blob_id
stringlengths
40
40
language
stringclasses
1 value
repo_name
stringlengths
5
133
path
stringlengths
2
333
src_encoding
stringclasses
30 values
length_bytes
int64
18
5.47M
score
float64
2.52
5.81
int_score
int64
3
5
detected_licenses
listlengths
0
67
license_type
stringclasses
2 values
text
stringlengths
12
5.47M
download_success
bool
1 class
e3a049946807aa9e85077660df141dc38d9fa431
Python
jcmayoral/SEE-Project
/code/parameter_optimization.py
UTF-8
3,023
2.984375
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Sat Nov 5 11:23:37 2016 @author: jose """ import numpy as np from scipy.optimize import minimize def dF1(alphas, v, omega, v_hat, omega_hat, gamma_hat): k = (alphas[0] * v**2 + alphas[1] * omega**2) if k < 1e-100: k = 1e-100 d = -0.5 * (v**2 / k - ((v - v_hat) * v**2) / (k**2)) return d def dF2(alphas, v, omega, v_hat, omega_hat, gamma_hat): k = (alphas[0] * v**2 + alphas[1] * omega**2) if k < 1e-100: k = 1e-100 d = -0.5 * (omega**2 / k - ((v - v_hat) * omega**2) / (k**2)) return d def dF3(alphas, v, omega, v_hat, omega_hat, gamma_hat): k = (alphas[2] * v**2 + alphas[3] * omega**2) if k < 1e-100: k = 1e-100 d = -0.5 * (v**2 / k - ((omega - omega_hat) * v**2) / (k**2)) return d def dF4(alphas, v, omega, v_hat, omega_hat, gamma_hat): k = (alphas[2] * v**2 + alphas[3] * omega**2) if k < 1e-100: k = 1e-100 d = -0.5 * (omega**2 / k - ((omega - omega_hat) * omega**2) / (k**2)) return d def dF5(alphas, v, omega, v_hat, omega_hat, gamma_hat): k = (alphas[4] * v**2 + alphas[5] * omega**2) if k < 1e-100: k = 1e-100 d = -0.5 * (v**2 / k - (gamma_hat * v**2) / (k**2)) return d def dF6(alphas, v, omega, v_hat, omega_hat, gamma_hat): k = (alphas[4] * v**2 + alphas[5] * omega**2) if k < 1e-100: k = 1e-100 d = -0.5 * (omega**2 / k - (gamma_hat * omega**2) / (k**2)) return d def F(alphas, X): s = 0. for x in X: k = (alphas[0] * x[0]**2 + alphas[1] * x[1]**2) if k < 1e-100: k = 1e-100 temp = -0.5 * (np.log(2 * np.pi) + np.log(k) + (x[0] - x[2]) / k) k = (alphas[2] * x[0]**2 + alphas[3] * x[1]**2) if k < 1e-100: k = 1e-100 temp += -0.5 * (np.log(2 * np.pi) + np.log(k) + (x[1] - x[3]) / k) k = (alphas[4] * x[0]**2 + alphas[5] * x[1]**2) if k < 1e-100: k = 1e-100 temp += -0.5 * (np.log(2 * np.pi) + np.log(k) + x[4] / k) s += temp return -1. * s def F_prime(alphas, X): d = np.zeros(len(alphas)) for i in xrange(len(alphas)): s = 0. if i == 0: for x in X: s += dF1(alphas, *x) elif i == 1: for x in X: s += dF2(alphas, *x) elif i == 2: for x in X: s += dF3(alphas, *x) elif i == 3: for x in X: s += dF4(alphas, *x) elif i == 4: for x in X: s += dF5(alphas, *x) elif i == 5: for x in X: s += dF6(alphas, *x) d[i] = s return -1. * d def optimise_parameters(data, init_alphas): bounds = [(0., None), (0., None), (0., None), (0., None), (0., None), (0., None)] r = minimize(F, init_alphas, args=(data,), method='L-BFGS-B', jac=F_prime, bounds=bounds, options={'disp': True}) alphas = r.x return alphas
true
8debb0a6a56ac596b24b638bb7df78191441c200
Python
YuJuncen/auto_sign
/src/SignClient.py
UTF-8
4,547
2.546875
3
[]
no_license
from requests import post from json import dumps, loads from datetime import datetime as D from sys import exc_info from random import choice, random from asyncio import sleep, run from .Config import static_config as SConf from .TokenFactory import AbstractTokenFactory from .SignInfoServer import BaseSignInfoServer from . import core_logger as log from .DeviceInfo import DeviceInfo from .SignServer import SignServer, csust_server class SignClient(object): """ 签到的控制器(Controllor)。 组合所有元素,并且最后发出签到请求。 ``` __err_codes = { 0: "成功。", 1: "还没有到签到时间,如果强行签到的话可能会导致一些难以预测的后果。", 2: "服务器返回失败。", 3: "其它模块出现错误。", 4: "令牌错误,但是已经重新生成(不一定能生成有效令牌,具体取决于令牌工厂的力量)。" } ``` """ __err_codes = { 0: "成功。", 1: "还没有到签到时间,如果强行签到的话可能会导致一些难以预测的后果。", 2: "服务器返回失败。", 3: "其它模块出现错误。", 4: "令牌错误,但是已经重新生成(不一定能生成有效令牌,具体取决于令牌工厂的力量)。" } def __init__(self, tfactory: AbstractTokenFactory, dev: DeviceInfo, infod: BaseSignInfoServer, serv: SignServer = csust_server ): self.__tfactory = tfactory self.__server = serv self.__dev = dev self.__infod = infod self.__token = self.__tfactory.make_token() self.__sign_info = None @property def device(self): """ 获得客户端的设备信息。 """ return self.__dev @property def sign_info(self): if self.__sign_info is None: self.update_sign_info() return self.__sign_info def update_sign_info(self): self.__sign_info, err = self.__infod.get_sign_info(self.__token) if err != 0: _, info = self.handle_with_data_getter_error(err) raise RuntimeError(info) log.debug(f"信息成功刷新。字段:{[k for k in self.__sign_info.keys()]}") return 0 def auto_sign(self, force=False): return run(self.async_auto_sign(force)) def handle_with_data_getter_error(self, err): code, info = err log.warning(f"获得信息的时候,出现了错误:{info}") if code == 4: self.__token = self.__tfactory.make_token() return 4, self.__err_codes[4] return 3, info async def make_sign_data(self, bleChoicer: callable = choice): """ 仅仅制造签到时所需要的请求数据(不包括 token),然后返回。 """ datas = { "bleId": bleChoicer([bled['bleId'] for bled in self.sign_info.get('bleinfoList')]), "devUuid": self.__dev.device_uuid, "osName": self.__dev.os_name, "signId": self.sign_info.get("signId") } return datas def check_time_is_vaild(self): sign_info = self.sign_info if (sign_info.get('sponsorStatus') == '0'): log.warning('签到自己说它没有开始。') log.info(f'签到启动时间:{sign_info.get("startTime")}。') return False return True async def safety_delay(self): delay_time = random() * 5 + 3 log.info(f"正在“搜索”蓝牙设备,预计用时 {delay_time}s。") await sleep(delay_time) async def async_auto_sign(self, force=False): """ usage: ** 自动签到。 ** args: |name | usage | |: ----- :|: ------ :| |*force* | 不到时间也强制签到。| return: 如果成功了,返回 None, 0。 否则,返回 context, (errcode, errinfo)。 """ self.update_sign_info() datas = await self.make_sign_data() if not self.check_time_is_vaild(): if not force: return datas, (1, self.__err_codes[1]) log.warning(f"强制在签到时间外签到。") await self.safety_delay() return self.__server.sign({ "header": { "token": self.__token }, "data": datas })
true
dc2044eaaf53e4d71c1236278eaf9e7daf48b7f2
Python
buddiman/alda2020
/sheet07/cocktails/cocktail.py
UTF-8
3,720
3.609375
4
[]
no_license
''' Christopher Höllriegl, Marvin Schmitt Blatt 7 Aufgabe 1 ''' import json import re ignore = {'wasser', 'eiswürfel'} #Aufgabe a) # Read the recipes file and store the json object # Finally... forgot to set utf-8 flag with open('cocktails.json', encoding='utf-8') as data: recipes = json.load(data) def normalizeString(s): ''' normalizes a string :param s: string to normalize :return: normalized string ''' # remove things in brackets s = s.split(" (")[0] # make lowercase s = s.lower() # remove special characters with regex re.sub(r"[^a-zA-Z0-9äüöÄÜÖß]+", ' ', s) return s def all_ingredients(recipes): ''' Create a list of all ingredients :param recipes: recipes :return: list of ingredients ''' ingredients = [] # for every cocktail in the recipes for cocktail in recipes: # go through every ingredient for ingredient in recipes[cocktail]["ingredients"]: ingredients.append(normalizeString(ingredient)) # use list as set because of duplicates return list(set(ingredients)) #Aufgabe b) def cocktails_inverse(recipes): dictionary = {"":[]} # create a list of all ingredients ingredients = all_ingredients(recipes) # now add every ingredient to the dictionary for ingredient in ingredients: dictionary.update({ingredient: []}) # add every cocktail to the ingredient if needed. for cocktail in recipes: name = cocktail if contains_word(" ".join(recipes[cocktail]["ingredients"]).lower(), ingredient): dictionary[ingredient].append(name) return dictionary # from stackoverflow because there are no 478 cocktails containing "ei" def contains_word(s, w): return (' ' + w + ' ') in (' ' + s + ' ') def ingredient_count(inverse_recipes): counts = {"": 0} # count for ingredient in inverse_recipes: counts.update({ingredient: len(inverse_recipes[ingredient])}) return counts #Aufgabe c) #Wäre die Aufgabe nicht sinnvoller, wenn man mit der normalen Rezeptliste arbeitet anstatt der invertierten? def possible_cocktails(inverse_recipes, available_ingredients): possible_recipes = list() for ingredient in available_ingredients: ingredient = normalizeString(ingredient) if ingredient in inverse_recipes: for recipe in inverse_recipes[ingredient]: if recipe not in possible_recipes: possible_recipes.append(recipe) for ingredient in inverse_recipes.keys(): if len(possible_recipes) == 0: break if ingredient not in available_ingredients and ingredient not in ignore: for recipe in inverse_recipes[ingredient]: if recipe in possible_recipes: possible_recipes.remove(recipe) return possible_recipes if __name__ == "__main__": # Number of all ingredients print("Number of ingredients overall: ", len(all_ingredients(recipes))) # Print all ingredients print(all_ingredients(recipes)) # instruction from the sheet inverse_recipes = cocktails_inverse(recipes) # dump the data as a json file json.dump(inverse_recipes, open('cocktails_inverse.json', 'w', encoding='utf-8')) # print the 15 most used ingredients ingredients = ingredient_count(inverse_recipes) print("\nIngredients in number of cocktails:") n = 0 for item in sorted(ingredients, key=ingredients.get, reverse=True): print(item, ingredients[item]) #if n < 15: #print(item, ingredients[item]) #n += 1 possible_cocktails(inverse_recipes, {"Grapefruit", "Ribiselsirup", "Ananas"})
true
b6705614a45ec82b6afc5c2c8e65c579f796d689
Python
zlouity/adventofcode2020
/03/day3b.py
UTF-8
530
3.296875
3
[]
no_license
with open("day3.txt") as f: array = [] for line in f.readlines(): array.append(line.strip()) def tree_counter(_array): counter = 0 x =_array[0] y =_array[1] while y < len(array): if array[y][x] =="#": counter+=1 x = x+_array[0] x = x%len(array[y]) y=y+_array[1] return counter items=[[1,1],[3,1],[5,1],[7,1],[1,2]] multiply = 1 for thing in items: multiply*=tree_counter(thing) #print(tree_counter(thing)) print(multiply)
true
1d92a5987221cc2c03d21017397c616ded4f5012
Python
jehunseo/Algorithm
/Baekjoon/17256.py
UTF-8
125
2.953125
3
[]
no_license
a,b,c = [int(i) for i in input().split(' ')] d,e,f = [int(i) for i in input().split(' ')] print(f'{d - c} {e // b} {f - a}')
true
e2fca4ac93a0fae10da3f40b86dee279fbaf43d0
Python
DustyHatz/CS50projects
/pset6/hello.py
UTF-8
185
4.03125
4
[]
no_license
# This program takes in a users name and says hello to that person! from cs50 import get_int, get_float, get_string name = get_string("What is your name?\n") print("hello, " + name)
true
6dc2566580ad104129d96e9c9a3908537b91dfc8
Python
daniel-reich/ubiquitous-fiesta
/Y2AzE8m4n6RmqiSZh_21.py
UTF-8
67
3.109375
3
[]
no_license
def reverse_list(num): return [int(i) for i in str(num)][::-1]
true
a3243e966545b34a2327f7b603dbcc7413be7a3d
Python
qiudebo/13learn
/code/matplotlib/aqy/aqy_lines_bars3.py
UTF-8
1,499
2.859375
3
[ "MIT" ]
permissive
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'qiudebo' import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': plt.rcdefaults() fig, ax = plt.subplots() labels = (u"硕士以上", u"本科", u"大专", u"高中-中专", u"初中", u"小学") x = (0.13, 0.22, 0.25, 0.18, 0.13, 0.10) x1 = (-0.11, -0.19, -0.23, -0.20, -0.17, -0.10) width = 0.35 # 条形图的宽度 y = np.arange(len(labels)) ax.barh(y, x, width, align='center', color='g', label=u'我的前半生') ax.barh(y, x1, width, align='center', color='b', label=u'三生三世十里桃花') ax.set_yticks(y + width/2) ax.set_yticklabels(labels) ax.invert_yaxis() ax.set_xlabel('') ax.set_title('') # ax.yaxis.grid(True) # 水平网格 ax.xaxis.grid(True) plt.xlim(-0.3, 0.3) plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 #ax.set_xticks(()) # 隐藏y轴 # 设置图例 # plt.legend(loc="lower right", bbox_to_anchor=[1, 0.95],shadow=True, # ncol=1, title="Legend", fancybox=True) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=6) # 去除样例周边的边框 # plt.legend(frameon=False) ax.get_legend().get_title().set_color("red") plt.show()
true
67c79a08997fc1040e4f2144e6c6c0e01c80a727
Python
Deepak-Vengatesan/Skillrack-Daily-Challenge-Sloution
/15-6-2021.py
UTF-8
601
3.21875
3
[]
no_license
R,C = map(int,input().split()) matrix = [list(map(int,input().split())) for row in range(R)] N= int(input()) for row in range(0,R): for col in range(0,C): if N-col-1>=0 and N+col < C: print(matrix[row][N-col-1]+matrix[row][N+col],end=" ") elif N-col-1 >= 0: print(matrix[row][N-col-1],end=" ") elif N+col<C: print(matrix[row][N+col],end=" ") else: break print() ''' 3 5 1 2 3 4 5 2 4 6 8 2 10 20 30 40 50 4 3 5 1 2 3 4 5 4 8 6 7 9 10 20 30 45 55 2 3 5 1 2 3 4 5 2 4 6 8 2 10 20 30 40 50 5 '''
true
365291e3b1f3a03ffd5062d6ee48fd51dbd234e7
Python
WangXin93/tianchi-fashionai-challenge
/TRAIN/view_data.py
UTF-8
4,453
2.53125
3
[]
no_license
