code
stringlengths
4
4.48k
docstring
stringlengths
1
6.45k
_id
stringlengths
24
24
def read_hardware_id(self, retry: bool = True) -> int: <NEW_LINE> <INDENT> self.logger.info("Reading hardware ID") <NEW_LINE> try: <NEW_LINE> <INDENT> return int(self.i2c.read_register(0x20, retry=retry)) <NEW_LINE> <DEDENT> except I2CError as e: <NEW_LINE> <INDENT> raise exceptions.ReadRegisterError( message="hw id reg", logger=self.logger ) from e
Reads hardware ID from sensor.
625941bb24f1403a92600a1d
def create_web_config(new_dir, filename): <NEW_LINE> <INDENT> with open(new_dir + '/' + filename, 'wb') as f: <NEW_LINE> <INDENT> f.write(pkg_resources.resource_string(app_name, '/config/' + filename))
The function searches for the specified *filename* in *config* directory of this module and, if that file exists, copies it to the *new_dir* directory. Args: new_dir (str): Config file *filename* will be created in this directory. filename (str): Config file to copy.
625941bba8370b7717052755
def connect(self, sanity_check=True): <NEW_LINE> <INDENT> logging.debug("Directory Mock: Connection")
Connect to AD server
625941bbfb3f5b602dac3543
def __init__(self, method: str, handler: Callable, price: int, call_flags: contracts.CallFlags): <NEW_LINE> <INDENT> self.method = method <NEW_LINE> self.hash: int = int.from_bytes(hashlib.sha256(self.method.encode()).digest()[:4], 'little', signed=False) <NEW_LINE> self.handler = handler <NEW_LINE> self.parameters = [] <NEW_LINE> for k, v in get_type_hints(handler).items(): <NEW_LINE> <INDENT> if k == 'return': <NEW_LINE> <INDENT> self.has_return_value = v != self.NONE_TYPE <NEW_LINE> continue <NEW_LINE> <DEDENT> self.parameters.append(v) <NEW_LINE> <DEDENT> self.parameters = self.parameters[1:] <NEW_LINE> self.price = price <NEW_LINE> self.required_call_flags = call_flags
Create a interoperability call descriptor. This are the functions that can be called using the SYSCALL OpCode in the virtual machine. Use the alternative constructor `create_with_price_calculator` if the price needs to be determined dynamically. Args: method: name of call. handler: the function that will be executed when called. price: the price of calling the handler. call_flags: ExecutionContext rights needed.
625941bb956e5f7376d70d2c
def delete_users_of_blacklist(userId, accessToken=None): <NEW_LINE> <INDENT> if not isinstance(userId, list): <NEW_LINE> <INDENT> userId = [userId] <NEW_LINE> <DEDENT> data = {'openid_list': userId} <NEW_LINE> data = encode_send_dict(data) <NEW_LINE> r = requests.post('%s/cgi-bin/tags/members/batchunblacklist?access_token=%s' % (SERVER_URL, accessToken), data=data) <NEW_LINE> def _wrap_result(result): <NEW_LINE> <INDENT> return ReturnValue(result.json()) <NEW_LINE> <DEDENT> r._wrap_result = _wrap_result <NEW_LINE> return r
userId can be a userId or a list of userId
625941bb9b70327d1c4e0c88
def scrape_deputy(link_part): <NEW_LINE> <INDENT> url = urljoin(BASE_URL, link_part) <NEW_LINE> response = requests.get(url) <NEW_LINE> document = html.fromstring(response.content) <NEW_LINE> box1 = document.cssselect(".info-diputados-principal1").pop() <NEW_LINE> box2 = document.cssselect(".info-diputados-principal2").pop() <NEW_LINE> data = { 'source_url': url, 'name': box1.find('.//h2').text.strip(), 'party': box2.find('.//h3').text.strip(), 'email': box2.find('.//a').text.strip() } <NEW_LINE> pprint(data) <NEW_LINE> table = engine['deputies'] <NEW_LINE> table.upsert(data, ['source_url'])
Extract information from a deputy's page.
625941bb91af0d3eaac9b8c9
def index(request, *args, **kwargs): <NEW_LINE> <INDENT> article_type_list = models.Article.type_choices <NEW_LINE> if kwargs: <NEW_LINE> <INDENT> article_type_id = int(kwargs['article_type_id']) <NEW_LINE> base_url = reverse('index', kwargs=kwargs) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> article_type_id = None <NEW_LINE> base_url = '/' <NEW_LINE> <DEDENT> data_count = models.Article.objects.filter(**kwargs).count() <NEW_LINE> page_obj = Pagination(request.GET.get('page'), data_count) <NEW_LINE> article_list = models.Article.objects.filter(**kwargs).order_by('-nid')[page_obj.start:page_obj.end] <NEW_LINE> page_str = page_obj.page_str(base_url) <NEW_LINE> return render( request, 'index.html', { 'article_list': article_list, 'article_type_id': article_type_id, 'article_type_list': article_type_list, 'page_str': page_str, } )
博客首页,展示全部博文 :param request: :return:
625941bbbe7bc26dc91cd4b9
def schedule_cmd(self, command, channel, sched_time, function, user_id, event_type='message', args=None): <NEW_LINE> <INDENT> s = sched.scheduler(time.time, timedelta) <NEW_LINE> task = s.enterabs( sched_time, 1, function, (command, channel, user_id, event_type, args) ) <NEW_LINE> t = threading.Thread(target=s.run) <NEW_LINE> t.daemon = True <NEW_LINE> t.start() <NEW_LINE> self.add_task(t.ident, t, task.time, task.action.__name__, task.argument) <NEW_LINE> print(task)
Creates a thread to execute a bot command at a specific time. Args: command (str): Name of the command to be executed channel (str): Slack Channel ID to execute the command in sched_time (float): Timestamp representation of when to execute the command function (function): Reference to function used to process the command (usually Bot.handle_scheduled_cmd) user_id (str): Slack User ID to use when executing the command (usually the ID of the Bot) event_type (str): Slack event type (default: "message") args (str): Argumnets to be appended to the command when executed (i.e. The "roll" command takes a valid die roll as an argument. "1d20" could be passed here
625941bb44b2445a33931f54
def storeFileFromOffset(self, service_name, path, file_obj, offset = 0, timeout = 30): <NEW_LINE> <INDENT> if not self.sock: <NEW_LINE> <INDENT> raise NotConnectedError('Not connected to server') <NEW_LINE> <DEDENT> results = [ ] <NEW_LINE> def cb(r): <NEW_LINE> <INDENT> self.is_busy = False <NEW_LINE> results.append(r[1]) <NEW_LINE> <DEDENT> def eb(failure): <NEW_LINE> <INDENT> self.is_busy = False <NEW_LINE> raise failure <NEW_LINE> <DEDENT> self.is_busy = True <NEW_LINE> try: <NEW_LINE> <INDENT> self._storeFile(service_name, path, file_obj, cb, eb, timeout = timeout) <NEW_LINE> while self.is_busy: <NEW_LINE> <INDENT> self._pollForNetBIOSPacket(timeout) <NEW_LINE> <DEDENT> <DEDENT> finally: <NEW_LINE> <INDENT> self.is_busy = False <NEW_LINE> <DEDENT> return results[0]
Store the contents of the *file_obj* at *path* on the *service_name*. :param string/unicode service_name: the name of the shared folder for the *path* :param string/unicode path: Path of the file on the remote server. If the file at *path* does not exist, it will be created. Otherwise, it will be overwritten. If the *path* refers to a folder or the file cannot be opened for writing, an :doc:`OperationFailure<smb_exceptions>` will be raised. :param file_obj: A file-like object that has a *read* method. Data will read continuously from *file_obj* until EOF. In Python3, this file-like object must have a *read* method which returns a bytes parameter. :return: Number of bytes uploaded
625941bb4e4d5625662d4290
def store_scan_xml(self, fname, **kargs): <NEW_LINE> <INDENT> parser = xml.sax.make_parser() <NEW_LINE> self.start_store_hosts() <NEW_LINE> try: <NEW_LINE> <INDENT> content_handler = self.content_handler(fname, **kargs) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> utils.LOGGER.warning('Exception (file %r)', fname, exc_info=True) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> parser.setContentHandler(content_handler) <NEW_LINE> parser.setEntityResolver(xmlnmap.NoExtResolver()) <NEW_LINE> parser.parse(utils.open_file(fname)) <NEW_LINE> if self.output_function is not None: <NEW_LINE> <INDENT> self.output_function(content_handler._db, out=self.output) <NEW_LINE> <DEDENT> self.stop_store_hosts() <NEW_LINE> return True <NEW_LINE> <DEDENT> self.stop_store_hosts() <NEW_LINE> return False
This method parses an XML scan result, displays a JSON version of the result, and return True if everything went fine, False otherwise. In backend-specific subclasses, this method stores the result instead of displaying it, thanks to the `content_handler` attribute.
