blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
e6122138c275a7ca084bb1ca0a6f3523a11a7775
Python
SimonFans/LeetCode
/Design/L716_Max_Stack.py
UTF-8
2,019
4.3125
4
[]
no_license
Design a max stack that supports push, pop, top, peekMax and popMax. push(x) -- Push element x onto stack. pop() -- Remove the element on top of the stack and return it. top() -- Get the element on the top. peekMax() -- Retrieve the maximum element in the stack. popMax() -- Retrieve the maximum element in the stack, and remove it. If you find more than one maximum elements, only remove the top-most one. Example 1: MaxStack stack = new MaxStack(); stack.push(5); stack.push(1); stack.push(5); stack.top(); -> 5 stack.popMax(); -> 5 stack.top(); -> 1 stack.peekMax(); -> 5 stack.pop(); -> 1 stack.top(); -> 5 Note: -1e7 <= x <= 1e7 Number of operations won't exceed 10000. The last four operations won't be called when stack is empty. class MaxStack: def __init__(self): """ initialize your data structure here. """ # 需要两个stack,一个做正常压入,一个存到目前为止的最大值 self.stack=[] self.max_stack=[] def push(self, x: int) -> None: self.stack.append(x) if len(self.max_stack)==0: self.max_stack.append(x) return if self.max_stack[-1]>x: self.max_stack.append(self.max_stack[-1]) else: self.max_stack.append(x) def pop(self) -> int: if len(self.stack)!=0: self.max_stack.pop(-1) return self.stack.pop(-1) def top(self) -> int: return self.stack[-1] def peekMax(self) -> int: if len(self.max_stack) != 0: return self.max_stack[-1] def popMax(self) -> int: val=self.peekMax() buff=[] while self.top()!=val: buff.append(self.pop()) self.pop() while len(buff)!=0: self.push(buff.pop(-1)) return val # Your MaxStack object will be instantiated and called as such: # obj = MaxStack() # obj.push(x) # param_2 = obj.pop() # param_3 = obj.top() # param_4 = obj.peekMax() # param_5 = obj.popMax()
true
65519638472d945e59ebac62d7b48613add96684
Python
rettenls/ServerlessAggregation
/Generator/.~c9_invoke_HQovSy.py
UTF-8
6,527
2.703125
3
[]
no_license
# General Imports import random import json import hashlib import time import collections import uuid import sys from pprint import pprint # Multithreading import logging import threading # AWS Imports import boto3 # Project Imports sys.path.append("../Common") from functions import * from constants import * # Random Type Constructor def random_type(): type_name = None for type_level in type_levels: if type_name is None: type_name = random.choice(type_level) elif type_name in type_level: type_name += ":" + random.choice(type_level[type_name]) return type_name # Aggregate along tree def aggregate_along_tree(data): # Determine aggregation depth aggregation_depth = max([key.count(":") for key in data.keys()]) # Start at max depth and go higher for depth in range(aggregation_depth, 0, -1): children = [key for key in data.keys() if key.count(":") == depth] for child in children: parent = child[:child.rfind(":")] add_to_dict_entry(data, parent, data[child]) return data def generate_messages(totals, print_to_console): thread_state = dict() thread_totals = dict() for i in range(NUMBER_OF_BATCHES_PER_THREAD): # The designated thread should print current progress if print_to_console: progress = (i / NUMBER_OF_BATCHES_PER_THREAD) * 100 print_progress_bar(progress) # Initialize record list for this batch records = [] # Calcu late number of duplicates that we add if DUPLICATES_PER_BATCH < BATCH_SIZE: number_of_duplicate_messages = DUPLICATES_PER_BATCH else: number_of_duplicate_messages = max(0, BATCH_SIZE - 1) for j in range(BATCH_SIZE - number_of_duplicate_messages): # Initialize Empty Message message = {} # Random decision: 10% chance for Modify, 90% chance for New Entry if len(thread_state) == 0 or random.uniform(0,100) < (100 - PERCENTAGE_MODIFY): # Generate ID message["id"] = str(uuid.uuid4()) # Add Version message["version"] = 0 # Count add_to_dict_entry(thread_totals, "count:add", 1) else: # Pick existing ID message["id"] = random.choice(list(thread_state.keys())) # Get New Version if thread_state[message["id"]]["version"] == 0 or random.uniform(1,100) < (100 - PERCENTAGE_OUT_OR_ORDER): # Iterate Version message["version"] = thread_state[message["id"]]["version"] + 1 add_to_dict_entry(thread_totals, "count:modify:in_order", 1) else: print("\nOut or Order Message!\n") # Insert Older Version message["version"] = thread_state[message["id"]]["version"] - 1 add_to_dict_entry(thread_totals, "count:modify:out_of_order", 1) # Add Random Value v = random.randint(1, MAX_NUMBER_OF_ITEMS_PER_MESSAGE) message["value"] = v # Add Random Type k = random_type() message["type"] = k # Dump to String message_string = json.dumps(message) # Append to Record List record = {"Data" : message_string, "PartitionKey" : hashlib.sha256(message_string.encode()).hexdigest()} records.append(record) # Append to Internal Storage - if Message was sent in Order if (message["id"] not in thread_state) or (thread_state[message["id"]]["version"] < message["version"]): thread_state[message["id"]] = message # Add Duplicates for k in range(number_of_duplicate_messages): duplicate_index = random.randint(0, BATCH_SIZE - number_of_duplicate_messages - 1) records.append(records[duplicate_index]) add_to_dict_entry(thread_totals, "count:duplicates", number_of_duplicate_messages) #Print records if DEBUG > 1: print('\n') pprint(records) print('\n') # Send Batch to Kinesis Stream batch_put_with_exp_backoff(kinesis_client, KINESIS_STREAM_NAME, records) # Aggregate over Final State for entry in thread_state.values(): k = entry['type'] v = entry['value'] add_to_dict_entry(thread_totals, k, v) # Add to Totals for k,v in thread_totals.items(): add_to_dict_entry(totals, k, v) # Initialize Kinesis Consumer kinesis_client = boto3.client("kinesis", region_name=REGION_NAME) # Take start time start_time = time.time() # Print general info print("\nGenerating items and writing to Kinesis...\n") print("Example message: {'id': '0d957288-2913-4dbb-b359-5ec5ff732cac', 'version': 0, 'value': 1, 'type': 'vegetable:cucumber'}\n") # Invoke Threads totals = dict() threads = list() print("Invoking " + str(THREAD_NUM) + " threads...\n") for index in range(THREAD_NUM): x = threading.Thread(target=generate_messages, args=(totals, index == (THREAD_NUM - 1),)) threads.append(x) x.start() for index, thread in enumerate(threads): thread.join() print("\n\nAll threads finished.\n") # Print to Console end_time = time.time() print("\nSimple Data producer finished!\nTotal number of messages: {}.\nTotal ingestion time: {:.1f} seconds.\nAverage ingeston rate: {:.1f} messages / second.".format(BATCH_SIZE * NUMBER_OF_BATCHES_PER_THREAD * THREAD_NUM, end_time - start_time, BATCH_SIZE * NUMBER_OF_BATCHES_PER_THREAD * THREAD_NUM / (end_time - start_time))) # Print Totals to Compare totals = aggregate_along_tree(totals) ordered_totals = collections.OrderedDict(sorted(totals.items())) print("\nMessage Counts:\n") for k,v in ordered_totals.items(): if k[:5] == "count": level = k.count(":") print("{:<25}".format(k) + (" " * level) + "{:>10}".format(v)) print("\n") print("\nTotals:\n") for k,v in ordered_totals.items(): if k[:5] != "count": level = k.count(":") print("{:<25}".format(k) + (" " * level) + "{:>10}".format(v)) print("\n")
true
fa0d3e13e2afcbefd0906b59cb2a407ef7e53dbf
Python
Birathan/tableBuilder
/listHelper.py
UTF-8
837
4.6875
5
[]
no_license
def list_to_str(lis): '''(list of str) -> str This function returns the string representation of the list, with elements of list seperated by ','. >>> list_to_str(['a', 'b', 'c']) 'a, b, c' >>> list_to_str([' a', 'b ', ' c ']) ' a, b , c ' ''' text = '' for element in lis: text += (element+', ') return text[:-2] def clean_list(lis): '''(list of str) -> str This function formats the list so that each str is formatted of its leading and trailing spaces >>> a = ['a', 'b', 'c'] >>> clean_list(a) >>> a ['a', 'b', 'c'] >>> a = [' a', 'b ', ' c '] >>> clean_list(a) >>> a ['a', 'b', 'c'] ''' for i in range(0, len(lis)): if type(lis[i]) == str: lis[i] = lis[i].strip(' ')
true
0c0fc170a788fead63ea462920587d794656168a
Python
rchicoli/ispycode-python
/Operating-System-Modules/OS-Module/Get-File-Stat.py
UTF-8
407
2.625
3
[]
no_license
import stat import time import os f = "example.py" st = os.stat(f) mode, ino, dev, nlink, uid, gid, size, atime, mtime, ctime = st print("size: %s bytes" % size) print("owner: %s %s" % (uid,gid) ) print("created: %s" % time.ctime(ctime)) print("last accessed: %s" % time.ctime(atime)) print("last modified: %s" % time.ctime(mtime)) print("mode: %s" % oct(mode)) print("inode/dev: %s %s" % (ino,dev))
true
225a2126114d8ee5c936c8541c3e75a71917402f
Python
afcarl/python-tutorial-1
/week6/week6-hw-recursive.py
UTF-8
221
3.484375
3
[]
no_license
def printAll(depth, l): if depth == 0: print(' '.join(l)) return printAll(depth - 1, [] + l) printAll(depth - 1, [str(depth)] + l) while 1: printAll(int(input('How many number? ')), [])
true
b9845297700fef069fde6c364f256f91ca4e2311
Python
rrampage/udacity-code
/cs387/Problem Set 3/5.py
UTF-8
5,274
3.640625
4
[]
no_license
# cs387 ; Problem Set 3 ; 5 # HW3-5 Version 1 # For this assignment you will be given all of the public information # of a Diffie-Hellman key exchange plus the number of multiplications # necessary to calculate (g**b)**a mod p, given g**b where `a` is # Alice's private key and `b` is Bob's private key # # With this information, you should be able to determine Alice's # private key and then decrypt the message - which is given at the # bottom of this file # # If you think you've found a bug, post here - # http://forums.udacity.com/cs387-april2012/questions/2188/hw3-challenge-problem-issues-and-bugs # For other discussion of the problem, this topic is more appropriate - # http://forums.udacity.com/cs387-april2012/questions/2190/hw3-challenge-problem-general-discussion import string ############# # p and g are public information # # 2 ** 100 - 153 is prime # (from http://primes.utm.edu/lists/2small/0bit.html) # and verified using Wolfram Alpha p = 1267650600228229401496703205223 # primitive root (calculated using wolfram alpha) g = 3 ############# # g_a, g_b are both transmitted public # and easily intercepted by a passive eavesdropper # # g_a = g**a mod p # g_b = g**b mod p g_a = 142621255265782287951127214876 g_b = 609743693736442153553407144551 ############# # Unfortunately, for Alice, she is using a modular # exponentiation function similar to the one discussed # in lecture and we were able to count the number of # multiplications used to calculate the key n_multiplications = 26 ############################ # This eliminates the recursion in the mod_exp # shown in lecture # and does bitwise operations # to speed things up a bit # but the number of multiplications stays # the same def mod_exp(a, b, q): """return a**b % q""" val = 1 mult = a while b > 0: odd = b & 1 # bitwise and if odd == 1: val = (val * mult) % q b -= 1 if b == 0: break mult = (mult * mult) % q b = b >> 1 # bitwise divide by 2 return val # `count_multiplications` might be useful # to see if you've found an exponent that # would require the same number multiplications # as Alice's private key def count_multiplications(exponent): """return the number of multiplications necessary to raise a number to `exponent`""" bits = convert_to_bits(exponent) return len(bits) + sum(b for b in bits) - 2 # this is the encode function used to # create the cipher text found at the bottom of the file def encode(plaintext, key): assert len(plaintext) <= len(key) return [m^k for m, k in zip(plaintext, key)] # use this function to decrypt the ciphertext def decode(ciphertext, key): assert len(ciphertext) <= len(key) return [c^k for c,k in zip(ciphertext, key)] # is_valid returns True if the input consist of valid # characters (numbers, upper case A-Z and lower case a-z and space) # The message still might be garbage, but this is a decent # and reasonably fast preliminary filter valid_chars = set(c for c in string.printable[:62]) valid_chars.add(' ') def is_valid(decode_guess): return (len(decode_guess) == 14 and all(d in valid_chars for d in decode_guess)) # Below are the typical bit manipulation functions # that you might find useful # Note that ASCII_BITS is set to 7 for this problem BITS = ('0', '1') ASCII_BITS = 7 def display_bits(b): """converts list of {0, 1}* to string""" return ''.join([BITS[e] for e in b]) def seq_to_bits(seq): return [0 if b == '0' else 1 for b in seq] def pad_bits(bits, pad): """pads seq with leading 0s up to length pad""" assert len(bits) <= pad return [0] * (pad - len(bits)) + bits def convert_to_bits(n): """converts an integer `n` to bit array""" result = [] if n == 0: return [0] while n > 0: result = [(n % 2)] + result n = n / 2 return result def string_to_bits(s): def chr_to_bit(c): return pad_bits(convert_to_bits(ord(c)), ASCII_BITS) return [b for group in map(chr_to_bit, s) for b in group] def bits_to_char(b): assert len(b) == ASCII_BITS value = 0 for e in b: value = (value * 2) + e return chr(value) def list_to_string(p): return ''.join(p) def bits_to_string(b): return ''.join([bits_to_char(b[i:i + ASCII_BITS]) for i in range(0, len(b), ASCII_BITS)]) ############ # `ciphertext` is the observed message exchanged between Alice # and Bob - which is what you need to decrypt # # key = convert_to_bits(mod_exp(g_b, a, p)) # ciphertext = encode(string_to_bits(plaintext), key) ciphertext = string_to_bits(' x\x0br\x1fu/W\x00gJ@h#') ########### # `plaintext` is the variable you will need to set # with the decrypted message plaintext = "" # Your answer here # Might be a useful test function. # If you've calculated Alice's key # and the plaintext, you can # calculate a cipher-text to see # if it matches the given `ciphertext` def test(alices_key, plaintext): key = convert_to_bits(mod_exp(g_b, alices_key, p)) test_cipher = encode(string_to_bits(plaintext), key) return test_cipher == ciphertext ### uncomment to run # print test(alices_key, plaintext)
true
7337aaaeb23281d7365154b6592f348c8ac4820b
Python
Lehcs-py/guppe
/Seção_05/Exercício_13.py
UTF-8
782
4.625
5
[]
no_license
print(""" 13. Faça um algoritmo que calcule A média ponderada das notas de 3 provas. A primeira e A segunda têm peso 1 e A terceira tem peso 2. Ao final, mostrar A média do aluno e indicar se o aluno foi aprovado ou reprovado. A nota para aprovação deve ser igual ou superior A 60 pontos. """) print('Intervalo: 0 até 100') nota1 = float(input('Insira A primeira nota: ')) nota2 = float(input('Insira A segunda nota: ')) nota3 = float(input('Insira A terceira nota: ')) media = ((nota1 * 1) + (nota2 * 1) + (nota3 * 2)) / 4 if media < 60: print(f'Sua média {media} é insuficiente, está reprovado.') elif media >= 60: print(f'Você atingiu o objetivo com A nota {media}, está aprovado.') else: print('Você inseriu notas inválidas.')
true
0a3e8310764a4a302735ebed8af1368ae21253ba
Python
IamUttamKumarRoy/python-start
/python_if_else.py
UTF-8
303
3.828125
4
[ "Apache-2.0" ]
permissive
amount=int(input("Enter amount: ")) if amount<1000: discount=amount*0.05 print ("Discount",discount) elif amount<5000: discount=amount*0.10 print ("Discount",discount) else: discount=amount*0.15 print ("Discount",discount) print ("Net payable:",amount-discount)
true
2ac93d40bd2db8f41fb5d920911543c7d37f154c
Python
Mithrilwoodrat/coffesploit
/src/coffesploit/core/helpmanager.py
UTF-8
1,109
2.875
3
[]
no_license
# -*- coding: utf-8 -*- class HelpManager(object): """class to print help informations help users use coffesploit""" def __init__(self): self.help_list = {"show": self.help_show, "use": self.help_use, "target": self.help_set_tartget } def help_show(self): print """Usage:show [target|<tool>] exp:show nmap""" def help_use(self): print """Usage:use <tool> exp:use nmap""" def help_set_tartget(self): print """Usage:target target_address exp: target 192.168.1.2 """ def main_help(self): print """Welcome to Coffesploit 'help target' show help about target set 'help show' show help about 'show' options 'plugins' show plugins list or just type sh command to exec """ def help_set(self): pass def gethelp(self, arg): if arg is None: self.main_help() if arg in self.help_list: self.help_list[arg]() else: print "no help info about",arg
true
7386438517633f0c8183f8d8648f2e769dfa86e1
Python
patback66/COEN169
/projects/project2/recs.py
UTF-8
34,745
2.8125
3
[]
no_license
#!/usr/bin python """ @author Matthew Koken <mkoken@scu.edu> @file recs.py This file takes tab delimited txt files for users and their movie ratings. Based on the users and ratings, recommendations are given. """ #pin 3224592822747566 import csv import math import sys as Sys import time import numpy # Globals here # Could go in main + pass along, but this is easier/cleaner for now REC_ROW_USERS = 200 REC_COL_MOVIES = 1000 RATING_MAX = 5 TRAIN_RECS = [[0 for x in range(REC_COL_MOVIES)] for y in range(REC_ROW_USERS)] USER_RATINGS = [] #U M R, U = [0][x], M = [1][x], R = [2][x] PREDICTED_RATINGS = [] DEBUG = 0 #disable progress bar ################### #Class Definitions# ################### class Algorithms: """ @class Algorithms Holds the possible algorithm selections to be used. """ pearson, pearson_iuf, pearson_case, cosine_sim, item_cos, custom = range(6) class User: """ @class Relevant_User Holds movie ratings for co-rated movies and similarity weights. """ def calc_avg(self, ratings): if len(ratings) > 0: if self.needed_rating != 0: return float(sum(ratings) + self.needed_rating) / float(len(ratings) + 1) else: return float(sum(ratings)) / float(len(ratings)) else: if self.needed_rating != 0: return self.needed_rating else: return 0 def calc_std_dev(self, ratings): variance = map(lambda x: (x - self.average)**2, ratings) avg_variance = (float(sum(variance)) / len(variance)) return math.sqrt(avg_variance) def set_similarity(self, similarity): self.similarity = similarity def __init__(self, similarity, corated_movie_ratings, needed_rating): self.similarity = similarity self.corated_movie_ratings = corated_movie_ratings self.needed_rating = needed_rating self.average = self.calc_avg(corated_movie_ratings) self.std_dev = self.calc_std_dev(corated_movie_ratings) class Movie: """ @class Movie Holds movie ratings for user ratings and similarity weights. """ def calc_avg(self, ratings): if len(ratings) > 0: if self.needed_rating != 0: return float(sum(ratings) + self.needed_rating) / float(len(ratings) + 1) else: return float(sum(ratings)) / float(len(ratings)) else: if self.needed_rating != 0: return self.needed_rating else: return 0 def __init__(self, m_id, similarity, user_ratings, needed_rating): self.m_id = m_id self.similarity = similarity self.ratings = user_ratings self.needed_rating = needed_rating self.average = self.calc_avg(self.ratings) def set_similarity(self, similarity): self.similarity = similarity def append_rating(self, new_rating): self.ratings.append(new_rating) def recalc(self): self.average = self.calc_avg(self.ratings) ###################### #Function Definitions# ###################### def clear_console(): print "\n" * 180 # result5.txt consists a list of predictions in the form: # (U, M, R), # where U is the userid, M is the movieid, and R is your predicted rating. # ID's OFFSET BY 1: [1:200] def write_file(file_out, data, delim): """ @function write_recs @param file_out: string for the file to write @param data: array of data to be written Writes values of given array to the specified results file """ with open(file_out, "wb") as out_file: writer = csv.writer(out_file, delimiter=delim) for item in data: writer.writerow(item) def int_wrapper(reader): """ @function int_wrapper @param reader: a csv reader Maps the string content read by the reader to an int value """ for v in reader: yield map(int, v) def read_in(file_to_read, delim): """ @function read_in @param file: the file that will be imported Returns an array of integers read in from the tab delimited file. """ data = [] with open(file_to_read, "rU") as in_file: reader = csv.reader(in_file, delimiter=delim) reader = int_wrapper(reader) data = list(reader) return data def pearson_sim(cur_user=None, test_user=None): """ @Function pearson_sim @param cur_user: the current user we want to compare to @param test_user: the user we want to compare to Calculates the similarity between users using the pearson method """ numerator = 0.0 len1 = 0.0 len2 = 0.0 for index in range(len(cur_user.corated_movie_ratings)): if cur_user.corated_movie_ratings[index] != 0 and test_user.corated_movie_ratings[index] != 0: diff_1 = (cur_user.corated_movie_ratings[index] - cur_user.average) diff_2 = (test_user.corated_movie_ratings[index] - test_user.average) numerator += (float(diff_1) * float(diff_2)) len1 += float(diff_1 * diff_1) len2 += float(diff_2 * diff_2) denominator = (math.sqrt(len1) * math.sqrt(len2)) # Don't break, just no similarity if denominator = 0 if denominator == 0: return 0 #final calc for similarity return float(numerator) / float(denominator) def pearson(user_id=None, movie_id=None): """ @function pearson @param user_id: id of the user that we will be predicting for @param movie_id: id of the movie that will be given a predicted rating Uses pearson correlation to calculate a predicted rating for the movie. """ #calculate the user's standard deviation #cur_user_std_dev = 0 #for rating in cur_user: # cur_user_std_dev += (rating - cur_user_average) * (rating - cur_user_average) #cur_user_std_dev = math.sqrt(cur_user_std_dev) #global TRAIN_RECS #global USER_RATINGS #global PREDICTED_RATINGS #global RATING_MAX num_similar = 30 rating = 0 relevant_users = [] cur_user_ratings = [] cur_user_rated_movies = [] #calculate average for the current user num_rated_movies = 0 cur_user_average = 0.0 for recs in USER_RATINGS: # [U, M, R] -> [0, 1, 2] if recs[0] == user_id and recs[2] != 0 and num_rated_movies < RATING_MAX: cur_user_average += recs[2] cur_user_ratings.append(recs[2]) num_rated_movies += 1 cur_user_rated_movies.append(recs[1]) cur_user_average = float(cur_user_average)/float(num_rated_movies) cur_user = User(0, cur_user_ratings, 0) #find the most similar users for index, user in enumerate(TRAIN_RECS): sim_user_ratings = [] #get ratings that other user has also rated for movie in cur_user_rated_movies: sim_user_ratings.append(TRAIN_RECS[index][movie - 1]) #sim user has a similarity weight and a rating for movie_id needed_rating = TRAIN_RECS[index][movie_id - 1] sim_user = User(0, sim_user_ratings, needed_rating) #caclulate similarity w_a_u = pearson_sim(cur_user, sim_user) sim_user.set_similarity(w_a_u) #keep only the k most relevant users if len(relevant_users) < num_similar: relevant_users.append(sim_user) else: saved_index = -1 for idx in range(len(relevant_users)): if sim_user.similarity > relevant_users[idx].similarity: saved_index = idx if saved_index !=-1: relevant_users[saved_index] = sim_user #have the most similar users, now calculate numerator = 0.0 denominator = 0.0 for user in relevant_users: #user: [w_a_u, r_a_i] w_a_u = user.similarity r_a_i = user.needed_rating numerator += (float(w_a_u) * float(r_a_i - user.average)) denominator += abs(float(w_a_u)) if denominator != 0: #rounding too early here? rating = cur_user.average + (float(numerator)/float(denominator)) rating = round(rating) #default to the user's average rating if rating == 0: rating = round(cur_user.average) if rating > 5: # don't exceed the max rating rating = 5 #cleanup del relevant_users[:] del cur_user_ratings[:] del cur_user_rated_movies[:] return int(rating) def get_num_ratings(movie_id, cur_user_rated): """ @function get_num_ratings @param movie_id: the id for a movie. [1,1000] Returns the number of users that have rated the movie. """ num_ratings = cur_user_rated for user in TRAIN_RECS: if user[movie_id - 1] != 0: num_ratings += 1 return num_ratings def get_iuf(movie_id, cur_user_rated): """ @function get_iuf @param movie_id: the id for a movie Returns the iuf of a movie """ #IUF(j) = log(m/m_j) #m = number of users #m_j = number of users that rated movie j m = 201 #the number of users m_j = get_num_ratings(movie_id, cur_user_rated) if m_j != 0: iuf = math.log((float(m)/float(m_j)), 2) else: iuf = 0 return iuf def pearson_iuf_sim(cur_user=None, test_user=None): """ @Function pearson_sim @param cur_user: the current user we want to compare to @param test_user: the user we want to compare to Calculates the similarity between users using the pearson method """ numerator = 0.0 len1 = 0.0 len2 = 0.0 for index in range(len(cur_user.corated_movie_ratings)): if cur_user.corated_movie_ratings[index] != 0 and test_user.corated_movie_ratings[index] != 0: iuf1 = get_iuf(cur_user.corated_movie_ratings[index], 1) iuf2 = get_iuf(test_user.corated_movie_ratings[index], 1) diff_1 = (iuf1 * cur_user.corated_movie_ratings[index] - cur_user.average) diff_2 = (iuf2 * test_user.corated_movie_ratings[index] - test_user.average) numerator += (float(diff_1) * float(diff_2)) len1 += float(diff_1 * diff_1) len2 += float(diff_2 * diff_2) denominator = (math.sqrt(len1) * math.sqrt(len2)) # Don't break, just no similarity if denominator = 0 if denominator == 0: return 0 #final calc for similarity return float(numerator) / float(denominator) def pearson_iuf(user_id=None, movie_id=None): """ @function pearson_iuf @param user_id: the id of the user that needs a movie rating prediction @param movie_id: the movie id that the user needs a rating for Uses the pearson method to predict user ratings, with the addition of IUF modification. """ #calculate the user's standard deviation #cur_user_std_dev = 0 #for rating in cur_user: # cur_user_std_dev += (rating - cur_user_average) * (rating - cur_user_average) #cur_user_std_dev = math.sqrt(cur_user_std_dev) #global TRAIN_RECS #global USER_RATINGS #global PREDICTED_RATINGS #global RATING_MAX num_similar = 50 rating = 0 relevant_users = [] cur_user_ratings = [] cur_user_rated_movies = [] #calculate average for the current user num_rated_movies = 0 #cur_user_average = 0.0 for recs in USER_RATINGS: # [U, M, R] -> [0, 1, 2] if recs[0] == user_id and recs[2] != 0 and num_rated_movies < RATING_MAX: #cur_user_average += recs[2] #iuf = get_iuf(recs[1], 1) #the user has rated the movie cur_user_ratings.append(recs[2]) num_rated_movies += 1 cur_user_rated_movies.append(recs[1]) #cur_user_average = float(cur_user_average)/float(num_rated_movies) cur_user = User(0, cur_user_ratings, 0) #find the most similar users for index, user in enumerate(TRAIN_RECS): sim_user_ratings = [] #get ratings that other user has also rated for movie in cur_user_rated_movies: #IUF(j) = log(m/m_j) #m = number of users #m_j = number of users that rated movie j #iuf = get_iuf(movie - 1, 1) #the user has rated the movie user_rating = TRAIN_RECS[index][movie - 1] sim_user_ratings.append(user_rating) #sim user has a similarity weight and a rating for movie_id #iuf = get_iuf(movie_id - 1, 0) #the user has not rated - needs a prediction needed_rating = TRAIN_RECS[index][movie_id - 1] sim_user = User(0, sim_user_ratings, needed_rating) #caclulate similarity w_a_u = pearson_iuf_sim(cur_user, sim_user) sim_user.set_similarity(w_a_u) #keep only the k most relevant users if len(relevant_users) < num_similar: relevant_users.append(sim_user) else: saved_index = -1 for idx in range(len(relevant_users)): if sim_user.similarity > relevant_users[idx].similarity: saved_index = idx if saved_index !=-1: relevant_users[saved_index] = sim_user #have the most similar users, now calculate numerator = 0.0 denominator = 0.0 for user in relevant_users: #user: [w_a_u, r_a_i] w_a_u = user.similarity r_a_i = user.needed_rating numerator += (float(w_a_u) * float((r_a_i - user.average))) denominator += abs(float(w_a_u)) if denominator != 0: #rounding too early here? rating = cur_user.average + (float(numerator)/float(denominator)) rating = round(rating) #default to the user's average rating if rating == 0: rating = round(cur_user.average) if rating > 5: # don't exceed the max rating rating = 5 #cleanup del relevant_users[:] del cur_user_ratings[:] del cur_user_rated_movies[:] return int(rating) def pearson_case(user_id=None, movie_id=None): """ @function pearson_case @param user_id: the id of the active user @param movie_id: the id of the movie for which the active user needs a prediction Pearson using case amplification. """ #global TRAIN_RECS #global USER_RATINGS #global PREDICTED_RATINGS #global RATING_MAX rho = 3.5 num_similar = 30 rating = 0 relevant_users = [] cur_user_ratings = [] cur_user_rated_movies = [] #calculate average for the current user num_rated_movies = 0 #cur_user_average = 0.0 for recs in USER_RATINGS: # [U, M, R] -> [0, 1, 2] if recs[0] == user_id and recs[2] != 0 and num_rated_movies < RATING_MAX: #cur_user_average += recs[2] cur_user_ratings.append(recs[2]) num_rated_movies += 1 cur_user_rated_movies.append(recs[1]) #cur_user_average = float(cur_user_average)/float(num_rated_movies) cur_user = User(0, cur_user_ratings, 0) #find the most similar users for index, user in enumerate(TRAIN_RECS): sim_user_ratings = [] #get ratings that other user has also rated for movie in cur_user_rated_movies: sim_user_ratings.append(TRAIN_RECS[index][movie - 1]) #sim user has a similarity weight and a rating for movie_id needed_rating = TRAIN_RECS[index][movie_id - 1] sim_user = User(0, sim_user_ratings, needed_rating) #caclulate similarity w_a_u = pearson_sim(cur_user, sim_user) w_amplified = w_a_u * math.pow(abs(w_a_u), rho - 1) sim_user.set_similarity(w_amplified) #keep only the k most relevant users if len(relevant_users) < num_similar: relevant_users.append(sim_user) else: saved_index = -1 for idx in range(len(relevant_users)): if sim_user.similarity > relevant_users[idx].similarity: saved_index = idx if saved_index !=-1: relevant_users[saved_index] = sim_user #have the most similar users, now calculate numerator = 0.0 denominator = 0.0 for user in relevant_users: #user: [w_a_u, r_a_i] w_a_u = user.similarity r_a_i = user.needed_rating numerator += (float(w_a_u) * float(r_a_i - user.average)) denominator += abs(float(w_a_u)) if denominator != 0: #rounding too early here? rating = cur_user.average + (float(numerator)/float(denominator)) rating = round(rating) #default to the user's average rating if rating == 0: rating = round(cur_user.average) if rating > 5: # don't exceed the max rating rating = 5 #cleanup del relevant_users[:] del cur_user_ratings[:] del cur_user_rated_movies[:] return int(rating) def cosine_calc(user1=None, user2=None): """ @function cosine_calc @param user1: a list of user movie ratings @param user2: a list of user movie ratings Calculates the cosine similarity between lists of user ratings as long as both users have rated the same movie. """ # cosine sim = AdotB/(len(A) * len(B)) # dot product = sum of multiplications, but only for shared ratings: # A[0] * B[0] + A[1] * B[1] + ... + A[n-1] * B[n-1] #dot_product = sum([user1[i]*user2[i] for i in range(len(user2))]) dot_product = 0.0 len_1 = 0.0 len_2 = 0.0 #using adjusted cosine for idx in range(len(user2.corated_movie_ratings)): #if both have provided ratings for the same, then this is a valid point if user1.corated_movie_ratings[idx] != 0 and user2.corated_movie_ratings[idx] != 0: diff1 = user1.corated_movie_ratings[idx] - user1.average diff2 = user2.corated_movie_ratings[idx] - user2.average dot_product += (diff1 * diff2) len_1 += (diff1 * diff1) len_2 += (diff2 * diff2) # length of vector = sqrt(A[0]*A[0] + A[1]*A[1] + ... + A[n]*A[n]) len_1 = math.sqrt(float(len_1)) len_2 = math.sqrt(float(len_2)) #vectors of length 0 break, aren't relevant if len_1 == 0 or len_2 == 0: return 0 return float(dot_product) / float((len_1 * len_2)) #cosine similarity def cosine_sim(user_id=None, movie_id=None): """ @function cosine_sim @param user_id: the id of the user in USER_RATINGS that we are predicting for @param movie_id the id of the movie we are predicting for Uses cosine similarity to calculate the weight for predicting a movie rating. """ #global TRAIN_RECS #global USER_RATINGS #global PREDICTED_RATINGS #global RATING_MAX num_similar = 30 rating = 0 relevant_users = [] cur_user_ratings = [] cur_user_rated_movies = [] #calculate average for the current user num_rated_movies = 0 cur_user_average = 0.0 for recs in USER_RATINGS: # [U, M, R] -> [0, 1, 2] if recs[0] == user_id and recs[2] != 0 and num_rated_movies < RATING_MAX: cur_user_average += recs[2] cur_user_ratings.append(recs[2]) num_rated_movies += 1 cur_user_rated_movies.append(recs[1]) cur_user_average = float(cur_user_average)/float(num_rated_movies) cur_user = User(0, cur_user_ratings, 0) #find the most similar users for index, user in enumerate(TRAIN_RECS): sim_user_ratings = [] #get ratings that other user has also rated for movie in cur_user_rated_movies: sim_user_ratings.append(TRAIN_RECS[index][movie - 1]) #sim user has a similarity weight and a rating for movie_id needed_rating = TRAIN_RECS[index][movie_id - 1] sim_user = User(0, sim_user_ratings, needed_rating) #caclulate similarity w_a_u = cosine_calc(cur_user, sim_user) sim_user.set_similarity(w_a_u) #keep only the k most relevant users if len(relevant_users) < num_similar: relevant_users.append(sim_user) else: saved_index = -1 for idx in range(len(relevant_users)): if sim_user.similarity > relevant_users[idx].similarity: saved_index = idx if saved_index !=-1: relevant_users[saved_index] = sim_user #have the most similar users, now calculate numerator = 0.0 denominator = 0.0 for user in relevant_users: w_a_u = user.similarity r_a_i = user.needed_rating numerator += (float(w_a_u) * float(r_a_i)) denominator += abs(float(w_a_u)) if denominator != 0: #rounding too early here? rating = cur_user.average + (float(numerator)/float(denominator)) rating = round(rating) #default to the user's average rating if rating == 0: rating = round(cur_user.average) if rating > 5: # don't exceed the max rating rating = 5 #cleanup del relevant_users[:] del cur_user_ratings[:] del cur_user_rated_movies[:] return int(rating) def item_adjs_cos(movie1=None, movie2=None, r_u_avgs=None, r_a_avg=None): """ @function item_adj_cos @param movie1: the movie we want to compare against @param movie2: the movie we are comparing too @param r_u_avgs: the averages of user ratings in TRAIN_RECS Uses adjusted cosine similarity """ numerator = 0.0 len1 = 0.0 len2 = 0.0 #sum((r_u_i - r_u_avg) * (r_u_j - r_u_avg) for index in range(len(movie1.ratings)): if(movie1.ratings[index]!=0 and movie2.ratings[index]!=0): diff1 = movie1.ratings[index] - r_a_avg diff2 = movie2.ratings[index] - r_u_avgs[index] numerator += diff1 * diff2 len1 += diff1 * diff1 len2 += diff2 * diff2 len1 = math.sqrt(len1) len2 = math.sqrt(len2) if len1 == 0 or len2 == 0: return 0 return float(numerator) / float(len1 * len2) def item_cos(user_id=None, movie_id=None): """ @function item_cos @param user_id: The id of the user to be predicted for @param movie_id: The id of the movie that the user will predict for Uses item based comparison with adjusted cosine similarity to predict a rating for the user. Compares the users previously rated movies against the movie that is to be predicted for. """ #global TRAIN_RECS #global USER_RATINGS #global PREDICTED_RATINGS #global RATING_MAX rating = 0 cur_user_ratings = [] cur_user_rated_movies = [] rated_movies = [] rel_user_ratings_averages = [0 for x in range(200)] num_rated_movies = 0 for recs in USER_RATINGS: # [U, M, R] -> [0, 1, 2] if recs[0] == user_id and recs[2] != 0 and num_rated_movies < RATING_MAX: cur_user_ratings.append(recs[2]) num_rated_movies += 1 cur_user_rated_movies.append(recs[1]) rated_movies.append(Movie(recs[1], 0, [], recs[2])) cur_user = User(0, cur_user_ratings, 0) needed_movie = Movie(movie_id, 0, [], 0) # build ratings lists for the movies for user in TRAIN_RECS: for idx, movie in enumerate(rated_movies): rated_movies[idx].append_rating(user[movie.m_id - 1]) needed_movie.append_rating(user[movie_id - 1]) # recalc averages, etc needed_movie.recalc() for index in range(len(rated_movies)): rated_movies[index].recalc() #calc user averages for index, user in enumerate(TRAIN_RECS): avg = numpy.average(user) rel_user_ratings_averages[index] = avg #find the most similar items for index, check_movie in enumerate(rated_movies): #caclulate similarity w_a_u = item_adjs_cos(needed_movie, check_movie, rel_user_ratings_averages, cur_user.average) rated_movies[index].set_similarity(w_a_u) #have the most similar users, now calculate numerator = 0.0 denominator = 0.0 for movie in rated_movies: w_a_u = movie.similarity r_a_i = movie.needed_rating numerator += (float(w_a_u) * float(r_a_i)) denominator += abs(float(w_a_u)) if denominator != 0: #rounding too early here? rating = cur_user.average + (float(numerator)/float(denominator)) rating = round(rating) #default to the user's average rating if rating <= 0: rating = round(cur_user.average) if rating > 5: # don't exceed the max rating rating = 5 return int(rating) def euclidean_distance(user1, user2): """ @function euclidean_distance @param user1: The current user @param user2: The user to be compared against Calculates the euclidean distance between two vectors of user ratings. Similarity = 1/(distance + 1) """ cur_sum = 0 for idx in range(len(user2.corated_movie_ratings)): #if both have provided ratings for the same, then this is a valid point if user1.corated_movie_ratings[idx] != 0 and user2.corated_movie_ratings[idx] != 0: diff = abs(user1.corated_movie_ratings[idx] - user2.corated_movie_ratings[idx]) cur_sum += (diff * diff) distance = math.sqrt(cur_sum) return distance def euclidean_custom(user_id=None, movie_id=None): """ @function euclidean_custom @param user_id: the id of the user to be predicted for. @param movie_id: the id of the movie that is ot be receiving a prediction Uses euclidean distance to calculate similarity between movies in order for predicting ratings. """ #similarity = 1/(d+1) #global TRAIN_RECS #global USER_RATINGS #global PREDICTED_RATINGS #global RATING_MAX num_similar = 30 rating = 0 relevant_users = [] cur_user_ratings = [] cur_user_rated_movies = [] #calculate average for the current user num_rated_movies = 0 cur_user_average = 0.0 for recs in USER_RATINGS: # [U, M, R] -> [0, 1, 2] if recs[0] == user_id and recs[2] != 0 and num_rated_movies < RATING_MAX: cur_user_average += recs[2] cur_user_ratings.append(recs[2]) num_rated_movies += 1 cur_user_rated_movies.append(recs[1]) cur_user_average = float(cur_user_average)/float(num_rated_movies) cur_user = User(0, cur_user_ratings, 0) #find the most similar users for index, user in enumerate(TRAIN_RECS): sim_user_ratings = [] #get ratings that other user has also rated for movie in cur_user_rated_movies: sim_user_ratings.append(TRAIN_RECS[index][movie - 1]) #sim user has a similarity weight and a rating for movie_id needed_rating = TRAIN_RECS[index][movie_id - 1] sim_user = User(0, sim_user_ratings, needed_rating) #caclulate similarity w_a_u = 1/float(euclidean_distance(cur_user, sim_user) + 1) sim_user.set_similarity(w_a_u) #keep only the k most relevant users if len(relevant_users) < num_similar: relevant_users.append(sim_user) else: saved_index = -1 for idx in range(len(relevant_users)): if sim_user.similarity > relevant_users[idx].similarity: saved_index = idx if saved_index !=-1: relevant_users[saved_index] = sim_user #have the most similar users, now calculate numerator = 0.0 denominator = 0.0 for user in relevant_users: w_a_u = user.similarity r_a_i = user.needed_rating numerator += (float(w_a_u) * float(r_a_i)) denominator += abs(float(w_a_u)) if denominator != 0: #rounding too early here? rating = cur_user.average + (float(numerator)/float(denominator)) rating = round(rating) #default to the user's average rating if rating == 0: rating = round(cur_user.average) if rating > 5: # don't exceed the max rating rating = 5 #cleanup del relevant_users[:] del cur_user_ratings[:] del cur_user_rated_movies[:] return int(rating) def custom(user_id=None, movie_id=None): """ @function custom @param user_id: the id of the user to be predicted for. @param movie_id: the id of the movie that is ot be receiving a prediction Uses a hybrid of cosine similarity ratings and euclidean_distance_ratings to predict the new movie's rating. """ cosine_sim_rating = cosine_sim(user_id, movie_id) euclidean_distance_rating = euclidean_custom(user_id, movie_id) rating = round((euclidean_distance_rating + cosine_sim_rating) / 2.0) #rating = euclidean_distance_rating return int(rating) def algo_driver(algo=None): """ @function algo_driver @param algo: Algorithm class to specify which computation to perform Main loop for calculations. Loops through all users to find users w/o ratings (R = 0) and predicts their ratings using the specified algorithm """ global PREDICTED_RATINGS global USER_RATINGS start = time.time() for index, rec in enumerate(USER_RATINGS): #have the user id, movie id, and rating {USERID, MOVIEID, RATING} rating = 0 #If there is no rating (rating = 0), predict using algo if rec[2] == 0: #calculate the predicted rating if algo == Algorithms.cosine_sim: rating = cosine_sim(rec[0], rec[1]) # userid, movieid elif algo == Algorithms.pearson: rating = pearson(rec[0], rec[1]) # userid, movieid elif algo == Algorithms.pearson_iuf: rating = pearson_iuf(rec[0], rec[1]) # userid, movieid elif algo == Algorithms.pearson_case: rating = pearson_case(rec[0], rec[1]) # userid, movieid elif algo == Algorithms.item_cos: rating = item_cos(rec[0], rec[1]) # userid, movieid elif algo == Algorithms.custom: rating = custom(rec[0], rec[1]) # userid, movieid #update with the predicted rating #USER_RATINGS[index][2] = rating PREDICTED_RATINGS.append(([rec[0]] + [rec[1]] + [rating])) #print "Movie being rated: " + str(rec[1]) #print rating if DEBUG != 1: end = time.time() hours, rem = divmod(end-start, 3600) minutes, seconds = divmod(rem, 60) elapsed = ("{:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds)) #Show progress, but not too often filledLength = int(round(30 * index / float(len(USER_RATINGS)))) percents = round(100.00 * (index / float(len(USER_RATINGS))), 1) bar = '#' * filledLength + '-' * (30 - filledLength) Sys.stdout.write('%s [%s] %s%s %s\r' % ("Progress", bar, percents, '%', "done. Time elapsed: " + elapsed)) Sys.stdout.flush() if index == len(USER_RATINGS): print "\n\n" def main(): """ @function main The main loop, reads in the base train.txt file and gives options for next files to import and perform analysis for recommendations. """ global TRAIN_RECS global USER_RATINGS global RATING_MAX TRAIN_RECS = read_in("train.txt", "\t") #Driver for importing files response = 1 while response != 0: option_text = """Which file would you like to test? (1)test5.txt (2)test10.txt (3)test20.txt (0) quit\n> """ response = input(option_text) read_file = "" out_file = "" #no case switch so use if if response == 1: read_file = "test5.txt" RATING_MAX = 5 out_file = "result5.txt" elif response == 2: read_file = "test10.txt" RATING_MAX = 10 out_file = "result10.txt" elif response == 3: read_file = "test20.txt" RATING_MAX = 20 out_file = "result20.txt" elif response == 0: #exit condition break else: print "Invalid option" continue #didn't get a valid option, do not proceed, try again # got a valid file, now proceed with import and recommendations del USER_RATINGS[:] del PREDICTED_RATINGS[:] USER_RATINGS = read_in(read_file, " ") #Driver for selecting math to perform math_selection = 1 while math_selection != 0: print "Current file: " + read_file algorithm_text = """Which algorithm would you like to use? (1) Pearson Correlation (2) Pearson Correlation - Inverse User Frequency (3) Pearson Correlation - Case Amplification (4) Cosine Similarity (5) Item based Similarity with Cosine (6) Custom Algorithm (0) Quit\n>""" math_selection = input(algorithm_text) print "Calculating..." algo = Algorithms.cosine_sim if math_selection == 1: # Pearson Correlation algo = Algorithms.pearson elif math_selection == 2: # Pearson Correlation - Inverse User Frequency algo = Algorithms.pearson_iuf elif math_selection == 3: # Pearson Correlation - Case Modification algo = Algorithms.pearson_case elif math_selection == 4: # Cosine Similarity algo = Algorithms.cosine_sim elif math_selection == 5: # Item based similarity with cosine algo = Algorithms.item_cos elif math_selection == 6: # Custom algorithm algo = Algorithms.custom elif math_selection == 0: #exit condition break else: print "Invalid option" continue #didn't get a valid option, do not proceed, try again algo_driver(algo) print "\nDone! saving to: " + out_file write_file(out_file, PREDICTED_RATINGS, " ") ################################################################################ """ Main Function Call """ if __name__ == '__main__': main()
true
11a47b5b4216a1f3222ce34c077fb91874bdfc1c
Python
kliner/funCode
/algs-py/TwoArraySumAboveQuery.py
UTF-8
811
3.5625
4
[ "MIT" ]
permissive
# two sorted array, from each choose one num, calc total count which sum >= query # [3,5,6], [4,9], 9 # return 2 def solve(arr1, arr2, q): l1, l2 = len(arr1), len(arr2) i, j = 0, l2 ans = 0 while i < l1 and j > 0: print i, j if arr1[i] + arr2[j-1] >= q: j-=1 else: ans += (l2-j) i+=1 ans += (l1-i)*l2 return ans print solve([3,5,6], [4,9], 9) print solve([1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1], 9) print solve([1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1], 2) # two sorted array, from each choose one num, calc total count which sum >= lower and sum <= upper # [3,5,6], [4,9], 8, 10 # [1,2,3,5,6], [4,5,6,7,8,9], 8, 10 # return 2 a,b,lo,hi = [1,2,3,5,6], [4,5,6,7,8,9], 8, 10 print solve(a, b, lo) - solve(a, b, hi+1)
true
cd018201800cf336a04575d502de54ee05164db6
Python
josh-howes/tidymongo
/tidymongo/tools.py
UTF-8
3,014
2.78125
3
[]
no_license
import pandas as pd from collections import defaultdict from copy import deepcopy class TidyResult(object): def __init__(self, observational_unit): self.observational_unit = observational_unit self.collection_id = '{}_id'.format(self.observational_unit) self.ref_tables_ = defaultdict(list) @property def tables(self): return self.ref_tables_.keys() @property def __ref_tables(self): tables = dict() for k, v in self.ref_tables_.iteritems(): df = pd.DataFrame(data=v) if '_id' in df.columns: df.set_index('_id', inplace=True) tables[k] = df return tables def add_document(self, doc_type, document): if isinstance(document, list): self.ref_tables_[doc_type].extend(document) else: self.ref_tables_[doc_type].append(document) def merge(self, other): return merge(self, other) def __getattr__(self, name): if name in self.__ref_tables.keys(): return self.__ref_tables[name] else: raise AttributeError() def __repr__(self): return "TidyResult(tables={})".format(self.tables) def tidy(data, observational_unit, schema='infer'): documents = deepcopy(data) from collections import OrderedDict results = OrderedDict() results[observational_unit] = TidyResult(observational_unit) for document in documents: try: foreign_key = document['_id'] except KeyError: foreign_key = None observation_vars = [] for k, v in document.iteritems(): if isinstance(v, list) or isinstance(v, dict): tr = results.get(k, TidyResult(observational_unit=k)) if foreign_key: # TODO: right now observational_unit is plural, might want to make it singular is "_id" tr.add_document(k, add_foreign_key(v, observational_unit, foreign_key)) else: tr.add_document(k, v) results[k] = tr else: observation_vars.append(k) results[observational_unit].add_document(observational_unit, {k: document[k] for k in observation_vars}) return reduce(lambda a, b: a.merge(b), results.values()) def merge(left, right): results = left for k, v in right.ref_tables_.iteritems(): if k == right.observational_unit: key = k else: key = '{0}_{1}'.format(right.observational_unit, k) results.add_document(key, v) return results def add_foreign_key(data, key_name, key_value): if isinstance(data, list): return [add_foreign_key(d, key_name, key_value) for d in data] elif isinstance(data, dict): d = deepcopy(data) d[key_name] = key_value return d else: raise TypeError('Unrecognized data type. ' 'Must be list of dict.')