import torch from torchvision import datasets, models, transforms from torch.utils.data import Dataset, DataLoader import pandas as pd import os from PIL import Image import matplotlib.pyplot as plt import torchvision import numpy as np # import Augmentor class FashionAttrsDataset(Dataset): """Fashion Attributes dataset.""" def __init__(self, csv_file, root_dir, transform=None): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.fashion_frame = pd.read_csv(csv_file, names=['image', 'type','category']) self.root_dir = root_dir self.transform = transform def __len__(self): return len(self.fashion_frame) def __getitem__(self, idx): img_name = os.path.join(self.root_dir, self.fashion_frame.iloc[idx, 0]) # image = io.imread(img_name) image = Image.open(img_name).convert('RGB') category = self.fashion_frame.iloc[idx, 2] # category = category[0] != ('y') category = category.index('y') if self.transform: transformed_image = self.transform(image) image = transforms.Resize((224,224))(image) image = transforms.ToTensor()(image) image = transforms.Normalize([0.63699209, 0.60060385, 0.59294991], [ 0.29762986, 0.30413315, 0.30129263])(image) sample = {'image': image, 'category': category, 'transformed_image': transformed_image} return sample #p = Augmentor.Pipeline() #p.rotate(probability=1.0, max_left_rotation=8, max_right_rotation=8) #p.random_distortion(probability=1.0, grid_width=4, grid_height=4, magnitude=10) data_transforms = { 'train': transforms.Compose([ # p.torch_transform(), torchvision.transforms.RandomRotation(10), torchvision.transforms.Resize((224, 224)), torchvision.transforms.ColorJitter(brightness=32./255., contrast=0.5, saturation=0.5, hue=0.2), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.4, hue=0.4), torchvision.transforms.ToTensor(), transforms.Normalize([0.63699209, 0.60060385, 0.59294991], [ 0.29762986, 0.30413315, 0.30129263]) ]), 'val': transforms.Compose([ torchvision.transforms.Resize((224,224)), torchvision.transforms.ToTensor(), transforms.Normalize([0.63699209, 0.60060385, 0.59294991], [ 0.29762986, 0.30413315, 0.30129263]) ]), } csv_file = './data/fashionAI/neck_design_labels_train.csv' root_dir = '/home/wangx/datasets/fashionAI/base/' use_gpu = torch.cuda.is_available() image_datasets = {x: FashionAttrsDataset(csv_file, root_dir, data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: DataLoader(image_datasets[x], batch_size=16, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} def imshow(inp, ax, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.63699209, 0.60060385, 0.59294991]) std = np.array([0.29762986, 0.30413315, 0.30129263]) inp = std * inp + mean inp = np.clip(inp, 0, 1) ax.imshow(inp) if title is not None: ax.set_title(title) #plt.pause(1) # pause a bit so that plots are updated # Get a batch of training data next_batch = next(iter(dataloaders['train'])) inputs, o_images, classes = next_batch['transformed_image'], next_batch['image'], next_batch['category'] classes = [str(i) for i in classes] # Make a grid from batch fig, axs = plt.subplots(2, 1, figsize=(16, 9)) axs[0].text(0, -5, ','.join(classes), fontsize=24) out = torchvision.utils.make_grid(inputs) imshow(out, axs[0], title='transformed images') out = torchvision.utils.make_grid(o_images) imshow(out, axs[1], title='original images') plt.show()
true
1b89b330bac9ecb13eddafb52899601f10ccd5e8
Python
jhli973/Projects
/filehandling/ReadFileFromSubfolder.py
UTF-8
1,678
3.453125
3
[]
no_license
''' Senario: Imagine we have houdreds of customer specific folders which hold package files. Our mission is to check if two specific packages were created for each clients This program is to find the specified files from any folder and return a ordered dictionary of the foldername(ClientName):filename ''' #Part one: read and process files with python import os import glob import re ###1. give a path, don't add backslash to the end path = raw_input("Please enteryour directory, otherwise use the default one.") if path == '': path = r'DirectoryPath' ###2. read all subfolder #change the path to working directory os.chdir(path) ##read only the subfolder name #print [name for name in os.listdir(".") if os.path.isdir(name)] subdirectories = [name for name in os.listdir(".") if os.path.isdir(name)] ##read the absolute subfolder name #subdirectories = [os.path.abspath(name) for name in os.listdir(".") if os.path.isdir(name)] ###3. select subfolder contains specific files and # put the subfolder and filename into dictionary tbl_dict tbl_dict = {} dir_dict = {} for subdir in subdirectories: ##cancatenate the path aand subdir abssubdir = path + '\\' + subdir #set the os.chdir(abssubdir) files = os.listdir(".") #return a list ##the following returns the a list of the absolute directory for file in files: #print file if file == 'filename1.txt' or file == 'filename2.txt': #print subdir, file ##insert into a dictionary tbl_dict.setdefault(subdir, []).append(file) dir_dict.setdefault(abssubdir, []).append(file) #print the sorted dictionary according to the keys for key, value in sorted(tbl_dict.items()): print key, value
true
744c093b1d6613503f03a4b4277c6803fc144ae9
Python
jaysurn/Leetcode_dailies
/Add_Two_Num.py
UTF-8
3,020
4.53125
5
[]
no_license
# Goal : Return the sum of 2 postive integers stored as reverse linked lists # Given : 2 linked lists of ints stored in reverse ( ex. 123 stored as 3->2->1 in list ) # Assumption : Lists' int value does not begin with 0 class Node: # Class definition for creating a Linkedlist def __init__( self , data ): self.data = data self.next = None def insert( L_list , data ): # Helper functon add a new node to a linkedlist temp_node = Node ( data ) # New node created if ( L_list == None ): # Create new linkedlist if doesn't exist and add new node L_list = temp_node else : ptr = L_list # Pointer created to loop through node till you reach end while ( ptr.next != None ): ptr = ptr.next ptr.next = temp_node # Add new node to end of linkedlist return L_list def print_L( L_list ): # Helper function to see the whole linkedlist while ( L_list != None ): print( L_list.data , end = " " ) L_list = L_list.next print( "\n" ) return def int_to_list( Integer ): # Helper function to convert ints used to linkedlists L_list = None for digit in reversed( Integer ): L_list = insert( L_list , int( digit ) ) return L_list def Add_Two_Num( list1 , list2 ): # Adds 2 lists and forms a new linkedlist with result stored in the same manner carry = 0 # Used to perform math to see if a carry is needed to be added in the next addition result_node = curr_node = Node( 0 ) # result_node and curr_node set to an empty node, result_node will stay at this root point while curr_node loops through lists while list1 or list2 or carry: # while list1,list2,or the carry exists if list1: # if list1 has another node, add data to carry and go to next node carry += list1.data list1 = list1.next if list2: carry += list2.data # if list2 has another node, add data to carry and go to next node list2 = list2.next curr_node.next = Node( carry % 10 ) # new node in result_node created from modular division forcing value to be between 0-9 curr_node = curr_node.next # go to next node carry //= 10 # check if carry is greater than 10 using floor division to see if a carry-1 is needed for next addition return result_node.next def main(): int1 = "243" # User defined positive ints stored in reverse int2 = "564" list1 = int_to_list( int1 ) list2 = int_to_list( int2 ) print( "Adding lists {0} and {1}".format( int1 , int2 ) ) result_list = Add_Two_Num( list1 , list2 ) # Math performed here then prints on next line print_L( result_list ) int3 = "2048" # User defined positives ints for testing ints of different lengths int4 = "128" list3 = int_to_list( int3 ) list4 = int_to_list( int4 ) print( "Adding lists {0} and {1}".format( int3 , int4 ) ) result_list = Add_Two_Num( list3, list4 ) # Math performed here then prints on next line print_L( result_list ) main()
true
7876e99a9af36d7e57ba6fef6f8822595a3c48c2
Python
me450722457/python_test
/test.py
UTF-8
345
3.09375
3
[]
no_license
#!/usr/bin/env python3 account = 'admin' password = '123456' user_account = input(str('Please input your account\n')) user_password = input(str('Please input your password\n')) if user_account == account: if user_password == password: print('success') else: print('password error') else: print('account error')
true
d3ca57ef154ba5e774a9d152c4a5fabedb3cd951
Python
SamVyazemsky/otus
/PythonQA/Lesson16/perser_access_log.py
UTF-8
437
2.78125
3
[]
no_license
import re from collections import Counter import json def read_log(filename): with open(filename) as f: log = f.read() ip_list = re.findall(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', log) return ip_list def count_ip(ip_list): count = Counter(ip_list) return count if __name__ == '__main__': res = count_ip(read_log('access2.log')) with open('res.json', 'w') as f: json.dump(res, f)
true
5aa7119e2387fe2d6d28a0ee62bf50386556a1d6
Python
henrytan0705/DS-A
/interview questions/twoSum.py
UTF-8
1,010
4.09375
4
[]
no_license
# O(n log n) Time| O(1) Space def twoNumberSum(array, targetSum): # sort array in order array.sort() # track left and right elements with indexes left_idx = 0 right_idx = len(array) - 1 while left_idx != right_idx: left = array[left_idx] right = array[right_idx] # check if sum is equal to targetSum # if sum is greater decrement right index # else increment right index if left + right == targetSum: return [left, right] elif left + right > targetSum: right_idx -= 1 else: left_idx += 1 # return empty array if no values add up return [] # O(n) Time| O(n) Space def twoNumberSum(array, targetSum): # store values in object values = {} for num in array: difference = targetSum - num # check if difference currently exists in object # else add current number into object if difference in values: return [num, difference] else: values[num] = True # return empty array if no values add up return []
true
2f1b38ce8b3c1d2da522091bfa301516739ebd92
Python
anurag1212/Search-Algorithms
/Search Algos/DFS/dfs.py
UTF-8
1,286
2.765625
3
[]
no_license
words = [] #newList=[] for line in open('i2.txt'): words.extend(line.split()) algo=words[0] start=words[1] goal=words[2] live_lines=int(words[3]) ll=live_lines*3 graph1={} #print words def fill_graph(): for v in range(4,ll+4,3): if(graph1.has_key(words[v])==False): graph1[words[v]]=[words[v+1]] elif(graph1.has_key(words[v])==True): graph1[words[v]] = graph1.get(words[v], ()) + [words[v+1]] for node in graph1.keys(): for node1 in graph1[node]: if not graph1.has_key(node1): graph1[node1]=[node1] fill_graph() print graph1 def dfs_path(graph, start, goal): paths = [] stack = [(start, [start])] while stack: (vertex, path) = stack.pop(0) vertices = graph1[vertex] for x in path: if x in vertices: vertices.remove(x) for next_vertex in vertices: #print list(vertices) new_path = path + [next_vertex] if next_vertex == goal: paths.append(new_path) else: stack.insert(0, (next_vertex, new_path)) return paths[-1] print dfs_path(graph1, start, goal) path = dfs_path(graph1, start, goal) output = open("ou1.txt","w") for i in range(0,len(path)): output.write(path[i]+" "+str(i)+"\n")
true
fb02f39486aafa860bf8df6c2976cc8db45d0c2c
Python
Serge45/MSVCAutoBuilder
/msbuilder.py
UTF-8
2,436
2.515625
3
[]
no_license
# -*- coding: utf-8 -*- import os, subprocess class Msbuilder: def __init__(self, \ sln_path = r".\\", \ prj_name = "", \ build_config = r"Release", \ devenv_path = ""): self.possible_msbuild_path = [] self.msbuild_path = None self.sln_path = sln_path self.prj_name = prj_name self.build_config = build_config self.build_command = r'/Build' if devenv_path != None: if len(devenv_path): self.possible_msbuild_path.append(devenv_path) self.possible_msbuild_path.append(\ r"C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\devenv.exe") for path in self.possible_msbuild_path: if os.path.exists(path): self.msbuild_path = path break; if self.msbuild_path == None: raise Exception("devenv.exe not found.") def build(self, rebuild = False): if not os.path.isfile(self.msbuild_path): raise Exception("devenv.exe not found.") if rebuild: self.build_command = r'/Rebuild' arg1 = self.build_command arg2 = self.build_config arg3 = "" arg4 = "" arg5 = "" arg6 = "" if self.prj_name != None: if len(self.prj_name): arg3 = r'/project' arg4 = self.prj_name arg5 = r'/projectconfig' arg6 = self.build_config #Modify this line for git or delete it if you do not need update. p = subprocess.call([r'svn', r'update', os.path.dirname(os.path.realpath(self.sln_path))]) if not p: print 'Version updated.' print 'Start building...' print 'Build config: %s' %(self.build_config) p = subprocess.call([self.msbuild_path, self.sln_path, arg1, arg2, arg3, \ arg4, arg5, arg6]) else: print 'svn updating failed.' return False if not p: print 'Build sucessfully.' return True else: print "Build failed" return False #Example if __name__ == '__main__': msbuilder = Msbuilder(r'D:\projects\mp7600\mp7600.sln', r"MP7600Calibration", r'Release') msbuilder.build(rebuild = False)
true
77be83e2bc743cca9ecb8ecb7ba7e3a861f69d0b
Python
Flavio58it/Supervised-Product-Similarity
/test_model.py
UTF-8
1,299
2.828125
3
[]
no_license
import numpy as np from src.model import siamese_network from src.common import Common # ## Manual Testing ############################################################### # Converts titles into embeddings arrays and allow the model to make a prediction # ################################################################################### # Get the model architecture model = siamese_network((Common.MAX_LEN, Common.EMBEDDING_SHAPE[0],)) model.summary() # Load the model using the weights model.load_weights('models/Softmax-LSTM-50-epochs.h5') title_one = 'True Wireless Earbuds VANKYO X200 Bluetooth 5 0 Earbuds in Ear TWS Stereo Headphones Smart LED Display Charging Case IPX8 Waterproof 120H Playtime Built Mic Deep Bass Sports Work' title_two = 'TOZO T10 Bluetooth 5 0 Wireless Earbuds Wireless Charging Case IPX8 Waterproof TWS Stereo Headphones Ear Built Mic Headset Premium Sound Deep Bass Sport Black' title_one_arr = np.zeros((1, 42, 300)) title_two_arr = np.zeros((1, 42, 300)) title_one.lower() title_two.lower() for idx, word in enumerate(title_one.split(' ')): title_one_arr[0, idx] = Common.fasttext_model[word] for idx, word in enumerate(title_two.split(' ')): title_two_arr[0, idx] = Common.fasttext_model[word] print(model.predict([title_one_arr, title_two_arr]))
