstanceClass=None, Engine=None, MasterUsername=None,\n MasterUserPassword=None, DBSecurityGroups=None, VpcSecurityGroupIds=\n None, AvailabilityZone=None, DBSubnetGroupName=None,\n PreferredMaintenanceWindow=None, DBParameterGroupName=None,\n BackupRetentionPeriod=None, PreferredBackupWindow=None, Port=None,\n MultiAZ=None, EngineVersion=None, AutoMinorVersionUpgrade=None,\n LicenseModel=None, Iops=None, OptionGroupName=None, CharacterSetName=\n None, PubliclyAccessible=None, Tags=None, DBClusterIdentifier=None,\n StorageType=None, TdeCredentialArn=None, TdeCredentialPassword=None,\n StorageEncrypted=None, KmsKeyId=None, Domain=None, CopyTagsToSnapshot=\n None, MonitoringInterval=None, MonitoringRoleArn=None,\n DomainIAMRoleName=None, PromotionTier=None, Timezone=None,\n EnableIAMDatabaseAuthentication=None):\n pass\n",
"role": "user"
},
{
"content": "create_db_instance",
"role": "assistant"
}
] |
def x(DBInstanceIdentifier=None, SourceDBInstanceIdentifier=None,
DBInstanceClass=None, AvailabilityZone=None, Port=None,
AutoMinorVersionUpgrade=None, Iops=None, OptionGroupName=None,
PubliclyAccessible=None, Tags=None, DBSubnetGroupName=None, StorageType
=None, CopyTagsToSnapshot=None, MonitoringInterval=None,
MonitoringRoleArn=None, KmsKeyId=None, PreSignedUrl=None,
EnableIAMDatabaseAuthentication=None, SourceRegion=None):
pass
|
create_db_instance_read_replica
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DBInstanceIdentifier=None, SourceDBInstanceIdentifier=None,\n DBInstanceClass=None, AvailabilityZone=None, Port=None,\n AutoMinorVersionUpgrade=None, Iops=None, OptionGroupName=None,\n PubliclyAccessible=None, Tags=None, DBSubnetGroupName=None, StorageType\n =None, CopyTagsToSnapshot=None, MonitoringInterval=None,\n MonitoringRoleArn=None, KmsKeyId=None, PreSignedUrl=None,\n EnableIAMDatabaseAuthentication=None, SourceRegion=None):\n pass\n",
"role": "user"
},
{
"content": "create_db_instance_read_replica",
"role": "assistant"
}
] |
def x(Engine=None, EngineVersion=None, DBParameterGroupFamily=None, Filters
=None, MaxRecords=None, Marker=None, DefaultOnly=None,
ListSupportedCharacterSets=None, ListSupportedTimezones=None):
pass
|
describe_db_engine_versions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Engine=None, EngineVersion=None, DBParameterGroupFamily=None, Filters\n =None, MaxRecords=None, Marker=None, DefaultOnly=None,\n ListSupportedCharacterSets=None, ListSupportedTimezones=None):\n pass\n",
"role": "user"
},
{
"content": "describe_db_engine_versions",
"role": "assistant"
}
] |
def x(ReservedDBInstanceId=None, ReservedDBInstancesOfferingId=None,
DBInstanceClass=None, Duration=None, ProductDescription=None,
OfferingType=None, MultiAZ=None, Filters=None, MaxRecords=None, Marker=None
):
pass
|
describe_reserved_db_instances
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ReservedDBInstanceId=None, ReservedDBInstancesOfferingId=None,\n DBInstanceClass=None, Duration=None, ProductDescription=None,\n OfferingType=None, MultiAZ=None, Filters=None, MaxRecords=None, Marker=None\n ):\n pass\n",
"role": "user"
},
{
"content": "describe_reserved_db_instances",
"role": "assistant"
}
] |
def x(ReservedDBInstancesOfferingId=None, DBInstanceClass=None, Duration=
None, ProductDescription=None, OfferingType=None, MultiAZ=None, Filters
=None, MaxRecords=None, Marker=None):
pass
|
describe_reserved_db_instances_offerings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ReservedDBInstancesOfferingId=None, DBInstanceClass=None, Duration=\n None, ProductDescription=None, OfferingType=None, MultiAZ=None, Filters\n =None, MaxRecords=None, Marker=None):\n pass\n",
"role": "user"
},
{
"content": "describe_reserved_db_instances_offerings",
"role": "assistant"
}
] |
def x(DBClusterIdentifier=None, NewDBClusterIdentifier=None,
ApplyImmediately=None, BackupRetentionPeriod=None,
DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, Port=None,
MasterUserPassword=None, OptionGroupName=None, PreferredBackupWindow=
None, PreferredMaintenanceWindow=None, EnableIAMDatabaseAuthentication=None
):
pass
|
modify_db_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DBClusterIdentifier=None, NewDBClusterIdentifier=None,\n ApplyImmediately=None, BackupRetentionPeriod=None,\n DBClusterParameterGroupName=None, VpcSecurityGroupIds=None, Port=None,\n MasterUserPassword=None, OptionGroupName=None, PreferredBackupWindow=\n None, PreferredMaintenanceWindow=None, EnableIAMDatabaseAuthentication=None\n ):\n pass\n",
"role": "user"
},
{
"content": "modify_db_cluster",
"role": "assistant"
}
] |
def x(DBInstanceIdentifier=None, AllocatedStorage=None, DBInstanceClass=
None, DBSubnetGroupName=None, DBSecurityGroups=None,
VpcSecurityGroupIds=None, ApplyImmediately=None, MasterUserPassword=
None, DBParameterGroupName=None, BackupRetentionPeriod=None,
PreferredBackupWindow=None, PreferredMaintenanceWindow=None, MultiAZ=
None, EngineVersion=None, AllowMajorVersionUpgrade=None,
AutoMinorVersionUpgrade=None, LicenseModel=None, Iops=None,
OptionGroupName=None, NewDBInstanceIdentifier=None, StorageType=None,
TdeCredentialArn=None, TdeCredentialPassword=None,
CACertificateIdentifier=None, Domain=None, CopyTagsToSnapshot=None,
MonitoringInterval=None, DBPortNumber=None, PubliclyAccessible=None,
MonitoringRoleArn=None, DomainIAMRoleName=None, PromotionTier=None,
EnableIAMDatabaseAuthentication=None):
pass
|
modify_db_instance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DBInstanceIdentifier=None, AllocatedStorage=None, DBInstanceClass=\n None, DBSubnetGroupName=None, DBSecurityGroups=None,\n VpcSecurityGroupIds=None, ApplyImmediately=None, MasterUserPassword=\n None, DBParameterGroupName=None, BackupRetentionPeriod=None,\n PreferredBackupWindow=None, PreferredMaintenanceWindow=None, MultiAZ=\n None, EngineVersion=None, AllowMajorVersionUpgrade=None,\n AutoMinorVersionUpgrade=None, LicenseModel=None, Iops=None,\n OptionGroupName=None, NewDBInstanceIdentifier=None, StorageType=None,\n TdeCredentialArn=None, TdeCredentialPassword=None,\n CACertificateIdentifier=None, Domain=None, CopyTagsToSnapshot=None,\n MonitoringInterval=None, DBPortNumber=None, PubliclyAccessible=None,\n MonitoringRoleArn=None, DomainIAMRoleName=None, PromotionTier=None,\n EnableIAMDatabaseAuthentication=None):\n pass\n",
"role": "user"
},
{
"content": "modify_db_instance",
"role": "assistant"
}
] |
def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName=
None, DatabaseName=None, DBClusterIdentifier=None,
DBClusterParameterGroupName=None, VpcSecurityGroupIds=None,
DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None,
MasterUsername=None, MasterUserPassword=None, OptionGroupName=None,
PreferredBackupWindow=None, PreferredMaintenanceWindow=None, Tags=None,
StorageEncrypted=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=
None, SourceEngine=None, SourceEngineVersion=None, S3BucketName=None,
S3Prefix=None, S3IngestionRoleArn=None):
pass
|
restore_db_cluster_from_s3
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AvailabilityZones=None, BackupRetentionPeriod=None, CharacterSetName=\n None, DatabaseName=None, DBClusterIdentifier=None,\n DBClusterParameterGroupName=None, VpcSecurityGroupIds=None,\n DBSubnetGroupName=None, Engine=None, EngineVersion=None, Port=None,\n MasterUsername=None, MasterUserPassword=None, OptionGroupName=None,\n PreferredBackupWindow=None, PreferredMaintenanceWindow=None, Tags=None,\n StorageEncrypted=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=\n None, SourceEngine=None, SourceEngineVersion=None, S3BucketName=None,\n S3Prefix=None, S3IngestionRoleArn=None):\n pass\n",
"role": "user"
},
{
"content": "restore_db_cluster_from_s3",
"role": "assistant"
}
] |
def x(AvailabilityZones=None, DBClusterIdentifier=None, SnapshotIdentifier=
None, Engine=None, EngineVersion=None, Port=None, DBSubnetGroupName=
None, DatabaseName=None, OptionGroupName=None, VpcSecurityGroupIds=None,
Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None):
pass
|
restore_db_cluster_from_snapshot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(AvailabilityZones=None, DBClusterIdentifier=None, SnapshotIdentifier=\n None, Engine=None, EngineVersion=None, Port=None, DBSubnetGroupName=\n None, DatabaseName=None, OptionGroupName=None, VpcSecurityGroupIds=None,\n Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None):\n pass\n",
"role": "user"
},
{
"content": "restore_db_cluster_from_snapshot",
"role": "assistant"
}
] |
def x(DBClusterIdentifier=None, SourceDBClusterIdentifier=None,
RestoreToTime=None, UseLatestRestorableTime=None, Port=None,
DBSubnetGroupName=None, OptionGroupName=None, VpcSecurityGroupIds=None,
Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None):
pass
|
restore_db_cluster_to_point_in_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DBClusterIdentifier=None, SourceDBClusterIdentifier=None,\n RestoreToTime=None, UseLatestRestorableTime=None, Port=None,\n DBSubnetGroupName=None, OptionGroupName=None, VpcSecurityGroupIds=None,\n Tags=None, KmsKeyId=None, EnableIAMDatabaseAuthentication=None):\n pass\n",
"role": "user"
},
{
"content": "restore_db_cluster_to_point_in_time",
"role": "assistant"
}
] |
def x(DBInstanceIdentifier=None, DBSnapshotIdentifier=None, DBInstanceClass
=None, Port=None, AvailabilityZone=None, DBSubnetGroupName=None,
MultiAZ=None, PubliclyAccessible=None, AutoMinorVersionUpgrade=None,
LicenseModel=None, DBName=None, Engine=None, Iops=None, OptionGroupName
=None, Tags=None, StorageType=None, TdeCredentialArn=None,
TdeCredentialPassword=None, Domain=None, CopyTagsToSnapshot=None,
DomainIAMRoleName=None, EnableIAMDatabaseAuthentication=None):
pass
|
restore_db_instance_from_db_snapshot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(DBInstanceIdentifier=None, DBSnapshotIdentifier=None, DBInstanceClass\n =None, Port=None, AvailabilityZone=None, DBSubnetGroupName=None,\n MultiAZ=None, PubliclyAccessible=None, AutoMinorVersionUpgrade=None,\n LicenseModel=None, DBName=None, Engine=None, Iops=None, OptionGroupName\n =None, Tags=None, StorageType=None, TdeCredentialArn=None,\n TdeCredentialPassword=None, Domain=None, CopyTagsToSnapshot=None,\n DomainIAMRoleName=None, EnableIAMDatabaseAuthentication=None):\n pass\n",
"role": "user"
},
{
"content": "restore_db_instance_from_db_snapshot",
"role": "assistant"
}
] |
def x(SourceDBInstanceIdentifier=None, TargetDBInstanceIdentifier=None,
RestoreTime=None, UseLatestRestorableTime=None, DBInstanceClass=None,
Port=None, AvailabilityZone=None, DBSubnetGroupName=None, MultiAZ=None,
PubliclyAccessible=None, AutoMinorVersionUpgrade=None, LicenseModel=
None, DBName=None, Engine=None, Iops=None, OptionGroupName=None,
CopyTagsToSnapshot=None, Tags=None, StorageType=None, TdeCredentialArn=
None, TdeCredentialPassword=None, Domain=None, DomainIAMRoleName=None,
EnableIAMDatabaseAuthentication=None):
pass
|
restore_db_instance_to_point_in_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(SourceDBInstanceIdentifier=None, TargetDBInstanceIdentifier=None,\n RestoreTime=None, UseLatestRestorableTime=None, DBInstanceClass=None,\n Port=None, AvailabilityZone=None, DBSubnetGroupName=None, MultiAZ=None,\n PubliclyAccessible=None, AutoMinorVersionUpgrade=None, LicenseModel=\n None, DBName=None, Engine=None, Iops=None, OptionGroupName=None,\n CopyTagsToSnapshot=None, Tags=None, StorageType=None, TdeCredentialArn=\n None, TdeCredentialPassword=None, Domain=None, DomainIAMRoleName=None,\n EnableIAMDatabaseAuthentication=None):\n pass\n",
"role": "user"
},
{
"content": "restore_db_instance_to_point_in_time",
"role": "assistant"
}
] |
def x(HealthCheckId=None, HealthCheckVersion=None, IPAddress=None, Port=
None, ResourcePath=None, FullyQualifiedDomainName=None, SearchString=
None, FailureThreshold=None, Inverted=None, HealthThreshold=None,
ChildHealthChecks=None, EnableSNI=None, Regions=None, AlarmIdentifier=
None, InsufficientDataHealthStatus=None):
pass
|
update_health_check
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(HealthCheckId=None, HealthCheckVersion=None, IPAddress=None, Port=\n None, ResourcePath=None, FullyQualifiedDomainName=None, SearchString=\n None, FailureThreshold=None, Inverted=None, HealthThreshold=None,\n ChildHealthChecks=None, EnableSNI=None, Regions=None, AlarmIdentifier=\n None, InsufficientDataHealthStatus=None):\n pass\n",
"role": "user"
},
{
"content": "update_health_check",
"role": "assistant"
}
] |
def x(MaxAssignments=None, AutoApprovalDelayInSeconds=None,