true
e0cefa79b312d62f73ce5e4e8a6719decabe2c31
Python
peterhinch/micropython-async
/v2/nec_ir/art.py
UTF-8
1,319
2.65625
3
[ "MIT" ]
permissive
# art.py Test program for IR remote control decoder aremote.py # Supports Pyboard and ESP8266 # Author: Peter Hinch # Copyright Peter Hinch 2017 Released under the MIT license # Run this to characterise a remote. from sys import platform import uasyncio as asyncio ESP32 = platform == 'esp32' or platform == 'esp32_LoBo' if platform == 'pyboard': from pyb import Pin elif platform == 'esp8266' or ESP32: from machine import Pin, freq else: print('Unsupported platform', platform) from aremote import * errors = {BADSTART : 'Invalid start pulse', BADBLOCK : 'Error: bad block', BADREP : 'Error: repeat', OVERRUN : 'Error: overrun', BADDATA : 'Error: invalid data', BADADDR : 'Error: invalid address'} def cb(data, addr): if data == REPEAT: print('Repeat') elif data >= 0: print(hex(data), hex(addr)) else: print('{} Address: {}'.format(errors[data], hex(addr))) def test(): print('Test for IR receiver. Assumes NEC protocol.') if platform == 'pyboard': p = Pin('X3', Pin.IN) elif platform == 'esp8266': freq(160000000) p = Pin(13, Pin.IN) elif ESP32: p = Pin(23, Pin.IN) ir = NEC_IR(p, cb, True) # Assume r/c uses extended addressing loop = asyncio.get_event_loop() loop.run_forever() test()
true
9d67eca4141f72ec5aa2b855a61b7e41c86481bc
Python
Hynus/Python
/AmzOnPageAna/amzpageana.py
UTF-8
13,518
2.53125
3
[]
no_license
# coding:utf-8 import urllib import urllib2 import Image import cStringIO import os from pyquery import PyQuery as pq # 指定并爬取特定页面—————————————————————————————————————————————————————— def get_the_url_page(pdt_asin, filename): url = "https://www.amazon.com/dp/" + pdt_asin user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)' values = {'name': 'Sunyh', 'location': 'pythontab', 'language': 'Python'} headers = {'User-Agent': user_agent} data = urllib.urlencode(values) req = urllib2.Request(url, data, headers) response = urllib2.urlopen(req) the_page = response.read() amz_pdt_page = pq(the_page) f = open(filename, 'w+') f.write('###############################################################\n') f.close() print "###############################################################" return amz_pdt_page # ————————————————————————————————————————————————————————————————————— # 获取标题及长度————————————————————————————————————————————————————————— def get_title(amz_pdt_page, filename): pdt_title = amz_pdt_page("#productTitle").text() pdt_title_size = len(pdt_title) print "The length of product's title is: " + str(pdt_title_size) + "!" f = open(filename, 'a') f.write("The length of product's title is: " + str(pdt_title_size) + "!\n") f.write('###############################################################\n') f.close() print "###############################################################" return pdt_title # ————————————————————————————————————————————————————————————————————— # 获取bullet point及数量————————————————————————————————————————————————— def get_bullet_points(amz_pdt_page, filename): bullet_pt_pq = amz_pdt_page("#feature-bullets").find("li").not_("#replacementPartsFitmentBullet") bullet_pt_text = amz_pdt_page("#feature-bullets").find("li").not_("#replacementPartsFitmentBullet").text() bullet_pt_pq_size = len(bullet_pt_pq) bullet_pt_arr = [] for temp_li in bullet_pt_pq.items(): bullet_pt_arr.append(temp_li.text()) # 获取产品大体情况描述信息字符串列表 print "There are " + str(bullet_pt_pq_size) + " points in the product's bullet!" print "###############################################################" f = open(filename, 'a') f.write("There are " + str(bullet_pt_pq_size) + " points in the product's bullet!\n") f.write("###############################################################\n") f.close() return bullet_pt_text # ———————————————————————————————————————————————————————————————————— # 获取产品描述字符数量——————————————————————————————————————————————————— def get_details(amz_pdt_page, filename): # 第一部分:获取商品详情信息 pdt_desp_pq = amz_pdt_page("#productDescription").find("p") pdt_desp_text = amz_pdt_page("#productDescription").find("p").text() pdt_desp_size1 = len(pdt_desp_text) # pdt_desp_arr = [] # for temp_p in pdt_desp_pq.items(): # pdt_desp_arr.append(temp_p.text()) # 获取产品详情描述信息字符串列表 # 第二部分:获取商品详情表格信息 pdt_details_table_pq = amz_pdt_page("#prodDetails").find(".pdTab") if len(pdt_details_table_pq) == 0: tem_pdt_details_table_text = amz_pdt_page("#productDetails_detailBullets_sections1").text() if len(tem_pdt_details_table_text) == 0: pass else: pd_start_spilt_idx = tem_pdt_details_table_text.find('Customer Reviews') pd_end_spilt_idx = tem_pdt_details_table_text.rfind('stars') pdt_details_table_text = tem_pdt_details_table_text[:pd_start_spilt_idx] + \ tem_pdt_details_table_text[pd_end_spilt_idx + 5:] pdt_desp_size2 = len(pdt_details_table_text) else: tem_pdt_details_table_text = pdt_details_table_pq.text() pd_start_spilt_idx = tem_pdt_details_table_text.find('Customer Reviews') pd_end_spilt_idx = tem_pdt_details_table_text.rfind('stars') pdt_details_table_text = tem_pdt_details_table_text[:pd_start_spilt_idx] + \ tem_pdt_details_table_text[pd_end_spilt_idx + 5:] # 获取产品详情表格信息字符长度 pdt_desp_size2 = len(pdt_details_table_text) pdt_desp_total_size = pdt_desp_size1 + pdt_desp_size2 # 获取商品描述字符总数量 print "The total lengh of the product's detail is: " + str(pdt_desp_total_size) + "!" print "###############################################################" f = open(filename, 'a') f.write("The total lengh of the product's detail is: " + str(pdt_desp_total_size) + "!\n") f.write("###############################################################\n") f.close() return pdt_desp_text, pdt_details_table_text # ———————————————————————————————————————————————————————————————————— # 获取当前页面的图片数量及分辨率—————————————————————————————————————————— def get_images(amz_pdt_page, filename): img_block = amz_pdt_page("#imageBlock").find("img") img_urls = [] f = open(filename, 'a') for sub_block in img_block.items(): img_urls.append(sub_block.attr('src')) img_size_list = [] i = 1 for tem_url in img_urls: img_file = cStringIO.StringIO(urllib2.urlopen(tem_url).read()) imgs = Image.open(img_file) img_size_list.append(imgs.size) print "The No." + str(i) +" image's infomation is got!!!" f.write("The No." + str(i) +" image's infomation is got!!!\n") i += 1 if (1,1) in img_size_list: img_size_list.remove((1,1)) img_number = len(img_size_list) print "There are " + str(img_number) + " pictures in current page!" f.write("There are " + str(img_number) + " pictures in current page!\n") print "The size of these pictures are as followed: (width, height)" f.write("The size of these pictures are as followed: (width, height)\n") for a_img in img_size_list: print a_img f.write(str(a_img)+"\n") print "###############################################################" f.write("###############################################################\n") f.close() # ———————————————————————————————————————————————————————————————————— # 判断关键字是否出现在标题,五点描述,产品描述中———————————————————————————— def judge_keyword(pdt_title, bullet_pt_text, pdt_desp_text, pdt_details_table_text, amz_search_keyword, filename): amz_search_words_list = amz_search_keyword.split(" ") f = open(filename, 'a') count_num = 0 for wordi in amz_search_words_list: tag_in_pdt_title = pdt_title.lower().find(wordi.lower()) if tag_in_pdt_title != -1: print "The keyword '" + wordi +"' can be found in the product's title!" f.write("The keyword '" + wordi +"' can be found in the product's title!\n") tag_in_pdt_bullet = bullet_pt_text.lower().find(wordi.lower()) if tag_in_pdt_bullet != -1: print "The keyword '" + wordi +"' can be found in the product's bullet!" f.write("The keyword '" + wordi +"' can be found in the product's bullet!\n") tag_in_pdt_details1 = pdt_desp_text.lower().find(wordi.lower()) tag_in_pdt_details2 = pdt_details_table_text.lower().find(wordi.lower()) if (tag_in_pdt_details1 != -1) or (tag_in_pdt_details1 != -1): print "The keywords '" + wordi +"' can be found in the product's details!" f.write("The keyword '" + wordi +"' can be found in the product's details!\n") if tag_in_pdt_title == tag_in_pdt_bullet == tag_in_pdt_details1 == tag_in_pdt_details2 == -1: print "The keyword '" + wordi +"' can't be found anywhere!!" f.write("The keyword '" + wordi +"' can't be found anywhere!!\n") count_num += 1 print "------THE NO." + str(count_num) +" KEYWORD SEARCHING COMPLETED!-----" f.write("------THE NO." + str(count_num) +" KEYWORD SEARCHING COMPLETED!-----\n") print "###############################################################" f.write("###############################################################\n") f.close() # ———————————————————————————————————————————————————————————————————— # 产品星级以及产品的评价数量—————————————————————————————————————————————— def get_reviews(amz_pdt_page, filename): f = open(filename, 'a') judge_txt = amz_pdt_page("#dp-no-customer-review-yet").text() if len(judge_txt) != 0: print judge_txt f.write(judge_txt+"\n") else: pdt_review_pq = amz_pdt_page("#reviewSummary").find(".a-row.a-spacing-small") pdt_review_stars = pdt_review_pq.eq(0).text() print "The overall reviews is: " + pdt_review_stars + "!" # 产品星级 f.write("The overall reviews is: " + pdt_review_stars + "!\n") review_people_count = amz_pdt_page("#reviewSummary").find(".a-size-medium.totalReviewCount").eq(0).text() review_star_details = pdt_review_pq.eq(1).text() tem_review_star_list = review_star_details.split("%")[:5] review_star_list = [] for items_in_rs in tem_review_star_list: items_in_rs += '%' review_star_list.append(items_in_rs) review_star_list[0] = ' ' + review_star_list[0] print "There are " + review_people_count + " customer reviews!" # 评价人数及分别评级占比详情 f.write("There are " + review_people_count + " customer reviews!\n") print "The details are as follow:" f.write("The details are as follow:\n") for starItem in review_star_list: print starItem f.write(starItem + "\n") print "###############################################################" f.write("###############################################################\n") f.close() # ———————————————————————————————————————————————————————————————————— # 判断产品是否是fulfilled by amazon————————————————————————————————————— def judge_ful_byamz(amz_pdt_page, filename): f = open(filename, 'a') merchant_info = amz_pdt_page("#merchant-info").eq(0).text().lower() idx_f = merchant_info.find('fulfilled by amazon') idx_d = merchant_info.find('sold by amazon') if idx_f != -1 or idx_d != -1: print "The product is fulfilled by Amazon!" f.write("The product is fulfilled by Amazon!\n") else: print "The is not fulfilled by Amazon!" f.write("The is not fulfilled by Amazon!\n") print "#############################################################" f.write("###############################################################\n") f.close() # ———————————————————————————————————————————————————————————————————— def run_main(): pdt_asin = raw_input("Please enter a product's ASIN code: ") amz_search_keyword = raw_input("Please enter the keywords you want to search: ") filename = "Product_" + pdt_asin + ".txt" amz_pdt_page = get_the_url_page(pdt_asin, filename) pdt_title = get_title(amz_pdt_page, filename) bullet_pt_text = get_bullet_points(amz_pdt_page, filename) pdt_desp_text, pdt_details_table_text = get_details(amz_pdt_page, filename) get_images(amz_pdt_page, filename) judge_keyword(pdt_title, bullet_pt_text, pdt_desp_text, pdt_details_table_text, amz_search_keyword, filename) get_reviews(amz_pdt_page, filename) judge_ful_byamz(amz_pdt_page, filename) if __name__=="__main__": run_main()
true
16aa58b665e30d66d0ba518f2fc1d0315a78d0b6
Python
AK-1121/code_extraction
/python/python_24731.py
UTF-8
134
2.953125
3
[]
no_license
# Numpy array, insert alternate rows of zeros a=np.zeros((982,5)) b=np.random.randint(0,100,(491,5)) # your 491 row matrix a[::2] = b
true
7609930727c471d1c060fb19b0d73072ef5f4882
Python
saurabhgangurde/EE677_VLSI_CAD
/Ramanpreet/path_finder.py
UTF-8
1,399
3
3
[]
no_license
from pyeda.inter import* #from RothAlgebra import RothVariable #Or(Xor(And(Not(Or(Or(And(a, b), c), d)), d), c), And(b, d)) Fanin=[None,None,None,None,[And,0,1],[Or,4,2],[And,5,3],[And,6,3]] Fanout=[[] for i in range(len(Fanin))] for i in range(len(Fanin)): #i is index of node for which Fanout is to be found for j in range(len(Fanin)): #j itertaes over all elements of Fanin to find i in its input if Fanin[j]!=None: #jth node has no Fanin for find in range(1,len(Fanin[j])): if i==Fanin[j][find]: #if ith node found in Fanin of j Fanout[i].append(j) break path = [] #Final path p1=[] #temp path def pathFinder(Fanout,n): # global path # global p1 p1.append(n) #append current node if(Fanout[n]== []): p2=p1[:] #shallow copy path.append(p2) #append current list to all paths p1.pop() #pop last node return for i in range(len(Fanout[n])): pathFinder(Fanout,Fanout[n][i]) #next Fanout of current node p1.pop() #pop last node return print(Fanout) pathFinder(Fanout,5) print(path) #Assume we are checking for node 5 s-a-0 # CorrectValue=[RothVariable('X','x') 'X' for i in range(len(Fanin))] # CorrectValue[5]=RothVariable() # FaultyValue=[] # c=Fanin[6][0](Fanin[6][1],Fanin[6],[2]) # print (c) # print (Fanout)
true
79b87f85b10a5a2f5b53b7a1b5af5d0cb498b446
Python
nnminh98/Routing-with-DeepRL
/Network_environment/env/Old_implenentations/testing.py
UTF-8
1,678
2.546875
3
[]
no_license
import random import functools import simpy from SimComponents import PacketGenerator, PacketSink, SwitchPort, RandomBrancher, Packet from Node import NetworkNode if __name__ == '__main__': env = simpy.Environment() mean_pkt_size = 100.0 # in bytes port_rate = 2.2 * 8 * mean_pkt_size adist1 = functools.partial(random.expovariate, 2.0) sdist = functools.partial(random.expovariate, 1.0 / mean_pkt_size) samp_dist = functools.partial(random.expovariate, 0.50) '''switch_port = SwitchPort(env, port_rate*2) switch_port2 = SwitchPort(env, port_rate*2) for i in range(3): packet = Packet(env.now, mean_pkt_size, i) switch_port.put(packet) print(switch_port.getQueueSize()) print("something") switch_port.out = switch_port2 switch_port.run()''' node1 = NetworkNode(env, "NW1", port_rate, adist1, sdist, samp_dist) node2 = NetworkNode(env, "NW2", port_rate, adist1, sdist, samp_dist) node3 = NetworkNode(env, "NW3", port_rate, adist1, sdist, samp_dist) node4 = NetworkNode(env, "NW4", port_rate, adist1, sdist, samp_dist) node5 = NetworkNode(env, "NW5", port_rate, adist1, sdist, samp_dist) node1.addPort(node2, True) node1.addPort(node3, True) node3.addPort(node4, True) node2.addPort(node4, True) node2.addPort(node5, True) node4.addPort(node5, True) print(node1.getPorts()) print(node2.getPorts()) print(node3.getPorts()) print(node4.getPorts()) packet = Packet(env.now, mean_pkt_size, 1, "NW1", "NW4") #packet2 = Packet(env.now, mean_pkt_size, 1, "NW2", "NW1") node1.put(packet) #node2.put(packet2) env.run(until=40000)
true
1a5f4e31abaec6402fb1779fae0ab23afc9c4b7c
Python
arita37/deeplearning
/theano/multi dim grid lstm to python.py
UTF-8
47,737
2.859375
3
[]
no_license
# -*- coding: utf-8 -*- """ Torch to Theano Python grid-lstm-tensorflow Examples of using GridLSTM (and GridRNN in general) in tensorflow The GridRNN implementation in tensorflow is generic, in the sense that it supports multiple dimensions with various settings for input/output dimensions, priority dimensions and non-recurrent dimensions. The type of recurrent cell can also be selected among LSTM, GRU or vanilla RNN. Here we collect some examples that demonstrate GridRNN, which will be added over time. The current list of examples include: char-rnn: 2GridLSTM for character-level language modeling. """ ########################### grid-lstm/model/GridLSTM.lua ######################### import 'nn' import 'nngraph' ''' This is called once per dimension inside a grid LSTM block to create the gated update of the dimension's hidden state and memory cell. It takes h_t and h_d, the hidden states from the temporal and depth dimensions respectively, as well as prev_c, the dimension's previous memory cell. It returns next_c, next_h along the dimension, using a standard lstm gated update, conditioned on the concatenated time and depth hidden states. ''' def lstm(h_t, h_d, prev_c, rnn_size) all_input_sums = nn.CAddTable()({h_t, h_d}) reshaped = nn.Reshape(4, rnn_size)(all_input_sums) n1, n2, n3, n4 = nn.SplitTable(2)(reshaped):split(4) # decode the gates in_gate = nn.Sigmoid()(n1) forget_gate = nn.Sigmoid()(n2) out_gate = nn.Sigmoid()(n3) # decode the write inputs in_transform = nn.Tanh()(n4) # perform the LSTM update next_c = nn.CAddTable()({ nn.CMulTable()({forget_gate, prev_c}), nn.CMulTable()({in_gate, in_transform}) }) # gated cells form the output next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)}) return next_c, next_h ''' GridLSTM: 1) Map input x into memory and hidden cells m(1), h(1) along the depth dimension. 2) Concatenate previous hidden states from time and depth dimensions, [h(1), h(2)] into H. 3) Forward the time LSTM, LSTM_2(H) -> h(2)', m(2)'. 4) Concatenate transformed h(2)' and h(1) into H' = [h(1), h(2)'] 5) Forward the depth LSTM, LSTM_1(H') -> h(1)', m(1)' 6) Either repeat 2-5 for another layer or map h(1)', the final hidden state along the depth dimension, to a character prediction. ''' GridLSTM = {} def GridLSTM.grid_lstm(input_size, rnn_size, n, dropout, should_tie_weights) dropout = dropout or 0 # There will be 2*n+1 inputs inputs = {} table.insert(inputs, nn.Identity()()) # input c for depth dimension table.insert(inputs, nn.Identity()()) # input h for depth dimension for L = 1,n : table.insert(inputs, nn.Identity()()) # prev_c[L] for time dimension table.insert(inputs, nn.Identity()()) # prev_h[L] for time dimension shared_weights if should_tie_weights == 1 : shared_weights = {nn.Linear(rnn_size, 4 * rnn_size), nn.Linear(rnn_size, 4 * rnn_size)} outputs_t = {} # Outputs being handed to the next time step along the time dimension outputs_d = {} # Outputs being handed from one layer to the next along the depth dimension for L in range(1,n) : # Take hidden and memory cell from previous time steps prev_c_t = inputs[L*2+1] prev_h_t = inputs[L*2+2] if L == 1 : # We're in the first layer prev_c_d = inputs[1] # input_c_d: the starting depth dimension memory cell, just a zero vec. prev_h_d = nn.LookupTable(input_size, rnn_size)(inputs[2]) # input_h_d: the starting depth dim hidden state. map a char into hidden space via a lookup table else # We're in the higher layers 2...N # Take hidden and memory cell from layers below prev_c_d = outputs_d[((L-1)*2)-1] prev_h_d = outputs_d[((L-1)*2)] if dropout > 0 : prev_h_d = nn.Dropout(dropout)(prev_h_d):annotate{name='drop_' .. L} # apply dropout, if any # Evaluate the input sums at once for efficiency t2h_t = nn.Linear(rnn_size, 4 * rnn_size)(prev_h_t):annotate{name='i2h_'..L} d2h_t = nn.Linear(rnn_size, 4 * rnn_size)(prev_h_d):annotate{name='h2h_'..L} # Get transformed memory and hidden states pointing in the time direction first next_c_t, next_h_t = lstm(t2h_t, d2h_t, prev_c_t, rnn_size) # Pass memory cell and hidden state to next timestep table.insert(outputs_t, next_c_t) table.insert(outputs_t, next_h_t) # Evaluate the input sums at once for efficiency t2h_d = nn.Linear(rnn_size, 4 * rnn_size)(next_h_t):annotate{name='i2h_'..L} d2h_d = nn.Linear(rnn_size, 4 * rnn_size)(prev_h_d):annotate{name='h2h_'..L} # See section 3.5, "Weight Sharing" of http://arxiv.org/pdf/1507.01526.pdf # The weights along the temporal dimension are already tied (cloned many times in train.lua) # Here we can tie the weights along the depth dimension. Having invariance in computation # along the depth appears to be critical to solving the 15 digit addition problem w/ high accy. # See fig 4. to compare tied vs untied grid lstms on this task. if should_tie_weights == 1 : print("tying weights along the depth dimension") t2h_d.data.module:share(shared_weights[1], 'weight', 'bias', 'gradWeight', 'gradBias') d2h_d.data.module:share(shared_weights[2], 'weight', 'bias', 'gradWeight', 'gradBias') # Create the lstm gated update pointing in the depth direction. # We 'prioritize' the depth dimension by using the updated temporal hidden state as input # instead of the previous temporal hidden state. This implements Section 3.2, "Priority Dimensions" next_c_d, next_h_d = lstm(t2h_d, d2h_d, prev_c_d, rnn_size) # Pass the depth dimension memory cell and hidden state to layer above table.insert(outputs_d, next_c_d) table.insert(outputs_d, next_h_d) # set up the decoder top_h = outputs_d[#outputs_d] if dropout > 0 : top_h = nn.Dropout(dropout)(top_h) proj = nn.Linear(rnn_size, input_size)(top_h):annotate{name='decoder'} logsoft = nn.LogSoftMax()(proj) table.insert(outputs_t, logsoft) return nn.gModule(inputs, outputs_t) return GridLSTM ########################### grid-lstm/model/GridLSTM.lua ######################### ######## grid-lstm/train.lua ''' This file trains a character-level multi-layer RNN on text data Code is based on implementation in https://github.com/oxford-cs-ml-2015/practical6 but modified to have multi-layer support, GPU support, as well as many other common model/optimization bells and whistles. The practical6 code is in turn based on https://github.com/wojciechz/learning_to_execute which is turn based on other stuff in Torch, etc... (long lineage) ''' 'torch' import 'nn' import 'nngraph' import 'optim' import 'lfs' import 'cudnn' import 'util.OneHot' import 'util.misc' CharSplitLMMinibatchLoader = import 'util.CharSplitLMMinibatchLoader' model_utils = import 'util.model_utils' LSTM = import 'model.LSTM' GridLSTM = import 'model.GridLSTM' GRU = import 'model.GRU' RNN = import 'model.RNN' cmd = torch.CmdLine() cmd:text() cmd:text('Train a character-level language model') cmd:text() cmd:text('Options') # data cmd:option('-data_dir','data/tinyshakespeare','data directory. Should contain the file input.txt with input data') # task params cmd:option('-task', 'char', 'task to train on: char, addition') cmd:option('-digit_length', 4, 'length of the digits to add for the addition task') # model params cmd:option('-rnn_size', 128, 'size of LSTM internal state') cmd:option('-num_layers', 2, 'number of layers in the LSTM') cmd:option('-model', 'lstm', 'lstm, grid_lstm, gru, or rnn') cmd:option('-tie_weights', 1, 'tie grid lstm weights?') # optimization cmd:option('-learning_rate',2e-3,'learning rate') cmd:option('-learning_rate_decay',0.97,'learning rate decay') cmd:option('-learning_rate_decay_after',10,'in number of epochs, when to start decaying the learning rate') cmd:option('-decay_rate',0.95,'decay rate for rmsprop') cmd:option('-dropout',0,'dropout for regularization, used after each RNN hidden layer. 0 = no dropout') cmd:option('-seq_length',50,'number of timesteps to unroll for') cmd:option('-batch_size',50,'number of sequences to train on in parallel') cmd:option('-max_epochs',50,'number of full passes through the training data') cmd:option('-grad_clip',5,'clip gradients at this value') cmd:option('-train_frac',0.95,'fraction of data that goes into train set') cmd:option('-val_frac',0.05,'fraction of data that goes into validation set') # test_frac will be computed as (1 - train_frac - val_frac) cmd:option('-init_from', '', 'initialize network parameters from checkpoint at this path') # bookkeeping cmd:option('-seed',123,'torch manual random number generator seed') cmd:option('-print_every',1,'how many steps/minibatches between printing out the loss') cmd:option('-eval_val_every',1000,'every how many iterations should we evaluate on validation data?') cmd:option('-checkpoint_dir', 'cv', 'output directory where checkpoints get written') cmd:option('-savefile','lstm','filename to autosave the checkpont to. Will be inside checkpoint_dir/') cmd:option('-accurate_gpu_timing',0,'set this flag to 1 to get precise timings when using GPU. Might make code bit slower but reports accurate timings.') # GPU/CPU cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU') cmd:option('-opencl',0,'use OpenCL (instead of CUDA)') cmd:text() # parse input params opt = cmd:parse(arg) torch.manualSeed(opt.seed) # train / val / test split for data, in fractions test_frac = math.max(0, 1 - (opt.train_frac + opt.val_frac)) split_sizes = {opt.train_frac, opt.val_frac, test_frac} # initialize cunn/cutorch for training on the GPU and fall back to CPU gracefully if opt.gpuid >= 0 and opt.opencl == 0 : ok, cunn = pcall(require, 'cunn') ok2, cutorch = pcall(require, 'cutorch') if not ok : print('package cunn not found!') if not ok2 : print('package cutorch not found!') if ok and ok2 : print('using CUDA on GPU ' .. opt.gpuid .. '...') cutorch.setDevice(opt.gpuid + 1) # note +1 to make it 0 indexed! sigh lua cutorch.manualSeed(opt.seed) else print('If cutorch and cunn are installed, your CUDA toolkit may be improperly configured.') print('Check your CUDA toolkit installation, rebuild cutorch and cunn, and try again.') print('Falling back on CPU mode') opt.gpuid = -1 # overwrite user setting # initialize clnn/cltorch for training on the GPU and fall back to CPU gracefully if opt.gpuid >= 0 and opt.opencl == 1 : ok, cunn = pcall(require, 'clnn') ok2, cutorch = pcall(require, 'cltorch') if not ok : print('package clnn not found!') if not ok2 : print('package cltorch not found!') if ok and ok2 : print('using OpenCL on GPU ' .. opt.gpuid .. '...') cltorch.setDevice(opt.gpuid + 1) # note +1 to make it 0 indexed! sigh lua torch.manualSeed(opt.seed) else print('If cltorch and clnn are installed, your OpenCL driver may be improperly configured.') print('Check your OpenCL driver installation, check output of clinfo command, and try again.') print('Falling back on CPU mode') opt.gpuid = -1 # overwrite user setting # create the data loader class loader = CharSplitLMMinibatchLoader.create(opt.data_dir, opt.batch_size, opt.seq_length, split_sizes) vocab_size = loader.vocab_size # the number of distinct characters vocab = loader.vocab_mapping print('vocab size: ' .. vocab_size) # make sure output directory exists if not path.exists(opt.checkpoint_dir) : lfs.mkdir(opt.checkpoint_dir) # define the model: prototypes for one timestep, : clone them in time do_random_init = true if string.len(opt.init_from) > 0 : print('loading a model from checkpoint ' .. opt.init_from) checkpoint = torch.load(opt.init_from) protos = checkpoint.protos # make sure the vocabs are the same vocab_compatible = true checkpoint_vocab_size = 0 for c,i in pairs(checkpoint.vocab) do if not (vocab[c] == i) : vocab_compatible = false checkpoint_vocab_size = checkpoint_vocab_size + 1 if not (checkpoint_vocab_size == vocab_size) : vocab_compatible = false print('checkpoint_vocab_size: ' .. checkpoint_vocab_size) assert(vocab_compatible, 'error, char voca for this dataset and one in saved checkpoint are not the same. ') # overwrite model settings based on checkpoint to ensure compatibility print('overwriting rnn_size=' .. checkpoint.opt.rnn_size .. ', num_layers=' .. checkpoint.opt.num_layers .. ', model=' .. checkpoint.opt.model .. ' based on the checkpoint.') opt.rnn_size = checkpoint.opt.rnn_size opt.num_layers = checkpoint.opt.num_layers opt.model = checkpoint.opt.model do_random_init = false else print('creating an ' .. opt.model .. ' with ' .. opt.num_layers .. ' layers') protos = {} if opt.model == 'lstm' : protos.rnn = LSTM.lstm(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout) elif opt.model == 'grid_lstm' : protos.rnn = GridLSTM.grid_lstm(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout, opt.tie_weights) elif opt.model == 'gru' : protos.rnn = GRU.gru(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout) elif opt.model == 'rnn' : protos.rnn = RNN.rnn(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout) protos.criterion = nn.ClassNLLCriterion() # the initial state of the cell/hidden states init_state = {} for L=1,opt.num_layers do h_init = torch.zeros(opt.batch_size, opt.rnn_size) if opt.gpuid >=0 and opt.opencl == 0 : h_init = h_init:cuda() if opt.gpuid >=0 and opt.opencl == 1 : h_init = h_init:cl() table.insert(init_state, h_init:clone()) if opt.model == 'lstm' or opt.model == 'grid_lstm' : table.insert(init_state, h_init:clone()) # extra initial state for prev_c # ship the model to the GPU if desired if opt.gpuid >= 0 and opt.opencl == 0 : for k,v in pairs(protos) do v:cuda() if opt.gpuid >= 0 and opt.opencl == 1 : for k,v in pairs(protos) do v:cl() # put the above things into one flattened parameters tensor params, grad_params = model_utils.combine_all_parameters(protos.rnn) # initialization if do_random_init : params:uniform(-0.08, 0.08) # small uniform numbers # initialize the LSTM forget gates with slightly higher biases to encourage remembering in the beginning if opt.model == 'lstm' or opt.model == 'grid_lstm' : for layer_idx = 1, opt.num_layers do for _,node in ipairs(protos.rnn.forwardnodes) do if node.data.annotations.name == "i2h_" .. layer_idx : print('setting forget gate biases to 1 in LSTM layer ' .. layer_idx) # the gates are, in order, i,f,o,g, so f is the 2nd block of weights node.data.module.bias[{{opt.rnn_size+1, 2*opt.rnn_size}}]:fill(1.0) print('number of parameters in the model: ' .. params:nElement()) # make a bunch of clones after flattening, as that reallocates memory clones = {} for name,proto in pairs(protos) do print('cloning ' .. name) clones[name] = model_utils.clone_many_times(proto, opt.seq_length, not proto.parameters) # preprocessing helper function function prepro(x,y) x = x:transpose(1,2):contiguous() # swap the axes for faster indexing y = y:transpose(1,2):contiguous() if opt.gpuid >= 0 and opt.opencl == 0 : # ship the input arrays to GPU # have to convert to float because integers can't be cuda()'d x = x:float():cuda() y = y:float():cuda() if opt.gpuid >= 0 and opt.opencl == 1 : # ship the input arrays to GPU x = x:cl() y = y:cl() return x,y function get_input_mem_cell() input_mem_cell = torch.zeros(opt.batch_size, opt.rnn_size) if opt.gpuid >= 0 and opt.opencl == 0 : input_mem_cell = input_mem_cell:float():cuda() return input_mem_cell function get_zeroed_d_output_t(vocab_size) zeroed_d_output_t = torch.zeros(opt.batch_size, vocab_size) if opt.gpuid >= 0 and opt.opencl == 0 : zeroed_d_output_t = zeroed_d_output_t:float():cuda() return zeroed_d_output_t # evaluate the loss over an entire split function eval_split(split_index, max_batches) print('evaluating loss over split index ' .. split_index) n = loader.split_sizes[split_index] if max_batches ~= nil : n = math.min(max_batches, n) loader:reset_batch_pointer(split_index) # move batch iteration pointer for this split to front loss = 0 accy = 0 normal = 0 rnn_state = {[0] = init_state} for i = 1,n do # iterate over batches in the split # fetch a batch x, y = loader:next_batch(split_index) x,y = prepro(x,y) # forward pass for t=1,opt.seq_length do clones.rnn[t]:evaluate() # for dropout proper functioning if opt.model == "grid_lstm" : input_mem_cell = get_input_mem_cell() rnn_inputs = {input_mem_cell, x[t], unpack(rnn_state[t-1])} # if we're using a grid lstm, hand in a zero vec for the starting memory cell state else rnn_inputs = {x[t], unpack(rnn_state[t-1])} lst = clones.rnn[t]:forward(rnn_inputs) rnn_state[t] = {} for i=1,#init_state do table.insert(rnn_state[t], lst[i]) prediction = lst[#lst] target_delimiter_position = opt.seq_length - (opt.digit_length + 2) if opt.task == "addition" and t > target_delimiter_position : max, pred_argmax = torch.max(prediction,2) accy = accy + torch.eq(pred_argmax, y[t]):sum() normal = normal + prediction:size(1) loss = loss + clones.criterion[t]:forward(prediction, y[t]) # carry over lstm state rnn_state[0] = rnn_state[#rnn_state] print(i .. '/' .. n .. '...') out if opt.task == "addition" : out = accy / normal else out = loss / opt.seq_length / n return out # do fwd/bwd and return loss, grad_params init_state_global = clone_list(init_state) def feval(x) : if x ~= params : params:copy(x) grad_params:zero() #----------------# get minibatch ------------------- x, y = loader:next_batch(1) x,y = prepro(x,y) #----------------- forward pass ------------------- rnn_state = {[0] = init_state_global} predictions = {} # softmax outputs loss = 0 for t=1,opt.seq_length do clones.rnn[t]:training() # make sure we are in correct mode (this is cheap, sets flag) rnn_inputs if opt.model == "grid_lstm" : input_mem_cell = get_input_mem_cell() rnn_inputs = {input_mem_cell, x[t], unpack(rnn_state[t-1])} # if we're using a grid lstm, hand in a zero vec for the starting memory cell state else rnn_inputs = {x[t], unpack(rnn_state[t-1])} lst = clones.rnn[t]:forward(rnn_inputs) rnn_state[t] = {} for i=1,#init_state do table.insert(rnn_state[t], lst[i]) # extract the state, without output predictions[t] = lst[#lst] # last element is the prediction loss = loss + clones.criterion[t]:forward(predictions[t], y[t]) loss = loss / opt.seq_length ----------------# backward pass ------------------- # initialize gradient at time t to be zeros (there's no influence from future) drnn_state = {[opt.seq_length] = clone_list(init_state, true)} # true also zeros the clones for t=opt.seq_length,1,-1 do # If we do addition task and we're at t < position of target delimiter, just use a vec of zeros for dL/dOutput # We don't want to suffer prediction loss prior to the target delimiter, just recurrence loss. target_delimiter_position = opt.seq_length - (opt.digit_length + 2) if opt.task == "addition" and t < target_delimiter_position : doutput_t = get_zeroed_d_output_t(loader.vocab_size) else doutput_t = clones.criterion[t]:backward(predictions[t], y[t]) # backprop through loss, and softmax/linear table.insert(drnn_state[t], doutput_t) # drnn_state[t] already has dL/dH_t+1 vectors for every layer; just adding the dL/dOutput to the list. dlst = clones.rnn[t]:backward(rnn_inputs, drnn_state[t]) # <- right here, you're apping the doutput_t to the list of dLdh for all layers, : using that big list to backprop into the input and unpacked rnn state vecs at t-1 drnn_state[t-1] = {} skip_index if opt.model == "grid_lstm" : skip_index = 2 else skip_index = 1 for k,v in pairs(dlst) do if k > skip_index : # k <= skip_index is gradient on inputs, which we dont need # note we do k-1 because first item is dembeddings, and : follow the # derivatives of the state, starting at index 2. I know... drnn_state[t-1][k-skip_index] = v ----------------------# misc ---------------------- # transfer final state to initial state (BPTT) init_state_global = rnn_state[#rnn_state] # NOTE: I don't think this needs to be a clone, right? # grad_params:div(opt.seq_length) # this line should be here but since we use rmsprop it would have no effect. Removing for efficiency # clip gradient element-wise grad_params:clamp(-opt.grad_clip, opt.grad_clip) return loss, grad_params # start optimization here train_losses = {} val_losses = {} optim_state = {learningRate = opt.learning_rate, alpha = opt.decay_rate} iterations = opt.max_epochs * loader.ntrain iterations_per_epoch = loader.ntrain loss0 = nil for i = 1, iterations do epoch = i / loader.ntrain timer = torch.Timer() _, loss = optim.rmsprop(feval, params, optim_state) if opt.accurate_gpu_timing == 1 and opt.gpuid >= 0 : ''' Note on timing: The reported time can be off because the GPU is invoked async. If one wants to have exactly accurate timings one must call cutorch.synchronize() right here. I will avoid doing so by default because this can incur computational overhead. ''' cutorch.synchronize() time = timer:time().real train_loss = loss[1] # the loss is inside a list, pop it train_losses[i] = train_loss # exponential learning rate decay if i % loader.ntrain == 0 and opt.learning_rate_decay < 1 : if epoch >= opt.learning_rate_decay_after : decay_factor = opt.learning_rate_decay optim_state.learningRate = optim_state.learningRate * decay_factor # decay it print('decayed learning rate by a factor ' .. decay_factor .. ' to ' .. optim_state.learningRate) # every now and : or on last iteration if i % opt.eval_val_every == 0 or i == iterations : # evaluate loss on validation data val_loss = eval_split(2) # 2 = validation val_losses[i] = val_loss savefile = string.format('%s/lm_%s_epoch%.2f_%.4f.t7', opt.checkpoint_dir, opt.savefile, epoch, val_loss) print('saving checkpoint to ' .. savefile) checkpoint = {} checkpoint.protos = protos checkpoint.opt = opt checkpoint.train_losses = train_losses checkpoint.val_loss = val_loss checkpoint.val_losses = val_losses checkpoint.i = i checkpoint.epoch = epoch checkpoint.vocab = loader.vocab_mapping torch.save(savefile, checkpoint) if i % opt.print_every == 0 : print(string.format("%d/%d (epoch %.3f), train_loss = %6.8f, grad/param norm = %6.4e, time/batch = %.4fs", i, iterations, epoch, train_loss, grad_params:norm() / params:norm(), time)) if i % 10 == 0 : collectgarbage() # handle early stopping if things are going really bad if loss[1] ~= loss[1] : print('loss is NaN. This usually indicates a bug. Please check the issues page for existing issues, or create a new issue, if none exist. Ideally, please state: your operating system, 32-bit/64-bit, your blas version, cpu/cuda/cl?') break # halt if loss0 == nil : loss0 = loss[1] if loss[1] > loss0 * 3 : print('loss is exploding, aborting.') break # halt !pip install chainer !pip install -U chainer -vvvv !set VS100COMNTOOLS=%VS120COMNTOOLS%` !set PATH= %VS120COMNTOOLS%\..\..\VC\bin;%PATH%` ################################################################## ########## grid-lstm/sample.lua ''' This file samples characters from a trained model Code is based on implementation in https://github.com/oxford-cs-ml-2015/practical6 ''' import 'torch' import 'nn' import 'nngraph' import 'optim' import 'lfs' import 'util.OneHot' import 'util.misc' cmd = torch.CmdLine() cmd:text() cmd:text('Sample from a character-level language model') cmd:text() cmd:text('Options') # required: cmd:argument('-model','model checkpoint to use for sampling') # optional parameters cmd:option('-seed',123,'random number generator\'s seed') cmd:option('-sample',1,' 0 to use max at each timestep, 1 to sample at each timestep') cmd:option('-primetext',"",'used asprompt to "seed" state the LSTM using a given sequence, before we sample.') cmd:option('-length',2000,'number of characters to sample') cmd:option('-temperature',1,'temperature of sampling') cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU') cmd:option('-opencl',0,'use OpenCL (instead of CUDA)') cmd:option('-verbose',1,'set to 0 to ONLY print the sampled text, no diagnostics') cmd:text() # parse input params opt = cmd:parse(arg) # gated print: simple utility function wrapping a print function gprint(str) if opt.verbose == 1 : print(str) # check that cunn/cutorch are installed if user wants to use the GPU if opt.gpuid >= 0 and opt.opencl == 0 : ok, cunn = pcall(require, 'cunn') ok2, cutorch = pcall(require, 'cutorch') if not ok : gprint('package cunn not found!') if not ok2 : gprint('package cutorch not found!') if ok and ok2 : gprint('using CUDA on GPU ' .. opt.gpuid .. '...') gprint('Make sure saved checkpoint wastrained with GPU. If it was trained with CPU use -gpuid -1 for sampling as well') cutorch.setDevice(opt.gpuid + 1) # note +1 to make it 0 indexed! sigh lua cutorch.manualSeed(opt.seed) else gprint('Falling back on CPU mode') opt.gpuid = -1 # overwrite user setting # check that clnn/cltorch are installed if user wants to use OpenCL if opt.gpuid >= 0 and opt.opencl == 1 : ok, cunn = pcall(require, 'clnn') ok2, cutorch = pcall(require, 'cltorch') if not ok : print('package clnn not found!') if not ok2 : print('package cltorch not found!') if ok and ok2 : gprint('using OpenCL on GPU ' .. opt.gpuid .. '...') gprint('Make sure that your saved checkpoint was also trained with GPU. If it was trained with CPU use -gpuid -1 for sampling as well') cltorch.setDevice(opt.gpuid + 1) # note +1 to make it 0 indexed! sigh lua torch.manualSeed(opt.seed) else gprint('Falling back on CPU mode') opt.gpuid = -1 # overwrite user setting torch.manualSeed(opt.seed) # load the model checkpoint if not lfs.attributes(opt.model, 'mode') : gprint('Error: File ' .. opt.model .. ' does not exist. Are you sure you didn\'t forget to prep cv/ ?') checkpoint = torch.load(opt.model) protos = checkpoint.protos protos.rnn:evaluate() # put in eval mode so that dropout works properly # initialize the vocabulary (and its inverted version) vocab = checkpoint.vocab ivocab = {} for c,i in pairs(vocab) do ivocab[i] = c # initialize the rnn state to all zeros gprint('creating an ' .. checkpoint.opt.model .. '...') current_state current_state = {} for L = 1,checkpoint.opt.num_layers do # c and h for all layers h_init = torch.zeros(1, checkpoint.opt.rnn_size):double() if opt.gpuid >= 0 and opt.opencl == 0 : h_init = h_init:cuda() if opt.gpuid >= 0 and opt.opencl == 1 : h_init = h_init:cl() table.insert(current_state, h_init:clone()) if checkpoint.opt.model == 'grid_lstm' : table.insert(current_state, h_init:clone()) # extra initial state for prev_c state_size = #current_state function get_input_mem_cell() input_mem_cell = torch.zeros(1, checkpoint.opt.rnn_size) if opt.gpuid >= 0 and opt.opencl == 0 : input_mem_cell = input_mem_cell:float():cuda() return input_mem_cell # do a few seeded timesteps seed_text = opt.primetext if string.len(seed_text) > 0 : gprint('seeding with ' .. seed_text) gprint('--------------------------') for c in seed_text:gmatch'.' do prev_char = torch.Tensor{vocab[c]} io.write(ivocab[prev_char[1]]) if opt.gpuid >= 0 and opt.opencl == 0 : prev_char = prev_char:cuda() if opt.gpuid >= 0 and opt.opencl == 1 : prev_char = prev_char:cl() if checkpoint.opt.model == "grid_lstm" : input_mem_cell = get_input_mem_cell() rnn_inputs = {input_mem_cell, prev_char, unpack(current_state)} # if we're using a grid lstm, hand in a zero vec for the starting memory cell state else rnn_inputs = {prev_char, unpack(current_state)} lst = protos.rnn:forward(rnn_inputs) # lst is a list of [state1,state2,..stateN,output]. We want everything but last piece current_state = {} for i=1,state_size do table.insert(current_state, lst[i]) prediction = lst[#lst] # last element holds the log probabilities else # fill with uniform probabilities over characters (? hmm) gprint('missing seed text, using uniform probability over first character') gprint('--------------------------') prediction = torch.Tensor(1, #ivocab):fill(1)/(#ivocab) if opt.gpuid >= 0 and opt.opencl == 0 : prediction = prediction:cuda() if opt.gpuid >= 0 and opt.opencl == 1 : prediction = prediction:cl() # start sampling/argmaxing for i=1, opt.length do # log probabilities from the previous timestep if opt.sample == 0 : # use argmax _, prev_char_ = prediction:max(2) prev_char = prev_char_:resize(1) else # use sampling prediction:div(opt.temperature) # scale by temperature probs = torch.exp(prediction):squeeze() probs:div(torch.sum(probs)) # renormalize so probs sum to one prev_char = torch.multinomial(probs:float(), 1):resize(1):float() # forward the rnn for next character if checkpoint.opt.model == "grid_lstm" : input_mem_cell = get_input_mem_cell() rnn_inputs = {input_mem_cell, prev_char, unpack(current_state)} # if we're using a grid lstm, hand in a zero vec for the starting memory cell state else rnn_inputs = {prev_char, unpack(current_state)} lst = protos.rnn:forward(rnn_inputs) current_state = {} for i=1,state_size do table.insert(current_state, lst[i]) prediction = lst[#lst] # last element holds the log probabilities io.write(ivocab[prev_char[1]]) io.write('\n') io.flush() ################################################################################ ##############Tensor Flow Model ############################################### # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/grid_rnn/python/kernel_tests/grid_rnn_test.py # model.py import numpy as np, tensorflow as tf from tensorflow.models.rnn import rnn_cell from tensorflow.models.rnn import seq2seq from tensorflow.contrib import grid_rnn class Model(object): ''' batchsize, seq_length, model "gridlstm", rnn_size, vocab_size, num_layers, ''' def __init__(self, args, infer=False): self.args = args if infer: args.batch_size = 1 args.seq_length = 1 additional_cell_args = {} if args.model == 'rnn': cell_fn = rnn_cell.BasicRNNCell elif args.model == 'gru': cell_fn = rnn_cell.GRUCell elif args.model == 'lstm': cell_fn = rnn_cell.BasicLSTMCell elif args.model == 'gridlstm': cell_fn = grid_rnn.Grid2LSTMCell additional_cell_args.update({'use_peepholes': True, 'forget_bias': 1.0}) elif args.model == 'gridgru': cell_fn = grid_rnn.Grid2GRUCell else: raise Exception("model type not supported: {}".format(args.model)) cell = cell_fn(args.rnn_size, **additional_cell_args) self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers) self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) self.initial_state = cell.zero_state(args.batch_size, tf.float32) with tf.variable_scope('rnnlm'): #input softmax: SentenceSize x VocaSize softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size]) #Ouput 1 word/character ahead softmax_b = tf.get_variable("softmax_b", [args.vocab_size]) #Format the input with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size]) inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data)) inputs = [tf.squeeze(input_, [1]) for input_ in inputs] #Loop over the sequence def loop(prev, _): prev = tf.nn.xw_plus_b(prev, softmax_w, softmax_b) prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) return tf.nn.embedding_lookup(embedding, prev_symbol) outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm') output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size]) self.logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) self.probs = tf.nn.softmax(self.logits) #Loss function and training by gradient diffusion loss = seq2seq.sequence_loss_by_example([self.logits], [tf.reshape(self.targets, [-1])], [tf.ones([args.batch_size * args.seq_length])], args.vocab_size) self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length #Sum_Loss self.final_state = last_state self.lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), args.grad_clip) optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.apply_gradients(zip(grads, tvars)) #Generate Sample def sample(self, sess, chars, vocab, num=200, prime='The '): state = self.cell.zero_state(1, tf.float32).eval() for char in prime[:-1]: x = np.zeros((1, 1)) x[0, 0] = vocab[char] feed = {self.input_data: x, self.initial_state: state} [state] = sess.run([self.final_state], feed) def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return (int(np.searchsorted(t, np.random.rand(1) * s))) ret = prime char = prime[-1] for n in xrange(num): x = np.zeros((1, 1)) x[0, 0] = vocab[char] feed = {self.input_data: x, self.initial_state: state} [probs, state] = sess.run([self.probs, self.final_state], feed) p = probs[0] # sample = int(np.random.choice(len(p), p=p)) sample = weighted_pick(p) pred = chars[sample] ret += pred char = pred return ret #################################################################################### #################################################################################### # train.py import argparse, cPickle, os, time import tensorflow as tf, pandas as pd from model import Model from utils import TextLoader def main(): parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='data/tinyshakespeare', help='data directory containing input.txt') parser.add_argument('--save_dir', type=str, default='save', help='directory to store checkpointed models') parser.add_argument('--rnn_size', type=int, default=128, help='size of RNN hidden state') parser.add_argument('--num_layers', type=int, default=2, help='number of layers in the RNN') parser.add_argument('--model', type=str, default='lstm', help='rnn, gru, lstm, gridlstm, gridgru') parser.add_argument('--batch_size', type=int, default=50, help='minibatch size') parser.add_argument('--seq_length', type=int, default=50, help='RNN sequence length') parser.add_argument('--num_epochs', type=int, default=50, help='number of epochs') parser.add_argument('--save_every', type=int, default=1000, help='save frequency') parser.add_argument('--grad_clip', type=float, default=5., help='clip gradients at this value') parser.add_argument('--learning_rate', type=float, default=0.002, help='learning rate') parser.add_argument('--decay_rate', type=float, default=0.97, help='decay rate for rmsprop') args = parser.parse_args() train(args) def train(args): data_loader = TextLoader(args.data_dir, args.batch_size, args.seq_length) args.vocab_size = data_loader.vocab_size with open(os.path.join(args.save_dir, 'config.pkl'), 'w') as f: cPickle.dump(args, f) with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'w') as f: cPickle.dump((data_loader.chars, data_loader.vocab), f) model = Model(args) with tf.Session() as sess: tf.initialize_all_variables().run() saver = tf.train.Saver(tf.all_variables()) train_loss_iterations = {'iteration': [], 'epoch': [], 'train_loss': [], 'val_loss': []} for e in xrange(args.num_epochs): sess.run(tf.assign(model.lr, args.learning_rate * (args.decay_rate ** e))) data_loader.reset_batch_pointer() state = model.initial_state.eval() for b in xrange(data_loader.num_batches): start = time.time() x, y = data_loader.next_batch() feed = {model.input_data: x, model.targets: y, model.initial_state: state} train_loss, state, _ = sess.run([model.cost, model.final_state, model.train_op], feed) = time.time() batch_idx = e * data_loader.num_batches + b print "{}/{} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \ .format(batch_idx, args.num_epochs * data_loader.num_batches, e, train_loss, - start) train_loss_iterations['iteration'].app(batch_idx) train_loss_iterations['epoch'].app(e) train_loss_iterations['train_loss'].app(train_loss) if batch_idx % args.save_every == 0: # evaluate state_val = model.initial_state.eval() avg_val_loss = 0 for x_val, y_val in data_loader.val_batches: feed_val = {model.input_data: x_val, model.targets: y_val, model.initial_state: state_val} val_loss, state_val, _ = sess.run([model.cost, model.final_state, model.train_op], feed_val) avg_val_loss += val_loss / len(data_loader.val_batches) print 'val_loss: {:.3f}'.format(avg_val_loss) train_loss_iterations['val_loss'].app(avg_val_loss) checkpoint_path = os.path.join(args.save_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=e * data_loader.num_batches + b) print "model saved to {}".format(checkpoint_path) else: train_loss_iterations['val_loss'].app(None) pd.DataFrame(data=train_loss_iterations, columns=train_loss_iterations.keys()).to_csv(os.path.join(args.save_dir, 'log.csv')) if __name__ == '__main__': main() #################################################################################### #################################################################################### # utils.py import cPickle, collections, os, codecs, numpy as np class TextLoader(object): def __init__(self, data_dir, batch_size, seq_length): self.data_dir = data_dir self.batch_size = batch_size self.seq_length = seq_length input_file = os.path.join(data_dir, "input.txt") vocab_file = os.path.join(data_dir, "vocab.pkl") tensor_file = os.path.join(data_dir, "data.npy") if not (os.path.exists(vocab_file) and os.path.exists(tensor_file)): print "reading text file" self.preprocess(input_file, vocab_file, tensor_file) else: print "loading preprocessed files" self.load_preprocessed(vocab_file, tensor_file) self.create_batches() self.reset_batch_pointer() def preprocess(self, input_file, vocab_file, tensor_file): with codecs.open(input_file, "r") as f: data = f.read() counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: -x[1]) self.chars, _ = list(zip(*count_pairs)) self.vocab_size = len(self.chars) self.vocab = dict(zip(self.chars, range(len(self.chars)))) with open(vocab_file, 'w') as f: cPickle.dump(self.chars, f) self.tensor = np.array(map(self.vocab.get, data)) np.save(tensor_file, self.tensor) def load_preprocessed(self, vocab_file, tensor_file): with open(vocab_file) as f: self.chars = cPickle.load(f) self.vocab_size = len(self.chars) self.vocab = dict(zip(self.chars, range(len(self.chars)))) self.tensor = np.load(tensor_file) self.num_batches = self.tensor.size / (self.batch_size * self.seq_length) def create_batches(self): self.num_batches = self.tensor.size / (self.batch_size * self.seq_length) self.tensor = self.tensor[:self.num_batches * self.batch_size * self.seq_length] xdata = self.tensor ydata = np.copy(self.tensor) ydata[:-1] = xdata[1:] ydata[-1] = xdata[0] self.x_batches = np.split(xdata.reshape(self.batch_size, -1), self.num_batches, 1) self.y_batches = np.split(ydata.reshape(self.batch_size, -1), self.num_batches, 1) validation_batches = int(self.num_batches * .2) self.val_batches = zip(self.x_batches[-validation_batches:], self.y_batches[-validation_batches:]) self.x_batches = self.x_batches[:-validation_batches] self.y_batches = self.y_batches[:-validation_batches] self.num_batches -= validation_batches def next_batch(self): x, y = self.x_batches[self.pointer], self.y_batches[self.pointer] self.pointer += 1 return x, y def reset_batch_pointer(self): self.pointer = 0 def visualize_result(): import pandas as pd import matplotlib.pyplot as plt # These are the "Tableau 20" colors as RGB. tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) files = [('GridGRU, 3 layers', 'save_gridgru3layers/log.csv'), # ('GridGRU, 6 layers', 'save_gridgru6layers/log.csv'), ('GridLSTM, 3 layers', 'save_gridlstm3layers/log.csv'), ('GridLSTM, 6 layers', 'save_gridlstm6layers/log.csv'), ('Stacked GRU, 3 layers', 'save_gru3layers/log.csv'), # ('Stacked GRU, 6 layers', 'save_gru6layers/log.csv'), ('Stacked LSTM, 3 layers', 'save_lstm3layers/log.csv'), ('Stacked LSTM, 6 layers', 'save_lstm6layers/log.csv'), ('Stacked RNN, 3 layers', 'save_rnn3layers/log.csv'), ('Stacked RNN, 6 layers', 'save_rnn6layers/log.csv')] file1= './save/tinyshakespeare/{}' for i, (k, v) in enumerate(files): train_loss = pd.read_csv(file1.format(v)).groupby('epoch').mean()['train_loss'] plt.plot(train_loss.index.tolist(), train_loss.tolist(), label=k, lw=2, color=tableau20[i*2]) plt.leg() plt.xlabel('Epochs') plt.ylabel('Average training loss') plt.show() #################################################################################### #################################################################################### # sample.py import argparse, cPickle, os, tensorflow as tf from model import Model def main(): parser = argparse.ArgumentParser() parser.add_argument('--save_dir', type=str, default='save', help='model directory to store checkpointed models') parser.add_argument('-n', type=int, default=500, help='number of characters to sample') parser.add_argument('--prime', type=str, default=' ', help='prime text') args = parser.parse_args() sample(args) def sample(args): with open(os.path.join(args.save_dir, 'config.pkl')) as f: saved_args = cPickle.load(f) with open(os.path.join(args.save_dir, 'chars_vocab.pkl')) as f: chars, vocab = cPickle.load(f) model = Model(saved_args, True) with tf.Session() as sess: tf.initialize_all_variables().run() saver = tf.train.Saver(tf.all_variables()) ckpt = tf.train.get_checkpoint_state(args.save_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) print model.sample(sess, chars, vocab, args.n, args.prime) if __name__ == '__main__': main()
true
d63e66101b10e34a045704b620158258beeb3b1f
Python
adrianna-andrzejewska/UMZ_ZALICZENIE
/Zestaw1_3.py
UTF-8
628
2.84375
3
[]
no_license
import pandas as pd # loading pandas library # loading data and changing float settings df_data = pd.read_csv( 'train.tsv', sep='\t', names=[ 'price', 'nr_rooms', 'meters', 'floors', 'location', 'description']) pd.options.display.float_format = '{:.2f}'.format # add csv file df_description = pd.read_csv('description.csv') # add columns names df_description.columns = ['floors', 'name_floor'] # merge tabels - the key is column floors df_flat_name_floor = pd.merge(df_data, df_description, on=['floors']) # save to file df_flat_name_floor.to_csv('out2.csv', header=False, index=None)
true
80347fc72b5b0ac5517f7ec95bed3bc26784ac81
Python
dersonf/aulaemvideo
/exercicios/ex089.py
UTF-8
733
3.796875
4
[]
no_license
#!/usr/bin/python36 ficha = [] cont = 'S' while cont != 'N': nome = str(input('Nome: ')) nota1 = float(input('Nota 1: ')) nota2 = float(input('Nota 2: ')) media = (nota1 + nota2) / 2 ficha.append([nome, [nota1, nota2], media]) cont = str(input('Deseja continuar? [S/N]')).upper().strip()[0] print(f'ID - NOME - MÉDIA') print('='*30) for c in range(0, len(ficha)): print(f'{c:<2} - {ficha[c][0]:15} - {ficha[c][2]:>4}') print('='*30) while True: aluno = int(input('Mostrar notas de qual aluno? (999 exit)')) if aluno == 999: break else: for c, v in enumerate(ficha): if c == aluno: print(f'As notas de {ficha[c][0]} são {ficha[c][1]}')
true
9358597ab334356e6eb964bf484587843fc7e17a
Python
Aasthaengg/IBMdataset
/Python_codes/p03041/s658319623.py
UTF-8
96
2.5625
3
[]
no_license
n,k=list(map(int,input().split())) s=list(input()) s[k-1]=chr(ord(s[k-1])+32) print("".join(s))
true
611bf70295049e21a3c92190c323662086534d3d
Python
Seralpa/AdventOfCode2018
/day10/p1_p2.py
UTF-8
1,537
3.40625
3
[ "MIT" ]
permissive
import re import operator data = re.compile(r"position=< ?(-?[0-9]+), ?(-?[0-9]+)> velocity=< ?(-?[0-9]+), ?(-?[0-9]+)>") class Point: def __init__(self, pos: tuple[int, int], vel: tuple[int, int]): self.pos = pos self.vel = vel def move(self): self.pos = (self.pos[0] + self.vel[0], self.pos[1] + self.vel[1]) def print_pos(points: list[Point], minx, maxx): prev_point = points[0] for p in points: if p == points[0]: for _ in range(p.pos[0] - minx): print('.', end = '') print('#', end = '') continue if p.pos == prev_point.pos: continue if p.pos[1] == prev_point.pos[1]: for _ in range(p.pos[0] - prev_point.pos[0] - 1): print('.', end = '') else: for _ in range(maxx - prev_point.pos[0]): print('.', end = '') for _ in range(p.pos[1] - prev_point.pos[1]): print('') for _ in range(p.pos[0] - minx): print('.', end = '') print('#', end = '') prev_point = p print('') points: list[Point] = list() with open("input.txt", "r") as f: for l in f: matcher = data.match(l) points.append(Point((int(matcher.group(1)), int(matcher.group(2))), (int(matcher.group(3)), int(matcher.group(4))))) time = 0 while True: minx = min(points, key = lambda x: x.pos[0]).pos[0] maxx = max(points, key = lambda x: x.pos[0]).pos[0] if maxx - minx < 100: points.sort(key = lambda x: x.pos[0]) points.sort(key = lambda y: y.pos[1]) print('') print_pos(points, minx, maxx) print(f"{time = }") input("Enter to keep going") for p in points: p.move() time += 1
true
c9e853fbeac886d4b01c6151c9df91730cf2c7cb
Python
namratha-21/5003-assignment12
/5003-tuplelist.py
UTF-8
150
3.03125
3
[]
no_license
list =[("abc",93), ("mno",45), ("xyz",65)] dict1=dict() for student,score in list: dict1.setdefault(student, []).append(score) print(dict1)
true
66bcf69005a4000037e069a02613abb34a667b64
Python
kwon-o/projecteuler
/051-100/055.py
UTF-8
841
3.4375
3
[]
no_license
def deaching(int1): str_lst = list(str(int1)) lst = [] for i in str_lst: lst.append(int(i)) cnt = 0 for i in range(0,int(len(lst)/2)+1): if lst[i] == lst[len(lst)-1-i]: cnt += 1 else: return False break if cnt == int(len(lst)/2) + 1: return True def rever(int1): str_lst = list(str(int1)) str_lst.reverse() rever_num = int(''.join(str_lst)) return rever_num Lychrel_numbers = [] for i in range(10, 10001): a = i roop = 0 while deaching(a + rever(a)) == True or roop < 50: if deaching(a + rever(a)) == True: break else: a = a + rever(a) roop += 1 if roop == 50: Lychrel_numbers.append(i) print(Lychrel_numbers) print(len(Lychrel_numbers))
true
7902914a3628103ba075487eb6d6429deb161bf2
Python
45-Hrishi/Pandas-For-Data-Science
/12_Missing data.py
UTF-8
1,166
3.03125
3
[]
no_license
''' 1. Real world data will often be misssing data for a variety of reasons. 2. Many machine learning models and statistical methods can not work with missing data points ,in which case we need to decide what to do with the missing data. 3. When reading in missing values.pandas will display them as NaN valueds. 4. There are also newer specialized null values such as pd.NaT to imply the value missing should be a timestamp. options for missing data keep it remove it replace it note that there is never a 100% correct approach that applies to all circumstances, it all depends on the exact situation you encounter. Removing or Dropping missing data Dropping a Row --> makes a sense when a lot of info is missing Year Pop GDP Area USA 1776 NaN NaN NaN CANADA 1867 38 1.7 3.86 MEXICO 1821 126 1.22 0.76 ---> Dropping USA row is the right decision becoz we have missing lot of data of that row ---> Often a good idea to calculate a percentage of what data is droppe ---> Good choice if every row is missing that particular feature. '''
true
5899d788d1d4bfea0b0144f39cf113c1b7853634
Python
Prismary/python
/bag simulator/bag-simulator.py
UTF-8
2,789
3.296875
3
[]
no_license
import ctypes ctypes.windll.kernel32.SetConsoleTitleW("Bag-Simulator by Prismary") print("---------------------------") print(" Bag-Simulator by Prismary") print("---------------------------") contents = [] try: readsave = open("bag.txt", "r") for line in readsave: contents.append(line.replace("\n", "")) readsave.close() print("Contents loaded.") except: readsave = open("bag.txt", "x") print("[!] Save file not found, no contents loaded.") def save(contents): save = open("bag.txt", "w") for item in contents: save.write(item+"\n") print("\nAvailable commands: 'view', 'add', 'rename','remove', 'move', 'swap', 'empty'") while True: cmd = input("\n>> ") if cmd.startswith("exit"): break elif cmd == "view": print("\nBag contents: \n-------------") for item in contents: print(item) print("-------------") elif cmd.startswith("add"): try: contents.append(cmd.split(" ")[1]) save(contents) print("Successfully added "+cmd.split(" ")[1]+" to the bag.") except: print("[!] Please define the item's name.") elif cmd.startswith("rename"): try: pos = contents.index(cmd.split(" ")[1]) contents.remove(cmd.split(" ")[1]) contents.insert(pos, cmd.split(" ")[2]) save(contents) print("Successfully renamed "+cmd.split(" ")[1]+" to "+cmd.split(" ")[2]+".") except: print("[!] Unable to rename "+cmd.split(" ")[1]+".") elif cmd.startswith("remove"): try: contents.remove(cmd.split(" ")[1]) save(contents) print("Successfully removed "+cmd.split(" ")[1]+" from the bag.") except: print("[!] Unable to remove "+cmd.split(" ")[1]+" from the bag.") elif cmd.startswith("move"): try: pos = int(cmd.split(" ")[2])-1 contents.remove(cmd.split(" ")[1]) contents.insert(pos, cmd.split(" ")[1]) save(contents) print("Successfully moved "+cmd.split(" ")[1]+" to position "+cmd.split(" ")[2]+".") except: print("[!] Unable to move "+cmd.split(" ")[1]+" to position "+cmd.split(" ")[2]+".") elif cmd.startswith("swap"): try: pos1 = contents.index(cmd.split(" ")[1]) pos2 = contents.index(cmd.split(" ")[2]) contents.remove(cmd.split(" ")[1]) contents.insert(pos1, cmd.split(" ")[2]) contents.remove(cmd.split(" ")[2]) contents.insert(pos2, cmd.split(" ")[1]) save(contents) print("Successfully swapped "+cmd.split(" ")[1]+" and "+cmd.split(" ")[2]+".") except: print("[!] Unable to swap "+cmd.split(" ")[1]+" and "+cmd.split(" ")[2]+".") elif cmd.startswith("empty"): print("[!] Are you sure you want to empty the bag? (y/n)") if input("") == "y": contents = [] save(contents) print("Successfully emptied the bag.") else: print("[!] Unknown command.")