625941bbaad79263cf3908f0
def insertion_sort(arr): <NEW_LINE> <INDENT> for i in range(1, len(arr)): <NEW_LINE> <INDENT> key = arr[i] <NEW_LINE> print("key", key) <NEW_LINE> j = i-1 <NEW_LINE> while key < arr[j] and j >= 0: <NEW_LINE> <INDENT> arr[j+1] = arr[j] <NEW_LINE> print("check", arr[j+1]) <NEW_LINE> j -= 1 <NEW_LINE> print("j", j) <NEW_LINE> <DEDENT> arr[j+1] = key <NEW_LINE> print("change", arr[j+1]) <NEW_LINE> print(arr) <NEW_LINE> <DEDENT> return arr
Performs an Insertion Sort on the array arr.
625941bb63b5f9789fde6f9a
def rpcf_is_service_used(self, params): <NEW_LINE> <INDENT> if not self.urfa_call(0x10001): <NEW_LINE> <INDENT> raise Exception("Fail of urfa_call(0x10001) [rpcf_is_service_used]") <NEW_LINE> <DEDENT> self.pck.init(code = U_PKT_DATA) <NEW_LINE> self.pck.add_data(params['sid'], U_TP_I) <NEW_LINE> self.pck.send(self.sck) <NEW_LINE> ret = defaultdict(dict) <NEW_LINE> self.pck.recv(self.sck) <NEW_LINE> ret['links_count'] = self.pck.get_data(U_TP_I) <NEW_LINE> if self.pck.recv(self.sck): return ret <NEW_LINE> else: raise Exception("Fail recive answer from server")
description @params: :(s) sid : (i) - @returns: :(s) links_count : (i) -
625941bb442bda511e8be2d9
def _makeD2PiMuMuCal(self, name, pionSel, muonSel, config): <NEW_LINE> <INDENT> return makeD2PiMuMuCal(name , pionSel , muonSel , DMAXDOCA = config['DMAXDOCA'] , DVCHI2DOF = config['DVCHI2DOF'] , DDIRA = config['DDIRA'] , DIPCHI2 = config['DIPCHI2'] , DMassWin = config['DMassWin'] , DMassLow = config['DMassLow'] , DimuonMass = config['DimuonMass'])
Handy interface for D2PiMuMuCal
625941bb96565a6dacc8f589
def _dflike_todf(self): <NEW_LINE> <INDENT> self._consolidate_names() <NEW_LINE> self._todf() <NEW_LINE> self._covert_data() <NEW_LINE> self._handle_value_labels() <NEW_LINE> self._handle_row_names()
This one is for objects that do not have the dim attribute set: dataframes and atomic vectors. (but vectors can have the dim attribute in that case they go to the other method)
625941bbb830903b967e97ca
def list_all( self, custom_headers=None, raw=False, **operation_config): <NEW_LINE> <INDENT> def internal_paging(next_link=None, raw=False): <NEW_LINE> <INDENT> if not next_link: <NEW_LINE> <INDENT> url = self.list_all.metadata['url'] <NEW_LINE> path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } <NEW_LINE> url = self._client.format_url(url, **path_format_arguments) <NEW_LINE> query_parameters = {} <NEW_LINE> query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> url = next_link <NEW_LINE> query_parameters = {} <NEW_LINE> <DEDENT> header_parameters = {} <NEW_LINE> header_parameters['Content-Type'] = 'application/json; charset=utf-8' <NEW_LINE> if self.config.generate_client_request_id: <NEW_LINE> <INDENT> header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) <NEW_LINE> <DEDENT> if custom_headers: <NEW_LINE> <INDENT> header_parameters.update(custom_headers) <NEW_LINE> <DEDENT> if self.config.accept_language is not None: <NEW_LINE> <INDENT> header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') <NEW_LINE> <DEDENT> request = self._client.get(url, query_parameters) <NEW_LINE> response = self._client.send( request, header_parameters, stream=False, **operation_config) <NEW_LINE> if response.status_code not in [200]: <NEW_LINE> <INDENT> exp = CloudError(response) <NEW_LINE> exp.request_id = response.headers.get('x-ms-request-id') <NEW_LINE> raise exp <NEW_LINE> <DEDENT> return response <NEW_LINE> <DEDENT> deserialized = models.VirtualNetworkPaged(internal_paging, self._deserialize.dependencies) <NEW_LINE> if raw: <NEW_LINE> <INDENT> header_dict = {} <NEW_LINE> client_raw_response = models.VirtualNetworkPaged(internal_paging, self._deserialize.dependencies, header_dict) <NEW_LINE> return client_raw_response <NEW_LINE> <DEDENT> return deserialized
Gets all virtual networks in a subscription. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of VirtualNetwork :rtype: ~azure.mgmt.network.v2016_12_01.models.VirtualNetworkPaged[~azure.mgmt.network.v2016_12_01.models.VirtualNetwork] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>`
625941bbcc40096d61595807
def extract_patches_loop(arr, patch_shape, sub_findings): <NEW_LINE> <INDENT> arr_row, arr_col = arr.shape <NEW_LINE> patch_row, patch_col = patch_shape <NEW_LINE> findings = sub_findings[:,:2] <NEW_LINE> patches = image.extract_patches_2d(arr, patch_shape) <NEW_LINE> ppc = arr_row - patch_row + 1 <NEW_LINE> ppr = arr_col - patch_col + 1 <NEW_LINE> i2c = lambda idx: (idx // ppr, idx % ppr) <NEW_LINE> c2i = lambda xs: xs[0] * ppr + xs[1] <NEW_LINE> iden = lambda j: c2i(i2c(j)) <NEW_LINE> funcx = lambda fx: np.arange(patch_row) + (fx - patch_row + 1) <NEW_LINE> funcy = lambda fy: np.arange(patch_col) + (fy - patch_col + 1) <NEW_LINE> idx = findings_2_idx(findings, c2i, funcx, funcy) <NEW_LINE> mask = ~np.ones(patches.shape[0], dtype = bool) <NEW_LINE> mask[idx] = True <NEW_LINE> patches_with_findings = filter_empty_patches(patches[mask]) <NEW_LINE> patches_without_findings = filter_empty_patches(patches[~mask]) <NEW_LINE> return patches_without_findings, patches_with_findings
Extract Pathces with potential findings.
625941bb0a50d4780f666d44
def count(ptype, **options): <NEW_LINE> <INDENT> if utils.is_infinite(ptype): <NEW_LINE> <INDENT> raise ValueError("count not supported infinite PType") <NEW_LINE> <DEDENT> scale = options.get('scale', 0.1) <NEW_LINE> size = options.get('output_size', None) <NEW_LINE> memory = options.get('memory_limit', -1) <NEW_LINE> cpu = options.get('cpu_limit', -1) <NEW_LINE> return ptype.aggregate( 0, aggregate_fn=lambda x, y: x + 1, combine_fn=lambda x, y: x + y, serde=serde.IntSerde(), scale=scale, output_size=size, memory_limit=memory, cpu_limit=cpu)
count() implementation
625941bb287bf620b61d3922
def kelvin_to_fahrenheit(temp_kelvin): <NEW_LINE> <INDENT> return temp_kelvin * 9/5 - 459.67
Converts a temperature in degrees Kelvin to degrees Fahrenheit, and returns the result.
625941bb6e29344779a624c9
def CreateClosures(value): <NEW_LINE> <INDENT> context = copy.deepcopy(value) <NEW_LINE> def GetContext(): <NEW_LINE> <INDENT> return copy.deepcopy(context) <NEW_LINE> <DEDENT> def SetContext(value): <NEW_LINE> <INDENT> context = copy.deepcopy(value) <NEW_LINE> <DEDENT> return GetContext, SetContext
Create two closures with share context.