LifetimeInSeconds=None, AssignmentDurationInSeconds=None, Reward=None,
Title=None, Keywords=None, Description=None, Question=None,
RequesterAnnotation=None, QualificationRequirements=None,
UniqueRequestToken=None, AssignmentReviewPolicy=None, HITReviewPolicy=
None, HITLayoutId=None, HITLayoutParameters=None):
pass
|
create_hit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(MaxAssignments=None, AutoApprovalDelayInSeconds=None,\n LifetimeInSeconds=None, AssignmentDurationInSeconds=None, Reward=None,\n Title=None, Keywords=None, Description=None, Question=None,\n RequesterAnnotation=None, QualificationRequirements=None,\n UniqueRequestToken=None, AssignmentReviewPolicy=None, HITReviewPolicy=\n None, HITLayoutId=None, HITLayoutParameters=None):\n pass\n",
"role": "user"
},
{
"content": "create_hit",
"role": "assistant"
}
] |
def x(HITTypeId=None, MaxAssignments=None, LifetimeInSeconds=None, Question
=None, RequesterAnnotation=None, UniqueRequestToken=None,
AssignmentReviewPolicy=None, HITReviewPolicy=None, HITLayoutId=None,
HITLayoutParameters=None):
pass
|
create_hit_with_hit_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(HITTypeId=None, MaxAssignments=None, LifetimeInSeconds=None, Question\n =None, RequesterAnnotation=None, UniqueRequestToken=None,\n AssignmentReviewPolicy=None, HITReviewPolicy=None, HITLayoutId=None,\n HITLayoutParameters=None):\n pass\n",
"role": "user"
},
{
"content": "create_hit_with_hit_type",
"role": "assistant"
}
] |
def x(Name=None, Keywords=None, Description=None, QualificationTypeStatus=
None, RetryDelayInSeconds=None, Test=None, AnswerKey=None,
TestDurationInSeconds=None, AutoGranted=None, AutoGrantedValue=None):
pass
|
create_qualification_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(Name=None, Keywords=None, Description=None, QualificationTypeStatus=\n None, RetryDelayInSeconds=None, Test=None, AnswerKey=None,\n TestDurationInSeconds=None, AutoGranted=None, AutoGrantedValue=None):\n pass\n",
"role": "user"
},
{
"content": "create_qualification_type",
"role": "assistant"
}
] |
def x(QualificationTypeId=None, Description=None, QualificationTypeStatus=
None, Test=None, AnswerKey=None, TestDurationInSeconds=None,
RetryDelayInSeconds=None, AutoGranted=None, AutoGrantedValue=None):
pass
|
update_qualification_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(QualificationTypeId=None, Description=None, QualificationTypeStatus=\n None, Test=None, AnswerKey=None, TestDurationInSeconds=None,\n RetryDelayInSeconds=None, AutoGranted=None, AutoGrantedValue=None):\n pass\n",
"role": "user"
},
{
"content": "update_qualification_type",
"role": "assistant"
}
] |
def x(description):
algo = getattr(hashlib, description.lower(), None)
if not callable(algo):
raise ValueError('Unknown hash algorithm %s' % description)
return algo
|
str2hashalgo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(description):\n algo = getattr(hashlib, description.lower(), None)\n if not callable(algo):\n raise ValueError('Unknown hash algorithm %s' % description)\n return algo\n",
"role": "user"
},
{
"content": "str2hashalgo",
"role": "assistant"
}
] |
def x(crypto_function_description):
s = crypto_function_description.split('-')
if len(s) != 3:
raise ValueError(
'CryptoFunction description must be triplet separated by -')
if s[0] != HOTP:
raise ValueError('Unknown CryptoFunction kind %s' % s[0])
algo = str2hashalgo(s[1])
try:
truncation_length = int(s[2])
if truncation_length < 0 or truncation_length > 10:
raise ValueError()
except ValueError:
raise ValueError('Invalid truncation length %s' % s[2])
return CryptoFunction(algo, truncation_length)
|
str2cryptofunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(crypto_function_description):\n s = crypto_function_description.split('-')\n if len(s) != 3:\n raise ValueError(\n 'CryptoFunction description must be triplet separated by -')\n if s[0] != HOTP:\n raise ValueError('Unknown CryptoFunction kind %s' % s[0])\n algo = str2hashalgo(s[1])\n try:\n truncation_length = int(s[2])\n if truncation_length < 0 or truncation_length > 10:\n raise ValueError()\n except ValueError:\n raise ValueError('Invalid truncation length %s' % s[2])\n return CryptoFunction(algo, truncation_length)\n",
"role": "user"
},
{
"content": "str2cryptofunction",
"role": "assistant"
}
] |
def x(key, counter, format='dec6', hash=hashlib.sha1):
bin_hotp = __hotp(key, counter, hash)
if format == 'dec4':
return dec(bin_hotp, 4)
elif format == 'dec6':
return dec(bin_hotp, 6)
elif format == 'dec7':
return dec(bin_hotp, 7)
elif format == 'dec8':
return dec(bin_hotp, 8)
elif format == 'hex':
return '%x' % truncated_value(bin_hotp)
elif format == 'hex-notrunc':
return _utils.tohex(bin_hotp)
elif format == 'bin':
return bin_hotp
elif format == 'dec':
return str(truncated_value(bin_hotp))
else:
raise ValueError('unknown format')
|
hotp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, counter, format='dec6', hash=hashlib.sha1):\n bin_hotp = __hotp(key, counter, hash)\n if format == 'dec4':\n return dec(bin_hotp, 4)\n elif format == 'dec6':\n return dec(bin_hotp, 6)\n elif format == 'dec7':\n return dec(bin_hotp, 7)\n elif format == 'dec8':\n return dec(bin_hotp, 8)\n elif format == 'hex':\n return '%x' % truncated_value(bin_hotp)\n elif format == 'hex-notrunc':\n return _utils.tohex(bin_hotp)\n elif format == 'bin':\n return bin_hotp\n elif format == 'dec':\n return str(truncated_value(bin_hotp))\n else:\n raise ValueError('unknown format')\n",
"role": "user"
},
{
"content": "hotp",
"role": "assistant"
}
] |
def x(key, response, counter, format='dec6', hash=hashlib.sha1, drift=3,
backward_drift=0):
for i in range(-backward_drift, drift + 1):
if _utils.compare_digest(hotp(key, counter + i, format=format, hash
=hash), str(response)):
return True, counter + i + 1
return False, counter
|
accept_hotp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, response, counter, format='dec6', hash=hashlib.sha1, drift=3,\n backward_drift=0):\n for i in range(-backward_drift, drift + 1):\n if _utils.compare_digest(hotp(key, counter + i, format=format, hash\n =hash), str(response)):\n return True, counter + i + 1\n return False, counter\n",
"role": "user"
},
{
"content": "accept_hotp",
"role": "assistant"
}
] |
def x(key, format='dec6', period=30, t=None, hash=hashlib.sha1):
if t is None:
t = int(time.time())
elif isinstance(t, datetime.datetime):
t = calendar.timegm(t.utctimetuple())
else:
t = int(t)
T = int(t / period)
return hotp(key, T, format=format, hash=hash)
|
totp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, format='dec6', period=30, t=None, hash=hashlib.sha1):\n if t is None:\n t = int(time.time())\n elif isinstance(t, datetime.datetime):\n t = calendar.timegm(t.utctimetuple())\n else:\n t = int(t)\n T = int(t / period)\n return hotp(key, T, format=format, hash=hash)\n",
"role": "user"
},
{
"content": "totp",
"role": "assistant"
}
] |
def x(key, response, format='dec6', period=30, t=None, hash=hashlib.sha1,
forward_drift=1, backward_drift=1, drift=0):
if t is None:
t = int(time.time())
for i in range(max(-divmod(t, period)[0], -backward_drift),
forward_drift + 1):
d = (drift + i) * period
if _utils.compare_digest(totp(key, format=format, period=period,
hash=hash, t=t + d), response):
return True, drift + i
return False, 0
|
accept_totp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key, response, format='dec6', period=30, t=None, hash=hashlib.sha1,\n forward_drift=1, backward_drift=1, drift=0):\n if t is None:\n t = int(time.time())\n for i in range(max(-divmod(t, period)[0], -backward_drift), \n forward_drift + 1):\n d = (drift + i) * period\n if _utils.compare_digest(totp(key, format=format, period=period,\n hash=hash, t=t + d), response):\n return True, drift + i\n return False, 0\n",
"role": "user"
},
{
"content": "accept_totp",
"role": "assistant"
}
] |
def x(b32_key, state=None):
try:
lenient_b32decode(b32_key)
except TypeError:
raise ValueError('invalid base32 value')
return GoogleAuthenticator('otpauth://totp/xxx?%s' % urlencode({
'secret': b32_key}), state=state)
|
from_b32key
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(b32_key, state=None):\n try:\n lenient_b32decode(b32_key)\n except TypeError:\n raise ValueError('invalid base32 value')\n return GoogleAuthenticator('otpauth://totp/xxx?%s' % urlencode({\n 'secret': b32_key}), state=state)\n",
"role": "user"
},
{
"content": "from_b32key",
"role": "assistant"
}
] |
def x(self, secret, type='totp', account='alex', issuer=None, algo='sha1',
digits=6, init_counter=None):
args = {}
uri = 'otpauth://{0}/{1}?{2}'
try:
a = binascii.unhexlify(secret)
args[SECRET] = base64.b32encode(a).decode('ascii')
except binascii.Error as ex:
raise ValueError(str(ex))
except Exception as ex:
print(ex)
raise ValueError('invalid secret format')
if type not in [TOTP, HOTP]:
raise ValueError('type should be totp or hotp, got ', type)
if type != TOTP:
args['type'] = type
if algo not in ['sha1', 'sha256', 'sha512']:
raise ValueError('algo should be sha1, sha256 or sha512, got ', algo)
if algo != 'sha1':
args['algorithm'] = algo
if init_counter is not None:
if type != HOTP:
raise ValueError('type should be hotp when ',
'setting init_counter')
if int(init_counter) < 0:
raise ValueError('init_counter should be positive')
args[COUNTER] = int(init_counter)
digits = int(digits)
if digits != 6 and digits != 8:
raise ValueError('digits should be 6 or 8')
if digits != 6:
args[DIGITS] = digits
args[PERIOD] = 30
account = quote(account)
if issuer is not None:
account = quote(issuer) + ':' + account
args[ISSUER] = issuer
uri = uri.format(type, account, urlencode(args).replace('+', '%20'))
return uri
|
generate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, secret, type='totp', account='alex', issuer=None, algo='sha1',\n digits=6, init_counter=None):\n args = {}\n uri = 'otpauth://{0}/{1}?{2}'\n try:\n a = binascii.unhexlify(secret)\n args[SECRET] = base64.b32encode(a).decode('ascii')\n except binascii.Error as ex:\n raise ValueError(str(ex))\n except Exception as ex:\n print(ex)\n raise ValueError('invalid secret format')\n if type not in [TOTP, HOTP]:\n raise ValueError('type should be totp or hotp, got ', type)\n if type != TOTP:\n args['type'] = type\n if algo not in ['sha1', 'sha256', 'sha512']:\n raise ValueError('algo should be sha1, sha256 or sha512, got ', algo)\n if algo != 'sha1':\n args['algorithm'] = algo\n if init_counter is not None:\n if type != HOTP:\n raise ValueError('type should be hotp when ',\n 'setting init_counter')\n if int(init_counter) < 0:\n raise ValueError('init_counter should be positive')\n args[COUNTER] = int(init_counter)\n digits = int(digits)\n if digits != 6 and digits != 8:\n raise ValueError('digits should be 6 or 8')\n if digits != 6:\n args[DIGITS] = digits\n args[PERIOD] = 30\n account = quote(account)\n if issuer is not None:\n account = quote(issuer) + ':' + account\n args[ISSUER] = issuer\n uri = uri.format(type, account, urlencode(args).replace('+', '%20'))\n return uri\n",
"role": "user"
},
{
"content": "generate",
"role": "assistant"
}
] |
def x(op_name, attrs, identity_list=None, convert_map=None):
identity_list = identity_list if identity_list else _identity_list
convert_map = convert_map if convert_map else _convert_map
if op_name in identity_list:
pass
elif op_name in convert_map:
op_name, attrs = convert_map[op_name](attrs)
else:
raise NotImplementedError('Operator {} not implemented.'.format(
op_name))
op = getattr(mx.sym, op_name, None)
if not op:
raise RuntimeError('Unable to map op_name {} to sym'.format(op_name))
return op, attrs
|
convert_operator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(op_name, attrs, identity_list=None, convert_map=None):\n identity_list = identity_list if identity_list else _identity_list\n convert_map = convert_map if convert_map else _convert_map\n if op_name in identity_list:\n pass\n elif op_name in convert_map:\n op_name, attrs = convert_map[op_name](attrs)\n else:\n raise NotImplementedError('Operator {} not implemented.'.format(\n op_name))\n op = getattr(mx.sym, op_name, None)\n if not op:\n raise RuntimeError('Unable to map op_name {} to sym'.format(op_name))\n return op, attrs\n",
"role": "user"
},
{
"content": "convert_operator",
"role": "assistant"
}
] |
def x(self, graph):
for init_tensor in graph.initializer:
if not init_tensor.name.strip():
raise ValueError("Tensor's name is required.")