true
478795cb884cdca1159c5956cc85bef7ee673860
Python
matsulib/cinema3-movies
/database/manage.py
UTF-8
551
2.5625
3
[]
no_license
import os import sys import json from urllib.parse import urlsplit from pymongo import MongoClient def delete_all(col): col.delete_many({}) def insert_data(col, data): col.insert_many(data) if __name__ == '__main__': url = os.getenv('MONGODB_URI', 'mongodb://localhost:27017/movies') db_name = urlsplit(url).path[1:] col = MongoClient(url)[db_name]['movies'] with open('{}/init.json'.format(os.path.dirname(sys.argv[0])), 'r') as f: data = json.load(f) delete_all(col) insert_data(col, data)
true
4441b1db4f563439056060b0f9f9c23be8b49057
Python
sakthi/Kingdoms
/kingdoms/websetup.py
UTF-8
2,008
2.515625
3
[]
no_license
"""Setup the endless-insomnia application""" import logging, os, hashlib, datetime from sqlalchemy.orm.exc import NoResultFound from kingdoms.config.environment import load_environment from kingdoms.model import meta from kingdoms.model import Player, UnitTypeDescriptor log = logging.getLogger(__name__) def setup_app(command, conf, vars): """Place any commands to setup kingdoms here""" load_environment(conf.global_conf, conf.local_conf) # Create the tables if they don't already exist meta.metadata.create_all(bind=meta.engine) if len(meta.Session.query(UnitTypeDescriptor).all()) <= 0: footman = UnitTypeDescriptor() footman.short_name = u'Mercenary Footman' footman.long_name = u'Hired infantry with swords and shields.' footman.tile_type = u'footman' meta.Session.add(footman) archer = UnitTypeDescriptor() archer.short_name = u'Mercenary Archer' archer.long_name = u'Hired infantry with long bows.' archer.tile_type = u'archer' meta.Session.add(archer) meta.Session.commit() count = meta.Session.query(Player).count() if count == 0: user_name = os.getenv('USER') try: admin = meta.Session.query(Player).filter(Player.login == user_name).one() except NoResultFound: #login tmp = raw_input('What is your name, master (%s):' % user_name) if len(tmp) > 0: user_name = tmp #password password = raw_input('Enter your password:') #sex sex_txt = raw_input('Can I call you my daddy? (Keep empty for male by default)') if len(sex_txt) <= 0: sex = 1 else: sex = 0 owner = Player() owner.login = user_name owner.password_hash = hashlib.md5(password).hexdigest() owner.fullname = 'Great %s, master of realms. Ruler of mortals.' % user_name.capitalize() owner.timestamp = datetime.datetime.now() owner.email = user_name +'@kingdoms.com' owner.sex = sex meta.Session.add(owner) meta.Session.commit() finally: print 'What is your wish master, %s?' % user_name else: print '%d users are known' % count
true
2ee9ef013762978955da9adc6b91d675d9b3557d
Python
DwaynesWorld/deeplearning
/basic/linear_regression_excercise.py
UTF-8
2,098
2.9375
3
[]
no_license
import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from sklearn.metrics import (mean_squared_error, classification_report) from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler # Read Data housing_data = pd.read_csv('../__tensorflow__/02-TensorFlow-Basics/cal_housing_clean.csv') # print(housing_data.head()) print(housing_data.describe().transpose()) # Perform a Train Test Split on the Data X = housing_data.drop('medianHouseValue', axis=1) y = housing_data['medianHouseValue'] # print(X.head()) # print(y.head()) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Transform Data scaler = MinMaxScaler() scaler.fit(X_train) X_train = pd.DataFrame( data=scaler.transform(X_train), columns=X_train.columns, index=X_train.index) X_test = pd.DataFrame( data=scaler.transform(X_test), columns=X_test.columns, index=X_test.index) # Create Feature Columns age = tf.feature_column.numeric_column('housingMedianAge') rooms = tf.feature_column.numeric_column('totalRooms') bedrooms = tf.feature_column.numeric_column('totalBedrooms') pop = tf.feature_column.numeric_column('population') households = tf.feature_column.numeric_column('households') income = tf.feature_column.numeric_column('medianIncome') feat_cols = [age, rooms, bedrooms, pop, households, income] # Train input_func = tf.estimator.inputs.pandas_input_fn( x=X_train, y=y_train, batch_size=10, num_epochs=1000, shuffle=True) model = tf.estimator.DNNRegressor(hidden_units=[6, 10, 6], feature_columns=feat_cols) model.train(input_fn=input_func, steps=25000) # Predict predict_input_func = tf.estimator.inputs.pandas_input_fn( x=X_test, batch_size=10, num_epochs=1, shuffle=False) predictions = list(model.predict(predict_input_func)) # Get Metrics final_preds = [] for pred in predictions: final_preds.append(pred['predictions']) print(classification_report(y_test, final_preds)) print(mean_squared_error(y_test, final_preds)**0.5)
true
fde4188c0a4eb59aae61bc7dfaf3dda5970d3c0e
Python
aCoffeeYin/pyreco
/repoData/vimoutliner-vimoutliner/allPythonContent.py
UTF-8
108,049
2.859375
3
[]
no_license
__FILENAME__ = otl2html #!/usr/bin/python2 # otl2html.py # convert a tab-formatted outline from VIM to HTML # # Copyright 2001 Noel Henson All rights reserved # # ALPHA VERSION!!! ########################################################################### # Basic function # # This program accepts text outline files and converts them # to HTML. The outline levels are indicated by tabs. A line with no # tabs is assumed to be part of the highest outline level. # # 10 outline levels are supported. These loosely correspond to the # HTML H1 through H9 tags. Alphabetic, numeric and bullet formats # are also supported. # # CSS support has been added. # ########################################################################### # include whatever mdules we need import sys import re import os import time ########################################################################### # global variables formatMode = "indent" copyright = "" level = 0 div = 0 silentdiv = 0 slides = 0 hideComments = 0 showTitle = 1 inputFile = "" outline = [] flatoutline = [] inBodyText = 0 # 0: no, 1: text, 2: preformatted text, 3: table styleSheet = "nnnnnn.css" inlineStyle = 0 ########################################################################### # function definitions # usage # print the simplest form of help # input: none # output: simple command usage is printed on the console def showUsage(): print """ Usage: otl2html.py [options] inputfile > outputfile Options -p Presentation: slide show output for use with HtmlSlides. -D First-level is divisions (<div> </div>) for making pretty web pages. -s sheet Use the specified style sheet with a link. This is the default. -S sheet Include the specified style sheet in-line the output. For encapsulated style. -T The first line is not the title. Treat it as outline data -c comments (line with [ as the first non-whitespace character. Ending with ] is optional. -C copyright Override the internal copyright notice with the one supplied in the quoted string following this flag. Single or double quotes can be used. -H Show the file syntax help. output is on STDOUT Note: if neither -s or -S are specified, otl2html.py will default to -s. It will try to use the css file 'nnnnnn.css' if it exists. If it does not exist, it will be created automatically. """ def showSyntax(): print """ Syntax Syntax is Vim Outliner's normal syntax. The following are supported: Text : Body text marker. This text will wrap in the output. ; Preformmated text. This text will will not wrap. Tables || Table header line. | Table and table columns. Example: || Name | Age | Animal | | Kirby | 9 | Dog | | Sparky | 1 | Bird | | Sophia | 8 | Cat | This will cause an item to be left-justified. | whatever | This will cause an item to be right-justified. | whatever | This will cause an item to be centered. | whatever | This will cause an item to be default aligned. | whatever | Character Styles ** Bold. Example: **Bold Text** // Italic. Example: //Italic Text// +++ Highlight. Example: +++Highlight Text+++ --- Strikeout. Example: ---Strikeout Text--- Insane ---+++//**Wow! This is insane!**//+++--- Just remember to keep it all on one line. Horizontal Rule ---------------------------------------- (40 dashes). Copyright (c) or (C) Converts to a standard copyright symbol. Including Images (for web pages) [imagename] Examples: [logo.gif] [photo.jpg] [car.png] [http://i.a.cnn.net/cnn/.element/img/1.1/logo/logl.gif] or from a database: [http://www.lab.com/php/image.php?id=4] Including links (for web pages) [link text-or-image] Examples: [about.html About] [http://www.cnn.com CNN] or with an image: [http://www.ted.com [http://www.ted.com/logo.png]] Links starting with a '+' will be opened in a new window. Eg. [+about.html About] Including external files !filename! Examples: !file.txt! Including external outlines (first line is parent) !!filename!! Examples: !!menu.otl!! Including output from executing external programs !!!program args!!! Examples: !!!date +%Y%m%d!!! Note: When using -D, the top-level headings become divisions (<div>) and will be created using a class of the heading name. Spaces are not allowed. If a top-level heading begins with '_', it will not be shown but the division name will be the same as without the '_'. Example: _Menu will have a division name of Menu and will not be shown. """ # getArgs # Check for input arguments and set the necessary switches # input: none # output: possible console output for help, switch variables may be set def getArgs(): global inputFile, debug, formatMode, slides, hideComments, copyright, \ styleSheet, inlineStyle, div, showTitle if (len(sys.argv) == 1): showUsage() sys.exit()() else: for i in range(len(sys.argv)): if (i != 0): if (sys.argv[i] == "-d"): debug = 1 # test for debug flag elif (sys.argv[i] == "-?"): # test for help flag showUsage() # show the help sys.exit() # exit elif (sys.argv[i] == "-p"): # test for the slides flag slides = 1 # set the slides flag elif (sys.argv[i] == "-D"): # test for the divisions flag div = 1 # set the divisions flag elif (sys.argv[i] == "-T"): # test for the no-title flag showTitle = 0 # clear the show-title flag elif (sys.argv[i] == "-c"): # test for the comments flag hideComments = 1 # set the comments flag elif (sys.argv[i] == "-C"): # test for the copyright flag copyright = sys.argv[i + 1] # get the copyright i = i + 1 # increment the pointer elif (sys.argv[i] == "-s"): # test for the style sheet flag styleSheet = sys.argv[i + 1] # get the style sheet name formatMode = "indent" # set the format i = i + 1 # increment the pointer elif (sys.argv[i] == "-S"): # test for the style sheet flag styleSheet = sys.argv[i + 1] # get the style sheet name formatMode = "indent" # set the format inlineStyle = 1 i = i + 1 # increment the pointer elif (sys.argv[i] == "--help"): showUsage() sys.exit() elif (sys.argv[i] == "-h"): showUsage() sys.exit() elif (sys.argv[i] == "-H"): showSyntax() sys.exit() elif (sys.argv[i][0] == "-"): print "Error! Unknown option. Aborting" sys.exit() else: # get the input file name inputFile = sys.argv[i] # getLineLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the beginning # output: returns a number 1 is the lowest def getLineLevel(linein): strstart = linein.lstrip() # find the start of text in line x = linein.find(strstart) # find the text index in the line n = linein.count("\t", 0, x) # count the tabs return(n + 1) # return the count + 1 (for level) # getLineTextLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the # beginning # output: returns a number 1 is the lowest def getLineTextLevel(linein): strstart = linein.lstrip() # find the start of text in line x = linein.find(strstart) # find the text index in the line n = linein.count("\t", 0, x) # count the tabs n = n + linein.count(" ", 0, x) # count the spaces return(n + 1) # return the count + 1 (for level) # colonStrip(line) # stip a leading ':', if it exists # input: line # output: returns a string with a stipped ':' def colonStrip(line): if (line[0] == ":"): return line[1:].lstrip() else: return line # semicolonStrip(line) # stip a leading ';', if it exists # input: line # output: returns a string with a stipped ';' def semicolonStrip(line): if (line[0] == ";"): return line[1:] else: return line # dashStrip(line) # stip a leading '-', if it exists # input: line # output: returns a string with a stipped '-' def dashStrip(line): if (line[0] == "-"): return line[1:] else: return line # pipeStrip(line) # stip a leading '|', if it exists # input: line # output: returns a string with a stipped '|' def pipeStrip(line): if (line[0] == "|"): return line[1:] else: return line # plusStrip(line) # stip a leading '+', if it exists # input: line # output: returns a string with a stipped '+' def plusStrip(line): if (line[0] == "+"): return line[1:] else: return line # handleBodyText # print body text lines with a class indicating level, if style sheets # are being used. otherwise print just <p> # input: linein - a single line that may or may not have tabs at the beginning # output: through standard out def handleBodyText(linein, lineLevel): global inBodyText if (inBodyText == 2): print "</pre>" if (inBodyText == 3): print "</table>" print "<p", if (styleSheet != ""): print " class=\"P" + str(lineLevel) + "\"", inBodyText = 1 print ">" + colonStrip(linein.strip()), # handlePreformattedText # print preformatted text lines with a class indicating level, if style sheets # are being used. otherwise print just <pre> # input: linein - a single line that may or may not have tabs at the beginning # output: through standard out def handlePreformattedText(linein, lineLevel): global inBodyText if (inBodyText == 1): print "</p>" if (inBodyText == 3): print "</table>" print "<pre", if (styleSheet != ""): print " class=\"PRE" + str(lineLevel) + "\"", inBodyText = 2 print ">" + semicolonStrip(linein.strip()), # isAlignRight # return flag # input: coldata, a string def isAlignRight(coldata): l = len(coldata) if (coldata[0:2] == " ") and (coldata[l - 2:l] != " "): return 1 else: return 0 # isAlignLeft # return flag # input: coldata, a string def isAlignLeft(coldata): l = len(coldata) if (coldata[0:2] != " ") and (coldata[l - 2:l] == " "): return 1 else: return 0 # isAlignCenter # return flag # input: coldata, a string def isAlignCenter(coldata): l = len(coldata) if (coldata[0:2] == " ") and (coldata[l - 2:l] == " "): return 1 else: return 0 # getColumnAlignment(string) # return string # input: coldata # output: # <td align="left"> or <td align="right"> or <td align="center"> or <td> def getColumnAlignment(coldata): if isAlignCenter(coldata): return '<td align="center">' if isAlignRight(coldata): return '<td align="right">' if isAlignLeft(coldata): return '<td align="left">' return '<td>' # handleTableColumns # return the souce for a row's columns # input: linein - a single line that may or may not have tabs at the beginning # output: string with the columns' source def handleTableColumns(linein, lineLevel): out = "" coldata = linein.strip() coldata = coldata.split("|") for i in range(1, len(coldata) - 1): out += getColumnAlignment(coldata[i]) out += coldata[i].strip() + '</td>' return out # handleTableHeaders # return the souce for a row's headers # input: linein - a single line that may or may not have tabs at the beginning # output: string with the columns' source def handleTableHeaders(linein, lineLevel): out = "" coldata = linein.strip() coldata = coldata.split("|") for i in range(2, len(coldata) - 1): out += getColumnAlignment(coldata[i]) out += coldata[i].strip() + '</td>' out = out.replace('<td', '<th') out = out.replace('</td', '</th') return out # handleTableRow # print a table row # input: linein - a single line that may or may not have tabs at the beginning # output: out def handleTableRow(linein, lineLevel): out = "<tr>" if (lineLevel == linein.find("|| ") + 1): out += handleTableHeaders(linein, lineLevel) else: out += handleTableColumns(linein, lineLevel) out += "</tr>" return out # handleTable # print a table, starting with a <TABLE> tag if necessary # input: linein - a single line that may or may not have tabs at the beginning # output: through standard out def handleTable(linein, lineLevel): global inBodyText if (inBodyText == 1): print "</p>" if (inBodyText == 2): print "</pre>" if (inBodyText != 3): print "<table class=\"TAB" + str(lineLevel) + "\">" inBodyText = 3 print handleTableRow(linein, lineLevel), # linkOrImage # if there is a link to an image or another page, process it # input: line # output: modified line def linkOrImage(line): line = re.sub('\[(\S+?)\]', '<img src="\\1" alt="\\1">', line) line = re.sub('\[(\S+)\s(.*?)\]', '<a href="\\1">\\2</a>', line) line = re.sub('(<a href=")\+(.*)"\>', '\\1\\2" target=_new>', line) line = line.replace('<img src="X" alt="X">', '[X]') line = line.replace('<img src="_" alt="_">', '[_]') return line # tabs # return a string with 'count' tabs # input: count # output: string of tabs def tabs(count): out = "" if (count == 0): return "" for i in range(0, count - 1): out = out + "\t" return out # includeFile # include the specified file, if it exists # input: line and lineLevel # output: line is replaced by the contents of the file def includeFile(line, lineLevel): filename = re.sub('!(\S+?)!', '\\1', line.strip()) incfile = open(filename, "r") linein = incfile.readline() while linein != "": linein = re.sub('^', tabs(lineLevel), linein) processLine(linein) linein = incfile.readline() incfile.close() return # includeOutline # include the specified file, if it exists # input: line and lineLevel # output: line is replaced by the contents of the file def includeOutline(line, lineLevel): filename = re.sub('!!(\S+?)!!', '\\1', line.strip()) incfile = open(filename, "r") linein = incfile.readline() linein = re.sub('^', tabs(lineLevel), linein) processLine(linein) linein = incfile.readline() while linein != "": linein = re.sub('^', tabs(lineLevel + 1), linein) processLine(linein) linein = incfile.readline() incfile.close() return # execProgram # execute the specified program # input: line # output: program specified is replaced by program output def execProgram(line): program = re.sub('.*!!!(.*)!!!.*', '\\1', line.strip()) child = os.popen(program) out = child.read() err = child.close() out = re.sub('!!!(.*)!!!', out, line) processLine(out) if err: raise RuntimeError('%s failed w/ exit code %d' % (program, err)) return # divName # create a name for a division # input: line # output: division name def divName(line): global silentdiv line = line.strip() if (line[0] == '_'): silentdiv = 1 line = line[1:] line = line.replace(' ', '_') return'<div class="' + line + '">' # getTitleText(line) # extract some meaningful text to make the document title from the line # input: line # output: modified line def getTitleText(line): out = re.sub('.*#(.*)#.*', '\\1', line) out = re.sub('<.*>', '', out) # if (out != ""): out = re.sub('\"(.*?)\"', '\\1', line) return(out) # stripTitleText(line) # strip the title text if it is enclosed in double-quotes # input: line # output: modified line def stripTitleText(line): out = re.sub('#\W*.*#', '', line) return(out) # beautifyLine(line) # do some optional, simple beautification of the text in a line # input: line # output: modified line def beautifyLine(line): if (line.strip() == "-" * 40): return "<br><hr><br>" out = line line = "" while (line != out): line = out # out = replace(out, '---', '<strike>', 1) if (line[0].lstrip() != ";"): out = re.sub('\-\-\-(.*?)\-\-\-', '<strike>\\1</strike>', out) out = linkOrImage(out) # out = replace(out, '**', '<strong>', 1) out = re.sub('\*\*(.*?)\*\*', '<strong>\\1</strong>', out) # out = replace(out, '//', '<i>', 1) out = re.sub('\/\/(.*?)\/\/', '<i>\\1</i>', out) # out = replace(out, '+++', '<code>', 1) out = re.sub('\+\+\+(.*?)\+\+\+', '<code>\\1</code>', out) out = re.sub('\(c\)', '&copy;', out) out = re.sub('\(C\)', '&copy;', out) return out # closeLevels # generate the number of </ul> or </ol> tags necessary to proplerly finish # input: format - a string indicating the mode to use for formatting # level - an integer between 1 and 9 that show the current level # (not to be confused with the level of the current line) # output: through standard out def closeLevels(): global level, formatMode while (level > 0): if (formatMode == "bullets"): print "</ul>" if (formatMode == "alpha") or (formatMode == "numeric") or \ (formatMode == "roman") or (formatMode == "indent"): print "</ol>" level = level - 1 # processLine # process a single line # input: linein - a single line that may or may not have tabs at the beginning # format - a string indicating the mode to use for formatting # level - an integer between 1 and 9 that show the current level # (not to be confused with the level of the current line) # output: through standard out def processLine(linein): global level, formatMode, slides, hideComments, inBodyText, styleSheet, \ inlineStyle, div, silentdiv if (linein.lstrip() == ""): return linein = beautifyLine(linein) lineLevel = getLineLevel(linein) if ((hideComments == 0) or (lineLevel != linein.find("[") + 1)): if (lineLevel > level): # increasing depth while (lineLevel > level): if (formatMode == "indent" or formatMode == "simple"): if (inBodyText == 1): print"</p>" inBodyText = 0 elif (inBodyText == 2): print"</pre>" inBodyText = 0 elif (inBodyText == 3): print"</table>" inBodyText = 0 if not (div == 1 and lineLevel == 1): print "<ol>" else: sys.exit("Error! Unknown formatMode type") level = level + 1 elif (lineLevel < level): # decreasing depth while (lineLevel < level): if (inBodyText == 1): print"</p>" inBodyText = 0 elif (inBodyText == 2): print"</pre>" inBodyText = 0 elif (inBodyText == 3): print"</table>" inBodyText = 0 print "</ol>" level = level - 1 if (div == 1 and level == 1): if (silentdiv == 0): print'</ol>' else: silentdiv = 0 print'</div>' else: print # same depth if (div == 1 and lineLevel == 1): if (lineLevel != linein.find("!") + 1): print divName(linein) if (silentdiv == 0): print "<ol>" if (slides == 0): if (lineLevel == linein.find(" ") + 1) or \ (lineLevel == linein.find(":") + 1): if (inBodyText != 1): handleBodyText(linein, lineLevel) elif (colonStrip(linein.strip()) == ""): print "</p>" handleBodyText(linein, lineLevel) else: print colonStrip(linein.strip()), elif (lineLevel == linein.find(";") + 1): if (inBodyText != 2): handlePreformattedText(linein, lineLevel) elif (semicolonStrip(linein.strip()) == ""): print "</pre>" handlePreformattedText(linein, lineLevel) else: print semicolonStrip(linein.strip()), elif (lineLevel == linein.find("|") + 1): if (inBodyText != 3): handleTable(linein, lineLevel) elif (pipeStrip(linein.strip()) == ""): print "</table>" handleTable(linein, lineLevel) else: print handleTableRow(linein, lineLevel), elif (lineLevel == linein.find("!!!") + 1): execProgram(linein) elif (lineLevel == linein.find("!!") + 1): includeOutline(linein, lineLevel) elif (lineLevel == linein.find("!") + 1): includeFile(linein, lineLevel) else: if (inBodyText == 1): print"</p>" inBodyText = 0 elif (inBodyText == 2): print"</pre>" inBodyText = 0 elif (inBodyText == 3): print"</table>" inBodyText = 0 if (silentdiv == 0): print "<li", if (styleSheet != ""): if (lineLevel == linein.find("- ") + 1): print " class=\"LB" + str(lineLevel) + "\"", print ">" + \ dashStrip(linein.strip()), elif (lineLevel == linein.find("+ ") + 1): print " class=\"LN" + str(lineLevel) + "\"", print ">" + \ plusStrip(linein.strip()), else: print " class=\"L" + str(lineLevel) + "\"", print ">" + linein.strip(), else: silentdiv = 0 else: if (lineLevel == 1): if (linein[0] == " "): if (inBodyText == 0): handleBodyText(linein, lineLevel) else: print linein.strip(), else: print "<address>" print linein.strip(), print "</address>\n" else: if (lineLevel == linein.find(" ") + 1) or \ (lineLevel == linein.find(":") + 1): if (inBodyText == 0): handleBodyText(linein, lineLevel) else: print linein.strip(), else: if (inBodyText == 1): print"</p>" inBodyText = 0 print "<li", if (styleSheet != ""): print " class=\"LI.L" + str(lineLevel) + "\"", print ">" + linein.strip(), # flatten # Flatten a subsection of an outline. The index passed is the # outline section title. All sublevels that are only one level # deeper are indcluded in the current subsection. Then there is # a recursion for those items listed in the subsection. Exits # when the next line to be processed is of the same or lower # outline level. (lower means shallower) # input: idx - the index into the outline. The indexed line is the title. # output: adds reformatted lines to flatoutline[] def flatten(idx): if (outline[idx] == ""): return if (len(outline) <= idx): return titleline = outline[idx] titlelevel = getLineLevel(titleline) if (getLineLevel(outline[idx + 1]) > titlelevel): if (titleline[titlelevel - 1] != " "): flatoutline.append(titleline.lstrip()) exitflag = 0 while (exitflag == 0): if (idx < len(outline) - 1): idx = idx + 1 currlevel = getLineLevel(outline[idx]) if (currlevel == titlelevel + 1): if (currlevel == outline[idx].find(" ") + 1): flatoutline.append("\t " + outline[idx].lstrip()) else: flatoutline.append("\t" + outline[idx].lstrip()) elif (currlevel <= titlelevel): exitflag = 1 else: exitflag = 1 # level = titlelevel # FIXME level assigned but never used return def createCSS(): global styleSheet output = """ /* copyright notice and filename */ body { font-family: helvetica, arial, sans-serif; font-size: 10pt; } /* title at the top of the page */ H1 { font-family: helvetica, arial, sans-serif; font-size: 14pt; font-weight: bold; text-align: center; color: black; background-color: #ddddee; padding-top: 20px; padding-bottom: 20px; } H2 { font-family: helvetica, arial, sans-serif; font-size: 12pt; font-weight: bold; text-align: left; color: black; } H3 { font-family: helvetica, arial, sans-serif; font-size: 12pt; text-align: left; color: black; } H4 { font-family: helvetica, arial, sans-serif; font-size: 12pt; text-align: left; color: black; } H5 { font-family: helvetica, arial, sans-serif; font-size: 10pt; text-align: left; color: black; } /* outline level spacing */ OL { margin-left: 1.0em; padding-left: 0; padding-bottom: 8pt; } /* global heading settings */ LI { font-family: helvetica, arial, sans-serif; color: black; font-weight: normal; list-style: lower-alpha; padding-top: 4px; } /* level 1 heading overrides */ LI.L1 { font-size: 12pt; font-weight: bold; list-style: none; } /* level 2 heading overrides */ LI.L2 { font-size: 10pt; font-weight: bold; list-style: none; } /* level 3 heading overrides */ LI.L3 { font-size: 10pt; list-style: none; } /* level 4 heading overrides */ LI.L4 { font-size: 10pt; list-style: none; } /* level 5 heading overrides */ LI.L5 { font-size: 10pt; list-style: none; } /* level 6 heading overrides */ LI.L6 { font-size: 10pt; list-style: none; } /* level 7 heading overrides */ LI.L7 { font-size: 10pt; list-style: none; } /* level 1 bullet heading overrides */ LI.LB1 { font-size: 12pt; font-weight: bold; list-style: disc; } /* level 2 bullet heading overrides */ LI.LB2 { font-size: 10pt; font-weight: bold; list-style: disc; } /* level 3 bullet heading overrides */ LI.LB3 { font-size: 10pt; list-style: disc; } /* level 4 bullet heading overrides */ LI.LB4 { font-size: 10pt; list-style: disc; } /* level 5 bullet heading overrides */ LI.LB5 { font-size: 10pt; list-style: disc; } /* level 6 bullet heading overrides */ LI.LB6 { font-size: 10pt; list-style: disc; } /* level 7 bullet heading overrides */ LI.LB7 { font-size: 10pt; list-style: disc; } /* level 1 numeric heading overrides */ LI.LN1 { font-size: 12pt; font-weight: bold; list-style: decimal; } /* level 2 numeric heading overrides */ LI.LN2 { font-size: 10pt; font-weight: bold; list-style: decimal; } /* level 3 numeric heading overrides */ LI.LN3 { font-size: 10pt; list-style: decimal; } /* level 4 numeric heading overrides */ LI.LN4 { font-size: 10pt; list-style: decimal; } /* level 5 numeric heading overrides */ LI.LN5 { font-size: 10pt; list-style: decimal; } /* level 6 numeric heading overrides */ LI.LN6 { font-size: 10pt; list-style: decimal; } /* level 7 numeric heading overrides */ LI.LN7 { font-size: 10pt; list-style: decimal; } /* body text */ P { font-family: helvetica, arial, sans-serif; font-size: 9pt; font-weight: normal; color: darkgreen; } /* preformatted text */ PRE { font-family: fixed, monospace; font-size: 9pt; font-weight: normal; color: darkblue; } TABLE { margin-top: 1em; font-family: helvetica, arial, sans-serif; font-size: 12pt; font-weight: normal; border-collapse: collapse; } TH { border: 1px solid black; padding: 0.5em; background-color: #eeddee; } TD { border: 1px solid black; padding: 0.5em; background-color: #ddeeee; } CODE { background-color: yellow; } TABLE.TAB1 { margin-top: 1em; font-family: helvetica, arial, sans-serif; font-size: 12pt; font-weight: normal; border-collapse: collapse; } TABLE.TAB2 { margin-top: 1em; font-family: helvetica, arial, sans-serif; font-size: 11pt; font-weight: normal; border-collapse: collapse; } TABLE.TAB3 { margin-top: 1em; font-family: helvetica, arial, sans-serif; font-size: 10pt; font-weight: normal; border-collapse: collapse; } TABLE.TAB4 { margin-top: 1em; font-family: helvetica, arial, sans-serif; font-size: 10pt; font-weight: normal; border-collapse: collapse; } TABLE.TAB5 { margin-top: 1em; font-family: helvetica, arial, sans-serif; font-size: 10pt; font-weight: normal; border-collapse: collapse; } TABLE.TAB6 { margin-top: 1em; font-family: helvetica, arial, sans-serif; font-size: 10pt; font-weight: normal; border-collapse: collapse; """ file = open(styleSheet, "w") file.write(output) def printHeader(linein): global styleSheet, inlineStyle print """<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"s \"http://www.w3.org/TR/html4/strict.dtd\"> <html><head><title>""" + getTitleText(linein) + "</title></head>" try: file = open(styleSheet, "r") except IOError: createCSS() file = open(styleSheet, "r") if (styleSheet != "" and inlineStyle == 0): print "<link href=\"" + styleSheet + \ "\" rel=\"stylesheet\" type=\"text/css\">" if (styleSheet != "" and inlineStyle == 1): print "<style type=\"text/css\">" csslinein = file.readline() while csslinein != "": print csslinein, csslinein = file.readline() file.close() print "</style></head>" print "<body>" def printFirstLine(linein): print '''<div class="DocTitle"> <h1>%s</h1> </div> <div class="MainPage">''' % stripTitleText(linein.strip()) def printFooter(): global slides, div print "</div>" if (slides == 0 and div == 0): print "<div class=\"Footer\">" print "<hr>" print copyright print "<br>" print inputFile + "&nbsp&nbsp " + \ time.strftime("%Y/%m/%d %H:%M", time.localtime(time.time())) print "</div>" print "</body></html>" def main(): global showTitle getArgs() file = open(inputFile, "r") if (slides == 0): firstLine = beautifyLine(file.readline().strip()) printHeader(firstLine) if (showTitle == 1): printFirstLine(firstLine) linein = beautifyLine(file.readline().strip()) else: linein = firstLine while linein != "": processLine(linein) linein = file.readline() closeLevels() else: linein = beautifyLine(file.readline().strip()) outline.append(linein) linein = file.readline().strip() while linein != "": outline.append("\t" + linein) linein = file.readline().rstrip() for i in range(0, len(outline) - 1): flatten(i) printHeader(flatoutline[0]) for i in range(0, len(flatoutline)): processLine(flatoutline[i]) printFooter() file.close() if __name__ == "__main__": main() ########NEW FILE######## __FILENAME__ = otl2latex usage=""" otl2latex.py Translate a Vim Outliner file to a LaTeX document. Usage: otl2latex.py -[abp] file.otl [file.tex] -a: Output to article class -b: Output to book class -p: Output to Beamer (presentation) class (default) Author: Serge Rey <sjsrey@gmail.com> Version 0.1 (2007-01-21) """ import os,sys class Line: """Class for markup lines""" def __init__(self, content): ntabs=content.count("\t") content=content.lstrip("\t") level = ntabs - content.count("\t") self.level=level self.content = content self.markup=0 if content[0]=="|": self.markup=1 #3 lines added here self.bullet=0 if len(content) > 2 and (content[2]=='*' or content[1]=='*'): self.bullet=1 #print "%d: %s"%(self.bullet,content) class Manager: """Abstract class for LaTeX document classes""" def __init__(self, content, fileOut): self.content=content self.fileOut=open(fileOut,'w') self.parse() self.fileOut.write(self.markup) self.fileOut.close() def parse(self): self.lines=[ Line(line) for line in self.content] preambleStart=0 nl=len(self.lines) id=zip(range(nl),self.lines) level1=[i for i,line in id if line.level==0] preambleEnd=level1[1] preamble=self.lines[0:preambleEnd] self.level1=level1 preambleMarkup=[] for line in preamble: if line.content.count("@"): tmp=line.content.split("@")[1] tmp=tmp.split() env=tmp[0] content=" ".join(tmp[1:]) mu="\\%s{%s}"%(env,content) preambleMarkup.append(mu) self.preamble=preambleMarkup self.preambleLines=preamble self.documentLines=self.lines[preambleEnd:] class Beamer(Manager): """Manager for Beamer document class""" def __init__(self, content,fileOut): self.top1=""" \documentclass[nototal,handout]{beamer} \mode<presentation> { \usetheme{Madrid} \setbeamercovered{transparent} } \usepackage{verbatim} \usepackage{fancyvrb} \usepackage[english]{babel} \usepackage[latin1]{inputenc} \usepackage{times} \usepackage{tikz} \usepackage[T1]{fontenc} \usepackage{graphicx} %sjr added \graphicspath{{figures/}} \usepackage{hyperref}""" self.top2=""" % Delete this, if you do not want the table of contents to pop up at % the beginning of each subsection: \AtBeginSubsection[] { \\begin{frame}<beamer> \\frametitle{Outline} \\tableofcontents[currentsection,currentsubsection] \end{frame} } % If you wish to uncover everything in a step-wise fashion, uncomment % the following command: \\beamerdefaultoverlayspecification{<+->} \\begin{document} \\begin{frame} \\titlepage \end{frame} \\begin{frame} \\frametitle{Outline} \\tableofcontents[pausesections] % You might wish to add the option [pausesections] \end{frame} """ self.bulletLevel = 0 Manager.__init__(self, content, fileOut) def itemize(self,line): nstars=line.content.count("*") content=line.content.lstrip("|").lstrip().lstrip("*") self.currentBLevel = nstars - content.count("*") stuff=[] if self.currentBLevel == self.bulletLevel and line.bullet: mu='\\item '+line.content.lstrip("|").lstrip().lstrip("*") elif line.bullet and self.currentBLevel > self.bulletLevel: self.bulletLevel += 1 stuff.append("\\begin{itemize}\n") mu='\\item '+line.content.lstrip("|").lstrip().lstrip("*") elif self.currentBLevel < self.bulletLevel and line.bullet: self.bulletLevel -= 1 stuff.append("\\end{itemize}\n") mu='\\item '+line.content.lstrip("|").lstrip().lstrip("*") elif self.currentBLevel < self.bulletLevel: self.bulletLevel -= 1 stuff.append("\\end{itemize}\n") mu=line.content.lstrip("|") else: panic() return stuff,mu def parse(self): Manager.parse(self) #print self.content #print self.lines #print self.level1 #for info in self.preamble: # print info # do my own preamble field=("author ","instituteShort ","dateShort ","date ","subtitle ", "title ", "institute ", "titleShort ") pattern=["@"+token for token in field] f=zip(field,pattern) d={} for field,pattern in f: t=[line.content for line in self.preambleLines if line.content.count(pattern)] if t: d[field]= t[0].split(pattern)[1].strip() else: d[field]="" preamble="\n\n\\author{%s}\n"%d['author '] preamble+="\\institute[%s]{%s}\n"%(d['instituteShort '],d['institute ']) preamble+="\\title[%s]{%s}\n"%(d['titleShort '],d['title ']) preamble+="\\subtitle{%s}\n"%(d['subtitle ']) preamble+="\\date[%s]{%s}\n"%(d['dateShort '],d['date ']) print self.preamble self.preamble=preamble body=[] prev=0 frameOpen=0 blockOpen=0 frameCount=0 blockCount=0 for line in self.documentLines: if line.level==0: for i in range(0,self.bulletLevel): self.bulletLevel -= 1 body.append("\\end{itemize}\n") if blockOpen: body.append("\\end{block}") blockOpen=0 if frameOpen: body.append("\\end{frame}") frameOpen=0 mu="\n\n\n\\section{%s}"%line.content.strip() elif line.level==1: for i in range(0,self.bulletLevel): self.bulletLevel -= 1 body.append("\\end{itemize}\n") if blockOpen: body.append("\\end{block}") blockOpen=0 if frameOpen: body.append("\\end{frame}") frameOpen=0 mu="\n\n\\subsection{%s}"%line.content.strip() elif line.level==2: # check if this frame has blocks or is nonblocked if line.markup: if line.bullet or self.bulletLevel: stuff,mu=self.itemize(line) if len(stuff) > 0: for i in stuff: body.append(i) else: mu=line.content.lstrip("|") else: for i in range(0,self.bulletLevel): self.bulletLevel -= 1 body.append("\\end{itemize}\n") if blockOpen: body.append("\\end{block}") blockOpen=0 if frameOpen: body.append("\\end{frame}") else: frameOpen=1 # check for verbatim here tmp=line.content.strip() if tmp.count("@vb"): tmp=tmp.split("@")[0] mu="\n\n\\begin{frame}[containsverbatim]\n\t\\frametitle{%s}\n"%tmp else: mu="\n\n\\begin{frame}\n\t\\frametitle{%s}\n"%tmp frameCount+=1 elif line.level==3: # check if it is a block or body content if line.markup: if line.bullet or self.bulletLevel: stuff,mu=self.itemize(line) if len(stuff) > 0: for i in stuff: body.append(i) else: mu=line.content.lstrip("\t") mu=mu.lstrip("|") else: for i in range(0,self.bulletLevel): self.bulletLevel -= 1 body.append("\\end{itemize}\n") #block title if blockOpen: body.append("\\end{block}") else: blockOpen=1 mu="\n\\begin{block}{%s}\n"%line.content.strip() blockCount+=1 else: mu="" body.append(mu) for i in range(0,self.bulletLevel): self.bulletLevel -= 1 body.append("\\end{itemize}\n") if blockOpen: body.append("\\end{block}") if frameOpen: body.append("\\end{frame}") self.body=" ".join(body) self.markup=self.top1+self.preamble+self.top2 self.markup+=self.body self.markup+="\n\\end{document}\n" print self.markup # Process command line arguments args = sys.argv nargs=len(args) dispatch={} dispatch['beamer']=Beamer inputFileName=None outputFileName=None def printUsage(): print usage sys.exit() if nargs==1: printUsage() else: docType='beamer' options=args[1] if options.count("-"): if options.count("a"): docType='article' elif options.count("b"): docType='book' if nargs==2: printUsage() elif nargs==3: inputFileName=args[2] elif nargs==4: inputFileName=args[2] outputFileName=args[3] else: printUsage() elif nargs==2: inputFileName=args[1] elif nargs==3: inputFileName=args[1] outputFileName=args[3] else: printUsage() # Dispatch to correct document class manager fin=open(inputFileName,'r') content=fin.readlines() fin.close() dispatch[docType](content,outputFileName) ########NEW FILE######## __FILENAME__ = otl2ooimpress #!/usr/bin/python2 # otl2ooimpress.py # needs otl2ooimpress.sh to work in an automated way ############################################################################# # # Tool for Vim Outliner files to Open Office Impress files. # Copyright (C) 2003 by Noel Henson, all rights reserved. # # This tool is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Library General Public # License along with this library; if not, see # <http://www.gnu.org/licenses/>. # ############################################################################# # ALPHA VERSION!!! ########################################################################### # Basic function # # This program accepts VO outline files and converts them # to the zipped XML files required by Open Office Impress. # # 10 outline levels are supported. These loosely correspond to the # HTML H1 through H9 tags. # ########################################################################### # include whatever mdules we need import sys ########################################################################### # global variables level = 0 inputFile = "" outline = [] flatoutline = [] pageNumber = 0 inPage = 0 debug = 0 ########################################################################### # function definitions # usage # print the simplest form of help # input: none # output: simple command usage is printed on the console def showUsage(): print print "Usage:" print "otl2ooimpress.py [options] inputfile > outputfile" print "" print "output is on STDOUT" print # getArgs # Check for input arguments and set the necessary switches # input: none # output: possible console output for help, switch variables may be set def getArgs(): global inputfile, debug if (len(sys.argv) == 1): showUsage() sys.exit()() else: for i in range(len(sys.argv)): if (i != 0): if (sys.argv[i] == "-d"): debug = 1 # test for debug flag elif (sys.argv[i] == "-?"): # test for help flag showUsage() # show the help sys.exit() # exit elif (sys.argv[i] == "--help"): showUsage() sys.exit() elif (sys.argv[i] == "-h"): showUsage() sys.exit() elif (sys.argv[i][0] == "-"): print "Error! Unknown option. Aborting" sys.exit() else: # get the input file name inputfile = sys.argv[i] # getLineLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the beginning # output: returns a number 1 is the lowest def getLineLevel(linein): strstart = linein.lstrip() # find the start of text in line x = linein.find(strstart) # find the text index in the line n = linein.count("\t", 0, x) # count the tabs return(n + 1) # return the count + 1 (for level) # getLineTextLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the beginning # output: returns a number 1 is the lowest def getLineTextLevel(linein): strstart = linein.lstrip() # find the start of text in line x = linein.find(strstart) # find the text index in the line n = linein.count("\t", 0, x) # count the tabs n = n + linein.count(" ", 0, x) # count the spaces return(n + 1) # return the count + 1 (for level) # colonStrip(line) # stip a leading ':', if it exists # input: line # output: returns a string with a stipped ':' def colonStrip(line): if (line[0] == ":"): return line[1:].lstrip() else: return line # processLine # process a single line # input: linein - a single line that may or may not have tabs at the beginning # level - an integer between 1 and 9 that show the current level # (not to be confused with the level of the current line) # output: through standard out def processLine(linein): global inPage, pageNumber if (linein.lstrip() == ""): print return if (getLineLevel(linein) == 1): if (inPage == 1): print '</draw:text-box></draw:page>' inPage = 0 pageNumber += 1 outstring = '<draw:page draw:name="' outstring += 'page' outstring += str(pageNumber) outstring += '" draw:style-name="dp1" draw:id="1" ' + \ 'draw:master-page-name="Default" ' + \ 'presentation:presentation-page-layout-name="AL1T0">' print outstring outstring = '<draw:text-box presentation:style-name="pr1" ' + \ 'draw:layer="layout" svg:width="23.911cm" ' + \ 'svg:height="3.508cm" svg:x="2.057cm" svg:y="1.0cm" ' + \ 'presentation:class="title">' print outstring outstring = '<text:p text:style-name="P1">' outstring += linein.lstrip() outstring += "</text:p></draw:text-box>" print outstring outstring = '<draw:text-box presentation:style-name="pr1" ' + \ 'draw:layer="layout" svg:width="23.911cm" ' + \ 'svg:height="3.508cm" svg:x="2.057cm" svg:y="5.38cm" ' + \ 'presentation:class="subtitle">' print outstring inPage = 1 else: outstring = '<text:p text:style-name="P1">' outstring += linein.lstrip() outstring += '</text:p>' print outstring # flatten # Flatten a subsection of an outline. The index passed is the outline section # title. All sublevels that are only one level deeper are indcluded in the # current subsection. Then there is a recursion for those items listed in the # subsection. Exits when the next line to be processed is of the same or lower # outline level. # (lower means shallower) # input: idx - the index into the outline. The indexed line is the title. # output: adds reformatted lines to flatoutline[] def flatten(idx): if (outline[idx] == ""): return if (len(outline) <= idx): return titleline = outline[idx] titlelevel = getLineLevel(titleline) if (getLineLevel(outline[idx + 1]) > titlelevel): if (titleline[titlelevel - 1] != " "): flatoutline.append(titleline.lstrip()) exitflag = 0 while (exitflag == 0): if (idx < len(outline) - 1): idx = idx + 1 currlevel = getLineLevel(outline[idx]) if (currlevel == titlelevel + 1): if (currlevel == outline[idx].find(" ") + 1): flatoutline.append("\t " + outline[idx].lstrip()) else: flatoutline.append("\t" + outline[idx].lstrip()) elif (currlevel <= titlelevel): exitflag = 1 else: exitflag = 1 return def printHeader(linein): print'''<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE office:document-content PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "office.dtd"> <office:document-content xmlns:office="http://openoffice.org/2000/office" xmlns:style="http://openoffice.org/2000/style" xmlns:text="http://openoffice.org/2000/text" xmlns:table="http://openoffice.org/2000/table" xmlns:draw="http://openoffice.org/2000/drawing" xmlns:fo="http://www.w3.org/1999/XSL/Format" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:number="http://openoffice.org/2000/datastyle" xmlns:presentation="http://openoffice.org/2000/presentation" xmlns:svg="http://www.w3.org/2000/svg" xmlns:chart="http://openoffice.org/2000/chart" xmlns:dr3d="http://openoffice.org/2000/dr3d" xmlns:math="http://www.w3.org/1998/Math/MathML" xmlns:form="http://openoffice.org/2000/form" xmlns:script="http://openoffice.org/2000/script" office:class="presentation" office:version="1.0"> <office:script/> <office:body>''' def printFooter(): print '</draw:text-box></draw:page>' print'</office:body>' def main(): getArgs() file = open(inputFile, "r") linein = file.readline().strip() outline.append(linein) linein = file.readline().strip() while linein != "": outline.append("\t" + linein) linein = file.readline().rstrip() for i in range(0, len(outline) - 1): flatten(i) printHeader(flatoutline[0]) for i in range(0, len(flatoutline)): processLine(flatoutline[i]) printFooter() file.close() main() ########NEW FILE######## __FILENAME__ = otl2table #!