true
81f4d65a3fefd7bdf5236b0eafea4a1a467dd563
Python
razmikarm/structures_in_python
/stack.py
UTF-8
1,116
3.609375
4
[]
no_license
from __future__ import annotations class Node: def __init__(self, value): self.__next = None self.__value = value @property def value(self): return self.__value @value.setter def value(self, value): self.__value = value @property def next(self): return self.__next @next.setter def next(self, node : Node): self.__next = node def __str__(self): return str(self.value) class Stack: def __init__(self): self.__peek = None @property def peek(self): return self.__peek @peek.setter def peek(self, peek : Node): self.__peek = peek def pop(self): self.peek = self.peek.next def push(self, data): new = Node(data) new.next, self.peek = self.peek, new def to_list(self): as_list = [] current = self.peek while current: as_list.append(current.value) current = current.next return as_list def __str__(self): return ' <- '.join([str(val) for val in self.to_list()])
true
e085c8bffb7023ac6a6356cbc059dc3ec3630050
Python
nizanshami/software_projet
/hw1/kmeans.py
UTF-8
4,213
3.578125
4
[]
no_license
""" Kmeans implementation in Python Software Project ex. 1 Amit Elyasi 316291434 Nizan Shemi 206962912 """ import sys def Kmeans(k, max_iter=200): data_points = read_data() if not good_input(data_points, k): return centroids = data_points[:k] for i in range(max_iter): clusters = assign(data_points, centroids) new_centroids = re_estimate(clusters) if sorted(new_centroids) == sorted(centroids): break centroids = new_centroids return centroids def assign(data_points, centroids): clusters = [[centroid] for centroid in centroids] for point in data_points: min_dst = distance(point, centroids[0]) closest_centroid_num = 0 for i,centroid in enumerate(centroids): dst = distance(point, centroid) if dst < min_dst: min_dst = dst closest_centroid_num = i clusters[closest_centroid_num].append(point) return clusters def re_estimate(clusters): new_centroids = [] for cluster in clusters: cluster = cluster[0:] new_centroids.append(average(cluster)) return new_centroids def read_data(): vectors = [] while(True): try: for line in input().split("\n"): vectors.append(toFloat(line.split(","))) except EOFError: break return vectors def toFloat(arr): for i,str in enumerate(arr): arr[i] = float(str) return arr def good_input(vectors, k): dim = len(vectors[0]) for vector in vectors: if len(vector) != dim: print(f"INPUT ERROR:\nthe vector {vector} is {len(vector)} dimentional, different from the first vector dimention: {dim}") return False if len(vectors) < k: print(f"INPUT ERROR:\nthere are less then k={k} data points") return False return True def average(cluster): dim = len(cluster[0]) avg = [0 for i in range(dim)] cluster_size = len(cluster) for point in cluster: avg = vectors_sum(point, avg) avg = scalar_div(avg, cluster_size) return avg def distance(vec1, vec2): # if vec is scalar: if type(vec2) in (int, float): return abs(vec1-vec2) if len(vec1) != len(vec2): print("The vectors are not in the same length") return -1 sum = 0 for i in range(len(vec1)): sum += (vec1[i]-vec2[i])**2 return sum def vectors_sum(vec1,vec2): # if vec is scalar: if type(vec1) in (int, float): return vec1+vec2 if len(vec1) != len(vec2): print("The vectors are not in the same length") return -1 sum_vec = [0 for i in range(len(vec1))] for i in range(len(vec1)): sum_vec[i] = vec1[i] + vec2[i] return sum_vec def scalar_div(vec, x): if x==0 : print("you can't divide by zero") return -1 # if vec is scalar: if type(vec) in (int, float) : return vec/x for i in range(len(vec)): vec[i] = vec[i]/x return vec def main(): try: k = int(sys.argv[1]) if (k <= 0): print("INPUT ERROR:\nk can't be <= 0") return 1 except ValueError: print("INPUT ERROR:\nk can't be a letter") return 1 # algorithm if len(sys.argv) >= 3: try: max_iter = int(sys.argv[2]) except ValueError: print("INPUT ERROR:\nk can't be a letter") return 1 if max_iter <= 0: print("INPUT ERROR:\nmax iteration can't be <= 0") return 1 centroids = Kmeans(k, max_iter=max_iter) else: centroids = Kmeans(k) # print in the right format for j,centroid in enumerate(centroids): if j != 0: print("\n", end="") for i,coordinate in enumerate(centroid): if i!=0 : print(",", end="") print("%.4f" % coordinate, end="") if __name__ == "__main__": main()
true
5b8db511d50e8f2b37bc2ede8a107f534394e9eb
Python
zhjohn925/test_python
/TeachKidsPython/p00Spiral1.py
UTF-8
539
4.09375
4
[]
no_license
import turtle # https://docs.python.org/3.3/library/turtle.html?highlight=turtle t1 = turtle.Turtle() # or use alias turtle.Pen() t2 = turtle.Turtle() t1.pencolor('blue') t1.penup() t1.setpos(100, 100) t1.pendown() t2.pencolor('pink') for x in range(30): t1.forward(x) # move forward x pixels #t1.left(90) # turn left 90 degrees #what happens if we try t1.left(91) # change forward() to circle() t2.circle(x) # radius of x pixels t2.left(90) while True: t1.hideturtle() t2.hideturtle()
true
499c334aaaf704c08661536b80f3bb9bfe23147e
Python
davidbrough1/TSP_Algorithms
/plot_points.py
UTF-8
1,814
2.640625
3
[ "MIT" ]
permissive
# This file contains code used to generate plots from the trace and # solution plots from __future__ import division import numpy as np import matplotlib.pyplot as plt import csv from os import listdir from os.path import isfile, join import sys mypath = "/home/davinciwin/Algos/Amish_data" output_path = "/home/davinciwin/Algos" onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] error = [] time = dict() quality = sys.argv[1] name = sys.argv[2] optimum = int(sys.argv[3]) for i in range(len(onlyfiles)): input_file_reader = csv.reader( open(mypath + "/" + onlyfiles[i]), delimiter=',') counter = 0 row_error = [] row_time = [] for row in input_file_reader: temp_error = (int(row[1]) - optimum) / optimum row_error.append((int(row[1]) - optimum) / optimum) time[temp_error] = float(row[0]) # print row[1] counter += 1 error.append(row_error) # time.append(row_time) # print error # print row_error storage_time = [] print len(error), len(row_error) for row in error: print row for j in range(len(row)): if(row[j] < float(quality)): print row[j] storage_time.append(time[row[j]]) break storage_time.sort() # print storage_time output_file = open(output_path + "/" + "results" + "_" + name + quality + str(optimum) + ".txt", 'w') test = int(storage_time[0]) test_array = [] count_array = [] while(test < int(max(storage_time) + 2)): count = 0 for m in range(len(storage_time)): if(storage_time[m] < test): count += 1 output_file.write(str(test) + "," + str(count / 10) + "\n") test_array.append(test) count_array.append(count / 10) test += 1 plt.plot(test_array, count_array) plt.show()
true
520c09ef12ec0f5b6b81d720df46e0aebeab07b5
Python
sek788432/Electricity-Forecasting-DSAI-HW-2021
/code/prophet.py
UTF-8
846
2.859375
3
[]
no_license
from fbprophet import Prophet from matplotlib import pyplot as plt from neuralprophet import NeuralProphet def prophet(data): m = Prophet(interval_width=0.95, daily_seasonality=True) m.fit(data) future = m.make_future_dataframe(periods=7, freq='D') forecast = m.predict(future) forecast.tail(7) plot_prophet(forecast, m) return forecast.iloc[-7:, -1].tolist() def plot_prophet(forecast, m): m.plot(forecast) m.plot_components(forecast) def neural_prophet(data): m = NeuralProphet() m.fit(data, freq='D', epochs=1000) future = m.make_future_dataframe(data, periods=7) forecast = m.predict(future) plot_neural_prophet(forecast, m) return forecast.iloc[:, 2].tolist() def plot_neural_prophet(forecast, m): m.plot(forecast) m.plot_components(forecast)
true
441a52daeda41951a059a786e4183bd3b99f0d30
Python
szazyczny/MIS3640
/Session04/quadratic.py
UTF-8
888
3.921875
4
[]
no_license
#Define a function quadratic(a, b, c) to solve a quadratic equation: ax^2+bx+c=0 #Discriminant: b^2−4ac def quadratic(a, b, c): ''' return the two roots of a quadratic equation. ''' d = (b ** 2 - 4 * a * c) ** 0.5 #use discriminant, 0.5 is exponent to get square root x = (-b + d) / (2 * a) #solving for x return x print(quadratic(1, 6, 9)) print(quadratic(3, 4, 5)) # def quadratic(a, b, c): # if : # d = (b ** 2 - 4 * a * c) ** 0.5 #use discriminant, 0.5 is exponent to get square root # x = (-b + d) / (2 * a) #solving for x # return x # else: # print('No Real Number Solution') # return None #two ways to get math package from math import sqrt #only asking for sqrt, cant use other tools from math module sqrt(4) import math #imports all math tools math.sqrt(4) math.floor(5.1) math.pi
true
18c0c2ccc40270968df3517afaa6157b26919846
Python
gharib85/toqito
/toqito/state_opt/unambiguous_state_exclusion.py
UTF-8
3,444
3.671875
4
[ "MIT" ]
permissive
"""Unambiguous state exclusion.""" from typing import List import cvxpy import numpy as np from .state_helper import __is_states_valid, __is_probs_valid def unambiguous_state_exclusion( states: List[np.ndarray], probs: List[float] = None ) -> float: r""" Compute probability of unambiguous state exclusion [BJOPUS14]_. This function implements the following semidefinite program that provides the optimal probability with which Bob can conduct quantum state exclusion. .. math:: \begin{align*} \text{maximize:} \quad & \sum_{i=0}^n \sum_{j=0}^n \langle M_i, \rho_j \rangle \\ \text{subject to:} \quad & \sum_{i=0}^n M_i \leq \mathbb{I},\\ & \text{Tr}(\rho_i M_i) = 0, \quad \quad \forall 1 \leq i \leq n, \\ & M_0, \ldots, M_n \geq 0 \end{align*} Examples ========== Consider the following two Bell states .. math:: u_0 = \frac{1}{\sqrt{2}} \left( |00 \rangle + |11 \rangle \right) \\ u_1 = \frac{1}{\sqrt{2}} \left( |00 \rangle - |11 \rangle \right). For the corresponding density matrices :math:`\rho_0 = u_0 u_0^*` and :math:`\rho_1 = u_1 u_1^*`, we may construct a set .. math:: \rho = \{\rho_0, \rho_1 \} such that .. math:: p = \{1/2, 1/2\}. It is not possible to unambiguously exclude either of the two states. We can see that the result of the function in :code:`toqito` yields a value of :math:`0` as the probability for this to occur. >>> from toqito.state_opt import unambiguous_state_exclusion >>> from toqito.states import bell >>> import numpy as np >>> rho1 = bell(0) * bell(0).conj().T >>> rho2 = bell(1) * bell(1).conj().T >>> >>> states = [rho1, rho2] >>> probs = [1/2, 1/2] >>> >>> unambiguous_state_exclusion(states, probs) -7.250173600116328e-18 References ========== .. [BJOPUS14] "Conclusive exclusion of quantum states" Somshubhro Bandyopadhyay, Rahul Jain, Jonathan Oppenheim, Christopher Perry Physical Review A 89.2 (2014): 022336. arXiv:1306.4683 :return: The optimal probability with which Bob can guess the state he was not given from `states` with certainty. """ obj_func = [] measurements = [] constraints = [] __is_states_valid(states) if probs is None: probs = [1 / len(states)] * len(states) __is_probs_valid(probs) dim_x, dim_y = states[0].shape # The variable `states` is provided as a list of vectors. Transform them # into density matrices. if dim_y == 1: for i, state_ket in enumerate(states): states[i] = state_ket * state_ket.conj().T for i, _ in enumerate(states): measurements.append(cvxpy.Variable((dim_x, dim_x), PSD=True)) obj_func.append(probs[i] * cvxpy.trace(states[i].conj().T @ measurements[i])) constraints.append(cvxpy.trace(states[i] @ measurements[i]) == 0) constraints.append(sum(measurements) <= np.identity(dim_x)) if np.iscomplexobj(states[0]): objective = cvxpy.Maximize(cvxpy.real(sum(obj_func))) else: objective = cvxpy.Maximize(sum(obj_func)) problem = cvxpy.Problem(objective, constraints) sol_default = problem.solve() return 1 / len(states) * sol_default
true
fc5b4e10560be66e6173735da674dbb6cacc5615
Python
MaxConstruct/ClimateSample
/analysis/netcdf_util.py
UTF-8
3,195
2.71875
3
[]
no_license