self._params[init_tensor.name] = self._parse_array(init_tensor)
for i in graph.input:
if i.name in self._params:
name_param = 'param_{}'.format(self._num_param)
self._num_param += 1
self._params[name_param] = self._params.pop(i.name)
self._nodes[name_param] = mx.sym.Variable(name=name_param,
shape=self._params[name_param].shape)
self._renames[i.name] = name_param
else:
name_input = 'input_{}'.format(self._num_input)
self._num_input += 1
self._nodes[name_input] = mx.sym.Variable(name=name_input)
self._renames[i.name] = name_input
for node in graph.node:
op_name = node.op_type
node_name = node.name.strip()
node_name = node_name if node_name else None
onnx_attr = self._parse_attr(node.attribute)
new_op, mx_attr = _convert_operator(op_name, onnx_attr)
inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]
mx_attr = self._fix_bias(new_op, mx_attr, len(inputs))
mx_attr = self._fix_channels(new_op, mx_attr, list(node.input))
self._fix_bias_shape(node.op_type, node.input, onnx_attr)
inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]
if op_name == 'Gemm':
new_op, inputs, mx_attr = self._fix_gemm('FullyConnected',
inputs, onnx_attr)
if op_name == 'Slice':
op = self._fix_slice(inputs, mx_attr)
elif op_name == 'AveragePool' and onnx_attr.get('pads'
) is not None or op_name == 'MaxPool' and onnx_attr.get('pads'
) is not None:
op = self._fix_pooling(op_name, inputs, onnx_attr)
elif op_name == 'Squeeze':
op = self._fix_squeeze(inputs, mx_attr)
elif op_name == 'Max' or op_name == 'Min':
op = self._fix_max_min(op_name, inputs)
elif node_name is None:
op = new_op(*inputs, **mx_attr)
else:
op = new_op(*inputs, name=node_name, **mx_attr)
node_output = self._fix_outputs(op_name, node.output)
assert len(node_output) == len(op.list_outputs()
), 'Number of output mismatch {} vs {} in {}.'.format(len(
node_output), len(op.list_outputs()), op_name)
for k, i in zip(list(node_output), range(len(node_output))):
self._nodes[k] = op[i]
out = [self._nodes[i.name] for i in graph.output]
if len(out) > 1:
out = mx.sym.Group(out)
else:
out = out[0]
return out, self._params
|
from_onnx
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph):\n for init_tensor in graph.initializer:\n if not init_tensor.name.strip():\n raise ValueError(\"Tensor's name is required.\")\n self._params[init_tensor.name] = self._parse_array(init_tensor)\n for i in graph.input:\n if i.name in self._params:\n name_param = 'param_{}'.format(self._num_param)\n self._num_param += 1\n self._params[name_param] = self._params.pop(i.name)\n self._nodes[name_param] = mx.sym.Variable(name=name_param,\n shape=self._params[name_param].shape)\n self._renames[i.name] = name_param\n else:\n name_input = 'input_{}'.format(self._num_input)\n self._num_input += 1\n self._nodes[name_input] = mx.sym.Variable(name=name_input)\n self._renames[i.name] = name_input\n for node in graph.node:\n op_name = node.op_type\n node_name = node.name.strip()\n node_name = node_name if node_name else None\n onnx_attr = self._parse_attr(node.attribute)\n new_op, mx_attr = _convert_operator(op_name, onnx_attr)\n inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]\n mx_attr = self._fix_bias(new_op, mx_attr, len(inputs))\n mx_attr = self._fix_channels(new_op, mx_attr, list(node.input))\n self._fix_bias_shape(node.op_type, node.input, onnx_attr)\n inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]\n if op_name == 'Gemm':\n new_op, inputs, mx_attr = self._fix_gemm('FullyConnected',\n inputs, onnx_attr)\n if op_name == 'Slice':\n op = self._fix_slice(inputs, mx_attr)\n elif op_name == 'AveragePool' and onnx_attr.get('pads'\n ) is not None or op_name == 'MaxPool' and onnx_attr.get('pads'\n ) is not None:\n op = self._fix_pooling(op_name, inputs, onnx_attr)\n elif op_name == 'Squeeze':\n op = self._fix_squeeze(inputs, mx_attr)\n elif op_name == 'Max' or op_name == 'Min':\n op = self._fix_max_min(op_name, inputs)\n elif node_name is None:\n op = new_op(*inputs, **mx_attr)\n else:\n op = new_op(*inputs, name=node_name, **mx_attr)\n node_output = self._fix_outputs(op_name, node.output)\n assert len(node_output) == len(op.list_outputs()\n ), 'Number of output mismatch {} vs {} in {}.'.format(len(\n node_output), len(op.list_outputs()), op_name)\n for k, i in zip(list(node_output), range(len(node_output))):\n self._nodes[k] = op[i]\n out = [self._nodes[i.name] for i in graph.output]\n if len(out) > 1:\n out = mx.sym.Group(out)\n else:\n out = out[0]\n return out, self._params\n",
"role": "user"
},
{
"content": "from_onnx",
"role": "assistant"
}
] |
def x(self, op_name, inputs, new_attr):
pool_type = 'avg' if op_name == 'AveragePool' else 'max'
stride = new_attr.get('strides')
kernel = new_attr.get('kernel_shape')
padding = new_attr.get('pads')
pad_width = (0, 0, 0, 0) + _pad_sequence_fix(padding, len(kernel))
new_pad_op = mx.sym.pad(inputs[0], mode='constant', pad_width=pad_width)
new_pooling_op = mx.sym.Pooling(new_pad_op, pool_type=pool_type, stride
=stride, kernel=kernel)
return new_pooling_op
|
fix_pooling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op_name, inputs, new_attr):\n pool_type = 'avg' if op_name == 'AveragePool' else 'max'\n stride = new_attr.get('strides')\n kernel = new_attr.get('kernel_shape')\n padding = new_attr.get('pads')\n pad_width = (0, 0, 0, 0) + _pad_sequence_fix(padding, len(kernel))\n new_pad_op = mx.sym.pad(inputs[0], mode='constant', pad_width=pad_width)\n new_pooling_op = mx.sym.Pooling(new_pad_op, pool_type=pool_type, stride\n =stride, kernel=kernel)\n return new_pooling_op\n",
"role": "user"
},
{
"content": "fix_pooling",
"role": "assistant"
}
] |
def x(self, inputs, new_attr):
begin = new_attr.get('begin')
end = new_attr.get('end')
axes = new_attr.get('axis', tuple(range(len(begin))))
slice_op = mx.sym.slice_axis(inputs[0], axis=axes[0], begin=begin[0],
end=end[0])
if len(axes) > 1:
for i, axis in enumerate(axes):
slice_op = mx.sym.slice_axis(slice_op, axis=axis, begin=begin[i
], end=end[i])
return slice_op
|
fix_slice
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inputs, new_attr):\n begin = new_attr.get('begin')\n end = new_attr.get('end')\n axes = new_attr.get('axis', tuple(range(len(begin))))\n slice_op = mx.sym.slice_axis(inputs[0], axis=axes[0], begin=begin[0],\n end=end[0])\n if len(axes) > 1:\n for i, axis in enumerate(axes):\n slice_op = mx.sym.slice_axis(slice_op, axis=axis, begin=begin[i\n ], end=end[i])\n return slice_op\n",
"role": "user"
},
{
"content": "fix_slice",
"role": "assistant"
}
] |
def x(self, inputs, new_attr):
axes = new_attr.get('axis')
op = mx.sym.split(inputs[0], axis=axes[0], num_outputs=1, squeeze_axis=1)
for i in axes[1:]:
op = mx.sym.split(op, axis=i - 1, num_outputs=1, squeeze_axis=1)
return op
|
fix_squeeze
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inputs, new_attr):\n axes = new_attr.get('axis')\n op = mx.sym.split(inputs[0], axis=axes[0], num_outputs=1, squeeze_axis=1)\n for i in axes[1:]:\n op = mx.sym.split(op, axis=i - 1, num_outputs=1, squeeze_axis=1)\n return op\n",
"role": "user"
},
{
"content": "fix_squeeze",
"role": "assistant"
}
] |
def x(self, op_name, inputs):
if len(inputs) > 1:
if op_name == 'Max':
op = mx.sym.maximum(inputs[0], inputs[1])
for ip in inputs[2:]:
op = mx.sym.maximum(op, ip)
elif op_name == 'Min':
op = mx.sym.minimum(inputs[0], inputs[1])
for ip in inputs[2:]:
op = mx.sym.minimum(op, ip)
else:
op = inputs[0]
return op
|
fix_max_min
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op_name, inputs):\n if len(inputs) > 1:\n if op_name == 'Max':\n op = mx.sym.maximum(inputs[0], inputs[1])\n for ip in inputs[2:]:\n op = mx.sym.maximum(op, ip)\n elif op_name == 'Min':\n op = mx.sym.minimum(inputs[0], inputs[1])\n for ip in inputs[2:]:\n op = mx.sym.minimum(op, ip)\n else:\n op = inputs[0]\n return op\n",
"role": "user"
},
{
"content": "fix_max_min",
"role": "assistant"
}
] |
def x(self, op_name, inputs, old_attr):
op = getattr(mx.sym, op_name, None)
alpha = float(old_attr.get('alpha', 1.0))
beta = float(old_attr.get('beta', 1.0))
transA = int(old_attr.get('transA', 0))
transB = int(old_attr.get('transB', 0))
if transA:
inputs[0] = mx.sym.transpose(inputs[0], axes=(1, 0))
if not transB:
inputs[1] = mx.sym.transpose(inputs[1], axes=(1, 0))
new_inputs = [alpha * inputs[0], inputs[1], beta * inputs[2]]
new_attr = {'num_hidden': self._params[inputs[2].name].shape[0]}
return op, new_inputs, new_attr
|
fix_gemm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op_name, inputs, old_attr):\n op = getattr(mx.sym, op_name, None)\n alpha = float(old_attr.get('alpha', 1.0))\n beta = float(old_attr.get('beta', 1.0))\n transA = int(old_attr.get('transA', 0))\n transB = int(old_attr.get('transB', 0))\n if transA:\n inputs[0] = mx.sym.transpose(inputs[0], axes=(1, 0))\n if not transB:\n inputs[1] = mx.sym.transpose(inputs[1], axes=(1, 0))\n new_inputs = [alpha * inputs[0], inputs[1], beta * inputs[2]]\n new_attr = {'num_hidden': self._params[inputs[2].name].shape[0]}\n return op, new_inputs, new_attr\n",
"role": "user"
},
{
"content": "fix_gemm",
"role": "assistant"
}
] |
def x(self, tensor_proto):
try:
from onnx.numpy_helper import to_array
except ImportError as e:
raise ImportError('Unable to import onnx which is required {}'.
format(e))
np_array = to_array(tensor_proto).reshape(tuple(tensor_proto.dims))
return mx.nd.array(np_array)
|
parse_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tensor_proto):\n try:\n from onnx.numpy_helper import to_array\n except ImportError as e:\n raise ImportError('Unable to import onnx which is required {}'.\n format(e))\n np_array = to_array(tensor_proto).reshape(tuple(tensor_proto.dims))\n return mx.nd.array(np_array)\n",
"role": "user"
},
{
"content": "parse_array",
"role": "assistant"
}
] |
def x(self, attr_proto):
attrs = {}
for a in attr_proto:
for f in ['f', 'i', 's']:
if a.HasField(f):
attrs[a.name] = getattr(a, f)
for f in ['floats', 'ints', 'strings']:
if list(getattr(a, f)):
assert a.name not in attrs, 'Only one type of attr is allowed'
attrs[a.name] = tuple(getattr(a, f))
for f in ['t', 'g']:
if a.HasField(f):
attrs[a.name] = getattr(a, f)
for f in ['tensors', 'graphs']:
if list(getattr(a, f)):
raise NotImplementedError('Filed {} is not supported in mxnet.'
