code
stringlengths
4
4.48k
docstring
stringlengths
1
6.45k
_id
stringlengths
24
24
def _poll_async_result(self, result, templar, task_vars=None): <NEW_LINE> <INDENT> if task_vars is None: <NEW_LINE> <INDENT> task_vars = self._job_vars <NEW_LINE> <DEDENT> async_jid = result.get('ansible_job_id') <NEW_LINE> if async_jid is None: <NEW_LINE> <INDENT> return dict(failed=True, msg="No job id was returned by the async task") <NEW_LINE> <DEDENT> async_task = Task().load(dict(action='async_status jid=%s' % async_jid, environment=self._task.environment)) <NEW_LINE> async_handler = self._shared_loader_obj.action_loader.get( 'async_status', task=async_task, connection=self._connection, play_context=self._play_context, loader=self._loader, templar=templar, shared_loader_obj=self._shared_loader_obj, ) <NEW_LINE> time_left = self._task.async_val <NEW_LINE> while time_left > 0: <NEW_LINE> <INDENT> time.sleep(self._task.poll) <NEW_LINE> try: <NEW_LINE> <INDENT> async_result = async_handler.run(task_vars=task_vars) <NEW_LINE> if (int(async_result.get('finished', 0)) == 1 or ('failed' in async_result and async_result.get('_ansible_parsed', False)) or 'skipped' in async_result): <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> display.vvvv("Exception during async poll, retrying... (%s)" % to_text(e)) <NEW_LINE> display.debug("Async poll exception was:\n%s" % to_text(traceback.format_exc())) <NEW_LINE> try: <NEW_LINE> <INDENT> async_handler._connection.reset() <NEW_LINE> <DEDENT> except AttributeError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> time_left -= self._task.poll <NEW_LINE> if time_left <= 0: <NEW_LINE> <INDENT> raise <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> time_left -= self._task.poll <NEW_LINE> <DEDENT> <DEDENT> if int(async_result.get('finished', 0)) != 1: <NEW_LINE> <INDENT> if async_result.get('_ansible_parsed'): <NEW_LINE> <INDENT> return dict(failed=True, msg="async task did not complete within the requested time - %ss" % self._task.async_val) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return dict(failed=True, msg="async task produced unparseable results", async_result=async_result) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> return async_result
Polls for the specified JID to be complete
625941bb4428ac0f6e5ba6a8
def controlled_by(self, qubit: 'cirq.Qid') -> 'Cell': <NEW_LINE> <INDENT> return self
The same cell, but with an explicit control on its main operations. Cells with effects that do not need to be controlled are permitted to return themselves unmodified. Args: qubit: The control qubit. Returns: A modified cell with an additional control.
625941bbab23a570cc250036
def search_item(self): <NEW_LINE> <INDENT> self.search_item_root = Tk() <NEW_LINE> self.window = Search_item(self.search_item_root) <NEW_LINE> self.search_item_root.title("Wyszukaj pozycję") <NEW_LINE> self.search_item_root.geometry("1300x450") <NEW_LINE> self.master.withdraw() <NEW_LINE> self.search_item_root.mainloop()
Create window for browser
625941bb1f037a2d8b9460b5
def get_module_name(self): <NEW_LINE> <INDENT> modname = 'coverage_test_' + self.noise + str(self.n) <NEW_LINE> self.n += 1 <NEW_LINE> return modname
Return the module name to use for this test run.
625941bb283ffb24f3c557c2
def __init__( self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8, ): <NEW_LINE> <INDENT> super(MobileNetV2, self).__init__() <NEW_LINE> block = InvertedResidual <NEW_LINE> input_channel = 32 <NEW_LINE> last_channel = 1280 <NEW_LINE> if inverted_residual_setting is None: <NEW_LINE> <INDENT> inverted_residual_setting = [ [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] <NEW_LINE> <DEDENT> if ( len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4 ): <NEW_LINE> <INDENT> raise ValueError( "inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting) ) <NEW_LINE> <DEDENT> input_channel = _make_divisible(input_channel * width_mult, round_nearest) <NEW_LINE> self.last_channel = _make_divisible( last_channel * max(1.0, width_mult), round_nearest ) <NEW_LINE> features = [ M.ConvBnRelu2d( 3, input_channel, kernel_size=3, padding=1, stride=2, bias=False ) ] <NEW_LINE> for t, c, n, s in inverted_residual_setting: <NEW_LINE> <INDENT> output_channel = _make_divisible(c * width_mult, round_nearest) <NEW_LINE> for i in range(n): <NEW_LINE> <INDENT> stride = s if i == 0 else 1 <NEW_LINE> features.append( block(input_channel, output_channel, stride, expand_ratio=t) ) <NEW_LINE> input_channel = output_channel <NEW_LINE> <DEDENT> <DEDENT> features.append( M.ConvBnRelu2d(input_channel, self.last_channel, kernel_size=1, bias=False) ) <NEW_LINE> self.features = M.Sequential(*features) <NEW_LINE> self.classifier = M.Sequential( M.Dropout(0.2), M.Linear(self.last_channel, num_classes), ) <NEW_LINE> self.classifier.disable_quantize() <NEW_LINE> self.quant = M.QuantStub() <NEW_LINE> self.dequant = M.DequantStub() <NEW_LINE> for m in self.modules(): <NEW_LINE> <INDENT> if isinstance(m, M.Conv2d): <NEW_LINE> <INDENT> M.init.msra_normal_(m.weight, mode="fan_out") <NEW_LINE> if m.bias is not None: <NEW_LINE> <INDENT> M.init.zeros_(m.bias) <NEW_LINE> <DEDENT> <DEDENT> elif isinstance(m, M.BatchNorm2d): <NEW_LINE> <INDENT> M.init.ones_(m.weight) <NEW_LINE> M.init.zeros_(m.bias) <NEW_LINE> <DEDENT> elif isinstance(m, M.Linear): <NEW_LINE> <INDENT> M.init.normal_(m.weight, 0, 0.01) <NEW_LINE> M.init.zeros_(m.bias)
MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding
625941bb30bbd722463cbc7a
def train(self): <NEW_LINE> <INDENT> for e in range(self.config.hp.n_epochs): <NEW_LINE> <INDENT> self.epoch(e)
Call this function to start the training
625941bb99fddb7c1c9de24a
def single(self): <NEW_LINE> <INDENT> if self._config.get("pidfile"): <NEW_LINE> <INDENT> pid_write(self._config["pidfile"], os.getpid(), excl=True) <NEW_LINE> <DEDENT> self.pre_run() <NEW_LINE> self.run() <NEW_LINE> if self._config.get("pidfile"): <NEW_LINE> <INDENT> pid_remove(self._config.get("pidfile"))
Do single action.
625941bbadb09d7d5db6c649
def topKFrequent(self, nums, k): <NEW_LINE> <INDENT> import heapq <NEW_LINE> import collections <NEW_LINE> heap=[] <NEW_LINE> count=collections.Counter(nums) <NEW_LINE> for key,cnt in count.items(): <NEW_LINE> <INDENT> if len(heap)<k: <NEW_LINE> <INDENT> heapq.heappush(heap,(cnt,key)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if cnt>heap[0][0]: <NEW_LINE> <INDENT> heapq.heappop(heap) <NEW_LINE> heapq.heappush(heap,(cnt,key)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return [x[1] for x in heap]
:type nums: List[int] :type k: int :rtype: List[int]
625941bb50812a4eaa59c1db
def verlet_next_vel(vel_t,accel_t,accel_t_plus_dt): <NEW_LINE> <INDENT> vel_t_plus_dt = vel_t.copy() <NEW_LINE> return vel_t_plus_dt
We want to return velocity of the particle at the next moment t_plus_dt, based on its velocity at time t, and its acceleration at time t and t_plus_dt
625941bbb7558d58953c4dd1
@bp.route('/logout') <NEW_LINE> def logout(): <NEW_LINE> <INDENT> logout_user() <NEW_LINE> return redirect(url_for('index'))
Log out an active user.
625941bb63d6d428bbe443a6
def __init__(self): <NEW_LINE> <INDENT> self.Status = None <NEW_LINE> self.ErrCode = None <NEW_LINE> self.ErrMsg = None <NEW_LINE> self.ItemSet = None
:param Status: 编辑任务状态。 1:执行中;2:成功;3:失败。 :type Status: int :param ErrCode: 编辑任务失败错误码。 0:成功;其他值:失败。 :type ErrCode: int :param ErrMsg: 编辑任务失败错误描述。 :type ErrMsg: str :param ItemSet: 智能封面结果集。 注意:此字段可能返回 null,表示取不到有效值。 :type ItemSet: list of CoverTaskResultItem
625941bbd18da76e23532389
@task <NEW_LINE> def check_repo_status(expected_tag=None, **kwargs): <NEW_LINE> <INDENT> prepare_env(**kwargs) <NEW_LINE> with cd(os.path.join(env.remote_source_root, env.project_repo_name)): <NEW_LINE> <INDENT> if exists('env_dependencies.txt'): <NEW_LINE> <INDENT> run('rm env_dependencies.txt') <NEW_LINE> <DEDENT> run('git checkout master') <NEW_LINE> run('source ~/.venvs/bcpp/bin/activate && pip freeze > env_dependencies.txt') <NEW_LINE> result = run('git describe --tags') <NEW_LINE> if result != expected_tag: <NEW_LINE> <INDENT> warn(red(f'master is not at {expected_tag}')) <NEW_LINE> <DEDENT> data = run('cat env_dependencies.txt') <NEW_LINE> data = [d[:-1] for d in data.split('\n')] <NEW_LINE> requirements_list = get_pip_freeze_list_from_requirements( requirements_file=env.requirements_file) <NEW_LINE> for requirement in requirements_list: <NEW_LINE> <INDENT> if requirement not in data: <NEW_LINE> <INDENT> warn(red(f'{requirement} is not in {env.host}'))
Check repo tag. fab -P -R mmathethe utils.check_repo_status:bootstrap_path=/Users/imosweu/source/bcpp/fabfile/conf/,expected_tag=0.1.47 --user=django
625941bb091ae35668666e1b
def get_random_note(self): <NEW_LINE> <INDENT> note_idx = np.random.randint(0, self.num_actions - 1) <NEW_LINE> return np.array([[note_idx]])
Samle a note uniformly at random. Returns: random note
625941bb925a0f43d2549d2b
def prep_level(self): <NEW_LINE> <INDENT> self.level_image = self.font.render(str(self.stats.level), True, self.text_color, self.ai_settings.bg_color) <NEW_LINE> self.level_rect = self.level_image.get_rect() <NEW_LINE> self.level_rect.right = self.score_rect.right <NEW_LINE> self.level_rect.top = self.score_rect.bottom + 10
Turn the level into a rendered iamge.