# Import libraries and set configuration # os used for path and directory management import os # xarray, is the most important library, used for manipulate netCDF Dataset operation from pathlib import Path import xarray as xr import numpy as np # matplotlib for plotting Dataset. cartopy for various map projection from distributed.deploy.old_ssh import bcolors from matplotlib.axes import Axes from cartopy.mpl.geoaxes import GeoAxes import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature # matplotlib setting GeoAxes._pcolormesh_patched = Axes.pcolormesh # %% # Get country border for matplotlib country_borders = cfeature.NaturalEarthFeature( category='cultural', name='admin_0_boundary_lines_land', scale='50m', facecolor='none') # %% def select_range(data, _min, _max): """ create boolean array for selecting data within specific range. min <= data <= max :param data: DataArray to be selected. :param _min: min value :param _max: max value :return: boolean DataArray """ return (data >= _min) & (data <= _max) def crop_dataset_from_bound(data, lon_bound, lat_bound, x_name='lon', y_name='lat'): """ Crop dataset in to specific lat & lon boundary :param data: xarray.Dataset to be cropped :param lon_bound: list that contain [min_lon, max_lon] :param lat_bound: list that contain [min_lat, max_lat] :return: cropped dataset as xarray.Dataset """ mask_lon = select_range(data[x_name], lon_bound[0], lon_bound[1]) mask_lat = select_range(data[y_name], lat_bound[0], lat_bound[1]) return data.isel(lat=mask_lat, lon=mask_lon, drop=False) def plot(data: xr.DataArray, time=None, savefig=None, show=True, set_global=False, country_border=True, **kwargs): """ Quick plotting DataArray using PlateCarree as a projection Example: plot(dataset['tasmax']) :param data: DataArray to be plotted :param time: Specific time index to be plot using xarray.DataArray.isec method. Default is 0. :param savefig: path of figure to being save. Default is None (not save figure). :param show: Is showing graphic plot. Default is True. :param set_global: Set plotting to show global map. :param country_border: Is show country border on the plot. Default is True. :param kwargs: keyword arg pass to xarray.DataArray.plot :return: None """ ax = plt.axes(projection=ccrs.PlateCarree()) if time is None: if 'time' in data.coords and data.time.shape != (): data.isel(time=0).plot(ax=ax, **kwargs) else: data.plot(ax=ax, **kwargs) else: data.isel(time=time).plot(ax=ax, **kwargs) if country_border: ax.add_feature(country_borders, edgecolor='black') if set_global: ax.set_global() ax.coastlines() if savefig is not None: plt.savefig(savefig) if show: plt.show() plt.clf() plt.close() def select_year(ds, from_y, to_y): return ds.sel(time=ds.time.dt.year.isin(np.arange(from_y, to_y + 1))) def save_file(path: Path): path.parent.mkdir(parents=True, exist_ok=True) return path
true
7227c471e01b92533fd45d035fd81bd5d6e98def
Python
Leir-Cruz/ED
/questionario_grafo/q4.py
UTF-8
867
3.375
3
[]
no_license
class Vertex: def __init__(self, key): self.key = key self.neighboors = {} def addNeighboor(self, vertex): self.neighboors[vertex.key] = Vertex(vertex) class Graph: def __init__(self): self.vertList = {} def addVertex(self, key): newVextex = Vertex(key) self.vertList[key] = newVextex def existence(self, key): return True if key in self.vertList else False def getVertex(self,n): return self.vertList[n] if n in self.vertList else None myGraph = Graph() for i in range(int(input())): myInput = input().split() myGraph.addVertex(myInput[0]) for item in myInput[2:]: myGraph.addVertex(item) myGraph.getVertex(myInput[0]).addNeighboor(myGraph.getVertex(item)) myGraph.getVertex(item).addNeighboor(myGraph.getVertex(myInput[0]))
true
95a9e6a79e7db1e075d77eb7d51ee305d7809b46
Python
WANGLU2/WANGLU_CP1404practicals
/prac_03/convert_temps.py
UTF-8
369
3.875
4
[]
no_license
def main(): out_file = open("temps_output.txt", "w") in_file = open("temps_input.txt", "r") for line in in_file: Fahrenheit = float(line) print(convert_fahrenheit_to_celsius(Fahrenheit), file=out_file) in_file.close() def convert_fahrenheit_to_celsius(Fahrenheit): celsius = 5 / 9 * (Fahrenheit - 32) return celsius main()
true
543bcc4c448c10a3f0e0faca19b41bbec3dd24b6
Python
abhi8893/tensorflow-developer-certificate-deeplearning-ai
/04-sequences-time-series-and-prediction/course-notebooks/utils.py
UTF-8
778
3.4375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt def plot_series(time, series, format="-", start=0, end=None, label=None): plt.plot(time[start:end], series[start:end], format, label=label) plt.xlabel("Time") plt.ylabel("Value") plt.grid(True) def trend(time, slope=0): return slope * time def seasonal_pattern(season_time): return np.where(season_time < 0.4, np.cos(season_time * 2 * np.pi), 1 / np.exp(3 * season_time)) def seasonality(time, period, amplitude=1, phase=0): season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) def noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level
true
e3542802a904bc9fa329e32e486080492921d731
Python
WeichselRiver/database
/sqlalchemy_test.py
UTF-8
560
3.125
3
[]
no_license
from sqlalchemy import create_engine db_string = "postgresql://postgres:<pwd>@localhost:5432/postgres" db = create_engine(db_string) # Create db.execute("CREATE TABLE IF NOT EXISTS films (title text, director text, year text)") db.execute("INSERT INTO films (title, director, year) VALUES ('Doctor Strange', 'Scott Derrickson', '2016')") # Read result_set = db.execute("SELECT * FROM films") for r in result_set: print(r) # Update db.execute("UPDATE films SET title='Some2016Film' WHERE year='2016'") # Delete db.execute("DELETE FROM films WHERE year='2016'")
true
af50b4006e89d70cff91a58eeac7669638e152c5
Python
sanxml/Conveyor-belt-grabbing-device
/code/main.py
UTF-8
2,073
2.515625
3
[]
no_license
import cv2 as cv import numpy as np import serial import time from binascii import unhexlify from crcmod import mkCrcFun import picture_process import control camera=cv.VideoCapture(2) ROI_rect = (150,0,640-150,480) lower_green = np.array([35, 45, 0]) upper_green = np.array([100, 255, 255]) # control.coordinate_write(0, 100, -320) # control.coordinate_write(0, 100, -380) # control.coordinate_write(0, 100, -320) # control.coordinate_write(0, -100, -320) # control.coordinate_write(0, -100, -380) # control.coordinate_write(0, 0, -320) # control.coordinate_read() P1 = [0, 100, -320, 90, 6, 1] P2 = [0, 100, -380, 90, 6, 1] P3 = [0, 100, -320, 90, 6, 1] P4 = [0, -100, -320, 0, 6, 1] P5 = [0, -100, -380, 0, 6, 1] P6 = [0, -100, -320, 0, 6, 0] P7 = [0, 0, -320, 0, 6, 0] control.coordinate_write_seven(P1,P2,P3,P4,P5,P6,P7) def main(): while(True): ret ,img = camera.read() # img = cv.resize(img, (480,360)) img_ROI = img[ROI_rect[1]:ROI_rect[1]+ROI_rect[3],ROI_rect[0]:ROI_rect[2]] cv.line(img,(145,0),(145,480),(0,255,255),thickness=2) #画线 cv.line(img,(640-145,0),(640-145,480),(0,255,255),thickness=2) img_hsv = cv.cvtColor(img_ROI, cv.COLOR_BGR2HSV) # 将图片转为灰度图 img_mask = cv.inRange(img_hsv, lower_green, upper_green) # 限定范围,转为二值化图片,这里只保留绿色分量 img_bin = cvbitwise_not(img_mask) #将图片反转,这里只保留除绿色的其他分量 img_bin = cv.GaussianBlur(img_bin,(5,5),0) #高斯模糊 kernel = cv.getStructuringElement(cv.MORPH_RECT,(7, 7)) #设置形态学运算所需要的卷积核 img_bin = cv.erode(img_bin,kernel) #腐蚀图像 img_bin = cv.dilate(img_bin,kernel) #膨胀图像 contours_list = picture_process.find_contours(img_ROI,img_bin) cv.imshow("camera", img) cv.imshow("img_bin", img_bin) cv.imshow("img_ROI", img_ROI) if(cv.waitKey(1)==27): #按下Esc键关闭窗口 break camera.release()
true
e8afe0c71f21cc2be8d1b7b146c8b99e33c9c0b8
Python
Michael-Python/w3_weekend_game_v3
/w3_homework_v3/app/models/player.py
UTF-8
117
2.84375
3
[]
no_license
class Player: def __init__(self, player, choice): self.player = player self.choice = choice
true
c3886224ef132f059eb058f7398e32663cd7af81
Python
mohammedlutf/cg
/1.py
UTF-8
784
3.671875
4
[]
no_license
import csv print("the most specific hypothesis is :[000000]") a=[] print("the given training dataset \n") with open('ws.csv','r') as csvfile: reader=csv.reader(csvfile) for row in reader: a.append(row) print(row) num_attributes=len(a[0])-1 print("the initial value of hypothesis:\n") hypothesis = ['0']*num_attributes print (hypothesis) for j in range (0,num_attributes): hypothesis[j]=a[0][j] print (hypothesis) print("For finding maximum specific Hypothesis") for i in range(0,len(a)): if a[i][num_attributes]=='yes': for j in range(0,num_attributes): if a[i][j]!= hypothesis[j]: hypothesis[j]='?' print("For Learnig Example no",i,"the hypothesis is ",hypothesis) print("The maximally specific hyptothesis for a given training Egs") print(hypothesis)
true
291a64696ae8595db81eac3fb012874f9b913f08
Python
tebeco/MyDemos
/Python/Demos/NumPyDemos/4/4-7.py
UTF-8
274
2.796875
3
[]
no_license
#!/usr/bin/python #-*-coding:utf-8-*- import numpy as np student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) print student print '###################################' a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student) print a
true
b92dc0b13cc7b327f3bbefc891e6be7aec456956
Python
Bazzzzzinga/Credit-Risk-Assessment
/Implementations/2.KNN/knn.py
UTF-8
1,274
2.828125
3
[]
no_license
import os,csv,math import numpy as np from sklearn.metrics import classification_report #Reading Data csv_file_object = csv.reader(open('csvdataset.csv', 'rb')) data=[] for row in csv_file_object: data.append(row) data=np.array(data) data=data[2::] x=data[:,1:24] y=data[:,24:25] x=x[:,:].astype(np.float64) x=(x-np.mean(x,axis=0))/np.std(x,axis=0) y=y[:].astype(np.float64) trainx=x[0:21000] trainy=y[0:21000] remainx=x[21000:len(x)] remainy=y[21000:len(x)] distance0=[] distance1=[] for j in range(len(remainx)): d0=[] d1=[] print j for i in range(len(trainx)): temp=(np.square(trainx[i]-remainx[j])).sum() if(trainy[i]==0): d0.append(temp) else: d1.append(temp) d0.sort() d1.sort() distance0.append(d0) distance1.append(d1) distance0=np.array(distance0) distance1=np.array(distance1) for i in range(1,51): distance0[:,i:i+1]=distance0[:,i:i+1]+distance0[:,i-1:i] distance1[:,i:i+1]=distance1[:,i:i+1]+distance1[:,i-1:i] for i in range(0,50): sum=0 a=np.ones((len(remainx),1))*2 for j in range(len(remainx)): if(distance0[j][i]>distance1[j][i]): a[j]=1 if(remainy[j]==1): sum=sum+1 else: a[j]=0 if(remainy[j]==0): sum=sum+1 print "k = ",i+1," Accuracy = ",(sum*1.0)/len(remainy) print classification_report(remainy,a)
true
50a93efcf6e1ef6c5b453ed2b35424f0e3dc5d70
Python
Ciprianivan2015/2020_PYHTON_SORTING
/PY_numpy_sorting_20200403.py
UTF-8
1,955
3.078125
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Fri Apr 3 19:14:47 2020 @author: Cipriandan 1. define list of sample size 2. for each element in the list_1: create random.normal() 3. for each element in the list_1 4. for each element in the list_of_sorting_algorithms 5. t0 = time.time() 6. sort( sample_Iter_n, method = sort_iter ) 7. t1 = time.time() 8. tt = t1 - t0 9. add ( line to DataFrame ) ......................... SORTING ................................ """ import numpy as np from matplotlib import pyplot as plt import pandas as pd import seaborn as sns import time start_pw = 4 stop_pw = 6 pw = np.arange( start_pw, stop_pw + 1,1 ) arr_ss = np.power( [ 10 ] * ( stop_pw - start_pw + 1) , pw ) arr_ss = np.hstack( (arr_ss, np.multiply( [ 10**(stop_pw-1) ], range(2,91,1)) ) ) arr_ss = np.sort( arr_ss ) arr_sk = np.array(['quicksort','mergesort','heapsort']) col_names_1 = [ 'sample_size' ,'value'] df_nums = pd.DataFrame( columns = col_names_1 ) col_names_2 = ['sort_type', 'sample_size', 'time_to_sort'] df_sort = pd.DataFrame( columns = col_names_2 ) big_sample_size = arr_ss[-1:] the_values = np.random.normal( 0,1, big_sample_size ) * 1000 for iter_i in arr_ss: for iter_k in arr_sk: t0 = time.time() np_temp = np.sort( the_values[- iter_i:], kind = iter_k ) t1 = time.time() tt = t1 - t0 df_temp = pd.DataFrame({ 'sort_type':iter_k, 'sample_size':iter_i, 'time_to_sort':tt },index = [0]) frames = [ df_sort, df_temp ] df_sort = pd.concat( frames ) del np_temp sns.set_style("darkgrid") g = sns.FacetGrid( df_sort, hue = 'sort_type') g = g.map(plt.scatter , 'sample_size','time_to_sort', marker='.') g = g.map(plt.plot , 'sample_size','time_to_sort', marker='.', linestyle = ':').add_legend()
true
e3d2fb72b04aa45fb993fc76ce6c660febf6180e
Python
john-Lyrics/John
/fibonachi.py
UTF-8
183
3.171875
3
[]
no_license
def fib_rec(n): if n<= 1 : return n else : return fib_rec(n-1) + fib_rec(n-2) print(fib_rec(10)) print(list(map(fib_rec, range(1,11))))
true
511157a8663341e503408a2a3b88e8809413d8cf
Python
zurk/lookout-sdk-ml
/lookout/core/tests/test_metrics.py
UTF-8
6,267
2.828125
3
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