.format(f))
if a.name not in attrs:
raise ValueError('Cannot parse attribute: \n{}\n.'.format(a))
return attrs
|
parse_attr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attr_proto):\n attrs = {}\n for a in attr_proto:\n for f in ['f', 'i', 's']:\n if a.HasField(f):\n attrs[a.name] = getattr(a, f)\n for f in ['floats', 'ints', 'strings']:\n if list(getattr(a, f)):\n assert a.name not in attrs, 'Only one type of attr is allowed'\n attrs[a.name] = tuple(getattr(a, f))\n for f in ['t', 'g']:\n if a.HasField(f):\n attrs[a.name] = getattr(a, f)\n for f in ['tensors', 'graphs']:\n if list(getattr(a, f)):\n raise NotImplementedError('Filed {} is not supported in mxnet.'\n .format(f))\n if a.name not in attrs:\n raise ValueError('Cannot parse attribute: \\n{}\\n.'.format(a))\n return attrs\n",
"role": "user"
},
{
"content": "parse_attr",
"role": "assistant"
}
] |
def x(self, op, outputs):
if op == 'Dropout':
assert len(outputs) == 2, 'ONNX have two outputs for dropout layer.'
outputs = outputs[:-1]
return outputs
|
fix_outputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op, outputs):\n if op == 'Dropout':\n assert len(outputs) == 2, 'ONNX have two outputs for dropout layer.'\n outputs = outputs[:-1]\n return outputs\n",
"role": "user"
},
{
"content": "fix_outputs",
"role": "assistant"
}
] |
def x(self, op, attrs, num_inputs):
if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym.
FullyConnected]:
return attrs
if num_inputs == 3:
attrs['no_bias'] = False
elif num_inputs == 2:
attrs['no_bias'] = True
else:
raise ValueError('Unexpected number of inputs for: {}'.format(op))
return attrs
|
fix_bias
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op, attrs, num_inputs):\n if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym.\n FullyConnected]:\n return attrs\n if num_inputs == 3:\n attrs['no_bias'] = False\n elif num_inputs == 2:\n attrs['no_bias'] = True\n else:\n raise ValueError('Unexpected number of inputs for: {}'.format(op))\n return attrs\n",
"role": "user"
},
{
"content": "fix_bias",
"role": "assistant"
}
] |
def x(self, op_name, inputs, attrs):
if (op_name == 'Add' or op_name == 'Mul') and int(len(self._params)
) > 0 and ('broadcast' in attrs and attrs['broadcast'] == 1):
assert len(list(inputs)) == 2
bias_name = self._renames.get(inputs[1], inputs[1])
bias = self._params[bias_name]
assert len(bias.shape) == 1
bias = mx.nd.array(bias.asnumpy().reshape((1, -1, 1, 1)))
self._nodes[bias_name] = mx.sym.Variable(name=bias_name, shape=bias
.shape)
self._params[bias_name] = bias
|
fix_bias_shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op_name, inputs, attrs):\n if (op_name == 'Add' or op_name == 'Mul') and int(len(self._params)\n ) > 0 and ('broadcast' in attrs and attrs['broadcast'] == 1):\n assert len(list(inputs)) == 2\n bias_name = self._renames.get(inputs[1], inputs[1])\n bias = self._params[bias_name]\n assert len(bias.shape) == 1\n bias = mx.nd.array(bias.asnumpy().reshape((1, -1, 1, 1)))\n self._nodes[bias_name] = mx.sym.Variable(name=bias_name, shape=bias\n .shape)\n self._params[bias_name] = bias\n",
"role": "user"
},
{
"content": "fix_bias_shape",
"role": "assistant"
}
] |
def x(self, op, attrs, inputs):
if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym.
FullyConnected]:
return attrs
weight_name = self._renames[inputs[1]]
if not weight_name in self._params:
raise ValueError('Unable to get channels/units attr from onnx graph.')
else:
wshape = self._params[weight_name].shape
assert len(wshape) >= 2, 'Weights shape is invalid: {}'.format(wshape)
if op in [mx.sym.FullyConnected]:
attrs['num_hidden'] = wshape[0]
elif op == mx.sym.Convolution:
attrs['num_filter'] = wshape[0]
elif op == mx.sym.Deconvolution:
attrs['num_filter'] = wshape[1]
return attrs
|
fix_channels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, op, attrs, inputs):\n if op not in [mx.sym.Convolution, mx.sym.Deconvolution, mx.sym.\n FullyConnected]:\n return attrs\n weight_name = self._renames[inputs[1]]\n if not weight_name in self._params:\n raise ValueError('Unable to get channels/units attr from onnx graph.')\n else:\n wshape = self._params[weight_name].shape\n assert len(wshape) >= 2, 'Weights shape is invalid: {}'.format(wshape)\n if op in [mx.sym.FullyConnected]:\n attrs['num_hidden'] = wshape[0]\n elif op == mx.sym.Convolution:\n attrs['num_filter'] = wshape[0]\n elif op == mx.sym.Deconvolution:\n attrs['num_filter'] = wshape[1]\n return attrs\n",
"role": "user"
},
{
"content": "fix_channels",
"role": "assistant"
}
] |
def x(self, inputs, **kwargs):
input_data = np.asarray(inputs[0], dtype='f')
if self.device == 'CPU':
ctx = mx.cpu()
else:
raise NotImplementedError('Only CPU context is supported for now')
mod = mx.mod.Module(symbol=self.symbol, data_names=['input_0'], context
=ctx, label_names=None)
mod.bind(for_training=False, data_shapes=[('input_0', input_data.shape)
], label_shapes=None)
mod.set_params(arg_params=self.params, aux_params=None)
batch = namedtuple('Batch', ['data'])
mod.forward(batch([mx.nd.array(input_data)]))
result = mod.get_outputs()[0].asnumpy()
return [result]
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inputs, **kwargs):\n input_data = np.asarray(inputs[0], dtype='f')\n if self.device == 'CPU':\n ctx = mx.cpu()\n else:\n raise NotImplementedError('Only CPU context is supported for now')\n mod = mx.mod.Module(symbol=self.symbol, data_names=['input_0'], context\n =ctx, label_names=None)\n mod.bind(for_training=False, data_shapes=[('input_0', input_data.shape)\n ], label_shapes=None)\n mod.set_params(arg_params=self.params, aux_params=None)\n batch = namedtuple('Batch', ['data'])\n mod.forward(batch([mx.nd.array(input_data)]))\n result = mod.get_outputs()[0].asnumpy()\n return [result]\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, target):
if not isinstance(target, (list, tuple)):
k, v, t = target, None, lambda x: x
elif len(target) == 1:
k, v, t = target[0], None, lambda x: x
elif len(target) == 2:
k, v, t = target[0], target[1], lambda x: x
elif len(target) > 2:
k, v, t = target[0], target[1], target[2]
else:
k = None
if not isinstance(k, string_types):
msg = '{} is not a valid target, (name, default) expected.'.format(
target)
raise ValueError(msg)
return k, v, t
|
parse_default
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, target):\n if not isinstance(target, (list, tuple)):\n k, v, t = target, None, lambda x: x\n elif len(target) == 1:\n k, v, t = target[0], None, lambda x: x\n elif len(target) == 2:\n k, v, t = target[0], target[1], lambda x: x\n elif len(target) > 2:\n k, v, t = target[0], target[1], target[2]\n else:\n k = None\n if not isinstance(k, string_types):\n msg = '{} is not a valid target, (name, default) expected.'.format(\n target)\n raise ValueError(msg)\n return k, v, t\n",
"role": "user"
},
{
"content": "parse_default",
"role": "assistant"
}
] |
def x(self, value):
if isinstance(value, string_types):
return value.strip().lower() in ['true', '1', 't', 'y', 'yes']
return bool(value)
|
parse_bool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if isinstance(value, string_types):\n return value.strip().lower() in ['true', '1', 't', 'y', 'yes']\n return bool(value)\n",
"role": "user"
},
{
"content": "parse_bool",
"role": "assistant"
}
] |
def x(self, attr, key):
assert isinstance(attr, dict)
if key not in attr:
raise AttributeError('Required attribute {} not found.'.format(key))
return attr[key]
|
required_attr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attr, key):\n assert isinstance(attr, dict)\n if key not in attr:\n raise AttributeError('Required attribute {} not found.'.format(key))\n return attr[key]\n",
"role": "user"
},
{
"content": "required_attr",
"role": "assistant"
}
] |
def x(node, inputs):
initializer = []
tensor_input_info = []
tensor_output_info = []
for index in range(len(node.input)):
tensor_input_info.append(helper.make_tensor_value_info(str(node.
input[index]), TensorProto.FLOAT, [1]))
if node.input[index] == 'W':
dim = inputs[index].shape
param_tensor = helper.make_tensor(name=node.input[index],
data_type=TensorProto.FLOAT, dims=dim, vals=inputs[index].
flatten())
initializer.append(param_tensor)
for index in range(len(node.output)):
tensor_output_info.append(helper.make_tensor_value_info(str(node.
output[index]), TensorProto.FLOAT, [1]))
graph_proto = helper.make_graph([node], 'test', tensor_input_info,
tensor_output_info, initializer=initializer)
return graph_proto
|
make_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(node, inputs):\n initializer = []\n tensor_input_info = []\n tensor_output_info = []\n for index in range(len(node.input)):\n tensor_input_info.append(helper.make_tensor_value_info(str(node.\n input[index]), TensorProto.FLOAT, [1]))\n if node.input[index] == 'W':\n dim = inputs[index].shape\n param_tensor = helper.make_tensor(name=node.input[index],\n data_type=TensorProto.FLOAT, dims=dim, vals=inputs[index].\n flatten())\n initializer.append(param_tensor)\n for index in range(len(node.output)):\n tensor_output_info.append(helper.make_tensor_value_info(str(node.\n output[index]), TensorProto.FLOAT, [1]))\n graph_proto = helper.make_graph([node], 'test', tensor_input_info,\n tensor_output_info, initializer=initializer)\n return graph_proto\n",
"role": "user"
},
{
"content": "make_graph",
"role": "assistant"
}
] |
def x(cls, node, inputs, device='CPU'):
graph = GraphProto()
sym, _ = graph.from_onnx(MXNetBackend.make_graph(node, inputs))
data_names = [i for i in sym.get_internals().list_inputs()]
data_shapes = []
reduce_op_types = set(['ReduceMin', 'ReduceMax', 'ReduceMean',
'ReduceProd', 'ReduceSum', 'Slice', 'Pad', 'Squeeze', 'Upsample',
'Reshape', 'Conv', 'ConvTranspose'])
for idx, input_name in enumerate(data_names):
batch_size = 1
if len(inputs[idx].shape) < 4 and len(inputs) > 1 and len(set(x.