625941bbcb5e8a47e48b7963
def apply_dense_block(self, x, nb_layers: int): <NEW_LINE> <INDENT> for _ in range(nb_layers): <NEW_LINE> <INDENT> conv = self.apply_bn_relu_conv(x, self.growth_rate, (3, 3)) <NEW_LINE> x = Concatenate()([x, conv]) <NEW_LINE> self.nb_channels += self.growth_rate <NEW_LINE> <DEDENT> return x
apply a dense block to input tensor x :param x: input tensor :param nb_layers: number of layers in this block :return: output tensor
625941bb5f7d997b87174950
def create_temporary_system_function(self, name: str, function: Union[UserDefinedFunctionWrapper, AggregateFunction]): <NEW_LINE> <INDENT> function = self._wrap_aggregate_function_if_needed(function) <NEW_LINE> java_function = function._java_user_defined_function() <NEW_LINE> self._j_tenv.createTemporarySystemFunction(name, java_function)
Registers a python user defined function class as a temporary system function. Compared to .. seealso:: :func:`create_temporary_function`, system functions are identified by a global name that is independent of the current catalog and current database. Thus, this method allows to extend the set of built-in system functions like TRIM, ABS, etc. Temporary functions can shadow permanent ones. If a permanent function under a given name exists, it will be inaccessible in the current session. To make the permanent function available again one can drop the corresponding temporary system function. Example: :: >>> table_env.create_temporary_system_function( ... "add_one", udf(lambda i: i + 1, result_type=DataTypes.BIGINT())) >>> @udf(result_type=DataTypes.BIGINT()) ... def add(i, j): ... return i + j >>> table_env.create_temporary_system_function("add", add) >>> class SubtractOne(ScalarFunction): ... def eval(self, i): ... return i - 1 >>> table_env.create_temporary_system_function( ... "subtract_one", udf(SubtractOne(), result_type=DataTypes.BIGINT())) :param name: The name under which the function will be registered globally. :param function: The function class containing the implementation. The function must have a public no-argument constructor and can be founded in current Java classloader. .. versionadded:: 1.12.0
625941bbd164cc6175782c02
def parse_agency(abb, doc): <NEW_LINE> <INDENT> agency_name = doc.h1.text.strip() <NEW_LINE> description = agency_description(doc) <NEW_LINE> departments = [] <NEW_LINE> for option in doc("option")[1:]: <NEW_LINE> <INDENT> opt_id = option['value'] <NEW_LINE> elem = doc(id=opt_id)[0] <NEW_LINE> dept_name = option.string.strip().replace('?', '–') <NEW_LINE> departments.append(parse_department(elem, dept_name)) <NEW_LINE> <DEDENT> agency = {"abbreviation": abb, "name": agency_name, "description": description, "departments": departments} <NEW_LINE> return agency
Make sense of a block of HTML from FOIA.gov
625941bb8da39b475bd64e2c
def Cholesky(self, X): <NEW_LINE> <INDENT> chol_dim1 = tf.cholesky( self._Kcore(self.dim1, X2=None) + eye(tf.shape(self.dim1)[0]) * settings.numerics.jitter_level) <NEW_LINE> chol_dim2 = tf.cholesky( self._Kcore(self.dim2, X2=None) + eye(tf.shape(self.dim2)[0]) * settings.numerics.jitter_level) <NEW_LINE> chol = kronecker_product(chol_dim1, chol_dim2) <NEW_LINE> var = tf.tile(tf.expand_dims(tf.expand_dims( tf.sqrt(self.variance), 0),0), [tf.shape(chol)[0],tf.shape(chol)[1],1]) <NEW_LINE> return var * tf.tile(tf.expand_dims(chol, -1),[1,1,tf.shape(var)[2]])
Overwrite cholesky for the speed up. X should be dim2*dim2
625941bbd268445f265b4d23
def construct(self): <NEW_LINE> <INDENT> out = "" <NEW_LINE> for i in self.rSet: <NEW_LINE> <INDENT> if i[1] is None: <NEW_LINE> <INDENT> out += i[0] + "+" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> out += i[0][:i[0].find("(") + 1] + construct(i[1]) + i[0][ i[0].find(")"):] + "+" <NEW_LINE> <DEDENT> <DEDENT> return out[:len(out) - 1].replace("+-","-")
Returns the function provided.
625941bb38b623060ff0aca3
def p_external_declaration_1(p): <NEW_LINE> <INDENT> p[0] = Node("external_declaration", p[1:])
external_declaration : function_definition | declaration
625941bb7047854f462a12c1
def addr(A, B, before): <NEW_LINE> <INDENT> return before[A] + before[B]
Reg C -> result of adding reg A and reg B
625941bbb5575c28eb68deb3
def _build_org_lookup(self, json_file): <NEW_LINE> <INDENT> document_list = [] <NEW_LINE> try: <NEW_LINE> <INDENT> json_data=open(json_file).read() <NEW_LINE> document_list = json.loads(json_data) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> raise IOError("Failed to load organization JSON file: " + str(e)) <NEW_LINE> <DEDENT> office = Office.objects.first() <NEW_LINE> org_lookup = {} <NEW_LINE> for document in document_list: <NEW_LINE> <INDENT> id = document["id"] <NEW_LINE> if id not in org_lookup: <NEW_LINE> <INDENT> ancestors = document["ancestor_relationships"] <NEW_LINE> depth = len(ancestors) - 1 <NEW_LINE> if depth == 0: <NEW_LINE> <INDENT> lab = Lab.objects.filter(Q(office = office) & Q(lab = document["name"]) & Q(abbreviation = document["abbrev"])).first() <NEW_LINE> org_lookup[id] = lab <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> for document in document_list: <NEW_LINE> <INDENT> id = document["id"] <NEW_LINE> if id not in org_lookup: <NEW_LINE> <INDENT> ancestors = document["ancestor_relationships"] <NEW_LINE> depth = len(ancestors) - 1 <NEW_LINE> if depth == 1: <NEW_LINE> <INDENT> lab = org_lookup[ancestors[depth]["ancestor"]["id"]] <NEW_LINE> division = Division.objects.filter(Q(office = office) & Q(lab = lab) & Q(division = document["name"]) & Q(abbreviation = document["abbrev"])).first() <NEW_LINE> org_lookup[id] = division <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> for document in document_list: <NEW_LINE> <INDENT> id = document["id"] <NEW_LINE> if id not in org_lookup: <NEW_LINE> <INDENT> ancestors = document["ancestor_relationships"] <NEW_LINE> depth = len(ancestors) - 1 <NEW_LINE> if depth == 2: <NEW_LINE> <INDENT> lab = org_lookup[ancestors[depth]["ancestor"]["id"]] <NEW_LINE> division = org_lookup[ancestors[depth-1]["ancestor"]["id"]] <NEW_LINE> branch = Branch.objects.filter(Q(office = office) & Q(lab = lab) & Q(division = division) & Q(branch = document["name"]) & Q(abbreviation = document["abbrev"])).first() <NEW_LINE> org_lookup[id] = branch <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return org_lookup
Build a lookup table from OSIM ids to QA track database objects :param json_file: json file of organizations :return:
625941bb66656f66f7cbc05f
def _set_all_normalisations_for_single_fit_mode(self, normalisations: list) -> None: <NEW_LINE> <INDENT> for index, normalisation in enumerate(normalisations): <NEW_LINE> <INDENT> self._set_normalisation_in_tf_asymmetry_single_fit_function(index, normalisation)
Sets the normalisations within the TF Asymmetry single fit functions.
625941bbbd1bec0571d904ee
def authorize(self, username=None, password=None): <NEW_LINE> <INDENT> if username is None: <NEW_LINE> <INDENT> username = raw_input("Username: ") <NEW_LINE> <DEDENT> if password is None: <NEW_LINE> <INDENT> password = getpass() <NEW_LINE> <DEDENT> self.cookies = self._auth(username, password)
Authorize this connection for personal SSC use If either password or username are not provided, a prompt is given for the missing value(s). :type username: str|None :type password: str|None
625941bbb57a9660fec33735
def testBaseConfigExists(self): <NEW_LINE> <INDENT> path_to_check = self.basetracini <NEW_LINE> result = os.path.exists(path_to_check) <NEW_LINE> self.assertTrue(result, "base_trac.ini not created")
Check that the base config file is created
625941bb3539df3088e2e200
def load_transforms(path: str): <NEW_LINE> <INDENT> if (os.path.isfile(path)): <NEW_LINE> <INDENT> archive_reader = tarfile.open(path) <NEW_LINE> filenames = archive_reader.getnames() <NEW_LINE> filedata = [archive_reader.extractfile(f).read() for f in filenames] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> filenames = glob.glob(path + "/Diffusion-*.txt") <NEW_LINE> filenames.sort() <NEW_LINE> filedata = [open(f, 'rb').read() for f in filenames] <NEW_LINE> <DEDENT> num_grads = len(filenames) <NEW_LINE> transforms = np.zeros((num_grads, 4, 4), dtype=np.float64) <NEW_LINE> for (i, xfm_txt) in enumerate(filedata): <NEW_LINE> <INDENT> xfm = np.genfromtxt(io.BytesIO(xfm_txt)) <NEW_LINE> assert xfm.shape == (4,4), "Unexpected transform shape {}, expected 4x4 matrix".format(xfm.shape) <NEW_LINE> transforms[i] = xfm <NEW_LINE> <DEDENT> return transforms
Load array of transforms from a directory, or tar/tgz/bz2/zip file containing Flirt 4x4 matrices, generally with the filename format 'Diffusion-G#.txt'.
625941bb38b623060ff0aca4
def setpos(self, x, y=None, z=None): <NEW_LINE> <INDENT> if y is None and z is None: <NEW_LINE> <INDENT> x, y, z = x <NEW_LINE> <DEDENT> if z is None: <NEW_LINE> <INDENT> z = 0 <NEW_LINE> <DEDENT> new_position = rs.CreatePoint(x, y, z) <NEW_LINE> if self._pen_down: <NEW_LINE> <INDENT> self._this_line.append(new_position) <NEW_LINE> <DEDENT> self._position = new_position
Sets the turtle's position to the given coordinates. If the pen is down, adds a line along the path moved. If y and z are omitted, assumes x is a point. If z is omitted, assumes z is 0.
625941bbb7558d58953c4dcf
def __init__(self, event_name, event_args = []): <NEW_LINE> <INDENT> self.event_name = event_name <NEW_LINE> self.event_args = event_args
Constructor of the class. @type event_name: String @param event_name: The name of the event. @type event_args: List @param event_args: The arguments of the event.