import threading import unittest import requests from lookout.core.metrics import ConfidentCounter, PreciseFloat, record_event class MetricReader: def __init__(self, port, addr="localhost"): self.__is_running = False self.__port = port self.__addr = addr self.__metrics = {} self.__data = {} @property def port(self) -> int: return self.__port @property def addr(self) -> str: return self.__addr @property def metrics(self) -> dict: return self.__metrics @property def data(self) -> dict: return self.__data def query_data(self, addr: str = None, port: int = None) -> str: addr = self.addr if addr is None else addr port = self.port if port is None else port api_endpoint = "http://{}:{}".format(addr, port) r = requests.get(url=api_endpoint) if r.status_code == 200: data = r.content.decode() return data raise ValueError( "\nGot status code {} when querying the server." " Reponse content: {}\n".format(r.status_code, r.content.decode()), ) @staticmethod def parse_response(data: str): lines = data.split("\n") def is_metric_line(line: str): return not (line.startswith("#") or line.startswith("python") or line == "") def parse_line(line): try: name, val = line.split(" ") except ValueError: return line, None try: val = float(val) except ValueError: pass return name, val raw_metrics = [l for l in lines if is_metric_line(l)] metric_values = [parse_line(l) for l in raw_metrics] metrics = {name: val for name, val in metric_values} return metrics def parse_data(self, addr: str = None, port: int = None): decoded_response = self.query_data(addr=addr, port=port) self.__data = self.parse_response(decoded_response) self.__metrics = { name: val for name, val in self.__data.items() if not name.startswith("process_") } def query_metrics(self, name: str): return {k: v for k, v in self.metrics.items() if name in k} def dummy_server(): from lookout.core.metrics import _prometheus_server as server if server is None: try: record_event("start_server_hack", 8000) except OSError as e: raise e from lookout.core.metrics import _prometheus_server as server assert server is not None return server class TestConfidentCounter(unittest.TestCase): def test_kahan_algorithm(self): metric = ConfidentCounter("test_data_kahan", "running counters") # why this number? https://en.wikipedia.org/wiki/Double-precision_floating-point_format origin = brute_sum = 4503599627370496 # 4_503_599_627_370_496 metric += origin val = 0.001 for _ in range(1000): brute_sum += val metric += val metric_val = metric.collect()[0].samples[1].value self.assertEqual(metric_val, origin + 1.) self.assertNotEqual(brute_sum, origin + 1) def test_get(self): metric = ConfidentCounter("test_get_counter", "running counters") metric += 10 self.assertEqual(metric._count.get(), 1) self.assertEqual(metric._sum.get(), 10) self.assertEqual(metric._sum_of_squares.get(), 100) def test_set(self): metric = ConfidentCounter("test_set_counter", "running counters") metric._count.set(1) metric._sum.set(10) metric._sum_of_squares.set(100) self.assertEqual(metric._count.get(), 1) self.assertEqual(metric._sum.get(), 10) self.assertEqual(metric._sum_of_squares.get(), 100) def test_multithread(self): x = PreciseFloat() threads = [] def bump(): nonlocal x for _ in range(1000): x += 1 for _ in range(100): t = threading.Thread(target=bump) t.start() threads.append(t) for i in range(100): threads[i].join() self.assertEqual(x.get(), 100 * 1000) class TestPrometheusServer(unittest.TestCase): def setUp(self) -> None: self.reader = MetricReader(8000) self.server = dummy_server() def test_attributes(self): self.assertIsInstance(self.server.metrics, dict) self.assertIsInstance(self.server.host, str) self.assertIsInstance(self.server.port, int) def test_filter_metric_name(self): valid_name = "miau.gdb" filtered = self.server._adjust_metric_name(name=valid_name) self.assertEqual(filtered, "miau:gdb") with self.assertRaises(ValueError): invalid_name = "!AM!?wilto%." self.server._adjust_metric_name(name=invalid_name) # match = self.server._valid_name_regex.match(invalid_name) # self.assertEqual(filtered, match) def test_submit_rolling_stats(self): name = "test_rolling_stats" val = 4 self.server.submit_event(key=name, value=val) val = 6 self.server.submit_event(key=name, value=val) self.reader.parse_data() self.assertTrue("{}_sum".format(name) in list(self.reader.metrics.keys())) self.assertTrue("{}_count".format(name) in list(self.reader.metrics.keys())) self.assertTrue(self.reader.metrics["{}_count".format(name)] == 2) self.assertTrue(self.reader.metrics["{}_sum".format(name)] == 10) self.assertTrue(self.reader.metrics["{}_sum_of_squares".format(name)] == 52) class TestSubmitEvent(unittest.TestCase): def setUp(self) -> None: self.server = dummy_server() self.reader = MetricReader(8000) def test_send_new_scalar(self): name = "a_float" record_event(name, 3.1) self.reader.parse_data() self.assertTrue(self.reader.metrics["{}_sum".format(name)] == 3.1) record_event(name, 5.1) self.reader.parse_data() self.assertTrue(self.reader.metrics["{}_sum".format(name)] == 8.2)
true
90e9692d11ad2658f2681164d53440f21fcfcc09
Python
harry671003/coursera-algorithmic-toolbox
/week-2/euclidean-gcd.py
UTF-8
563
3.734375
4
[]
no_license
def gcd(n1, n2): # Swap numbers in case n1 < n2 if n1 < n2: temp = n1 n1 = n2 n2 = temp print("n1: %d | n2: %d" % (n1, n2)) if n2 == 0: return n1 return gcd(n2, n1 % n2) def main(): token = input('Enter 2 number: ') (n1, n2) = token.split() print('gcd(%s, %s) = %d' % ( n1, n2, gcd( int(n1), int(n2) ) )) def test(): gcd(10**100000 + 234, 5 ** 4 + 3) if __name__ == "__main__": test()
true
2ac640d2a8cd666eae373aebeb4a2a7e81133dba
Python
andreatrejod/TC101
/wsq10.py
UTF-8
1,035
4.21875
4
[]
no_license
import statistics # Este módulo permite calcular operaciones estadísticas como las que necesitamos en este programa. lista = [float(input("Please give me the first number: ")), float(input("Please give me the second number: ")), float(input("Please give me the third number: ")), float(input("Please give me the fourth number: ")), float(input("Please give me the fifth number: ")),float(input("Please give me the sixth number: ")), float(input("Please give me the seventh number: ")),float(input("Please give me the eighth number: ")), float(input("Please give me the nineth number: ")),float(input("Please give me the tenth number: "))] promedio = statistics.mean(lista) #esta función permite encontrar el promedio print("The average of your numbers is: {}".format(promedio)) suma = sum(lista) print("The sum de of the numbers given by you is:{} ".format(suma)) std_des = statistics.stdev(lista)#esta función permite encontrar la desviación standard print("The standard deviation of your numbers is: {}".format(std_des))
true
397292fc6b253c856b13dda39e3531a87fac3da4
Python
Stargrazer82301/CAAPR
/CAAPR/CAAPR_AstroMagic/PTS/pts/magic/analysis/stars.py
UTF-8
5,138
2.765625
3
[ "GPL-1.0-or-later", "AGPL-3.0-only", "AGPL-3.0-or-later", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-philippe-de-muyter", "MIT" ]
permissive
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.magic.analysis.stars Contains functions for fitting stars. # ----------------------------------------------------------------- # Ensure Python 3 functionality from __future__ import absolute_import, division, print_function # Import standard modules import numpy as np from scipy import ndimage # Import the relevant PTS classes and modules from ..tools import fitting, plotting, coordinates, cropping, regions # ----------------------------------------------------------------- # THIS FUNCTION IS NOT USED ANYMORE, BUT CONTAINS UPSAMPLING CODE POTENTIALLY USEFUL LATER def make_star_model(shape, data, annuli_mask, fit_mask, background_outer_sigmas, fit_sigmas, model_name, upsample_factor=1.0, interpolate_background=True, sigma_clip_background=True, plot=False): """ This function ... :param shape: :param data: :param annuli_mask: :param fit_mask: :param background_inner_sigmas: :param background_outer_sigmas: :param fit_sigmas: :param upsample_factor: :param interpolate_background: :param sigma_clip_background: :param plot: :return: """ # Get the shape's parameters x_center, y_center, x_radius, y_radius, _ = regions.ellipse_parameters(shape) # Set the radii for cutting out the background box radius = 0.5*(x_radius + y_radius) x_radius_outer = background_outer_sigmas*x_radius y_radius_outer = background_outer_sigmas*y_radius # Cut out the background background, x_min_back, x_max_back, y_min_back, y_max_back = cropping.crop(data, x_center, y_center, x_radius_outer, y_radius_outer) # Cut out the mask for the background background_mask = cropping.crop_check(annuli_mask, x_min_back, x_max_back, y_min_back, y_max_back) # Set the radii for cutting out the box for fitting x_radius_fitting = fit_sigmas*x_radius y_radius_fitting = fit_sigmas*y_radius # Cut out a box of selected frame around the star star, x_min, x_max, y_min, y_max = cropping.crop(data, x_center, y_center, x_radius_fitting, y_radius_fitting) # If the cropped region contains only one pixel row or column, a star model cannot be made if star.shape[0] == 1 or star.shape[1] == 1: return False, shape, None, None # Cut out the mask for fitting star_mask = fit_mask[y_min:y_max, x_min:x_max] # Estimate the background background_mask_beforeclipping = np.copy(background_mask) est_background, background_mask = estimate_background(background, background_mask, interpolate=interpolate_background, sigma_clip=sigma_clip_background) # Crop the interpolated background to the frame of the box star_background = cropping.crop_check(est_background, x_min-x_min_back, x_max-x_min_back, y_min-y_min_back, y_max-y_min_back) # Calculate the relative coordinates of the center x_center_rel, y_center_rel = coordinates.relative_coordinate(x_center, y_center, x_min, y_min) # Fit the star model_function = fitting.fit_2D_model(star, star_mask, star_background, model=model_name, x_center=x_center_rel, y_center=y_center_rel, radius=radius, x_shift=x_min, y_shift=y_min, upsample_factor=upsample_factor, pixel_deviation=0.5) # Evaluate the model evaluated_model = fitting.evaluate_model(model_function, x_min, x_max, y_min, y_max, x_delta=1.0/upsample_factor, y_delta=1.0/upsample_factor) # Check for succesful fit success = (np.isclose(model_function.x_stddev.value, x_radius, rtol=0.2) and np.isclose(model_function.y_stddev.value, y_radius, rtol=0.2)) if success: if upsample_factor > 1.0: evaluated_model = ndimage.interpolation.zoom(evaluated_model, zoom=1.0/upsample_factor) # Plot if plot: plotting.plot_star_model(background=np.ma.masked_array(background,mask=background_mask_beforeclipping), background_clipped=np.ma.masked_array(background,mask=background_mask), est_background=est_background, star=np.ma.masked_array(star,mask=star_mask), est_background_star= star_background, fitted_star=evaluated_model) # Adjust the parameters of the shape to the model of this star shape.coord_list[0] = model_function.x_mean.value shape.coord_list[1] = model_function.y_mean.value shape.coord_list[2] = model_function.x_stddev.value shape.coord_list[3] = model_function.y_stddev.value # Return ... return success, shape, evaluated_model, (x_min, x_max, y_min, y_max) # -----------------------------------------------------------------
true
00317e414b485fd1f926a3681824e30046f76bd3
Python
rootUJ99/py-programs
/left_right_sum_difference.py
UTF-8
681
3.859375
4
[]
no_license
''' array = [1,2,4,5,1] Find min difference of left and right sum of the array e.g. LS - RS 1 - 12 => 11 3 - 10 => 7 7 - 6 => 1 12 - 1 => 11 ''' def min_diff(sum, index, arr): try: print(sum) if len(arr) > 1: #if index > 0: divider = len(arr) // index left = min_diff(sum+arr[index], index+1,arr[:divider]) right =min_diff(sum+arr[divider], divider+1, arr[divider:]) print(left, right) print(arr[index], arr[divider]) return except IndexError: return sum if __name__ == '__main__': array = [1,2,4,5,1] result = min_diff(0, 1,array) print(result)
true
7482732b8e3c8e7d646fa81754f0458594d827cf
Python
MatteoLacki/logerman
/logerman/json_ops.py
UTF-8
362
2.984375
3
[]
no_license
import json from pathlib import Path class PathlibFriendlyEncoder(json.JSONEncoder): """This helps to store the paths.""" def default(self, z): if isinstance(z, Path): return str(z.expanduser().resolve()) else: return super().default(z) def dump2json(obj): return json.dumps(obj, cls=PathlibFriendlyEncoder)
true
8360c745043095b3aee6168b863ac046c6b1184d
Python
Sumitsahu896/My_LeetCode_Solutions
/fibonacci-number/fibonacci-number.py
UTF-8
238
3.4375
3
[]
no_license
class Solution: def __init__(self): self.dict = {0:0, 1:1} def fib(self, n: int) -> int: if n not in self.dict: self.dict[n] = self.fib(n - 1) + self.fib(n - 2) return self.dict[n]
true
7daa2b63b32f1509dcb3ab8c78c9633fe98bafdc
Python
yopy0817/course-python
/day08/03def_return.py
UTF-8
719
4.25
4
[]
no_license
# 함수의 반환 return #매개 변수로 전달 받은 2개의 값의 합을 반환하는 함수. def add(a, b) : return a + b result = add(10, 20) print("10과 20의 합:", result) #매개변수 까지의 합을 반환하는 함수. def calSum(a) : sum = 0 a = 1 while a <= 10 : sum += a a = a + 1 return sum result = calSum(10) print("1부터 10까지 합:", result) #리스트의 반환 def func(a) : "a까지 3의 배수만 리스트에 저장하고 반환" result = [] i = 1 while i <= a : if i % 3 == 0 : result.append(i) i = i + 1 return result result = func(20) print("20까지의 3의 배수:", result)
true
4a2ca9f868a836715206e4e9db32bd178aad31de
Python
mcf-rocha/pyDEA
/pyDEA/core/gui_modules/custom_canvas_gui.py
UTF-8
435
2.765625
3
[ "MIT", "LicenseRef-scancode-other-permissive" ]
permissive
''' This module contains StyledCanvas class. ''' from tkinter import Canvas from pyDEA.core.utils.dea_utils import bg_color class StyledCanvas(Canvas): ''' Implements Canvas object with a custom background colour. Args: parent (Tk object): parent of this widget. ''' def __init__(self, parent, *args, **kw): super().__init__(parent, *args, **kw) self.configure(background=bg_color)
true
ab60e1f5e4e2cffff6e5cad57e486b710ebf4bae
Python
yoshioH/readaloud-workout
/chunks/__init__.py
UTF-8
592
2.671875
3
[]
no_license
# coding: utf-8 from enum import Enum from abc import ABC from abc import abstractmethod from dataclasses import dataclass class ChunkType(Enum): READ_ALOUD = 0 QUESTION = 1 ANSWER = 2 @dataclass(frozen=True) class Chunk: type: ChunkType text: str class ChunkResource(ABC): @abstractmethod def generate(self) -> Chunk: return Chunk(ChunkType.READ_ALOUD, 'Yaruki Max Orix!!') def generate(chunk_generator:ChunkResource): while True: chunk = chunk_generator.generate() if chunk is None: break yield chunk
true
c6bfcc85d8e36d70b081308d416b0e9c873e1dd4
Python
VagishM6/JPG_to_PNG_Converter
/JPGtoPNGConverter.py
UTF-8
559
3.1875
3
[]
no_license
import sys import os from PIL import Image, ImageFilter # grab the first and second args from the user image_folder = sys.argv[1] output_folder = sys.argv[2] # check if (new) folder exist/ if not create it if not os.path.exists(output_folder): os.makedirs(output_folder) # loop through the directory, then convert (image.type) to png for filename in os.listdir(image_folder): img = Image.open(f'{image_folder}{filename}') clean_name = os.path.splitext(filename)[0] img.save(f'{output_folder}{clean_name}.png','png') print('all done!')