/usr/bin/python2 # otl2table.py # convert a tab-formatted outline from VIM to tab-delimited table # # Copyright (c) 2004 Noel Henson All rights reserved # # ALPHA VERSION!!! ########################################################################### # Basic function # # This program accepts text outline files and converts them # the tab-delimited text tables. # This: # Test # Dog # Barks # Howls # Cat # Meows # Yowls # Becomes this: # Test Dog Barks # Test Dog Howls # Test Cat Meows # Test Cat Yowls # # This will make searching for groups of data and report generation easier. # ########################################################################### # include whatever mdules we need import sys from string import * #from time import * ########################################################################### # global variables level = 0 inputFile = "" formatMode = "tab" noTrailing = 0 columns = [] ########################################################################### # function definitions # usage # print the simplest form of help # input: none # output: simple command usage is printed on the console def showUsage(): print print "Usage:" print "otl2table.py [options] inputfile > outputfile" print "Options" print " -n Don't include trailing columns." print " -t type Specify field separator type." print " Types:" print " tab - separate fields with tabs (default)" print " csv - separate fields with ," print " qcsv - separate fields with \",\"" print " bullets - uses HTML tags <ul> and <li>" print "output is on STDOUT" print # getArgs # Check for input arguments and set the necessary switches # input: none # output: possible console output for help, switch variables may be set def getArgs(): global inputfile, debug, noTrailing, formatMode if (len(sys.argv) == 1): showUsage() sys.exit()() else: for i in range(len(sys.argv)): if (i != 0): if (sys.argv[i] == "-d"): debug = 1 # test for debug flag if (sys.argv[i] == "-n"): noTrailing = 1 # test for noTrailing flag elif (sys.argv[i] == "-?"): # test for help flag showUsage() # show the help sys.exit() # exit elif (sys.argv[i] == "--help"): showUsage() sys.exit() elif (sys.argv[i] == "-h"): showUsage() sys.exit() elif (sys.argv[i] == "-t"): # test for the type flag formatMode = sys.argv[i+1] # get the type i = i + 1 # increment the pointer elif (sys.argv[i][0] == "-"): print "Error! Unknown option. Aborting" sys.exit() else: # get the input file name inputfile = sys.argv[i] # getLineLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the beginning # output: returns a number 1 is the lowest def getLineLevel(linein): strstart = lstrip(linein) # find the start of text in line x = find(linein,strstart) # find the text index in the line n = count(linein,"\t",0,x) # count the tabs return(n+1) # return the count + 1 (for level) # getLineTextLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the beginning # output: returns a number 1 is the lowest def getLineTextLevel(linein): strstart = lstrip(linein) # find the start of text in line x = find(linein,strstart) # find the text index in the line n = count(linein,"\t",0,x) # count the tabs n = n + count(linein," ",0,x) # count the spaces return(n+1) # return the count + 1 (for level) # closeLevels # print the assembled line # input: columns - an array of 10 lines (for 10 levels) # level - an integer between 1 and 9 that show the current level # (not to be confused with the level of the current line) # noTrailing - don't print trailing, empty columns # output: through standard out def closeLevels(): global level,columns,noTrailing,formatMode if noTrailing == 1 : colcount = level else: colcount = 10 if formatMode == "tab": for i in range(1,colcount+1): print columns[i] + "\t", print elif formatMode == "csv": output = "" for i in range(1,colcount): output = output + columns[i] + "," output = output + columns[colcount] print output elif formatMode == "qcsv": output = "\"" for i in range(1,colcount): output = output + columns[i] + "\",\"" output = output + columns[colcount] + "\"" print output for i in range(level+1,10): columns[i] = "" # processLine # process a single line # input: linein - a single line that may or may not have tabs at the beginning # format - a string indicating the mode to use for formatting # level - an integer between 1 and 9 that show the current level # (not to be confused with the level of the current line) # output: through standard out def processLine(linein): global level, noTrailing, columns if (lstrip(linein) == ""): return lineLevel = getLineLevel(linein) if (lineLevel > level): columns[lineLevel] = lstrip(rstrip(linein)) level = lineLevel elif (lineLevel == level): closeLevels() columns[lineLevel] = lstrip(rstrip(linein)) else: closeLevels() level = lineLevel columns[lineLevel] = lstrip(rstrip(linein)) def main(): global columns getArgs() file = open(inputfile,"r") for i in range(11): columns.append("") linein = lstrip(rstrip(file.readline())) while linein != "": processLine(linein) linein = file.readline() closeLevels() file.close() main() ########NEW FILE######## __FILENAME__ = otl2tags #!/usr/bin/python2 # otl2tags.py # Convert an OTL file to any tags-based file using config user- # definable configuration files. HTML, OPML, XML, LATEX and # many, many others should be easily supportables. # # Copyright (c) 2005-2010 Noel Henson All rights reserved ########################################################################### # Basic function # # This program accepts text outline files in Vim Outliners .otl format # and converts them to a tags-based equivalent ########################################################################### # include whatever mdules we need import sys from ConfigParser import ConfigParser import re ########################################################################### # global variables config = ConfigParser() # configuration linecount = 0 # outline size in lines parents = [] # parent stack, (linenum, enum) enum is an order numer v = {} # variable dictionary for substitution outline = [] # line tuples (value, indent) output = [] # output outline escapeDict = {} # dictionary of character escape codes debug = 0 inputfile = "" ########################################################################### # arugment, help and debug functions # usage # print debug statements # input: string # output: string printed to standard out def dprint(*vals): global debug if debug != 0: print >> sys.stderr, vals # usage # print the simplest form of help # input: none # output: simple command usage is printed on the console def showUsage(): print """ Usage: otl2table.py [options] inputfile Options -c config-file -d debug --help show help output filenames are based on the input file name and the config file """ # getArgs # Check for input arguments and set the necessary switches # input: none # output: possible console output for help, switch variables may be set def getArgs(): global inputfile, debug, noTrailing, formatMode, config if (len(sys.argv) == 1): showUsage() sys.exit()() else: for i in range(len(sys.argv)): if (i != 0): if (sys.argv[i] == "-c"): # test for the type flag config.read(sys.argv[i + 1]) # read the config i = i + 1 # increment the pointer elif (sys.argv[i] == "-d"): debug = 1 elif (sys.argv[i] == "-?"): # test for help flag showUsage() # show the help sys.exit() # exit elif (sys.argv[i] == "--help"): showUsage() sys.exit() elif (sys.argv[i] == "-h"): showUsage() sys.exit() elif (sys.argv[i][0] == "-"): print "Error! Unknown option. Aborting" sys.exit() else: # get the input file name inputfile = sys.argv[i] # printConfig # Debugging routine to print the parsed configuration file # input: none # output: configuration data printed to console def printConfig(): global config print >> sys.stderr, "Config ---------------------------------------------" list = config.sections() for i in range(len(list)): print >> sys.stderr print >> sys.stderr, list[i] for x in config.options(list[i]): if (x != "name") and (x != "__name__"): print >> sys.stderr, x, ":", config.get(list[i], x) print >> sys.stderr, "----------------------------------------------------" print >> sys.stderr ########################################################################### # low-level outline processing functions # indentLevel # get the level of the line specified by linenum # input: line # output: returns the level number, 1 is the lowest def indentLevel(line): strstart = line.lstrip() # find the start of text in line x = line.find(strstart) # find the text index in the line n = line.count("\t", 0, x) # count the tabs n = n + line.count(" ", 0, x) # count the spaces return(n + 1) # return the count + 1 (for level) # stripMarker # return a line without its marker and leading and trailing whitespace # input: line, marker # output: stripped line def stripMarker(line, marker): return line.lstrip(marker).strip() # getLineType # return the type of the line specified by linenum # input: line # output: returns text, usertext, table, preftext, etc. def getLineType(line): if (line[0] == ':'): return 'text' elif (line[0] == ';'): return 'preftext' elif (line[0] == '>'): return 'usertext' elif (line[0] == '<'): return 'userpreftext' elif (line[0] == '|'): return 'table' elif (line[0] == '-'): return 'bulletheading' elif (line[0] == '+'): return 'numberheading' # elif (line[0] == '['): # return 'checkboxheading' elif (line[0] == ''): return 'blank' else: return 'heading' # getChildren # return a list of line numbers for children of the passed line number # input: linenum # output: a (possibly) empty list of children def getChildren(linenum): global outline, linecount children = [] mylevel = outline[linenum][1] childlevel = mylevel + 1 linenum = linenum + 1 while (linenum < linecount) and (outline[linenum][1] > mylevel): if (outline[linenum][1] == childlevel): children.append(linenum) linenum = linenum + 1 return children # subTags # substitute variables in output expressions # input: section - section from config # input: type - object type (to look up in config) # input: - substitution item (by name) from config array # output: string - the substitution expression with variables inserted def subTags(section, type): global config, v, parents varlist = v.keys() pattern = config.get(section, type) if len(parents) > 0: v["%p"] = str(parents[len(parents) - 1]) for var in varlist: x = "" x = var y = "" y = v.get(var) pattern = re.sub(x, y, pattern) return pattern #getBlock #return a list of lines that match a mark (like : or ;) #input: line number #output: list of stripped lines def getBlock(linenum, marker): global outline, linecount lines = [] line = outline[linenum][0] while line[0] == marker: lines.append(stripMarker(line, marker)) linenum = linenum + 1 if linenum == linecount: break line = outline[linenum][0] return lines #getUnstrippedBlock #return a list of lines that match a mark (like : or ;) #input: line number #output: list of stripped lines def getUnstrippedBlock(linenum, marker): global outline, linecount lines = [] line = outline[linenum][0] while line[0] == marker: lines.append(line) linenum = linenum + 1 if linenum == linecount: break line = outline[linenum][0] return lines ########################################################################### # embedded object processing functions # buildEscapes # construct the dictionary for escaping special characters # intput: config:escapes # output: filled escapes dictionary def buildEscapes(): escapes = config.get("Document", "escapes") if len(escapes): list = escapes.split(" ") for pair in list: key, value = pair.split(",") escapeDict[key] = value # charEscape # escape special characters # input: line # output: modified line def charEscape(line): return "".join(escapeDict.get(c, c) for c in line) # getURL # if there is a url, [url text], return the extracted link, url and value # input: line # output: link, url, text def getURL(line): tags = [] for tag in line.split("]"): tags.append(tag.split("[")) for tag in tags: if len(tag) > 1 and re.search(" ", tag[1]): link = tag[1] url, text = link.split(" ", 1) link = "[" + tag[1] + "]" return link, url, text # return link.group(0), url, text # else: # return None, None, None return None, None, None def handleURL(line): link, url, text = getURL(line) if link is None: return re.replace(line, "[url]", "") v["%u"] = url v["%v"] = text text = subTags("URLs", "url") line = re.replace(line, link, text) url = subTags("URLs", "url-attr") line = re.replace(line, "[url]", url) return line ########################################################################### # outline header processing functions # all outline object processors accept and output the following: # input: linenum, enum # output: print the output for each object def handleHeading(linenum, enum): global outline, parents line = outline[linenum][0] # url handling # extract url data from line # replace url object in line # subTags line # replace url attribute marker v["%%"] = line v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) children = getChildren(linenum) if enum == 1: output.append(subTags("Headings", "before-headings")) if children: output.append(subTags("Headings", "branch-heading")) parents.append([linenum, enum]) handleObjects(children) parents.pop() output.append(subTags("Headings", "after-headings")) else: output.append(subTags("Headings", "leaf-heading")) def handleBulleted(linenum, enum): global outline, parents v["%%"] = outline[linenum][0] v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) children = getChildren(linenum) if enum == 1: output.append(subTags("Headings", "before-bulleted-headings")) if children: output.append(subTags("Headings", "bulleted-branch-heading")) parents.append([linenum, enum]) handleObjects(children) parents.pop() output.append(subTags("Headings", "after-bulleted-headings")) else: output.append(subTags("Headings", "bulleted-leaf-heading")) def handleNumbered(linenum, enum): global outline, parents v["%%"] = outline[linenum][0] v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) children = getChildren(linenum) if enum == 1: output.append(subTags("Headings", "before-numbered-headings")) if children: output.append(subTags("Headings", "numbered-branch-heading")) parents.append([linenum, enum]) handleObjects(children) parents.pop() output.append(subTags("Headings", "after-numbered-headings")) else: output.append(subTags("Headings", "numbered-leaf-heading")) ########################################################################### # outline text block processing functions # all outline object processors accept and output the following: # input: linenum, enum # output: print the output for each object def handleText(linenum, enum): global outline, parents if enum != 1: return # only execute for first call v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) list = getBlock(linenum, ':') output.append(subTags("Text", "before")) lines = "" for line in list: if line == "": lines = lines + config.get("Text", "paragraph-sep") else: lines = lines + line + config.get("Text", "line-sep") v["%%"] = lines output.append(subTags("Text", "text")) output.append(subTags("Text", "after")) def handleUserText(linenum, enum): global outline, parents if enum != 1: return # only execute for first call v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) list = getBlock(linenum, '>') output.append(subTags("UserText", "before")) lines = "" for line in list: if line == "": lines = lines + config.get("UserText", "paragraph-sep") else: lines = lines + line + config.get("UserText", "line-sep") v["%%"] = lines.strip() # remove a possible extra separator output.append(subTags("UserText", "text")) output.append(subTags("UserText", "after")) def handlePrefText(linenum, enum): global outline, parents if enum != 1: return # only execute for first call v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) list = getBlock(linenum, ';') output.append(subTags("PrefText", "before")) lines = "" for line in list: if line == "": lines = lines + config.get("PrefText", "paragraph-sep") else: lines = lines + line + config.get("PrefText", "line-sep") v["%%"] = lines.strip() # remove a possible extra separator output.append(subTags("PrefText", "text")) output.append(subTags("PrefText", "after")) def handleUserPrefText(linenum, enum): global outline, parents if enum != 1: return # only execute for first call v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) list = getBlock(linenum, '<') output.append(subTags("UserPrefText", "before")) lines = "" for line in list: if line == "": lines = lines + config.get("UserPrefText", "paragraph-sep") else: lines = lines + line + config.get("UserPrefText", "line-sep") v["%%"] = lines.strip() # remove a possible extra separator output.append(subTags("UserPrefText", "text")) output.append(subTags("UserPrefText", "after")) ########################################################################### # outline table processing functions # isAlignRight # return flag # input: col, a string def isAlignRight(col): l = len(col) if (col[0:2] == " ") and (col[l - 2:l] != " "): return 1 else: return 0 # isAlignLeft # return flag # input: col, a string def isAlignLeft(col): l = len(col) if (col[0:2] != " ") and (col[l - 2:l] == " "): return 1 else: return 0 # isAlignCenter # return flag # input: col, a string def isAlignCenter(col): l = len(col) if (col[0:2] == " ") and (col[l - 2:l] == " "): return 1 else: return 0 # handleHeaderRow # process a non-header table row # input: row # output: print the output for each object def handleHeaderRow(row): global outline, parents row = row.rstrip("|").lstrip("|") columns = row.split("|") output.append(subTags("Tables", "before-table-header")) for col in columns: v["%%"] = col.strip() if isAlignCenter: output.append(subTags("Tables", "table-header-column-center")) elif isAlignCenter: output.append(subTags("Tables", "table-header-column-center")) elif isAlignCenter: output.append(subTags("Tables", "table-header-column-center")) else: output.append(subTags("Tables", "table-header-column")) output.append(subTags("Tables", "after-table-header")) # handleRow # process a non-header table row # input: row # output: print the output for each object def handleRow(row): global outline, parents if row[0:2] == "||": handleHeaderRow(row) return row = row.rstrip("|").lstrip("|") columns = row.split("|") output.append(subTags("Tables", "before-table-row")) for col in columns: v["%%"] = col.strip() if isAlignCenter: output.append(subTags("Tables", "table-column-center")) elif isAlignLeft: output.append(subTags("Tables", "table-column-left")) elif isAlignRight: output.append(subTags("Tables", "table-column-right")) else: output.append(subTags("Tables", "table-column")) output.append(subTags("Tables", "after-table-row")) # handleTable # process a table # input: linenum, enum # output: print the output for each object def handleTable(linenum, enum): global outline, parents if enum != 1: return # only execute for first call v["%l"] = str(outline[linenum][1]) v["%n"] = str(linenum) v["%c"] = str(enum) list = getUnstrippedBlock(linenum, '|') output.append(subTags("Tables", "before")) for row in list: handleRow(row) output.append(subTags("Tables", "after")) ########################################################################### # outline wrapper processing functions # addPreamble # create the 'header' for the output document # input: globals # output: standard out def addPreamble(): global outline, v v["%%"] = "" output.append(subTags("Document", "preamble")) # addPostamble # create the 'header' for the output document # input: globals # output: standard out def addPostamble(): global outline, v v["%%"] = "" output.append(subTags("Document", "postamble")) ########################################################################### # outline tree fuctions # handleObject # take an object and invoke the appropriate fuction to precess it # input: linenum, enum (enum is the child order number of a parent) # output: print the output of a object def handleObject(linenum, enum): global outline, linecount obj = getLineType(outline[linenum][0]) if obj == 'heading': handleHeading(linenum, enum) elif obj == 'bulled': handleBulleted(linenum, enum) elif obj == 'numbered': handleNumbered(linenum, enum) elif obj == 'text': handleText(linenum, enum) elif obj == 'usertext': handleUserText(linenum, enum) elif obj == 'preftext': handlePrefText(linenum, enum) elif obj == 'userpreftext': handleUserPrefText(linenum, enum) elif obj == 'table': handleTable(linenum, enum) else: print print "Error: unknown line type @ ", linenum sys.exit(1) # handleObjects # take an object list and invoke the appropriate fuctions to precess it # input: linenum # output: print the output of a object def handleObjects(objs): for i in range(len(objs)): handleObject(objs[i], i + 1) ########################################################################### # file functions # readFile # read the selected file into lines[] # input: filename to be loaded # output: a loaded-up lines[] def readFile(inputfile): global outline, linecount, config file = open(inputfile, "r") linein = file.readline() while linein != "": indent = indentLevel(linein) line = charEscape(linein.strip()) outline.append([line, indent]) linein = file.readline() file.close outline[0][1] = 0 # set the first line to level 0 linecount = len(outline) ########################################################################### # Main Program Loop def main(): global outline, inputfile, linecount # get the arguments getArgs() # constuct the escapes dictionary buildEscapes() # read the input file readFile(inputfile) # get the title v["%t"] = outline[0][0].strip() # construct the initial data # parsing headings, text and tables # but not parsing links or images addPreamble() if config.get("Document", "first-is-node") == "true": objs = [0] else: objs = getChildren(0) handleObjects(objs) addPostamble() # handle embeded objects # parsing and constructing links, images and other embedded objects for i in range(len(output)): output[i] = handleURL(output[i]) # output the final data for line in output: if line.strip() != "": print line.strip() main() ########NEW FILE######## __FILENAME__ = otlgrep #!/usr/bin/python2 # otlgrep.py # grep an outline for a regex and return the branch with all the leaves. # # Copyright 2005 Noel Henson All rights reserved ########################################################################### # Basic function # # This program searches an outline file for a branch that contains # a line matching the regex argument. The parent headings (branches) # and the children (sub-branches and leaves) of the matching headings # are returned. # # Examples # # Using this outline: # # Pets # Indoor # Cats # Sophia # Hillary # Rats # Finley # Oliver # Dogs # Kirby # Outdoor # Dogs # Kirby # Hoover # Goats # Primrose # Joey # # a grep for Sophia returns: # # Indoor # Cats # Sophia # # a grep for Dogs returns: # # Indoor # Dogs # Kirby # Hoover # Outdoor # Dogs # Kirby # Hoover # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ########################################################################### # include whatever mdules we need import sys import re ########################################################################### # global variables debug = 0 ignorecase = 0 pattern = "" inputfiles = [] ########################################################################### # function definitions# usage # # print debug statements # input: string # output: string printed to standard out def dprint(*vals): global debug if debug != 0: print vals # usage # print the simplest form of help # input: none # output: simple command usage is printed on the console def showUsage(): print """ Usage: otlgrep.py [options] pattern [file...] Options -i Ignore case --help Show help. [file...] is zero or more files to search. Wildcards are supported. if no file is specified, input is expected on stdin. output is on STDOUT """ # getArgs # Check for input arguments and set the necessary switches # input: none # output: possible console output for help, switch variables may be set def getArgs(): global debug, pattern, inputfiles, ignorecase if (len(sys.argv) == 1): showUsage() sys.exit()() else: for i in range(len(sys.argv)): if (i != 0): if (sys.argv[i] == "-d"): debug = 1 # test for debug flag elif (sys.argv[i] == "-i"): ignorecase = 1 # test for debug flag elif (sys.argv[i] == "-?"): # test for help flag showUsage() # show the help sys.exit() # exit elif (sys.argv[i] == "--help"): showUsage() sys.exit() elif (sys.argv[i][0] == "-"): print "Error! Unknown option. Aborting" sys.exit() else: # get the input file name if (pattern == ""): pattern = sys.argv[i] else: inputfiles.append(sys.argv[i]) # getLineLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the beginning # output: returns a number 1 is the lowest def getLineLevel(linein): strstart = linein.lstrip() # find the start of text in line x = linein.find(strstart) # find the text index in the line n = linein.count("\t", 0, x) # count the tabs return(n) # return the count + 1 (for level) # processFile # split an outline file # input: file - the filehandle of the file we are splitting # output: output files def processFile(file): global debug, pattern, ignorecase parents = [] parentprinted = [] for i in range(10): parents.append("") parentprinted.append(0) matchlevel = 0 line = file.readline() # read the outline title # and discard it line = file.readline() # read the first parent heading while (line != ""): level = getLineLevel(line) parents[level] = line parentprinted[level] = 0 if (ignorecase == 1): linesearch = re.search(pattern, line.strip(), re.I) else: linesearch = re.search(pattern, line.strip()) if (linesearch is not None): matchlevel = level for i in range(level): # print my ancestors if (parentprinted[i] == 0): print parents[i][:-1] parentprinted[i] = 1 print parents[level][:-1] # print myself line = file.readline() while (line != "") and (getLineLevel(line) > matchlevel): print line[:-1] line = file.readline() else: line = file.readline() # main # split an outline # input: args and input file # output: output files def main(): global inputfiles, debug getArgs() if (len(inputfiles) == 0): processFile(sys.stdin) else: for i in range(len(inputfiles)): file = open(inputfiles[i], "r") processFile(file) file.close() main() ########NEW FILE######## __FILENAME__ = otlsplit #!/usr/bin/python2 # otlslit.py # split an outline into several files. # # Copyright 2005 Noel Henson All rights reserved ########################################################################### # Basic function # # This program accepts text outline files and splits them into # several smaller files. The output file names are produced from the # heading names of the parents. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/>. ########################################################################### # include whatever mdules we need import sys import re ########################################################################### # global variables debug = 0 subdir = "" level = 1 title = 0 inputfile = "" ########################################################################### # function definitions# usage # # print debug statements # input: string # output: string printed to standard out def dprint(*vals): global debug if debug != 0: print vals # usage # print the simplest form of help # input: none # output: simple command usage is printed on the console def showUsage(): print """ Usage: otlsplit.py [options] inputfile Options -l level The number of levels to split down to. The default is 1 -D dir Specifiy a target directory for the output files -t Include a title line (the parerent heading) in split files -h Show help. output is on STDOUT """ # getArgs # Check for input arguments and set the necessary switches # input: none # output: possible console output for help, switch variables may be set def getArgs(): global debug, level, inputfile, title, subdir if (len(sys.argv) == 1): showUsage() sys.exit()() else: for i in range(len(sys.argv)): if (i != 0): if (sys.argv[i] == "-d"): debug = 1 # test for debug flag elif (sys.argv[i] == "-?"): # test for help flag showUsage() # show the help sys.exit() # exit elif (sys.argv[i] == "-l"): # test for the level flag level = int(sys.argv[i + 1]) # get the level i = i + 1 # increment the pointer elif (sys.argv[i] == "-D"): # test for the subdir flag subdir = sys.argv[i + 1] # get the subdir i = i + 1 # increment the pointer elif (sys.argv[i] == "-t"): title = 1 # test for title flag elif (sys.argv[i] == "--help"): showUsage() sys.exit() elif (sys.argv[i] == "-h"): showUsage() sys.exit() elif (sys.argv[i][0] == "-"): print "Error! Unknown option. Aborting" sys.exit() else: # get the input file name inputfile = sys.argv[i] # getLineLevel # get the level of the current line (count the number of tabs) # input: linein - a single line that may or may not have tabs at the beginning # output: returns a number 1 is the lowest def getLineLevel(linein): strstart = linein.lstrip() # find the start of text in line x = linein.find(strstart) # find the text index in the line n = linein.count("\t", 0, x) # count the tabs return(n + 1) # return the count + 1 (for level) # convertSensitiveChars # get the level of the current line (count the number of tabs) # input: line - a single line that may or may not have tabs at the beginning # output: returns a string def convertSensitiveChars(line): line = re.sub('\W', '_', line.strip()) return(line) # makeFileName # make a file name from the string array provided # input: line - a single line that may or may not have tabs at the beginning # output: returns a string def makeFileName(nameParts): global debug, level, subdir filename = "" for i in range(level): filename = filename + convertSensitiveChars(nameParts[i]).strip() + "-" filename = filename[:-1] + ".otl" if subdir != "": filename = subdir + "/" + filename return(filename.lower()) # processFile # split an outline file # input: file - the filehandle of the file we are splitting # output: output files def processFile(ifile): global debug, level, title nameparts = [] for i in range(10): nameparts.append("") outOpen = 0 line = ifile.readline() # read the outline title # and discard it line = ifile.readline() # read the first parent heading dprint(level) while (line != ""): linelevel = getLineLevel(line) if (linelevel < level): if outOpen == 1: ifile.close() outOpen = 0 nameparts[linelevel] = line dprint(level, linelevel, line) else: if outOpen == 0: ofile = open(makeFileName(nameparts), "w") outOpen = 1 if title == 1: dprint("title:", title) ofile.write(nameparts[level - 1]) ofile.write(line[level:]) line = file.readline() # main # split an outline # input: args and input file # output: output files def main(): global inputfile, debug getArgs() file = open(inputfile, "r") processFile(file) file.close() main() ########NEW FILE######## __FILENAME__ = freemind #!/usr/bin/python2 ''' usage: freemind.py -o [fmt] <files>, where ofmt selects output format: {otl,mm} freemind.py -o otl <files>: Read in an freemind XML .mm file and generate a outline file compatable with vim-outliner. freemind.py -o mm <files>: Read in an otl file and generate an XML mind map viewable in freemind NOTE: Make sure that you check that round trip on your file works. Author: Julian Ryde ''' import sys import getopt import codecs import otl import xml.etree.ElementTree as et from xml.etree.ElementTree import XMLParser debug = False class Outline: # The target object of the parser depth = -1 indent = '\t' current_tag = None def start(self, tag, attrib): # Called for each opening tag. self.depth += 1 self.current_tag = tag # print the indented heading if tag == 'node' and self.depth > 1: #if 'tab' in attrib['TEXT']: #import pdb; pdb.set_trace() print (self.depth - 2) * self.indent + attrib['TEXT'] def end(self, tag): # Called for each closing tag. self.depth -= 1 self.current_tag = None def data(self, data): if self.current_tag == 'p': bodyline = data.rstrip('\r\n') bodyindent = (self.depth - 5) * self.indent + ": " #textlines = textwrap.wrap(bodytext, width=77-len(bodyindent), # break_on_hyphens=False) #for line in textlines: print bodyindent + bodyline def close(self): # Called when all data has been parsed. pass def mm2otl(*arg, **kwarg): fname = arg[0][0] file = codecs.open(fname, 'r', encoding='utf-8') filelines = file.readlines() outline = Outline() parser = XMLParser(target=outline, encoding='utf-8') parser.feed(filelines[0].encode('utf-8')) parser.close() # TODO body text with manual breaks # TODO commandline arguments for depth, maxlength etc. # TODO do not read whole file into memory? # TODO handle decreasing indent by more than one tab # TODO handle body text lines sometimes not ending with space depth = 99 def attach_note(node, textlines): et.ElementTree # Format should look like #<richcontent TYPE="NOTE"> #<html> # <head> </head> # <body> # %s # </body> #</html> #</richcontent> notenode = et.SubElement(node, 'richcontent') notenode.set('TYPE', 'NOTE') htmlnode = et.SubElement(notenode, 'html') bodynode = et.SubElement(htmlnode, 'body') for line in textlines: pnode = et.SubElement(bodynode, 'p') pnode.text = line def otl2mm(*arg, **kwarg): fname = arg[0][0] # node ID should be based on the line number of line in the # otl file for easier debugging #for lineno, line in enumerate(open(fname)): # enumerate starts at 0 I want to start at 1 # FIXME freemind.py|107| W806 local variable 'lineno' is assigned to but never used lineno = 0 mapnode = et.Element('map') mapnode.set('version', '0.9.0') topnode = et.SubElement(mapnode, 'node') topnode.set('TEXT', fname) parents = [mapnode, topnode] #left_side = True # POSITION="right" # read otl file into memory filelines = codecs.open(fname, 'r', encoding='utf-8') # first handle the body texts turn it into a list of headings # with associated body text for each one this is because the # body text especially multi-line is what makes it awkward. headings = [] bodytexts = [] for line in filelines: if otl.is_heading(line): headings.append(line) bodytexts.append([]) else: # TODO this ': ' removal should go in otl.py? bodytexts[-1].append(line.lstrip()[2:] + '\n') #import pdb; pdb.set_trace() oldheading = '' for heading, bodytext in zip(headings, bodytexts): if debug: print heading, bodytext level = otl.level(heading) oldlevel = otl.level(oldheading) if level == oldlevel: pass elif level > oldlevel: # about to go down in the hierarchy so add this line # as a parent to the stack # FIXME freemind.py|149| W802 undefined name 'node' parents.append(node) elif level < oldlevel: # about to go up in the hierarchy so remove parents from the stack leveldiff = oldlevel - level parents = parents[:-leveldiff] node = et.SubElement(parents[-1], 'node') node.set('TEXT', heading.lstrip().rstrip('\r\n')) #if len(bodytext) > 0: attach_note(node, bodytext) oldheading = heading xmltree = et.ElementTree(mapnode) xmltree.write(sys.stdout, 'utf-8') print def usage(): print "usage: %s -[mo] <files>" % (sys.argv[0]) def main(): args = sys.argv try: opts, args = getopt.getopt(sys.argv[1:], 'moh', [""]) except getopt.GetoptError, err: usage() print str(err) sys.exit(2) for o, a in opts: if o == "-m": otl2mm(args) elif o == "-o": mm2otl(args) elif o == "-h": usage() sys.exit(0) else: usage() assert False, "unhandled option: %s" % o return args if __name__ == "__main__": main() # vim: set noet : ########NEW FILE######## __FILENAME__ = freemind_outline #!/usr/bin/python2 '''Converts a freemind xml .mm file to an outline file compatable with vim outliner. Make sure that you check that round trip on your file works. Author: Julian Ryde ''' import sys from xml.etree.ElementTree import XMLParser import textwrap import codecs class Outline: # The target object of the parser depth = -1 indent = '\t' current_tag = None def start(self, tag, attrib): # Called for each opening tag. self.depth += 1 self.current_tag = tag # print the indented heading if tag == 'node' and self.depth > 1: #if 'tab' in attrib['TEXT']: #import pdb; pdb.set_trace() print (self.depth-2)*self.indent + attrib['TEXT'] def end(self, tag): # Called for each closing tag. self.depth -= 1 self.current_tag = None def data(self, data): if self.current_tag == 'p': bodyline = data.rstrip('\r\n') bodyindent = (self.depth-5)*self.indent + ": " #textlines = textwrap.wrap(bodytext, width=77-len(bodyindent), break_on_hyphens=False) #for line in textlines: print bodyindent + bodyline def close(self): # Called when all data has been parsed. pass outline = Outline() parser = XMLParser(target=outline, encoding='utf-8') fname = sys.argv[1] file = codecs.open(fname, 'r', encoding='utf-8') filelines = file.readlines(); print "filelines", type(filelines[0]), filelines[0] parser.feed(filelines[0].encode('utf-8')) parser.close() ########NEW FILE######## __FILENAME__ = otl # Some integer IDs # headings are 1, 2, 3, .... bodynowrap = -1 # ; bodywrap = 0 # : def level(line): '''return the heading level 1 for top level and down and 0 for body text''' if line.lstrip().find(':')==0: return bodywrap if line.lstrip().find(';')==0: return bodynowrap strstart = line.lstrip() # find the start of text in lin x = line.find(strstart) # find the text index in the line n = line.count("\t",0,x) # count the tabs return(n+1) # return the count + 1 (for level) def is_bodywrap(line): return level(line) == bodywrap def is_bodynowrap(line): return level(line) == bodynowrap def is_heading(line): return level(line) > 0 def is_body(line): return not is_heading(line) ########NEW FILE######## __FILENAME__ = outline_freemind #!/usr/bin/python2 '''Read in an otl file and generate an xml mind map viewable in freemind Make sure that you check that round trip on your file works. Author: Julian Ryde ''' import sys import os import xml.etree.ElementTree as et import otl import codecs fname = sys.argv[1] max_length = 40 depth = 99 debug = False # TODO body text with manual breaks # TODO commandline arguments for depth, maxlength etc. # TODO do not read whole file into memory? # TODO handle decreasing indent by more than one tab # TODO handle body text lines sometimes not ending with space otlfile = open(fname) indent = ' ' def attach_note(node, textlines): et.ElementTree # Format should look like #<richcontent TYPE="NOTE"> #<html> # <head> </head> # <body> # %s # </body> #</html> #</richcontent> notenode = et.SubElement(node, 'richcontent') notenode.set('TYPE', 'NOTE') htmlnode = et.SubElement(notenode, 'html') headnode = et.SubElement(htmlnode, 'head') bodynode = et.SubElement(htmlnode, 'body') for line in textlines: pnode = et.SubElement(bodynode, 'p') pnode.text = line # node ID should be based on the line number of line in the otl file for easier # debugging #for lineno, line in enumerate(open(fname)): # enumerate starts at 0 I want to start at 1 lineno = 0 mapnode = et.Element('map') mapnode.set('version', '0.9.0') topnode = et.SubElement(mapnode, 'node') topnode.set('TEXT', fname) parents = [mapnode, topnode] #left_side = True # POSITION="right" # read otl file into memory filelines = codecs.open(fname, 'r', encoding='utf-8') # remove those that are too deep or body text and pesky end of line characters #filelines = [line.rstrip('\r\n') for line in filelines if otl.level(line) <= depth] #filelines = [line for line in filelines if otl.is_heading(line)] # first handle the body texts turn it into a list of headings with associated # body text for each one this is because the body text especially multi-line is # what makes it awkward. headings = [] bodytexts = [] for line in filelines: if otl.is_heading(line): headings.append(line) bodytexts.append([]) else: # TODO this ': ' removal should go in otl.py? bodytexts[-1].append(line.lstrip()[2:] + '\n') #import pdb; pdb.set_trace() oldheading = '' for heading, bodytext in zip(headings, bodytexts): if debug: print heading, bodytext level = otl.level(heading) oldlevel = otl.level(oldheading) if level == oldlevel: pass elif level > oldlevel: # about to go down in the hierarchy so add this line as a parent to the # stack parents.append(node) elif level < oldlevel: # about to go up in the hierarchy so remove parents from the stack leveldiff = oldlevel - level parents = parents[:-leveldiff] node = et.SubElement(parents[-1], 'node') node.set('TEXT', heading.lstrip().rstrip('\r\n')) #if len(bodytext) > 0: attach_note(node, bodytext) oldheading = heading xmltree = et.ElementTree(mapnode) xmltree.write(sys.stdout, 'utf-8') print ########NEW FILE########
true
85feb2fc630fa3598bfd15a3debf5839b3f87571
Python
koallen/cz4071-project-1
/graph_analyzer/plot.py
UTF-8
5,477
2.671875
3
[]
no_license
import sys import matplotlib import matplotlib.pyplot as plt import matplotlib.colors as mcolors import networkx as nx import graph import pandas as pd import numpy as np import os import pickle import math def plot_curve(data, x_label, y_label, title, save_as, log=False, h_line=None, v_line=None): x = list(data.keys()) y = list(data.values()) if log: # Remove zeros for log-log plots for k in x: if k == 0 or data[k] == 0: del data[k] x = [math.log(i) for i in data.keys()] y = [math.log(i) for i in data.values()] plt.scatter(x, y, s=10) if h_line: if log: h_line = math.log(h_line) plt.axhline(h_line, color='r') if v_line: if log: v_line = math.log(v_line) plt.axvline(v_line, color='r') plt.xlabel(x_label) plt.ylabel(y_label) plt.title(title) plt.savefig(save_as) plt.show() def plot_heatmap(graph, pos, hubs, data, save_as): dataframe = pd.DataFrame(data, columns=['value']) dataframe.apply(lambda x: ((x - np.mean(x)) / (np.max(x) - np.min(x)))*225) dataframe = dataframe.reindex(graph.nodes()) # Providing a continuous color scale with cmap node_size = [] for i in (graph.nodes()): if i not in hubs: node_size.append(0.6) else: # enlarge hub size node_size.append(5) opts = { "node_color":dataframe['value'], 'node_size': node_size, #0.6, 'with_labels': False, "pos":pos, "cmap":plt.cm.plasma } nodes = nx.draw_networkx_nodes(graph, **opts) nodes.set_norm(mcolors.SymLogNorm(linthresh=0.01, linscale=1)) edges = nx.draw_networkx_edges(graph, pos, width=0.05) plt.colorbar(nodes) plt.axis('off') plt.savefig(save_as) plt.show() def plot_gragh(graph, save_dir): pos = nx.random_layout(graph) options = { 'pos': pos, 'node_color': 'black', 'node_size': 0.7, 'width': 0.05, } nx.draw(graph, **options) plt.savefig(os.path.join(save_dir, 'graph.png')) plt.show() return pos def draw_properties(graph, pos, hubs, degrees, save_dir): with open(os.path.join(save_dir, "properties.pkl"), "rb") as f: property_info_dict = pickle.load(f) degree_corr = property_info_dict["degree_correlation"] degree_distribution = property_info_dict["degree_distribution"] clustering_coef = property_info_dict["clustering_coef"] plot_curve(clustering_coef, "log(k)", "log(C(k))", "Clustering Coefficient", save_as=os.path.join(save_dir, "clustering_coef.png"), log=True, h_line=property_info_dict["avg_clustering_coef"]) plot_curve(degree_corr, "log(k)", "log(knn)", "Degree Correlation", save_as=os.path.join(save_dir, "degree_corr.png"), log=True) plot_curve(degree_distribution, "log(k)", "log(P(k))", "Degree Distribution", save_as=os.path.join(save_dir, "degree_distribution.png"), log=True, v_line=property_info_dict["avg_degree"]) bc_values = property_info_dict["bc_values"] cc_values = property_info_dict["closeness"] bc_degree = {} cc_degree = {} for i in range(len(degrees)): k = degrees[i] if cc_values[i] > 5000: continue if k not in bc_degree: bc_degree[k] = [bc_values[i]] else: bc_degree[k].append(bc_values[i]) if k not in cc_degree: cc_degree[k] = [cc_values[i]] else: cc_degree[k].append(cc_values[i]) for k in bc_degree.keys(): bc_degree[k] = sum(bc_degree[k])/float(len(bc_degree[k])) cc_degree[k] = sum(cc_degree[k])/float(len(cc_degree[k])) plot_curve(bc_degree, "log(k)", "log(bc)", "Betweenness v.s. Degree", log=True, save_as=os.path.join(save_dir, "bc_degree.png")) plot_curve(cc_degree, "log(k)", "log(cc)", "Closeness v.s. Degree", log=True, save_as=os.path.join(save_dir, "cc_degree.png")) bc_cc = {} for i in range(len(degrees)): if cc_values[i] > 5000: continue bc_cc[bc_values[i]] = cc_values[i] plot_curve(bc_cc, "log(bc)", "log(cc)", "Betweenness v.s. Closeness", log=True, save_as=(os.path.join(save_dir, "bc_cc.png"))) plot_heatmap(graph, pos, hubs, bc_values, save_as=os.path.join(save_dir, 'betweenness.png')) plot_heatmap(graph, pos, hubs, cc_values, save_as=os.path.join(save_dir,'closeness.png')) if __name__ == "__main__": if len(sys.argv) < 4: print("Usage: python plot.py /path/to/graph /path/to/analysis/result <k>") exit() k = int(sys.argv[3]) plt.rcParams["figure.figsize"] = (11, 7) nx_graph = nx.Graph() own_graph = graph.Graph(sys.argv[1]) degrees = own_graph.get_degrees() hubs = [] matplotlib.rcParams.update({'font.size': 20}) for v in own_graph.get_vertices(): if degrees[v] > k: hubs.append(v) for w in own_graph.neighbor_of(v): nx_graph.add_edge(v, w) result_dir = sys.argv[2] if nx_graph.nodes(): pos = plot_gragh(nx_graph, result_dir) draw_properties(nx_graph, pos, hubs, degrees, result_dir) else: print("There is no node satisfying your degree threshold.")