625941bbd58c6744b4257b17
def build_pytrees_docker(self): <NEW_LINE> <INDENT> package_name = 'py_trees' <NEW_LINE> container_name = self.pytrees_pkg_name+str(self.id) <NEW_LINE> self.pytreesd = { 'build': { 'context' : './docker', 'dockerfile': 'Dockerfile.pytrees', }, 'container_name': container_name, 'runtime': 'runc', 'depends_on': ['master', f'motion_ctrl{self.id}'], 'env_file': [env_path], 'volumes': ['/tmp/.docker.xauth:/tmp/.docker.xauth:rw', '/tmp/.X11-unix:/tmp/.X11-unix:rw', '/var/run/dbus:/var/run/dbus:ro', '/etc/machine-id:/etc/machine-id:ro', '${XDG_RUNTIME_DIR}/pulse/native:${XDG_RUNTIME_DIR}/pulse/native', '~/.config/pulse/cookie:/root/.config/pulse/cookie', './docker/py_trees_ros_behaviors:/ros_ws/src/py_trees_ros_behaviors/' ], 'environment': [f"ROS_HOSTNAME={container_name}", "ROS_MASTER_URI=http://master:11311", f"ROBOT_NAME=turtlebot{self.id}", f"SKILLS={self.skills}", f"ROBOT_CONFIG={json.dumps(self.config)}"], 'command': '/bin/bash -c "colcon build && source /ros_ws/install/setup.bash && ros2 launch py_trees_ros_behaviors tutorial_seven_docking_cancelling_failing_launch.py"', 'tty': True, 'networks': ['morsegatonet'] }
py_trees1: build: context: ./docker dockerfile: Dockerfile.pytrees container_name: py_trees1 runtime: runc depends_on: - motion_ctrl env_file: - .env devices: - "/dev/dri" - "/dev/snd" environment: - "ROS_HOSTNAME=py_trees1" - "ROS_MASTER_URI=http://motion_ctrl:11311" - "QT_X11_NO_MITSHM=1" - "DISPLAY=$DISPLAY" - "XAUTHORITY=$XAUTH" - "QT_GRAPHICSSYSTEM=native" - "PULSE_SERVER=unix:${XDG_RUNTIME_DIR}/pulse/native" - "ROBOT_NAME=turtlebot1" volumes: - /tmp/.docker.xauth:/tmp/.docker.xauth:rw - /tmp/.X11-unix:/tmp/.X11-unix:rw - /var/run/dbus:/var/run/dbus:ro - /etc/machine-id:/etc/machine-id:ro - ${XDG_RUNTIME_DIR}/pulse/native:${XDG_RUNTIME_DIR}/pulse/native - ~/.config/pulse/cookie:/root/.config/pulse/cookie - ./docker/py_trees_ros_behaviors:/ros_ws/src/py_trees_ros_behaviors/ command: python3 /ros_ws/src/bridge.py command: /bin/bash -c "source /opt/ros/noetic/setup.bash && ros2 run ros1_bridge dynamic_bridge --bridge-all-topics " tty: true networks: morsegatonet: ipv4_address: 10.2.0.8
625941bbbe7bc26dc91cd4bc
@app.route('/release') <NEW_LINE> def release(): <NEW_LINE> <INDENT> servo(GRIPPER, GRIPPER_OPEN) <NEW_LINE> return "Gripper opened"
Opens gripper
625941bbd58c6744b4257b18
@auth.route("/", methods=["GET"]) <NEW_LINE> def home_page(): <NEW_LINE> <INDENT> return render_template("home_page.html")
Returns simple home page.
625941bb5166f23b2e1a5010
def get_by_name(self, name): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return self._choice_name_dict[name] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> raise exceptions.ChoiceDoesNotExist('There is no choice with name=%s' % name)
Pass the name of a choice and get the dict representation of that choice. Raises a ChoiceDoesNotExist exception if there is no choice with that name. :param name: the name of the choice :return: dict
625941bbaad79263cf3908f3
def get_missing(input: Stream, desired: List[str]) -> List[str]: <NEW_LINE> <INDENT> present = TimeseriesUtility.get_channels(stream=input) <NEW_LINE> return list(set(desired).difference(set(present)))
Return missing channels from input
625941bb56b00c62f0f1450e
def test_compute_prescription_order_line_count(self): <NEW_LINE> <INDENT> exp = self.sale_7.order_line.mapped('prescription_order_line_id').ids <NEW_LINE> exp = len(exp) <NEW_LINE> res = len(self.sale_7.prescription_order_line_ids.ids) <NEW_LINE> self.assertEqual( res, exp, )
Test rx line count properly computed
625941bb7b25080760e39312
@schedule_blueprint.route("/drop") <NEW_LINE> def drop(): <NEW_LINE> <INDENT> if not utils.is_logged_in(session): <NEW_LINE> <INDENT> return redirect(url_for("index")) <NEW_LINE> <DEDENT> feeder_id = request.args.get("id", None) <NEW_LINE> if not feeder_id: <NEW_LINE> <INDENT> return redirect(url_for("home_blueprint.home")) <NEW_LINE> <DEDENT> user_info = db.getUserByUsername(utils.get_username(session)) <NEW_LINE> feeder_info = check_user_owns_feeder(user_info, feeder_id) <NEW_LINE> if not feeder_info: <NEW_LINE> <INDENT> return redirect(url_for("home_blueprint.home")) <NEW_LINE> <DEDENT> drop_offset = dt.timezone(dt.timedelta(hours=8)) <NEW_LINE> drop_time = dt.datetime.now(drop_offset) <NEW_LINE> db.addScheduleItem(feeder_id, scheduleType="S", time=drop_time) <NEW_LINE> return redirect(url_for("home_blueprint.home", id=feeder_id))
Schedules an immediate drop of food for the pet feeder.
625941bb7047854f462a12c4
def read_namespaced_deployment(self, name, namespace, **kwargs): <NEW_LINE> <INDENT> kwargs['_return_http_data_only'] = True <NEW_LINE> return self.read_namespaced_deployment_with_http_info(name, namespace, **kwargs)
read_namespaced_deployment # noqa: E501 read the specified Deployment # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_namespaced_deployment(name, namespace, async_req=True) >>> result = thread.get() :param name: name of the Deployment (required) :type name: str :param namespace: object name and auth scope, such as for teams and projects (required) :type namespace: str :param pretty: If 'true', then the output is pretty printed. :type pretty: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: V1Deployment
625941bb7b180e01f3dc46bc
def test_update_committed_object(self): <NEW_LINE> <INDENT> self._db_map.add_object_classes({"id": 1, "name": "some_class"}) <NEW_LINE> self._db_map.add_objects({"id": 1, "name": "nemo", "class_id": 1}) <NEW_LINE> self._db_map.commit_session("update") <NEW_LINE> ids, intgr_error_log = self._db_map.update_objects({"id": 1, "name": "klaus"}) <NEW_LINE> sq = self._db_map.object_sq <NEW_LINE> objects = {x.id: x.name for x in self._db_map.query(sq).filter(sq.c.id.in_(ids))} <NEW_LINE> self.assertEqual(intgr_error_log, []) <NEW_LINE> self.assertEqual(objects[1], "klaus") <NEW_LINE> self.assertEqual(self._db_map.query(self._db_map.object_sq).filter_by(id=1).first().name, "klaus") <NEW_LINE> self._db_map.commit_session("update") <NEW_LINE> self.assertEqual(self._db_map.query(self._db_map.object_sq).filter_by(id=1).first().name, "klaus")
Test that updating objects works.