true
c483144e38c7a9f48f751c0316d3ae1cd248f009
Python
danierubr/Exercicios-resolvidos
/URI/1548.py
UTF-8
299
3.6875
4
[]
no_license
quant = int(input()) for v in range(quant): alunos = int(input()) fila = list(map(int, input().split())) filaordenada = sorted(fila, reverse=True) cont = 0 for ind in range(0, len(fila)): if fila[ind] == filaordenada[ind]: cont += 1 print(cont)
true
4cae91584955eb167a0db4f3f2f6e4a5534470e3
Python
lusiux/aoc2020
/11/main.py
UTF-8
5,453
3.5625
4
[ "MIT" ]
permissive
import sys sys.path.append('./') import Helper import copy input_for_testing = """L.LL.LL.LL LLLLLLL.LL L.L.L..L.. LLLL.LL.LL L.LL.LL.LL L.LLLLL.LL ..L.L..... LLLLLLLLLL L.LLLLLL.L L.LLLLL.LL """ class Seatmap(): def __init__(self, lines): self._read_input(lines) def _read_input(self, lines): self.height = len(lines) self.width = len(lines[0]) self.map = [['.' for i in range(self.height+2)] for j in range(self.width+2)] for index, line in enumerate(lines): self._parse_line(line, index) def _parse_line(self, line, index): for char_index, char in enumerate(line): self.map[char_index+1][index+1] = char def get_height(self): return self.height def get_width(self): return self.width def get_adjacent_seats(self, x, y): x += 1 y += 1 return [ self.map[x][y-1], # north self.map[x+1][y-1], # north east self.map[x+1][y], # east self.map[x+1][y+1], # south east self.map[x][y+1], # south self.map[x-1][y+1], # south west self.map[x-1][y], # west self.map[x-1][y-1], # north west ] def look_around_seat_at(self, x, y): x += 1 y += 1 return [ self.get_next_seat_in_direction(x, y, 0, -1), # north self.get_next_seat_in_direction(x, y, 1, -1), # north east self.get_next_seat_in_direction(x, y, 1, 0), # east self.get_next_seat_in_direction(x, y, 1, 1), # south east self.get_next_seat_in_direction(x, y, 0, 1), # south self.get_next_seat_in_direction(x, y, -1, 1), # south west self.get_next_seat_in_direction(x, y, -1, 0), # west self.get_next_seat_in_direction(x, y, -1, -1), # north west ] def get_next_seat_in_direction(self, start_x, start_y, dx, dy): next_x = start_x+dx next_y = start_y+dy # print(f"next in dir: ({start_x}, {start_y}): d({dx}, {dy}) = n({next_x}, {next_y})") if (next_x < 0) or (next_x >= self.width+2) or (next_y < 0) or (next_y >= self.height+2): return None if self.map[next_x][next_y] == '.': next_seat = self.get_next_seat_in_direction(next_x, next_y, dx, dy) if next_seat == None: return '.' return next_seat return self.map[next_x][next_y] def get_seats_occupied_around_seat(self, x, y): occupied = 0 seats = self.get_adjacent_seats(x, y) for seat in seats: if seat == '#': occupied += 1 return occupied def get_seats_occupied_around_seat_looking(self, x, y): occupied = 0 seats = self.look_around_seat_at(x, y) # print(f"({x},{y}: {seats}") for seat in seats: if seat == '#': occupied += 1 return occupied def get_seat_at(self, x, y): return self.map[x+1][y+1] def get_seats_free_around_seat(self, x, y): occupied = 0 seats = self.get_adjacent_seats(x, y) for seat in seats: if seat == 'L': occupied += 1 return occupied def occupy_seat_at(self, x, y): self.map[x+1][y+1] = "#" def free_seat_at(self, x, y): self.map[x+1][y+1] = "L" def is_seat_free(self, x, y): return self.map[x+1][y+1] == 'L' def is_seat_occupied(self, x, y): return self.map[x+1][y+1] == '#' def print(self): for x in range(1, self.width): print(''.join(self.map[x])) print() def number_of_seats_occupied(self): occupied = 0 for x in range(self.width+2): occupied += self.map[x].count('#') return occupied def apply_rules(seats): new_seats = copy.deepcopy(seats) for x in range(seats.width): for y in range(seats.height): if seats.is_seat_free(x, y) and seats.get_seats_occupied_around_seat(x,y) == 0: new_seats.occupy_seat_at(x, y) elif seats.is_seat_occupied(x, y) and seats.get_seats_occupied_around_seat(x,y) >= 4: new_seats.free_seat_at(x, y) return new_seats def apply_new_rules(seats): new_seats = copy.deepcopy(seats) for x in range(seats.width): for y in range(seats.height): occupied = seats.get_seats_occupied_around_seat_looking(x,y) if seats.is_seat_free(x, y) and occupied == 0: new_seats.occupy_seat_at(x, y) elif seats.is_seat_occupied(x, y) and occupied >= 5: new_seats.free_seat_at(x, y) return new_seats def answer_one(lines): seats = Seatmap(lines) while True: new_seats = apply_rules(seats) if new_seats.map == seats.map: break seats = new_seats # seats.print() return seats.number_of_seats_occupied() def answer_two(lines): seats = Seatmap(lines) while True: new_seats = apply_new_rules(seats) if new_seats.map == seats.map: break seats = new_seats # seats.print() return seats.number_of_seats_occupied() if __name__ == "__main__": lines = Helper.read_input_with_delimiter('11/input', "\n") print('Answer one: {}'.format(answer_one(lines))) print('Answer two: {}'.format(answer_two(lines)))
true
0b92001b2e32f67b798c7c7f0f1cf7de4f3ace44
Python
ZheHanLiang/UAGA_reconstruct
/UAGA/model.py
UTF-8
2,454
3.234375
3
[]
no_license
########################################################################## # @File: model.py # @Author: Zhehan Liang # @Date: 1/10/2020 # @Intro: GAN的模型函数,其中Discriminator是鉴别器,mapping是生成器 ########################################################################## import time import torch from torch import nn # from .utils import class Discriminator(nn.Module): """ 鉴别器函数 """ def __init__(self, params): super(Discriminator, self).__init__() # 传递params的参数 self.emb_dim = params.emb_dim self.dis_layers = params.dis_layers self.dis_hid_dim = params.dis_hid_dim self.dis_dropout = params.dis_dropout layers = [] # 初始化layers for i in range(self.dis_layers + 1): # 依次往layers里面添加需要的网络层 input_dim = self.emb_dim if i==0 else self.dis_hid_dim output_dim = 1 if i==self.dis_layers else self.dis_hid_dim layers.append(nn.Linear(input_dim, output_dim)) # 往layers里面添加线性层,即全连接层 if i < self.dis_layers: # 最后一个线性层后面不添加LeakyReLU layers.append(nn.LeakyReLU(0.2)) layers.append(nn.Dropout(self.dis_dropout)) layers.append(nn.Sigmoid()) # 最后一个线性层后不用LeakyReLU,用sigmoid self.layers = nn.Sequential(*layers) # 把得到的layers传入构造器 def forward(self, x): assert x.dim()==2, "Dimension of x is error!" # 校验输入x的维度是否符合要求 assert x.size(1)==self.emb_dim, "Length of x is error!" # 校验输入x第二维的size是否符合要求 return self.layers(x).view(-1) # .view()的作用和numpy中的.resize()类似 def build_model(params): """ 构建GAN模型 """ time_head = time.time() # 记录开始时间 # 初始化mapping,即生成器 mapping = nn.Linear(params.emb_dim, params.emb_dim, bias=False) # mapping设置为线性层 mapping.weight.data.copy_(torch.diag(torch.ones(params.emb_dim))) # 将mapping初始化为对角矩阵 # 初始化discriminator discriminator = Discriminator(params) # 初始化cuda if params.cuda: mapping.cuda() discriminator.cuda() time_tail = time.time() # 记录完成时间 print("Model has been built!\tTime: %.3f"%(time_tail-time_head)) return mapping, discriminator
true
0a6cd3ac5c88cde947ddd6b7a4715d4d12b82d36
Python
MichalRybecky/Informatika
/ulohy/20.1.py
UTF-8
965
2.953125
3
[]
no_license
import tkinter c = tkinter.Canvas(height=200, width=1000, bg='black') c.pack() with open('stanice.txt', 'r') as file: data = [x.strip() for x in file.readlines()] def main(): global current, stanice c.delete('all') for stanica in stanice: c.create_text(stanica[1], 100, anchor='w', text=stanica[0], fill='red', font='arial 100 bold') stanica[1] -= 5 if stanica[1] == -len(stanica[0]) * 50: stanice.append([data[current], 1000]) if stanica[1] >= -len(stanica[0]) * 50: break elif stanica[1] == -2000: stanice.remove(stanica) if len(stanice) >= 3: stanice = [stanice[0], stanice[1]] c.update() c.after(10, main) def hore(event): global current current += 1 if current == len(data) + 1: current = 0 stanice.append([data[current], 1000]) current = 0 stanice = [[data[current], 1000]] main() c.bind('<1>', hore) c.mainloop()
true
e99c7b6e9c5e8b8562e72467d7877dc5255594c0
Python
ispastlibrary/Titan
/2015/AST1/vezbovni/anja/treci.py
UTF-8
69
2.875
3
[]
no_license
S=0 for i in range(101): S+=i print("konacno resenje je: ", S)
true
dcbe681f2dae5ee7c917f79691e2cd33b70940d2
Python
VigneshKarthigeyan/DS
/Linked_List/flat_multi_level_ll.py
UTF-8
970
3.578125
4
[]
no_license
#Flatten a multilevel ll class Node: def __init__(self,val): self.data=val self.next=None self.child=None def printlist(head): while head: print(head.data,end=' ') head=head.next def flat(head): tail=head while tail.next: tail=tail.next temp=head while temp!=tail: if temp.child: tail.next=temp.child tmp=temp.child while tmp.next: tmp=tmp.next tail=tmp temp=temp.next if __name__ == '__main__': head=Node(10) head.child=Node(70) head.child.next=Node(80) head.child.next.child=Node(100) head.child.next.next=Node(90) head.child.next.next.child=Node(110) head.next=Node(20) head.next.next=Node(30) head.next.next.next=Node(40) head.next.next.next.next=Node(50) head.next.next.next.child=Node(120) flat(head) printlist(head)
true
c81a5d5e79032cd7baf9a46d2979a58d34001413
Python
dansgithubuser/pdf-explorer
/pdf/_objects.py
UTF-8
2,955
2.921875
3
[]
no_license
''' This file makes page and section references to ISO 32000-1:2008. Objects are documented in section 7.3 of ISO 32000-1:2008. ''' import re import pprint import zlib class Name: escape_regex = re.compile('#([0-9a-fA-F]{2})') def __init__(self, literal): self.value = Name.escape_regex.sub(lambda m: chr(int(m.group(1), 16)), literal) def __eq__(self, other): if not isinstance(other, Name): return False return self.value == other.value def __repr__(self): return '/{}'.format(self.value) def to_json(self): return repr(self) class Stream: def __init__(self, dictionary, stream): self.dictionary = dictionary self.stream = stream self.decoded = None if not self.dictionary.get('Filter'): self.decoded = self.stream elif self.dictionary['Filter'] == Name('FlateDecode'): # p22 (7.4), p25 (7.4.4) self.decoded = zlib.decompress(self.stream) try: self.decoded.decode('utf-8') except: pass def __eq__(self, other): if not isinstance(other, Stream): return False return (self.dictionary, self.stream) == (other.dictionary, other.stream) def __repr__(self): return 'Stream({} {})'.format(pprint.pformat(self.dictionary), self.decoded or hash(self.stream)) def __getitem__(self, key): return self.dictionary[key] def __setitem__(self, key, value): self.dictionary[key] = value def __delitem__(self, key): del self.dictionary[key] def __contains__(self, item): return item in self.dictionary def to_json(self): uniquifier = 'pdf_py_meta' assert uniquifier not in self.dictionary return dict(self.dictionary, **{ uniquifier: {'type': 'stream', 'decoded': self.decoded}, }) def get(self, key): return self.dictionary.get(key) class Ref: def __init__(self, *args): types = [type(i) for i in args] if types == [str]: self.object_number, self.generation_number = [int(i) for i in args[0].split()[:2]] elif types == [int]: self.object_number, self.generation_number = args[0], 0 elif types == [Ref]: self.object_number, self.generation_number = args[0].object_number, args[0].generation_number elif types == [int, int]: self.object_number, self.generation_number = args else: raise Exception('invalid arguments {}'.format(args)) def __eq__(self, other): if not isinstance(other, Ref): return False return (self.object_number, self.generation_number) == (other.object_number, other.generation_number) def __hash__(self): return hash((self.object_number, self.generation_number)) def __repr__(self): return '{} {}'.format(self.object_number, self.generation_number) def to_json(self): return repr(self)
true
f17160c31a9a3eac744b6b549ba49231afed5d7a
Python
batbeerman/hellogit
/qu2.py
UTF-8
131
3.1875
3
[]
no_license
test_tup = 32,454,56,32,1,9,76 print('Max element of tuple is :',max(test_tup)) print('Min element of tuple is :',min(test_tup))
true
e531d0b14eae818c79ff7770b49416d77c5ed4c1
Python
widelec9/codewars
/kata/python/5kyu/tongues.py
UTF-8
347
2.90625
3
[]
no_license
def tongues(code): v = 'aiyeou' c = 'bkxznhdcwgpvjqtsrlmf' out = '' for i, ch in enumerate(code): if ch.isalpha(): ch = v[(v.index(ch.lower()) + 3) % len(v)] if ch.lower() in v else c[(c.index(ch.lower()) + 10) % len(c)] ch = ch.upper() if code[i].isupper() else ch out += ch return out
true
b6ec1b528c3614b4a9e8cce5e0292d15dc77ec98
Python
sp5/c-exercises
/sort/testsort.py
UTF-8
157
3.140625
3
[]
no_license
import sys prev = 0 for line in sys.stdin: cur = int(line) if cur < prev: print("EVIL SORT VERY BAD") sys.exit(0) prev = cur
true
8177a65fddd055c711e994c0725fb27077ca1812
Python
peterpeng1993/learngit
/script/python/pygame入门9.py
UTF-8
1,867
3.1875
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Thu Mar 29 20:26:31 2018 @author: asus """ import sys,pygame from random import choice class MyBallClass(pygame.sprite.Sprite): def __init__(self,image_file,location,speed): pygame.sprite.Sprite.__init__(self) self.image=pygame.image.load(image_file) self.rect=self.image.get_rect() self.rect.left, self.rect.top=location self.speed=speed def move(self): self.rect=self.rect.move(self.speed) if self.rect.left<0 or self.rect.right>width: self.speed[0]=-self.speed[0] if self.rect.top<0 or self.rect.bottom>height: self.speed[1]=-self.speed[1] def animate(group): screen.fill([255,255,255]) for ball in group: ball.move() for ball in group: group.remove(ball) if pygame.sprite.spritecollide(ball,group,False):#检查球的碰撞 ball.speed[0]=-ball.speed[0] ball.speed[1]=-ball.speed[1] group.add(ball) screen.blit(ball.image,ball.rect) pygame.display.flip() size=width,height=800,640 screen=pygame.display.set_mode(size) screen.fill([255,255,255]) img_file='b_ball_rect.png' clock=pygame.time.Clock()#创建Clock的实例 group=pygame.sprite.Group() for row in range(0,2): for column in range(0,2): location=[column*180+10,row*180+10] speed=[choice([-3,3]),choice([-3,3])] ball=MyBallClass(img_file,location,speed) group.add(ball)#把球加到群组中 running=True while running: for event in pygame.event.get(): if event.type==pygame.QUIT: running=False frame_rate=clock.get_fps()#得到帧速率 print('frame rate =',frame_rate) animate(group) clock.tick(90)#控制帧速率 pygame.quit()