625941bb009cb60464c63270
@pytest.mark.django_db <NEW_LINE> def test_accept_suggestion_update_wordcount(it_tutorial_po, system): <NEW_LINE> <INDENT> orig_translated = it_tutorial_po.data.translated_words <NEW_LINE> suggestions = review.get(Suggestion)() <NEW_LINE> untranslated_unit = it_tutorial_po.units[0] <NEW_LINE> suggestion_text = 'foo bar baz' <NEW_LINE> sugg, added = suggestions.add(untranslated_unit, suggestion_text) <NEW_LINE> assert sugg is not None <NEW_LINE> assert added <NEW_LINE> assert len(untranslated_unit.get_suggestions()) == 1 <NEW_LINE> assert untranslated_unit.state == UNTRANSLATED <NEW_LINE> review.get(Suggestion)([sugg], system).accept() <NEW_LINE> assert untranslated_unit.state == TRANSLATED <NEW_LINE> assert it_tutorial_po.data.translated_words > orig_translated
Tests that accepting a suggestion for an untranslated unit will change the wordcount stats of the unit's store.
625941bb091ae35668666e19
def set_max_noutput_items(self, *args, **kwargs): <NEW_LINE> <INDENT> return _blocks_swig3.multiply_conjugate_cc_sptr_set_max_noutput_items(self, *args, **kwargs)
set_max_noutput_items(multiply_conjugate_cc_sptr self, int m)
625941bb3eb6a72ae02ec389
def __init__(self, *groups, **kwargs): <NEW_LINE> <INDENT> Sprite.__init__(self, *groups, **kwargs)
Return Sprite.
625941bb63d6d428bbe443a4
def initialize(self, src_sentence): <NEW_LINE> <INDENT> self.cur_trg_sentences = self.trg_sentences[self.current_sen_id] <NEW_LINE> self.history = []
Resets the history and loads the n-best list entries for the next source sentence Args: src_sentence (list): Not used
625941bb6e29344779a624ca
def dot(v, w): <NEW_LINE> <INDENT> return sum(v_i * w_i for v_i, w_i in zip(v, w))
向量的点乘
625941bbd18da76e23532387
def get_entry_point_abs_path(pack=None, entry_point=None): <NEW_LINE> <INDENT> if not entry_point: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> if os.path.isabs(entry_point): <NEW_LINE> <INDENT> pack_base_path = get_pack_base_path(pack_name=pack) <NEW_LINE> common_prefix = os.path.commonprefix([pack_base_path, entry_point]) <NEW_LINE> if common_prefix != pack_base_path: <NEW_LINE> <INDENT> raise ValueError('Entry point file "%s" is located outside of the pack directory' % (entry_point)) <NEW_LINE> <DEDENT> return entry_point <NEW_LINE> <DEDENT> entry_point_abs_path = get_pack_resource_file_abs_path(pack_name=pack, resource_type='action', file_path=entry_point) <NEW_LINE> return entry_point_abs_path
Return full absolute path of an action entry point in a pack. :param pack_name: Content pack name. :type pack_name: ``str`` :param entry_point: Action entry point. :type entry_point: ``str`` :rtype: ``str``
625941bb3c8af77a43ae3652
def update_pho(self, pho): <NEW_LINE> <INDENT> self.pho.append(pho)
Update rho.
625941bbbf627c535bc1308b
def toTraceObj(self, df:pd.core.frame.DataFrame, traceName:str) -> Dict: <NEW_LINE> <INDENT> df['TIME_STAMP'] = df['TIME_STAMP'].astype('str') <NEW_LINE> xVals = df['TIME_STAMP'].values.tolist() <NEW_LINE> yVals= df['DEMAND_VALUE'].values.tolist() <NEW_LINE> traceObj = {'traceName': traceName, 'xVals':xVals, 'yVals': yVals} <NEW_LINE> return traceObj
convert demand data to trace object dictionary Args: df (pd.core.frame.DataFrame): demand data dataframe traceName : name of legend -string Returns: Dict: {'traceName': , 'xVals': , 'yVals': }
625941bbd58c6744b4257b15
def r_squared(x_arr, y_arr): <NEW_LINE> <INDENT> y, m, x, c = line_fitting(x_arr, y_arr) <NEW_LINE> total_var_y = ([(i-y)**2 for i in y_arr]) <NEW_LINE> variation_not_by_line = float(sum(line_error(x_arr=x_arr, y_arr=y_arr, m=m, c=c)))/sum(total_var_y) <NEW_LINE> return 1 - variation_not_by_line
Literally Trying to do sqrt() of scipy.stats import pearsonr val using functions in this module: linear_regression.py. Also called Coefficient of Determination. It simply means total_variation_line: How much the best fit line is "fit" Or Away from the scattered points. High value means good fit. How much % is explained by the Fitted Line. High R^2 = good model, probably profitable, Low R^2 = bad model, probably dangerous
625941bb5fc7496912cc383b
def __init__(self): <NEW_LINE> <INDENT> self.commands = [] <NEW_LINE> self.enums = [] <NEW_LINE> self.structs = [] <NEW_LINE> self.types = [] <NEW_LINE> self.generic_argument_lists = [] <NEW_LINE> self.generic_reply_field_lists = []
Construct an empty symbol table.
625941bb85dfad0860c3ad0e
def add_keywords_from_dict(self, keyword_dict): <NEW_LINE> <INDENT> for clean_name, keywords in keyword_dict.items(): <NEW_LINE> <INDENT> if not isinstance(keywords, list): <NEW_LINE> <INDENT> raise AttributeError("Value of key {} should be a list".format(clean_name)) <NEW_LINE> <DEDENT> for keyword in keywords: <NEW_LINE> <INDENT> self.add_keyword(keyword, clean_name)
To add keywords from a dictionary Args: keyword_dict (dict): A dictionary with `str` key and (list `str`) as value Examples: >>> keyword_dict = { "java": ["java_2e", "java programing"], "product management": ["PM", "product manager"] } >>> keyword_processor.add_keywords_from_dict(keyword_dict) Raises: AttributeError: If value for a key in `keyword_dict` is not a list.
625941bb2c8b7c6e89b35678
@needs_active_game <NEW_LINE> def stand_callback(update, context): <NEW_LINE> <INDENT> chat = update.effective_chat <NEW_LINE> lang_id = Database().get_lang_id(chat.id) <NEW_LINE> game = GameStore().get_game(update.effective_chat.id) <NEW_LINE> if not is_button_affiliated(update, context, game, lang_id): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> next_player(update, context)
CallbackQueryHandler callback for the 'stand' inline button. Prepares round for the next player.
625941bb76d4e153a657e9e5
def verify_dependency(executable_name, min_version=None, suffix=None): <NEW_LINE> <INDENT> executable = find_executable(executable_name) <NEW_LINE> if not executable: <NEW_LINE> <INDENT> sys.exit('You must install %s before installing ssh-ecs-run-task' % executable_name) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if min_version or suffix: <NEW_LINE> <INDENT> executable = os.path.abspath(executable) <NEW_LINE> try: <NEW_LINE> <INDENT> version_bytes = subprocess.check_output("%s --version" % executable, stderr=None, shell=True).strip() <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> sys.exit("Could not determine version of %s" % executable_name) <NEW_LINE> <DEDENT> version = version_bytes.decode() <NEW_LINE> if version == '': <NEW_LINE> <INDENT> sys.exit("Could not determine version of %s" % executable_name) <NEW_LINE> <DEDENT> m = re.match(r"[^0-9]*(?P<XYZ>\b[0-9]+\.[0-9\.]+)(?P<suffix>(\-[^\s]+|))\b", version) <NEW_LINE> if not m: <NEW_LINE> <INDENT> print("Unrecognized format for version string %s" % version) <NEW_LINE> <DEDENT> XYZ = m.group('XYZ') <NEW_LINE> if XYZ == '': <NEW_LINE> <INDENT> sys.exit("Could not determine version of %s" % executable_name) <NEW_LINE> <DEDENT> if min_version: <NEW_LINE> <INDENT> version_nums = str.split(XYZ, '.') <NEW_LINE> for idx, val in enumerate(str.split(min_version, '.')): <NEW_LINE> <INDENT> if idx >= len(version_nums) or int(val) > int(version_nums[idx]): <NEW_LINE> <INDENT> if exit: <NEW_LINE> <INDENT> sys.exit("You must upgrade %s to %s or higher" % (executable_name, min_version)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("WARNING: you should upgrade %s to %s or higher" % (executable_name, min_version)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> if suffix and version.find(suffix) == -1: <NEW_LINE> <INDENT> sys.exit("Suffix %s was not found in version %s" % (suffix, version))
Verify dependencies on non-python executables upon which some shell scripts in ssh-ecs-run-task rely
625941bbec188e330fd5a65a
def _eeprom_read(self, address, length): <NEW_LINE> <INDENT> if (self._check_eeprom_access_args(address=address, length=length)): <NEW_LINE> <INDENT> return self.send_cmd(cmds.NodeEEPROMAccess(cmd=cmds.CMD_PARAM_READ, address=address, length=length))
Reads 'length' values from EEPROM starting at 'address' Args: address (int): Address must be in [0 .. 16383] length (int): Length must be in [1 .. 320] (ie fit in a 1400 byte packet) Returns: values (list of u8): List of u8 values received from the node
625941bb851cf427c661a3c7
def cache(*cache_control_items, **cache_control_kw): <NEW_LINE> <INDENT> cache_control_kw.update(cache_control_items) <NEW_LINE> def decorate_func(func): <NEW_LINE> <INDENT> @wraps(func) <NEW_LINE> def decorate_func_call(*a, **kw): <NEW_LINE> <INDENT> callback = SetCacheControlHeadersCallback(**cache_control_kw) <NEW_LINE> registry_provider = AfterThisRequestCallbackRegistryProvider() <NEW_LINE> registry = registry_provider.provide() <NEW_LINE> registry.add(callback) <NEW_LINE> return func(*a, **kw) <NEW_LINE> <DEDENT> return decorate_func_call <NEW_LINE> <DEDENT> return decorate_func
Set Cache-Control headers. Expects keyword arguments and/or an item list. Each pair is used to set Flask Response.cache_control attributes, where the key is the attribute name and the value is its value. Use True as value for attributes without values. In case of an invalid attribute, CacheControlAttributeInvalidError will be thrown.