625941bb1b99ca400220a968
def compute_similarity_matrix_slow(self, chroma): <NEW_LINE> <INDENT> num_samples = chroma.shape[1] <NEW_LINE> time_time_similarity = np.zeros((num_samples, num_samples)) <NEW_LINE> for i in range(num_samples): <NEW_LINE> <INDENT> for j in range(num_samples): <NEW_LINE> <INDENT> time_time_similarity[i, j] = 1 - ( np.linalg.norm(chroma[:, i] - chroma[:, j]) / sqrt(12)) <NEW_LINE> <DEDENT> <DEDENT> return time_time_similarity
Slow but straightforward way to compute time time similarity matrix
625941bb8e71fb1e9831d664
def best_defender_1(rank, max_age): <NEW_LINE> <INDENT> filter_1 = df['Preferred Positions Type'] == 'Back' <NEW_LINE> filter_2 = df['Age'] < max_age <NEW_LINE> defenders = df[(filter_1) & (filter_2)].reset_index() <NEW_LINE> return defenders.sort_values(by=['Overall','Name'], ascending=False).iloc[rank-1]['Name']
Returns a string of the nth ranked defender under a certain age
625941bbd10714528d5ffb97
def New(*args, **kargs): <NEW_LINE> <INDENT> obj = itkIntensityWindowingImageFilterIUC2IUL2.__New_orig__() <NEW_LINE> import itkTemplate <NEW_LINE> itkTemplate.New(obj, *args, **kargs) <NEW_LINE> return obj
New() -> itkIntensityWindowingImageFilterIUC2IUL2 Create a new object of the class itkIntensityWindowingImageFilterIUC2IUL2 and set the input and the parameters if some named or non-named arguments are passed to that method. New() tries to assign all the non named parameters to the input of the new objects - the first non named parameter in the first input, etc. The named parameters are used by calling the method with the same name prefixed by 'Set'. Ex: itkIntensityWindowingImageFilterIUC2IUL2.New( reader, Threshold=10 ) is (most of the time) equivalent to: obj = itkIntensityWindowingImageFilterIUC2IUL2.New() obj.SetInput( 0, reader.GetOutput() ) obj.SetThreshold( 10 )
625941bb7d43ff24873a2b54
def __init__(self): <NEW_LINE> <INDENT> self.InstanceId = None <NEW_LINE> self.NodeFlag = None <NEW_LINE> self.Offset = None <NEW_LINE> self.Limit = None <NEW_LINE> self.HardwareResourceType = None <NEW_LINE> self.SearchFields = None
:param InstanceId: Cluster instance ID in the format of emr-xxxxxxxx :type InstanceId: str :param NodeFlag: Node flag. Valid values: <li>all: gets the information of nodes in all types except TencentDB information.</li> <li>master: gets master node information.</li> <li>core: gets core node information.</li> <li>task: gets task node information.</li> <li>common: gets common node information.</li> <li>router: gets router node information.</li> <li>db: gets TencentDB information in normal status.</li> Note: only the above values are supported for the time being. Entering other values will cause errors. :type NodeFlag: str :param Offset: Page number. Default value: 0, indicating the first page. :type Offset: int :param Limit: Number of returned results per page. Default value: 100. Maximum value: 100 :type Limit: int :param HardwareResourceType: Resource type. Valid values: all, host, pod. Default value: all :type HardwareResourceType: str :param SearchFields: Searchable field :type SearchFields: list of SearchItem
625941bb9b70327d1c4e0c8b
def handle_promise(self, request, context): <NEW_LINE> <INDENT> context.code(beta_interfaces.StatusCode.UNIMPLEMENTED)
Proposers will receive these
625941bb099cdd3c635f0b14
def createwidgets(self): <NEW_LINE> <INDENT> self.frame1 = Frame(self) <NEW_LINE> frame = self.frame1 <NEW_LINE> self.listbox = Listbox(frame, height = 10, width = 30, selectmode = SINGLE, takefocus = 1) <NEW_LINE> self.yscrool = Scrollbar(frame, orient = VERTICAL) <NEW_LINE> self.listbox.grid(row = 0, column = 0, sticky = NS) <NEW_LINE> self.yscroll.grid(row = 0, column = 1, sticky = NS) <NEW_LINE> self.yscroll.config(command = self.listbox.yview) <NEW_LINE> self.listbox.config(yscrollcommand = self.yscroll.set) <NEW_LINE> self.listbox.bind("<ButtonRelease-1>", self.selsectitem) <NEW_LINE> self.frame1.grid(row = 0, column = 0)
ボタンなどウィンドウの部品を作る
625941bbcdde0d52a9e52ee7
def departure_S(temp, press, temp_crit, press_crit, acentric_factor): <NEW_LINE> <INDENT> R = 8.314459848 <NEW_LINE> dadt = dadT(temp, temp_crit, press_crit, acentric_factor) <NEW_LINE> b = b_factor(temp_crit, press_crit) <NEW_LINE> vol = volume(temp, press, temp_crit, press_crit, acentric_factor) <NEW_LINE> Z = press * vol / (R * temp) <NEW_LINE> B = (b * press) / (R * temp) <NEW_LINE> dS = R * np.log(Z - B) - dadt / (2 * np.sqrt(2) * b) * np.log((Z + (1 - np.sqrt(2)) * B) / (Z + (1 + np.sqrt(2)) * B)) <NEW_LINE> return dS
Entropy Departure Function using the Peng-Robingson Equation of State :param temp: Current Temperature, T (K) :type temp: float :param press: Current Pressure, P (Pa) :type press: float :param temp_crit: Substance Critical Temperature, Tc (K) :type temp_crit: float :param press_crit: Substance Critical Pressure, Pc (Pa) :type press_crit: float :param acentric_factor: Acentric Factor, omega (unitless) :type acentric_factor: float :return: Entropy Departure Function, Delta S :rtype: float
625941bb627d3e7fe0d68d06
def test_one_line_tag_append(): <NEW_LINE> <INDENT> e = OneLineTag("the initial content") <NEW_LINE> with pytest.raises(NotImplementedError): <NEW_LINE> <INDENT> e.append("some more content")
You should not be able to append content to a OneLineTag
625941bb1d351010ab8559d5
def background(attempts, dead, hurt, player_number, attempts_bg): <NEW_LINE> <INDENT> attempt = [] <NEW_LINE> attempt_change = [] <NEW_LINE> for i in range(attempts_bg, 0, -1): <NEW_LINE> <INDENT> attempt_change.append(i) <NEW_LINE> <DEDENT> for i in range(len(attempt_change)): <NEW_LINE> <INDENT> if attempts == attempt_change[i]: <NEW_LINE> <INDENT> attempts_bg = attempt_change[-1-i] <NEW_LINE> <DEDENT> <DEDENT> attempt.append(attempts_bg) <NEW_LINE> attempt.append(player_number) <NEW_LINE> attempt.append(dead) <NEW_LINE> attempt.append(hurt) <NEW_LINE> background_list.append(attempt) <NEW_LINE> print() <NEW_LINE> for i in range(len(background_list)): <NEW_LINE> <INDENT> print(background_list[i][0], "-",background_list[i][1], "-", background_list[i][2], "DEAD", background_list[i][3], "HURT" ) <NEW_LINE> <DEDENT> print() <NEW_LINE> return background_list
Returns all the data of each attempt, recalling the number, dead and hurt.
625941bb097d151d1a222d13
def launch_training_job(parent_dir, data_dir, early_stop, job_name, params): <NEW_LINE> <INDENT> model_dir = os.path.join(parent_dir, job_name) <NEW_LINE> if not os.path.exists(model_dir): <NEW_LINE> <INDENT> os.makedirs(model_dir) <NEW_LINE> <DEDENT> json_path = os.path.join(model_dir, 'params.json') <NEW_LINE> params.save(json_path) <NEW_LINE> os.chdir(curr_dir) <NEW_LINE> cmd = "{python} train.py --model_dir={model_dir} --data_dir {data_dir} --early_stop {early_stop}".format(python=PYTHON, model_dir=model_dir, data_dir=data_dir, early_stop=early_stop) <NEW_LINE> print(cmd) <NEW_LINE> check_call(cmd, shell=True)
Launch training of the model with a set of hyperparameters in parent_dir/job_name Args: model_dir: (string) directory containing config, weights and log data_dir: (string) directory containing the dataset params: (dict) containing hyperparameters
625941bb5fdd1c0f98dc00e9
def getAllPorts(self): <NEW_LINE> <INDENT> return self._sendRequest('GET', '/api/ports')
getAllPorts : Fetch a list containing summaries for all the ports in the system. Sample usage: >>> nto.getAllPorts() [{u'id': 58, u'name': u'P1-01'}, {u'id': 59, u'name': u'P1-02'}, {u'id': 60, u'name': u'P1-03'}, {u'id': 61, u'name': u'P1-04'}, {u'id': 62, u'name': u'P1-05'}, {u'id': 63, u'name': u'P1-06'}, {u'id': 64, u'name': u'P1-07'}, {u'id': 65, u'name': u'P1-08'}, {u'id': 66, u'name': u'P1-09'}, {u'id': 67, u'name': u'P1-10'}, {u'id': 68, u'name': u'P1-11'}, {u'id': 69, u'name': u'P1-12'}, {u'id': 70, u'name': u'P1-13'}, {u'id': 71, u'name': u'P1-14'}, {u'id': 72, u'name': u'P1-15'}, {u'id': 73, u'name': u'P1-16'}]
625941bb8e71fb1e9831d665
@app.route("/") <NEW_LINE> def index(): <NEW_LINE> <INDENT> return "To send a message use: /USERNAME/MESSAGE"
Main page with instructions
625941bbcc40096d6159580a
def u_ping(info, msg): <NEW_LINE> <INDENT> say(info, 'pong')
!ping - test answer
625941bb4d74a7450ccd407b
def _prop_helper(self, a, b, a_weights, b_weights, t_weights): <NEW_LINE> <INDENT> inter = tf.multiply(tf.matmul(tf.cast(a, tf.float32), a_weights), tf.matmul(b, b_weights)) <NEW_LINE> return tf.matmul(inter, tf.transpose(t_weights))
a and b should be matricies of row vectors
625941bbd99f1b3c44c6744d
def to_axes(self, axes): <NEW_LINE> <INDENT> if not self.is_configured('X') or not self.is_configured('Y') or not self.is_configured('C'): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> X = self['X'] <NEW_LINE> Y = self['Y'] <NEW_LINE> C = self['C'] <NEW_LINE> mappable = axes.pcolorfast(X, Y, C, **self) <NEW_LINE> if self.is_configured('layer_colorbar'): <NEW_LINE> <INDENT> self['layer_colorbar'].set_mappable(mappable)
Plot the data to matplotlib.axes.Axes instance AXES.