true
0a33a5d574c1d8b6d889f75a4a2f3f001eb35af9
Python
swarren/advent-of-code-2020
/python/day20.py
UTF-8
1,601
2.859375
3
[]
no_license
#!/usr/bin/env python3 import functools import operator with open("../input/day20.txt") as f: data = f.read().splitlines() def s2i(s): v = 0 for c in s: v <<= 1 v |= ((c == '#') and 1 or 0) return v tiles = {} tile = None ln = 0 ts = 0 ls = 0 rs = 0 for l in data: ln += 1 #print(ln, l) if 'Tile' in l: tile = int(l.split()[1][:-1]) #print(f' tile {tile}') ln = -1 ls = '' rs = '' continue if 0 <= ln <= 9: ls = l[0] + ls rs = rs + l[-1] if ln == 0: ts = l t = s2i(ts) tr = s2i(ts[::-1]) elif ln == 9: bs = l r = s2i(rs) rr = s2i(rs[::-1]) b = s2i(bs[::-1]) br = s2i(bs) lr = s2i(ls) l = s2i(ls[::-1]) #print(tile, ts, rs, bs, ls) #print(tile, t, l, b, r) tiles[tile] = (t, tr, l, lr, b, br, r, rr) #print(tiles) # all_borders = [b for vs in tiles.values() for b in vs] counts = {} for tile, borders in tiles.items(): for b in borders: counts[b] = counts.get(b, 0) + 1 #print(counts) edge_tiles = [] corner_tiles = [] for tile, borders in tiles.items(): edge_sides = [] for i, border in enumerate(borders[::2]): #print(f' {i} {border}') if counts[border] == 1: edge_sides.append(i) #print(tile, edge_sides) if edge_sides: edge_tiles.append(tile) if len(edge_sides) == 2: corner_tiles.append(tile) #print(edge_tiles) #print(corner_tiles) print(functools.reduce(operator.mul, corner_tiles, 1))
true
f667647fe7156078432a23743802c0d629413ad6
Python
rajui67/learnpython
/python_code_exaples/collections/sets/union.py
UTF-8
1,026
4.09375
4
[]
no_license
set1 = {1, 2, 3} set2 = {1, 5} print(set1 | set2) print(set1.union(set2)) print(set2 | set1) print(set2.union(set1)) # up until this point set1 and set2 remain unchanged. The operators and function return a new set print(set1, set2) set1 = {1,1,2,2,3} set2 = {1,5} # |= a shortcout operator. Essentially, set1 |= set2 works thus so: # 1. executes set1 | set2 which creates a new anonymous set. # 2. set1 = new set #set1 is modified such that its object-refence is the same as set2's object reference set1 |= set2 print('short cut operator |=', set1) #print(set1 |= set2) This generates an error. An assignment or shortcut operator cannot be used 'inline'. # The assignment expression := can be used to assign a value . TUt works thus so: # 1. Executes the set1 | set2 operation whcih creates a new set. # 2. set1 = new set #set1 is modified such that its object-refence is the same as set2's object reference # set1 is printed set1 = {1,1,2,2,3} set2 = {1,5} print('Assingnment expression :=', set1 := set1 | set2)
true
c47fc129c20863be802047f9abfef0fc4b38bf8d
Python
shilpakancharla/machine-learning-tutorials
/data_scraping/bing.py
UTF-8
1,723
2.6875
3
[ "MIT" ]
permissive
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Jun 24 10:45:31 2018 @author: shilpakancharla """ import urllib,urllib2 import re from bs4 import BeautifulSoup from datetime import datetime def bing_grab(query): t1 = datetime.now() address = "http://www.bing.com/search?q=%s" % (urllib.quote_plus(query)) request = urllib2.Request(address, None, {'User-Agent':'Mosilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11'}) urlfile = urllib2.urlopen(request) page = urlfile.read() soup = BeautifulSoup(page) t2 = datetime.now() linkdictionary = {} # 'li' has two kinds of classed 'sa_wr wr_at' and 'sa_wr' li = soup.find('li', attrs={'class': re.compile(r".*\bsa_wr\b.*")}) h3 = li.find('h3') h31 = re.compile(r'<.*?>').sub('',str(h3)).replace('.','') print h31 sLink = li.find('a') slink1 = sLink['href'] print slink1 Cite = li.find('cite') Cite1 = re.compile(r'<.*?>').sub('',str(Cite)) Cite2 = re.compile(r'&.*?;').sub(' ',str(Cite1)) print Cite2 # Rating = li.find('span', attrs={'class':'ssp_ylp'}) # print Rating Info = li.find('ul', attrs={'class':'sp_pss'}) Info1 = re.compile(r'<.*?>').sub('',str(Info)) Info2 = re.compile(r'&.*?;').sub(' ',str(Info1)) print Info2 P = li.find('p') P1 = re.compile(r'<.*?>').sub('',str(P)) P2 = re.compile(r'&.*?;').sub(' ',str(P1)) print P2 t3 = datetime.now() print "Scraping Time is ", t2-t1 print "parsing time is ", t3-t2 return linkdictionary return linkdictionary if __name__ == '__main__': links = bing_grab("tea station yelp")
true
3a4efe163811aeb7c30ddf1e4e8bdde05cccdd1e
Python
weidler/RLaSpa
/src/gym_custom_tasks/envs/simplePathing.py
UTF-8
4,772
2.671875
3
[ "MIT" ]
permissive
import copy import numpy import numpy as np import gym import torch from gym import error, spaces, utils from gym.utils import seeding import platform if 'rwth' in platform.uname().node.lower(): import matplotlib matplotlib.use('Agg') # Force matplotlib to not use any Xwindows backend. import matplotlib.pyplot as plt class SimplePathing(gym.Env): BACKGROUND_PIXEL = 0 TARGET_PIXEL = 0.8 AGENT_PIXEL = 0.3 TRAIL_PIXEL = 0.1 PADDING = 3 DEFAULT_REWARD = -10 TARGET_REWARD = 10 def __init__(self, width: int, height: int, visual: bool): if not (width > SimplePathing.PADDING * 2 and height > SimplePathing.PADDING * 2): raise ValueError( "Width and Height need to be larger than double the padding of the environment, hence > {0}.".format( SimplePathing.PADDING * 2)) # ATTRIBUTES self.width = width self.height = height self.action_space = gym.spaces.Discrete(4) # UP, RIGHT, DOWN, LEFT self.observation_space = gym.spaces.Box(low=0, high=max((width, height)), dtype=numpy.uint8, shape=(2,)) if visual: self.observation_space = gym.spaces.Box(low=0, high=1, dtype=numpy.float16, shape=(width, height)) self.max_steps = (width*height) # Maybe reduce max_steps by dividing by 2? self.steps = 0 self.visual = visual # STATES self.target_coords = [width - SimplePathing.PADDING, SimplePathing.PADDING] self.start_state = [SimplePathing.PADDING, height - SimplePathing.PADDING] self.current_state = self.start_state.copy() # TRAIL self.state_trail = [] self.show_breadcrumbs = True # MAP self.static_pixels = self._generate_static_pixels() def __repr__(self): representation = "" if self.show_breadcrumbs: view = self._get_current_view_with_trail() else: view = self._get_current_view() for row in view: representation += " ".join(map(str, row)) + "\n" return representation def _generate_static_pixels(self): # static_map = [[SimplePathing.BACKGROUND_SYMBOL for _ in range(self.width)] for _ in range(self.height)] # static_map[self.target_coords[1]][self.target_coords[0]] = SimplePathing.TARGET_SYMBOL static_pixels = torch.zeros((self.height, self.width)) static_pixels[self.target_coords[1], self.target_coords[0]] = SimplePathing.TARGET_PIXEL return static_pixels def _get_current_view(self): view = copy.deepcopy(self.static_pixels) view[self.current_state[1], self.current_state[0]] = SimplePathing.AGENT_PIXEL return view def _get_current_view_with_trail(self): view = self._get_current_view() for step in range(-1, -len(self.state_trail), -1): state = self.state_trail[step] view[state[1], state[0]] = SimplePathing.TRAIL_PIXEL return view def step(self, action: int): next_state = self.current_state.copy() self.state_trail.append(self.current_state) if action == 0: next_state[1] = max(0, next_state[1] - 1) elif action == 1: next_state[0] = min(next_state[0] + 1, self.width - 1) elif action == 2: next_state[1] = min(next_state[1] + 1, self.height - 1) elif action == 3: next_state[0] = max(0, next_state[0] - 1) reward = SimplePathing.DEFAULT_REWARD self.steps += 1 done = self.steps >= self.max_steps if next_state == self.target_coords: reward = SimplePathing.TARGET_REWARD done = True self.current_state = next_state.copy() if self.visual: return self.get_pixelbased_representation(), reward, done, None else: return next_state, reward, done, None # returns None at pos 4 to match gym envs def reset(self): self.current_state = self.start_state.copy() self.state_trail = [] self.steps = 0 if self.visual: return self.get_pixelbased_representation() else: return self.current_state def get_pixelbased_representation(self): pixels = self.static_pixels.clone() pixels[self.current_state[1], self.current_state[0]] = SimplePathing.AGENT_PIXEL return pixels def render(self, mode='human', close=False): img = self.get_pixelbased_representation().cpu() plt.clf() plt.imshow(img, cmap="binary", origin="upper") plt.gca().axes.get_xaxis().set_visible(False) plt.gca().axes.get_yaxis().set_visible(False) plt.draw() plt.pause(0.001)
true
7970f33425d471802dcc3751601fc0eb6cdb3925
Python
srinitude/holbertonschool-higher_level_programming
/0x07-python-test_driven_development/2-matrix_divided.py
UTF-8
1,806
3.65625
4
[]
no_license
#!/usr/bin/python3 """Matrix Divided Module""" def check_for_ints_and_floats(matrix): """Bad input""" bad_input = "matrix must be a matrix (list of lists) of integers/floats" flat_list = [i for sublist in matrix for i in sublist] for i in flat_list: if type(i) is not int and type(i) is not float: raise TypeError(bad_input) def make_sure_lists_are_same_length(matrix): """Same length""" needed_length = len(matrix[0]) for i, sublist in enumerate(matrix): if i == 0: continue list_length = len(sublist) if list_length != needed_length: raise TypeError("Each row of the matrix must have the same size") def check_for_div_type(div): """Bad div type""" if type(div) is not int and type(div) is not float: raise TypeError("div must be a number") def check_for_zero_division(div): """Zero division""" if div == 0: raise ZeroDivisionError("division by zero") def number_of_lists(matrix): """Number of lists""" count = 0 for sublist in matrix: count += 1 return count def matrix_divided(matrix, div): """Matrix divided""" bad_input = "matrix must be a matrix (list of lists) of integers/floats" if matrix is None: raise TypeError(bad_input) count = number_of_lists(matrix) if count == 0: return [] check_for_ints_and_floats(matrix) make_sure_lists_are_same_length(matrix) check_for_div_type(div) check_for_zero_division(div) new_matrix = [] for sublist in matrix: new_list = list(map((lambda x: round(x / div, 2)), sublist)) new_matrix.append(new_list) return new_matrix if __name__ == "__main__": import doctest doctest.testfile("tests/2-matrix_divided.txt")
true
fddfca3ddbb7e04ea6895479a101537f0fd5b1c8
Python
Ich1goSan/LeetcodeSolutions
/removeNthFromEnd.py
UTF-8
508
3.125
3
[ "MIT" ]
permissive
class ListNode: def __init__(self, x): self.val = x self.next = None def removeNthFromEnd(self, head, n): if not head: return None if not head.next and n == 1: return None r = [] current = head while current: r.append(current) current = current.next r.pop(len(r)-n) node = r[0] r[0].next = None r[-1].next = None d = node for i in range(1, len(r)): d.next = r[i] d = d.next return node
true
19b8735515f2dabddbd703545e944a816289245a
Python
Addikins/CIS164
/Unit12/CSVread.txt
UTF-8
130
2.59375
3
[]
no_license
import csv csv_file = open('cochise.csv') csv_reader = csv.reader(csv_file) csv_contents = list(csv_reader) print(csv_contents)
true
e912546e6bed4325be0adcd54f5761135f97867b
Python
sweec/leetcode-python
/src/NextPermutation.py
UTF-8
785
2.984375
3
[]
no_license
class Solution: # @param num, a list of integer # @return a list of integer def nextPermutation(self, num): l = len(num) for i in range(l-2, -1, -1): if num[i] < num[i+1]: index = l-1 for j in range(i+2, l): if num[j] <= num[i]: index = j-1 break t = num[i] num[i] = num[index] num[index] = t a, b = i+1, l-1 while a < b: t = num[a] num[a] = num[b] num[b] = t a += 1 b -= 1 return num num.reverse() return num
true
37e10f39d8819bdd38e13ffe90a7b7bcd6306f40
Python
antman9914/CitiChatbot
/Aiml模板翻译/TranslateXml.py
UTF-8
4,961
2.703125
3
[]
no_license