625941bb23849d37ff7b2f46
def forward(inputs, masks, labels, model, arr): <NEW_LINE> <INDENT> batch_size = len(inputs[0]) <NEW_LINE> model.reset() <NEW_LINE> inputs = [Variable(arr.array(row, dtype='float32')) for row in inputs] <NEW_LINE> masks = [Variable(arr.array(row, dtype='float32')) for row in masks] <NEW_LINE> labels = Variable(arr.array(labels, dtype='int32')) <NEW_LINE> model.encode(inputs) <NEW_LINE> ys = model.predict(masks) <NEW_LINE> loss = functions.softmax_cross_entropy(ys, labels) <NEW_LINE> return loss
順伝播の計算 :params inputs: 入力ベクトル :params masks: マスクベクトル :params labels: 正解ラベル :params model: インスタンス化したモデル :params ARR: cupyかnumpy
625941bb0fa83653e4656e72
@hook.command() <NEW_LINE> def slogan(text): <NEW_LINE> <INDENT> out = random.choice(slogans) <NEW_LINE> if text.lower() and out.startswith("<text>"): <NEW_LINE> <INDENT> text = formatting.capitalize_first(text) <NEW_LINE> <DEDENT> return out.replace('<text>', text)
slogan <word> -- Makes a slogan for <word>.
625941bb379a373c97cfaa00
def RPR_CSurf_OnSelectedChange(trackid,selected): <NEW_LINE> <INDENT> a=_ft['CSurf_OnSelectedChange'] <NEW_LINE> f=CFUNCTYPE(c_byte,c_uint64,c_int)(a) <NEW_LINE> t=(rpr_packp('MediaTrack*',trackid),c_int(selected)) <NEW_LINE> r=f(t[0],t[1]) <NEW_LINE> return r
Python: Boolean RPR_CSurf_OnSelectedChange(MediaTrack trackid, Int selected)
625941bbbe8e80087fb20afd
def _next_batch(self, data, batch_idxs, labels=None): <NEW_LINE> <INDENT> def _normalize_length(_data, max_length): <NEW_LINE> <INDENT> return _data + [self.PAD] * (max_length - len(_data)) <NEW_LINE> <DEDENT> seq1_data, seq1_lengths, seq2_pos_data, seq2_pos_lengths, seq2_neg_data, seq2_neg_lengths = [], [], [], [], [], [] <NEW_LINE> for idx in batch_idxs: <NEW_LINE> <INDENT> seq1, seq2_pos, seq2_neg = data[idx] <NEW_LINE> seq1_lengths.append(len(seq1)) <NEW_LINE> seq2_pos_lengths.append(len(seq2_pos)) <NEW_LINE> seq2_neg_lengths.append(len(seq2_neg)) <NEW_LINE> <DEDENT> seq1_max_length = max(seq1_lengths) <NEW_LINE> seq2_max_length = max(seq2_pos_lengths + seq2_neg_lengths) <NEW_LINE> for idx in batch_idxs: <NEW_LINE> <INDENT> seq1, seq2_pos, seq2_neg = data[idx] <NEW_LINE> seq1_data.append(_normalize_length(seq1, seq1_max_length)) <NEW_LINE> seq2_pos_data.append(_normalize_length(seq2_pos, seq2_max_length)) <NEW_LINE> seq2_neg_data.append(_normalize_length(seq2_neg, seq2_max_length)) <NEW_LINE> <DEDENT> batch_data_dict = { 'sentence1_inputs': np.asarray(seq1_data, dtype=np.int32), 'sentence1_lengths': np.asarray(seq1_lengths, dtype=np.int32), 'sentence2_pos_inputs': np.asarray(seq2_pos_data, dtype=np.int32), 'sentence2_pos_lengths': np.asarray(seq2_pos_lengths, dtype=np.int32), 'sentence2_neg_inputs': np.asarray(seq2_neg_data, dtype=np.int32), 'sentence2_neg_lengths': np.asarray(seq2_neg_lengths, dtype=np.int32), } <NEW_LINE> if labels: <NEW_LINE> <INDENT> batch_data_dict['labels'] = np.asarray( [labels[idx] for idx in batch_idxs], dtype=np.int32) <NEW_LINE> <DEDENT> return batch_data_dict
Generate next batch. :param data: data list to process :param batch_idxs: idxs to process :param labels: additional labels to include :return: next data dict of batch_size amount data
625941bbd7e4931a7ee9ddd1
def symlink_files(out_dir): <NEW_LINE> <INDENT> for fname in glob.glob(os.path.join(ROOT_DIR, '*')): <NEW_LINE> <INDENT> in_path = os.path.join(os.getcwd(), fname) <NEW_LINE> out_path = os.path.join(out_dir, os.path.basename(fname)) <NEW_LINE> os.symlink(in_path, out_path)
Symlink files from ROOT_DIR to the current |out_dir|.
625941bbbe383301e01b5341
def _pre_setup(self, *args, **kwargs): <NEW_LINE> <INDENT> super(LexiconPluginTest2, self)._pre_setup(*args, **kwargs) <NEW_LINE> defaults = { "markup": MARKUP_CREOLE, "is_public": True, } <NEW_LINE> self.entry_es = self.easy_create(LexiconEntry, defaults, term="Spanish", language=self.languages["es"], tags="shared, Spain, other", short_definition="Spanish is a language ;)", content="Spanish or Castilian (español or castellano) is a Romance language...", )
create some blog articles
625941bb099cdd3c635f0b12
def post(self): <NEW_LINE> <INDENT> data = json.loads(self.request.body.decode("utf-8")) <NEW_LINE> top_repo_path = data["top_repo_path"] <NEW_LINE> if data["add_all"]: <NEW_LINE> <INDENT> my_output = self.git.add_all(top_repo_path) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> filename = data["filename"] <NEW_LINE> my_output = self.git.add(filename, top_repo_path) <NEW_LINE> <DEDENT> self.finish(my_output)
POST request handler, adds one or all files into the staging area.