shape[0] for x in inputs)) != 1:
tuples = (batch_size,), inputs[idx].shape
new_shape = sum(tuples, ())
data_shapes.append((input_name, new_shape))
else:
data_shapes.append((input_name, inputs[idx].shape))
if device == 'CPU':
ctx = mx.cpu()
else:
raise NotImplementedError('Only CPU context is supported for now')
mod = mx.mod.Module(symbol=sym, data_names=data_names, context=ctx,
label_names=None)
mod.bind(for_training=False, data_shapes=data_shapes, label_shapes=None)
mod.init_params()
data_forward = []
for idx, input_name in enumerate(data_names):
val = inputs[idx]
if node.op_type in reduce_op_types:
data_forward.append(mx.nd.array(val))
else:
data_forward.append(mx.nd.array([val]))
mod.forward(mx.io.DataBatch(data_forward))
result = mod.get_outputs()[0].asnumpy()
if node.op_type in reduce_op_types:
return [result]
return result
|
run_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, node, inputs, device='CPU'):\n graph = GraphProto()\n sym, _ = graph.from_onnx(MXNetBackend.make_graph(node, inputs))\n data_names = [i for i in sym.get_internals().list_inputs()]\n data_shapes = []\n reduce_op_types = set(['ReduceMin', 'ReduceMax', 'ReduceMean',\n 'ReduceProd', 'ReduceSum', 'Slice', 'Pad', 'Squeeze', 'Upsample',\n 'Reshape', 'Conv', 'ConvTranspose'])\n for idx, input_name in enumerate(data_names):\n batch_size = 1\n if len(inputs[idx].shape) < 4 and len(inputs) > 1 and len(set(x.\n shape[0] for x in inputs)) != 1:\n tuples = (batch_size,), inputs[idx].shape\n new_shape = sum(tuples, ())\n data_shapes.append((input_name, new_shape))\n else:\n data_shapes.append((input_name, inputs[idx].shape))\n if device == 'CPU':\n ctx = mx.cpu()\n else:\n raise NotImplementedError('Only CPU context is supported for now')\n mod = mx.mod.Module(symbol=sym, data_names=data_names, context=ctx,\n label_names=None)\n mod.bind(for_training=False, data_shapes=data_shapes, label_shapes=None)\n mod.init_params()\n data_forward = []\n for idx, input_name in enumerate(data_names):\n val = inputs[idx]\n if node.op_type in reduce_op_types:\n data_forward.append(mx.nd.array(val))\n else:\n data_forward.append(mx.nd.array([val]))\n mod.forward(mx.io.DataBatch(data_forward))\n result = mod.get_outputs()[0].asnumpy()\n if node.op_type in reduce_op_types:\n return [result]\n return result\n",
"role": "user"
},
{
"content": "run_node",
"role": "assistant"
}
] |
def x(cls, model, device='CPU', **kwargs):
graph = GraphProto()
sym, params = graph.from_onnx(model.graph)
return MXNetBackendRep(sym, params, device)
|
prepare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, model, device='CPU', **kwargs):\n graph = GraphProto()\n sym, params = graph.from_onnx(model.graph)\n return MXNetBackendRep(sym, params, device)\n",
"role": "user"
},
{
"content": "prepare",
"role": "assistant"
}
] |
def x(attr):
if len(attr) == 4:
attr = attr[:2]
elif len(attr) == 2:
pass
else:
raise ValueError('Invalid caffe2 type padding: {}'.format(attr))
return attr
|
revert_caffe2_pad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(attr):\n if len(attr) == 4:\n attr = attr[:2]\n elif len(attr) == 2:\n pass\n else:\n raise ValueError('Invalid caffe2 type padding: {}'.format(attr))\n return attr\n",
"role": "user"
},
{
"content": "revert_caffe2_pad",
"role": "assistant"
}
] |
def x(attr, kernelDim=None):
new_attr = ()
if len(attr) % 2 == 0:
for index in range(int(len(attr) / 2)):
new_attr = new_attr + attr[index::int(len(attr) / 2)]
if kernelDim is not None:
while len(new_attr) < kernelDim * 2:
new_attr = new_attr + (0, 0)
return new_attr
|
pad_sequence_fix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(attr, kernelDim=None):\n new_attr = ()\n if len(attr) % 2 == 0:\n for index in range(int(len(attr) / 2)):\n new_attr = new_attr + attr[index::int(len(attr) / 2)]\n if kernelDim is not None:\n while len(new_attr) < kernelDim * 2:\n new_attr = new_attr + (0, 0)\n return new_attr\n",
"role": "user"
},
{
"content": "pad_sequence_fix",
"role": "assistant"
}
] |
def x(model_file):
graph = GraphProto()
model_proto = onnx.load(model_file)
sym, params = graph.from_onnx(model_proto.graph)
return sym, params
|
import_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model_file):\n graph = GraphProto()\n model_proto = onnx.load(model_file)\n sym, params = graph.from_onnx(model_proto.graph)\n return sym, params\n",
"role": "user"
},
{
"content": "import_model",
"role": "assistant"
}
] |
def x(filepath):
fr = FileReader(filepath)
data = fr.read_bin()
return _calculate_sha256(data)
|
generate_hash
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filepath):\n fr = FileReader(filepath)\n data = fr.read_bin()\n return _calculate_sha256(data)\n",
"role": "user"
},
{
"content": "generate_hash",
"role": "assistant"
}
] |
def x(directory_list):
tar_file_list = []
for directory in directory_list:
if dir_exists(directory):
_generate_tar(directory)
tar_file_list.append(directory + '.tar')
else:
stderr("The directory '" + directory +
"' does not exist and a tar archive could not be created from it."
, exit=1)
return tar_file_list
|
generate_tar_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory_list):\n tar_file_list = []\n for directory in directory_list:\n if dir_exists(directory):\n _generate_tar(directory)\n tar_file_list.append(directory + '.tar')\n else:\n stderr(\"The directory '\" + directory +\n \"' does not exist and a tar archive could not be created from it.\"\n , exit=1)\n return tar_file_list\n",
"role": "user"
},
{
"content": "generate_tar_files",
"role": "assistant"
}
] |
def x(file_list):
for f in file_list:
if file_exists(f) and f.endswith('.tar'):
os.remove(f)
|
remove_tar_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_list):\n for f in file_list:\n if file_exists(f) and f.endswith('.tar'):\n os.remove(f)\n",
"role": "user"
},
{
"content": "remove_tar_files",
"role": "assistant"
}
] |
def x(dir_path):
try:
with tarfile.open(dir_path + '.tar', 'w') as tar:
tar.add(dir_path)
except tarfile.TarError as e:
stderr('Error: tar archive creation failed [' + str(e) + ']', exit=1)
|
generate_tar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dir_path):\n try:\n with tarfile.open(dir_path + '.tar', 'w') as tar:\n tar.add(dir_path)\n except tarfile.TarError as e:\n stderr('Error: tar archive creation failed [' + str(e) + ']', exit=1)\n",
"role": "user"
},
{
"content": "generate_tar",
"role": "assistant"
}
] |
def x(self, inpath, force_nocompress=False, force_compress=False, armored=
False, checksum=False):
if armored:
if force_compress:
command_stub = self.command_maxcompress_armored
elif force_nocompress:
command_stub = self.command_nocompress_armored
elif self._is_compress_filetype(inpath):
command_stub = self.command_default_armored
else:
command_stub = self.command_nocompress_armored
elif force_compress:
command_stub = self.command_maxcompress
elif force_nocompress:
command_stub = self.command_nocompress
elif self._is_compress_filetype(inpath):
command_stub = self.command_default
else:
command_stub = self.command_nocompress
encrypted_outpath = self._create_outfilepath(inpath)
system_command = (command_stub + encrypted_outpath + ' --passphrase ' +
quote(self.passphrase) + ' --symmetric ' + quote(inpath))
try:
response = muterun(system_command)
if response.exitcode == 0:
stdout(encrypted_outpath + ' was generated from ' + inpath)
if checksum:
from crypto.library import hash
encrypted_file_hash = hash.generate_hash(encrypted_outpath)
if len(encrypted_file_hash) == 64:
stdout('SHA256 hash digest for ' + encrypted_outpath + ' :'
)
stdout(encrypted_file_hash)
else:
stdout(
'Unable to generate a SHA256 hash digest for the file '
+ encrypted_outpath)
else:
stderr(response.stderr, 0)
stderr('Encryption failed')
sys.exit(1)
except Exception as e:
stderr(
'There was a problem with the execution of gpg. Encryption failed. Error: ['
+ str(e) + ']')
sys.exit(1)
|
encrypt_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inpath, force_nocompress=False, force_compress=False, armored=\n False, checksum=False):\n if armored:\n if force_compress:\n command_stub = self.command_maxcompress_armored\n elif force_nocompress:\n command_stub = self.command_nocompress_armored\n elif self._is_compress_filetype(inpath):\n command_stub = self.command_default_armored\n else:\n command_stub = self.command_nocompress_armored\n elif force_compress:\n command_stub = self.command_maxcompress\n elif force_nocompress:\n command_stub = self.command_nocompress\n elif self._is_compress_filetype(inpath):\n command_stub = self.command_default\n else:\n command_stub = self.command_nocompress\n encrypted_outpath = self._create_outfilepath(inpath)\n system_command = (command_stub + encrypted_outpath + ' --passphrase ' +\n quote(self.passphrase) + ' --symmetric ' + quote(inpath))\n try:\n response = muterun(system_command)\n if response.exitcode == 0:\n stdout(encrypted_outpath + ' was generated from ' + inpath)\n if checksum:\n from crypto.library import hash\n encrypted_file_hash = hash.generate_hash(encrypted_outpath)\n if len(encrypted_file_hash) == 64:\n stdout('SHA256 hash digest for ' + encrypted_outpath + ' :'\n )\n stdout(encrypted_file_hash)\n else:\n stdout(\n 'Unable to generate a SHA256 hash digest for the file '\n + encrypted_outpath)\n else:\n stderr(response.stderr, 0)\n stderr('Encryption failed')\n sys.exit(1)\n except Exception as e:\n stderr(\n 'There was a problem with the execution of gpg. Encryption failed. Error: ['\n + str(e) + ']')\n sys.exit(1)\n",
"role": "user"
},
{
"content": "encrypt_file",
"role": "assistant"
}
] |
def x(self, file_list, force_nocompress=False, force_compress=False,
armored=False, checksum=False):
for the_file in file_list:
self.encrypt_file(the_file, force_nocompress, force_compress,
armored, checksum)
|
encrypt_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, file_list, force_nocompress=False, force_compress=False,\n armored=False, checksum=False):\n for the_file in file_list:\n self.encrypt_file(the_file, force_nocompress, force_compress,\n armored, checksum)\n",
"role": "user"
},
{
"content": "encrypt_files",
"role": "assistant"
}
] |
def x(self, inpath):
if self._is_common_binary(inpath):
return False
elif self._is_common_text(inpath):
return True
else:
the_file_size = file_size(inpath)
if the_file_size > 10240:
if the_file_size > 512000:
try:
system_command = 'file --mime-type -b ' + quote(inpath)
response = muterun(system_command)
if response.stdout[0:5] == 'text/':
return True
else:
return False
except Exception:
return False
else:
return True
else:
return False
|
is_compress_filetype
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inpath):\n if self._is_common_binary(inpath):\n return False\n elif self._is_common_text(inpath):\n return True\n else:\n the_file_size = file_size(inpath)\n if the_file_size > 10240:\n if the_file_size > 512000:\n try:\n system_command = 'file --mime-type -b ' + quote(inpath)\n response = muterun(system_command)\n if response.stdout[0:5] == 'text/':\n return True\n else:\n return False\n except Exception:\n return False\n else:\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "is_compress_filetype",
"role": "assistant"
}
] |
def x(self, inpath):
two_suffix = inpath[-3:]
three_suffix = inpath[-4:]
four_suffix = inpath[-5:]
if two_suffix in self.common_binaries:
return True
elif three_suffix in self.common_binaries:
return True
elif four_suffix in self.common_binaries:
return True
else:
return False
|
is_common_binary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inpath):\n two_suffix = inpath[-3:]\n three_suffix = inpath[-4:]\n four_suffix = inpath[-5:]\n if two_suffix in self.common_binaries:\n return True\n elif three_suffix in self.common_binaries:\n return True\n elif four_suffix in self.common_binaries:\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "is_common_binary",