625941bb796e427e537b047a
def _get_lambdas(fep_files): <NEW_LINE> <INDENT> lambda_fwd_map, lambda_bwd_map = {}, {} <NEW_LINE> is_ascending = set() <NEW_LINE> endpoint_windows = [] <NEW_LINE> for fep_file in sorted(fep_files, key=_filename_sort_key): <NEW_LINE> <INDENT> with anyopen(fep_file, 'r') as f: <NEW_LINE> <INDENT> for line in f: <NEW_LINE> <INDENT> l = line.strip().split() <NEW_LINE> if l[0] == '#NEW': <NEW_LINE> <INDENT> lambda1, lambda2 = float(l[6]), float(l[8]) <NEW_LINE> lambda_idws = float(l[10]) if 'LAMBDA_IDWS' in l else None <NEW_LINE> <DEDENT> elif l[0] == '#Free': <NEW_LINE> <INDENT> lambda1, lambda2, lambda_idws = float(l[7]), float(l[8]), None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if 0.0 in (lambda1, lambda2) or 1.0 in (lambda1, lambda2): <NEW_LINE> <INDENT> endpoint_windows.append((lambda1, lambda2)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if lambda2 != lambda1: <NEW_LINE> <INDENT> is_ascending.add(lambda2 > lambda1) <NEW_LINE> <DEDENT> if lambda_idws is not None and lambda1 != lambda_idws: <NEW_LINE> <INDENT> is_ascending.add(lambda1 > lambda_idws) <NEW_LINE> <DEDENT> <DEDENT> if len(is_ascending) > 1: <NEW_LINE> <INDENT> raise ValueError(f'Lambda values change direction in {fep_file}, relative to the other files: {lambda1} -> {lambda2} (IDWS: {lambda_idws})') <NEW_LINE> <DEDENT> if lambda1 in lambda_fwd_map and lambda_fwd_map[lambda1] != lambda2: <NEW_LINE> <INDENT> logger.error(f'fwd: lambda1 {lambda1} has lambda2 {lambda_fwd_map[lambda1]} in {fep_file} but it has already been {lambda2}') <NEW_LINE> raise ValueError('More than one lambda2 value for a particular lambda1') <NEW_LINE> <DEDENT> lambda_fwd_map[lambda1] = lambda2 <NEW_LINE> if lambda_idws is not None: <NEW_LINE> <INDENT> if lambda1 in lambda_bwd_map and lambda_bwd_map[lambda1] != lambda_idws: <NEW_LINE> <INDENT> logger.error(f'bwd: lambda1 {lambda1} has lambda_idws {lambda_bwd_map[lambda1]} but it has already been {lambda_idws}') <NEW_LINE> raise ValueError('More than one lambda_idws value for a particular lambda1') <NEW_LINE> <DEDENT> lambda_bwd_map[lambda1] = lambda_idws <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> is_ascending = next(iter(is_ascending)) <NEW_LINE> all_lambdas = set() <NEW_LINE> all_lambdas.update(lambda_fwd_map.keys()) <NEW_LINE> all_lambdas.update(lambda_fwd_map.values()) <NEW_LINE> all_lambdas.update(lambda_bwd_map.keys()) <NEW_LINE> all_lambdas.update(lambda_bwd_map.values()) <NEW_LINE> return list(sorted(all_lambdas, reverse=not is_ascending))
Retrieves all lambda values included in the FEP files provided. We have to do this in order to tolerate truncated and restarted fepout files. The IDWS lambda is not present at the termination of the window, presumably for backwards compatibility with ParseFEP and probably other things. For a given lambda1, there can be only one lambda2 and at most one lambda_idws. Parameters ---------- fep_files: str or list of str Path(s) to fepout files to extract data from. Returns ------- List of floats, or None if there is more than one lambda_idws for each lambda1.
625941bb60cbc95b062c6401
def createClient(config): <NEW_LINE> <INDENT> ds0 = config.datasources[0] <NEW_LINE> client = txovirt.Client( ds0.zOVirtUrl, ds0.zOVirtUser, ds0.zOVirtDomain, ds0.zOVirtPassword) <NEW_LINE> return client
return a client object based on the passed in parameters
625941bb45492302aab5e178
def checkio(anything): <NEW_LINE> <INDENT> class allTrue: <NEW_LINE> <INDENT> def __lt__(self, other): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> def __le__(self, other): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> def __eq__(self, other): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> def __ne__(self, other): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> def __gt__(self, other): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> def __ge__(self, other): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> return allTrue()
try to return anything else :)
625941bbbaa26c4b54cb0fdb
def stop(self): <NEW_LINE> <INDENT> with self._lock: <NEW_LINE> <INDENT> self._cond.notify_all() <NEW_LINE> <DEDENT> self._zeroconf.close()
Stop searching. When stopped, this object can not be restarted
625941bb4a966d76dd550ec5
def __init__(self, coordinator: DataUpdateCoordinator, channel_number: int) -> None: <NEW_LINE> <INDENT> self.channel_number = channel_number <NEW_LINE> super().__init__(coordinator) <NEW_LINE> self._attr_unique_id = f"{self.mac_address}_{channel_number}"
Initialize the channel sensor.
625941bb6fece00bbac2d5f4
def _combine_multi_gpu_gauges_data(header_list, case_folder, file_tag): <NEW_LINE> <INDENT> gauges_array = [] <NEW_LINE> value_array = [] <NEW_LINE> for i in range(len(header_list)): <NEW_LINE> <INDENT> domain_header = header_list[i] <NEW_LINE> gauge_pos_file = os.path.join(case_folder, str(i), 'input', 'field', 'gauges_pos.dat') <NEW_LINE> gauge_xy = np.loadtxt(gauge_pos_file, dtype='float64', ndmin=2) <NEW_LINE> if gauge_xy.size>=2: <NEW_LINE> <INDENT> gauge_ind = _find_gauges_inside_domain(domain_header, gauge_xy) <NEW_LINE> gauges_array.append(gauge_xy[gauge_ind,:]) <NEW_LINE> file_name = os.path.join(case_folder, str(i), 'output', file_tag+'_gauges.dat') <NEW_LINE> times, values = _read_one_gauge_file(file_name, gauge_ind) <NEW_LINE> value_array.append(values) <NEW_LINE> <DEDENT> <DEDENT> gauges_array = np.concatenate(gauges_array, axis=0) <NEW_LINE> gauges_array, ind = np.unique(gauges_array, axis=0, return_index=True) <NEW_LINE> if values.ndim == 2: <NEW_LINE> <INDENT> value_array = np.concatenate(value_array, axis=1) <NEW_LINE> value_array = value_array[:, ind] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> value_array = np.concatenate(value_array, axis=2) <NEW_LINE> value_array = value_array[:, :, ind] <NEW_LINE> <DEDENT> return gauges_array, times, value_array
Combine gauges outputs from multi-gpu models according to gauges position data. gauges_pos.dat for each domain must be available
625941bbf7d966606f6a9eba
def normalize_variant(chrom, offset, ref_sequence, alt_sequences, genome, flank_length=30): <NEW_LINE> <INDENT> start = offset - 1 <NEW_LINE> end = start + len(ref_sequence) <NEW_LINE> position = Position( chrom=chrom, chrom_start=start, chrom_stop=end, is_forward_strand=True) <NEW_LINE> return NormalizedVariant(position, ref_sequence, alt_sequences, genome=genome)
Normalize variant according to the GATK/VCF standard. chrom: chromsome containing variant. offset: 1-based coordinate of reference allele in the genome. ref_sequence: reference allele. alt_sequences: list of all alternate sequences. genome: pygr-compatiable genome object.
625941bb3317a56b86939b20
def ground_motion_fields(rupture, sites, imts, gsim, truncation_level, realizations, correlation_model=None, rupture_site_filter=filters.rupture_site_noop_filter, seed=None): <NEW_LINE> <INDENT> ruptures_sites = list(rupture_site_filter([(rupture, sites)])) <NEW_LINE> if not ruptures_sites: <NEW_LINE> <INDENT> return dict((imt, numpy.zeros((len(sites), realizations))) for imt in imts) <NEW_LINE> <DEDENT> [(rupture, sites)] = ruptures_sites <NEW_LINE> gc = GmfComputer(rupture, sites, [str(imt) for imt in imts], [gsim], truncation_level, correlation_model) <NEW_LINE> res = gc.compute(seed, gsim, realizations) <NEW_LINE> result = {} <NEW_LINE> for imti, imt in enumerate(gc.imts): <NEW_LINE> <INDENT> if rupture_site_filter is not filters.rupture_site_noop_filter: <NEW_LINE> <INDENT> result[imt] = sites.expand(res[imti], placeholder=0) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> result[imt] = res[imti] <NEW_LINE> <DEDENT> <DEDENT> return result
Given an earthquake rupture, the ground motion field calculator computes ground shaking over a set of sites, by randomly sampling a ground shaking intensity model. A ground motion field represents a possible 'realization' of the ground shaking due to an earthquake rupture. If a non-trivial filtering function is passed, the final result is expanded and filled with zeros in the places corresponding to the filtered out sites. .. note:: This calculator is using random numbers. In order to reproduce the same results numpy random numbers generator needs to be seeded, see http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html :param openquake.hazardlib.source.rupture.Rupture rupture: Rupture to calculate ground motion fields radiated from. :param openquake.hazardlib.site.SiteCollection sites: Sites of interest to calculate GMFs. :param imts: List of intensity measure type objects (see :mod:`openquake.hazardlib.imt`). :param gsim: Ground-shaking intensity model, instance of subclass of either :class:`~openquake.hazardlib.gsim.base.GMPE` or :class:`~openquake.hazardlib.gsim.base.IPE`. :param truncation_level: Float, number of standard deviations for truncation of the intensity distribution, or ``None``. :param realizations: Integer number of GMF realizations to compute. :param correlation_model: Instance of correlation model object. See :mod:`openquake.hazardlib.correlation`. Can be ``None``, in which case non-correlated ground motion fields are calculated. Correlation model is not used if ``truncation_level`` is zero. :param rupture_site_filter: Optional rupture-site filter function. See :mod:`openquake.hazardlib.calc.filters`. :param int seed: The seed used in the numpy random number generator :returns: Dictionary mapping intensity measure type objects (same as in parameter ``imts``) to 2d numpy arrays of floats, representing different realizations of ground shaking intensity for all sites in the collection. First dimension represents sites and second one is for realizations.