625941bb627d3e7fe0d68d04
def make_mass_quantile_plot(hist, quantile_pairs, color, savename): <NEW_LINE> <INDENT> y_range = [0, hist.GetMaximum() * 1.05] <NEW_LINE> set_range_hists([hist], y_range=y_range) <NEW_LINE> can = mkplot([hist], colors=[color], drawOpt='H') <NEW_LINE> leg = r.TLegend(0.1, 0.91, 0.9, 0.95) <NEW_LINE> leg.SetNColumns(len(quantile_pairs)) <NEW_LINE> leg.SetBorderSize(0) <NEW_LINE> line_styles = [2, 3, 5, 6] <NEW_LINE> lines = [] <NEW_LINE> for i, pair in enumerate(quantile_pairs): <NEW_LINE> <INDENT> quantiles = get_quantiles(hist, pair) <NEW_LINE> qline_1, qline_2 = get_quantile_lines(quantiles, y_range, default_colors()[0], line_styles[i]) <NEW_LINE> qline_2.Draw() <NEW_LINE> qline_1.Draw() <NEW_LINE> leg.AddEntry(qline_1, '[{}, {}]'.format(*pair), 'l') <NEW_LINE> lines.append(qline_1) <NEW_LINE> lines.append(qline_2) <NEW_LINE> <DEDENT> leg.Draw() <NEW_LINE> can.Draw() <NEW_LINE> can.SaveAs(savename)
Quantile plots for one state. TODO:
625941bb0c0af96317bb809e
def floodFill(self, image, sr, sc, newColor): <NEW_LINE> <INDENT> def dfs(pos): <NEW_LINE> <INDENT> image[pos[0]][pos[1]] = newColor <NEW_LINE> for d in dirs: <NEW_LINE> <INDENT> x, y = pos[0] + d[0], pos[1] + d[1] <NEW_LINE> if x in (-1, heigth) or y in (-1, width) or image[x][y] != color: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> dfs((x, y)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if image[sr][sc] == newColor: <NEW_LINE> <INDENT> return image <NEW_LINE> <DEDENT> dirs = [(0, 1), (0, -1), (1, 0), (-1, 0)] <NEW_LINE> width = len(image[0]) <NEW_LINE> heigth = len(image) <NEW_LINE> color = image[sr][sc] <NEW_LINE> dfs((sr, sc)) <NEW_LINE> return image
:type image: List[List[int]] :type sr: int :type sc: int :type newColor: int :rtype: List[List[int]]
625941bb57b8e32f52483356
def lr_schedule(epoch): <NEW_LINE> <INDENT> lr = 1e-4 <NEW_LINE> if epoch > 40: <NEW_LINE> <INDENT> lr *= 1e-2 <NEW_LINE> <DEDENT> elif epoch > 20: <NEW_LINE> <INDENT> lr *= 1e-1 <NEW_LINE> <DEDENT> return lr
Learning Rate Schedule Learning rate is scheduled to be reduced after 80, 120epochs. Called automatically every epoch as part of callbacks during training. # Arguments epoch (int): The number of epochs # Returns lr (float32): learning rate
625941bb23e79379d52ee41d
def t_NUMBER(t): <NEW_LINE> <INDENT> if t.value[-1] == 'h': <NEW_LINE> <INDENT> t.value = int(t.value[:-1],16) <NEW_LINE> <DEDENT> elif len(t.value) > 2 and t.value[0:2] == '0x': <NEW_LINE> <INDENT> t.value = int(t.value[2:],16) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> t.value = int(t.value) <NEW_LINE> <DEDENT> if t.lexer.placement: <NEW_LINE> <INDENT> t.lexer.placement = False <NEW_LINE> t.type = 'PLACEMENT' <NEW_LINE> <DEDENT> return t
0x[0-9a-fA-F]+|[0-9a-fA-F]+h|\d+
625941bbf548e778e58cd432
def _unload(self): <NEW_LINE> <INDENT> pass
Unload the USBIP daemon object from the layout and from the configuration
625941bbc432627299f04afa
def fit(self, X, Y): <NEW_LINE> <INDENT> self._kd_tree(X) <NEW_LINE> self.y = Y <NEW_LINE> return self
training, store distance use kd tree :para X: array like
625941bb3539df3088e2e201
def one_hot_nonoverlap(segmask_array, class_list): <NEW_LINE> <INDENT> returnSeg = [] <NEW_LINE> for i in range(0, len(class_list)): <NEW_LINE> <INDENT> returnSeg.append((segmask_array == class_list[i]).astype(np.uint8)) <NEW_LINE> <DEDENT> return np.stack(returnSeg, axis=0)
This function takes an N-D mask and a class list and returns a dictionary of one-hot encoded segmentations
625941bb8e71fb1e9831d663
def from_url(url: str) -> str: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> with requests.get(url=url, allow_redirects=True, stream=True, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) Gecko/20100101 Firefox/80.0"}) as r: <NEW_LINE> <INDENT> downloaded_file = os.path.join(mkdtemp(), get_filename(url)) <NEW_LINE> with open(downloaded_file, "wb") as f: <NEW_LINE> <INDENT> for chunk in r.iter_content(chunk_size=1024): <NEW_LINE> <INDENT> if chunk: <NEW_LINE> <INDENT> f.write(chunk) <NEW_LINE> f.flush() <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return downloaded_file <NEW_LINE> <DEDENT> <DEDENT> except RequestException as e: <NEW_LINE> <INDENT> print(e)
Download the file from its url. :param url: The url of the file to download. :type url: str :return: The full path of the downloaded file. :rtype: str
625941bb9f2886367277a746
def read_words(words): <NEW_LINE> <INDENT> with open(words) as f: <NEW_LINE> <INDENT> return f.read().split("\n")
Read a words file, return a list of all the words.
625941bbd99f1b3c44c6744c
def createComponentMenu(self,name,lambda1,lambda2): <NEW_LINE> <INDENT> aMenu = Menu(self.mainMenu, tearoff=0) <NEW_LINE> self.mainMenu.add_cascade(label=name, menu=aMenu) <NEW_LINE> aMenu.add_command(label="Open Window",command= lambda1) <NEW_LINE> aMenu.add_command(label="Close Window",command= lambda2)
Create the components of a specific menu
625941bba4f1c619b28afef6
def removeAllFiles(dires): <NEW_LINE> <INDENT> if not isinstance(dires, list): <NEW_LINE> <INDENT> raise ValueError <NEW_LINE> <DEDENT> for dire in dires: <NEW_LINE> <INDENT> for file in os.listdir(dire): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> os.remove(os.path.join(dire, file)) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> pass
删除指定目录的所有文件,异常则跳过 :param dires: 目录列表 :return: None
625941bbcb5e8a47e48b7964
def update_file( text, filename, return_different=False): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> with open( filename) as f: <NEW_LINE> <INDENT> text0 = f.read() <NEW_LINE> <DEDENT> <DEDENT> except OSError: <NEW_LINE> <INDENT> text0 = None <NEW_LINE> <DEDENT> if text != text0: <NEW_LINE> <INDENT> if return_different and text0 is not None: <NEW_LINE> <INDENT> return text <NEW_LINE> <DEDENT> log( 'Updating: ' + filename) <NEW_LINE> filename_temp = f'{filename}-jlib-temp' <NEW_LINE> with open( filename_temp, 'w') as f: <NEW_LINE> <INDENT> f.write( text) <NEW_LINE> <DEDENT> rename( filename_temp, filename)
Writes <text> to <filename>. Does nothing if contents of <filename> are already <text>. If <return_different> is true, we return existing contents if <filename> already exists and differs from <text>.
625941bbd53ae8145f87a12b
def Ft(self): <NEW_LINE> <INDENT> N = self.N <NEW_LINE> F = (1-6/(N*np.pi)**2)*(-1)**(N+1) <NEW_LINE> return F
Calculate Fn function, for use in Rg calculation
625941bb1b99ca400220a967
def get(self, line_id: int, **options) -> Dict: <NEW_LINE> <INDENT> return self._call(f"{line_id}", **options)
Retrieve a line by its ID. :see: https://developers.hubspot.com/docs/methods/line-items/get_line_item_by_id
625941bbd8ef3951e32433f3
def find_cliques(graph,min_clique_size=3): <NEW_LINE> <INDENT> cliques = nx.algorithms.clique.find_cliques(graph) <NEW_LINE> clique_list = [] <NEW_LINE> for c in cliques: <NEW_LINE> <INDENT> if len(c)>=min_clique_size: <NEW_LINE> <INDENT> clique_list.append(c) <NEW_LINE> <DEDENT> <DEDENT> return clique_list
Find maximal cliques in the graph Parameters ---------- graph : networkx graph Description of parameter `graph`. min_clique_size : int Returns ------- list(clique)
625941bb5166f23b2e1a500f
def test_char_offset(): <NEW_LINE> <INDENT> skimmer = FileToSkim('/some/path', u'abc\r\nde\nfghi', 'dummy_tree') <NEW_LINE> eq_(skimmer.char_offset(1, 1), 1) <NEW_LINE> eq_(skimmer.char_offset(2, 1), 6) <NEW_LINE> eq_(skimmer.char_offset(3, 1), 9)
Make sure char_offset() deals with different kinds of line breaks and handles the first and last lines correctly.
625941bba8370b7717052756
def analysis_describe(object_id, input_params={}, always_retry=True, **kwargs): <NEW_LINE> <INDENT> return DXHTTPRequest('/%s/describe' % object_id, input_params, always_retry=always_retry, **kwargs)
Invokes the /analysis-xxxx/describe API method. For more info, see: https://documentation.dnanexus.com/developer/api/running-analyses/workflows-and-analyses#api-method-analysis-xxxx-describe
625941bb0a366e3fb873e6cd
def setUp(self): <NEW_LINE> <INDENT> self.repo = self.client.post(REPO_PATH, gen_repo()) <NEW_LINE> self.addCleanup(self.client.delete, self.repo['_href']) <NEW_LINE> for content in self.contents[:10]: <NEW_LINE> <INDENT> self.client.post( self.repo['_versions_href'], {'add_content_units': [content['_href']]} ) <NEW_LINE> sleep(1) <NEW_LINE> <DEDENT> self.repo = self.client.get(self.repo['_href'])
Create a repository and give it new versions.