true
807fc970073592ee0b15c5a8bb9d350d3c1c3976
Python
arinanda/huffman-code-implementation-webapps
/storage/compressor/huffman/adaptive_huffman/compress.py
UTF-8
1,008
2.75
3
[]
no_license
from common import util from huffman.adaptive_huffman.adaptive_huffman import * def encode(text): encoded_text = str() root = None null = Node('null', 0) node_list = dict() for char in text: if char in node_list: encoded_text += get_code(node_list[char]) node_list[char].value += 1 else: encoded_text += get_code(null) encoded_text += '{0:08b}'.format(ord(char)) node_list[char] = insert_node(null, char) if root is None: root = null.parent update_tree(null.parent) return encoded_text def save(b, filename): with open(filename, 'wb') as output: output.write(b) def compress(filename): text = util.load_file_as_text(filename) encoded_text = encode(text) encoded_bytes = util.to_byte_array(encoded_text) output = util.get_output_filename(filename) save(encoded_bytes, output) print(util.get_compression_ratio(encoded_bytes, text))
true
9087fc34a07550700b110fb6a52c0b74c3956d2e
Python
icavrak/SmartHomeSim
/PricingProfile_Dual.py
UTF-8
797
3.0625
3
[]
no_license
import datetime from PricingProfile import PricingProfile class PricingProfile_Dual(PricingProfile): def __init__(self): self.low_price = 1.0 self.high_price = 2.0 def __init__(self, init_arguments): arg_list = init_arguments.split(", ") self.low_price = float(arg_list[0]) self.high_price = float(arg_list[1]) self.low_to_high = datetime.datetime.strptime("07:00:00", "%H:%M:%S").time() self.high_to_low = datetime.datetime.strptime("21:00:00", "%H:%M:%S").time() def getCurrentPrice(self, time): current_time = time.time() if current_time < self.low_to_high: return self.low_price if current_time > self.high_to_low: return self.low_price return self.high_price
true
4a8bb6e21e4ec579a42f10de91942d08bb8509ad
Python
jugal13/Python_Lab
/Python Lab/Programs/Program4a.py
UTF-8
146
3.625
4
[]
no_license
def Initials(name): return ''.join(list(map(lambda x:x[0],name.split()))) name=input("Enter full name: ") print("Initials are: "+Initials(name))
true
45a4ea8f7b8b928083cb873e565b513850f9f38b
Python
minhntm/algorithm-in-python
/datastructures/tree/challenge2_find_kth_maximum.py
UTF-8
933
4.125
4
[ "MIT" ]
permissive
""" Problem Statement: - Implement a function findKthMax(root,k) which will take a BST and any number “k” as an input and return kth maximum number from that tree. Output: - Returns kth maximum value from the given tree Sample Input: bst = { 6 -> 4,9 4 -> 2,5 9 -> 8,12 12 -> 10,14 } where parent -> leftChild,rightChild k = 3 Sample Output: - 10 """ from Node import Node from BinarySearchTree import BinarySearchTree def findKthMax(root, k): inorder_tree = list(inorder_traverse(root)) return inorder_tree[-k] def inorder_traverse(root): if root.leftChild: yield from inorder_traverse(root.leftChild) yield root.val if root.rightChild: yield from inorder_traverse(root.rightChild) if __name__ == "__main__": BST = BinarySearchTree(6) BST.insert(1) BST.insert(133) BST.insert(12) print(findKthMax(BST.root, 3))
true
5e415c04f92fd542da428d890bdf4dcaf70355da
Python
JordanRussell3030/Farm_Simulation
/cow_class.py
UTF-8
352
3.53125
4
[]
no_license
from animal_class import * class Cow(Animal): def __init__(self): super().__init__(1, 5, 4) self._type = "Cow" def grow(self, food, water): if food >= self._food_need and water >= self._water_need: self._weight += self._growth_rate self._days_growing += 1 self._update_status()
true
81e9a86ede649ff1a479f6061896b33b07c6a140
Python
DouglasMartins1999/WorldHunting
/database/Words.py
UTF-8
11,848
2.875
3
[]
no_license
countries = [] countries.append({ "name": "França", "categories": { "easy": [ ["Paris", "Capital francesa"], ["Euro", "Moeda em circulação na França"], ["Torre Eiffel", "Popular torre erguida na capital do país"], ["Louvre", "Museu mais popular"], ["Carrefour", "Rede de supermercados multinacional francesa"], ["Fraternidade", "Lema da Revolução Francesa: Liberdade, Igualdade e _______"], ["Guiana Francesa", "Território ultramarino na América do Sul"], ], "medium": [ ["Champs Elysee", "Popular e movimentada avenida da capital francesa"], ["Versalhes", "Berço da Revolução, cidade criada artificalmente em 1682"], ["Bonaparte", "Sobrenome do Popular Imperador Revolucionista"], ["Entente", "Triplice na qual os franceses se aliaram na I Guerra Mundial"], ["Renault", "Multinacional francesa fabricante de automóveis"], ["Triunfo", "Arco do _______, monumento na capital representando as vitórias de Napoleão"], ["Joana", "____ d’Arc, heroína e santa francesa"], ["Descartes", "Filósofo: \"Penso, logo existo\""], ["Petit Gateau", "Sobremesa composta de pequeno bolo de chocolate"], ["Macaron", "Doce arredondado em formato de biscoito"], ], "hard": [ ["Francos", "Nome como era conhecido o povo frances na antiguidade"], ["Cem Anos", "A Guerra dos _______ foi um conflito travado pela França e Inglaterra entre 1337 e 1453"], ["Luis XIV", "\"Rei Sol\", luxuoso, governou a França de 1643 a 1715"], ["Marseillaise", "La __________, hino nacional francês"], ["Bastilha", "A tomada da ________ representou o inicio da revolução"], ["Galia", "Nome pela qual a região da frança era conhecida no império Romano"], ["Monet", "Popular pintor impressionista: Claude ______"], ["Rousseau", "Jean-Jacques ________, importante filósofo"] ] } }) countries.append({ "name": "China", "categories": { "easy": [ ["Grande Muralha", "A China possui a maior construção do mundo, a _______ ________"], ["Ideografia", "Utiliza a ___________ para representar palavras e conceitos abstratos"], ["Poluicao", "Segundo país com mais _________ no mundo"], ["Pequim","______, a enorme capital da China"], ["Suina", "A carne _______ é a mais consumida entre Chineses"], ["Asia", "A China é o maior país da _____ Oriental"], ["Exercito", "O maior número de soldados do _______ encontra-se na China"] ], "medium": [ ["Economia","Possui a maior ________ do mundo"], ["Comunista","O País é governado pelo partido ________"], ["Xi Jinping", "__ ______ é como se chama o presidente deste País"], ["Wang", "O nome mais popular na China é _____"], ["Taiwan", "_____ é a Reública da China"], ["Terremoto", "O ______ mais mortal da história aconteceu em 1556 e matou 830 mil pessoas"], ["Oceano","Quase um terço da poluição do ar de San Francisco, vem da China pelo ______"], ["Eletricidade", "A China gera cerca de '70%' da sua ______ em usinas de carvão"], ["Censura", "A China tem uma das políticas de ______ mais rígidas do mundo"], ["Morcego", "O _____ é um símbolo da sorte no país"], ], "hard": [ ["Pandas", "Todos os ______ do mundo são emprestados da China"], ["Mukden", "Em 1931, os japoneses invadiram o território chinês, evento conhecido como Incidente ______"], ["Guerra Civil", "A ____ _____ entre comunistas e nacionalistas foi parcialmente interrompida em 1930"], ["Nacionalistas", "A China era ocupada por diferentes nações, como Inglaterra e França, o que motivou movimentos ________"], ["BRICS", "O país é membro do grupo _____ de economias emergentes importantes"], ["Reforma Economica", "Com a ____ ______ chinesa, milhões de trabalhadores rurais do país se mudaram para as grandes cidades"], ["Carceraria", "O país também tem a segunda maior população ______ do planeta (atrás apenas dos Estados Unidos)"], ["Filho unico", "Preocupada com seu crescimento populacional, tentou implementar uma política de planejamento familiar, chamada: política do ____ _____"] ] } }) countries.append({ "name": "África do Sul", "background": "", "categories": { "easy": [ ["Africano", "A África do Sul é um país situado na extremidade sul do continente _______"], ["Nobel", "A África do Sul tem 10 prêmios _____"], ["Sul", "A África do Sul é um país que fica localizado no extremo ___ do continente africano"], ["Nelson Mandela", "Ganhador do Prêmio Nobel e ex-presidente"], ["Apartheid", "Regime de segregação racial"], ["Leis", "As ____ de trânsito são parecidas com as brasileiras"], ["Inglês", "Idioma oficial"] ], "medium": [ ["Joanesburgo", "A maior cidade"], ["Cidade do Cabo", "Dentre suas capitais estão: _______, Pretória e Bloemfontein"], ["Capoeira", "Cultura brasileira herdada dos africanos."], ["Atlantico", "Oceano que separa o continente americano do continente africano."], ["Africano", "Continente"], ["futebol", "Principais esportes do país: Rugby, Crinquete, Surf e _____"], ["Segregacao", "Mesmo após o fim do regime apartheid, a _________ racial ainda é visível neste país"], ["Casamentos", "Durante o apartheid, uma das leis era: proibição de ___________ entre brancos e negros"] ], "hard": [ ["Mao inglesa", "Regime de trânsito vigente no País, em que se trafega na mão esquerda"], ["Economica", "País considerado a maior força _______ do continente africano."], ["Desertificacao", "Fenômeno que ocorre devido ao mau uso do solo e que vem aumentando áreas de desertos na África."], ["Nilo", "Principal rio africano"], ["República", "Nome completo da África do Sul: ______ da África do Sul"], ["Brasil", "O clima do país é semelhante ao clima do sul do _____"], ["Secas", "São um grande problema para a agricultura no sul da África"], ["Lenha", "A fonte de energia mais consumida na África para fins domésticos e manufatureiros"], ["Copa", "Décima nona edição da ____ do mundo, ocorreu de 11 de junho até 11 de julho, sedido neste país."], ["Nobel", "A literatura do país conta com vários escritores renomeados, onde alguns deles já receberam homenagens do Prêmio _____ de Literatura"] ] } }) countries.append({ "name": "Austrália", "background":"", "categories": { "easy": [ ["Indico", "A Austrália é um país continental cercado pelos oceanos ______ e Pacífico"], ["Sydney", " O país é conhecido pela ______ Opera House"], ["Outback", "Deserto interior e rede de restaurante norte-americano"], ["Canguru", "_______ animal popular da Austrália"], ["Melbourne", "Segunda cidade mais populosa do país"], ["Quente", "Clima do país"] ], "medium": [ ["Ingles", "Idioma do país"], ["Desenvolvimento", "A Austrália é reconhecida por seu _______ econômico e qualidade de vida "], ["Alto", "O país possui ____ IDH"], ["Feminino", "A Austrália foi a primeira nação independente a permitir o voto _______"], ["Colonia", "A Austrália deixou de ser ______ inglesa em 1901"], ["Futebol", "A cultura do país também é destacada no _____ australiano - que exige muito condicionamento físico dos atletas"], ["Sudeste", "A Nova Zelândia localiza-se a _______ da Austrália"], ["Turismo", "Devido ao grande número de estudantes, o país é destaque no _______"], ], "hard": [ ["Aumentar", "Devido a baixa taxa de fecundidade no país, existe um grande incentivo do governo para ______ a população local"], ["Ouro", "A Austrália exporta carne, trigo, lã e minérios como bauxita, chumbo, níquel, manganês, _______ e prata"], ["Capricornio", "A Austrália é cortada pelo Trópico de _______."], ["Gratuito", "Há transportes no país que são muito eficientes, limpos e ______"], ["Camberra", "Capital da Austrália"], ["Igualdade", "Segundo país do mundo que olhou de forma crítica para a ________ de gênero "], ["Estudantes", "Terceiro país mais procurado por ________ estrangeiros"], ["Restrito", "Por conta do grande consumo de bebida alcoólica, seu consumo é muito ______ neste país"], ["Economia", "A Segunda Guerra Mundial contribuiu para grandes mudanças na _______ do país, o que resultou em sua melhoria financeira mais tarde"], ["Coala", "Espécie da fauna australiana, que habita no alto dos eucaliptos e se alimenta de suas folhas"] ] } }) countries.append({ "name": "Brasil", "categories": { "easy": [ ["Cristo Redentor", "Uma das 7 maravilhas do mundo"], ["Salvador", "Primeira capital do país"], ["Independencia", "Comemorado em 7 de setembro"], ["Paulista", "Gentílico de São Paulo e principal avenida do estado"], ["Globo", "Maior conglomerado de mídia da américa latina"], ["Pele", "Conhecido como \"O rei do futebol\""], ["Isabel", "Princesa responsável pela abolição da escravidão"], ["Atlantico", "Oceano que banha o Brasil"], ], "medium": [ ["Marechal Deodoro", "Primeiro Presidente"], ["Manaus", "Local do maior polo industrial do país"], ["Embraer", "Fabricante nacional de aviões"], ["Feijoada", "Guisado de feijão muito popular"], ["Pedro I", "Primeiro Rei do Brasil"], ["Caatinga", "Bioma exclusivamente brasileiro, encontrado em boa parte do nordeste"], ["Niemeyer", "Oscar _______, renomado arquiteto modernista"], ["Ronaldinho", "Conhecido como \"O fenômeno\", futebolista que atuou como atacante"], ["Rondonia", "Estado cuja capital é Porto Velho"], ["Amazonas", "Estado que recebe o nome do maior rio do país"], ["Japoneses", "O Brasil abriga a maior côlonia de _______ fora do seu país"], ["Aparecida", "Padroeira do Brasil"], ["Planalto", "Palácio do _______, sede do poder executivo"], ["Bossa Nova", "Genero musical brasileiro, surgido ao fim dos anos 50"] ], "hard": [ ["ANTT", "Uma das agências reguladoras de transportes"], ["Machado de Assis", "Fundador da Academia Brasileira de Letras"], ["Portinari", "Pintor Brasileiro, autor de \"O Lavrador de Café\""], ["Guanabara", "Estado estinto em 1975, abrigava o antigo Distrito Federal"], ["Castelo Branco", "Primeiro presidente do regime militar brasileiro"], ["Paraguai", "Pais cujo Brasil, Argentina e Uruguai declaram guerra em 1864"], ["Tiradentes", "Mártir brasileiro, atuante na Inconfidência Mineira. Possui um feriado em sua homenagem."], ["Chui", "Cidade mais ao sul (meridional) do país"], ] } })
true
83ad4939afc767f8886bacf66d68e931215e4bed
Python
anandi24/PythonGames
/src/BullsAndCows/BullsAndCows.py
UTF-8
1,604
3.90625
4
[]
no_license
import pandas as pd import numpy as np import random def main(): print("Firstly, input the length of the sequence to be stored in memory") print("Secondly, keep guessing the number stored in memory. Note: Every guess should be of the same length sequence as declared in step 1") print("Keep guessing till you get all the bulls right") length = int(input('Input the length of sequence: ')) ans = generateSeq(length) bullseye = False count = 0 while(not bullseye): try: num = int(input('Enter your Guess of ' + str(length) + ' digit number:')) numList = [int(i) for i in str(num)] count +=1 #print(numList if len(numList) != length: bullseye = False else: bullseye = checkBullsEye(numList, ans) except ValueError: print("Sorry, I didn't understand that.") # better try again... Return to the start of the loop continue print("Your guess count is : " + str(count)) print("You got it right!! Congratulations") def checkBullsEye(num, ans): bulls = 0 cows = 0 bullsEye = False for i, a in zip(num, ans): if i == a: bulls +=1 elif i in ans: cows +=1 print(str(bulls) + " bulls " + str(cows) + " cows") if bulls == len(ans): bullsEye = True return bullsEye def generateSeq(n): num = random.sample(range(0, 9), n) if num[0] == 0: num = generateSeq(n) #print(num return num if __name__ == '__main__': main()
true
ff09bfde71fa3640bcebf6a19a302bed9d372adf
Python
khanhvu11/make-appointments-skill
/__init__.py
UTF-8
10,599
2.5625
3
[]
no_license
from mycroft import MycroftSkill, intent_handler from adapt.intent import IntentBuilder from mycroft.util.parse import extract_datetime from mycroft.util.time import now_local, default_timezone import caldav from caldav.elements import dav from datetime import datetime, timedelta import json import pytz from icalendar import Calendar, Event DEFAULT_TIME = now_local().replace(hour=8, minute=0, second=0) class MyCalendar: def __init__(self): self.username = "dv029" self.password = "dv029admin123" self.url = "https://" + self.username + ":" + self.password + \ "@next.social-robot.info/nc/remote.php/dav" self.saved = False self.berlin = pytz.timezone('Europe/Berlin') def getCalendars(self): # auf Nextcloud-Kalender durch Url zugreifen client = caldav.DAVClient(self.url) principal = client.principal() # alle vorhandene Kalender abholen calendars = principal.calendars() return calendars def searchForAppointment(self, calendar): """ Termin finden """ # Es gibt noch keinen gefundenen Termin apmtNotExisted = True # ab wann der Termine gesucht werden. Hier: ab der Benutzer nach nächsten Terminen fragt startOfDay = datetime.now(self.berlin) # Intervall des Suchens. Hier ist 1 Tag nextDay = startOfDay + \ timedelta(days=1) # Intervall wird in der Schleife geschoben bis Termine gefunden wird. # wenn kein Termine gefunden wird while(apmtNotExisted): # Termin wird gesucht ab 'startOfDay' bis 'nextDay' (ein Intervall) events = calendar.date_search( start=startOfDay, end=nextDay) # wenn Termine gefunden wird if len(events) > 0: # wenn Termine in einem Tag gefunden werden # dann finde den ersten Termin des Tages mit Intervall von 30 Minuten start = startOfDay end = start + timedelta(hours=0.5) while(apmtNotExisted): event = calendar.date_search(start=start, end=end) # wenn der erste Termin gefunden wird if len(event) > 0: # die Schleife aufhören und der Termin zurückgeben apmtNotExisted = False return event # wenn nicht, erhöhen sich 'start' und 'end' 30 Minuten start = end end += timedelta(hours=0.5) # wenn nicht, erhöhen sich 'startOfDay' und 'nextDay' 1 Tag startOfDay = nextDay nextDay += timedelta(days=1) def getNextAppointmentDate(self): """Information von dem Termin bekommen""" # Information des nächsten Termin nextAppointment = {} # Kalender holen calendars = self.getCalendars() if len(calendars) > 0: # Erste Kalender auswählen calendar = calendars[0] # nächter Termin finden event = self.searchForAppointment(calendar) # caldav event zu ical event ändern nextEvent = Calendar.from_ical(event[0]._data) for component in nextEvent.walk(): if component.name == "VEVENT": # Name des Termin speichern nextAppointment.update( {'Summary': component.get('summary')}) if component.get('discription') != None: # Beschreibung des Termin speichern nextAppointment.update( {'Discription': component.get('discription')}) # Anfangdatum des Termin speichern nextAppointment.update( {'Start Date': component.get('dtstart').dt.strftime('%d/%m/%Y')}) # Anfangstunde des Termin speichern nextAppointment.update( {'Start Time': component.get('dtstart').dt.astimezone(self.berlin).strftime('%H:%M')}) # Enddatum des Termin speichern nextAppointment.update( {'End Date': component.get('dtend').dt.strftime('%d/%m/%Y')}) # Endstunde des Termin speichern nextAppointment.update( {'End Time': component.get('dtend').dt.astimezone(self.berlin).strftime('%H:%M')}) return nextAppointment def saveAppointment(self, apmt, apmt_timedate): """Einen Kalendereintrag machen""" cal = Calendar() event = Event() myCal = self.getCalendars() # Information des Termin speichern event.add('summary', apmt) event.add('dtstart', apmt_timedate) event.add('dtend', apmt_timedate + timedelta(hours=1)) # event in ical-Kalender erstellen cal.add_component(event) # termin in Nextcloud schreiben myCal[0].save_event(cal) self.saved = True def eventExisted(self, dt): """einen bestimmten Termin suchen""" calendars = self.getCalendars() if len(calendars) > 0: calendar = calendars[0] # termin am bestimmten Tag event = calendar.date_search( start=dt, end=(dt + timedelta(minutes=5))) return event def deleteAppointment(self, dt): """einen Termin löschen""" calendars = self.getCalendars() if len(calendars) > 0: calendar = calendars[0] # termin am bestimmten Tag event = calendar.date_search( start=dt, end=(dt + timedelta(minutes=5))) # termin am bestimmten Tag löschen event[0].delete() print(event[0], 'was deleted') class MakeAppointments(MycroftSkill): def __init__(self): # objekt von Klasse 'myCalendar' erstellen self.myCal = MyCalendar() MycroftSkill.__init__(self) @intent_handler('next.appointments.intent') def handle_next_appointment(self, message): """Frage von dem Benutzer bekommen und akustisch sie beantworten""" # näschter Termin gefunden durch die Funktion 'getNextAppointmentDate' von Objekt 'myCal' nextAp = self.myCal.getNextAppointmentDate() # Name des Termins todo = nextAp['Summary'] # Datum des Termins dateS = nextAp['Start Date'] # Uhrzeit des Termins timeS = nextAp['Start Time'] # akustisch beantworten self.speak_dialog( 'Your next appointment is on {} at {} and is entitled {}.'.format(dateS, timeS, todo)) @intent_handler('make.appointment.intent') def add_new_appointment(self, msg=None): """ Handler zum Hinzufügen eines Termins mit einem Namen zu einem bestimmten Zeitpunkt. """ # Name des Termins appointment = msg.data.get('appointment', None) # wenn kein Name da ist if appointment is None: # Rückmelden, dass kein Name gibt return self.unnamed_appointment(msg) # die Eingabe abholen utterance = msg.data['utterance'] # Eine Datums- / Uhrzeitangabe wurde extrahiert appointment_time, _ = (extract_datetime(utterance, now_local(), self.lang, default_time=DEFAULT_TIME) or (None, None)) if appointment_time: # den Kalendereintrag machen self.myCal.saveAppointment(appointment, appointment_time) if self.myCal.saved: # bestätigen, dass den Eintrag gemacht wurde self.speak_dialog('appointments.make') else: # wenn kein Datum gibt, rückmelden self.speak_dialog('NoDate') @intent_handler('unnamed.appointment.intent') def unnamed_appointment(self, msg=None): """ Behandelt den Fall, in dem eine Uhrzeit angegeben wurde, aber kein Terminname hinzugefügt wurde.""" # die Eingabe abholen utterance = msg.data['utterance'] # Eine Datums- / Uhrzeitangabe wurde extrahiert apmt_time, _ = (extract_datetime(utterance, now_local(), self.lang, default_time=DEFAULT_TIME) or (None, None)) # nach den Terminname fragen response = self.get_response('AppointmentName') # wenn Terminname und Datum und Uhrzeit da sind if response and apmt_time: # den Kalendereintrag machen self.myCal.saveAppointment(response, apmt_time) if self.myCal.saved: # bestätigen, dass den Eintrag gemacht wurde self.speak_dialog('appointments.made') @intent_handler('deleteAppointment.intent') def remove_appointment(self, msg=None): """Entfernen Sie alle Termine für das angegebene Datum.""" # Eine Datums- / Uhrzeitangabe wurde extrahiert if 'date' in msg.data: date, _ = extract_datetime(msg.data['date'], lang=self.lang) else: date, _ = extract_datetime(msg.data['utterance'], lang=self.lang) if date: if date.time(): # schauen, ob der Termin am bestimmten Tag existiert if self.myCal.eventExisted(date): # wenn ja, nach der Bestätigung zum Löschen fragen answer = self.ask_yesno( 'confirmDelete', data={'date': date.strftime("%d/%m/%Y %H:%M")}) if answer == 'yes': # wenn die Antwort 'Ja' ist, den Entrag löschen self.myCal.deleteAppointment(date) self.speak_dialog('Your appointment on {} was removed.'.format( date.strftime("%d/%m/%Y %H:%M"))) else: # wenn kein Termin, rückmelden self.speak_dialog('noAppointment', { 'date': date.strftime("%d/%m/%Y %H:%M")}) else: # wenn kein Datum gibt, rückmelden response = self.get_response('repeatDeleteDate') if response: self.remove_appointment(response) def stop(self): self.stop_beeping() def shutdown(self): pass def create_skill(): return MakeAppointments()
true
b965e247e6b792e94b6ee0cbd0c3a4257dedede1
Python
charankk21/KittyBank
/kittyTempWork.py
UTF-8
4,713
3.109375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Wed Nov 14 06:27:57 2018 @author: Charan """ import pandas as pd transactions = pd.DataFrame() customerProfile = pd.DataFrame() def inititalizeTransaction_df(): global transactions print('Initalizing the Kitty Bank') dict2 = {'Custid':[101,102,103,104,105], 'Transactionno':[21,22,23,24,25], 'Date':['13/11/2018','13/11/2018','13/10/2018','10/11/2018','01/11/2018'], 'Txn_type':[0,1,0,1,0], 'Amount':[100000,10000,15000,5000,25000], 'Balance':[100000,10000,15000,5000,25000] } transactions=pd.DataFrame(data=dict2) def initalizeCustomers_df(): global customerProfile dict1 = {'Custid':[101,102,103,104,105,106], 'Name':['Swetha','Swecha','Susmita','Sitara','Samanvi','Shlok'], 'Age':[20,22,25,21,20,29], 'City':['Hyd','Bng','Che','Kol','Coa','Goa'], 'Gender':['F','F','F','F','F','M'] } customerProfile=pd.DataFrame(data=dict1) def displayCustomerProfile(): print('displayCustomerProfile') customerId = input('please enter your customerId :') print(customerId) for x in range(0,len(customerProfile)): if(customerProfile.iloc[x].loc['Custid']==int(customerId)): print('Customer Name is : {} and his balance is : {}'.format(customerProfile.iloc[x].loc['Name'],transactions.loc[transactions.Balance].loc['Balance'])) #Not requried to update in customer Details with amount def acceptDeposit1(): print('AcceptDeposit') customerId = int(input('please enter your customerId :')) amount =int(input('please enter your amount :')) customerProfile.loc[customerProfile['Custid']==customerId ,'Balance'] = customerProfile.loc[customerProfile['Custid']==customerId ,'Balance']+ amount print(customerProfile.loc[customerProfile['Custid']==customerId ,'Balance']) def acceptDeposit(): print('AcceptDeposit') customerId = int(input('please enter your customerId :')) amount =int(input('please enter your amount :')) txno = max(transactions.Transactionno)+1 previousbalance = transactions.loc[(transactions.Custid == customerId) & (transactions.Txn_type == 0),'Amount'].sum() - transactions.loc[(transactions.Custid == customerId) & (transactions.Txn_type == 1),'Amount'].sum() transactions.loc[max(transactions.index)+1] = [customerId,txno,'14/11/2018',0,amount,previousbalance+amount] def addNewCustomer(): print('Adding new customers') #Get Customer Name customerName = input('Please provide customer Name :') while(customerName.isalpha() == False): print('Please provide Valid Customer Name') customerName = input('Please provide customer Name :') #Get Age age = input('Please provide your age: ') while(age.isdigit() == False): print('Please provide Valid Age') age = input('Please provide your age: ') #Get Gender Gender = input('Please provide your gender as M for Male or F for Female: ') while((Gender == 'M' or Gender == 'F') == False): print('Gender can take M for Male or F for Female, Please provide Valid Gender') Gender = input('Please provide your gender as M for Male or F for Female: ') city = input('Please provide your city: ') #Get City while(city.isalpha() == False): print('Please provide Valid City Name') city = input('Please provide your city: ') #Generate New customer Id newCustomerId = max(customerProfile.Custid)+1 customerProfile.loc[max(customerProfile.index)+1] = [newCustomerId,customerName,int(age),city,Gender] def customerPassbook(): print('printing customerPassbook') txDetails =transactions.loc[transactions.Custid == 105] print(txDetails.iloc[:,1:].to_string(index=False)) def withdrawMoney(): print('withdrawMoney') customerId = int(input('please enter your customerId :')) amount =int(input('please enter your amount to withdraw :')) txno = max(transactions.Transactionno)+1 previousbalance = transactions.loc[(transactions.Custid == customerId) & (transactions.Txn_type == 0),'Amount'].sum() - transactions.loc[(transactions.Custid == customerId) & (transactions.Txn_type == 1),'Amount'].sum() if(previousbalance >= amount): transactions.loc[max(transactions.index)+1] = [customerId,txno,'14/11/2018',1,amount,previousbalance-amount] inititalizeTransaction_df() initalizeCustomers_df() addNewCustomer() acceptDeposit() withdrawMoney() customerPassbook()
true
b0e67e307f81ab4589084ec4bff6ff1c3dd2477c
Python
olavobacelar/spens-data-completion
/src/dataset.py
UTF-8
8,944
2.984375
3
[ "MIT" ]
permissive
# Preparar os dados no __init__ para ser mais fácil depois. # import pandas as pd import numpy as np import numpy.random as rd import random from typing import Union import torch from dataclasses import dataclass, astuple from torch.utils.data import Dataset, DataLoader N_LETTERS = 26 # tirar daqui, precisa de estar também no modulo que chama. E não devia estar hardcoded @dataclass(frozen=True) class DatasetConfig: '''To configure a Dataset, set those parameters below. It's not exactly necessary, but is helpful to have the configuration as a dataclass (Google Colab still doesn't type check anything though.) ''' batch_size: int dataset_mode: str n_visible_letters: Union[None, int] = None prob_choice: Union[None, float] = None initial_seed: int = 48 def __post_init__(self): # With Google Colab we can't easily use type hints, so we add this if self.dataset_mode not in ['fixed', 'mixed', 'prob'] or not isinstance(self.batch_size, int): raise ValueError def __iter__(self): return iter(astuple(self)) def print_training_repr(self): output = f'Dataset Config: batch_size: {self.batch_size} • mode: ' if self.dataset_mode == 'fixed': print(output + f'fixed • n_visible_letters: {self.n_visible_letters}') elif self.dataset_mode == 'mixed': print(output + f'mixed') elif self.dataset_mode == 'prob': print(output + f'prob • prob_choice: {self.prob_choice}') class FontsDataset(Dataset): # É ineficiente transformar em listas??? Tentar mudar para tensores mesmo? def __init__(self, data, dataset_config): # y is the (unmasked) output. We'll need to construct the masked input # # Não uso o mode, que passava antes. Apagar? _, dataset_mode, n_visible_letters, prob_choice, initial_seed = dataset_config if dataset_mode not in ['fixed', 'mixed', 'prob']: raise ValueError("the variable mode must be one of the following: " "'fixed', 'mixed', 'prob'") # Data input and self.letter_masks are expected to be a pandas dataframe self.y = data.y.values.tolist() # Cuidado com as masks, pode ser lista de Nones? if self.y[0].shape[0] != N_LETTERS: raise ValueError self.n_fonts = len(self.y) # Here we build a random number generator for each dataset, which adds to # the ease of reproducilibity self.init_rngs(initial_seed) self.build_masked_input(dataset_config) def __len__(self): return self.n_fonts def __getitem__(self, index): # É mais rápido transformar em tensor e float aqui ou dentro da rotina das features? return torch.tensor(self.x[index]), torch.tensor(self.y[index]), self.letter_masks[index] def init_rngs(self, seed): self.rng = random.Random(seed) self.np_rng = rd.default_rng(seed) def get_rngs_states(self): return self.rng.getstate(), self.np_rng.bit_generator.state def set_rngs_states(self, states): self.rng.setstate(states[0]) self.np_rng.bit_generator.state = states[1] def set_seed(self, seed): # What exactly does this do? # Different modules are used when the probability is used vs. when a fixed n_visible_letters is used # therefore, when we call set_seed we set both seeds. # Torch.manual_seed will set the seed for the data loader, fixing the order the different fonts are # loaded in shuffle mode. self.rng.seed(seed) self.np_rng = rd.default_rng(seed) def new_letter_masks_with_prob(self, n_fonts, prob_choice): # prob_choice is the probability of a certain character NOT being masked assert isinstance(n_fonts, int) and isinstance(prob_choice, float) letter_masks = self.random_choice_at_least_one(n_fonts, prob_choice) letter_masks = list(letter_masks.astype(bool)) return letter_masks def new_letter_masks_fixed(self, n_fonts, n_visible_letters): assert isinstance(n_fonts, int) and isinstance(n_visible_letters, int) assert 1 <= n_visible_letters <= 25 letter_masks = np.concatenate([np.ones((n_fonts, n_visible_letters), dtype=bool), np.zeros((n_fonts, N_LETTERS-n_visible_letters), dtype=bool)], axis=1) for one_font_of_letter_masks in letter_masks: self.np_rng.shuffle(one_font_of_letter_masks) return letter_masks def new_letter_masks_mixed(self, n_fonts): letter_masks = [] for i in range(n_fonts): random_n_letters = self.rng.randint(1, N_LETTERS-1) letter_mask = np.concatenate([np.ones(random_n_letters, dtype=bool),np.zeros(N_LETTERS - random_n_letters, dtype=bool)]) self.np_rng.shuffle(letter_mask) letter_masks.append(letter_mask) return letter_masks def build_masked_input(self, dataset_config, another_seed=None, letter_masks=None): '''Generate a masked input of the letters for each font, according to the dataset_mode chosen. Each letter is masked by a list 'letter_masks', which is generated by other functions. This masks are used to modify the input, so that only the letters corresponding to a True value in the mask are shown. We can also pass another_seed that may be different from the one passed in the beginning. ''' # Describe possible modes in the doc string! _, dataset_mode, n_visible_letters, prob_choice, _ = dataset_config if dataset_mode not in ['fixed', 'mixed', 'prob']: raise ValueError("the variable dataset_mode must be one of the following: " "'fixed', 'mixed', 'prob'") if another_seed is not None: self.set_seed(another_seed) # Generate letter_masks depending on the dataset_mode, or get them from a parameter if letter_masks is None: if dataset_mode == 'fixed': if n_visible_letters is not None: self.letter_masks = self.new_letter_masks_fixed(self.n_fonts, n_visible_letters) self.n_visible_letters = n_visible_letters else: raise ValueError elif dataset_mode == 'mixed': self.letter_masks = self.new_letter_masks_mixed(self.n_fonts) elif dataset_mode == 'prob': if prob_choice is not None: self.letter_masks = self.new_letter_masks_with_prob(self.n_fonts, prob_choice) self.prob_choice = prob_choice else: raise ValueError else: self.letter_masks = letter_masks if len(self.letter_masks) != self.n_fonts: raise ValueError('The number of fonts and masks for them is not the same!') # Generate a masked input, using the given letter_masks self.x = [None]*self.n_fonts for font_index in range(self.n_fonts): self.x[font_index] = np.zeros((N_LETTERS, *LETTER_SHAPE), dtype=np.float32) + 0.5 for letter_index in range(N_LETTERS): if self.letter_masks[font_index][letter_index] == True: self.x[font_index][letter_index] = self.y[font_index][letter_index] def random_choice_at_least_one(self, n_fonts, prob_choice): '''Choose one letter per font randomly, and choose the others ones with probability equal to prob_choice. Therefore, choosing prob_choice=0.0 will select only one letter per font. We do this because we want at least one letter per font to be shown during training or testing. ''' def choose_mask(i, random_letter, prob_choice): if self.rng.random() < prob_choice or i == random_letter: return True else: return False letter_masks = [] for font in range(n_fonts): random_letter = self.rng.randint(0, N_LETTERS-1) letter_mask = np.array([choose_mask(i, random_letter, prob_choice) for i in range(N_LETTERS)]) letter_masks.append(letter_mask) return np.array(letter_masks) def get_letter_masks(self): if self.letter_masks is not None: return self.letter_masks else: raise Exception("No font masks were created yet!")
true
4c8722eeaa5d5cb72991b78f702dac4183d5578c
Python
adityaskarnik/algorithms
/Bubble Sort/bubble_sort.py
UTF-8
644
4.3125
4
[]
no_license
def bubbleSort(itemList): moreSwaps = True counter = 0 while moreSwaps: counter = counter + 1 print("Iteration number",counter) moreSwaps = False for element in range(len(itemList)-1): if itemList[element] > itemList[element+1]: moreSwaps = True temp = itemList[element] itemList[element] = itemList[element+1] itemList[element+1] = temp return itemList def testBubbleSort(): itemList = [5,2,7,1,9,3,6] print("Input given", itemList) sortedList = bubbleSort(itemList) print(sortedList) testBubbleSort()
true
30e8ee351b8ebf2b38af2ef7a452eee5e8f4581c
Python
EduardoArgenti/Python
/CursoEmVideo/ex039.py
UTF-8
634
4.125
4
[ "MIT" ]
permissive
# Faça um programa que leia o ano de nascimento de um jovem e informe, # de acordo com sua idade: # - Se ele ainda vai se alistar ao serviço militar # - Se é a hora de se alistar # - Se já passou do tempo do alistamento # - Seu programa também deverá mostrar o tempo que falta ou que # passou do prazo from datetime import datetime ano = int(input('Ano de nascimento: ')) idade = datetime.now().year - ano if idade < 18: print('\nVocê ainda vai se alistar daqui {} anos!'.format(18 - idade)) elif idade > 18: print('\nVocê chegou {} anos atrasado!'.format(idade - 18)) else: print('\nJá é hora de se alistar!')
true
4a4140adeaf59f48cf4dfb0f89ca1423e1f2310a
Python
nbanion/money
/money/category.py
UTF-8
8,029
3.828125
4
[]
no_license
"""Utilities for categorizing transactions. This module provides functionality for categorizing series__ of transactions using regex-based categorization schemes and index-specific manual edits. It is useful for categorizing transactions and for validating categorizations. __ https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html The module has the following high-level functions. These functions take series and categorization instructions, and they return new series. - :func:`money.category.categorize` applies a category to each item. - :func:`money.category.count_candidates` counts candidate categories by item. These high-level functions take a series of transaction descriptions, and they use these transaction descriptions and their indices to assign categories. The functions use two other inputs to assign cateogies. The first is a dict of catergories. The keys in this dict are categories, and the values are lists of regular expressions. If a description fully matches any of the regular expressions, then it fits the category. An example category dict: :: {"cat0": ["re0", ...], ...} The second input is a dict of index-specific manual edits. The keys in this dict are indices, and the values are categories to assign. For example: :: {0: "cat0", ...} In this example, we start by defining a series, categories, and edits. :: import pandas as pd import category # Series of descriptions. Changing the index for demonstration. series = pd.Series(["blah", "COFFEE 001", "stuff"], index=[10, 11, 12]) # Categories with regular expressions. categories = {"coffee": [r"COFFEE \\d+"]} # Index-specific manual categorizations. edits = {11: "misc", 12: "misc"} Next, we apply categories to the series. Note how the second transaction description is recognized as coffee, and the third transaction is hard coded as miscellaneous. As the second transaction shows, the algorithm favors regex matches over hard codes. :: category.categorize(series, categories, edits=edits) # 10 None # 11 coffee # 12 misc Ideally, the algorithm shouldn't have to make a choice; each transaction should have one and only one category. When we test this condition, we can see that the first transaction has no categories, and the second transaction has two categories. We might want to address these cases before analysis. :: category.count_candidates(series, categories, edits=edits) # 10 0 # 11 2 # 12 1 Each high-level function has a companion ``row_*`` function that applies an algorithm to each value in the series. :func:`money.category.row_list_candidates` does most of the categorizing work. The high-level functions use :func:`money.category.apply_to_series_using_index` to apply the ``row_*`` functions in a way that exposes the series index. """ import pandas as pd import re def categorize(series, categories, edits=None): """Assign categories for a series of transaction descriptions. This function applies :func:`money.category.row_categorize` to every value in a ``series``, creating a series of categories with the same index. Arguments: series: Length 2 iterable of transaction descriptions. categories (dict): Regex patterns for each category. edits (dict): Index-specific manual categorizations. Returns: A Pandas Series with categories. """ return apply_to_series_using_index(row_categorize, series, categories, edits=edits) def count_candidates(series, categories, edits=None): """Count candidate categories for a series of transaction descriptions. This function applies :func:`money.category.row_count_candidates` to every value in a ``series``, creating a series of counts with the same index. Arguments: series: Length 2 iterable of transaction descriptions. categories (dict): Regex patterns for each category. edits (dict): Index-specific manual categorizations. Returns: A Pandas Series with counts. """ return apply_to_series_using_index(row_count_candidates, series, categories, edits=edits) def row_categorize(row, categories, edits=None): """Categorize one indexed transaction "row". The function arbitrarily returns the first candidate category assigned to the row. It's written with the expectation that each row *should* only fit one category. In practice, it's a good idea to test this assumption. Arguments: row: Length 2 iterable with an index and a description. categories (dict): Regex patterns for each category. edits (dict): Index-specific manual categorizations. Returns: str: A category for the row. """ candidates = row_list_candidates(row, categories, edits=edits) if candidates: return candidates[0] def row_count_candidates(row, categories, edits=None): """Count candidate categories for one indexed transaction "row". Arguments: row: Length 2 iterable with an index and a description. categories (dict): Regex patterns for each category. edits (dict): Index-specific manual categorizations. Returns: int: Number of candidate categoires for the row. """ candidates = row_list_candidates(row, categories, edits=edits) return len(candidates) def row_list_candidates(row, categories, edits=None): """Identify candidate categories for one indexed transaction "row". Each row has two fields. The first is the transaction index, and the second is the transaction description. This function uses the index to assign manual category edits to specific transactions. Arguments: row: Length 2 iterable with an index and a description. categories (dict): Regex patterns for each category. edits (dict): Index-specific manual categorizations. Returns: list: Candidate categories for the row. """ index, description = row candidates = [] # Pattern match descriptions to categories. for category, patterns in categories.items(): if is_match(description, patterns): candidates.append(category) # Apply index-specific manual categorizations. if edits: category = edits.get(index) if category: candidates.append(category) return candidates def apply_to_series_using_index(f, series, *args, **kwargs): """Apply a function to a series, making the series index available. The function converts the ``series`` to a two-column data frame with the series index as a column, so that function ``f`` can process the index when doing its job. Afterward, the data frame returns to a series with the original index intact. See `Stack Overflow`__. __ https://stackoverflow.com/a/18316830 This function could be written as a wrapper for ``f``, but it becomes unclear while glancing at the arguments of ``f`` whether it should take a series or a row as its first argument. The current approach is transparent. Arguments: f (function): Function to apply to the series. series: Pandas Series to have the function applied. *args: Additional positional argmunents for ``f``. **kwargs: Additional keyword arguments for ``f``. Returns: A Pandas series with the function applied. """ result = (series.reset_index() .apply(f, axis=1, args=args, **kwargs)) return pd.Series(result.values, index=series.index) def is_match(string, patterns): """Test if a string matches any pattern in a given list. Arguments: string (str): String that might match ``patterns``. patterns (list): Patterns to match. Returns: bool: True for a match, otherwise false. """ return any([re.fullmatch(p, string) for p in patterns])
true
bced7f810bbc828266f8465cf7a4a055db43e450
Python
msrosenberg/TaxonomyMonographBuilder
/TMB_Create_Graphs.py
UTF-8
11,659
2.984375
3
[]
no_license
""" Module containing the various graph and chart drawing algorithms (except for those related to maps) """ # external dependencies from typing import Optional import matplotlib.pyplot as mplpy import matplotlib.ticker from wordcloud import WordCloud __TMP_PATH__ = "temp/" # my approximation of the pygal color scheme __COLOR_LIST__ = ["salmon", "royalblue", "lightseagreen", "gold", "darkorange", "mediumorchid", "deepskyblue", "lightgreen", "sandybrown", "palevioletred", "lightskyblue", "mediumaquamarine", "lemonchiffon", "red", "green", "blue", "yellow"] def create_pie_chart_file(filename: str, data: dict, graph_font: Optional[str] = None) -> None: datalist = list(data.keys()) datalist.sort() sizes = [] for d in datalist: sizes.append(data[d]) color_list = __COLOR_LIST__ # create a two-panel plot, one for pie, one for legend fig, (panel1, panel2) = mplpy.subplots(1, 2, figsize=[6, 3]) # create pie chart in first panel pie = panel1.pie(sizes, colors=color_list, startangle=90, counterclock=False) panel1.axis("equal") # create legend in second panel panel2.axis("off") # hide axes in second plot panel2.legend(pie[0], datalist, loc="center", frameon=False, ncol=2, prop={"family": graph_font}) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(__TMP_PATH__ + filename, format="png", dpi=600) mplpy.close("all") def create_language_bar_chart_file(filename: str, lang_by_year: dict, graph_font: Optional[str] = None) -> None: color_list = __COLOR_LIST__ langlist = list(lang_by_year.keys()) langlist.sort() yearlist = list(lang_by_year[langlist[0]].keys()) minyear = min(yearlist) maxyear = max(yearlist) year_cnts = {y: 0 for y in range(minyear, maxyear+1)} for lang in lang_by_year: dat = lang_by_year[lang] for y in dat: year_cnts[y] += dat[y] x_list = [x for x in range(minyear, maxyear+1)] y_lists = [] for lang in langlist: ylist = [] dat = lang_by_year[lang] for y in range(minyear, maxyear+1): if year_cnts[y] > 0: ylist.append(dat[y] / year_cnts[y]) else: ylist.append(0) y_lists.append(ylist) # create a three-panel plot, two for bar graphs, one for legend fig, (panel1, panel2, panel3) = mplpy.subplots(3, 1, figsize=[6.5, 6]) split_year = 1850 split_index = x_list.index(split_year) bottoms = [0 for _ in range(split_index)] bars = [] for j, ylist in enumerate(y_lists): bars.append(panel1.bar(x_list[:split_index], ylist[:split_index], bottom=bottoms, color=color_list[j], edgecolor="black", linewidth=0.25)) for i in range(len(ylist[:split_index])): bottoms[i] += ylist[i] panel1.spines["right"].set_visible(False) panel1.spines["top"].set_visible(False) bottoms = [0 for _ in range(len(x_list) - split_index)] for j, ylist in enumerate(y_lists): panel2.bar(x_list[split_index:], ylist[split_index:], bottom=bottoms, color=color_list[j], edgecolor="black", linewidth=0.25) for i, v in enumerate(ylist[split_index:]): bottoms[i] += v panel2.spines["right"].set_visible(False) panel2.spines["top"].set_visible(False) panel3.axis("off") # hide axes in second plot panel3.legend(bars, langlist, loc="center", frameon=False, ncol=4, prop={"family": graph_font}) mplpy.xticks(fontname=graph_font) mplpy.yticks(fontname=graph_font) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(__TMP_PATH__ + filename, format="png", dpi=600) mplpy.close("all") def create_bar_chart_file(filename: str, data: list, minx: int, maxx: int, y: int, graph_font: Optional[str] = None) -> None: x_list = [x for x in range(minx, maxx+1)] y_list = [d[y] for d in data] fig, faxes = mplpy.subplots(figsize=[6.5, 2]) faxes.bar(x_list, y_list, color="blue", edgecolor="darkblue") faxes.spines["right"].set_visible(False) faxes.spines["top"].set_visible(False) if maxx-minx > 200: tick_step = 40 else: tick_step = 20 mplpy.yticks(fontname=graph_font) mplpy.xticks([i for i in range(minx, maxx + 1, tick_step)], fontname=graph_font) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(__TMP_PATH__ + filename, format="png", dpi=600) mplpy.close("all") def create_stacked_bar_chart_file(filename: str, data: list, minx: int, maxx: int, cols: list, graph_font: Optional[str] = None) -> None: # currently assumes only two stacked bars x_list = [x for x in range(minx, maxx+1)] fig, faxes = mplpy.subplots(figsize=[6.5, 2]) col_names = [c[0] for c in cols] y_list1 = [d[cols[0][1]] for d in data] y_list2 = [d[cols[1][1]] for d in data] faxes.bar(x_list, y_list1, color="blue", edgecolor="darkblue") faxes.bar(x_list, y_list2, bottom=y_list1, color="red", edgecolor="darkred") faxes.spines["right"].set_visible(False) faxes.spines["top"].set_visible(False) faxes.legend(col_names, loc="upper left", frameon=False, prop={"family": graph_font}) mplpy.xticks(fontname=graph_font) mplpy.yticks(fontname=graph_font) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(__TMP_PATH__ + filename, format="png", dpi=600) mplpy.close("all") def create_qual_bar_chart_file(filename: str, label_list: list, data_dict: dict, max_value: int, graph_font: Optional[str] = None) -> None: x_list = [x for x in range(len(label_list))] y_list = [data_dict[x] for x in label_list] fig, faxes = mplpy.subplots(figsize=[6.5, 2.5]) faxes.bar(x_list, y_list, color="blue", edgecolor="darkblue") mplpy.yticks(fontname=graph_font) mplpy.xticks(rotation="vertical", style="italic", fontname=graph_font) faxes.set_xticks(x_list) faxes.set_xticklabels(label_list) faxes.spines["right"].set_visible(False) faxes.spines["top"].set_visible(False) mplpy.ylim(0, max_value) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(__TMP_PATH__ + filename, format="png", dpi=600) mplpy.close("all") def create_line_chart_file(filename: str, data: list, minx: int, maxx: int, y: int, graph_font: Optional[str] = None) -> None: x_list = [x for x in range(minx, maxx+1)] y_list = [d[y] for d in data] fig, faxes = mplpy.subplots(figsize=[6.5, 2]) faxes.plot(x_list, y_list, "blue") faxes.spines["right"].set_visible(False) faxes.spines["top"].set_visible(False) if maxx-minx > 200: tick_step = 40 else: tick_step = 20 mplpy.yticks(fontname=graph_font) mplpy.xticks([i for i in range(minx, maxx + 1, tick_step)], fontname=graph_font) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(__TMP_PATH__ + filename, format="png", dpi=600) mplpy.close("all") def create_chronology_chart_file(filename: str, miny: int, maxy: int, maxcnt: int, yearly_data: dict, graph_font: Optional[str] = None) -> None: y_list = [] for y in range(miny, maxy + 1): y_list.append(float(yearly_data[y])) x = [y for y in range(miny, maxy+1)] fig, faxes = mplpy.subplots(figsize=[6.5, 1.5]) mplpy.ylim(-maxcnt, maxcnt) mplpy.xlim(miny, maxy) faxes.stackplot(x, y_list, baseline="sym", colors=["black"]) for spine in faxes.spines: faxes.spines[spine].set_visible(False) cur_axes = mplpy.gca() cur_axes.axes.get_yaxis().set_visible(False) mplpy.xticks([i for i in range(miny, maxy+1, 20)], fontname=graph_font) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(__TMP_PATH__ + filename, format="png", dpi=600) mplpy.close("all") def create_word_cloud_image(binomial_cnts: dict, specific_cnts: dict, font_path: Optional[str] = None) -> None: # generate wordcloud image from binomials wordcloud = WordCloud(width=2000, height=1500, background_color="white", max_words=1000, normalize_plurals=False, collocations=False, font_path=font_path).generate_from_frequencies(binomial_cnts) wordcloud.to_file(__TMP_PATH__ + "binomial_word_cloud.png") # generate wordcloud image from specific names wordcloud = WordCloud(width=2000, height=1500, background_color="white", max_words=1000, normalize_plurals=False, collocations=False, font_path=font_path).generate_from_frequencies(specific_cnts) wordcloud.to_file(__TMP_PATH__ + "specific_word_cloud.png") if __name__ == "__main__": # the following creates a quick chart of each type to check formatting changes test_data = { "English": 100, "German": 50, "Chinese": 20, "Dutch": 10, "French": 50, "Italian": 50, "Japanese": 50, "Latin": 10, "Polish": 3, "Portuguese": 3, "Russian": 3, "Spanish": 3, "Thai": 3, "Danish": 3, "Korean": 3, "Vietnamese": 3 } create_pie_chart_file("testpie.png", test_data) create_word_cloud_image(test_data, test_data, r"C:\Windows\Fonts\NotoSerif-regular.ttf") test_data = { 1800: 5, 1801: 4, 1802: 1, 1803: 0, 1804: 2, 1805: 2, 1806: 7, 1807: 12, 1808: 14, 1809: 10, 1810: 10 } create_chronology_chart_file("testchron.png", 1800, 1810, 14, test_data) test_data = [ [5], [4], [1], [0], [2], [2], [7], [12], [14], [10], [10] ] create_line_chart_file("testline.png", test_data, 1800, 1810, 0) create_bar_chart_file("testbar.png", test_data, 1800, 1810, 0) create_stacked_bar_chart_file("teststackbar.png", test_data, 1800, 1810, [["A", 0], ["B", 0]]) test_data = { "pugilator": 20, "pugnax": 5, "tangeri": 12 } create_qual_bar_chart_file("testqualbar.png", ["pugilator", "pugnax", "tangeri"], test_data, 20) def create_handedness_chart_file(filename: str, data: list, graph_font: Optional[str] = None) -> None: y_list = [i for i in range(len(data))] right_x = [d.right_cnt for d in data] left_x = [-d.left_cnt for d in data] max_cnt = max(right_x) if -min(left_x) > max_cnt: max_cnt = -min(left_x) height = max(1.0, (len(y_list)+1)*0.2) fig, faxes = mplpy.subplots(figsize=[6.5, height]) mplpy.xlim(-max_cnt, max_cnt) faxes.barh(y_list, right_x) faxes.barh(y_list, left_x) # fix labels xlabels = list(faxes.get_xticks()) for i, x in enumerate(xlabels): if x < 0: xlabels[i] = -x for i, x in enumerate(xlabels): xlabels[i] = int(x) ticks_loc = faxes.get_xticks().tolist() faxes.xaxis.set_major_locator(matplotlib.ticker.FixedLocator(ticks_loc)) faxes.set_xticklabels(xlabels) mplpy.xlabel("Left Count / Right Count", fontname=graph_font) faxes.spines["right"].set_visible(False) faxes.spines["top"].set_visible(False) faxes.spines["left"].set_visible(False) faxes.yaxis.set_visible(False) mplpy.rcParams["svg.fonttype"] = "none" mplpy.tight_layout() mplpy.savefig(filename, format="png", dpi=600) mplpy.close("all")