625941bbd4950a0f3b08c209
def set_settings(self, settings): <NEW_LINE> <INDENT> self._settings = settings
Specifies settings for cursor. :param settings: dictionary of query settings :return: None
625941bbd10714528d5ffb98
def exitGame(): <NEW_LINE> <INDENT> print() <NEW_LINE> print() <NEW_LINE> print("------------------------- Exit Game -------------------------") <NEW_LINE> print()
Display a GoodBye message and Exit the game
625941bbfb3f5b602dac3547
def crawl_blog_info(self, uin): <NEW_LINE> <INDENT> rep = self.get_blog_info(uin, 0, 1) <NEW_LINE> data = json.loads(jscallback2dict(rep.text)) <NEW_LINE> if data.get('code') == 0: <NEW_LINE> <INDENT> coll = self.db.plcount <NEW_LINE> res = coll.find_one({"uin": uin}) <NEW_LINE> RZ = res.get("count").get("RZ") <NEW_LINE> if not RZ: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> num = 15 <NEW_LINE> pos = 0 <NEW_LINE> count = 0 <NEW_LINE> coll = self.db.blogs <NEW_LINE> while count < RZ: <NEW_LINE> <INDENT> rep = self.get_blog_info(uin, pos, num) <NEW_LINE> data = json.loads(jscallback2dict(rep.text)) <NEW_LINE> for i in range(len(data['data']['list'])): <NEW_LINE> <INDENT> data['data']['list'][i]['hostUin'] = uin <NEW_LINE> <DEDENT> if data['data']['list']: <NEW_LINE> <INDENT> coll.insert_many(data['data']['list']) <NEW_LINE> print("Successfully insert %d blog infos " % len(data['data']['list'])) <NEW_LINE> pos += num <NEW_LINE> count += num <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> print(data.get('code'), data.get('message'))
爬取指定好友的所有日志基本信息 :param int | uin: 好友账号
625941bb26068e7796caeb91
@task <NEW_LINE> def pg_load(c, database, only_data=True): <NEW_LINE> <INDENT> if not only_data: <NEW_LINE> <INDENT> c.run(f'psql -U postgres -d "{database}" -f schema.sql') <NEW_LINE> <DEDENT> c.run(f'psql -U postgres -d "{database}" -f data.sql')
--database=<name> [--only-data]
625941bb30c21e258bdfa353
def get_sequence(self, seq_type="genomic"): <NEW_LINE> <INDENT> seq_types = ("genomic", "cds", "cdna", "protein") <NEW_LINE> if seq_type not in seq_types: <NEW_LINE> <INDENT> raise Exception("Invalid sequence type ({}). Known types are: " "{}".format(seq_type, ", ".join(seq_types))) <NEW_LINE> <DEDENT> url = get_url_prefix(self.build) <NEW_LINE> url += "sequence/id/{}?content-type=application/json&type={}" <NEW_LINE> url = url.format(self.enst, seq_type) <NEW_LINE> res = query_ensembl(url) <NEW_LINE> seq = sequences.Sequence( res["id"], res["seq"], "AA" if seq_type == "protein" else "DNA", ) <NEW_LINE> return seq
Build a Sequence object representing the transcript. :param seq_type: This can be either genomic, cds, cdna or protein. :type seq_type: str :returns: A Sequence object representing the feature. :rtype: :py:class:`gepyto.structures.sequences.Sequence`
625941bbaad79263cf3908f4
def log_progress(*, extra="", force=False): <NEW_LINE> <INDENT> toc = time.perf_counter() <NEW_LINE> if ( not force and counts["done"] < log_progress.last_log_count + LOG_COUNT_INTERVAL and toc < log_progress.last_log_time + LOG_TIME_INTERVAL ): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> counts_str = ", ".join( f"{key}={value}" for key, value in sorted(counts.items()) ) <NEW_LINE> delta_n = counts["done"] - log_progress.last_log_count <NEW_LINE> delta_t = toc - log_progress.last_log_time <NEW_LINE> rate = delta_n / delta_t <NEW_LINE> app_log.info( f"{label} counts{' ' + extra if extra else ''} (elapsed={toc-tic:.0f}s {rate:.1f} it/s): {counts_str}" ) <NEW_LINE> log_progress.last_log_count = counts["done"] <NEW_LINE> log_progress.last_log_time = toc
Log the current deletion counts
625941bbfb3f5b602dac3548
@app.route("/", methods=['GET', 'POST']) <NEW_LINE> @app.route("/index.html", methods=['GET', 'POST']) <NEW_LINE> def home(): <NEW_LINE> <INDENT> if request.method == 'POST': <NEW_LINE> <INDENT> text = chat_bot.predict(text=request.json['text']) <NEW_LINE> return jsonify({"data": {"text": text}}) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return render_template("index.html")
Handles home route
625941bba79ad161976cbffd
def __draw_aim(self): <NEW_LINE> <INDENT> self.gui.bindTexture(1) <NEW_LINE> self.gui.modelMatrix = scale(array([0.2, 0.2, 0.2], 'f')) <NEW_LINE> self.gui.sendMatrices() <NEW_LINE> if self.target: <NEW_LINE> <INDENT> self.gui.setColor(array([1, 0, 0, 1], 'f')) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.gui.setColor(array([1, 1, 1, 1], 'f')) <NEW_LINE> <DEDENT> self.quad.draw() <NEW_LINE> if self.target: <NEW_LINE> <INDENT> self.gui.modelMatrix = mul(translate(array([self.target_display_pos[0] * self.gui.aspect, self.target_display_pos[1], 0], 'f')), scale(array([0.2, 0.2, 0.2], 'f'))) <NEW_LINE> self.gui.sendMatrices() <NEW_LINE> self.quad.draw()
Draw aim
625941bbdd821e528d63b063
def getFuelPriceData(self, fuelFile, cpiFile): <NEW_LINE> <INDENT> df = pd.read_excel(fuelFile, sheetname='Data 4', skiprows=2) <NEW_LINE> df = df.rename(columns={ 'Date': 'MONTH', 'San Francisco All Grades All Formulations Retail Gasoline Prices (Dollars per Gallon)': 'FUEL_PRICE' }) <NEW_LINE> df = df[['MONTH', 'FUEL_PRICE']] <NEW_LINE> df['MONTH'] = df['MONTH'].apply(pd.DateOffset(days=-14)) <NEW_LINE> dfcpi = self.getCPIFactors(cpiFile) <NEW_LINE> df = pd.merge(df, dfcpi, how='left', on=['MONTH'], sort=True) <NEW_LINE> df['FUEL_PRICE_2010USD'] = df['FUEL_PRICE'] * df['CPI_FACTOR'] <NEW_LINE> df = df[['MONTH', 'FUEL_PRICE', 'FUEL_PRICE_2010USD', 'CPI']] <NEW_LINE> return df
Gets the fuel price data and returns it as a dataframe fuelFile - file containing data from EIA cpiFile - inflation factors
625941bbd7e4931a7ee9ddd4
def fbeta_score(y_true, y_pred, beta=1): <NEW_LINE> <INDENT> if beta < 0: <NEW_LINE> <INDENT> raise ValueError('The lowest choosable beta is zero (only precision).') <NEW_LINE> <DEDENT> if K.sum(K.round(K.clip(y_true, 0, 1))) == 0: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> p = precision(y_true, y_pred) <NEW_LINE> r = recall(y_true, y_pred) <NEW_LINE> bb = beta ** 2 <NEW_LINE> fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon()) <NEW_LINE> return fbeta_score
Calculates the F score, the weighted harmonic mean of precision and recall. This is useful for multi-label classification, where input samples can be classified as sets of labels. By only using accuracy (precision) a model would achieve a perfect score by simply assigning every class to every input. In order to avoid this, a metric should penalize incorrect class assignments as well (recall). The F-beta score (ranged from 0.0 to 1.0) computes this, as a weighted mean of the proportion of correct class assignments vs. the proportion of incorrect class assignments. With beta = 1, this is equivalent to a F-measure. With beta < 1, assigning correct classes becomes more important, and with beta > 1 the metric is instead weighted towards penalizing incorrect class assignments.
625941bbd53ae8145f87a12e
def collect_glib_etc_files(*path): <NEW_LINE> <INDENT> glib_config_dirs = get_glib_sysconf_dirs() <NEW_LINE> if glib_config_dirs is None: <NEW_LINE> <INDENT> return [] <NEW_LINE> <DEDENT> destdir = os.path.join('etc', *path[:-1]) <NEW_LINE> collected = [] <NEW_LINE> for config_dir in glib_config_dirs: <NEW_LINE> <INDENT> p = os.path.join(config_dir, *path) <NEW_LINE> collected += collect_system_data_files(p, destdir=destdir, include_py_files=False) <NEW_LINE> <DEDENT> return collected
path is relative to the system config directory (eg, /etc)
625941bb7cff6e4e8111783e
def check_security_policy(self, requires=None): <NEW_LINE> <INDENT> _log.debug("Security: check_security_policy") <NEW_LINE> if self.sec_conf and "authorization" in self.sec_conf: <NEW_LINE> <INDENT> return self.get_authorization_decision(requires) <NEW_LINE> <DEDENT> return True
Check if access is permitted for the actor by the security policy
625941bb44b2445a33931f58
def test_fmtsize(self): <NEW_LINE> <INDENT> self.assertEqual("1023 B", tools.fmtsize(1023)) <NEW_LINE> self.assertEqual("5120 B", tools.fmtsize(5 * 1024)) <NEW_LINE> self.assertEqual("9216 B", tools.fmtsize(9 * 1024)) <NEW_LINE> self.assertEqual("123.0 MB", tools.fmtsize(123 * 1024 ** 2)) <NEW_LINE> self.assertEqual("10.0 GB", tools.fmtsize(10200 * 1024 ** 2)) <NEW_LINE> self.assertEqual("321.0 GB", tools.fmtsize(321 * 1024 ** 3))
Basic fmtusage.