"role": "assistant"
}
] |
def x(self, inpath):
one_suffix = inpath[-2:]
two_suffix = inpath[-3:]
three_suffix = inpath[-4:]
four_suffix = inpath[-5:]
if one_suffix in self.common_text:
return True
elif two_suffix in self.common_text:
return True
elif three_suffix in self.common_text:
return True
elif four_suffix in self.common_text:
return True
else:
return False
|
is_common_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inpath):\n one_suffix = inpath[-2:]\n two_suffix = inpath[-3:]\n three_suffix = inpath[-4:]\n four_suffix = inpath[-5:]\n if one_suffix in self.common_text:\n return True\n elif two_suffix in self.common_text:\n return True\n elif three_suffix in self.common_text:\n return True\n elif four_suffix in self.common_text:\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "is_common_text",
"role": "assistant"
}
] |
def x(X, missing_mask, k, verbose=False, print_interval=100):
start_t = time.time()
n_rows, n_cols = X.shape
missing_mask_column_major = np.asarray(missing_mask, order='F')
observed_mask_column_major = ~missing_mask_column_major
X_column_major = X.copy(order='F')
X_row_major, D, effective_infinity = knn_initialize(X, missing_mask,
verbose=verbose)
D_sorted = np.argsort(D, axis=1)
inv_D = 1.0 / D
D_valid_mask = D < effective_infinity
valid_distances_per_row = D_valid_mask.sum(axis=1)
D_sorted = [D_sorted[i, :count] for i, count in enumerate(
valid_distances_per_row)]
dot = np.dot
for i in range(n_rows):
missing_row = missing_mask[i, :]
missing_indices = np.where(missing_row)[0]
row_weights = inv_D[i, :]
if verbose and i % print_interval == 0:
print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %
(i + 1, n_rows, len(missing_indices), time.time() - start_t))
candidate_neighbor_indices = D_sorted[i]
for j in missing_indices:
observed = observed_mask_column_major[:, j]
sorted_observed = observed[candidate_neighbor_indices]
observed_neighbor_indices = candidate_neighbor_indices[
sorted_observed]
k_nearest_indices = observed_neighbor_indices[:k]
weights = row_weights[k_nearest_indices]
weight_sum = weights.sum()
if weight_sum > 0:
column = X_column_major[:, j]
values = column[k_nearest_indices]
X_row_major[i, j] = dot(values, weights) / weight_sum
return X_row_major
|
knn_impute_few_observed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n start_t = time.time()\n n_rows, n_cols = X.shape\n missing_mask_column_major = np.asarray(missing_mask, order='F')\n observed_mask_column_major = ~missing_mask_column_major\n X_column_major = X.copy(order='F')\n X_row_major, D, effective_infinity = knn_initialize(X, missing_mask,\n verbose=verbose)\n D_sorted = np.argsort(D, axis=1)\n inv_D = 1.0 / D\n D_valid_mask = D < effective_infinity\n valid_distances_per_row = D_valid_mask.sum(axis=1)\n D_sorted = [D_sorted[i, :count] for i, count in enumerate(\n valid_distances_per_row)]\n dot = np.dot\n for i in range(n_rows):\n missing_row = missing_mask[i, :]\n missing_indices = np.where(missing_row)[0]\n row_weights = inv_D[i, :]\n if verbose and i % print_interval == 0:\n print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %\n (i + 1, n_rows, len(missing_indices), time.time() - start_t))\n candidate_neighbor_indices = D_sorted[i]\n for j in missing_indices:\n observed = observed_mask_column_major[:, j]\n sorted_observed = observed[candidate_neighbor_indices]\n observed_neighbor_indices = candidate_neighbor_indices[\n sorted_observed]\n k_nearest_indices = observed_neighbor_indices[:k]\n weights = row_weights[k_nearest_indices]\n weight_sum = weights.sum()\n if weight_sum > 0:\n column = X_column_major[:, j]\n values = column[k_nearest_indices]\n X_row_major[i, j] = dot(values, weights) / weight_sum\n return X_row_major\n",
"role": "user"
},
{
"content": "knn_impute_few_observed",
"role": "assistant"
}
] |
def x(X, missing_mask, verbose=False, min_dist=1e-06, max_dist_multiplier=
1000000.0):
X_row_major = X.copy('C')
if missing_mask.sum() != np.isnan(X_row_major).sum():
X_row_major[missing_mask] = np.nan
D = all_pairs_normalized_distances(X_row_major)
D_finite_flat = D[np.isfinite(D)]
if len(D_finite_flat) > 0:
max_dist = max_dist_multiplier * max(1, D_finite_flat.max())
else:
max_dist = max_dist_multiplier
np.fill_diagonal(D, max_dist)
D[D < min_dist] = min_dist
D[D > max_dist] = max_dist
return X_row_major, D, max_dist
|
knn_initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, missing_mask, verbose=False, min_dist=1e-06, max_dist_multiplier=\n 1000000.0):\n X_row_major = X.copy('C')\n if missing_mask.sum() != np.isnan(X_row_major).sum():\n X_row_major[missing_mask] = np.nan\n D = all_pairs_normalized_distances(X_row_major)\n D_finite_flat = D[np.isfinite(D)]\n if len(D_finite_flat) > 0:\n max_dist = max_dist_multiplier * max(1, D_finite_flat.max())\n else:\n max_dist = max_dist_multiplier\n np.fill_diagonal(D, max_dist)\n D[D < min_dist] = min_dist\n D[D > max_dist] = max_dist\n return X_row_major, D, max_dist\n",
"role": "user"
},
{
"content": "knn_initialize",
"role": "assistant"
}
] |
def x(X, missing_mask, k, verbose=False, print_interval=100):
start_t = time.time()
n_rows, n_cols = X.shape
X_row_major, D, _ = knn_initialize(X, missing_mask, verbose=verbose)
D_sorted_indices = np.argsort(D, axis=1)
X_column_major = X_row_major.copy(order='F')
dot = np.dot
neighbor_weights = np.ones(k, dtype=X.dtype)
missing_mask_column_major = np.asarray(missing_mask, order='F')
observed_mask_column_major = ~missing_mask_column_major
for i in range(n_rows):
missing_columns = np.where(missing_mask[i])[0]
if verbose and i % print_interval == 0:
print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %
(i + 1, n_rows, len(missing_columns), time.time() - start_t))
n_missing_columns = len(missing_columns)
if n_missing_columns == 0:
continue
row_distances = D[i, :]
neighbor_indices = D_sorted_indices[i, :]
X_missing_columns = X_column_major[:, missing_columns]
k_nearest_indices = neighbor_indices[:k]
np.divide(1.0, row_distances[k_nearest_indices], out=neighbor_weights)
X_knn = X_missing_columns[k_nearest_indices, :]
weighted_average_of_neighboring_rows = dot(X_knn.T, neighbor_weights)
sum_weights = neighbor_weights.sum()
weighted_average_of_neighboring_rows /= sum_weights
imputed_values = weighted_average_of_neighboring_rows
observed_mask_missing_columns = observed_mask_column_major[:,
missing_columns]
observed_mask_missing_columns_sorted = observed_mask_missing_columns[
neighbor_indices, :]
observed_cumulative_sum = observed_mask_missing_columns_sorted.cumsum(
axis=0)
sufficient_rows = observed_cumulative_sum == k
n_rows_needed = sufficient_rows.argmax(axis=0) + 1
max_rows_needed = n_rows_needed.max()
if max_rows_needed == k:
X[i, missing_columns] = imputed_values
continue
necessary_indices = neighbor_indices[:max_rows_needed]
d_sorted = row_distances[necessary_indices]
X_missing_columns_sorted = X_missing_columns[necessary_indices, :]
observed_mask_missing_columns_sorted = (
observed_mask_missing_columns_sorted[:max_rows_needed, :])
for missing_column_idx in range(n_missing_columns):
if n_rows_needed[missing_column_idx] == k:
assert np.isfinite(imputed_values[missing_column_idx]
), 'Expected finite imputed value #%d (column #%d for row %d)' % (
missing_column_idx, missing_columns[missing_column_idx], i)
continue
row_mask = observed_mask_missing_columns_sorted[:,
missing_column_idx]
sorted_column_values = X_missing_columns_sorted[:,
missing_column_idx]
neighbor_distances = d_sorted[row_mask][:k]
k_or_less = len(neighbor_distances)
usable_weights = neighbor_weights[:k_or_less]
np.divide(1.0, neighbor_distances, out=usable_weights)
neighbor_values = sorted_column_values[row_mask][:k_or_less]
imputed_values[missing_column_idx] = dot(neighbor_values,
usable_weights) / usable_weights.sum()
X[i, missing_columns] = imputed_values
return X
|
knn_impute_optimistic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n start_t = time.time()\n n_rows, n_cols = X.shape\n X_row_major, D, _ = knn_initialize(X, missing_mask, verbose=verbose)\n D_sorted_indices = np.argsort(D, axis=1)\n X_column_major = X_row_major.copy(order='F')\n dot = np.dot\n neighbor_weights = np.ones(k, dtype=X.dtype)\n missing_mask_column_major = np.asarray(missing_mask, order='F')\n observed_mask_column_major = ~missing_mask_column_major\n for i in range(n_rows):\n missing_columns = np.where(missing_mask[i])[0]\n if verbose and i % print_interval == 0:\n print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %\n (i + 1, n_rows, len(missing_columns), time.time() - start_t))\n n_missing_columns = len(missing_columns)\n if n_missing_columns == 0:\n continue\n row_distances = D[i, :]\n neighbor_indices = D_sorted_indices[i, :]\n X_missing_columns = X_column_major[:, missing_columns]\n k_nearest_indices = neighbor_indices[:k]\n np.divide(1.0, row_distances[k_nearest_indices], out=neighbor_weights)\n X_knn = X_missing_columns[k_nearest_indices, :]\n weighted_average_of_neighboring_rows = dot(X_knn.T, neighbor_weights)\n sum_weights = neighbor_weights.sum()\n weighted_average_of_neighboring_rows /= sum_weights\n imputed_values = weighted_average_of_neighboring_rows\n observed_mask_missing_columns = observed_mask_column_major[:,\n missing_columns]\n observed_mask_missing_columns_sorted = observed_mask_missing_columns[\n neighbor_indices, :]\n observed_cumulative_sum = observed_mask_missing_columns_sorted.cumsum(\n axis=0)\n sufficient_rows = observed_cumulative_sum == k\n n_rows_needed = sufficient_rows.argmax(axis=0) + 1\n max_rows_needed = n_rows_needed.max()\n if max_rows_needed == k:\n X[i, missing_columns] = imputed_values\n continue\n necessary_indices = neighbor_indices[:max_rows_needed]\n d_sorted = row_distances[necessary_indices]\n X_missing_columns_sorted = X_missing_columns[necessary_indices, :]\n observed_mask_missing_columns_sorted = (\n observed_mask_missing_columns_sorted[:max_rows_needed, :])\n for missing_column_idx in range(n_missing_columns):\n if n_rows_needed[missing_column_idx] == k:\n assert np.isfinite(imputed_values[missing_column_idx]\n ), 'Expected finite imputed value #%d (column #%d for row %d)' % (\n missing_column_idx, missing_columns[missing_column_idx], i)\n continue\n row_mask = observed_mask_missing_columns_sorted[:,\n missing_column_idx]\n sorted_column_values = X_missing_columns_sorted[:,\n missing_column_idx]\n neighbor_distances = d_sorted[row_mask][:k]\n k_or_less = len(neighbor_distances)\n usable_weights = neighbor_weights[:k_or_less]\n np.divide(1.0, neighbor_distances, out=usable_weights)\n neighbor_values = sorted_column_values[row_mask][:k_or_less]\n imputed_values[missing_column_idx] = dot(neighbor_values,\n usable_weights) / usable_weights.sum()\n X[i, missing_columns] = imputed_values\n return X\n",
"role": "user"
},
{
"content": "knn_impute_optimistic",
"role": "assistant"
}
] |
def x(X):
n_rows, n_cols = X.shape
D = np.ones((n_rows, n_rows), dtype='float32', order='C') * np.inf
observed_elements = np.isfinite(X).astype(int)
n_shared_features_for_pairs_of_rows = np.dot(observed_elements,
observed_elements.T)
no_overlapping_features_rows = n_shared_features_for_pairs_of_rows == 0
number_incomparable_rows = no_overlapping_features_rows.sum(axis=1)
row_overlaps_every_other_row = number_incomparable_rows == 0
row_overlaps_no_other_rows = number_incomparable_rows == n_rows
valid_rows_mask = ~row_overlaps_no_other_rows
valid_row_indices = np.where(valid_rows_mask)[0]
diffs = np.zeros_like(X)
missing_differences = np.zeros_like(diffs, dtype=bool)
valid_rows = np.zeros(n_rows, dtype=bool)
ssd = np.zeros(n_rows, dtype=X.dtype)
for i in valid_row_indices:
x = X[i, :]
np.subtract(X, x.reshape((1, n_cols)), out=diffs)