true
9d6a559c94c0f75967057a24a75b2c96fed76a20
Python
kiran-kotresh/Python-code
/pop_growth.py
UTF-8
143
2.890625
3
[]
no_license
def nb_year(p0, percent, aug, p): current=p0 n=0 while(current<p): current=current+current*(percent*0.01)+aug n+=1 print(n)
true
21f112f9fdd71c727912073487ff0a50ff7d8a22
Python
quvinh/pythoncb
/baitap3.py
UTF-8
296
3.03125
3
[]
no_license
n = int(input("Nhap so phan tu:")) lt = list() for i in range(n): x = int(input("Nhap phan tu thu %d :"%(i+1))) lt.append(x) s = 0 for i in lt: s += i f = open("file.txt","w") f.write(str(lt)) f.write("tong :%d"%s) f.close() f = open("file.txt","r") print(f.read())
true
4866e717ad1c80707aa245618ebc9776758bf6f6
Python
zzc558/SpectralClusterNetflex
/clustering.py
UTF-8
2,226
2.921875
3
[]
no_license
#!/usr/bin/env python3 from dataPreprocess import laplacian import numpy as np import scipy as sp from sklearn.cluster import KMeans import matplotlib.pyplot as plt def clustering(matrix, k, movieIndex): eValue, eVector = sp.sparse.linalg.eigs(matrix, k, which='SM') # get rid of the movie nodes count = 0 for i in movieIndex: eVector = np.delete(eVector, i - count, axis=0) count += 1 eVector_real = eVector.real eVec_row_norm = np.linalg.norm(eVector_real, ord=2, axis=1) eVector_norm = (eVector_real.T / eVec_row_norm).T kmeans = KMeans(n_clusters=k, random_state=1231).fit(eVector_norm) return kmeans.labels_ #labels = kmeans.labels_ #fh = open("label.txt", "w+") #for value in labels: # fh.write(str(value)) #fh.close() def label_predictor(fname, userLabel): testFile = open(fname, 'r') #testFile.readline() userInfo = {} movie_user_list = [] for line in testFile: c = line.split(',') movie = int(c[0]) user = int(c[1]) movie_user_list.append((movie, user)) #time = int(c[3].split('-')[0]) if(user not in userLabel): print("Unknown user in test set:", user) continue if(user not in userInfo): userInfo[user] = [] userInfo[user].append(userLabel[user]) userInfo[user].append(movie) testFile.close() return userInfo, movie_user_list # get average rating for the movie from users with the same label def get_rating(label, movie, clusterDict, ratingDict): users = clusterDict[label] rating = set() for user in users: rating.add(ratingDict[user][movie]) return int(sum(rating) / len(rating) + 0.5) # get predict rating value for every movie in movieRating = {movie:{user: rating}} def rating_predictor(userDict, clusterDict, ratingDict): movieRating = {} for user, info in userDict.items(): label = info.pop(0) for movie in info: if(movie not in movieRating): movieRating[movie] = {} movieRating[movie][user] = get_rating(label, movie, clusterDict, ratingDict) return movieRating
true
4f181325c1ac81fb9668a166d3aa1883e34f30b5
Python
rezo8/LyricClassifier
/song.py
UTF-8
7,021
2.890625
3
[]
no_license
import spotifyclient import pickle as pickle from nltk.tokenize import word_tokenize import os import nltk import numpy as np import scipy GENRES = [ 'folk', 'rap', 'rock', 'r&b', 'country', 'blues' ] class Song(object): """ Object containing the lyrics to a single song Attributes: lyrics: string containing song lyrics genres: list containing genres title: string containing song title (optional) artist: string containing primary artist (optional) numVerses: integer containing number of verses in song numChoruses: integer containing number of choruses in song numLines: integer containing number of lines in song """ def __init__(self, lyrics,genres, title='', artist='', popularity = 0, duration_ms = 0, notfound='ignore'): #Constructor takes in local variables and option if genre is not found thru Spotify client self.lyrics = lyrics self.title = title.replace('\n', '') self.artist = artist.replace('\n', '') self.genres = genres if notfound=='add' else [] self.genres = genres if (notfound=='replace' or notfound=='add') else [] self.popularity = popularity self.duration_ms = duration_ms self.numVerses = 0 self.numLines = 0 self.numChoruses = 0 self.nGrams = None self.songVector = None self.tokenizedSentences = None if len(genres)==0 or notfound=='add': artistgenres = spotifyclient.getArtistProperties(self.artist, GENRES) if artistgenres: for g in artistgenres: self.genres.append(g) elif notfound == 'prompt': genres = raw_input('Genres not found, please input: ').split(',') if len(genres) > 0: self.genres = genres def filter(self, allowed): #Takes in a list of allowed genres and updates self.genres #returns a list of removed genres removed = [] new = [] for g in self.genres: for a in allowed: if a not in new and a in g: new.append(a) else: removed.append(g) self.genres = new return removed ''' for g in self.genres: for a in allowed: if g == a and a not in new: new.append(a) else: removed.append(g) self.genres = new return removed ''' def tokens(self): return word_tokenize(self.simpleLyrics()) #throws out all lyrics after mismatched bracket #Must handle this to update self, and def processLyrics(self): #Removes "[Chorus]", "[Verse X]", etc., punctuation, and newlines self.numChoruses = 0 self.numVerses = 0 self.numLines = 0 lyrics = self.lyrics.lower() i = 0 allowedChars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ \'' simpleLyrics = '' #print("-------- ORIGINAL LYRICS --------") #print(self.lyrics) while i < len(lyrics): #I think this is bad practice. w/e c = lyrics[i] if c in allowedChars: simpleLyrics += c if c=='[': if lyrics[i+1].lower() == 'v': self.numVerses = self.numVerses + 1 elif lyrics[i+1].lower() == 'c': self.numChoruses = self.numChoruses + 1 while i<len(lyrics) and lyrics[i]!=']': i +=1 elif c == '\n': self.numLines +=1 simpleLyrics += '\n' elif c == '\t': simpleLyrics += '\n' i+=1 self.lyrics = simpleLyrics #print("-------- SIMPLE LYRICS --------") #print(self.lyrics) def tokenFrequencies(self): #Takes in a string of song lyrics and returns a dictionary containing #each unique word in the lyrics and its frequency lyrics = self.simpleLyrics() words = word_tokenize(lyrics) freq = {} for word in words: if word in freq: freq[word] += 1 elif not word=='': freq[word] = 1 return freq def setnGrams(self, sents): self.nGrams = sents def setTokenizedSentences(self, sents): self.tokenizedSentences = sents def saveLyrics(self, filename): #Saves title artist, lyrics to file at filename (creates a file if none exists) #NOTE: To save the entire Song object, use saveSong() f = open(filename, 'w+') f.write(self.title+'\n') f.write(self.artist+'\n') f.write(self.lyrics+'\n') f.close() def saveSong(self, filename, subdirectory=''): #Saves Song object to file at filename, which can include a subdirectory if len(subdirectory) == 0: f = open(filename, 'wb+') else: try: os.mkdir(subdirectory) except Exception: pass f = open(os.path.join(subdirectory, filename), 'wb+') pickle.dump(self, f, protocol=2) def vectorizeSong(self, model): word_vectors = model.wv words = [] notFound = 0 vector = np.zeros((100,), dtype=float) for sent in self.tokenizedSentences: for word in sent: words.append(word) if len(words) == 0: return np.zeros((100,), dtype=float) for word in words: if word in word_vectors.vocab: wordVector = model.wv[str(word)] vector = np.add(vector,wordVector) else: notFound += 1 divisor = np.full((100,), (len(words) - notFound), dtype=float) vector = np.divide(vector,divisor) self.songVector = vector return vector def returnVectorGenre(self, wordVector, allGenreVectors): min = 1 index = 0 for i in range(len(allGenreVectors)): distance = scipy.spatial.distance.cosine(wordVector,allGenreVectors[i]) if (distance < min): min = distance index = i return GENRES[index] @staticmethod def openLyrics(filename): #Returns new Song object with title, artist, and lyric drawn from file at filename #NOTE: To open an entire Lyric object, use openSong() f = open(filename, 'r') contents = f.read() title = contents[:contents.index('\n')] contents = contents[contents.index('\n')+1:] artist = contents[:contents.index('\n')] lyrics = contents[contents.index('\n')+1:] return Song(lyrics, title, artist) @staticmethod def openSong(filename): #Returns a new Song object with all data drawn from filename f = open(filename, 'rb') return pickle.load(f)
true
73d91f5c793268e7dc0b6ccb99ce1d68ef20449c
Python
mpreddy960/pythonPROJECTnew
/range.py
UTF-8
34
2.984375
3
[]
no_license
for i in range(1,23): print(i)
true
31ee8b4b28d5fa4bd2db68c4df9465274ab3dbaa
Python
apalevich/PyMentor
/01_reminder_dates.py
UTF-8
3,481
4.28125
4
[]
no_license
#!/usr/bin/python # -*- coding: utf-8 -*- """ This is an exercise maintained with my mentor Zcho05. The exercise contains function called create_message() that returns a message about some reminder. For example: >>> create_message((2, 4, 6, 7,)) 'Мы оповестим вас о предстоящих событиях за 2, 4, 6 и 7 дней' """ def create_message(dates, separator=None): """ This function construct a message from a tuple with dates: >>> create_message((2, 4, 5, 7)) 'Мы оповестим вас о предстоящих событиях за 2, 4, 5 и 7 дней' You can even use a tuple with only date. Conjunction "и" ("and") will not be inputed then: >>> create_message((7,)) 'Мы оповестим вас о предстоящих событиях за 7 дней' Also strings and lists are supported: >>> create_message('5, 7, 2, 8, ') 'Мы оповестим вас о предстоящих событиях за 5, 7, 2 и 8 дней' >>> create_message([5, 7, 2, 8]) 'Мы оповестим вас о предстоящих событиях за 5, 7, 2 и 8 дней' Commas are not required with strings: >>> create_message('5 7 2 8') 'Мы оповестим вас о предстоящих событиях за 5, 7, 2 и 8 дней' Don’t worry about non-digit symbols: >>> create_message(' 24, 46, 745, а, рыбки?, 300 xxx ') 'Мы оповестим вас о предстоящих событиях за 24, 46, 745 и 300 дней' You can use optional separator between numbers by adding it as argument: >>> create_message('5 7 2 8', '; ') 'Мы оповестим вас о предстоящих событиях за 5; 7; 2 и 8 дней' But beware using create_message with empty input: >>> create_message(()) Traceback (most recent call last): ... Exception: Отсутствуют даты Don't input a letters neither: >>> create_message((3, 5, 6, 3, 'a', )) Traceback (most recent call last): ... Exception: Вместо даты использована буква """ # Check input argument if not dates: raise Exception('Отсутствуют даты') integers = [] if isinstance(dates, str): temp = '' for i in dates: if i.isdigit(): temp += i else: temp += ' ' integers = temp.split() integers = list(map(int, integers)) elif isinstance(dates, (list, tuple)): for c in dates: try: integers.append(int(c)) except ValueError: raise Exception('Вместо даты использована буква') # Create string for a return message = '' # Choose correct case for ending word if str(integers[-1]).endswith('1'): message = ' день' elif str(integers[-1]).endswith(('2', '3', '4')): message = ' дня' elif str(integers[-1]).endswith(('5', '6', '7', '8', '9', '0')): message = ' дней' # Construct final message if len(integers) > 1: message = 'Мы оповестим вас о предстоящих событиях за {} и {}'.format(str(integers[0:-1])[1:-1], str(integers[-1])) + message else: message = 'Мы оповестим вас о предстоящих событиях за {}'.format(str(integers)[1:-1]) + message # Replace comma with an selected separator if separator: message = message.replace(', ', separator) return message if __name__ == '__main__': # Test cases from docstrings import doctest doctest.testmod()
true
de5d784f1c98723db35f425782de8236e1c66dc1
Python
nobita44/CIP2021_tkinterQuiz
/main.py
UTF-8
4,927
3.71875
4
[]
no_license
# Python program to create a simple GUI # Simple Quiz using Tkinter # import everything from tkinter from tkinter import * # and import messagebox as mb from tkinter from tkinter import messagebox as mb # import json to use json file for data import json # class to define the components of the GUI class Quiz: # This is the first method which is called when a # new object of the class is initialized. def __init__(self): self.q_no = 0 self.display_title() self.display_question() self.opt_selected = IntVar() self.opts = self.radio_buttons() self.display_options() self.buttons() self.data_size = len(question) self.correct = 0 def display_result(self): # calculates the wrong count wrong_count = self.data_size - self.correct correct = f"Correct: {self.correct}" wrong = f"Wrong: {wrong_count}" # calcultaes the percentage of correct answers score = int(self.correct / self.data_size * 100) result = f"Score: {score}%" # Shows a message box to display the result mb.showinfo("Result", f"{result}\n{correct}\n{wrong}") # This method checks the Answer after we click on Next. def check_ans(self, q_no): # checks for if the selected option is correct if self.opt_selected.get() == answer[q_no]: # if the option is correct it return true return True def next_btn(self): # Check if the answer is correct if self.check_ans(self.q_no): # if the answer is correct it increments the correct by 1 self.correct += 1 # Moves to next Question by incrementing the q_no counter self.q_no += 1 # checks if the q_no size is equal to the data size if self.q_no == self.data_size: # if it is correct then it displays the score self.display_result() # destroys the GUI gui.destroy() else: # shows the next question self.display_question() self.display_options() def buttons(self): next_button = Button(gui, text="Next", command=self.next_btn, width=10, bg="blue", fg="white", font=("courier", 16, "bold")) # palcing the button on the screen next_button.place(x=350, y=380) # This is the second button which is used to Quit the GUI quit_button = Button(gui, text="Quit", command=gui.destroy, width=5, bg="black", fg="white", font=("courier", 16, " bold")) # placing the Quit button on the screen quit_button.place(x=700, y=50) def display_options(self): val = 0 # deselecting the options self.opt_selected.set(0) # looping over the options to be displayed for the # text of the radio buttons. for option in options[self.q_no]: self.opts[val]['text'] = option val += 1 # This method shows the current Question on the screen def display_question(self): # setting the Quetion properties q_no = Label(gui, text=question[self.q_no], width=60, font=('courier', 16, 'bold'), anchor='w') # placing the option on the screen q_no.place(x=70, y=100) # This method is used to Display Title def display_title(self): # The title to be shown title = Label(gui, text="CODE IN PLACE 2021 QUIZ HUNT", width=50, bg="blue", fg="white", font=("courier", 20, "bold")) # place of the title title.place(x=0, y=2) def radio_buttons(self): # initialize the list with an empty list of options q_list = [] # position of the first option y_pos = 150 # adding the options to the list while len(q_list) < 4: # setting the radio button properties radio_btn = Radiobutton(gui, text=" ", variable=self.opt_selected, value=len(q_list) + 1, font=("courier", 16)) # adding the button to the list q_list.append(radio_btn) # placing the button radio_btn.place(x=100, y=y_pos) # incrementing the y-axis position by 40 y_pos += 40 # return the radio buttons return q_list # Create a GUI Window gui = Tk() # set the size of the GUI Window gui.geometry("800x480") # set the title of the Window gui.title("Kamal Agarawal Quiz Window") # get the data from the json file with open('data.json') as f: data = json.load(f) # set the question, options, and answer question = (data['question']) options = (data['options']) answer = (data['answer']) # create an object of the Quiz Class. quiz = Quiz() # Start the GUI gui.mainloop() # END OF THE PROGRAM
true
618e229be5f7a32fc8823218e522f597e4c9e9b0
Python
peterwilliams97/blank
/make_page_corpus.py
UTF-8
10,290
2.640625
3
[ "MIT" ]
permissive
""" PDF to text conversion """ import os from glob import glob from collections import defaultdict, OrderedDict import hashlib from subprocess import CalledProcessError, Popen, PIPE import re from utils_peter import pdf_dir, summary_dir, save_json from html_to_text import update_summary import json KBYTE = 1024 MBYTE = 1024 * 1024 # Settings min_size = 1 * KBYTE max_size = 10000 * MBYTE permission_errors = [ 'You do not have permission to extract text', 'Permission Error' ] PDF_BOX = './pdfbox-app-2.0.7.jar' PDF_SUMMARIZE = './pdf_page_summaries' for path in [PDF_BOX, PDF_SUMMARIZE]: assert os.path.exists(path), path def run_command(cmd, raise_on_error=True): p = Popen(cmd, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() if p.returncode != 0: so = '' se = '' if stdout: print('~' * 80) so = stdout.decode("utf-8") print(so) if stderr: print('^' * 80) se = stderr.decode("utf-8") print(se) if not any(pe in s for s in (so, se) for pe in permission_errors): print('-' * 80) print('run_command real error') print(' '.join(cmd)) if raise_on_error: raise CalledProcessError(p.returncode, cmd) return p.returncode, stdout, stderr def pdf_summarize(pdf_path): cmd = [PDF_SUMMARIZE, pdf_path] retcode, stdout, stderr = run_command(cmd, raise_on_error=False) ok = retcode == 0 if not ok: print('FAILURE: retcode=%d stderr=<%s>' % (retcode, stderr)) return ok, None text = stdout.decode('utf-8') summary = json.loads(text) return ok, summary def pdf_to_pages(pdf_path): """Extract pages from PDF file `pdf_path` using PdfBox Returns: ok, text, pages ok: Analysis succeeded. PDF is valid text: Text of PDF in html format pages: Pages of PDF in html format """ cmd = ['java', '-jar', PDF_BOX, 'ExtractText', '-html', '-console', pdf_path] retcode, stdout, stderr = run_command(cmd, raise_on_error=False) ok = retcode == 0 if not ok: print('FAILURE: retcode=%d stderr=<%s>' % (retcode, stderr)) return ok, '', [] text = stdout.decode('utf-8') sep = '<div style="page-break-before:always; page-break-after:always">' return ok, text, text.split(sep)[1:] # Num Pages: 1 RE_NUMPAGES = re.compile(b'Num Pages:\s+(\d+)') def pdf_num_pages(pdf_path): """Use Unidoc to count pages in PDF file `pdf_path`""" cmd = ['./pdf_info', pdf_path] retcode, stdout, stderr = run_command(cmd, raise_on_error=False) ok = retcode == 0 if not ok: return ok, 0 m = RE_NUMPAGES.search(stdout) return ok, int(m.group(1)) xlation = { "GraphMarkedPages": 'marked_graph', "TextMarkedPages": 'marked_text', } def save_pdf_summary(pdf_path, summary_path): """Extract text from `pdf`, break it into pages and write the summary to 'summary_path """ ok, text, pages_html = pdf_to_pages(pdf_path) if not ok: return print('save_pdf_summary: %s->%s' % (pdf_path, summary_path)) summary = { 'path': pdf_path, 'name': os.path.basename(pdf_path), 'n_pages': len(pages_html), 'n_chars': sum(len(page) for page in pages_html), 'pages': pages_html, 'text': text, } ok, pages_summary = pdf_summarize(pdf_path) if not ok: return assert pages_summary['NumPages'] == summary['n_pages'], (pdf_path, pages_summary['NumPages'], summary['n_pages']) for k, v in pages_summary.items(): if k == 'NumPages': continue elif k in xlation: summary[xlation[k]] = v else: summary[k] = v # NumPages int # Width float64 # Height float64 # TextMarkedPages []int # GraphMarkedPages []int update_summary(summary) if not summary_path.endswith('.json'): summary_path = '%s.json' % summary_path outpath = os.path.abspath(summary_path) save_json(outpath, summary) def sha1_digest(path): sha1 = hashlib.sha1() with open(path, 'rb') as f: while True: data = f.read(50000) if not data: break sha1.update(data) return sha1.hexdigest() def extract_name(path, root, whole=False): # print(path) # assert False name = os.path.relpath(path, root) while True: head, tail = os.path.split(name) if not (head and tail): break name = '_'.join((head, tail)) # if root is None: # name = os.path.basename(path) # else: # name = os.path.relpath(path, start=root) # direct = os.path.dirname(path) # for special in ['blank_pages', 'spool', 'MOB-810', 'xarc']: # if special in direct and special not in name: # name = '%s_%s' % (special, name) if whole: return name return os.path.splitext(name)[0] def flatten_path(path, root): path = os.path.relpath(path, root) while True: head, tail = os.path.split(path) if not (head and tail): break path = '_'.join((head, tail)) path = os.path.join(root, path) assert os.path.isfile(path), path return path def ascii_count(s, limit): return len([c for c in s if ord(c) > limit]) def punc_count(s): return len([c for c in s if not ((ord('A') <= ord(c) <= ord('Z')) or (ord('a') <= ord(c) <= ord('z')))]) def find_keeper(paths, root): """Return the 1 file in of the identical files in `paths` that we will use""" paths = sorted(paths, key=lambda x: (-len(x), x)) for path in paths: other_paths = [p for p in paths if p != path] if 'xarc' in path and not any('xarc' in p for p in other_paths): print('1 %s -> %s' % (other_paths, path)) return {path} name = extract_name(path, root) other_names = [extract_name(p, root) for p in other_paths] if all(name in p for p in other_names): print('2 %s -> %s' % (other_paths, path)) return {path} for limit in 255, 127: if ascii_count(path, limit) < min(ascii_count(p, limit) for p in other_paths): print('3 %s -> %s' % (other_paths, path)) return {path} if punc_count(path) < min(punc_count(p) for p in other_paths): print('4 %s -> %s' % (other_paths, path)) return {path} print('5 %s -> %s' % (paths[1:], path[0])) return {paths[0]} def corpus_to_keepers(pdf_dir): """Return the unique files in `pdf_dir` that we will use""" print('corpus_to_keepers: pdf_dir="%s"' % pdf_dir) path_list = list(glob(os.path.join(pdf_dir, '**'), recursive=True)) print('corpus_to_keepers: %d total' % len(path_list)) path_list = [path for path in path_list if os.path.isfile(path)] print('corpus_to_keepers: %d files' % len(path_list)) path_list = [path for path in path_list if os.path.splitext(path)[1] == '.pdf'] print('corpus_to_keepers: %d pdf files' % len(path_list)) # for i, path in enumerate(path_list): # assert os.path.isfile(path), path # path_list = [flatten_path(path, pdf_dir) for path in path_list] sha1_paths = defaultdict(set) xarc = [] for i, path in enumerate(path_list): assert os.path.isfile(path), path assert os.path.abspath(path) == path, (os.path.abspath(path), path) sha1 = sha1_digest(path) sha1_paths[sha1].add(path) if 'xarc' in path: xarc.append(path) print('%d xarc files of %d (raw total: %d)' % (len(xarc), len(sha1_paths), i)) assert xarc for sha1 in sha1_paths: paths = sha1_paths[sha1] if len(paths) > 1: sha1_paths[sha1] = find_keeper(paths, pdf_dir) keepers = [] for paths in sha1_paths.values(): assert len(paths) == 1, (len(paths), paths) keepers.append(list(paths)[0]) keepers.sort() return keepers exclusions = { '~/testdata/Year_8_Pythagoras_Booklet.pdf', '~/testdata/missing.pdf', '~/testdata/nsdi17-gowda.pdf', '~/testdata/nsdi17-horn-daniel.pdf', '~/testdata/rdp2018-03.pdf', } exclusions = {os.path.expanduser(path) for path in exclusions} def corpus_to_text(pdf_dir, summary_dir): """Convert the unique PDF files in `pdf_dir` to file with the same name in `summary_dir` """ keepers = corpus_to_keepers(pdf_dir) os.makedirs(summary_dir, exist_ok=True) pdf_summary = OrderedDict() summary_pdf = OrderedDict() for i, pdf_path in enumerate(keepers): size = os.path.getsize(pdf_path) print('%3d: %s [%.1f]' % (i, pdf_path, size / MBYTE), end=' -> ') assert os.path.abspath(pdf_path) == pdf_path if min_size <= size <= max_size: name = extract_name(pdf_path, pdf_dir) assert not name.endswith('.json'), name name = '%s.json' % name summary_path = os.path.join(summary_dir, name) assert summary_path not in summary_pdf, (pdf_path, summary_pdf[summary_path]) pdf_summary[pdf_path] = summary_path summary_pdf[summary_path] = pdf_path print(summary_path, end=' ') # assert not os.path.exists(summary_path) # save_pdf_summary(pdf_path, summary_path) print() print('^' * 100) started = set() for i, (pdf_path, summary_path) in enumerate(pdf_summary.items()): if pdf_path in exclusions: started.add(pdf_path) continue # if len(started) < len(exclusions): # continue print('%4d: %s -> %s' % (i, pdf_path, summary_path), flush=True) save_pdf_summary(pdf_path, summary_path) if __name__ == '__main__': corpus_to_text(pdf_dir, summary_dir) print('=' * 80) for directory in (pdf_dir, summary_dir): path_list = list(glob(os.path.join(directory, '**'), recursive=True)) print('%s: %d files' % (directory, len(path_list)))
true
8a3dd94a7898bc65dd67c3d5912a76be4ed1abd5
Python
kotaYkw/web_scraping_samples
/javascriptsample.py
UTF-8
722
2.65625
3
[]
no_license
import requests from bs4 import BeautifulSoup url ='http://www.webscrapingfordatascience.com/simplejavascript/' r = requests.get(url) html_soup = BeautifulSoup(r.text, 'html.parser') # ここにタグは含まれていない ul_tag = html_soup.find('ul') print(ul_tag) # JavaScriptのこーどを表示する script_tag = html_soup.find('script', attrs={'src': None}) print(script_tag) url = 'http://www.webscrapingfordatascience.com/simplejavascript/quotes.php' # Cookieの値は文字列で指定する必要がある # Cookieを設定しないと、ブラウザから見ていないとバレてアクセスを拒否される r = requests.get(url, cookies={'jsenabled': '1'}) print(r.json())
true
41133b2b7a4d9cfbd1eae8832a07585cc4f604bc
Python
webclinic017/aqua
/src/aqua/security/stock.py
UTF-8
671
3.53125
4
[]
no_license
""" Defines a stock contract """ from aqua.security.security import Security class Stock(Security): """ A stock represents a share of a company or index. We assume that it can be uniquely defined by a symbol (ticker). """ def __init__(self, symbol: str) -> None: self.symbol = symbol.upper() def __eq__(self, o: object) -> bool: if isinstance(o, Stock): return self.symbol == o.symbol if isinstance(o, str): return self.symbol == o.upper() return NotImplemented def __hash__(self) -> int: return hash(self.symbol) def __repr__(self) -> str: return self.symbol
true
4980d6a9bda50932dfb6439d0f38e7cfca3bc170
Python
cse442-at-ub/cse442-semester-project-indra-infared-remote-access
/RaspberryPi/util/pi_lirc.py
UTF-8
4,823
2.5625
3
[]
no_license
from subprocess import check_output import shutil import dbus import time import os from threading import Thread from queue import Queue LIRC_CONF_DIR = '/etc/lirc/lircd.conf.d' def send_ir_signal(remote_name:str, button:str, method:str="ONCE", device:str=None) -> bool: """Sends an IR signal with LIRC. Attempts to use LIRC to send the IR command associated with the provided remote_name and button. If no device is provided then the default LIRC device will be used. Parameters ---------- remote_name : str Name of the remote config to use. button : str Name of the button to 'press' method : str, optional Should be "ONCE", "START", or "STOP" but will default to "ONCE" device : str, optional The device that LIRC will use to send the command. If None then the default device is used. It is highly recommended that you always call this with the LIRC device that is used for sending commands as the configured default may not be correct. (default is None) Returns ------- bool True if successful, False if not. """ command = [] if not device: command = ['irsend', 'SEND_' + method, remote_name, button] output = None try: output = check_output(command) except: return False return len(output) == 0 def search(brand, device): output = check_output(['irdb-get','find', brand]).decode() output = output.split("\n") op1 = [i1.split('.l', 1)[0] for i1 in output[0:-1]] op2 = [i2.split('/', 1) for i2 in op1] res1 = [i[0] for i in op2] res2 = [i[1] for i in op2] final = [{'brand': f, 'device': c} for f,c in zip(res1,res2)] result = list(filter(lambda item: device.lower() in item['device'].lower(), final)) return result def download_lirc_config(brand: str, device: str, dst_dir=LIRC_CONF_DIR ) -> (bool, str): lookup = brand + '/' + device + '.lircd.conf' output = check_output(['irdb-get', 'download', lookup]).decode() if 'Cannot' in output: return (False, None) filename = output.split('as')[-1].strip() try: resulting_location = shutil.move('./' + filename, dst_dir) pass except shutil.Error: return (True, filename) pass output = (False, None) if dst_dir in resulting_location and restart_lirc_service(): output = (True, filename) return output def restart_lirc_service(): """ Requires authorization to interact with systemd. Therefore, run your piece of code with 'sudo' privileges. """ sysbus = dbus.SystemBus() systemd = sysbus.get_object('org.freedesktop.systemd1', '/org/freedesktop/systemd1') manager = dbus.Interface(systemd, 'org.freedesktop.systemd1.Manager') output = manager.RestartUnit('lircd.service', 'fail') time.sleep(.5) return is_lirc_running(sysbus) def is_lirc_running(sysbus=dbus.SystemBus()): """ Requires authorization to interact with systemd. Therefore, run your piece of code with 'sudo' privileges. """ systemd = sysbus.get_object('org.freedesktop.systemd1', '/org/freedesktop/systemd1') manager = dbus.Interface(systemd, 'org.freedesktop.systemd1.Manager') service = sysbus.get_object('org.freedesktop.systemd1', object_path=manager.GetUnit('lircd.service')) interface = dbus.Interface(service, dbus_interface='org.freedesktop.DBus.Properties') return interface.Get('org.freedesktop.systemd1.Unit', 'ActiveState') == 'active' def read_lirc_config_file(filename, src_dir=LIRC_CONF_DIR): path_to_file = src_dir + '/' + filename output = None if os.path.exists(path_to_file): with open(path_to_file, 'r') as lirc_f: try: output = lirc_f.read() pass except: output = None pass finally: lirc_f.close() return output class IrSendDaemon(Thread): def __init__(self, min_delay): self.command_q = Queue(maxsize=0) self.min_delay = min_delay self.running = False super().__init__() def start(self): self.running = True super().setDaemon(True) super().start() def run(self): current_time = round(time.monotonic() * 1000) while self.running: remote, button = self.command_q.get() send_ir_signal(remote, button) print(round(time.monotonic() * 1000) - current_time) current_time = round(time.monotonic() * 1000) time.sleep(.001 * self.min_delay) def add_to_queue(self, remote, button): self.command_q.put((remote, button), block=False)
true
26a055f95853e218e7ad5425bcd71f89848f0d12
Python
weiiiiweiiii/BreakSpace
/spacebreakerlib/ScrollbarXY.py
UTF-8
845
3.21875
3
[]
no_license
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Liangze Yu """ import tkinter as tk class ScrollbarXY: def __init__(self,textArea): #pack with Window self.__root = textArea.master #function aligned to Text self.__textArea = textArea self.__xScrollbar() self.__yScrollbar() def __xScrollbar(self): self.__xBar = tk.Scrollbar(self.__root,command= self.__textArea.xview, orient = tk.HORIZONTAL) self.__textArea.config(xscrollcommand = self.__xBar.set) self.__xBar.pack(side = 'bottom', fill = 'x') def __yScrollbar(self): self.__yBar = tk.Scrollbar(self.__root,command= self.__textArea.yview, orient = tk.VERTICAL) self.__textArea.config(yscrollcommand = self.__yBar.set) self.__yBar.pack(side = 'right', fill = 'y')
true
c6424c89aff12786212667ea046e8d8b702716dd
Python
georgetao/comp-programming
/beads.py
UTF-8
828
3.453125
3
[]
no_license
""" ID: georget2 LANG: PYTHON3 TASK: beads """ import sys with open("beads.in", "r") as fin: n = int(fin.readline()) beads = fin.readline().replace("\n", "") def longest_beads(n, beads): curr_char = "" prev = 0 curr = 0 longest = 0 tail_whites = 0 newStreak = False for _ in range(2): for c in beads: if c == curr_char: curr += 1 tail_whites = 0 elif c == "w": curr += 1 tail_whites += 1 else: prev = curr curr_char = c curr = 1 newStreak = True if prev + curr > longest: longest = prev + curr if newStreak: curr += tail_whites prev -= tail_whites tail_whites = 0 newStreak = False if longest >= n: return longest return longest longest = longest_beads(n, beads) with open("beads.out", "w") as fout: fout.write(str(longest) + "\n")
true
0cbe8f5588e8343644fb6af1bcc0b24c180649cd
Python
shkumagai/pyside-sandbox
/sample_ghost.py
UTF-8
495
2.53125
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python import logging import ghost def main(url, output_path): g = ghost.Ghost() with g.start(display=True, viewport_size=(1366, 800)) as session: res = session.open(url, timeout=30) print(res) if __name__ == '__main__': url = 'http://www.google.com/' output_path = 'capture_0.png' logger = logging.getLogger('script') sh = logging.StreamHandler() sh.setLevel(logging.DEBUG) ghost.logger = logger main(url, output_path)
true
93db1c4546a65d0ed8fd0476d861886e7f65e689
Python
perikain/Pruebas
/upd1.py
UTF-8
454
3.09375
3
[]
no_license
#!/usr/bin/env python #!-*- coding: utf-8 -*- import socket host = "192.168.56.1" port = 12345 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind((host,port)) s.settimeout(5) #añade una espera de 5 segundos, sólo entonces muestra el mensade error. data, addr = s.recvfrom(1024) #recvfrom devuelve dos datos, primero el dato y segundo la dirección del cliente. print "received from ", addr print "obtained ", data s.close()
true
e9c394ec9aaacc947ee2578e1920202417963867
Python
RahulJain7/Openmodelica-Thermodynamic-Engine
/PythonFiles/UNIQUAC.py
UTF-8
921
2.640625
3
[]
no_license
import csv Compound = [] A12 = [] A21 = [] alpha = [] with open("UNIFAC.csv") as csvfile: csvreader = csv.reader(csvfile,delimiter=',') for row in csvreader: Comp1 = row[2] Comp1 = Comp1.capitalize() Comp1 = Comp1.strip(" ") Comp2 = row[3] Comp2 = Comp2.capitalize() Comp2 = Comp2.strip(" ") if Comp1+'_'+Comp2 not in Compound: Compound.append(Comp1+'_'+Comp2) A12.append(row[0]) A21.append(row[1]) # alpha.append(row[4]) print Compound print A12 no = len(Compound) no1 = len(A12) print no print no1 with open('UNIQUAC_FINAL.txt','a') as txtfile: txtfile.write("{") for i in range(0,no): txtfile.write('"'+Compound[i]+'",') txtfile.write("}") txtfile.write("\n") txtfile.write("\n") for i in range(0,no): txtfile.write("{"+str(A12[i])+","+str(A21[i])+"},")
true
4980500d446bc774f7c00abe2bb0543fdbe1cf66
Python
wsustcid/Udacity-Self-Driving-Car-Engineer-Nanodegree
/Term1/Scripts/02.[Project] Finding Lane Lines/4_color_selection.py
UTF-8
1,736
3.28125
3
[]
no_license
''' @Author: Shuai Wang @Github: https://github.com/wsustcid @Version: 1.0.0 @Date: 2020-03-26 11:45:38 @LastEditTime: 2020-04-02 11:26:00 ''' import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np # Read in the image image = mpimg.imread('lane.jpg') print('This image is: ',type(image), 'with dimensions:', image.shape) # image.shape = [height, width] # Grab the x and y size and make a copy of the image height = image.shape[0] width = image.shape[1] # Note: Always make a copy of arrays or other variables in Python. # If instead, you use "a = b" then all changes you make to "a" # will be reflected in "b" as well! color_select = np.copy(image) # Define color selection criteria ###### MODIFY THESE VARIABLES TO MAKE YOUR COLOR SELECTION red_threshold = 200 green_threshold = 200 blue_threshold = 200 ###### # answer: 200 (recognize all 4 lane lines) # If we set to 200, can extract two lines directly in front of the vehicle. rgb_threshold = [red_threshold, green_threshold, blue_threshold] # Do a boolean or with the "|" character to identify # pixels below the thresholds thresholds = (image[:,:,0] < rgb_threshold[0]) \ | (image[:,:,1] < rgb_threshold[1]) \ | (image[:,:,2] < rgb_threshold[2]) # thresholds is a 2-D boolean matrix, # The matrix elements are False only when the RGB values are all above the corresponding rgb_thresholds. color_select[thresholds] = [0,0,0] # Uncomment the following code if you are running the code locally and wish to save the image mpimg.imsave("lane_color_selection.png", color_select) # Display the image plt.imshow(color_select) plt.show()
true
f0343f86e207f2c0a7e8898faeb52d2d656288af
Python
danyontb/ProgrammingPortfolio
/Classes/pyramid.py
UTF-8
302
3.25
3
[]
no_license
class pyramid: import math l = input('Enter in a length:') w = input('Enter in a width:') h = input('Enter in a height:') L = int(l) W = int(w) H= int(h) print('volume: ', (L*W*H)/3) print('surface area: ', L*W+L*math.sqrt(((W*W)/4)+H*H)+W*math.sqrt(((L*L)/4)+H*H))
true
988ef3f265aa445e72e52a39e1e08bb543e14349
Python
CXOldStar/lorawanprotocol
/lorawanprotocol/assert_judge.py
UTF-8
644
2.546875
3
[ "MIT" ]
permissive
from .customer_error import AssertError class AssertJudge: @staticmethod def assert_nwkskey(nwkskey): if not (isinstance(nwkskey, bytes) and len(nwkskey) == 16): raise AssertError('NwkSKey', 'NwkSKey must be a 16 bytes data.') @staticmethod def assert_appskey(appskey): if not (isinstance(appskey, bytes) and len(appskey) == 16): raise AssertError('AppSKey', 'AppSKey must be a 16 bytes data.') @staticmethod def assert_appkey(appkey): if not (isinstance(appkey, bytes) and len(appkey) == 16): raise AssertError('AppKey', 'AppKey must be a 16 bytes data.')
true
d9611a5577f39f2956102aea79c478f3d27aaa95
Python
abdallawi/PythonBasic
/python-standard-lib/WorkingWithPaths.py
UTF-8
2,802
4.09375
4
[]
no_license
from pathlib import Path # Makes sense: new_line = '\n' # When you wanna work with files and directories, # you will need a Path object that represents where that file or directory lives. # Here are 2 examples that show the difference between a Unix and a Windows folder hierarchy: # Unix: /home/elliot/Desktop/password.txt # Windows: C:\Users\Mr Robot\Desktop\password.txt # When creating a Path instance on windows we have 2 options: # Because Windows uses a backslash as a separator we need to use this notation: windows_path_1 = Path('C:\\Downloads\\Secret Porn\\video.mp4') # Here we are using a raw string, meaning \ is not an escape character, the value given is taken as is! windows_path_2 = Path(r'C:\Downloads\Secret Porn\video.mp4') # If we dont know where we are in the current folder hierarchy, # we can simply make an Path instance without giving it an argument during creation: place_in_universe = Path() # We can also combine Path objects with strings to form a new Path instance as such: # C:\Users\abdelmounaim\Documents\MyDesktop\python file\python_basics # project = Path('/home') / 'eliot' / 'PycharmProjects' / 'python_basics/' project = Path(r'C:\Users') / 'abdelmounaim' / 'Documents' / 'MyDesktop' / 'python file' / 'python_basics' # If you want to know the current home of the user you can use the following method: home = Path.home() print(home) # We will use the project variable to play around with, and see the most useful methods # See if our path exists: print(f"The path {project} exists: {project.exists()}{new_line}") # Check if our instance is a file: print(f"The path {project} is a file: {project.is_file()}{new_line}") # Check if our instance is a directory: print(f"The path {project} is a directory: {project.is_dir()}{new_line}") # We can extract individual components in this path: this_file = project / 'python-standard-lib/WorkingWithPaths.py' print(this_file.name) # Returns name of file at the end of our Path if no file found returns last directory # We can also lose the file extension like so: print(this_file.stem) # If we want only the file extension: print(this_file.suffix) # If we only want the parent path: print(this_file.parent) my_list = list(this_file.parents) for i in range(len(my_list)): print(my_list[i]) # What if we want to modify our name and extension and store it as a new Path, beware this will not make a new file! this_file_modified = this_file.with_name('not_a_virus_for_sure_homeboy.exe') print(this_file_modified) # If you need an absolute path: print(this_file_modified.absolute()) # Doesn't mean that the file exist, this is only a representation of a path!! # If you want to find out more about the pathlib module go here: https://docs.python.org/3/library/pathlib.html
true
df525b01a7037dc73a9e286223ef7e29977b6610
Python
chakshujain/Python-projects
/Whatsapp_automation.py
UTF-8
665
2.90625
3
[]
no_license
from selenium import webdriver driver = webdriver.Chrome() driver.get('https://web.whatsapp.com/') nameslist = list(map(str,input("Enter names of users you wanna send message: ").split())) msg = input("Enter message: ") count = int(input("How many times you wanna send: ")) input("Enter any key after scanning code") for name in nameslist: user = driver.find_element_by_xpath('//span[@title = "{}" ]'.format(name)) user.click() msg_box = driver.find_element_by_class_name('_3u328') for i in range(count): msg_box.send_keys(msg) btn = driver.find_element_by_class_name('_3M-N-') btn.click() driver.minimize_window()
true
d36258c11914ca73f7e2bb3c99e8c38c053c6fa5
Python
lolizz00/JESD
/ConsoleApp.py
UTF-8
8,571
2.953125
3
[]
no_license
from JESDdriver import JESD import sys from version import version_logo class ConsoleApp: def __init__(self): self.dev = JESD() def outError(self): sys.stdout.write('Wrong args!') def handleArgs(self, argv): # вывод помощи, копипаст из README if argv[0] == '-h' or argv[0] == '--help': print("'-h' или '--help' --- Вывод помощи.") print("'-v' или '--ver' --- Вывод текущей версии. ") print("'-l' или '--list' --- Вывод списка доступных устройств") print("'-d [номер]' или '--device [номер]' --- Необязательный аргумент, по умолчанию 0. Выбор устройства для работы.") print("'-st' или '--status' --- Вывод статуса устройства. Пример вызова: `start.py -d 1 -st` или `start.py --status`.") print("'-ld [файл]' или '--load [файл]' --- Загрузка файла в устройство. Пример вызова: `start.py -d 1 -ld text.txt` или `start.py --load H:\TEST\\test.txt`.") print("'-bl' или '--blink' --- Мигнуть светодиодом. Пример вызова: `start.py -d 0 -bl` или `start.py --blink`.") print("'-rs' или '--reset' --- Сбросить устройство. Пример вызова: `start.py -d 0 -rs` или `start.py --reset`.") print("'-cs' или '--clrstat' --- Сбросить статус PLL. Пример вызова: `start.py -d 0 -cs` или `start.py --clrstat`.") print("'-rd [адрес(hex)]' или '--read' --- Считать значение регистра. Пример вызова: `start.py -d 0 -rd 0x03` или `start.py --read 0xAA`.") print("'-wr [адрес(hex)] [значение(hex)]' или '--write [адрес(hex)] [значение(hex)]' --- Запись в регистр. Пример вызова: `start.py -d 0 -wr 0x0 0x0` или `start.py --write 0xA 0xFF`.") return 0 # версия ПО из генератора if argv[0] == '-v' or argv[0] == '--ver': print('Version: ' + version_logo) return 0 # вывод списка устройств, OK if argv[0] == '-l' or argv[0] == '--list': lst = self.dev.getListStr() for i in range(len(lst)): sys.stdout.write(str(i) + ': ' + lst[i]) return 0 # Если нужно, указываем номер устройства devFlg = 0 devn = 0 if argv[0] == '-d' or argv[0] == '--device': try: devn = int(argv[1]) # если номер указан, увеличиваем номер аргумента, с которым работаем devFlg = 2 except: print('Неверный номер устрйства!') return -1 # проверяем, что устройство живое try: info = self.dev.connect(devn) print('Выбранное устройство: ' + self.dev.getListStr()[devn]) except Exception as e: print('Ошибка при подключении: ' + str(e)) return -1 ## Работа с устройствами # проверяем, есть ли аргументы. try: tmp = argv[0 + devFlg] except: print('Неверные аргументы!') return -1 # вывод статуса if argv[0 + devFlg] == '-st' or argv[0 + devFlg] == '--status': stat1 = self.dev.checkStatus(1) stat2 = self.dev.checkStatus(2) print('PLL1 Status: ' + stat1) print('PLL2 Status: ' + stat2) return 0 # запись в файл, работает так же, как и в оконном # если непонятно, смотри MainForm::parseFile elif argv[0 + devFlg] == '-ld' or argv[0 + devFlg] == '--load': self.dev.set4Wire() try: sch = 0 fname = argv[1 + devFlg] fd = open(fname, 'r') for line in fd: sch = sch + 1 _line = line line = line.replace('\n', '') line = line.replace('0x', '') if line == '': continue line = line.split('\t') line = line[1] line = int(line, 16) regAddr = line >> 8 regVal = line & 0xFF self.dev.write(regAddr, regVal) fd.seek(0) flg = True for line in fd: _line = line line = line.replace('\n', '') line = line.replace('0x', '') if line == '': continue line = line.split('\t') line = line[1] line = int(line, 16) regAddr = line >> 8 regVal = line & 0xFF # пропускаем сбросы skip = [0x0, 0x1ffd, 0x1ffe, 0x1fff, 0x006] if regAddr in skip: continue tmp = self.dev.read(regAddr) if tmp != regVal: print('Предупреждение: Регистр ' + hex(regAddr) + ' после записи значения ' + hex( regVal) + ' равен ' + hex(tmp)) flg = False fd.close() if flg: print('Запись прошла без ошибок!') print('Запись завершена.') return 0 except Exception as e: if sch: print('Неверный файл! ' + "Ошибка: '" + str(e) + "' на строке " + str(sch)) else: print('Неверный файл! ' + "Ошибка: '" + str(e)) return -1 # мигнуть светодиодом elif argv[0 + devFlg] == '-bl' or argv[0 + devFlg] == '--blink': self.dev.LEDBlink() print('Успешно помигали светодиодом.') return 0 # сбросить elif argv[0 + devFlg] == '-rs' or argv[0 + devFlg] == '--reset': self.dev.reset() print('Устройство успешно сброшено.') return 0 # очистить статус elif argv[0 + devFlg] == '-cs' or argv[0 + devFlg] == '--clrstat': self.dev.clearStatus() print('Статус успешно очищен.') return 0 # чтение регистра elif argv[0 + devFlg] == '-rd' or argv[0 + devFlg] == '--read': try: self.dev.set4Wire() self.dev.enableWrite() addr = argv[1 + devFlg] _addr = addr addr = int(addr, 16) val = self.dev.read(addr) print('Значение регистра ' + hex(addr) + ' : ' + hex(val)) return 0 except: print('Неверный номер регистра!') return -1 # запись в регистр elif argv[0 + devFlg] == '-wr' or argv[0 + devFlg] == '--write': try: self.dev.set4Wire() self.dev.enableWrite() addr = argv[1 + devFlg] addr = int(addr, 16) val = argv[2 + devFlg] val = int(val, 16) self.dev.write(addr, val) print("Успешно записано.") return 0 except: print('Неверный номер или значение регистра!') return -1 else: print('Неизвестный или отсутсвующий аргумент!') return -1
true
c3b9d8ddd9d30c182aea5ed3735e2d1ba95c7761
Python
duykienvp/sigspatial-2021-quantify-voi-of-trajectories
/pup/common/information_gain.py
UTF-8
506
3.671875
4
[ "MIT" ]
permissive
# Calculate Information Gain import logging import numpy as np logger = logging.getLogger(__name__) def calculate_differential_entropy_norm(sigma, base=2) -> float: """ Differential entropy of a normal distribution with standard deviation sigma is: 0.5log(2*pi*e*sigma*sigma) :param sigma: standard deviation of the normal distribution :param base: base of logarithm :return: the differential entropy """ return (0.5 * np.log(2 * np.pi * np.e * sigma * sigma)) / np.log(base)
true
35a59bbd5bafdd69409557d304a26fe5c3057a1e
Python
yangyu57587720/kindergarten
/apps/users/models.py
UTF-8
2,571
2.640625
3
[]
no_license
"""用户相关的模型表""" from django.db import models from django.contrib.auth.models import AbstractUser # 导入auth-user模块 from datetime import datetime class UserProfile(AbstractUser): """继承django模块AbstractBaseUser并扩展""" nick_name = models.CharField(max_length=32, default="", verbose_name="昵称") # null针对数据库字段可以为空,blank表单填写时可以为空 birthday = models.DateField(verbose_name="生日", null=True, blank=True) # 此方法避免在数据库生成多余字段,用数字代替更好 gender_choices = ((1, "男"), (2, "女")) gender = models.IntegerField(choices=gender_choices, default=1, verbose_name="性别") address = models.CharField(max_length=64, default="", verbose_name="居住地址") mobile = models.CharField(max_length=11, null=True, blank=True, verbose_name="手机号码") # upload_to指明文件的路径(image/年/月) image = models.ImageField(upload_to="image/%Y/%m", default="image/default.png", verbose_name="头像") class Meta: """设置表名称""" verbose_name = "用户信息" # verbose_name_plural设置显示表名的复数形式,不设置会在后面加s verbose_name_plural = verbose_name def __str__(self): # 返回字符串的友好方式 return self.username class EmailVerifyRecord(models.Model): """邮箱验证""" code = models.CharField(max_length=32, verbose_name="验证码") email = models.EmailField(max_length=64, verbose_name="邮箱") send_type_choices = ((0, "注册"), (1, "找回密码"), (2, "修改邮箱")) send_type = models.IntegerField(choices=send_type_choices, verbose_name="类别") send_time = models.DateField(default=datetime.now, verbose_name="发送时间") class Meta: """设置表名称""" verbose_name = "邮箱验证码" verbose_name_plural = verbose_name def __str__(self): return self.email class Banner(models.Model): """轮播图""" title = models.CharField(max_length=64, verbose_name="标题") image = models.ImageField(upload_to="banner/%Y/%m", verbose_name="轮播图") url = models.URLField(max_length=225, verbose_name="访问地址") index = models.IntegerField(default=99, verbose_name="顺序") add_time = models.DateField(default=datetime.now, verbose_name="添加时间") class Meta: verbose_name = "轮播图" verbose_name_plural = verbose_name def __str__(self): return self.title
true
801e71f9964f702b756a558ecc2c0c7d57421e66
Python
singhalsrishty/pythonEthans
/29March_assignment.py
UTF-8
6,924
4.40625
4
[]
no_license