625941bb16aa5153ce36232e
def __init__(self, item, children): <NEW_LINE> <INDENT> self.item = item <NEW_LINE> self.children = children <NEW_LINE> self.parent = None <NEW_LINE> self.timeStamps = _NodeSummaries()
Initializing the Node class :param item: Storing the item of a node :type item: int :param children: To maintain the children of a node :type children: dict
625941bb7d847024c06be16f
def splitAtLocation(self, point, location, node_id=-1, edge_f_id=-1, edge_t_id=-2): <NEW_LINE> <INDENT> num_points = self.geom.numPoints() <NEW_LINE> points = [self.geom.pointN(i) for i in range(num_points)] <NEW_LINE> N = int(num_points * location) or 1 <NEW_LINE> if N == num_points: <NEW_LINE> <INDENT> N -= 1 <NEW_LINE> <DEDENT> edge_f_points = points[:N] + [point] <NEW_LINE> edge_t_points = [point] + points[N:] <NEW_LINE> srs = self.geom.srs <NEW_LINE> edge_f_geom = geometry.LineString(points=edge_f_points, srs=srs) <NEW_LINE> edge_t_geom = geometry.LineString(points=edge_t_points, srs=srs) <NEW_LINE> RegionEdge = self.__class__ <NEW_LINE> edge_f = RegionEdge(id=edge_f_id, node_f_id=self.node_f_id, node_t_id=node_id, street_name=self.street_name, geom=edge_f_geom) <NEW_LINE> edge_t = RegionEdge(id=edge_t_id, node_f_id=node_id, node_t_id=self.node_t_id, street_name=self.street_name, geom=edge_t_geom) <NEW_LINE> RegionNode = self.node_f.__class__ <NEW_LINE> geom = self.geom <NEW_LINE> shared_node = RegionNode(id=node_id, geom=geom.pointN(N)) <NEW_LINE> edge_f.node_f = RegionNode(id=self.node_f_id, geom=geom.startPoint()) <NEW_LINE> edge_f.node_t = shared_node <NEW_LINE> edge_t.node_f = shared_node <NEW_LINE> edge_t.node_t = RegionNode(id=self.node_t_id, geom=geom.endPoint()) <NEW_LINE> return edge_f, edge_t
Split this edge at ``location`` and return two new edges. The first edge is `node_f`=>``num``; the second is ``num``=>`node_t`. Distribute attributes of original edge to the two new edges. ``location`` `float` -- Location in range [0, 1] to split at ``node_id`` -- Node ID to assign the node at the split ``edge_f_id`` -- Edge ID to assign the `node_f`=>``num`` edge ``edge_t_id`` -- Edge ID to assign the ``num``=>`node_t` edge return `Edge`, `Edge` -- `node_f`=>``num``, ``num``=>`node_t` edges Recipe: - Determine location of num along edge; use .5 as default - Get XY at location - Get line geometry on either side of XY - Transfer geometry and attributes to two new edges - Return the two new edges
625941bb15baa723493c3e28
def clustering_performance_evaluation(X, y_pred, y_true): <NEW_LINE> <INDENT> result = {} <NEW_LINE> result['ARI'] = metrics.adjusted_rand_score(y_true, y_pred) <NEW_LINE> result['AMI'] = metrics.adjusted_mutual_info_score(y_true, y_pred) <NEW_LINE> result['NMI'] = metrics.normalized_mutual_info_score(y_true, y_pred) <NEW_LINE> h,c,v = metrics.homogeneity_completeness_v_measure(y_true, y_pred) <NEW_LINE> result['Homo'] = h <NEW_LINE> result['Comp'] = c <NEW_LINE> result['V'] = v <NEW_LINE> result['FM'] = metrics.fowlkes_mallows_score(y_true, y_pred) <NEW_LINE> result['Sil'] = metrics.silhouette_score(X[['entropy', 'joint_entropy']], y_pred, metric='euclidean') <NEW_LINE> return result
this function implement multiple evaluation metrics for clustering analysis. this method will be used in order to asses the quality of a clustering solution based on multiple criteria :param X: input matrix :param y_pred: predicted vector :param y_true: ground truth - if none - one do not have this knowledge :return: a dictionary with all measures
625941bbfb3f5b602dac3545
def startServer( self, persistFilename: str = "networktables.ini", listenAddress: str = "", port: int = constants.NT_DEFAULT_PORT, ): <NEW_LINE> <INDENT> return self._api.startServer(persistFilename, listenAddress, port)
Starts a server using the specified filename, listening address, and port. :param persistFilename: the name of the persist file to use :param listenAddress: the address to listen on, or empty to listen on any address :param port: port to communicate over .. versionadded:: 2018.0.0
625941bb94891a1f4081b95e
def asymmetry(self, id_min=None, id_max=None): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> T = self.gyration_tensor(id_min, id_max) <NEW_LINE> l1, l2 = np.linalg.eigvals(T) <NEW_LINE> return - np.log(1 - (l1 - l2)**2 / (2 * (l1 + l2)**2)) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> return np.nan
Returns a feature which controls how assymetric the random walk is. May help to detect drift.
625941bb56b00c62f0f1450d
def get_pa_actions(self): <NEW_LINE> <INDENT> action = ['still', 'up', 'down', 'left', 'right'] <NEW_LINE> if self.pa_loc[0] == 0: <NEW_LINE> <INDENT> action.remove('up') <NEW_LINE> <DEDENT> if self.pa_loc[0] == self.row_num - 1: <NEW_LINE> <INDENT> action.remove('down') <NEW_LINE> <DEDENT> if self.pa_loc[1] == 0: <NEW_LINE> <INDENT> action.remove('left') <NEW_LINE> <DEDENT> if self.pa_loc[1] == self.column_num - 1: <NEW_LINE> <INDENT> action.remove('right') <NEW_LINE> <DEDENT> return action
For building game tree usage
625941bb956e5f7376d70d2e
def test_post_to_home_404_no_category(testapp): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> testapp.post('/', {'category': None}) <NEW_LINE> <DEDENT> except AppError as err: <NEW_LINE> <INDENT> assert '404 Not Found' in err.args[0]
Post to home page should redirect to results.
625941bb3d592f4c4ed1cf34
def lock(self, auth_no_user_interaction=None): <NEW_LINE> <INDENT> return self._I.Encrypted.method.Lock( '(a{sv})', filter_opt({ 'auth.no_user_interaction': ('b', auth_no_user_interaction), }) )
Lock Luks device.
625941bb15fb5d323cde09c1
def configerus_bootstrap(config: Config): <NEW_LINE> <INDENT> pass
Bootstrap a config object. We don't actually do anything, so this bootstrapper is here only to ensure that the above factory decorators are run
625941bb9b70327d1c4e0c8a
def encode_landm(matched, priors, variances): <NEW_LINE> <INDENT> matched = torch.reshape(matched, (matched.size(0), 5, 2)) <NEW_LINE> priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) <NEW_LINE> priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) <NEW_LINE> priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) <NEW_LINE> priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2) <NEW_LINE> priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2) <NEW_LINE> g_cxcy = matched[:, :, :2] - priors[:, :, :2] <NEW_LINE> g_cxcy /= (variances[0] * priors[:, :, 2:]) <NEW_LINE> g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1) <NEW_LINE> return g_cxcy
Encode the variances from the priorbox layers into the ground truth boxes we have matched (based on jaccard overlap) with the prior boxes. Args: matched: (tensor) Coords of ground truth for each prior in point-form Shape: [num_priors, 10]. priors: (tensor) Prior boxes in center-offset form Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: encoded landm (tensor), Shape: [num_priors, 10]
625941bb44b2445a33931f56
def wallsAndGates(self, rooms: List[List[int]]) -> None: <NEW_LINE> <INDENT> if len(rooms) == 0 or len(rooms[0]) == 0: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> for i in range(len(rooms)): <NEW_LINE> <INDENT> for j in range(len(rooms[0])): <NEW_LINE> <INDENT> if rooms[i][j] == 0: <NEW_LINE> <INDENT> self.findPath(rooms, i, j)
Do not return anything, modify rooms in-place instead.
625941bb2ae34c7f2600cfe8
def plot_mean_execution_time(n, m): <NEW_LINE> <INDENT> print(mean_execution_time(int(n), int(m))) <NEW_LINE> mean_vectorized, mean_plain = mean_execution_time(int(n), int(m)) <NEW_LINE> p1 = plt.bar([0], mean_vectorized, color='g') <NEW_LINE> p2 = plt.bar([1], mean_plain, color='r') <NEW_LINE> plt.ylabel("Time spent") <NEW_LINE> plt.yticks(np.arange(0, mean_plain)) <NEW_LINE> plt.xticks(range(0, 1)) <NEW_LINE> plt.legend(("vectorized", "non - vectorized")) <NEW_LINE> plt.show()
рисует графики среднего времени выполнения forward_pass и vectorized_forward_pass
625941bba79ad161976cbffb
def emitter_reputation(self, mx): <NEW_LINE> <INDENT> if self.is_blacklist_mx(mx): <NEW_LINE> <INDENT> return 'blacklisted' <NEW_LINE> <DEDENT> if self.is_whitelist_mx(mx): <NEW_LINE> <INDENT> return 'whitelisted' <NEW_LINE> <DEDENT> return 'unknown'
Return features about emitter.
625941bbaad79263cf3908f2
def rst_pat_level_find(endpoint, node, port, auth, query_map): <NEW_LINE> <INDENT> PATNAME = "00100010" <NEW_LINE> PATID = "00100020" <NEW_LINE> PATBDATE = "00100030" <NEW_LINE> PATSEX = "00100040" <NEW_LINE> accept = {'Accept': 'application/json'} <NEW_LINE> url = 'http://%s:%d/%s/studies/' % (node, port, endpoint) <NEW_LINE> with requests.Session() as s: <NEW_LINE> <INDENT> if auth is not None: <NEW_LINE> <INDENT> user, passwd = auth.split(':') <NEW_LINE> http_response = s.get(url, auth=(user, passwd), headers=accept, params=query_map) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> http_response = s.get(url, headers=accept, params=query_map) <NEW_LINE> <DEDENT> <DEDENT> matches = http_response.json() <NEW_LINE> patients = [ PatientLevelFields( str(match[PATNAME]['Value'][0]), str(match[PATID]['Value'][0]), str(match[PATBDATE]['Value'][0]), str(match[PATSEX]['Value'][0]), 0 ) for match in matches ] <NEW_LINE> return sorted(set(patients))
Patient level find using DICOM QIDO-RS rest API. Behaves similarly to a DICOM Patient Level C-FIND but uses StudyRoot hierarchy of QI-RS API. Parameters ---------- endpoint : str Root of QI-RS/WADO-RS in URL. node : str Hostname. port: int TCP port number auth: str Colon separated username:password combination Returns ------- list Sorted list of matching PatientLevelFields structures
625941bb4e4d5625662d4292
def parse_environment_variable_strings(envvar_strings: Iterable[str]) -> Dict[str, str]: <NEW_LINE> <INDENT> environment_variables = {} <NEW_LINE> for envstr in envvar_strings: <NEW_LINE> <INDENT> key, _, value = envstr.partition('=') <NEW_LINE> key = key.strip() <NEW_LINE> if not key: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> environment_variables[key] = value.strip() <NEW_LINE> <DEDENT> return environment_variables
Parse a list of environment variable strings into a dict.