625941bbbe383301e01b5344
def as_operation(self, timer=datetime.utcnow): <NEW_LINE> <INDENT> now = timer() <NEW_LINE> op = messages.Operation( endTime=timestamp.to_rfc3339(now), startTime=timestamp.to_rfc3339(now), importance=messages.Operation.ImportanceValueValuesEnum.LOW) <NEW_LINE> if self.operation_id: <NEW_LINE> <INDENT> op.operationId = self.operation_id <NEW_LINE> <DEDENT> if self.operation_name: <NEW_LINE> <INDENT> op.operationName = self.operation_name <NEW_LINE> <DEDENT> if self.api_key and self.api_key_valid: <NEW_LINE> <INDENT> op.consumerId = 'api_key:' + self.api_key <NEW_LINE> <DEDENT> elif self.consumer_project_id: <NEW_LINE> <INDENT> op.consumerId = 'project:' + self.consumer_project_id <NEW_LINE> <DEDENT> return op
Makes an ``Operation`` from this instance. Returns: an ``Operation``
625941bb0383005118ecf49c
def test_deny_empty_stories(): <NEW_LINE> <INDENT> with pytest.raises(StoryDefinitionError) as exc_info: <NEW_LINE> <INDENT> class Action: <NEW_LINE> <INDENT> @story <NEW_LINE> def do(I): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> assert str(exc_info.value) == "Story should have at least one step defined"
We can not define a story which does not have any steps. This will make it impossible to determine the right executor in the stories composition.
625941bb45492302aab5e179
def edges_iter_dir(self, u, v=None, dir_code=0): <NEW_LINE> <INDENT> def filter_edges(): <NEW_LINE> <INDENT> if dir_code < 0: <NEW_LINE> <INDENT> for edge in self.edges_iter(u, v): <NEW_LINE> <INDENT> edge_dir = self.edge(edge)["direction"] <NEW_LINE> if any(map(lambda dir_perm: dir_perm.index(u) > 0, edge_dir)): <NEW_LINE> <INDENT> yield edge <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> elif dir_code > 0: <NEW_LINE> <INDENT> for edge in self.edges_iter(u, v): <NEW_LINE> <INDENT> edge_dir = self.edge(edge)["direction"] <NEW_LINE> if any(map(lambda dir_perm: dir_perm.index(u) < len(dir_perm) - 1, edge_dir)): <NEW_LINE> <INDENT> yield edge <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> if dir_code == 0: <NEW_LINE> <INDENT> return self.edges_iter(u, v) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return filter_edges()
Get edges incident to node u filtered by direction. :param u: node id. :param dir_code: Direction code - If 0 all edges are returned, if 1 only outgoing edges are returned, if -1 only incoming edges are returned.
625941bb67a9b606de4a7d75
def OnLeft(self, *args): <NEW_LINE> <INDENT> self.rob.SetMotors(-self.SpeedValue, self.SpeedValue)
Process the Left event.
625941bbb830903b967e97ce
def __init__(self, rng, input, n_in, n_out, activation, W=None, b=None): <NEW_LINE> <INDENT> self.input = input <NEW_LINE> if not W: <NEW_LINE> <INDENT> W_values = np.asarray(rng.uniform( low=-np.sqrt(6. / (n_in + n_out)), high=np.sqrt(6. / (n_in + n_out)), size=(n_in, n_out)), dtype=theano.config.floatX) <NEW_LINE> if activation == theano.tensor.nnet.sigmoid: <NEW_LINE> <INDENT> W_values *= 4 <NEW_LINE> <DEDENT> W = theano.shared(value = W_values, name = 'W', borrow = True) <NEW_LINE> <DEDENT> if not b: <NEW_LINE> <INDENT> b_values = np.zeros((n_out,), dtype=theano.config.floatX) <NEW_LINE> b = theano.shared(value = b_values, name = 'b', borrow = True) <NEW_LINE> <DEDENT> self.W = W <NEW_LINE> self.b = b <NEW_LINE> linOutput = T.dot(input, self.W) + self.b <NEW_LINE> self.output = (linOutput if activation is None else activation(linOutput)) <NEW_LINE> self.params = [self.W, self.b]
ニューラルネットワークの層 :type rng: numpy.random.RandomState :param rng: 重みの初期化に使う乱数発生器 :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units :type activation: theano.Op or function :param activation: Non linearity to be applied in the hidden layer
625941bb30c21e258bdfa354
def __init__(self, hostAndPort) : <NEW_LINE> <INDENT> self.executable = ['gpg'] <NEW_LINE> self.keyserverOptions = ['--keyserver', hostAndPort]
@param hostAndPort: e.g. 'hkp://localhost:11371' @type hostAndPort: str
625941bb30dc7b7665901822
def process_corpus(self): <NEW_LINE> <INDENT> if self.corpusSettings is None or len(self.corpusSettings) <= 0: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> self.load_meta() <NEW_LINE> nTokens, nWords, nAnalyzed = 0, 0, 0 <NEW_LINE> if self.srcExt != 'json': <NEW_LINE> <INDENT> srcDir = os.path.join('..', self.srcExt) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> srcDir = os.path.join(self.corpusSettings['corpus_dir'], 'json_input') <NEW_LINE> <DEDENT> targetDir = os.path.join(self.corpusSettings['corpus_dir'], self.corpusSettings['corpus_name']) <NEW_LINE> for path, dirs, files in os.walk(srcDir): <NEW_LINE> <INDENT> for filename in files: <NEW_LINE> <INDENT> if not filename.lower().endswith('.' + self.srcExt): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> targetPath = path.replace(srcDir, targetDir) <NEW_LINE> if targetPath == path: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if not os.path.exists(targetPath): <NEW_LINE> <INDENT> os.makedirs(targetPath) <NEW_LINE> <DEDENT> fnameSrc = os.path.join(path, filename) <NEW_LINE> fnameTarget = os.path.join(targetPath, filename) <NEW_LINE> fextTarget = '.json' <NEW_LINE> if self.corpusSettings['gzip']: <NEW_LINE> <INDENT> fextTarget = '.json.gz' <NEW_LINE> <DEDENT> fnameTarget = self.rxStripExt.sub(fextTarget, fnameTarget) <NEW_LINE> self.log_message('Processing ' + fnameSrc + '...') <NEW_LINE> curTokens, curWords, curAnalyzed = self.convert_file(fnameSrc, fnameTarget) <NEW_LINE> nTokens += curTokens <NEW_LINE> nWords += curWords <NEW_LINE> nAnalyzed += curAnalyzed <NEW_LINE> <DEDENT> <DEDENT> print('Conversion to JSON finished.', nTokens, 'tokens total,', nWords, 'words total.') <NEW_LINE> if nWords > 0: <NEW_LINE> <INDENT> print(nAnalyzed, 'words parsed (' + str(nAnalyzed / nWords * 100) + '%).') <NEW_LINE> <DEDENT> if 'cg_disambiguate' in self.corpusSettings and self.corpusSettings['cg_disambiguate']: <NEW_LINE> <INDENT> translator = JSON2CG() <NEW_LINE> translator.process_corpus()
Take every text file from the source directory subtree, turn it into a parsed json and store it in the target directory. This is the main function of the class.
625941bb4e696a04525c9305
def build_model(self): <NEW_LINE> <INDENT> states = layers.Input(shape=(self.state_size,), name='states') <NEW_LINE> actions = layers.Input(shape=(self.action_size,), name='actions') <NEW_LINE> net_states = layers.Dense(units=128, kernel_regularizer=regularizers.l2(0.01))(states) <NEW_LINE> net = layers.BatchNormalization()(net_states) <NEW_LINE> net = layers.Activation("relu")(net_states) <NEW_LINE> net_states = layers.Dense(units=64, kernel_regularizer=regularizers.l2(0.01))(net_states) <NEW_LINE> net_actions = layers.Dense(units=128, kernel_regularizer=regularizers.l2(0.01))(actions) <NEW_LINE> net = layers.BatchNormalization()(net_actions) <NEW_LINE> net = layers.Activation("relu")(net_actions) <NEW_LINE> net_actions = layers.Dense(units=64, kernel_regularizer=regularizers.l2(0.01))(net_actions) <NEW_LINE> net = layers.Add()([net_states, net_actions]) <NEW_LINE> net = layers.Activation('relu')(net) <NEW_LINE> Q_values = layers.Dense(units=1, name='q_values')(net) <NEW_LINE> self.model = models.Model(inputs=[states, actions], outputs=Q_values) <NEW_LINE> optimizer = optimizers.Adam() <NEW_LINE> self.model.compile(optimizer=optimizer, loss='mse') <NEW_LINE> action_gradients = K.gradients(Q_values, actions) <NEW_LINE> self.get_action_gradients = K.function( inputs=[*self.model.input, K.learning_phase()], outputs=action_gradients)
Build a critic (value) network that maps (state, action) pairs -> Q-values.