''' 1. Write a program which can compute the factorial of a give numbers. The results should be printed in a comma-separated sequence on a single line. Suppose the following input is supplied to the program: 8 Then, the output should be: 40320 ''' def factorial(num): fact = 1; if num == 0: return fact; else: for i in range(1, num+1): fact *= i; return fact; number = int(input("Enter the number to calculate factorial: ")); print(factorial(number)); ''' 3. Write a program that calculates and prints the value according to the given formula: Q = Square root of [(2*C*D)/H] Following are the fixed values of C and H: C is 50 and H is 30. D is the variable whose values should be input to your program in a comma-separated sequence. Example: Let us assume the following comma-separated input sequence is given to the program: 100, 150, 180 The output of the program should be: 18, 22, 24 ''' import math as maths; c=50; h=30; def calculateSquareRoot_Formula(seq): result = []; for i in seq: i = int(i); product = (2*c*i)/h; result.append(int(maths.pow(product, 1/2))); return result; inputs = input("Enter numbers: "); seq = inputs.split(","); #print(seq); print(calculateSquareRoot_Formula(seq)); ''' 4. Write a program that accepts a sequence of whitespace seperated words as input and print the wprds after removing all the duplicate words and sorting them alphanumerically. Suppose the following input is supplied to the program: hello world and practice makes perfect and hello world again Then, the output should be: again and hello makes perfect practice world ''' def removeDuplicate(sentence): result = set(); for words in sentence: result.add(words); return result; def sortLexicographically(sentenceSet): sorted = list(sentenceSet); sorted.sort(); return sorted; sentence = str(input("Enter the sentence: ")).split(" "); nonDuplicates = removeDuplicate(sentence); resultList = sortLexicographically(nonDuplicates); for item in resultList: print(item, end=" "); ''' 5. Write a program which will find all such numbers between 1000 and 3000 (both included) such that each digit of the number is an even number. The numbers obtained should be printed in a comma-separated sequence on a single line. ''' def printEven(): for i in range(1000, 3001): if i%2 == 0: print(i, end=", ") printEven(); ''' 6. Write a program that accepts a sentence and calculate the number of letters and digits. Suppose the following input is supplied to the program: hello world! 123 Then, the output should be: LETTERS 10 DIGITS 3 ''' def countLetters(seq): letters = 0; for word in list(seq): for char in word: if str(char).isalpha(): letters += 1; return letters; def countDigits(seq): digits = 0; for word in list(seq): for char in word: str(char).isupper(); if str(char).isdigit(): digits += 1; return digits; inputs = input("Enter the input: ").split(" "); print("LETTERS ", countLetters(inputs)); print("DIGITS ", countDigits(inputs)); ''' 7. Write a program that accepts a sentence and calculate the number of upper case letters and lower case letters. Suppose the following input is supplied to the program: Hello world! Then, the output should be: UPPER CASE 1 LOWER CASE 9 ''' def calculateUpperCase(seq): count = 0; for word in seq: for char in word: if(str(char).isupper()): count += 1; return count; def calculateLowerCase(seq): count = 0; for word in seq: for char in word: if(str(char).islower()): count += 1; return count; inputs = input("Enter the sentence: ").split(" "); print("UPPER CASE ", calculateUpperCase(inputs)); print("LOWER CASE ", calculateLowerCase(inputs)); ''' 8. Write a program that computes the net amount of a bank account based on a transaction log from console input. The transaction log format is shown as following: D 100 W 200 D means deposit while W mean withdrawl. Suppose the following input is supplied to the program: D 300 D 300 W 200 D 100 Then, output should be: 500 ''' def processTransactions(transaction_seq): total = 0; for transaction in transaction_seq: type_transaction = transaction.split(" "); if(type_transaction[0] == "D"): total += int(type_transaction[1]); elif (type_transaction[0] == "W"): total -= int(type_transaction[1]); return total; transactions = input("Enter the transaction data: ").splitlines(); print(processTransactions(transactions)); ''' 9. A website requires the users to input username and password to register. Write a program to check the validity of the password input by users. Following are the criteria for checking the password: 1. At least 1 letter between [a-z] 2. At least 1 number between [0-9] 3. At least 1 letter between [A-Z] 4. Minimum length of transaction password: 6 5. Maximum length of transaction password: 12 Your program should accept a sequence of comma-separated passwords and will check them according to the above criteria. Passwords that match the criteria are to be printed, each separated by a comma. Example: If the following passwords are given as input to the program: ABd1234@1, aF1#, 2w3E*, 2We3345. Then, the output of the program should be: ABd1234@1 ''' import re as regex; def validatePassword(passwords): validPasswords = list(); for password in passwords: if len(password) >=6 and len(password) <=12: if regex.findall("[a-zA-Z0-9]", password): validPasswords.append(password); return validPasswords; inputs = str(input("Enter the passwords: ")).split(", "); validPasswords = validatePassword(inputs); for password in validPasswords: print(password, end=", ") ''' 10. You are required to write a program to sort the (name, age, height) tuples by ascending order where the name is string, age and height are numbers. The tuples are input by console. The sort criteria is: 1. Sort based on name; 2. Then sort based on age; 3. Then sort by score. The priority is that name>age>score. If the following tuples are given as input to the program: Tom, 19, 80 John, 20, 90 Jonny, 17, 91 Jonny, 17, 93 Json, 21, 85 Then, the output of the program should be: [("John", "20", "90"), ("Jonny", "17", "91"), ("Jonny", "17", "93"), ("Json", "21", "85"), ("Tom", "19", "80")] ''' from operator import itemgetter; def sortData(dataset): dataset.sort(key=itemgetter(2)); dataset.sort(key=itemgetter(1)); dataset.sort(key=itemgetter(0)); return dataset; rawData = input("Enter the data: ").splitlines(); dataset = list(); for data in rawData: data = tuple(data.split(", ")); dataset.append(data); print(sortData(dataset));
true
a30b833a2b5ea85ddaa61ccf77832a724af5dd50
Python
AdamPellot/AutomateTheBoringStuffProjects
/Ch16/autoUnsub.py
UTF-8
1,229
2.765625
3
[ "MIT" ]
permissive
#! python3 # autoUnsub.py - Scans through your email account, finds all the # unsubscribe links in all your emails, and automatically # opens them in a browser. # Adam Pellot import bs4 import imapclient import pyzmail import webbrowser print('Enter your email address:') myEmail = input() print('Enter the password to your email address:') emailPass = input() # Connect to email. imapObj = imapclient.IMAPClient('imap.gmail.com', ssl=True) imapObj.login(myEmail, emailPass) imapObj.select_folder('INBOX', readonly=True) # Select all emails and check for each one unsub link. UIDs = imapObj.search('ALL') unsubLinks = [] count = 0 for ID in UIDs: rawMessages = imapObj.fetch(ID, ['BODY[]']) message = pyzmail.PyzMessage.factory(rawMessages[ID][b'BODY[]']) if message.html_part: htl = message.html_part.get_payload().decode(message.html_part.charset) soup = bs4.BeautifulSoup(htl, 'html.parser') linkElems = soup.select('a') for link in linkElems: if 'unsubscribe' in link.text.lower(): unsubLinks.append(link.get('href')) imapObj.logout() # Open each unsub link in webbrowser. for link in unsubLinks: webbrowser.open(link)
true
c8903005a4f320d81e6a51d1806d4043878cd4be
Python
laxmanbudihal/Selenium
/open-close.py
UTF-8
544
2.9375
3
[]
no_license
from selenium import webdriver import os if 'chromedriver.exe' in os.listdir(): # platform independent use os module x = os.path.join(os.getcwd(), 'chromedriver.exe') print(x) driver = webdriver.Chrome(x) else: # if chrome driver is not found print('Warning : chrome binaries missing! ') # open a url part driver.get("https://www.google.com/") driver.get("https://duckduckgo.com/") driver.get("https://www.wikipedia.org/") o = input('close it ? : ') if o.lower()[0] == 'y': driver.close()
true
5406cbc623165068791fc63e6ec23b5802616be5
Python
deenaariff/Weave-Client
/RestClient/helpers/dockerCluster.py
UTF-8
3,370
2.546875
3
[]
no_license
import dataHelper as dh import time, sys, os import docker import shutil class Cluster: def __init__(self, configs, docker_image): self.docker_ip = "192.168.99.100" self.docker_image = docker_image; self.routes = [] self.client = docker.from_env() self.containers = [] self.default_keys = ["IP Address","Endpoint Port","Voting Port","Heartbeat Port", "State", "Term","Last Applied Index","Commit Index","Votes Obtained"] try: result = self.client.images.get(self.docker_image) print "Detected image '" + self.docker_image + "'" except docker.errors.ImageNotFound as e: print "Error: Image '" + self.docker_image + "' not Found" sys.exit(1) self.configs = configs self.num_nodes = len(configs) self.initialize_cluster() self.leader = None # Start a cluster of docker nodes # Delete existing logs def initialize_cluster(self): d='./logs/' filesToRemove = [os.path.join(d,f) for f in os.listdir( d )] for f in filesToRemove: os.remove(f) count = 0 for config in configs: print "Starting Node: " + str(count+1) port_mapping = {} for port in config: port_mapping[str(port)+'/tcp'] = port result = self.client.containers.run(self.docker_image, detach=True, ports=port_mapping) self.containers.append(result) port = str(config[0]) url = "http://" + self.docker_ip + ":" + port self.routes.append(url) def find_leader(self): if len(self.routes) > 0: while not self.leader: for url in self.urls: try: rsp = dh.make_request(url) if rsp['State'] == 'LEADER': self.leader = "http://" + rsp['IP Address'] + ":" + str(rsp['Endpoint Port']) except urllib2.HTTPError, e: print('HTTPError = ' + str(e.code)) except urllib2.URLError, e: print('URLError = ' + str(e.reason)) print url + " not reachable" except Exception, e: print e time.sleep(1) else: print "Error no routes available" sys.exit() def print_cluster(self): data = [] for url in self.routes: tmp = [] try: rsp = dh.make_request(url) for key in self.default_keys: tmp.append(rsp[key]) except Exception: tmp = ["DEAD"] * len(self.default_keys) data.append(tmp) print tabulate(data, headers=self.default_keys) # Remove the cluster of docker nodes # Add all logs to files in logs/ def remove_cluster(self): print "Stopping " + str(len(self.containers)) + " containers" file_index = 1 for container in self.containers: filename = "logs/log" + str(file_index) + ".txt" with open(filename, "w+") as f: f.writelines(container.logs()) f.close() container.stop() file_index += 1
true
614fa8d31eae7b19580fe23e1ac2e748ce8385a3
Python
HongbinW/learn_python
/learn_python/名片管理/cards_main.py
UTF-8
817
3.09375
3
[]
no_license
import cars_tools while True: # TODO 显示功能菜单 cars_tools.show_menu() action_str = input("请选择要执行的操作:") print("您选择的操作是【%s】" % action_str) # 1,2,3针对名片的操作 # 0退出新四通 # 其他输入错误,并提示用户 if action_str in ["1","2","3"]: if action_str =="1": cars_tools.new_card() elif action_str =="2": cars_tools.show_all() elif action_str =="3": cars_tools.search_card() # 若果在开发程序时,不希望立即编写分支内部的代码 # 可以使用pass关键字,表示一个占位符,保证代码结构正确,程序运行时,pass不会执行任何操作 # pass elif action_str == "0": print("欢迎再次使用【名片管理系统】") break else: print("选择错误,请重新选择")
true
d0092bd2dc93be4e4a040182a46fc8c4114814a1
Python
xczhang07/Python
/third_party_libs/python_memcached.py
UTF-8
2,003
2.9375
3
[]
no_license
# concept of memcached: high-performance, distributed memory object caching system. # official site: https://memcached.org # how to install: on mac os: brew install memcached # install python library (client app) to interact with memcached server: pip install pymemcache ''' after install memcached on your device, let us check the process with command " ps ef | grep "memc"(make sure your memcached process is running, then you can use python library to interact with memcached server.)" the result as following: 501 10343 1 0 12:03AM ?? 0:00.27 /usr/local/opt/memcached/bin/memcached -l localhost <--- 501 11249 11241 0 12:33AM ttys003 0:00.00 grep memc then we use python following python code to interactive with the memcached server after running this script, you need to launch another terminal to check the memcached server data: telnet localhost 11211 Trying ::1... Connected to localhost. Escape character is '^]'. get memcached VALUE memcached 0 11 hello world END ''' from pymemcache.client import base def run_query_to_db(command): """in this function, you are able to use python code to interact with your backend database(mysql, mongodb, etc...), right now, we just return an simple result """ print("running query on database, getting data from db...\n") return 100 def hit_cache_function(client, key): """this function perform the logic mode of the hit or miss memcached""" result = client.get(key) if result is None: result = run_query_to_db("select someting from table1 where user id equals sth") client.set(key, result) else: return result if __name__ == "__main__": client = base.Client(('localhost', 11211)) # this is the localhost testing code, we use localhost, in production code, you may need to provide real ip and password client.set('memcached', 'Hello World') hit_cache_function(client, "math_score")
true
22d008471f29f1c1b71643b0382d331500109143
Python
lautarianoo/LautAvito
/cities/models.py
UTF-8
1,120
2.578125
3
[ "BSD-3-Clause" ]
permissive
from django.db import models class City(models.Model): title = models.CharField(verbose_name='Название города', max_length=100) def __str__(self): return self.title class Meta: verbose_name = 'Город' verbose_name_plural = 'Города' class District(models.Model): title = models.CharField(verbose_name='Название района', max_length=150) city = models.ForeignKey(City, verbose_name='Город', on_delete=models.CASCADE, related_name='districts') def __str__(self): return f"{self.title} | {self.city.title}" class Meta: verbose_name = 'Район' verbose_name_plural = 'Районы' class Street(models.Model): title = models.CharField(verbose_name='Название улицы', max_length=150) district = models.ForeignKey(District, verbose_name='Район', on_delete=models.CASCADE, related_name='streets') def __str__(self): return f"{self.title} | {self.district.title}" class Meta: verbose_name = 'Улица' verbose_name_plural = 'Улицы'
true
1cd2f86e9ce899d12fe48a54287633175e0b027b
Python
luzifi/CREDIT-RISK-2020B
/src/classwork/industry-crawler/models.py
UTF-8
4,079
2.734375
3
[ "MIT" ]
permissive
import json from typing import List import requests from bs4 import BeautifulSoup class AbstractIndustry: def __init__(self, title: str, children: List['AbstractIndustry']): self.title = title self.children = children def __repr__(self): return f"<{self.level}, {self.title}>" @property def level(self): raise NotImplementedError def add_child(self, child: 'AbstractIndustry'): self.children.append(child) def to_dict(self): return { "title": self.title, "level": self.level, "children": [ child.to_dict() for child in self.children ] } @staticmethod def from_dict(**kwargs): raise NotImplementedError def jsonify(self) -> str: return json.dumps(self.to_dict(), indent=4) class Division(AbstractIndustry): level = "SIC Division" @staticmethod def from_dict(**kwargs): return Division( title=kwargs["title"], children=[ MajorGroup.from_dict(**k) for k in kwargs.get("children", []) ] ) class MajorGroup(AbstractIndustry): level = "SIC Major Group" @staticmethod def from_dict(**kwargs): return MajorGroup( title=kwargs["title"], children=[ Group.from_dict(**k) for k in kwargs.get("children", []) ] ) @staticmethod def from_url(url): response = requests.get(url) html = BeautifulSoup(response.text, "html.parser") return MajorGroup( title=[ elm.text for elm in html.find_all("h2") if elm.text.lower().startswith("major group")][0], children=[ Group( title=group.text, children=[ Single( title=single.parent.text, children=[] ) for single in html.find_all("a") if single.attrs.get("href", "").startswith("sic_manual") and single.parent.text.startswith(group.text.split(":")[0].split(" ")[-1]) ] ) for group in html.find_all("strong") if group.text.lower().startswith("industry group") ] ) class Group(AbstractIndustry): level = "SIC Group" @staticmethod def from_dict(**kwargs): return Group( title=kwargs["title"], children=[ Single.from_dict(**k) for k in kwargs.get("children", []) ] ) class Single(AbstractIndustry): level = "SIC Single Industry" @staticmethod def from_dict(**kwargs): return Single(title=kwargs["title"], children=[]) class SIC(AbstractIndustry): level = "Standard Industry Classification" @staticmethod def from_dict(**kwargs): return SIC( title=kwargs["title"], children=[ Division.from_dict(**k) for k in kwargs.get("children", []) ] ) @staticmethod def from_url(url: str) -> 'SIC': response = requests.get(url) html = BeautifulSoup(response.text, "html.parser") divisions = [] for element in html.find_all("a"): href = element.attrs.get("href", "") title = element.attrs.get("title", "") if not href.startswith("sic_manual"): continue elif href.endswith("division"): div = Division(title=title, children=[]) divisions.append(div) elif href.endswith("group"): major_group_url = url.replace("sic_manual.html", href) divisions[-1].add_child(MajorGroup.from_url(url=major_group_url)) return SIC(title="SIC", children=divisions)
true
0a95a75c2c44240a0588a85d1f4451c28a44bf35
Python
jawhelan/PyCharm
/PyLearn/Exercise Files/Treehouse/split and join.py
UTF-8
432
3.53125
4
[]
no_license
full_name = "james Whelan" # split full name "James Whale" into "James", "whelan" name_list = full_name.split() greeting_var="hello my name is tim" #split string "hello my name is tim" to "hello", "my"," name", "is", "tim" greeting_list = greeting_var.split() # swap out the name tim with james greeting_list[4] = name_list[0] # join the split string back into one varable greeting_list = " ".join(greeting_list) print(greeting_list)
true
4644782b7e7d940bec7d266d29d07a532fa79771
Python
michaeltrimm/python-notes
/memory.py
UTF-8
1,298
3.234375
3
[]
no_license
#!/usr/local/bin/python3 import resource import sys """ List Squaring numbers 1 to 10,000,000 Before: 7.312Mb After: 332.539Mb Consumed = 325.22Mb memory Generator Squaring numbers 1 to 10,000,000 Before: 332.543Mb After: 332.543Mb Consumed = 0.0Mb memory """ # Size of the sample set to = 10000000 # 10M def memory_usage_resource(): rusage_denom = 1024. if sys.platform == 'darwin': rusage_denom = rusage_denom * rusage_denom return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / rusage_denom def log_memory(text="Before"): print(' {}: {:,}Mb'.format(text, round(memory_usage_resource(),3))) print("List") print("Squaring numbers 1 to {:,}".format(to)) log_memory() mem_before = memory_usage_resource() squared_results_small = [x*x for x in range(1,to)] log_memory("After") mem_after = memory_usage_resource() mem_diff = mem_after - mem_before print(" Consumed = {:,}Mb memory".format(round(mem_diff,2))) print("") print("Generator") print("Squaring numbers 1 to {:,}".format(to)) log_memory() mem_before = memory_usage_resource() squared_results_large = (x*x for x in range(1,to)) mem_after = memory_usage_resource() log_memory("After") mem_diff = mem_after - mem_before print(" Consumed = {:,}Mb memory".format(round(mem_diff,2))) print("")
true
68919dce6728c9371f12037f9b63f1894d9b5ff0
Python
zuxinlin/leetcode
/leetcode/121.BestTimeToBuyAndSellStock.py
UTF-8
996
3.96875
4
[]
no_license
#! /usr/bin/env python # coding: utf-8 ''' 题目: 买卖股票的最佳时机 https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/ 主题: array & dynamic programming 解题思路: 状态转移方程:dp[i] = max(dp[i-1], prices[i] - min),表示当前到i最大利润 ''' class Solution(object): def maxProfit(self, prices): ''' :type prices: List[int] :rtype: int ''' # 边界条件 if prices is None or len(prices) <= 1: return 0 dp = [0 for _ in prices] min_price = prices[0] max_profit = 0 for (i, price) in enumerate(prices[1:]): dp[i] = max(dp[i-1], price - min_price) min_price = min(price, min_price) max_profit = max(dp[i], max_profit) return max_profit if __name__ == '__main__': solution = Solution() assert solution.maxProfit([7, 1, 5, 3, 6, 4]) == 5 assert solution.maxProfit([7, 6, 4, 3, 1]) == 0
true
7fc24b3261634c344c0218a74b4b0bbbcf1dd395
Python
nikkureev/bioinformatics
/ДЗ 15/Task 15.3.py
UTF-8
279
3.078125
3
[]
no_license
mport re file = 'C:/Python/2430AD.txt' # This one will help you to obtain all a-containing words def a_finder(inp): with open(inp, 'r') as f: for lines in f: for i in re.findall('/\b[\w+]*a[\w+]*\b/gi', lines): print(i) a_finder(file)
true
b3f6c8bb6ea51dc56cee3bd5934b6f114e56cad5
Python
mudits89/Just_Analytics_Test
/just_analytics__linked_list.py
UTF-8
2,668
3.875
4
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sun Sep 30 08:53:28 2018 @author: mudit """ class Node: def __init__(self, data, nextNode=None): self.data = data self.nextNode = nextNode def getData(self): return self.data def setData(self, val): self.data = val def getNextNode(self): return self.nextNode def setNextNode(self, val): self.nextNode = val class LinkedList: def __init__(self, head=None): self.head = head self.size = 0 def getSize(self): return self.size def printNode(self): curr = self.head while curr: print("\t" + str(curr.data)) curr = curr.getNextNode() def addNode_start(self, data): newNode = Node(data, self.head) self.head = newNode self.size += 1 print("\tAdded " + str(data)) return True def addNode_end(self, data): newNode = Node(data) if self.head is None: self.head = newNode return last = self.head while (last.getNextNode()): last = last.getNextNode() last.setNextNode(newNode) self.size += 1 print("\tAdded " + str(data)) return True def findNode(self, value): curr = self.head while curr: if curr.getData() == value: return True curr = curr.getNextNode() return False def removeNode(self, value): prev = None curr = self.head while curr: if curr.getData() == value: if prev: prev.setNextNode(curr.getNextNode()) else: self.head = curr.getNextNode() self.size -= 1 print("\t\tRemoved" + str(value)) return True prev = curr curr = curr.getNextNode() return False myList = LinkedList() ## inserting nodes print("Inserting") myList.addNode_start(5) myList.addNode_start(15) myList.addNode_end(25) myList.addNode_end(42) ## printing nodes print("\n\nPrinting list order") myList.printNode() ## removing nodes print("\n\nRemoving") myList.removeNode(25) ## printing nodes print("\n\nPrinting list order") myList.printNode() ## removing nodes print("\n\nRemoving") myList.removeNode(15) myList.removeNode(5) myList.removeNode(42) ## printing nodes print("\n\nPrinting list order") myList.printNode() print("\n\nSize") print("\t" + str(myList.getSize()))
true
63207141aa5149358c23a5d065e344fc1f4d317d
Python
ShivaBasava/Letsupgrade_WeeklyCodeBattle
/Week13/app.py
UTF-8
3,807
4.40625
4
[ "MIT" ]
permissive
''' Solution to WEEKLY CODE BATTLE - WEEK 13 NOTE: This 'app.py' file, contains the following- 1] Solution:- To the WEEKLY CODE BATTLE:- WEEK 13, A Language Translator. 2] Code & Explaination:- to the written code, line-by-line as comments. 3] Example Output 1] Solution- a] We have made use of 'googletrans' library a Google API Language Translator for Python. Command to install this, pip install googletrans b] From 'googletrans' library we are importing the Class 'Translator'. c] We have created a Class name 'langTranslate', So that it can be reused. d] Inside this Class, we have defined two methods- langCode() and translateSentence(). e] Method langCode() - Defined for handing the Menu and returning the respective Language Code. f] Method translateSentence() - Defined for translating the Sentence to respective language by making use of previous steps data(i.e, Language code). 2] Code & Explaination- ''' #importing the Class module 'Translator' from 'googletrans library from googletrans import Translator #Creating a Class 'langTranslate' class langTranslate(): #This method of Class 'langTranslate', returns the language code. def langCode(self): print("""\nTo translate, Select the respective number from following menu,\n[ Example- To convert the entered scentance to Serbian, select 2 ] 1. English 2. Serbian 3. Spanish""") strNumber = input() # We are maintaining a Dictonary (tempLangCode) for Lanugage code for selected number from the console tempLangCode = {'1': 'en','2': 'sr','3': 'es'} #Checking whether we have the respective number associated with Language code if strNumber in tempLangCode: #Returning the respective Language code return tempLangCode[strNumber] else: #If user enters other number apart from the numbers in Dictonary (tempLangCode) print("Please restart program and select available number from menu!!") exit() #This method of Class 'langTranslate', It'll accept two parameters - Language code 'toLang' and Sentence to be translated #returns the sentence after translation. def translateSentence(self, strSentence, strTolang): self.strString = strSentence self.strTolang = strTolang #Creating an Object 'translator', assigning a Class Translator() to it. translator = Translator() translation = translator.translate(self.strString, dest=self.strTolang) return (str(translation.text)) #Program Execution starts from here if __name__ == "__main__": #Embedding the login inside the try-catch block try: #To get the sentance to be translated sentence = input("Enter your sentence to translate:\n") # Creating an Object 'objLang' of Class 'langTranslate' objLang = langTranslate() #Now we are calling Method langCode() to get the Input from the user toLang = objLang.langCode() #Pass the Language code 'toLang' and sentence to be translated to Method - translateSentence() strTranslatedText = objLang.translateSentence(sentence,toLang) print("\n{}".format(strTranslatedText)) except Exception as e: print(e) ''' 3] Example Output: a] Run the following command in the terminal, python3 app.py b] Following are the series of interactive output. Enter your sentence to translate: Letsupgrade is Awesome <3 !!! To translate, Select the respective number from following menu, [ Example- To convert the entered scentance to Serbian, select 2 ] 1. English 2. Serbian 3. Spanish 2 ЛетсУпграде је сјајан <3 !!! '''
true
979ead30158ba9533187ab8976f364fb2820be3d
Python
nima-m-git/exercism-python
/sieve/sieve.py
UTF-8
199
3.171875
3
[]
no_license
def primes(limit): all = list(range(2, limit+1)) for i in all: for x in range(2, round(limit/i)+1): if (i*x) in all: all.remove(i*x) return all
true
9a185a70bed9931e4fd2ed380bbd9aacbad798e5
Python
rdotlee/hologram-python
/scripts/examples/example-sms-csrpsk.py
UTF-8
1,127
2.796875
3
[ "MIT" ]
permissive
# # example-sms-csrpsk.py - Example of sending SMS via CSRPSK Authentication in the Hologram Python SDK # # Author: Hologram <support@hologram.io> # # Copyright 2016 - Hologram (Konekt, Inc.) # # LICENSE: Distributed under the terms of the MIT License # import sys sys.path.append(".") sys.path.append("..") sys.path.append("../..") from Hologram import Hologram from Hologram.Credentials import Credentials if __name__ == "__main__": print "" print "" print "Testing Hologram Cloud class..." print "" print "* Note: You can obtain CSRPSK IDs and Keys from the Devices page" print "* at https://dashboard.hologram.io" print "" CSRPSKID = raw_input("What is your CSRPSK ID? ") CSRPSKKey = raw_input("What is your CSRPSK Key? ") destination_number = raw_input("What is your destination number? ") credentials = Credentials(CSRPSKID, CSRPSKKey) hologram = Hologram(credentials) print "" recv =hologram.sendSMS(destination_number, "Hello, Python!") # Send SMS to destination number print "DATA RECEIVED: " + str(recv) print "" print "Testing complete." print ""
true
ca4ee49ef2cb2621ee692e5da8a5d5cf02d63c84
Python
irisqul/cryptopals-excercise
/set1/base64_hex.py
UTF-8
257
2.6875
3
[ "Apache-2.0" ]
permissive
from binascii import hexlify, unhexlify from base64 import b64encode, b64decode hex_string = '49276d206b696c6c696e6720796f757220627261696e206c696b65206120706f69736f6e6f7573206d757368726f6f6d' b64_string = b64encode(unhexlify(hex_string)) print(b64_string)
true
8534a790d4d8178f1fc185c13233fcf1b1eb9fd2
Python
zyzisyz/LeetCode
/py/0034.py
UTF-8
377
3.171875
3
[]
no_license
class Solution: def searchRange(self, nums: List[int], target: int) -> List[int]: try: length = len(nums) first = nums.index(target) second = first while second+1 < length and nums[second+1] == target: second = second + 1 return [first, second] except: return [-1, -1]
true
f7d8b61754a08da4f834782553ea3e7557ba09ff
Python
gssgch/gssgML
/com.ch/python/pythonCourse/chapter7/QueneTest.py
UTF-8
1,173
3.703125
4
[]
no_license
#!/usr/bin/python # encoding:utf-8 # 利用python实现queue class queue: def __init__(self, size=20): self.size = size self.queue = [] self.end = -1 def setsize(self, size): self.size = size def In(self, n): if self.end < self.size - 1: self.queue.append(n) self.end = self.end + 1 else: raise "Queue is full" def Out(self): if self.end != -1: ret = self.queue[0] self.queue = self.queue[1:] self.end = self.end - 1 return ret else: raise "Queue is empty" def End(self): return self.end def empty(self): self.queue = [] self.end = -1 def getsize(self): return self.end + 1 if __name__ == "__main__": q = queue() for i in xrange(15): q.In(i) print q.getsize() for i in xrange(15): print q.Out(), print q.empty() print q.getsize() q.setsize(100) for i in xrange(30): try: q.In(i) except: print "Error" else: print str(i) + " OK"
true
3a9f801a0f05ba1be1d0ebee0f333879694986e1
Python
giddy123/raspberry-pi-robotics
/servocontrol.py
UTF-8
2,544
3.109375
3
[ "Apache-2.0" ]
permissive
#!/usr/bin/env python # Servo Control for Raspberry Pi with Adafruit servo control board # Created by Dmitriy Buslovich #------------------------------------------------------------------------------- #### Imports #### # Download this file from github: https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/blob/master/Adafruit_PWM_Servo_Driver/Adafruit_PWM_Servo_Driver.py import time from Adafruit_PWM_Servo_Driver import PWM #### Constants #### #------------------------------------------------------------------------------- #### Servo Initialization #I2C address is 0x40 pwm = PWM(0x40) #Servo frequency 50Hz pwm.setPWMFreq(50) # these values cannot be smaller than 104 and more than 521; otherwise your servos may be damaged. Use at your own risk! _PAN_SERVO_CHANNEL=0 _TILT_SERVO_CHANNEL=1 _PAN_SERVO_LEFT=200 _PAN_SERVO_RIGHT=520 _PAN_SERVO_CENTER=225 _TILT_SERVO_CHANNEL=1 _TILT_SERVO_UP=200 _TILT_SERVO_DOWN=520 _TILT_SERVO_CENTER=225 #### Objects #### #------------------------------------------------------------------------------- class ServoControl(object): # Make sure there is only one instance of ServoControl _instances=[] # Initialize the object def __init__(self): if ( len(self._instances)>1 ): print "ERROR: One instance of ServoControl is running already." exit(1) self._instances.append(self) #------------------------------------------------------------------------------- # "Look" left def panleft(self): pwm.setPWM(_PAN_SERVO_CHANNEL, 0, _PAN_SERVO_LEFT) #------------------------------------------------------------------------------- # "Look" right def panright(self): pwm.setPWM(_PAN_SERVO_CHANNEL, 0, _PAN_SERVO_RIGHT) #------------------------------------------------------------------------------- # Position pan servo in the middle def pancenter(self): pwm.setPWM(_PAN_SERVO_CHANNEL, 0, _PAN_SERVO_LEFT) #------------------------------------------------------------------------------- # "Look" up def tiltup(self): pwm.setPWM(_TILT_SERVO_CHANNEL, 0, _TILT_SERVO_UP) #------------------------------------------------------------------------------- # "Look" down def tiltdown(self): pwm.setPWM(_TILT_SERVO_CHANNEL, 0, _TILT_SERVO_DOWN) #------------------------------------------------------------------------------- # Position tilt servo in the middle def tiltcenter(self): pwm.setPWM(_TILT_SERVO_CHANNEL, 0, _TILT_SERVO_CENTER)
true
b55d5f86cdec95574fa521a4bccac3a56774eabe
Python
8Michelle/edward
/handlers/tasks.py
UTF-8
9,189
2.5625
3
[]
no_license
# -*- coding: utf-8 -*- """This module contains handlers for tasks. Task interface supports starting a new task and ending current one, starting new session, checking today working time, current date and all data. """ from aiogram import types import datetime import asyncio from core import dp, States, bot, KEYBOARDS from tools import tasks from tools.keyboard import make_keyboard @dp.message_handler(lambda message: message.text == "Начать дело", state=States.TASKS) async def begin_task_handler(message): """Handle the start of a new task. Switches the state from TASKS to BEGIN_TASK. Creates begin task keyboard. Works with free task mode. """ user = message.chat.id await dp.current_state(user=user).set_state(States.BEGIN_TASK) date = tasks.check_date(user) buttons = list(tasks.get_tasks_list(user)) buttons.append("Назад") await message.answer(f"Текущая дата {date.replace('-', '.')}. Чем займетесь?", reply_markup=make_keyboard(buttons)) @dp.message_handler(lambda message: message.text == "Назад", state=States.BEGIN_TASK) async def begin_task_revert_handler(message): """Handle a return to the tasks from the beginning a new task. Switches the state from BEGIN_TASK to TASKS. Creates free task keyboard. """ await dp.current_state(user=message.chat.id).set_state(States.TASKS) await message.answer("Сейчас вы ничем не заняты", reply_markup=make_keyboard(KEYBOARDS["free_tasks"])) @dp.message_handler(state=States.BEGIN_TASK) async def begin_task_start_handler(message): """Handle the beginning of the new task with ``message`` name. Switches the state from BEGIN_TASK to TASKS. Creates busy task keyboard. Starts mode checking loop. """ user = message.chat.id task_id = tasks.start_task(message.text, user) await dp.current_state(user=user).set_state(States.TASKS) message_text = f"Сейчас вы заняты: {message.text}" await message.answer(message_text, reply_markup=make_keyboard(KEYBOARDS["busy_tasks"])) while True: await asyncio.sleep(30 * 60) busy = tasks.check_busy(user, task_id) if busy == 1: await message.answer("Вы все еще заняты?") elif busy == 0: print("end of task") break # TODO: add exception for task end error - to logger else: print("TASK END ERROR") @dp.message_handler(lambda message: message.text == "Завершить", state=States.TASKS) async def end_task_handler(message): """Handle the end of the current task. Corresponds to the TASKS state. Creates free task keyboard. Works with busy task mode. """ tasks.end_task(message.chat.id) await message.answer("Сейчас вы ничем не заняты.", reply_markup=make_keyboard(KEYBOARDS["free_tasks"])) @dp.message_handler(lambda message: message.text == "Добавить дело", state=States.TASKS) async def custom_task_handler(message): user = message.chat.id await dp.current_state(user=user).set_state(States.ADD_CUSTOM_TASK) await message.answer("Что и в какую дату добавить?", reply_markup=make_keyboard(["Назад"])) @dp.message_handler(lambda message: message.text == "Назад", state=States.ADD_CUSTOM_TASK) async def select_custom_task_handler(message): user = message.chat.id await dp.current_state(user=user).set_state(States.TASKS) await message.answer("Сейчас вы ничем не заняты", reply_markup=make_keyboard(KEYBOARDS["free_tasks"])) @dp.message_handler(state=States.ADD_CUSTOM_TASK) async def select_custom_task_handler(message): user = message.chat.id await dp.current_state(user=user).set_state(States.TASKS) task, date, time_delta = message.text.split() tasks.add_custom_task(user, task, date.replace('.', '-'), float(time_delta) * 3600) await message.answer(f"Добавлено {task} продолжительностью {time_delta} {date}", reply_markup=make_keyboard(KEYBOARDS["free_tasks"])) @dp.message_handler(lambda message: message.text == "Начать новую сессию", state=States.TASKS) async def new_session_handler(message): """Handle a new session starting. Switches the state from TASKS to NEW_SESSION. Creates new session keyboard. Works with free task mode. """ user = message.chat.id await dp.current_state(user=user).set_state(States.NEW_SESSION) date = tasks.check_date(user=user) new_date = datetime.date.today().isoformat() await message.answer(f"Текущая дата {date.replace('-', '.')}. Новая дата {new_date.replace('-', '.')}?", reply_markup=make_keyboard(KEYBOARDS["new_session"])) @dp.message_handler(lambda message: message.text == "Все верно", state=States.NEW_SESSION) async def new_session_submit_handler(message): """Handle session date confirmation. Switches the state from NEW_SESSION to TASKS. Creates free task keyboard. """ user = message.chat.id await dp.current_state(user=user).set_state(States.TASKS) date = datetime.date.today().isoformat() tasks.new_session(user=user, date=date) await message.answer("Начата новая сессия. Сейчас вы ничем не заняты.", reply_markup=make_keyboard(KEYBOARDS["free_tasks"])) @dp.message_handler(lambda message: message.text == "Назад", state=States.NEW_SESSION) async def new_session_revert_handler(message): """Handle a return to the tasks from the starting a new session. Switches the state from NEW_SESSION to TASKS. Creates free task keyboard. """ await dp.current_state(user=message.chat.id).set_state(States.TASKS) await message.answer("Сейчас вы ничем не заняты.", reply_markup=make_keyboard(KEYBOARDS["free_tasks"])) @dp.message_handler(state=States.NEW_SESSION) async def new_session_date_handler(message): """Handle the start of a new session with a custom date. Switches the state from NEW_SESSION to TASKS. Creates free tasks keyboard. """ user = message.chat.id await dp.current_state(user=user).set_state(States.TASKS) tasks.new_session(user=user, date=message.text.replace('.', '-')) await message.answer(f"Начата новая сессия {message.text}. Сейчас вы ничем не заняты.", reply_markup=make_keyboard(KEYBOARDS["free_tasks"])) @dp.message_handler(lambda message: message.text == "Какое сегодня число?", state=States.TASKS) async def check_date_handler(message): """Answer a question about the current date. Corresponds to the TASKS state. Works with free mode. """ user = message.chat.id date = tasks.check_date(user=user) message_text = f"Активная дата: {date.replace('-', '.')}" await message.answer(message_text) @dp.message_handler(lambda message: message.text == "Получить данные", state=States.TASKS) async def download_tasks_handler(message): """Handle a data request. Corresponds to the TASKS state. Sends a .xlsx data file. Works with free mode. """ user = message.chat.id if tasks.prepare_tasks_doc(user) == 0: with open(f'{user}_tasks.xlsx', 'rb') as document: await bot.send_document(chat_id=user, document=document) else: await message.answer("Судя по моим данным, у вас еще не было активности.") @dp.message_handler(lambda message: message.text == "Сколько я сегодня поработал?", state=States.TASKS) async def time_today_handler(message): """Handle a question of today working time. Corresponds to the TASKS state. Sends text message with today working time. Works with free mode. """ user = message.chat.id time_today = tasks.get_working_time(user) await message.answer(f"Сегодня вы проработали {time_today[0]} часов {time_today[1]} минут") @dp.message_handler(lambda message: message.text == "Назад", state=States.TASKS) async def tasks_revert_handler(message): """Handle a return to the skills from the tasks. Switches the state from TASKS to SKILLS. Creates skill keyboard. Works with both modes. """ await dp.current_state(user=message.chat.id).set_state(States.SKILLS) await message.answer("Выберите функцию", reply_markup=make_keyboard(KEYBOARDS["skills"]))
true
8362128b5b0b981487a8cceeb829d0f03caa0336
Python
Hemie143/automatetheboringstuff
/ch17_keeping_time/ex04_convert.py
UTF-8
828
3.375
3
[]
no_license
import datetime oct21st = datetime.datetime(2019, 10, 21, 16, 29, 0) print(oct21st.strftime('%Y/%m/%d %H:%M:%S')) # '2019/10/21 16:29:00' print(oct21st.strftime('%I:%M %p')) # '04:29 PM' print(oct21st.strftime("%B of '%y")) # "October of '19" print(datetime.datetime.strptime('October 21, 2019', '%B %d, %Y')) # datetime.datetime(2019, 10, 21, 0, 0) print(datetime.datetime.strptime('2019/10/21 16:29:00', '%Y/%m/%d %H:%M:%S')) # datetime.datetime(2019, 10, 21, 16, 29) print(datetime.datetime.strptime("October of '19", "%B of '%y")) # datetime.datetime(2019, 10, 1, 0, 0) print(datetime.datetime.strptime("November of '63", "%B of '%y")) # datetime.datetime(2063, 11, 1, 0, 0)
true
0a7f75292678b205f770287a8e98dfff8553d4b0
Python
walid-shalaby/knowledge-based-dimensionality-reduction
/code/python/ng20/ng20_vocabulary_builder.py
UTF-8
22,250
3.015625
3
[]
no_license
## 20ng Vocabulary Builder # Build stemmed and lemmatized vocabulary (unigrams + bigrams) from 20ng corpus and store into DB def build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf): from sklearn.feature_extraction.text import CountVectorizer from ng20_globals import max_df # tokenize text vectorizer = CountVectorizer(max_df=max_df,min_df=min_df,tokenizer=tokenizer,ngram_range=(1,max_ngram_size),stop_words=stop_words) corpus_vectors = vectorizer.fit_transform(corpus) # apply minimum term frequency threshold term_freq = corpus_vectors.sum(axis=0) # sum on culomns to obtain term frequencies terms_to_remove = [] for k,v in vectorizer.vocabulary_.iteritems(): if(term_freq[0,vectorizer.vocabulary_[k]]<min_tf): terms_to_remove.append(k) print 'removing ({0}) terms under tf threshold'.format(len(terms_to_remove)) for k in terms_to_remove: del vectorizer.vocabulary_[k] return vectorizer.vocabulary_ def save_vocabulary(vocabulary,tbl_name): # save vocabulary in DB for future use import sqlite3 as sqlitedb from clef_globals import db_path # in case using min_df as fractions tbl_name = tbl_name.replace('.','_') l = [] l.extend([i] for i in vocabulary) con = sqlitedb.connect(db_path) with con: con.execute('drop table if exists {0}'.format(tbl_name)) con.execute('create table {0}(term text)'.format(tbl_name)) con.executemany('insert into {0}(term) values(?)'.format(tbl_name),l) # build raw unigrams vocabulary def build_all_unigrams_vocabulary(corpus): #from ng20_globals import * tokenizer = None stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,1,1) # save to DB tbl_name = 'ng20_raw_unigrams'.format() save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build unigrams vocabulary def build_raw_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df tokenizer = None stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized unigrams vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # In[ ]: # build lemmatized test unigrams vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_test_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_test_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed test unigrams vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_test_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_test_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized all unigrams vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_all_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_all_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed all unigrams vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_all_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_all_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized unigrams vocabulary # uses alphabetic tokenizer def build_lemmatized_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import LemmaTokenizer tokenizer = LemmaTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_lemmas_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build unigrams stopwords vocabulary def build_unigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df tokenizer = None max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_unigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build bigrams stopwords vocabulary def build_bigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df tokenizer = None max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_bigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build all unigrams stopwords vocabulary def build_all_unigrams_stopwords_vocabulary(corpus,stop_words,): tokenizer = None max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,1,1) # save to DB tbl_name = 'ng20_all_unigrams_stopwords'.format() save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build raw unigrams stopwords vocabulary def build_raw_unigrams_stopwords_vocabulary(corpus,stop_words): from ng20_globals import min_df,min_tf tokenizer = None max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_unigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build raw bigrams stopwords vocabulary def build_raw_bigrams_stopwords_vocabulary(corpus,stop_words): from ng20_globals import min_df,min_tf tokenizer = None max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_bigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build all bigrams stopwords vocabulary def build_all_bigrams_stopwords_vocabulary(corpus,stop_words,): #from ng20_globals import * tokenizer = None max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,1,1) # save to DB tbl_name = 'ng20_all_bigrams_stopwords'.format() save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized unigrams stopwords vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_unigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_unigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized unigrams stopwords vocabulary # uses alphabetic tokenizer def build_lemmatized_unigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import LemmaTokenizer tokenizer = LemmaTokenizer() max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_lemmas_unigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build raw bigrams vocabulary def build_all_bigrams_vocabulary(corpus): tokenizer = None stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,1,1) # save to DB tbl_name = 'ng20_all_bigrams'.format() save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized bigrams vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized all bigrams vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_all_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_all_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed all bigrams vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_all_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_all_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized test bigrams vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_test_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_test_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed test bigrams vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_test_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_test_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build bigrams vocabulary def build_raw_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df tokenizer = None stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized bigrams vocabulary # uses alphabetic tokenizer def build_lemmatized_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import LemmaTokenizer tokenizer = LemmaTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_lemmas_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized bigrams stopwords vocabulary # uses alphanumeric tokenizer def build_raw_lemmatized_bigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import RawLemmaTokenizer tokenizer = RawLemmaTokenizer() max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_lemmas_bigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build lemmatized bigrams stopwords vocabulary # uses alphabetic tokenizer def build_lemmatized_bigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.lemmatizing_tokenizer import LemmaTokenizer tokenizer = LemmaTokenizer() max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_lemmas_bigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed unigrams vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed unigrams vocabulary # uses alphabetic tokenizer def build_stemmed_unigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import StemmingTokenizer tokenizer = StemmingTokenizer() stop_words = {} max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_stems_unigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed unigrams stopwords vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_unigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_unigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed unigrams stopwords vocabulary # uses alphabetic tokenizer def build_stemmed_unigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import StemmingTokenizer tokenizer = StemmingTokenizer() max_ngram_size = 1 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_stems_unigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed bigrams vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed bigrams vocabulary # uses alphabetic tokenizer def build_stemmed_bigrams_vocabulary(corpus): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import StemmingTokenizer tokenizer = StemmingTokenizer() stop_words = {} max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_stems_bigrams_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed bigrams stopwords vocabulary # uses alphanumeric tokenizer def build_raw_stemmed_bigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import RawStemmingTokenizer tokenizer = RawStemmingTokenizer() max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_raw_stems_bigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name # build stemmed bigrams stopwords vocabulary # uses alphabetic tokenizer def build_stemmed_bigrams_stopwords_vocabulary(corpus,stop_words,): from ng20_globals import min_tf,min_df from commons.stemming_tokenizer import StemmingTokenizer tokenizer = StemmingTokenizer() max_ngram_size = 2 vocabulary = build_vocabulary(corpus,tokenizer,stop_words,max_ngram_size,min_df,min_tf) # save to DB tbl_name = 'ng20_stems_bigrams_stopwords_df{0}_tf{1}'.format(min_df,min_tf) save_vocabulary(vocabulary,tbl_name) print 'done '+tbl_name def build(): from ng20_corpus_loader import load_corpus from commons.stopwords_loader import load_inquiry_stopwords # load 20ng docs from DB corpus_all = load_corpus('both') corpus = corpus_all['corpus'] # build vocabulary without stopwords removal build_raw_unigrams_vocabulary(corpus) #build_all_unigrams_vocabulary(corpus) #build_lemmatized_unigrams_vocabulary(corpus) build_raw_lemmatized_unigrams_vocabulary(corpus) #build_lemmatized_bigrams_vocabulary(corpus) build_raw_lemmatized_bigrams_vocabulary(corpus) build_raw_bigrams_vocabulary(corpus) #build_all_bigrams_vocabulary(corpus) #build_stemmed_unigrams_vocabulary(corpus) build_raw_stemmed_unigrams_vocabulary(corpus) #build_stemmed_bigrams_vocabulary(corpus) build_raw_stemmed_bigrams_vocabulary(corpus) # load inquiry stopwords list stop_words = load_inquiry_stopwords() # build vocabulary with stopwords removal #build_unigrams_stopwords_vocabulary(corpus,stop_words) build_raw_unigrams_stopwords_vocabulary(corpus,stop_words) #build_bigrams_stopwords_vocabulary(corpus,stop_words) build_raw_bigrams_stopwords_vocabulary(corpus,stop_words) #build_lemmatized_unigrams_stopwords_vocabulary(corpus,stop_words) build_raw_lemmatized_unigrams_stopwords_vocabulary(corpus,stop_words) #build_lemmatized_bigrams_stopwords_vocabulary(corpus,stop_words) build_raw_lemmatized_bigrams_stopwords_vocabulary(corpus,stop_words) #build_stemmed_unigrams_stopwords_vocabulary(corpus,stop_words) build_raw_stemmed_unigrams_stopwords_vocabulary(corpus,stop_words) #build_stemmed_bigrams_stopwords_vocabulary(corpus,stop_words) build_raw_stemmed_bigrams_stopwords_vocabulary(corpus,stop_words) #corpus_test = load_corpus(,'test') #build_raw_lemmatized_test_unigrams_vocabulary(corpus_test['corpus'],) #build_raw_stemmed_test_unigrams_vocabulary(corpus_test['corpus'],) #build_raw_lemmatized_test_bigrams_vocabulary(corpus_test['corpus'],) #build_raw_stemmed_test_bigrams_vocabulary(corpus_test['corpus'],) #corpus = load_corpus(,'both') #build_raw_lemmatized_all_unigrams_vocabulary(corpus['corpus'],) #build_raw_stemmed_all_unigrams_vocabulary(corpus['corpus'],) #build_raw_lemmatized_all_bigrams_vocabulary(corpus['corpus'],) #build_raw_stemmed_all_bigrams_vocabulary(corpus['corpus'],) if __name__ == "__main__" and __package__ is None: import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) # build 20ng docs vocabulary build() print 'done!'