625941bbbe383301e01b5342
def buf_getlastframedata(self): <NEW_LINE> <INDENT> return self.buf_getframedata(-1)
Return NumPy buffer of image data of last updated frame Returns: npBuf: NumPy buffer False: error happens. lasterr() returns the DCAMERR value
625941bb8e05c05ec3eea228
def __init__(self, name=None, **kwargs): <NEW_LINE> <INDENT> self.name = name <NEW_LINE> for key in kwargs: <NEW_LINE> <INDENT> setattr(self, key, kwargs[key]) <NEW_LINE> <DEDENT> self.raw = self.__dict__
Initialize the object.
625941bb5510c4643540f2a6
def combine_masks(masks_paths, image_name): <NEW_LINE> <INDENT> masks = [] <NEW_LINE> for mask_path in tqdm(masks_paths, desc='Processing masks for image {}'.format(image_name), leave=False): <NEW_LINE> <INDENT> mask = preprocess_image(str(mask_path), is_mask=True) <NEW_LINE> mask = np.expand_dims(mask, axis=-1) <NEW_LINE> mask = mask.astype(int) <NEW_LINE> masks.append(mask) <NEW_LINE> <DEDENT> return np.maximum.reduce(masks)
Combine the different masks of a single image into one mask
625941bb30c21e258bdfa352
def test_is_valid_dm_int16_array_F(self): <NEW_LINE> <INDENT> D = np.zeros((5, 5), dtype='i') <NEW_LINE> self.assertTrue(is_valid_dm(D) == False)
Tests is_valid_dm(*) on an int16 array. False expected.
625941bb9f2886367277a747
def compute_optimal_bb_area(self, proj_dict=None): <NEW_LINE> <INDENT> if proj_dict is None: <NEW_LINE> <INDENT> proj_dict = {} <NEW_LINE> <DEDENT> projection = proj_dict.setdefault('proj', 'omerc') <NEW_LINE> area_id = projection + '_otf' <NEW_LINE> description = 'On-the-fly ' + projection + ' area' <NEW_LINE> lines, cols = self.lons.shape <NEW_LINE> x_size = int(cols * 1.1) <NEW_LINE> y_size = int(lines * 1.1) <NEW_LINE> proj_dict = self.compute_bb_proj_params(proj_dict) <NEW_LINE> if projection == 'omerc': <NEW_LINE> <INDENT> x_size, y_size = y_size, x_size <NEW_LINE> <DEDENT> area = DynamicAreaDefinition(area_id, description, proj_dict) <NEW_LINE> lons, lats = self.get_edge_lonlats() <NEW_LINE> return area.freeze((lons, lats), size=(x_size, y_size))
Compute the "best" bounding box area for this swath with `proj_dict`. By default, the projection is Oblique Mercator (`omerc` in proj.4), in which case the right projection angle `alpha` is computed from the swath centerline. For other projections, only the appropriate center of projection and area extents are computed.
625941bba4f1c619b28afef7
def test_add_columns(self): <NEW_LINE> <INDENT> db_metadata = MetaData() <NEW_LINE> table_infomatic = Table('infomatic', db_metadata, Column('id', Integer, primary_key=True), Column('info', Unicode(255)), Column('expectedoffset', Integer)) <NEW_LINE> self.assertTrue(len(table_infomatic.columns) == 3) <NEW_LINE> tzaware_datetime.helper.append_columns(table_infomatic, 'newdate') <NEW_LINE> self.assertTrue(len(table_infomatic.columns) == 6)
Add Column objects
625941bbde87d2750b85fc45
def run(self): <NEW_LINE> <INDENT> working_directory = self.getWorkingDirectory() <NEW_LINE> if os.path.exists(working_directory): <NEW_LINE> <INDENT> shutil.rmtree(working_directory) <NEW_LINE> <DEDENT> os.makedirs(working_directory) <NEW_LINE> saved_pwd = os.getcwd() <NEW_LINE> os.chdir(working_directory) <NEW_LINE> try: <NEW_LINE> <INDENT> return self._doImport() <NEW_LINE> <DEDENT> finally: <NEW_LINE> <INDENT> shutil.rmtree(working_directory) <NEW_LINE> os.chdir(saved_pwd)
Run the code import job. This is the primary public interface to the `ImportWorker`. This method: 1. Retrieves an up-to-date foreign tree to import. 2. Gets the Bazaar branch to import into. 3. Imports the foreign tree into the Bazaar branch. If we've already imported this before, we synchronize the imported Bazaar branch with the latest changes to the foreign tree. 4. Publishes the newly-updated Bazaar branch, making it available to Launchpad users. 5. Archives the foreign tree, so that we can update it quickly next time.
625941bb627d3e7fe0d68d05
def get_language_from_request(request): <NEW_LINE> <INDENT> language = request.GET.get('language', None) <NEW_LINE> if language: <NEW_LINE> <INDENT> return language <NEW_LINE> <DEDENT> if hasattr(request, 'LANGUAGE_CODE'): <NEW_LINE> <INDENT> lang = settings.PAGE_LANGUAGE_MAPPING(str(request.LANGUAGE_CODE)) <NEW_LINE> if lang not in LANGUAGE_KEYS: <NEW_LINE> <INDENT> return settings.PAGE_DEFAULT_LANGUAGE <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return lang <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> return settings.PAGE_DEFAULT_LANGUAGE
Return the most obvious language according the request.
625941bbd164cc6175782c04
def get(self,request): <NEW_LINE> <INDENT> api = twitter_setup() <NEW_LINE> latest_tweets = [] <NEW_LINE> startDate = datetime( datetime.now().year,datetime.now().month,datetime.now().day,0,0,0) <NEW_LINE> try: <NEW_LINE> <INDENT> last_tweet_id = Tweet.objects.order_by("-id_str")[0].id_str <NEW_LINE> tweets = tweepy.Cursor(api.user_timeline, screen_name='@Yallakoranow',since_id = last_tweet_id ).items() <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> tweets = tweepy.Cursor(api.user_timeline, screen_name='@Yallakoranow').items() <NEW_LINE> <DEDENT> for status in tweets: <NEW_LINE> <INDENT> if status.created_at < startDate: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> text = status.text[0:status.text.index('https')] <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> text = status.text <NEW_LINE> <DEDENT> tweet = {'text': text, 'id_str': status.id_str, 'created_at': status.created_at, 'links':[]} <NEW_LINE> if 'media' in status.entities.keys(): <NEW_LINE> <INDENT> for curr_media in status.entities['media'] : <NEW_LINE> <INDENT> tweet['links'].append({'link_url':curr_media['media_url_https']}) <NEW_LINE> <DEDENT> <DEDENT> latest_tweets.append(tweet) <NEW_LINE> <DEDENT> if latest_tweets: <NEW_LINE> <INDENT> Tweet.objects.mongo_insert_many(latest_tweets) <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> res = Tweet.objects.filter(text__icontains=request.GET.get('text')) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> res = {} <NEW_LINE> <DEDENT> return render(request,self.template_name,{'res':res})
Function to get first new today tweets from yallakora using Twitter API and add new tweets in mongo db in then retrive result form search text from mongo db.
625941bb3346ee7daa2b2c20
def getData(self): <NEW_LINE> <INDENT> return (bool(), float(), float(), float())
Gets the data defining the point. x : The output x coordinate of the point. y : The output y coordinate of the point. z : The output z coordinate of the point. Returns true if successful.
625941bb91f36d47f21ac3a6
def get_expect_city_count(city="hz"): <NEW_LINE> <INDENT> url = "http://" + city + ".lianjia.com/ershoufang" <NEW_LINE> count_in_page = 0 <NEW_LINE> while True: <NEW_LINE> <INDENT> page = urllib2.urlopen(url) <NEW_LINE> soup = BeautifulSoup(page, "html.parser") <NEW_LINE> error = soup.title.text <NEW_LINE> if error == u"验证异常流量-链家网" or error == u"人机认证": <NEW_LINE> <INDENT> count_in_page = count_in_page + 1 <NEW_LINE> time.sleep(600) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> for link in soup.find_all('div', 'resultDes clear'): <NEW_LINE> <INDENT> context = link.get_text() <NEW_LINE> total_house = re.findall(r"\d+\.?\d*", context)[0] <NEW_LINE> return total_house
输入城市 去查db 获取这个城市在该月份网页中展示的数量 :param city: :return:
625941bb7047854f462a12c3
def tweets_from_JSON_file_IT(tweetfile): <NEW_LINE> <INDENT> with open(tweetfile) as handle: <NEW_LINE> <INDENT> for line in handle: <NEW_LINE> <INDENT> yield loads(line.strip())
Returns an iterator for tweets in given tweetfile. Tweets are considered dict representations of JSON in given tweetfile
625941bbd8ef3951e32433f4