625941bbdc8b845886cb53ed
def to_bytes(bytes_or_str): <NEW_LINE> <INDENT> if isinstance(bytes_or_str, str): <NEW_LINE> <INDENT> value = bytes_or_str.encode('utf-8') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> value = bytes_or_str <NEW_LINE> <DEDENT> return value
Take bytes or str instance and always return a bytes
625941bbeab8aa0e5d26da17
def setUp(self): <NEW_LINE> <INDENT> self.options = Options() <NEW_LINE> software = ['bumps', 'dfo', 'gsl', 'mantid', 'minuit', 'ralfit', 'scipy', 'scipy_ls'] <NEW_LINE> self.options.software = software
Initializes options class with defaults
625941bb4f88993c3716bf27
def submit_ts(job): <NEW_LINE> <INDENT> job.workflow.addParameter(Parameter("JOB_ID", "000000", "string", "", "", True, False, "Temporary fix")) <NEW_LINE> job.workflow.addParameter(Parameter("PRODUCTION_ID", "000000", "string", "", "", True, False, "Temporary fix")) <NEW_LINE> job.setType('MCSimulation') <NEW_LINE> trans = Transformation() <NEW_LINE> trans.setType("MCSimulation") <NEW_LINE> trans.setDescription("MC Prod3 BaseLine NSB test") <NEW_LINE> trans.setLongDescription("corsika-simtel production") <NEW_LINE> trans.setBody(job.workflow.toXML()) <NEW_LINE> res = trans.addTransformation() <NEW_LINE> if not res['OK']: <NEW_LINE> <INDENT> print(res['Message']) <NEW_LINE> DIRAC.exit(-1) <NEW_LINE> <DEDENT> trans.setStatus("Active") <NEW_LINE> trans.setAgentType("Automatic") <NEW_LINE> return res
Create a transformation executing the job workflow
625941bbab23a570cc250038
def extract_features(filename): <NEW_LINE> <INDENT> data, sample_rate = librosa.load(filename, sr=16000) <NEW_LINE> mfcc = librosa.feature.mfcc(y=data, sr=sample_rate, n_fft=1600, hop_length=800) <NEW_LINE> return mfcc.T
Extract audio features of the file Args: filename: audio filename Returns: feature matrix [time_step, features]
625941bb63f4b57ef0000fda
def test_conversion(self): <NEW_LINE> <INDENT> primitive = UserIdentityNegotiation() <NEW_LINE> primitive.user_identity_type = 1 <NEW_LINE> primitive.primary_field = b'test' <NEW_LINE> item = primitive.from_primitive() <NEW_LINE> primitive.user_identity_type = 2 <NEW_LINE> primitive.secondary_field = None <NEW_LINE> with self.assertRaises(ValueError): <NEW_LINE> <INDENT> item = primitive.from_primitive() <NEW_LINE> <DEDENT> primitive = UserIdentityNegotiation() <NEW_LINE> primitive.server_response = b'Test' <NEW_LINE> item = primitive.from_primitive() <NEW_LINE> self.assertTrue(item.encode() == b'\x59\x00\x00\x06\x00\x04\x54\x65\x73\x74')
Check converting to PDU item works correctly
625941bb55399d3f0558856c
def __init__(self, sensor_service, config=None): <NEW_LINE> <INDENT> super(KafkaMessageSensor, self).__init__(sensor_service=sensor_service, config=config) <NEW_LINE> self._logger = self._sensor_service.get_logger(__name__) <NEW_LINE> message_sensor = self._config.get('message_sensor') <NEW_LINE> if not message_sensor: <NEW_LINE> <INDENT> raise ValueError('[KafkaMessageSensor]: "message_sensor" config value is required!') <NEW_LINE> <DEDENT> self._hosts = message_sensor.get('hosts') <NEW_LINE> if not self._hosts: <NEW_LINE> <INDENT> raise ValueError( '[KafkaMessageSensor]: "message_sensor.hosts" config value is required!') <NEW_LINE> <DEDENT> self._topics = set(message_sensor.get('topics', [])) <NEW_LINE> if not self._topics: <NEW_LINE> <INDENT> raise ValueError( '[KafkaMessageSensor]: "message_sensor.topics" should list at least one topic!') <NEW_LINE> <DEDENT> self._group_id = message_sensor.get('group_id') or self.DEFAULT_GROUP_ID <NEW_LINE> self._client_id = message_sensor.get('client_id') or self.DEFAULT_CLIENT_ID <NEW_LINE> self._consumer = None
Parse config variables, set defaults.
625941bb66656f66f7cbc063
def get_parameter_vector(self, include_frozen=False): <NEW_LINE> <INDENT> if include_frozen: <NEW_LINE> <INDENT> return self.parameter_vector <NEW_LINE> <DEDENT> return self.parameter_vector[self.unfrozen_mask]
Get an array of the parameter values in the correct order Args: include_frozen (Optional[bool]): Should the frozen parameters be included in the returned value? (default: ``False``)
625941bb01c39578d7e74cfb
def add_experiences(self, info, rewards, epsi, actions, a_dist, value): <NEW_LINE> <INDENT> for (agent, history) in self.history_dict.items(): <NEW_LINE> <INDENT> if agent in info.agents: <NEW_LINE> <INDENT> idx = info.agents.index(agent) <NEW_LINE> if not info.local_done[idx]: <NEW_LINE> <INDENT> if self.use_observations: <NEW_LINE> <INDENT> for i, _ in enumerate(info.observations): <NEW_LINE> <INDENT> history['observations%d' % i].append([info.observations[i][idx]]) <NEW_LINE> <DEDENT> <DEDENT> if self.use_states: <NEW_LINE> <INDENT> actID = info.states[idx][0]+1 <NEW_LINE> history['action_ref'][actID] = len(history['states']) <NEW_LINE> history['states'].append(info.states[idx]) <NEW_LINE> if self.print_debug: <NEW_LINE> <INDENT> print ("add actID", actID, actions[idx], action_to_str(actions[idx])) <NEW_LINE> <DEDENT> <DEDENT> if self.is_continuous: <NEW_LINE> <INDENT> history['epsilons'].append(epsi[idx]) <NEW_LINE> <DEDENT> history['actions'].append(actions[idx]) <NEW_LINE> history['rewards'].append(rewards[idx]) <NEW_LINE> history['action_probs'].append(a_dist[idx]) <NEW_LINE> history['value_estimates'].append(value[idx][0]) <NEW_LINE> history['cumulative_reward'] += rewards[idx] <NEW_LINE> history['episode_steps'] += 1
Adds experiences to each agent's experience history. :param info: Current BrainInfo. :param rewards: Next Rewards. :param epsi: Epsilon value (for continuous control) :param actions: Chosen actions. :param a_dist: Action probabilities. :param value: Value estimates.
625941bbff9c53063f47c0ae
def delete_sub_container(self, sub_container_id): <NEW_LINE> <INDENT> pass
Deletes the subcontainer. Fails if the subcontainer is not empty. Automatically creates a new record version.
625941bb377c676e91272063
def canMeasureWater(self, x, y, z): <NEW_LINE> <INDENT> def gcd(a, b): <NEW_LINE> <INDENT> a, b = max(a, b), min(a, b) <NEW_LINE> if b == 0: <NEW_LINE> <INDENT> return a <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return gcd(b, a%b) <NEW_LINE> <DEDENT> <DEDENT> if z > x+y: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> factor = gcd(x, y) <NEW_LINE> if factor == 1: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> elif factor == 0: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> elif z % factor == 0: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False
:type x: int :type y: int :type z: int :rtype: bool
625941bb30bbd722463cbc7c
def _repr_(self): <NEW_LINE> <INDENT> return "Arrangements of the set %s of length %s"%(list(self._set),self.k)
TESTS:: sage: Arrangements([1,2,3],2) Arrangements of the set [1, 2, 3] of length 2
625941bb3eb6a72ae02ec38d
def poet_freq(self, poet): <NEW_LINE> <INDENT> f_all_words = [] <NEW_LINE> for poem in self.liblist: <NEW_LINE> <INDENT> if poet == poem.poet: <NEW_LINE> <INDENT> f_all_words += poem.f_words <NEW_LINE> <DEDENT> <DEDENT> fdist = FreqDist(f_all_words) <NEW_LINE> return fdist
sorts all most frequent words used of one author :return: list
625941bbd164cc6175782c07
def gradient(self, r): <NEW_LINE> <INDENT> sigma = self.params['sigma'] <NEW_LINE> epsilon = self.params['epsilon'] <NEW_LINE> s = sigma / r <NEW_LINE> s6 = s**6; s12 = s6 * s6 <NEW_LINE> grad = 4.0 * epsilon * ((-12.0/r) * s12 - (-6/r) * s6) <NEW_LINE> grad = 0.5 * (r - 5.0) <NEW_LINE> return grad
V' = 4 \epsilon [-12/r x^12 - (-6/r) x^6]
625941bb76e4537e8c351531
def fetch_anndata(path, from_gcs): <NEW_LINE> <INDENT> _, ext = os.path.splitext(path) <NEW_LINE> if from_gcs: <NEW_LINE> <INDENT> with tempfile.NamedTemporaryFile(delete=False) as tmp_file: <NEW_LINE> <INDENT> tmp_path = tmp_file.name <NEW_LINE> <DEDENT> tf.io.gfile.copy(path, tmp_path, overwrite=True) <NEW_LINE> path = tmp_path <NEW_LINE> <DEDENT> if ext == '.h5ad': <NEW_LINE> <INDENT> adata = anndata.read_h5ad(path) <NEW_LINE> <DEDENT> elif ext == '.loom': <NEW_LINE> <INDENT> adata = anndata.read_loom(path) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise app.UsageError('Only supports loom and h5ad files.') <NEW_LINE> <DEDENT> return adata
Reads the input data and turns it into an anndata.AnnData object.
625941bb24f1403a92600a22
def get_stack(self): <NEW_LINE> <INDENT> return get_stack(self.dstack)
Returns the contents of the primary stack.
625941bb6fb2d068a760ef53
def page_list_return(total, current=1): <NEW_LINE> <INDENT> min_page = current - 2 if current - 4 > 0 else 1 <NEW_LINE> max_page = min_page + 4 if min_page + 4 < total else total <NEW_LINE> return range(min_page, max_page + 1)
page 分页,返回本次分页的最小页数到最大页数列表
625941bb3c8af77a43ae3656
def Dismiss(self): <NEW_LINE> <INDENT> while len(self.player_list) > 0: <NEW_LINE> <INDENT> playerObj = self.player_list.pop() <NEW_LINE> playerObj.room = None <NEW_LINE> playerObj.role_id = 0 <NEW_LINE> <DEDENT> self.map = None <NEW_LINE> player.PlayerMgr().DelRoom(self)
解散房间(地图)
625941bbff9c53063f47c0af
def test_name_sorted_regions_eq_slug_sorted_regions(self): <NEW_LINE> <INDENT> self.assertEqual(len(regions.REGIONS_CHOICES_NAME), len(regions.REGIONS_CHOICES_SORTED_BY_NAME())) <NEW_LINE> self.assertSetEqual(regions.REGIONS_CHOICES_NAME, regions.REGIONS_CHOICES_SORTED_BY_NAME())
Check data is the same, irrespective of ordering.