true
dff71182388a15d57244452aebd9657812636943
Python
NTHU-CS50-2020/week6
/107062104/readability.py
UTF-8
635
3.734375
4
[]
no_license
from cs50 import get_string def main(): text = get_string('Text: ') print(GradeCal(text)) def GradeCal(text): letters = 0 words = 1 if text else 0 sentences = 0 for letter in text: letters += 1 if letter.isalpha() else 0 words += 1 if letter.isspace() else 0 sentences += 1 if letter == '.' or letter == '!' or letter == '?' else 0 index = round(0.0588 * (letters/words*100) - 0.296 * (sentences/words*100) - 15.8, 0) if index < 1: return 'Before Grade 1' elif index > 16: return 'Grade 16+' else: return 'Grade ' + str(int(index)) main()
true
a3ab7b94874b2ab2fe04f47b7304eccfb3ce50ae
Python
MrCat9/Python_Note
/55_proxy_ip.py
UTF-8
1,031
2.9375
3
[]
no_license
# -*- coding: utf-8 -*- # 配合使用 https://github.com/qiyeboy/IPProxyPool # 需先开启代理IP的服务 import requests import json from random import sample def get_proxy_ip(url_str): """ 获取代理IP 返回一个 tuple (ip, port) :param url_str: 代理IP接口 :return: (ip, port) <class 'tuple'> """ r = requests.get(url_str) ip_list = json.loads(r.text) # 会返回多个代理IP ip_port = sample(ip_list, 1) # 从多个代理IP中随机选1个 ip = ip_port[0][0] port = str(ip_port[0][1]) return ip, port if __name__ == '__main__': # 获取代理ip url_str = 'http://127.0.0.1:8000/?type=0&country=国内&count=10' # types 0: 高匿 1: 匿名 2: 透明 ip, port = get_proxy_ip(url_str) # ip, port = ('114.55.236.62', '3128') # 使用代理ip proxies = { 'http': 'http://%s:%s' % (ip, port), 'https': 'http://%s:%s' % (ip, port) } r = requests.get('http://httpbin.org/ip', proxies=proxies) print(r.text)
true
66581051b01da95e0f0dcfe1eb4f09388060b07c
Python
qiupinghe/BTH-TE2502-MasterThesis
/normality_tests.py
UTF-8
53,562
2.546875
3
[]
no_license
from itertools import islice import statistics import numpy import math import PyGnuplot as gp from scipy.stats import sem, t from scipy import mean, median, stats import sys from numpy.random import seed from numpy.random import randn from numpy import mean from numpy import std from matplotlib import pyplot from statsmodels.graphics.gofplots import qqplot from numpy import array from scipy.stats import shapiro from scipy.stats import normaltest def read_entries_proc_status(file): with open(file, 'r') as f: VmHWM = list() VmRSS = list() roundVmHWM = list() roundVmRSS = list() for line in f: l = line.split() if(l[0] == "Round:"): if(len(roundVmHWM) is not 0): VmHWM.append(roundVmHWM[:]) if(len(roundVmRSS) is not 0): VmRSS.append(roundVmRSS[:]) del roundVmHWM[:] del roundVmRSS[:] elif(l[0] == "VmHWM:"): roundVmHWM.append(int(l[1])) elif(l[0] == "VmRSS:"): roundVmRSS.append(int(l[1])) VmHWM.append(roundVmHWM[:]) VmRSS.append(roundVmRSS[:]) return VmHWM, VmRSS def check_differance_rss(data): for l in data: if(len(set(l)) != 1 ): #print("All elements are not the same") return False #print("All elements are equal") return True def process_data_rss(peakRSS, RSS): #print("Max peak RSS of all rounds: ", max(max(peakRSS, key=max))) #print("Min peak RSS of all rounds: ", min(min(peakRSS, key=min))) #print("Max RSS of all rounds: ", max(max(RSS, key=max))) #print("Min RSS of all rounds: ", min(min(RSS, key=min))) mean_list = list() for l in RSS: mean_list.append(mean(l)) mean_val = mean(mean_list) #print("Mean RSS", mean(mean_val)) median_list = list() for l in RSS: median_list.append(median(l)) median_val = median(median_list) #print("Median RSS", median_val) standard_dev = stats.tstd(mean_list) #print("Standard dev", standard_dev) c_interval = confidence_interval(mean_list) #print("Conf_low", c_interval[0]) #print("Conf_high", c_interval[1]) summary_dict = { "max_peak_rss": max(max(peakRSS, key=max)), "min_peak_rss": min(min(peakRSS, key=min)), "max_rss": max(max(RSS, key=max)), "min_rss": min(min(RSS, key=min)), "mean": mean_val, "median": median_val, "std_dev": standard_dev, "conf_low": c_interval[0], "conf_high": c_interval[1] } return summary_dict def process_proc_status_output(file_path, sample_size=100): peakRSS, RSS = read_entries_proc_status(file_path) if (check_differance_rss(peakRSS) and check_differance_rss(RSS)): # All measurements (RSS and peak) are equal in each test. peak_list = list() for l in peakRSS: peak_list.append(l[0]) rss_list = list() for l in RSS: rss_list.append(l[0]) if (len([i for i, j in zip(peak_list, rss_list) if i != j]) == 0): print("Peak RSS and RSS measurements are all equal (for each round) in "\ + file_path + ". Returning new list. Setting data length to: " + str(len(rss_list[0:sample_size]))) return rss_list[0:sample_size] else: print("Peak RSS and RSS is not the same in all rounds.") else: print("Measurements are not the same in all rounds.") def process_usrbintime_output(file_path, sample_size=100): maxRSS = list() with open(file_path, 'r') as f: for line in f: maxRSS.append(int(line)) print("Found " + str(len(maxRSS)) + " outputs in " + file_path + \ ". Setting list to length " + str(len(maxRSS[0:sample_size]))) return maxRSS[0:sample_size] def process_usrbintime_output_special(file_path, sample_size=100): maxRSS = list() with open(file_path, 'r') as f: for line in f: maxRSS.append(int(line)) max_rss_combined = list() for i in range(0, len(maxRSS), 2): max_rss_combined.append((maxRSS[i]+maxRSS[i+1])/2) print("Found " + str(len(maxRSS)) + " outputs in " + file_path + \ ". Combining outputs into list of length " + str(len(max_rss_combined)) +\ ". Setting list to length " + str(len(max_rss_combined[0:sample_size]))) return max_rss_combined[0:sample_size] def read_entries(file, no_lines_per_entry): list_entries = [] with open(file, 'r') as f: while True: entry = [x.strip() for x in islice(f, no_lines_per_entry)] if(entry == []): break list_entries.append(entry) #print(len(list_entries)) #print(len(list_entries[20:])) #print(list_entries[20:]) return list_entries def gather_cpu_clock(list_entries, column): cpu_time_list = [] for entry in list_entries: cpu_clock = float(entry[column].split()[0].replace(',', '.')) cpu_time_list.append(cpu_clock) return cpu_time_list def gather_real_time(list_entries, column): real_time_list = [] for entry in list_entries: real_time = float(entry[column].split()[0].replace(',', '.')) real_time_list.append(real_time) real_time_list = [x*1000 for x in real_time_list] return real_time_list def gather_cpu_cycles(list_entries, column): cpu_cycle_list = [] for entry in list_entries: cycles = '' for x in entry[column].split(): if(x == 'cycles'): break cycles += x cpu_cycle_list.append(int(cycles)) return cpu_cycle_list def confidence_interval(list, interval = 0.95): mean_val = mean(list) n = len(list) stdev = stats.tstd(list) z = stats.norm.ppf((interval + 1)/2) #z = stats.t.ppf((interval + 1)/2, n) lower_bound = mean_val - z * stdev / math.sqrt(n) upper_bound = mean_val + z *stdev / math.sqrt(n) return lower_bound, upper_bound def confidence_interval_t_dist(list, interval = 0.95): data = list n = len(data) m = mean(data) std_err = sem(data) h = std_err * t.ppf((1 + interval) / 2, n - 1) return m-h, m+h def add_statistic_values(in_dict): data = in_dict["data"] in_dict["mean"] = mean(data) in_dict["median"] = median(data) in_dict["max"] = max(data) in_dict["min"] = min(data) in_dict["standard_dev"] = stats.tstd(data) c_interval = confidence_interval(data) in_dict["conf_low"] = c_interval[0] in_dict["conf_high"] = c_interval[1] return in_dict def process_perf_stat_output(file_path): list_entries = read_entries(file_path, 10) #for entry in list_entries: #print(entry) print(str(len(list_entries)) + " perf stat outputs found in file " + file_path + "." \ + " Removing 30 first entries from list. New length: " + str(len(list_entries[30:]))) list_entries = list_entries[30:] real_time_values = {} cpu_time_values = {} cpu_cycles_values = {} real_time_values["data"] = gather_real_time(list_entries, 8) cpu_time_values["data"] = gather_cpu_clock(list_entries, 5) cpu_cycles_values["data"] = gather_cpu_cycles(list_entries, 6) add_statistic_values(real_time_values) add_statistic_values(cpu_time_values) add_statistic_values(cpu_cycles_values) return real_time_values, cpu_time_values, cpu_cycles_values def create_normality_graphs(save_file, title, data): pyplot.hist(data, bins=50) title_obj = pyplot.title(title) pyplot.savefig(save_file + '_histogram') pyplot.close() qqplot(array(data), line='s') title_obj = pyplot.title(title) pyplot.savefig(save_file + '_qq') pyplot.close() if (len(sys.argv) < 2): print("No argument input") sys.exit() # generate graphs for real/cpu time, cpu cycles for sm3 and sha256 if (sys.argv[1] == 'hash'): #openssl sm3_real_time, sm3_cpu_time, sm3_cpu_cycles = process_perf_stat_output("output/hash/sm3_perf_o") create_normality_graphs('normality_graphs/hash/openssl/sm3_real_time', 'SM3 Real Time (OpenSSL)', sm3_real_time["data"]) stat, p = shapiro(sm3_real_time["data"]) print(stat,p) create_normality_graphs('normality_graphs/hash/openssl/sm3_cpu_time', 'SM3 CPU Time (OpenSSL)', sm3_cpu_time["data"]) create_normality_graphs('normality_graphs/hash/openssl/sm3_cpu_cycles', 'SM3 CPU Cycles (OpenSSL)', sm3_cpu_cycles["data"]) sha_real_time, sha_cpu_time, sha_cpu_cycles = process_perf_stat_output("output/hash/sha256_perf_o") create_normality_graphs('normality_graphs/hash/openssl/sha_real_time', 'SHA256 Real Time (OpenSSL)', sha_real_time["data"]) stat, p = shapiro(sha_real_time["data"]) print(stat,p) create_normality_graphs('normality_graphs/hash/openssl/sha_cpu_time', 'SHA256 CPU Time (OpenSSL)', sha_cpu_time["data"]) create_normality_graphs('normality_graphs/hash/openssl/sha_cpu_cycles', 'SHA256 CPU Cycles (OpenSSL)', sha_cpu_cycles["data"]) #botan botan_sm3_real_time, botan_sm3_cpu_time, botan_sm3_cpu_cycles = process_perf_stat_output("output/hash/sm3_perf") create_normality_graphs('normality_graphs/hash/botan/sm3_real_time', 'SM3 Real Time (Botan)', botan_sm3_real_time["data"]) create_normality_graphs('normality_graphs/hash/botan/sm3_cpu_time', 'SM3 CPU Time (Botan)', botan_sm3_cpu_time["data"]) create_normality_graphs('normality_graphs/hash/botan/sm3_cpu_cycles', 'SM3 CPU Cycles (Botan)', botan_sm3_cpu_cycles["data"]) botan_sha_real_time, botan_sha_cpu_time, botan_sha_cpu_cycles = process_perf_stat_output("output/hash/sha256_perf") create_normality_graphs('normality_graphs/hash/botan/sha_real_time', 'SHA256 Real Time (Botan)', botan_sha_real_time["data"]) create_normality_graphs('normality_graphs/hash/botan/sha_cpu_time', 'SHA256 CPU Time (Botan)', botan_sha_cpu_time["data"]) create_normality_graphs('normality_graphs/hash/botan/sha_cpu_cycles', 'SHA256 CPU Cycles (Botan)', botan_sha_cpu_cycles["data"]) ### RSS ### #OpenSSL RSS_sha = process_proc_status_output("output/hash/sha256_rss_o") create_normality_graphs('normality_graphs/hash/openssl/sha_rss', 'SHA256 RSS (OpenSSL)', RSS_sha) RSS_sm3 = process_proc_status_output("output/hash/sm3_rss_o") create_normality_graphs('normality_graphs/hash/openssl/sm3_rss', 'SM3 RSS (OpenSSL)', RSS_sm3) #Botan RSS_sha_botan = process_proc_status_output("output/hash/sha256_rss") create_normality_graphs('normality_graphs/hash/botan/sha_rss', 'SHA256 RSS (Botan)', RSS_sha_botan) RSS_sm3_botan = process_proc_status_output("output/hash/sm3_rss") create_normality_graphs('normality_graphs/hash/botan/sm3_rss', 'SM3 RSS (Botan)', RSS_sm3_botan) elif(sys.argv[1] == 'ds'): ############ GmSSL ############ # Key generation rsa_keygen_real_time, rsa_keygen_cpu_time, rsa_keygen_cpu_cycles = process_perf_stat_output("output/ds_perf/rsa_keygen_perf_o") create_normality_graphs('normality_graphs/ds/gmssl/keygen/rsa_keygen_real_time', 'RSA Keygen Real Time (GmSSL)', rsa_keygen_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/keygen/rsa_keygen_cpu_time', 'RSA Keygen CPU Time (GmSSL)', rsa_keygen_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/keygen/rsa_keygen_cpu_cycles', 'RSA Keygen CPU cycles (GmSSL)', rsa_keygen_cpu_cycles["data"]) sm2_keygen_real_time, sm2_keygen_cpu_time, sm2_keygen_cpu_cycles = process_perf_stat_output("output/ds_perf/sm2_keygen_perf_o") stat, p = shapiro(sm2_keygen_real_time["data"]) print("sm2 keygen gmssl real",stat,p) stat, p = shapiro(sm2_keygen_cpu_time["data"]) print("sm2 keygen gmssl cpu",stat,p) stat, p = shapiro(sm2_keygen_cpu_cycles["data"]) print("sm2 keygen gmssl cycles",stat,p) create_normality_graphs('normality_graphs/ds/gmssl/keygen/sm2_keygen_real_time', 'SM2 Keygen Real Time (GmSSL)', sm2_keygen_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/keygen/sm2_keygen_cpu_time', 'SM2 Keygen CPU Time (GmSSL)', sm2_keygen_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/keygen/sm2_keygen_cpu_cycles', 'SM2 Keygen CPU cycles (GmSSL)', sm2_keygen_cpu_cycles["data"]) ecdsa_keygen_real_time, ecdsa_keygen_cpu_time, ecdsa_keygen_cpu_cycles = process_perf_stat_output("output/ds_perf/ecdsa_keygen_perf_o") stat, p = shapiro(ecdsa_keygen_real_time["data"]) print("ecdsa keygen gmssl real",stat,p) stat, p = shapiro(ecdsa_keygen_cpu_time["data"]) print("ecdsa keygen gmssl cpu",stat,p) stat, p = shapiro(ecdsa_keygen_cpu_cycles["data"]) print("ecdsa keygen gmssl cycles",stat,p) create_normality_graphs('normality_graphs/ds/gmssl/keygen/ecdsa_keygen_real_time', 'ECDSA Keygen Real Time (GmSSL)', ecdsa_keygen_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/keygen/ecdsa_keygen_cpu_time', 'ECDSA Keygen CPU Time (GmSSL)', ecdsa_keygen_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/keygen/ecdsa_keygen_cpu_cycles', 'ECDSA Keygen CPU cycles (GmSSL)', ecdsa_keygen_cpu_cycles["data"]) # Signing rsa_sign_real_time, rsa_sign_cpu_time, rsa_sign_cpu_cycles = process_perf_stat_output("output/ds_perf/rsa_sign_perf_o") create_normality_graphs('normality_graphs/ds/gmssl/sign/rsa_sign_real_time', 'RSA Sign Real Time (GmSSL)', rsa_sign_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/sign/rsa_sign_cpu_time', 'RSA Sign CPU Time (GmSSL)', rsa_sign_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/sign/rsa_sign_cpu_cycles', 'RSA Sign CPU cycles (GmSSL)', rsa_sign_cpu_cycles["data"]) sm2_sign_real_time, sm2_sign_cpu_time, sm2_sign_cpu_cycles = process_perf_stat_output("output/ds_perf/sm2_sign_perf_o") create_normality_graphs('normality_graphs/ds/gmssl/sign/sm2_sign_real_time', 'SM2 Sign Real Time (GmSSL)', sm2_sign_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/sign/sm2_sign_cpu_time', 'SM2 Sign CPU Time (GmSSL)', sm2_sign_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/sign/sm2_sign_cpu_cycles', 'SM2 Sign CPU cycles (GmSSL)', sm2_sign_cpu_cycles["data"]) ecdsa_sign_real_time, ecdsa_sign_cpu_time, ecdsa_sign_cpu_cycles = process_perf_stat_output("output/ds_perf/ecdsa_sign_perf_o") create_normality_graphs('normality_graphs/ds/gmssl/sign/ecdsa_sign_real_time', 'ECDSA Sign Real Time (GmSSL)', ecdsa_sign_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/sign/ecdsa_sign_cpu_time', 'ECDSA Sign CPU Time (GmSSL)', ecdsa_sign_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/sign/ecdsa_sign_cpu_cycles', 'ECDSA Sign CPU cycles (GmSSL)', ecdsa_sign_cpu_cycles["data"]) # Verifying rsa_verify_real_time, rsa_verify_cpu_time, rsa_verify_cpu_cycles = process_perf_stat_output("output/ds_perf/rsa_verify_perf_o") create_normality_graphs('normality_graphs/ds/gmssl/verify/rsa_verify_real_time', 'RSA Verify Real Time (GmSSL)', rsa_verify_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/verify/rsa_verify_cpu_time', 'RSA Verify CPU Time (GmSSL)', rsa_verify_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/verify/rsa_verify_cpu_cycles', 'RSA Verify CPU cycles (GmSSL)', rsa_verify_cpu_cycles["data"]) sm2_verify_real_time, sm2_verify_cpu_time, sm2_verify_cpu_cycles = process_perf_stat_output("output/ds_perf/sm2_verify_perf_o") create_normality_graphs('normality_graphs/ds/gmssl/verify/sm2_verify_real_time', 'SM2 Verify Real Time (GmSSL)', sm2_verify_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/verify/sm2_verify_cpu_time', 'SM2 Verify CPU Time (GmSSL)', sm2_verify_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/verify/sm2_verify_cpu_cycles', 'SM2 Verify CPU cycles (GmSSL)', sm2_verify_cpu_cycles["data"]) ecdsa_verify_real_time, ecdsa_verify_cpu_time, ecdsa_verify_cpu_cycles = process_perf_stat_output("output/ds_perf/ecdsa_verify_perf_o") create_normality_graphs('normality_graphs/ds/gmssl/verify/ecdsa_verify_real_time', 'ECDSA Verify Real Time (GmSSL)', ecdsa_verify_real_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/verify/ecdsa_verify_cpu_time', 'ECDSA Verify CPU Time (GmSSL)', ecdsa_verify_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/gmssl/verify/ecdsa_verify_cpu_cycles', 'ECDSA Verify CPU cycles (GmSSL)', ecdsa_verify_cpu_cycles["data"]) ############ Botan ############ # Key generation botan_rsa_keygen_real_time, botan_rsa_keygen_cpu_time, botan_rsa_keygen_cpu_cycles = process_perf_stat_output("output/ds_perf/rsa_keygen_perf") stat, p = shapiro(botan_rsa_keygen_real_time["data"]) print(stat,p) create_normality_graphs('normality_graphs/ds/botan/keygen/rsa_keygen_real_time', 'RSA Keygen Real Time (Botan)', botan_rsa_keygen_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/keygen/rsa_keygen_cpu_time', 'RSA Keygen CPU Time (Botan)', botan_rsa_keygen_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/keygen/rsa_keygen_cpu_cycles', 'RSA Keygen CPU cycles (Botan)', botan_rsa_keygen_cpu_cycles["data"]) botan_sm2_keygen_real_time, botan_sm2_keygen_cpu_time, botan_sm2_keygen_cpu_cycles = process_perf_stat_output("output/ds_perf/sm2_keygen_perf") create_normality_graphs('normality_graphs/ds/botan/keygen/sm2_keygen_real_time', 'SM2 Keygen Real Time (Botan)', botan_sm2_keygen_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/keygen/sm2_keygen_cpu_time', 'SM2 Keygen CPU Time (Botan)', botan_sm2_keygen_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/keygen/sm2_keygen_cpu_cycles', 'SM2 Keygen CPU cycles (Botan)', botan_sm2_keygen_cpu_cycles["data"]) botan_ecdsa_keygen_real_time, botan_ecdsa_keygen_cpu_time, botan_ecdsa_keygen_cpu_cycles = process_perf_stat_output("output/ds_perf/ecdsa_keygen_perf") create_normality_graphs('normality_graphs/ds/botan/keygen/ecdsa_keygen_real_time', 'ECDSA Keygen Real Time (Botan)', botan_ecdsa_keygen_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/keygen/ecdsa_keygen_cpu_time', 'ECDSA Keygen CPU Time (Botan)', botan_ecdsa_keygen_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/keygen/ecdsa_keygen_cpu_cycles', 'ECDSA Keygen CPU cycles (Botan)', botan_ecdsa_keygen_cpu_cycles["data"]) # Signing botan_rsa_sign_real_time, botan_rsa_sign_cpu_time, botan_rsa_sign_cpu_cycles = process_perf_stat_output("output/ds_perf/rsa_sign_perf") create_normality_graphs('normality_graphs/ds/botan/sign/rsa_sign_real_time', 'RSA Sign Real Time (Botan)', botan_rsa_sign_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/sign/rsa_sign_cpu_time', 'RSA Sign CPU Time (Botan)', botan_rsa_sign_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/sign/rsa_sign_cpu_cycles', 'RSA Sign CPU cycles (Botan)', botan_rsa_sign_cpu_cycles["data"]) botan_sm2_sign_real_time, botan_sm2_sign_cpu_time, botan_sm2_sign_cpu_cycles = process_perf_stat_output("output/ds_perf/sm2_sign_perf") create_normality_graphs('normality_graphs/ds/botan/sign/sm2_sign_real_time', 'SM2 Sign Real Time (Botan)', botan_sm2_sign_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/sign/sm2_sign_cpu_time', 'SM2 Sign CPU Time (Botan)', botan_sm2_sign_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/sign/sm2_sign_cpu_cycles', 'SM2 Sign CPU cycles (Botan)', botan_sm2_sign_cpu_cycles["data"]) botan_ecdsa_sign_real_time, botan_ecdsa_sign_cpu_time, botan_ecdsa_sign_cpu_cycles = process_perf_stat_output("output/ds_perf/ecdsa_sign_perf") create_normality_graphs('normality_graphs/ds/botan/sign/ecdsa_sign_real_time', 'ECDSA Sign Real Time (Botan)', botan_ecdsa_sign_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/sign/ecdsa_sign_cpu_time', 'ECDSA Sign CPU Time (Botan)', botan_ecdsa_sign_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/sign/ecdsa_sign_cpu_cycles', 'ECDSA Sign CPU cycles (Botan)', botan_ecdsa_sign_cpu_cycles["data"]) #Verifying botan_rsa_verify_real_time, botan_rsa_verify_cpu_time, botan_rsa_verify_cpu_cycles = process_perf_stat_output("output/ds_perf/rsa_verify_perf") create_normality_graphs('normality_graphs/ds/botan/verify/rsa_verify_real_time', 'RSA Verify Real Time (Botan)', botan_rsa_verify_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/verify/rsa_verify_cpu_time', 'RSA Verify CPU Time (Botan)', botan_rsa_verify_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/verify/rsa_verify_cpu_cycles', 'RSA Verify CPU cycles (Botan)', botan_rsa_verify_cpu_cycles["data"]) botan_sm2_verify_real_time, botan_sm2_verify_cpu_time, botan_sm2_verify_cpu_cycles = process_perf_stat_output("output/ds_perf/sm2_verify_perf") create_normality_graphs('normality_graphs/ds/botan/verify/sm2_verify_real_time', 'SM2 Verify Real Time (Botan)', botan_sm2_verify_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/verify/sm2_verify_cpu_time', 'SM2 Verify CPU Time (Botan)', botan_sm2_verify_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/verify/sm2_verify_cpu_cycles', 'SM2 Verify CPU cycles (Botan)', botan_sm2_verify_cpu_cycles["data"]) botan_ecdsa_verify_real_time, botan_ecdsa_verify_cpu_time, botan_ecdsa_verify_cpu_cycles = process_perf_stat_output("output/ds_perf/ecdsa_verify_perf") create_normality_graphs('normality_graphs/ds/botan/verify/ecdsa_verify_real_time', 'ECDSA Verify Real Time (Botan)', botan_ecdsa_verify_real_time["data"]) create_normality_graphs('normality_graphs/ds/botan/verify/ecdsa_verify_cpu_time', 'ECDSA Verify CPU Time (Botan)', botan_ecdsa_verify_cpu_time["data"]) create_normality_graphs('normality_graphs/ds/botan/verify/ecdsa_verify_cpu_cycles', 'ECDSA Verify CPU cycles (Botan)', botan_ecdsa_verify_cpu_cycles["data"]) #GmSSL RSS ecdsa_keygen_rss = process_usrbintime_output_special('output/ds_rss/rss_ecdsa_key_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/ecdsa_keygen_gmssl', 'ECDSA Keygen RSS (GmSSL)', ecdsa_keygen_rss) rsa_keygen_rss = process_usrbintime_output_special('output/ds_rss/rss_rsa_key_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/rsa_keygen_gmssl', 'RSA Keygen RSS (GmSSL)', rsa_keygen_rss) sm2_keygen_rss = process_usrbintime_output_special('output/ds_rss/rss_sm2_key_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/sm2_keygen_gmssl', 'SM2 Keygen RSS (GmSSL)', sm2_keygen_rss) ecdsa_sign_rss = process_usrbintime_output('output/ds_rss/rss_ecdsa_sign_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/ecdsa_sign_gmssl', 'ECDSA Sign RSS (GmSSL)', ecdsa_sign_rss) rsa_sign_rss = process_usrbintime_output('output/ds_rss/rss_rsa_sign_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/rsa_sign_gmssl', 'RSA Sign RSS (GmSSL)', rsa_sign_rss) sm2_sign_rss = process_usrbintime_output('output/ds_rss/rss_sm2_sign_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/sm2_sign_gmssl', 'SM2 Sign RSS (GmSSL)', sm2_sign_rss) ecdsa_verify_rss = process_usrbintime_output('output/ds_rss/rss_ecdsa_verify_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/ecdsa_verify_gmssl', 'ECDSA Verify RSS (GmSSL)', ecdsa_verify_rss) rsa_verify_rss = process_usrbintime_output('output/ds_rss/rss_rsa_verify_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/rsa_verify_gmssl', 'RSA Verify RSS (GmSSL)', rsa_verify_rss) sm2_verify_rss = process_usrbintime_output('output/ds_rss/rss_sm2_verify_gmssl') create_normality_graphs('normality_graphs/ds/gmssl/rss/sm2_verify_gmssl', 'SM2 Verify RSS (GmSSL)', sm2_verify_rss) #Botan RSS ecdsa_keygen_rss_botan = process_usrbintime_output('output/ds_rss/rss_ecdsa_key_botan') create_normality_graphs('normality_graphs/ds/botan/rss/ecdsa_keygen', 'ECDSA Keygen RSS (Botan)', ecdsa_keygen_rss_botan) rsa_keygen_rss_botan = process_usrbintime_output('output/ds_rss/rss_rsa_key_botan') create_normality_graphs('normality_graphs/ds/botan/rss/rsa_keygen', 'RSA Keygen RSS (Botan)', rsa_keygen_rss_botan) sm2_keygen_rss_botan = process_usrbintime_output('output/ds_rss/rss_sm2_key_botan') create_normality_graphs('normality_graphs/ds/botan/rss/sm2_keygen', 'SM2 Keygen RSS (Botan)', sm2_keygen_rss_botan) ecdsa_sign_rss_botan = process_usrbintime_output('output/ds_rss/rss_ecdsa_sign_botan') create_normality_graphs('normality_graphs/ds/botan/rss/ecdsa_sign', 'ECDSA Sign RSS (Botan)', ecdsa_sign_rss_botan) rsa_sign_rss_botan = process_usrbintime_output('output/ds_rss/rss_rsa_sign_botan') create_normality_graphs('normality_graphs/ds/botan/rss/rsa_sign', 'RSA Sign RSS (Botan)', rsa_sign_rss_botan) sm2_sign_rss_botan = process_usrbintime_output('output/ds_rss/rss_sm2_sign_botan') create_normality_graphs('normality_graphs/ds/botan/rss/sm2_sign', 'SM2 Sign RSS (Botan)', sm2_sign_rss_botan) ecdsa_verify_rss_botan = process_usrbintime_output('output/ds_rss/rss_ecdsa_verify_botan') create_normality_graphs('normality_graphs/ds/botan/rss/ecdsa_verify', 'ECDSA Verify RSS (Botan)', ecdsa_verify_rss_botan) rsa_verify_rss_botan = process_usrbintime_output('output/ds_rss/rss_rsa_verify_botan') create_normality_graphs('normality_graphs/ds/botan/rss/rsa_verify', 'RSA Verify RSS (Botan)', rsa_verify_rss_botan) sm2_verify_rss_botan = process_usrbintime_output('output/ds_rss/rss_sm2_verify_botan') create_normality_graphs('normality_graphs/ds/botan/rss/sm2_verify', 'SM2 Verify RSS (Botan)', sm2_verify_rss_botan) elif (sys.argv[1] == 'block'): print('block') ############ OpenSSL ECB mode ############ # AES-NI Encryption ecb_aes_ni_real_time, ecb_aes_ni_cpu_time, ecb_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ni_ecb") create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_ni_real_time_enc', 'Encryption: AES-NI ECB Real time (OpenSSL)', ecb_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_ni_cpu_time_enc', 'Encryption: AES-NI ECB CPU time (OpenSSL)', ecb_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_ni_cpu_cycles_enc', 'Encryption: AES-NI ECB CPU cycles (OpenSSL)', ecb_aes_ni_cpu_cycles["data"]) # AES-NI Decryption dec_ecb_aes_ni_real_time, dec_ecb_aes_ni_cpu_time, dec_ecb_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ni_ecb_decrypt") create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_ni_real_time_dec', 'Decryption: AES-NI ECB Real time (OpenSSL)', dec_ecb_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_ni_cpu_time_dec', 'Decryption: AES-NI ECB CPU time (OpenSSL)', dec_ecb_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_ni_cpu_cycles_dec', 'Decryption: AES-NI ECB CPU cycles (OpenSSL)', dec_ecb_aes_ni_cpu_cycles["data"]) # AES Encryption ecb_aes_real_time, ecb_aes_cpu_time, ecb_aes_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ecb") create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_real_time_enc', 'Encryption: AES ECB Real time (OpenSSL)', ecb_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_cpu_time_enc', 'Encryption: AES ECB CPU time (OpenSSL)', ecb_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_cpu_cycles_enc', 'Encryption: AES ECB CPU cycles (OpenSSL)', ecb_aes_cpu_cycles["data"]) # AES Decryption dec_ecb_aes_real_time, dec_ecb_aes_cpu_time, dec_ecb_aes_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ecb_decrypt") create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_real_time_dec', 'Decryption: AES ECB Real time (OpenSSL)', dec_ecb_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_cpu_time_dec', 'Decryption: AES ECB CPU time (OpenSSL)', dec_ecb_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_aes_cpu_cycles_dec', 'Decryption: AES ECB CPU cycles (OpenSSL)', dec_ecb_aes_cpu_cycles["data"]) # SM4 Encryption ecb_sm4_real_time, ecb_sm4_cpu_time, ecb_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/sm4_ecb") create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_sm4_real_time', 'Encryption: SM4 ECB Real time (OpenSSL)', ecb_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_sm4_cpu_time', 'Encryption: SM4 ECB CPU time (OpenSSL)', ecb_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_sm4_cpu_cycles', 'Encryption: SM4 ECB CPU cycles (OpenSSL)', ecb_sm4_cpu_cycles["data"]) # SM4 Decryption dec_ecb_sm4_real_time, dec_ecb_sm4_cpu_time, dec_ecb_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/sm4_ecb_decrypt") create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_sm4_real_time_dec', 'Decryption: SM4 ECB Real time (OpenSSL)', dec_ecb_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_sm4_cpu_time_dec', 'Decryption: SM4 ECB CPU time (OpenSSL)', dec_ecb_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/ECB/ecb_sm4_cpu_cycles_dec', 'Decryption: SM4 ECB CPU cycles (OpenSSL)', dec_ecb_sm4_cpu_cycles["data"]) ############ OpenSSL CBC mode ############ # AES-NI Encryption cbc_aes_ni_real_time, cbc_aes_ni_cpu_time, cbc_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ni_cbc") create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_ni_real_time_enc', 'Encryption: AES-NI CBC Real time (OpenSSL)', cbc_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_ni_cpu_time_enc', 'Encryption: AES-NI CBC CPU time (OpenSSL)', cbc_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_ni_cpu_cycles_enc', 'Encryption: AES-NI CBC CPU cycles (OpenSSL)', cbc_aes_ni_cpu_cycles["data"]) # AES-NI Decryption dec_cbc_aes_ni_real_time, dec_cbc_aes_ni_cpu_time, dec_cbc_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ni_cbc_decrypt") create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_ni_real_time_dec', 'Decryption: AES-NI CBC Real time (OpenSSL)', dec_cbc_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_ni_cpu_time_dec', 'Decryption: AES-NI CBC CPU time (OpenSSL)', dec_cbc_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_ni_cpu_cycles_dec', 'Decryption: AES-NI CBC CPU cycles (OpenSSL)', dec_cbc_aes_ni_cpu_cycles["data"]) # AES Encryption cbc_aes_real_time, cbc_aes_cpu_time, cbc_aes_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_cbc") create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_real_time_enc', 'Encryption: AES CBC Real time (OpenSSL)', cbc_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_cpu_time_enc', 'Encryption: AES CBC CPU time (OpenSSL)', cbc_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_cpu_cycles_enc', 'Encryption: AES CBC CPU cycles (OpenSSL)', cbc_aes_cpu_cycles["data"]) # AES Decryption dec_cbc_aes_real_time, dec_cbc_aes_cpu_time, dec_cbc_aes_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_cbc_decrypt") create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_real_time_dec', 'Decryption: AES CBC Real time (OpenSSL)', dec_cbc_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_cpu_time_dec', 'Decryption: AES CBC CPU time (OpenSSL)', dec_cbc_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_aes_cpu_cycles_dec', 'Decryption: AES CBC CPU cycles (OpenSSL)', dec_cbc_aes_cpu_cycles["data"]) # SM4 Encryption cbc_sm4_real_time, cbc_sm4_cpu_time, cbc_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/sm4_cbc") create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_sm4_real_time', 'Encryption: SM4 CBC Real time (OpenSSL)', cbc_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_sm4_cpu_time', 'Encryption: SM4 CBC CPU time (OpenSSL)', cbc_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_sm4_cpu_cycles', 'Encryption: SM4 CBC CPU cycles (OpenSSL)', cbc_sm4_cpu_cycles["data"]) # SM4 Decryption dec_cbc_sm4_real_time, dec_cbc_sm4_cpu_time, dec_cbc_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/sm4_cbc_decrypt") create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_sm4_real_time_dec', 'Decryption: SM4 CBC Real time (OpenSSL)', dec_cbc_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_sm4_cpu_time_dec', 'Decryption: SM4 CBC CPU time (OpenSSL)', dec_cbc_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CBC/cbc_sm4_cpu_cycles_dec', 'Decryption: SM4 CBC CPU cycles (OpenSSL)', dec_cbc_sm4_cpu_cycles["data"]) ############ OpenSSL CTR mode ############ # AES-NI Encryption ctr_aes_ni_real_time, ctr_aes_ni_cpu_time, ctr_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ni_ctr") create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_ni_real_time_enc', 'Encryption: AES-NI CTR Real time (OpenSSL)', ctr_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_ni_cpu_time_enc', 'Encryption: AES-NI CTR CPU time (OpenSSL)', ctr_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_ni_cpu_cycles_enc', 'Encryption: AES-NI CTR CPU cycles (OpenSSL)', ctr_aes_ni_cpu_cycles["data"]) # AES-NI Decryption dec_ctr_aes_ni_real_time, dec_ctr_aes_ni_cpu_time, dec_ctr_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ni_ctr_decrypt") create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_ni_real_time_dec', 'Decryption: AES-NI CTR Real time (OpenSSL)', dec_ctr_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_ni_cpu_time_dec', 'Decryption: AES-NI CTR CPU time (OpenSSL)', dec_ctr_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_ni_cpu_cycles_dec', 'Decryption: AES-NI CTR CPU cycles (OpenSSL)', dec_ctr_aes_ni_cpu_cycles["data"]) # AES Encryption ctr_aes_real_time, ctr_aes_cpu_time, ctr_aes_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ctr") create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_real_time_enc', 'Encryption: AES CTR Real time (OpenSSL)', ctr_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_cpu_time_enc', 'Encryption: AES CTR CPU time (OpenSSL)', ctr_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_cpu_cycles_enc', 'Encryption: AES CTR CPU cycles (OpenSSL)', ctr_aes_cpu_cycles["data"]) # AES Decryption dec_ctr_aes_real_time, dec_ctr_aes_cpu_time, dec_ctr_aes_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/aes_ctr_decrypt") create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_real_time_dec', 'Decryption: AES CTR Real time (OpenSSL)', dec_ctr_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_cpu_time_dec', 'Decryption: AES CTR CPU time (OpenSSL)', dec_ctr_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_aes_cpu_cycles_dec', 'Decryption: AES CTR CPU cycles (OpenSSL)', dec_ctr_aes_cpu_cycles["data"]) # SM4 Encryption ctr_sm4_real_time, ctr_sm4_cpu_time, ctr_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/sm4_ctr") create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_sm4_real_time', 'Encryption: SM4 CTR Real time (OpenSSL)', ctr_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_sm4_cpu_time', 'Encryption: SM4 CTR CPU time (OpenSSL)', ctr_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_sm4_cpu_cycles', 'Encryption: SM4 CTR CPU cycles (OpenSSL)', ctr_sm4_cpu_cycles["data"]) # SM4 Decryption dec_ctr_sm4_real_time, dec_ctr_sm4_cpu_time, dec_ctr_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/openssl/sm4_ctr_decrypt") create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_sm4_real_time_dec', 'Decryption: SM4 CTR Real time (OpenSSL)', dec_ctr_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_sm4_cpu_time_dec', 'Decryption: SM4 CTR CPU time (OpenSSL)', dec_ctr_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/openssl/CTR/ctr_sm4_cpu_cycles_dec', 'Decryption: SM4 CTR CPU cycles (OpenSSL)', dec_ctr_sm4_cpu_cycles["data"]) ############################################################################################### ############ Botan ECB mode ############ # AES-NI Encryption botan_ecb_aes_ni_real_time, botan_ecb_aes_ni_cpu_time, botan_ecb_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ni_ecb") create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_ni_real_time_enc', 'Encryption: AES-NI ECB Real time (Botan)', botan_ecb_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_ni_cpu_time_enc', 'Encryption: AES-NI ECB CPU time (Botan)', botan_ecb_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_ni_cpu_cycles_enc', 'Encryption: AES-NI ECB CPU cycles (Botan)', botan_ecb_aes_ni_cpu_cycles["data"]) # AES-NI Decryption botan_dec_ecb_aes_ni_real_time, botan_dec_ecb_aes_ni_cpu_time, botan_dec_ecb_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ni_ecb_decrypt") create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_ni_real_time_dec', 'Decryption: AES-NI ECB Real time (Botan)', botan_dec_ecb_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_ni_cpu_time_dec', 'Decryption: AES-NI ECB CPU time (Botan)', botan_dec_ecb_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_ni_cpu_cycles_dec', 'Decryption: AES-NI ECB CPU cycles (Botan)', botan_dec_ecb_aes_ni_cpu_cycles["data"]) # AES Encryption botan_ecb_aes_real_time, botan_ecb_aes_cpu_time, botan_ecb_aes_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ecb") create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_real_time_enc', 'Encryption: AES ECB Real time (Botan)', botan_ecb_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_cpu_time_enc', 'Encryption: AES ECB CPU time (Botan)', botan_ecb_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_cpu_cycles_enc', 'Encryption: AES ECB CPU cycles (Botan)', botan_ecb_aes_cpu_cycles["data"]) # AES Decryption botan_dec_ecb_aes_real_time, botan_dec_ecb_aes_cpu_time, botan_dec_ecb_aes_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ecb_decrypt") create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_real_time_dec', 'Decryption: AES ECB Real time (Botan)', botan_dec_ecb_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_cpu_time_dec', 'Decryption: AES ECB CPU time (Botan)', botan_dec_ecb_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_aes_cpu_cycles_dec', 'Decryption: AES ECB CPU cycles (Botan)', botan_dec_ecb_aes_cpu_cycles["data"]) # SM4 Encryption botan_ecb_sm4_real_time, botan_ecb_sm4_cpu_time, botan_ecb_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_sm4_ecb") create_normality_graphs('normality_graphs/block/botan/ECB/ecb_sm4_real_time_enc', 'Encryption: SM4 ECB Real time (Botan)', botan_ecb_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_sm4_cpu_time_enc', 'Encryption: SM4 ECB CPU time (Botan)', botan_ecb_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_sm4_cpu_cycles_enc', 'Encryption: SM4 ECB CPU cycles (Botan)', botan_ecb_sm4_cpu_cycles["data"]) # SM4 Decryption botan_dec_ecb_sm4_real_time, botan_dec_ecb_sm4_cpu_time, botan_dec_ecb_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_sm4_ecb_decrypt") create_normality_graphs('normality_graphs/block/botan/ECB/ecb_sm4_real_time_dec', 'Decryption: SM4 ECB Real time (Botan)', botan_dec_ecb_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_sm4_cpu_time_dec', 'Decryption: SM4 ECB CPU time (Botan)', botan_dec_ecb_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/ECB/ecb_sm4_cpu_cycles_dec', 'Decryption: SM4 ECB CPU cycles (Botan)', botan_dec_ecb_sm4_cpu_cycles["data"]) ############ Botan CBC mode ############ # AES-NI Encryption botan_cbc_aes_ni_real_time, botan_cbc_aes_ni_cpu_time, botan_cbc_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ni_cbc") create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_ni_real_time_enc', 'Encryption: AES-NI CBC Real time (Botan)', botan_cbc_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_ni_cpu_time_enc', 'Encryption: AES-NI CBC CPU time (Botan)', botan_cbc_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_ni_cpu_cycles_enc', 'Encryption: AES-NI CBC CPU cycles (Botan)', botan_cbc_aes_ni_cpu_cycles["data"]) # AES-NI Decryption botan_dec_cbc_aes_ni_real_time, botan_dec_cbc_aes_ni_cpu_time, botan_dec_cbc_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ni_cbc_decrypt") create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_ni_real_time_dec', 'Decryption: AES-NI CBC Real time (Botan)', botan_dec_cbc_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_ni_cpu_time_dec', 'Decryption: AES-NI CBC CPU time (Botan)', botan_dec_cbc_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_ni_cpu_cycles_dec', 'Decryption: AES-NI CBC CPU cycles (Botan)', botan_dec_cbc_aes_ni_cpu_cycles["data"]) # AES Encryption botan_cbc_aes_real_time, botan_cbc_aes_cpu_time, botan_cbc_aes_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_cbc") create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_real_time_enc', 'Encryption: AES CBC Real time (Botan)', botan_cbc_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_cpu_time_enc', 'Encryption: AES CBC CPU time (Botan)', botan_cbc_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_cpu_cycles_enc', 'Encryption: AES CBC CPU cycles (Botan)', botan_cbc_aes_cpu_cycles["data"]) # AES Decryption botan_dec_cbc_aes_real_time, botan_dec_cbc_aes_cpu_time, botan_dec_cbc_aes_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_cbc_decrypt") create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_real_time_dec', 'Decryption: AES CBC Real time (Botan)', botan_dec_cbc_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_cpu_time_dec', 'Decryption: AES CBC CPU time (Botan)', botan_dec_cbc_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_aes_cpu_cycles_dec', 'Decryption: AES CBC CPU cycles (Botan)', botan_dec_cbc_aes_cpu_cycles["data"]) # SM4 Encryption botan_cbc_sm4_real_time, botan_cbc_sm4_cpu_time, botan_cbc_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_sm4_cbc") create_normality_graphs('normality_graphs/block/botan/CBC/cbc_sm4_real_time_enc', 'Encryption: SM4 CBC Real time (Botan)', botan_cbc_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_sm4_cpu_time_enc', 'Encryption: SM4 CBC CPU time (Botan)', botan_cbc_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_sm4_cpu_cycles_enc', 'Encryption: SM4 CBC CPU cycles (Botan)', botan_cbc_sm4_cpu_cycles["data"]) # SM4 Decryption botan_dec_cbc_sm4_real_time, botan_dec_cbc_sm4_cpu_time, botan_dec_cbc_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_sm4_cbc_decrypt") create_normality_graphs('normality_graphs/block/botan/CBC/cbc_sm4_real_time_dec', 'Decryption: SM4 CBC Real time (Botan)', botan_dec_cbc_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_sm4_cpu_time_dec', 'Decryption: SM4 CBC CPU time (Botan)', botan_dec_cbc_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CBC/cbc_sm4_cpu_cycles_dec', 'Decryption: SM4 CBC CPU cycles (Botan)', botan_dec_cbc_sm4_cpu_cycles["data"]) ############ Botan CTR mode ############ # AES-NI Encryption botan_ctr_aes_ni_real_time, botan_ctr_aes_ni_cpu_time, botan_ctr_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ni_ctr") create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_ni_real_time_enc', 'Encryption: AES-NI CTR Real time (Botan)', botan_ctr_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_ni_cpu_time_enc', 'Encryption: AES-NI CTR CPU time (Botan)', botan_ctr_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_ni_cpu_cycles_enc', 'Encryption: AES-NI CTR CPU cycles (Botan)', botan_ctr_aes_ni_cpu_cycles["data"]) # AES-NI Decryption botan_dec_ctr_aes_ni_real_time, botan_dec_ctr_aes_ni_cpu_time, botan_dec_ctr_aes_ni_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ni_ctr_decrypt") create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_ni_real_time_dec', 'Decryption: AES-NI CTR Real time (Botan)', botan_dec_ctr_aes_ni_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_ni_cpu_time_dec', 'Decryption: AES-NI CTR CPU time (Botan)', botan_dec_ctr_aes_ni_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_ni_cpu_cycles_dec', 'Decryption: AES-NI CTR CPU cycles (Botan)', botan_dec_ctr_aes_ni_cpu_cycles["data"]) # AES Encryption botan_ctr_aes_real_time, botan_ctr_aes_cpu_time, botan_ctr_aes_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ctr") create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_real_time_enc', 'Encryption: AES CTR Real time (Botan)', botan_ctr_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_cpu_time_enc', 'Encryption: AES CTR CPU time (Botan)', botan_ctr_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_cpu_cycles_enc', 'Encryption: AES CTR CPU cycles (Botan)', botan_ctr_aes_cpu_cycles["data"]) # AES Decryption botan_dec_ctr_aes_real_time, botan_dec_ctr_aes_cpu_time, botan_dec_ctr_aes_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_aes_ctr_decrypt") create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_real_time_dec', 'Decryption: AES CTR Real time (Botan)', botan_dec_ctr_aes_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_cpu_time_dec', 'Decryption: AES CTR CPU time (Botan)', botan_dec_ctr_aes_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_aes_cpu_cycles_dec', 'Decryption: AES CTR CPU cycles (Botan)', botan_dec_ctr_aes_cpu_cycles["data"]) # SM4 Encryption botan_ctr_sm4_real_time, botan_ctr_sm4_cpu_time, botan_ctr_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_sm4_ctr") create_normality_graphs('normality_graphs/block/botan/CTR/ctr_sm4_real_time_enc', 'Encryption: SM4 CTR Real time (Botan)', botan_ctr_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_sm4_cpu_time_enc', 'Encryption: SM4 CTR CPU time (Botan)', botan_ctr_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_sm4_cpu_cycles_enc', 'Encryption: SM4 CTR CPU cycles (Botan)', botan_ctr_sm4_cpu_cycles["data"]) # SM4 Decryption botan_dec_ctr_sm4_real_time, botan_dec_ctr_sm4_cpu_time, botan_dec_ctr_sm4_cpu_cycles = process_perf_stat_output("output/block_perf/botan/botan_sm4_ctr_decrypt") create_normality_graphs('normality_graphs/block/botan/CTR/ctr_sm4_real_time_dec', 'Decryption: SM4 CTR Real time (Botan)', botan_dec_ctr_sm4_real_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_sm4_cpu_time_dec', 'Decryption: SM4 CTR CPU time (Botan)', botan_dec_ctr_sm4_cpu_time["data"]) create_normality_graphs('normality_graphs/block/botan/CTR/ctr_sm4_cpu_cycles_dec', 'Decryption: SM4 CTR CPU cycles (Botan)', botan_dec_ctr_sm4_cpu_cycles["data"]) ############################################################################################### ############ RSS OpenSSL ############ # AES-NI Encryption RSS_aes_ni = process_proc_status_output("output/block_rss/openssl/openssl_aes_ni_rss") create_normality_graphs('normality_graphs/block_rss/openssl/rss_aes_ni', 'Encryption: AES-NI RSS (OpenSSL)', RSS_aes_ni) # AES-NI Decryption RSS_dec_aes_ni = process_proc_status_output("output/block_rss/openssl/openssl_aes_ni_rss_decrypt") create_normality_graphs('normality_graphs/block_rss/openssl/rss_aes_ni_dec', 'Decryption: AES-NI RSS (OpenSSL)', RSS_dec_aes_ni) # AES Encryption RSS_aes = process_proc_status_output("output/block_rss/openssl/openssl_aes_rss") create_normality_graphs('normality_graphs/block_rss/openssl/rss_aes', 'Encryption: AES RSS (OpenSSL)', RSS_aes) # AES Decryption RSS_dec_aes = process_proc_status_output("output/block_rss/openssl/openssl_aes_rss_decrypt") create_normality_graphs('normality_graphs/block_rss/openssl/rss_aes_dec', 'Decryption: AES RSS (OpenSSL)', RSS_dec_aes) # SM4 Encryption RSS_sm4 = process_proc_status_output("output/block_rss/openssl/openssl_sm4_rss") create_normality_graphs('normality_graphs/block_rss/openssl/rss_sm4_ni', 'Encryption: SM4 RSS (OpenSSL)', RSS_sm4) # SM4 Decryption RSS_dec_sm4 = process_proc_status_output("output/block_rss/openssl/openssl_sm4_rss_decrypt") create_normality_graphs('normality_graphs/block_rss/openssl/rss_sm4_ni_dec', 'Decryption: SM4 RSS (OpenSSL)', RSS_dec_sm4) ############ RSS Botan ############ # AES-NI Encryption botan_RSS_aes_ni = process_proc_status_output("output/block_rss/botan/botan_aes_ni_rss_encrypt") create_normality_graphs('normality_graphs/block_rss/botan/rss_aes_ni', 'Encryption: AES-NI RSS (Botan)', botan_RSS_aes_ni) # AES-NI Decryption botan_RSS_dec_aes_ni = process_proc_status_output("output/block_rss/botan/botan_aes_ni_rss_decrypt") create_normality_graphs('normality_graphs/block_rss/botan/rss_aes_ni_dec', 'Decryption: AES-NI RSS (Botan)', botan_RSS_dec_aes_ni) # AES Encryption botan_RSS_aes = process_proc_status_output("output/block_rss/botan/botan_aes_rss_encrypt") create_normality_graphs('normality_graphs/block_rss/botan/rss_aes', 'Encryption: AES RSS (Botan)', botan_RSS_aes) # AES-NI Decryption botan_RSS_dec_aes = process_proc_status_output("output/block_rss/botan/botan_aes_rss_decrypt") create_normality_graphs('normality_graphs/block_rss/botan/rss_aes_dec', 'Decryption: AES RSS (Botan)', botan_RSS_dec_aes) # SM4 Encryption botan_RSS_sm4 = process_proc_status_output("output/block_rss/botan/botan_sm4_rss_encrypt") create_normality_graphs('normality_graphs/block_rss/botan/rss_sm4', 'Encryption: SM4 RSS (Botan)', botan_RSS_sm4) # SM4 Decryption botan_RSS_dec_sm4 = process_proc_status_output("output/block_rss/botan/botan_sm4_rss_decrypt") create_normality_graphs('normality_graphs/block_rss/botan/rss_sm4_dec', 'Decryption: SM4 RSS (Botan)', botan_RSS_dec_sm4) else: print("No valid argument input")
true
8094beb6206722ad86c33fb9d7ae3b52e07d7ea3
Python
coffeemakr/python-thr
/thr/utils.py
UTF-8
724
3.34375
3
[ "Unlicense" ]
permissive
import hmac EMAIL_HMAC_KEY = b'0\xa5P\x0f\xed\x97\x01\xfam\xef\xdba\x08A\x90\x0f\xeb\xb8\xe40\x88\x1fz\xd8\x16\x82bd\xec\t\xba\xd7' PHONE_HMAC_KEY = b'\x85\xad\xf8"iS\xf3\xd9l\xfd]\t\xbf)U^\xb9U\xfc\xd8\xaa^\xc4\xf9\xfc\xd8i\xe2X7\x07#' def _hmac_sha256_hex(key, msg): h = hmac.new(key=key, digestmod='sha256') h.update(msg) return h.hexdigest() def hash_email(email: str): ''' Hashes an e-mail for reverse lookup. >>> hash_email("Test@Threema.ch") '1ea093239cc5f0e1b6ec81b866265b921f26dc4033025410063309f4d1a8ee2c' ''' return _hmac_sha256_hex( key=EMAIL_HMAC_KEY, msg=email.strip().lower().encode("ascii")) def hash_phone(phone): ''' >>> hash_phone("41791234567") 'ad398f4d7ebe63c6550a486cc6e07f9baa09bd9d8b3d8cb9d9be106d35a7fdbc' ''' return _hmac_sha256_hex( key=PHONE_HMAC_KEY, msg=phone.encode("ascii"))
true
028530cb0de539eaf3a874ffb5197351a9e75ea8
Python
diverse-project/varylatex
/vary/model/files/directory.py
UTF-8
1,529
2.59375
3
[]
no_license
import os import shutil import time from pathlib import Path def clear_directory(path): """ Removes the content of a directory without removing the directory itself """ for root, dirs, files in os.walk(path): for f in files: os.unlink(os.path.join(root, f)) for d in dirs: shutil.rmtree(os.path.join(root, d)) def remove_directory(path): """ Removes a directory and its content """ shutil.rmtree(path) def create_temporary_copy(path): """ Creates a working directory with a copy of the project files, that can be altered by the program and used for the compilations. """ timestamp = str(time.time()) tmp_path = os.path.join(os.getcwd(), "vary/build", timestamp) try: shutil.copytree(path, tmp_path) macro_path = os.path.join(os.path.split(os.path.realpath(__file__))[0], "../macros.tex") macro_copy_path = os.path.join(tmp_path, "macros.tex") shutil.copyfile(macro_path, macro_copy_path) except shutil.Error: print("Error creating the temporary copy") return tmp_path def create_dir(path): """ Creates a directory with the specified path if it does not already exists """ Path(path).mkdir(parents=True, exist_ok=True) def get_secret_key(path): if os.path.isfile(path): with open(path, 'rb') as f: return f.read() else: key = os.urandom(16) with open(path, 'ab') as f: f.write(key) return key
true
e900ae1c01cde3cc20cd4a387cee03532d04700c
Python
srinivasanprashant/Bachelors-degrees-women-USA
/data-analysis.py
UTF-8
7,994
3.765625
4
[]
no_license
import pandas as pd import matplotlib.pyplot as plt women_degrees = pd.read_csv('percent-bachelors-degrees-women-usa.csv') # fig, ax = plt.subplots() # ax.plot(women_degrees['Year'], women_degrees['Biology'], label='Women') # ax.plot(women_degrees['Year'], 100-women_degrees['Biology'], label='Men') # # customize the appearance of the ticks # ax.tick_params(bottom="off", top="off", left="off", right="off") # ax.set_title('Percentage of Biology Degrees Awarded By Gender') # ax.legend(loc="upper right") # From the plot, we can tell that Biology degrees increased steadily from 1970 and peaked in the early 2000's. # We can also tell that the percentage has stayed above 50% since around 1987. # Now let's generate line charts for four STEM degree categories on a grid to encourage comparison # major_cats = ['Biology', 'Computer Science', 'Engineering', 'Math and Statistics'] # fig = plt.figure(figsize=(12, 10)) # # for sp in range(0,4): # ax = fig.add_subplot(2,2,sp+1) # ax.plot(women_degrees['Year'], women_degrees[major_cats[sp]], c='blue', label='Women') # ax.plot(women_degrees['Year'], 100-women_degrees[major_cats[sp]], c='green', label='Men') # # Add your code here. # # Set the x-axis limit to range from 1968 to 2011 # ax.set_xlim(1968, 2011) # # Set the y-axis limit to range from 0 to 100 # ax.set_ylim(0, 100) # # Hide all of the spines and tick marks # ax.tick_params(bottom="off", top="off", left="off", right="off") # ax.spines["right"].set_visible(False) # ax.spines["bottom"].set_visible(False) # ax.spines["top"].set_visible(False) # ax.spines["left"].set_visible(False) # ax.set_title(major_cats[sp]) # # # Calling pyplot.legend() here will add the legend to the last subplot that was created. # plt.legend(loc='upper right') # plt.suptitle('Percentage of STEM Degrees Awarded By Gender') # plt.show() # Computer Science and Engineering have big gender gaps while the gap in Biology and Math and Statistics is # quite small. In addition, the first two degree categories are dominated by men while the latter degree # categories are much more balanced. # Now we'll focus on customizing colors, line widths, layout, and annotations to improve the ability # for a viewer to extract insights from the charts. # # order the charts by decreasing ending gender gap using list populated in that order # stem_cats = ['Engineering', 'Computer Science', 'Psychology', 'Biology', 'Physical Sciences', 'Math and Statistics'] # # Make plots more color-blind friendly using colors from color-blind friendly palette # cb_dark_blue = (0/255, 107/255, 164/255) # cb_orange = (255/255, 128/255, 14/255) # # fig = plt.figure(figsize=(18, 4)) # # for sp in range(0,6): # ax = fig.add_subplot(1,6,sp+1) # ax.plot(women_degrees['Year'], women_degrees[stem_cats[sp]], c=cb_dark_blue, label='Women', linewidth=3) # ax.plot(women_degrees['Year'], 100-women_degrees[stem_cats[sp]], c=cb_orange, label='Men', linewidth=3) # for key,spine in ax.spines.items(): # spine.set_visible(False) # ax.set_xlim(1968, 2011) # ax.set_ylim(0,100) # ax.set_title(stem_cats[sp]) # ax.tick_params(bottom="off", top="off", left="off", right="off") # # add text annotations to plot # if sp == 0: # # Annotating using Axes.text(x coordinate, y coordinate, string of text) # ax.text(2005, 87, "Men") # ax.text(2002, 8, "Women") # elif sp == 5: # ax.text(2005, 62, "Men") # ax.text(2001, 35, "Women") # legend = ax.legend() # legend.remove() # # plt.suptitle('Percentage of STEM Degrees Awarded By Gender') # Next step is to build a bigger plot. # Because there are seventeen degrees that we need to generate line charts for, we'll use a subplot # grid layout of 6 rows by 3 columns. We can then group the degrees into STEM, liberal arts, and other women_degrees = pd.read_csv('percent-bachelors-degrees-women-usa.csv') # Because there are seventeen degrees that we need to generate line charts for, we'll use a subplot # grid layout of 6 rows by 3 columns. We can then group the degrees into STEM, liberal arts, and other stem_cats = ['Psychology', 'Biology', 'Math and Statistics', 'Physical Sciences', 'Computer Science', 'Engineering'] lib_arts_cats = ['Foreign Languages', 'English', 'Communications and Journalism', 'Art and Performance', 'Social Sciences and History'] other_cats = ['Health Professions', 'Public Administration', 'Education', 'Agriculture','Business', 'Architecture'] # Make plots more color-blind friendly using colors from color-blind friendly palette cb_dark_blue = (0/255, 107/255, 164/255) cb_orange = (255/255, 128/255, 14/255) fig = plt.figure(figsize=(16, 20)) for sp in range(0,6): ax = fig.add_subplot(6,3,(3*sp)+1) ax.plot(women_degrees['Year'], women_degrees[stem_cats[sp]], c=cb_dark_blue, label='Women', linewidth=3) ax.plot(women_degrees['Year'], 100-women_degrees[stem_cats[sp]], c=cb_orange, label='Men', linewidth=3) for key,spine in ax.spines.items(): spine.set_visible(False) ax.set_xlim(1968, 2011) ax.set_ylim(0,100) # enable just the 0 and 100 labels to be displayed ax.set_yticks([0,100]) # generate a horizontal line across the entire subplot ax.axhline(50, c=(171/255, 171/255, 171/255), alpha=0.3) ax.set_title(stem_cats[sp]) ax.tick_params(bottom="off", top="off", left="off", right="off", labelbottom='off') # add text annotations to plot if sp == 0: # Annotating using Axes.text(x coordinate, y coordinate, string of text) ax.text(2005, 85, "Women") ax.text(2005, 10, "Men") elif sp == 5: ax.text(2005, 87, "Men") ax.text(2005, 7, "Women") ax.tick_params(labelbottom='on') for sp in range(0,5): ax = fig.add_subplot(6,3,(3*sp)+2) ax.plot(women_degrees['Year'], women_degrees[lib_arts_cats[sp]], c=cb_dark_blue, label='Women', linewidth=3) ax.plot(women_degrees['Year'], 100-women_degrees[lib_arts_cats[sp]], c=cb_orange, label='Men', linewidth=3) for key,spine in ax.spines.items(): spine.set_visible(False) ax.set_xlim(1968, 2011) ax.set_ylim(0,100) # enable just the 0 and 100 labels to be displayed ax.set_yticks([0,100]) # generate a horizontal line across the entire subplot ax.axhline(50, c=(171/255, 171/255, 171/255), alpha=0.3) ax.set_title(lib_arts_cats[sp]) ax.tick_params(bottom="off", top="off", left="off", right="off", labelbottom='off') # add text annotations to plot if sp == 0: # Annotating using Axes.text(x coordinate, y coordinate, string of text) ax.text(2005, 78, "Women") ax.text(2005, 18, "Men") if sp == 4: ax.tick_params(labelbottom='on') for sp in range(0,6): ax = fig.add_subplot(6,3,(3*sp)+3) ax.plot(women_degrees['Year'], women_degrees[other_cats[sp]], c=cb_dark_blue, label='Women', linewidth=3) ax.plot(women_degrees['Year'], 100-women_degrees[other_cats[sp]], c=cb_orange, label='Men', linewidth=3) for key,spine in ax.spines.items(): spine.set_visible(False) ax.set_xlim(1968, 2011) ax.set_ylim(0,100) # enable just the 0 and 100 labels to be displayed ax.set_yticks([0,100]) # generate a horizontal line across the entire subplot ax.axhline(50, c=(171/255, 171/255, 171/255), alpha=0.3) ax.set_title(other_cats[sp]) ax.tick_params(bottom="off", top="off", left="off", right="off", labelbottom='off') # add text annotations to plot if sp == 0: # Annotating using Axes.text(x coordinate, y coordinate, string of text) ax.text(2005, 90, "Women") ax.text(2005, 5, "Men") elif sp == 5: ax.text(2005, 62, "Men") ax.text(2005, 30, "Women") ax.tick_params(labelbottom='on') plt.plot(women_degrees['Year'], women_degrees['Biology']) # Export the figure containing all of the line charts plt.savefig('biology_degrees.png') plt.show()
true
58344b304457457eee97093ae4618173cd000088
Python
Yaskeir/Python
/cartesianToSpherical.py
UTF-8
1,358
4.59375
5
[]
no_license
import math # start with the cartesian input print("Please provide the x, y and z coordinates:") cartesianX = float(input("x: ")) cartesianY = float(input("y: ")) cartesianZ = float(input("z: ")) # define two separate recalculation functions so that they can be re-used in other code def cartesianToSpherical(x, y, z): #calculate distance from the origin sphericalR = math.sqrt(x**2+y**2+z**2) R = round(sphericalR, 2) #calculate the theta angle and output the result in degrees, #rounding to the 2nd decimal point sphericalTheta = math.degrees(math.atan(y/x)) Theta = round(sphericalTheta, 2) #do the same for the phi angle sphericalPhi = math.degrees(math.atan(math.sqrt(x**2+y**2)/z)) Phi = round(sphericalPhi, 2) print("R =", R, "Theta =", Theta, "Phi =", Phi) def cartesianToCylindrical(x, y, z): cylindricalR = math.sqrt(x**2+y**2+z**2) R = round(cylindricalR, 2) cylindricalTheta = math.degrees(math.atan(y/x)) Theta = round(cylindricalTheta, 2) print("R =", R, "Theta =", Theta, "Z =", z) print("Point coordinates in spherical system, rounded up to the 2nd decimal point: ") cartesianToSpherical(cartesianX, cartesianY, cartesianZ) print("Point coordinates in cylindrical system, rounded up to the 2nd decimal point: ") cartesianToCylindrical(cartesianX, cartesianY, cartesianZ)
true
f1bd97c9a0d37e14c3582e7b143dc215626bb4ce
Python
Dm1triiy/stepik
/512.Python.Advanced/3.3.1.py
UTF-8
394
2.96875
3
[]
no_license
import requests import re source = requests.get(input().strip()) target_url = input().strip() urls = [] step_status = False if source.status_code == 200: urls = re.findall(r'href="(.+?)"', source.text) for url in urls: page = requests.get(url) if page.status_code == 200: if target_url in page.text: step_status = True print('Yes' if step_status else 'No')
true