np.isnan(diffs, out=missing_differences)
diffs[missing_differences] = 0
diffs **= 2
observed_counts_per_row = n_shared_features_for_pairs_of_rows[i]
if row_overlaps_every_other_row[i]:
diffs.sum(axis=1, out=D[i, :])
D[i, :] /= observed_counts_per_row
else:
np.logical_not(no_overlapping_features_rows[i], out=valid_rows)
diffs.sum(axis=1, out=ssd)
ssd[valid_rows] /= observed_counts_per_row[valid_rows]
D[i, valid_rows] = ssd[valid_rows]
return D
|
all_pairs_normalized_distances
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X):\n n_rows, n_cols = X.shape\n D = np.ones((n_rows, n_rows), dtype='float32', order='C') * np.inf\n observed_elements = np.isfinite(X).astype(int)\n n_shared_features_for_pairs_of_rows = np.dot(observed_elements,\n observed_elements.T)\n no_overlapping_features_rows = n_shared_features_for_pairs_of_rows == 0\n number_incomparable_rows = no_overlapping_features_rows.sum(axis=1)\n row_overlaps_every_other_row = number_incomparable_rows == 0\n row_overlaps_no_other_rows = number_incomparable_rows == n_rows\n valid_rows_mask = ~row_overlaps_no_other_rows\n valid_row_indices = np.where(valid_rows_mask)[0]\n diffs = np.zeros_like(X)\n missing_differences = np.zeros_like(diffs, dtype=bool)\n valid_rows = np.zeros(n_rows, dtype=bool)\n ssd = np.zeros(n_rows, dtype=X.dtype)\n for i in valid_row_indices:\n x = X[i, :]\n np.subtract(X, x.reshape((1, n_cols)), out=diffs)\n np.isnan(diffs, out=missing_differences)\n diffs[missing_differences] = 0\n diffs **= 2\n observed_counts_per_row = n_shared_features_for_pairs_of_rows[i]\n if row_overlaps_every_other_row[i]:\n diffs.sum(axis=1, out=D[i, :])\n D[i, :] /= observed_counts_per_row\n else:\n np.logical_not(no_overlapping_features_rows[i], out=valid_rows)\n diffs.sum(axis=1, out=ssd)\n ssd[valid_rows] /= observed_counts_per_row[valid_rows]\n D[i, valid_rows] = ssd[valid_rows]\n return D\n",
"role": "user"
},
{
"content": "all_pairs_normalized_distances",
"role": "assistant"
}
] |
def x(X):
n_samples, n_cols = X.shape
D = np.ones((n_samples, n_samples), dtype='float32') * np.inf
for i in range(n_samples):
diffs = X - X[i, :].reshape((1, n_cols))
missing_diffs = np.isnan(diffs)
missing_counts_per_row = missing_diffs.sum(axis=1)
valid_rows = missing_counts_per_row < n_cols
D[i, valid_rows] = np.nanmean(diffs[valid_rows, :] ** 2, axis=1)
return D
|
all_pairs_normalized_distances_reference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X):\n n_samples, n_cols = X.shape\n D = np.ones((n_samples, n_samples), dtype='float32') * np.inf\n for i in range(n_samples):\n diffs = X - X[i, :].reshape((1, n_cols))\n missing_diffs = np.isnan(diffs)\n missing_counts_per_row = missing_diffs.sum(axis=1)\n valid_rows = missing_counts_per_row < n_cols\n D[i, valid_rows] = np.nanmean(diffs[valid_rows, :] ** 2, axis=1)\n return D\n",
"role": "user"
},
{
"content": "all_pairs_normalized_distances_reference",
"role": "assistant"
}
] |
def x(X, missing_mask, k, verbose=False, print_interval=100):
start_t = time.time()
n_rows, n_cols = X.shape
missing_mask_column_major = np.asarray(missing_mask, order='F')
X_row_major, D, effective_infinity = knn_initialize(X, missing_mask,
verbose=verbose)
D_reciprocal = 1.0 / D
dot = np.dot
array = np.array
argpartition = np.argpartition
for i in range(n_rows):
missing_indices = np.where(missing_mask[i])[0]
if verbose and i % print_interval == 0:
print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %
(i + 1, n_rows, len(missing_indices), time.time() - start_t))
d = D[i, :]
inv_d = D_reciprocal[i, :]
for j in missing_indices:
d_copy = d.copy()
d_copy[missing_mask_column_major[:, j]] = effective_infinity
neighbor_indices = argpartition(d_copy, k)[:k]
if d_copy[neighbor_indices].max() >= effective_infinity:
neighbor_indices = array([neighbor_index for neighbor_index in
neighbor_indices if d_copy[neighbor_index] <
effective_infinity])
n_current_neighbors = len(neighbor_indices)
if n_current_neighbors > 0:
neighbor_weights = inv_d[neighbor_indices]
X_row_major[i, j] = dot(X[:, j][neighbor_indices],
neighbor_weights) / neighbor_weights.sum()
return X_row_major
|
knn_impute_with_argpartition
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n start_t = time.time()\n n_rows, n_cols = X.shape\n missing_mask_column_major = np.asarray(missing_mask, order='F')\n X_row_major, D, effective_infinity = knn_initialize(X, missing_mask,\n verbose=verbose)\n D_reciprocal = 1.0 / D\n dot = np.dot\n array = np.array\n argpartition = np.argpartition\n for i in range(n_rows):\n missing_indices = np.where(missing_mask[i])[0]\n if verbose and i % print_interval == 0:\n print('Imputing row %d/%d with %d missing, elapsed time: %0.3f' %\n (i + 1, n_rows, len(missing_indices), time.time() - start_t))\n d = D[i, :]\n inv_d = D_reciprocal[i, :]\n for j in missing_indices:\n d_copy = d.copy()\n d_copy[missing_mask_column_major[:, j]] = effective_infinity\n neighbor_indices = argpartition(d_copy, k)[:k]\n if d_copy[neighbor_indices].max() >= effective_infinity:\n neighbor_indices = array([neighbor_index for neighbor_index in\n neighbor_indices if d_copy[neighbor_index] <\n effective_infinity])\n n_current_neighbors = len(neighbor_indices)\n if n_current_neighbors > 0:\n neighbor_weights = inv_d[neighbor_indices]\n X_row_major[i, j] = dot(X[:, j][neighbor_indices],\n neighbor_weights) / neighbor_weights.sum()\n return X_row_major\n",
"role": "user"
},
{
"content": "knn_impute_with_argpartition",
"role": "assistant"
}
] |
def x(X, missing_mask, k, verbose=False, print_interval=100):
n_rows, n_cols = X.shape
X_result, D, effective_infinity = knn_initialize(X, missing_mask,
verbose=verbose)
for i in range(n_rows):
for j in np.where(missing_mask[i, :])[0]:
distances = D[i, :].copy()
distances[missing_mask[:, j]] = effective_infinity
neighbor_indices = np.argsort(distances)
neighbor_distances = distances[neighbor_indices]
valid_distances = neighbor_distances < effective_infinity
neighbor_distances = neighbor_distances[valid_distances][:k]
neighbor_indices = neighbor_indices[valid_distances][:k]
weights = 1.0 / neighbor_distances
weight_sum = weights.sum()
if weight_sum > 0:
column = X[:, j]
values = column[neighbor_indices]
X_result[i, j] = np.dot(values, weights) / weight_sum
return X_result
|
knn_impute_reference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(X, missing_mask, k, verbose=False, print_interval=100):\n n_rows, n_cols = X.shape\n X_result, D, effective_infinity = knn_initialize(X, missing_mask,\n verbose=verbose)\n for i in range(n_rows):\n for j in np.where(missing_mask[i, :])[0]:\n distances = D[i, :].copy()\n distances[missing_mask[:, j]] = effective_infinity\n neighbor_indices = np.argsort(distances)\n neighbor_distances = distances[neighbor_indices]\n valid_distances = neighbor_distances < effective_infinity\n neighbor_distances = neighbor_distances[valid_distances][:k]\n neighbor_indices = neighbor_indices[valid_distances][:k]\n weights = 1.0 / neighbor_distances\n weight_sum = weights.sum()\n if weight_sum > 0:\n column = X[:, j]\n values = column[neighbor_indices]\n X_result[i, j] = np.dot(values, weights) / weight_sum\n return X_result\n",
"role": "user"
},
{
"content": "knn_impute_reference",
"role": "assistant"
}
] |
def x(self, registered_only=True):
visitors = self.filter(expiry_time__gt=timezone.now(), end_time=None)
if registered_only:
visitors = visitors.filter(user__isnull=False)
return visitors
|
active
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, registered_only=True):\n visitors = self.filter(expiry_time__gt=timezone.now(), end_time=None)\n if registered_only:\n visitors = visitors.filter(user__isnull=False)\n return visitors\n",
"role": "user"
},
{
"content": "active",
"role": "assistant"
}
] |
def x(self, start_date, end_date, registered_only=False):
visitors = self.filter(start_time__gte=start_date, start_time__lt=end_date)
stats = {'total': 0, 'unique': 0, 'return_ratio': 0}
stats['total'] = total_count = visitors.count()
unique_count = 0
if not total_count:
return stats
total_time_on_site = visitors.aggregate(avg_tos=Avg('time_on_site'))[
'avg_tos']
stats['time_on_site'] = timedelta(seconds=int(total_time_on_site))
registered_visitors = visitors.filter(user__isnull=False)
registered_total_count = registered_visitors.count()
if registered_total_count:
registered_unique_count = registered_visitors.values('user').distinct(
).count()
time_on_site = registered_visitors.aggregate(avg_tos=Avg(
'time_on_site'))['avg_tos']
unique_count += registered_unique_count
returns = registered_total_count - registered_unique_count
stats['registered'] = {'total': registered_total_count, 'unique':
registered_unique_count, 'return_ratio': returns /
registered_total_count * 100, 'time_on_site': timedelta(seconds
=int(time_on_site))}
if TRACK_ANONYMOUS_USERS and not registered_only:
guests = visitors.filter(user__isnull=True)
guest_total_count = guests.count()
if guest_total_count:
guest_unique_count = guests.values('ip_address').distinct().count()
guest_time_on_site = guests.aggregate(avg_tos=Avg('time_on_site'))[
'avg_tos']
returns = guest_total_count - guest_unique_count
return_ratio = returns / guest_total_count * 100
time_on_site = timedelta(seconds=int(guest_time_on_site))
else:
guest_total_count = 0
guest_unique_count = 0
return_ratio = 0.0
time_on_site = timedelta(0)
unique_count += guest_unique_count
stats['guests'] = {'total': guest_total_count, 'unique':
guest_unique_count, 'return_ratio': return_ratio,
'time_on_site': time_on_site}
returns = total_count - unique_count
stats['unique'] = unique_count
stats['return_ratio'] = returns / total_count * 100
if TRACK_PAGEVIEWS:
if 'registered' in stats:
pages_per_visit = registered_visitors.annotate(page_count=Count
('pageviews')).filter(page_count__gt=0).aggregate(
pages_per_visit=Avg('page_count'))['pages_per_visit']
stats['registered']['pages_per_visit'] = pages_per_visit
if TRACK_ANONYMOUS_USERS and not registered_only:
stats['guests']['pages_per_visit'] = guests.annotate(page_count
=Count('pageviews')).filter(page_count__gt=0).aggregate(
pages_per_visit=Avg('page_count'))['pages_per_visit']
total_per_visit = visitors.annotate(page_count=Count('pageviews')
).filter(page_count__gt=0).aggregate(pages_per_visit=Avg(
'page_count'))['pages_per_visit']
elif 'registered' in stats:
total_per_visit = stats['registered']['pages_per_visit']
else:
total_per_visit = 0
stats['pages_per_visit'] = total_per_visit
return stats
|
stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start_date, end_date, registered_only=False):\n visitors = self.filter(start_time__gte=start_date, start_time__lt=end_date)\n stats = {'total': 0, 'unique': 0, 'return_ratio': 0}\n stats['total'] = total_count = visitors.count()\n unique_count = 0\n if not total_count:\n return stats\n total_time_on_site = visitors.aggregate(avg_tos=Avg('time_on_site'))[\n 'avg_tos']\n stats['time_on_site'] = timedelta(seconds=int(total_time_on_site))\n registered_visitors = visitors.filter(user__isnull=False)\n registered_total_count = registered_visitors.count()\n if registered_total_count:\n registered_unique_count = registered_visitors.values('user').distinct(\n ).count()\n time_on_site = registered_visitors.aggregate(avg_tos=Avg(\n 'time_on_site'))['avg_tos']\n unique_count += registered_unique_count\n returns = registered_total_count - registered_unique_count\n stats['registered'] = {'total': registered_total_count, 'unique':\n registered_unique_count, 'return_ratio': returns /\n registered_total_count * 100, 'time_on_site': timedelta(seconds\n =int(time_on_site))}\n if TRACK_ANONYMOUS_USERS and not registered_only:\n guests = visitors.filter(user__isnull=True)\n guest_total_count = guests.count()\n if guest_total_count:\n guest_unique_count = guests.values('ip_address').distinct().count()\n guest_time_on_site = guests.aggregate(avg_tos=Avg('time_on_site'))[\n 'avg_tos']\n returns = guest_total_count - guest_unique_count\n return_ratio = returns / guest_total_count * 100\n time_on_site = timedelta(seconds=int(guest_time_on_site))\n else:\n guest_total_count = 0\n guest_unique_count = 0\n return_ratio = 0.0\n time_on_site = timedelta(0)\n unique_count += guest_unique_count\n stats['guests'] = {'total': guest_total_count, 'unique':\n guest_unique_count, 'return_ratio': return_ratio,\n 'time_on_site': time_on_site}\n returns = total_count - unique_count\n stats['unique'] = unique_count\n stats['return_ratio'] = returns / total_count * 100\n if TRACK_PAGEVIEWS:\n if 'registered' in stats:\n pages_per_visit = registered_visitors.annotate(page_count=Count\n ('pageviews')).filter(page_count__gt=0).aggregate(\n pages_per_visit=Avg('page_count'))['pages_per_visit']\n stats['registered']['pages_per_visit'] = pages_per_visit\n if TRACK_ANONYMOUS_USERS and not registered_only:\n stats['guests']['pages_per_visit'] = guests.annotate(page_count\n =Count('pageviews')).filter(page_count__gt=0).aggregate(\n pages_per_visit=Avg('page_count'))['pages_per_visit']\n total_per_visit = visitors.annotate(page_count=Count('pageviews')\n ).filter(page_count__gt=0).aggregate(pages_per_visit=Avg(\n 'page_count'))['pages_per_visit']\n elif 'registered' in stats:\n total_per_visit = stats['registered']['pages_per_visit']\n else:\n total_per_visit = 0\n stats['pages_per_visit'] = total_per_visit\n return stats\n",
"role": "user"
},
{
"content": "stats",
"role": "assistant"
}
] |
def x(self, start_date=None, end_date=None, registered_only=False):
pageviews = self.filter(visitor__start_time__lt=end_date,
visitor__start_time__gte=start_date).select_related('visitor')
stats = {'total': 0, 'unique': 0}
stats['total'] = total_views = pageviews.count()
unique_count = 0
if not total_views:
return stats
registered_pageviews = pageviews.filter(visitor__user__isnull=False)
registered_count = registered_pageviews.count()
if registered_count:
registered_unique_count = registered_pageviews.values('visitor', 'url'
).distinct().count()
unique_count += registered_unique_count
stats['registered'] = {'total': registered_count, 'unique':
registered_unique_count}
if TRACK_ANONYMOUS_USERS and not registered_only:
guest_pageviews = pageviews.filter(visitor__user__isnull=True)
guest_count = guest_pageviews.count()
if guest_count:
guest_unique_count = guest_pageviews.values('visitor', 'url'
).distinct().count()
unique_count += guest_unique_count
stats['guests'] = {'total': guest_count, 'unique':
guest_unique_count}
stats['unique'] = unique_count
return stats
|
stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start_date=None, end_date=None, registered_only=False):\n pageviews = self.filter(visitor__start_time__lt=end_date,\n visitor__start_time__gte=start_date).select_related('visitor')\n stats = {'total': 0, 'unique': 0}\n stats['total'] = total_views = pageviews.count()\n unique_count = 0\n if not total_views:\n return stats\n registered_pageviews = pageviews.filter(visitor__user__isnull=False)\n registered_count = registered_pageviews.count()\n if registered_count:\n registered_unique_count = registered_pageviews.values('visitor', 'url'\n ).distinct().count()\n unique_count += registered_unique_count\n stats['registered'] = {'total': registered_count, 'unique':\n registered_unique_count}\n if TRACK_ANONYMOUS_USERS and not registered_only:\n guest_pageviews = pageviews.filter(visitor__user__isnull=True)\n guest_count = guest_pageviews.count()\n if guest_count:\n guest_unique_count = guest_pageviews.values('visitor', 'url'\n ).distinct().count()\n unique_count += guest_unique_count\n stats['guests'] = {'total': guest_count, 'unique':\n guest_unique_count}\n stats['unique'] = unique_count\n return stats\n",
"role": "user"
},
{
"content": "stats",
"role": "assistant"
}
] |
def x(request):
end_time = now()
start_time = end_time - timedelta(days=7)
defaults = {'start': start_time, 'end': end_time}
form = DashboardForm(data=request.GET or defaults)
if form.is_valid():
start_time = form.cleaned_data['start']
end_time = form.cleaned_data['end']
try:
obj = Visitor.objects.order_by('start_time')[0]
track_start_time = obj.start_time
except (IndexError, Visitor.DoesNotExist):
track_start_time = now()
warn_incomplete = start_time < track_start_time
user_stats = Visitor.objects.user_stats(start_time, end_time)
visitor_stats = Visitor.objects.stats(start_time, end_time)
if TRACK_PAGEVIEWS:
pageview_stats = Pageview.objects.stats(start_time, end_time)
else:
pageview_stats = None
context = {'form': form, 'track_start_time': track_start_time,
'warn_incomplete': warn_incomplete, 'user_stats': user_stats,
'visitor_stats': visitor_stats, 'pageview_stats': pageview_stats}
return render(request, 'tracking/dashboard.html', context)
|
dashboard
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n end_time = now()\n start_time = end_time - timedelta(days=7)\n defaults = {'start': start_time, 'end': end_time}\n form = DashboardForm(data=request.GET or defaults)\n if form.is_valid():\n start_time = form.cleaned_data['start']\n end_time = form.cleaned_data['end']\n try:\n obj = Visitor.objects.order_by('start_time')[0]\n track_start_time = obj.start_time\n except (IndexError, Visitor.DoesNotExist):\n track_start_time = now()\n warn_incomplete = start_time < track_start_time\n user_stats = Visitor.objects.user_stats(start_time, end_time)\n visitor_stats = Visitor.objects.stats(start_time, end_time)\n if TRACK_PAGEVIEWS:\n pageview_stats = Pageview.objects.stats(start_time, end_time)\n else:\n pageview_stats = None\n context = {'form': form, 'track_start_time': track_start_time,\n 'warn_incomplete': warn_incomplete, 'user_stats': user_stats,\n 'visitor_stats': visitor_stats, 'pageview_stats': pageview_stats}\n return render(request, 'tracking/dashboard.html', context)\n",
"role": "user"
},
{
"content": "dashboard",
"role": "assistant"
}
] |
def x(self):
if not HAS_GEOIP or not TRACK_USING_GEOIP:
return
if not hasattr(self, '_geoip_data'):
self._geoip_data = None
try:
gip = GeoIP(cache=GEOIP_CACHE_TYPE)
self._geoip_data = gip.city(self.ip_address)
except GeoIPException:
msg = 'Error getting GeoIP data for IP "{0}"'.format(self.
ip_address)
log.exception(msg)
return self._geoip_data
|
geoip_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not HAS_GEOIP or not TRACK_USING_GEOIP:\n return\n if not hasattr(self, '_geoip_data'):\n self._geoip_data = None\n try:\n gip = GeoIP(cache=GEOIP_CACHE_TYPE)\n self._geoip_data = gip.city(self.ip_address)\n except GeoIPException:\n msg = 'Error getting GeoIP data for IP \"{0}\"'.format(self.\n ip_address)\n log.exception(msg)\n return self._geoip_data\n",
"role": "user"
},
{
"content": "geoip_data",
"role": "assistant"
}
] |
def x(s):
if hasattr(s, '__html__'):
return s.__html__()
if isinstance(s, six.binary_type):
s = six.text_type(str(s), 'utf8')
elif isinstance(s, six.text_type):
s = s
else:
s = str(s)
return s.replace('&', '&').replace('>', '>').replace('<', '<'
).replace("'", ''').replace('"', '"')
|
escape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if hasattr(s, '__html__'):\n return s.__html__()\n if isinstance(s, six.binary_type):\n s = six.text_type(str(s), 'utf8')\n elif isinstance(s, six.text_type):\n s = s\n else:\n s = str(s)\n return s.replace('&', '&').replace('>', '>').replace('<', '<'\n ).replace(\"'\", ''').replace('\"', '"')\n",
"role": "user"
},
{
"content": "escape",
"role": "assistant"
}
] |
def x(obj, num_keys):
if is_mapping(obj):
return obj
_marker = []
iter_obj = iter(obj)
head = next(iter_obj, _marker)
iter_obj = chain([head], iter_obj)
if head is _marker:
return []
if is_iterable(head):
if num_keys == get_cardinality(head) + 1:
return (tuple(item) + (ix,) for ix, item in enumerate(iter_obj))
else:
return iter_obj
elif num_keys == 2:
return ((item, ix) for ix, item in enumerate(iter_obj))
else:
return iter_obj
|
iteration
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj, num_keys):\n if is_mapping(obj):\n return obj\n _marker = []\n iter_obj = iter(obj)\n head = next(iter_obj, _marker)\n iter_obj = chain([head], iter_obj)\n if head is _marker:\n return []\n if is_iterable(head):\n if num_keys == get_cardinality(head) + 1:\n return (tuple(item) + (ix,) for ix, item in enumerate(iter_obj))\n else:\n return iter_obj\n elif num_keys == 2:\n return ((item, ix) for ix, item in enumerate(iter_obj))\n else:\n return iter_obj\n",
"role": "user"
},
{
"content": "iteration",
"role": "assistant"
}
] |
def x(parser, token):
code = token.contents
firstspace = code.find(' ')
if firstspace >= 0:
code = code[firstspace + 1:]
return Evaluator(code)
|
do_evaluate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parser, token):\n code = token.contents\n firstspace = code.find(' ')\n if firstspace >= 0:\n code = code[firstspace + 1:]\n return Evaluator(code)\n",
"role": "user"
},
{
"content": "do_evaluate",
"role": "assistant"
}
] |
def x(parser, token):
code = token.contents
firstspace = code.find(' ')
if firstspace >= 0:
code = code[firstspace + 1:]
return Setter(code)
|
do_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parser, token):\n code = token.contents\n firstspace = code.find(' ')\n if firstspace >= 0:\n code = code[firstspace + 1:]\n return Setter(code)\n",
"role": "user"
},
{
"content": "do_set",
"role": "assistant"
}
] |
def x(self, context):
modules = {'pyjade': __import__('pyjade')}
context['false'] = False
context['true'] = True
try:
return six.text_type(eval('pyjade.runtime.attrs(%s)' % self.code,
modules, context))
except NameError:
return ''
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n modules = {'pyjade': __import__('pyjade')}\n context['false'] = False\n context['true'] = True\n try:\n return six.text_type(eval('pyjade.runtime.attrs(%s)' % self.code,\n modules, context))\n except NameError:\n return ''\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(self, context):
modules = {}
context['false'] = False
context['true'] = True
new_ctx = eval('dict(%s)' % self.code, modules, context)
context.update(new_ctx)
return ''
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, context):\n modules = {}\n context['false'] = False\n context['true'] = True\n new_ctx = eval('dict(%s)' % self.code, modules, context)\n context.update(new_ctx)\n return ''\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x(sprite_type, sprite_id, **kwargs):
options = parse_sprite_options(sprite_type, **kwargs)
filename = '.'.join([str(sprite_id), SPRITE_EXT])
filepath = os.path.join(sprite_type, *options, filename)
return filepath
|
sprite_filepath_build
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sprite_type, sprite_id, **kwargs):\n options = parse_sprite_options(sprite_type, **kwargs)\n filename = '.'.join([str(sprite_id), SPRITE_EXT])\n filepath = os.path.join(sprite_type, *options, filename)\n return filepath\n",
"role": "user"
},
{
"content": "sprite_filepath_build",
"role": "assistant"
}
] |
def x(obj):
if isinstance(obj, dict):
if 'url' in obj.keys():
url = obj['url']
id_ = int(url.split('/')[-2])
endpoint = url.split('/')[-3]
return APIResource(endpoint, id_, lazy_load=True)
return APIMetadata(obj)
return obj
|
make_obj
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n if isinstance(obj, dict):\n if 'url' in obj.keys():\n url = obj['url']\n id_ = int(url.split('/')[-2])\n endpoint = url.split('/')[-3]\n return APIResource(endpoint, id_, lazy_load=True)\n return APIMetadata(obj)\n return obj\n",
"role": "user"
},
{
"content": "make_obj",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.