625941bb5fc7496912cc383f
def update(self, delta=1): <NEW_LINE> <INDENT> self._value += delta
Increment the counter by a delta. Args: delta (int): Delta to increment counter with.
625941bb76d4e153a657e9e9
def _process_img(self, div: Tag): <NEW_LINE> <INDENT> full_original_image_path = os.path.join(self._working_directory, div.a['href']) <NEW_LINE> title = div.a['title'] <NEW_LINE> alt = div.img['alt'] <NEW_LINE> full_thumbnail_path = os.path.join(self._working_directory, div.img['src']) <NEW_LINE> self._plain_text += '\n' <NEW_LINE> if not os.path.exists(full_original_image_path) or not os.access(full_original_image_path, os.R_OK) or not os.access(full_original_image_path, os.W_OK): <NEW_LINE> <INDENT> full_original_image_path = None <NEW_LINE> <DEDENT> if not os.path.exists(full_thumbnail_path) or not os.access(full_thumbnail_path, os.R_OK) or not os.access(full_thumbnail_path, os.W_OK): <NEW_LINE> <INDENT> full_thumbnail_path = None <NEW_LINE> <DEDENT> return ImageInText(title, alt, full_original_image_path, full_thumbnail_path, div.a['href'], div.img['src'])
Process an in text image. :param div: The beautiful soup div element containing an in text image. :return: ImageInText instance.
625941bbbe7bc26dc91cd4be
def get_allowed_variants(self): <NEW_LINE> <INDENT> data = [] <NEW_LINE> for variant in self.allowed_variants.all(): <NEW_LINE> <INDENT> data.append({ 'id': variant.id, 'title': variant.title, 'price': variant.price, }) <NEW_LINE> <DEDENT> return json.dumps(data)
One type of item (coffee or tea) can have a variant (hot or cold)
625941bb3eb6a72ae02ec38e
def filter_annotations(annotations, tagsFilter=[]): <NEW_LINE> <INDENT> annosOut = [] <NEW_LINE> for anno in annotations: <NEW_LINE> <INDENT> tags = anno.get_child("tags").get_value() <NEW_LINE> for tag in tags: <NEW_LINE> <INDENT> if tag in tagsFilter: <NEW_LINE> <INDENT> annosOut.append(anno) <NEW_LINE> continue <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return annosOut
Args: annotations: [list of Node()] the annotations to use tagsFilter [list of strings]: if an annotation contains one of the tagFilters, then we accept it Returns: list of accepted annotations
625941bbc432627299f04afd
def _read_from_input(self, io: IO) -> str: <NEW_LINE> <INDENT> ret = io.read_line(4096) <NEW_LINE> if not ret: <NEW_LINE> <INDENT> raise RuntimeError("Aborted") <NEW_LINE> <DEDENT> return ret.strip()
Read user input.
625941bbd6c5a10208143f01
def displaycover(index): <NEW_LINE> <INDENT> if(index==0): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[0], (0,0)) <NEW_LINE> <DEDENT> elif(index==1): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[1], (200,0)) <NEW_LINE> <DEDENT> elif(index==2): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[2], (400,0)) <NEW_LINE> <DEDENT> elif(index==3): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[3], (600,0)) <NEW_LINE> <DEDENT> elif(index==4): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[4], (0,200)) <NEW_LINE> <DEDENT> elif(index==5): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[5], (200,200)) <NEW_LINE> <DEDENT> elif(index==6): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[6], (400,200)) <NEW_LINE> <DEDENT> elif(index==7): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[7], (600,200)) <NEW_LINE> <DEDENT> elif(index==8): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[8], (0,400)) <NEW_LINE> <DEDENT> elif(index==9): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[9], (200,400)) <NEW_LINE> <DEDENT> elif(index==10): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[10], (400,400)) <NEW_LINE> <DEDENT> elif(index==11): <NEW_LINE> <INDENT> SCREEN.blit(tilelist[11], (600,400))
Drawing one cover at a time
625941bb3617ad0b5ed67db3
def test_address(self): <NEW_LINE> <INDENT> self.dc.set_address("::1") <NEW_LINE> self.dc.set_port(self.next_free_port) <NEW_LINE> self.dc.start() <NEW_LINE> self.assertTrue(self.dc.is_alive()) <NEW_LINE> self.assertTrue(self.dc.is_alive()) <NEW_LINE> self.assertTrue(self.dc.is_alive()) <NEW_LINE> durl = self.dc.get_depot_url() <NEW_LINE> verdata = urlopen("{0}/versions/0/".format(durl))
Verify that depot address can be set.
625941bb7b180e01f3dc46bd
def add(self, entry, data): <NEW_LINE> <INDENT> pass
Adds a snapshot. (1) entry - Snapshot entry. (2) data - Snapshot data. Parameters: - entry - data
625941bb16aa5153ce362331
@bp_api.route('/push/<link_id>/info', methods=['GET']) <NEW_LINE> def push_info(link_id): <NEW_LINE> <INDENT> wallet = PushWallet.get_or_none(link_id=link_id) <NEW_LINE> if not wallet: <NEW_LINE> <INDENT> return jsonify({'error': 'Link does not exist'}), HTTPStatus.NOT_FOUND <NEW_LINE> <DEDENT> return jsonify({ 'seen': wallet.seen, 'sender': wallet.sender, 'recipient': wallet.recipient, 'is_protected': wallet.password_hash is not None, 'customization_id': wallet.customization_setting_id, })
swagger: swagger/core/push-info.yml
625941bb56ac1b37e626408f
def _merge_a_into_b_simple(self, a, b): <NEW_LINE> <INDENT> for k, v in a.items(): <NEW_LINE> <INDENT> b[k] = v <NEW_LINE> <DEDENT> return b
Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. Do not do any checking.
625941bb460517430c394046
def transform(input_data): <NEW_LINE> <INDENT> if isinstance(input_data, str): <NEW_LINE> <INDENT> if ' ' in input_data: <NEW_LINE> <INDENT> return input_data.split(' ')[0] <NEW_LINE> <DEDENT> <DEDENT> return input_data
Get the first word of a string with more than one word. :param input_data: Text with more than one word. :return: The first word of the input string. :rtype: str or type of the input data if not a string
625941bb21a7993f00bc7ba4
def _on_buffer_text_modified(self, change): <NEW_LINE> <INDENT> if self._ignore_changes: return <NEW_LINE> if self._scratchpad_active and (self._transaction_changes is None or not self._transaction_changes): <NEW_LINE> <INDENT> self._scratchpad.append(change) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if self._transaction_changes is None: <NEW_LINE> <INDENT> warnings.warn('Buffer modified outside of transaction.') <NEW_LINE> with self.transaction(): <NEW_LINE> <INDENT> self._transaction_changes.append(change) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> self._transaction_changes.append(change)
:type change: keypad.buffer.TextModification
625941bb8e05c05ec3eea22b
def main(): <NEW_LINE> <INDENT> os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'profpoll.settings') <NEW_LINE> try: <NEW_LINE> <INDENT> from django.core.management import execute_from_command_line <NEW_LINE> <DEDENT> except ImportError as exc: <NEW_LINE> <INDENT> raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc <NEW_LINE> <DEDENT> execute_from_command_line(sys.argv)
Run administrative tasks.
625941bb8a43f66fc4b53f22
def begin_get_vpnclient_connection_health( self, resource_group_name, virtual_network_gateway_name, **kwargs ): <NEW_LINE> <INDENT> polling = kwargs.pop('polling', True) <NEW_LINE> cls = kwargs.pop('cls', None) <NEW_LINE> lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) <NEW_LINE> cont_token = kwargs.pop('continuation_token', None) <NEW_LINE> if cont_token is None: <NEW_LINE> <INDENT> raw_result = self._get_vpnclient_connection_health_initial( resource_group_name=resource_group_name, virtual_network_gateway_name=virtual_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) <NEW_LINE> <DEDENT> kwargs.pop('error_map', None) <NEW_LINE> kwargs.pop('content_type', None) <NEW_LINE> def get_long_running_output(pipeline_response): <NEW_LINE> <INDENT> deserialized = self._deserialize('VpnClientConnectionHealthDetailListResult', pipeline_response) <NEW_LINE> if cls: <NEW_LINE> <INDENT> return cls(pipeline_response, deserialized, {}) <NEW_LINE> <DEDENT> return deserialized <NEW_LINE> <DEDENT> path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } <NEW_LINE> if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) <NEW_LINE> elif polling is False: polling_method = NoPolling() <NEW_LINE> else: polling_method = polling <NEW_LINE> if cont_token: <NEW_LINE> <INDENT> return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
Get VPN client connection health detail per P2S client connection of the virtual network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_gateway_name: The name of the virtual network gateway. :type virtual_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either VpnClientConnectionHealthDetailListResult or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_03_01.models.VpnClientConnectionHealthDetailListResult] :raises ~azure.core.exceptions.HttpResponseError:
625941bb7d43ff24873a2b56
def __resolve_links(self): <NEW_LINE> <INDENT> for promise in SectionPromise.promises: <NEW_LINE> <INDENT> promise.resolve() <NEW_LINE> <DEDENT> SectionPromise.promises = []
resolves all linked references (SectionPromise instances).
625941bb9b70327d1c4e0c8d