#作者:肖劲宇 李蕴琦 #用途:对aiml模板进行翻译 #时间:2019.7.3 from bs4 import BeautifulSoup import requests import string import time import hashlib import json import os import random #百度翻译api的url,以及appid和密钥 api_url = "http://api.fanyi.baidu.com/api/trans/vip/translate" my_appid = '20151113000005349' cyber = 'osubCEzlGjzvw8qdQc41' lower_case = list(string.ascii_lowercase) num = 0 #请求百度翻译API进行翻译,返回Json格式请求 def requests_for_dst(word): # init salt and final_sign salt = str(time.time())[:10] final_sign = str(my_appid) + word + salt + cyber final_sign = hashlib.md5(final_sign.encode("utf-8")).hexdigest() # 区别en,zh构造请求参数 if list(word)[0] in lower_case: paramas = { 'q': word, 'from': 'en', 'to': 'zh', 'appid': '%s' % my_appid, 'salt': '%s' % salt, 'sign': '%s' % final_sign } my_url = api_url + '?appid=' + str( my_appid) + '&q=' + word + '&from=' + 'en' + '&to=' + 'zh' + '&salt=' + salt + '&sign=' + final_sign else: paramas = { 'q': word, 'from': 'en', 'to': 'zh', 'appid': '%s' % my_appid, 'salt': '%s' % salt, 'sign': '%s' % final_sign } my_url = api_url + '?appid=' + str( my_appid) + '&q=' + word + '&from=' + 'en' + '&to=' + 'zh' + '&salt=' + salt + '&sign=' + final_sign response = requests.get(api_url, params=paramas).content content = str(response, encoding="utf-8") json_reads = json.loads(content) try: return json_reads['trans_result'][0]['dst'] except KeyError as e: print("error") return "" def translate(word): return requests_for_dst(word) # import requests # import bs4 # import shutil # import urllib # import re # import os # import xml.dom.minidom # def getLogin(loginurl): # # # rs = requests.get(loginurl) # # html = rs.text # # with open('ai.xml', "wb") as f: # # html = f.read() # # print(html) # # soup = BeautifulSoup(html, 'lxml') # # text = soup.find_all('pattern') # # print(text) # # verifyurl = soup.find_all('img',id='captcha-img')[0]['src'] # # verifyurl = loginurl+verifyurl # # print(verifyurl) # # conn = urllib.request.urlopen(verifyurl) # # path = "verifyimage.jpg" # # with open(path, "wb") as f: # # f.write(conn.read()) # getLogin('http://210.42.121.241') #遍历XML标签标记的树结构,同时对字符串进行翻译 def tranverse(tag): try: for child in tag.children: try: c = child.children tranverse(child) except AttributeError: chinese = translate(str(child)) print(chinese) time.sleep(1.5) if num % 10 == 0: time.sleep(2) child.replace_with(chinese) except AttributeError: return #对xml里面的categories进行翻译 def xmlTranslate(src,dest): with open(src, 'r') as infile: xml = infile.read() with open(dest,'a') as outfile: soup = BeautifulSoup(xml, 'lxml') xml = soup.find_all('category') for item in xml: item = str(item).replace('\n', '') tag = BeautifulSoup(item, 'lxml').find_all('category')[0] print(tag) tranverse(tag) print(tag) outfile.write(str(tag)) outfile.write('\n') # # outfile.close() # # item = str(xml).replace('\n', '') # # tag = BeautifulSoup(item, 'lxml').find_all('category')[0] # # tranverse(tag) #对文件夹里面的所有文件进行翻译 def TranslateAll(srcfolder,destfolder): for root, dirs, files in os.walk(srcfolder): for fn in files: xmlTranslate(srcfolder+"/"+fn,destfolder+"/"+fn) print(fn+" has been translated") #对文件夹里面的aiml文件进行命名,改成txt文件 def rename(folder): for parent, dirnames, filenames in os.walk(folder): for filename in filenames: newName=filename.split('.')[0]+'.'+'txt' os.rename(os.path.join(parent, filename), os.path.join(parent, newName)) if __name__ == '__main__': # xmlTranslate('ai.txt','ai-c.txt') # rename('alice-e') # rename('standard-e') # tag = BeautifulSoup('<category><pattern>HAVE WHAT</pattern><template><srai>what do you have</srai></template></category>', 'lxml').find_all('category')[0] # print(tag) # tranverse(tag) # print(tag) #翻译alice-c文件夹里面的文件到alice-e TranslateAll('alice-e','alice-c')
true
aaea7fe7acc39c1c517311540de8d1fa44cc94c3
Python
onehours/python-crawler
/xiaoshuo-quanshuwang.com/get_book.py
UTF-8
1,447
2.84375
3
[]
no_license
import requests import time from lxml import etree from get_headers import getheaders import sys if len(sys.argv) == 1: url = 'http://www.quanshuwang.com/book/174/174135' else: url = sys.argv[1] if not url.startswith('http'): print('请输入有效的url') sys.exit(1) def get_obj(url): # headers = { # 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36' # } headers = getheaders() html = requests.get(url=url, headers=headers) html.encoding = html.apparent_encoding et_obj = etree.HTML(html.text) return et_obj main_text = get_obj(url) book_name = main_text.xpath('//div[@class="chapName"]/strong/text()')[0] print('本书名:{}'.format(book_name)) book_name = book_name + '.txt' li_list = main_text.xpath('//div[@class="clearfix dirconone"]/li') with open(book_name,'w',encoding='utf-8') as f: for li in li_list: url = li.xpath("./a/@href")[0] title = li.xpath("./a/@title")[0] print(title, url) try: detail_obj = get_obj(url) text = detail_obj.xpath('//div[@id="content"]/text()') except Exception as e: print(e) continue text2 = ''.join(text).replace('\r\n\xa0\xa0\xa0\xa0','') f.write(title + '\r\n') f.write(text2 + '\r\n')
true
279c4ba720b08aee015799dcc4db84177a828a4e
Python
mandub/project_2
/convolution.py
UTF-8
2,660
3.421875
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt def convolve(g, h): """ Convolves g with h, returns valid portion :param g: image :param h: filter :return: result of convolution, shape=( max( len(g), len(h) ), max( len(g[0]), len(h[0]) ) ) result of convolution, shape=( max( len(g), len(h) ) - min( len(g), len(h) ) + 1, max( len(g[0]), len(h[0]) ) - min( len(g[0]), len(h[0]) ) + 1 ) """ out_m = max(len(g), len(h)) - min(len(g), len(h)) + 1 out_n = max(len(g[0]), len(h[0])) - min(len(g[0]), len(h[0])) + 1 out_array = np.zeros(shape=(out_m, out_n)) # Iterate over entire output image for u in range(len(out_array)): for v in range(len(out_array[u])): # One-liner to do convolution out_array[u][v] = np.sum(np.multiply(h, g[u: u + len(h), v: v + len(h[0])])) return out_array def _pad_input(pad_x, pad_y, g, padding_scheme='fill', fill_val=0): if padding_scheme == 'fill': v_buff = np.zeros(shape=(pad_x, len(g[0]))) + fill_val g = np.vstack((v_buff, g, v_buff)) h_buff = np.zeros(shape=(len(g), pad_y)) + fill_val g = np.hstack((h_buff, g, h_buff)) elif padding_scheme == 'nn': v_buff = np.tile(np.zeros(shape=(1, len(g[0]))) + g[0], (pad_x, 1)) g = np.vstack((v_buff, g, v_buff)) # Have to do some transposition to get column vectors h_buff = np.tile((np.zeros(shape=(len(g), 1)).T + g[:, 0]).T, (1, pad_y)) g = np.hstack((h_buff, g, h_buff)) # TODO: fill in diagonals? elif padding_scheme == 'mirror': raise NotImplementedError("Padding scheme {0} is not yet implemented".format(padding_scheme)) return g def non_linear_convolve(g, filter_size): # Calculate output shape out_m = max(len(g), filter_size) out_n = max(len(g[0]), filter_size) # Calculate pad size pad_x = filter_size - 1 pad_y = filter_size - 1 g = _pad_input(pad_x, pad_y, g) out_array = np.empty(shape=(out_m, out_n), dtype=bool) # Iterate over entire output image for u in range(len(out_array)): for v in range(len(out_array[u])): # Calculate max in neighborhood out_array[u][v] = np.equal(g[u + pad_x, v + pad_y], np.max(g[u: u + filter_size, v: v + filter_size])) return out_array def img_convolution(img_fname, img_filter): img_color = plt.imread(img_fname) img_gray = img_color.mean(axis=2) # Convert to greyscale out = convolve(g=img_gray, h=img_filter) # Plot plt.imshow(img_gray, cmap='gray') plt.show() plt.imshow(out, cmap='gray') plt.show()
true
4f85b028c59999f4017254ba2d4f5e4c5fa308c4
Python
ealehman/mpi
/mandelbrot/mandelbrot_masterslave.py
UTF-8
2,016
2.859375
3
[]
no_license
import numpy as np import matplotlib.pyplot as plt from mpi4py import MPI from P4_serial import * def slave(comm): jobs = True while jobs: status = MPI.Status() y = comm.recv(source=0, tag = MPI.ANY_TAG, status = status) #, status=status) tag = status.Get_tag() if tag >= 1024: jobs = False print 'slave received row: ' + str(tag) #x = np.linspace(minX, maxX, width) temp = [] for x in np.linspace(minX, maxX, width): temp.append(mandelbrot(x,y)) comm.send(temp, dest = 0, tag = tag) print 'slave sent row: ' + str(tag) #+ " values: " + str(temp) return def master(comm): image = np.zeros([height,width], dtype=np.uint16) count = 0 size = comm.Get_size() #send as many rows as possible to processes y = np.linspace(minY, maxY, height) for p in range(1,size): comm.send(y[count], dest = p, tag = count) print 'master sent row: ' + str(count) count += 1 #send next row to available slaves until there are no more rows left while count < 1024: status = MPI.Status() t = comm.recv(source= MPI.ANY_SOURCE, tag = MPI.ANY_TAG, status = status) #, status=status) n = status.Get_tag() print 'master received row: ' + str(n) source = status.Get_source() image[n] = t comm.send(y[count], dest = source, tag = count) print 'master sent row: ' + str(count) count += 1 return image if __name__ == '__main__': # Get MPI data comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: start_time = MPI.Wtime() C = master(comm) end_time = MPI.Wtime() print "Time: %f secs" % (end_time - start_time) plt.imsave('Mandelbrot.png', C, cmap='spectral') plt.imshow(C, aspect='equal', cmap='spectral') plt.show() else: slave(comm)
true
54c0bd639845218533276a39cac3615371227147
Python
dantepsychedelico/sufproject
/socketServer/router.py
UTF-8
2,038
2.65625
3
[]
no_license
import json, time from Users import users from mongoCtrl import mongoCtrl as mctrl class router: def __init__(self, socket): """ every online user have one router object and used 'Ctrl' method to control request and response """ self.socket = socket self.uid = None self.__route = { "new": self.newUser, "online": self.updateSocket, "newroom": self.newRoom, "join": self.joinRoom, "chat": self.chat } def Ctrl(self, reqBinary): data = json.loads(reqBinary.decode()) method = data["method"] if self.uid is None: self.uid = data.get("uid") res = self.__route[method](data) res["method"] = method if "status" not in res: res["status"] = "ok" return res def newUser(self, data): """ uid: userid; sid: security id """ self.uid = users.createUser(self.socket) self.sid = int(time.time()) mctrl.signUp(self.uid, self.sid) return {"uid": self.uid, "sid": hex(self.sid)[2:]} def updateSocket(self, data): """ update socket connection for the same user """ self.uid = data["uid"] users.updateSocket(self.uid, self.socket) return {"uid": self.uid} def stopSocket(self): """ remove the socket connection for the user """ users.removeSocket(self.uid) def newRoom(self, data): """ """ roomid, createtime = mctrl.newRoom(**data) return {"roomid": roomid, "createtime": createtime} def joinRoom(self, data): res = mctrl.joinRoom(data["roomid"], self.uid) return res def chat(self, data): members, time = mctrl.chatRoom(**data) data["time"] = time data["status"] = "getok" for member in members: if member!=self.uid: users.sendSocket(member, data) return {"uid": self.uid, "time": time, "status": "sendok"}
true
a0af15dfdd0fbd612a46b33e14408c4b257a88b2
Python
AaruranLog/Analogies
/analogies/utils/word_entry.py
UTF-8
326
2.796875
3
[ "MIT" ]
permissive
""" Forms to capture text """ from flask_wtf import FlaskForm from wtforms import StringField, SubmitField from wtforms.validators import DataRequired class SimpleWordEntry(FlaskForm): """Simplest form to capture text""" text = StringField('Text: ', validators=[DataRequired]) submit = SubmitField('Submit')
true
25c85237687f297ded228521719eed1d72715d5b
Python
DaHuO/Supergraph
/codes/CodeJamCrawler/16_0_2/rchen8/revenge_of_the_pancakes.py
UTF-8
376
2.953125
3
[]
no_license
file = open('revenge_of_the_pancakes.txt', 'r') output = open('revenge_of_the_pancakes_out.txt', 'w') t = int(file.readline()) for i in xrange(0, t): s = file.readline() count = 0 for j in xrange(0, len(s) - 2): if s[j] != s[j + 1]: count += 1 if s[-2] == '-': count += 1 output.write('Case #' + str(i + 1) + ': ' + str(count) + '\n') file.close() output.close()
true
1a45f311253331631bb052de98bdb1f6e00118ab
Python
vstarman/python_codes
/19day/02.jing_dong.py
UTF-8
1,556
3.03125
3
[]
no_license
from pymysql import * class JD(object): def __init__(self): # 创建数据库对象 和 数据库操作对象 self.qd_liu = connect( host='localhost', port=3306, database='jd_market', user='root', password='mysql', charset='utf8') self.cursor = self.qd_liu.cursor() @staticmethod def print_menu(): """打印功能菜单""" print("----------------京东商城--------------") print("1:显示所有商品") print("2:下订单") print("3:登陆") print("4:注册") print("5:退出") return input("请输入功能编号:") def run(self): while True: number = self.print_menu() if number == "1": self.show_all_goods() elif number == "2": self.order() elif number == "3": self.login() elif number == "4": self.register() elif number == "5": self.__quit__() return else: print("输入功能序号有误,请重新输入...") def show_all_goods(self): pass def order(self): pass def login(self): pass def register(self): pass def __quit__(self): self.cursor.close() self.qd_liu.close() print("系统已登出...") def main(): jd = JD() jd.run() if __name__ == '__main__': main()
true
291fb6c3d36dc89483af428cf73c99c1888f105c
Python
Aggraxis/killer-bot
/utilities.py
UTF-8
1,138
3.65625
4
[ "MIT" ]
permissive
import csv from random import randint def listFiller(fileName): with open (fileName) as csvfile: reader = csv.DictReader(csvfile) return (list(reader)) def compose_response(random_target): # random_target is a dictionary, and the key names like # 'CONTRACT_NUMBER' come from the header row in the CSV # file. So if your spreadsheet has different headers, # change this response string accordingly. return (f"Contract # {random_target['CONTRACT_NUMBER']}\n" + f"Name: {random_target['TARGET']}\n" + f"Zone: {random_target['ZONE']}\n" + f"{random_target['LEDGER_TEXT']}") # I think everybody's dice bot uses this logic. def roll(roll): rolling = [] roll = roll.lower() try: for x in range(int(roll.split('d')[0])): rolling.append(randint(1,int(roll.split('d')[1]))) return (f'You rolled {" ".join(str(x) for x in rolling)}, ' + f'which has a total of {sum(rolling)}') except Exception as err: return f'The argument provided was not in XdY format. ex: 2d6'
true
0eff68e3d52c755f6cedf473296a21905f03c92f
Python
Ogiwara-CostlierRain464/scikit-learning
/play.py
UTF-8
185
3.734375
4
[]
no_license
for i in range(1, 101): if i % 15 == 0: print("WizzWuzz") elif i % 3 == 0: print("Wizz") elif i % 5 == 0: print("Wuzz") else: print(i)
true
6fe2f20c583da091aa3bfd85562d65ab8762105c
Python
aig-upf/automated-programming-framework
/domains/other/blocks/gen-problem.py
UTF-8
1,175
2.53125
3
[]
no_license
#! /usr/bin/env python import sys,time,random #**************************************# # MAIN #**************************************# try: nblocks = int(sys.argv[1]) except: print "Usage:" print sys.argv[0] + " <nblocks>" sys.exit(-1) str_problem="" str_problem=str_problem + "(define (problem p"+str(nblocks)+"-"+time.strftime("%d%m%Y%H%M%S")+")\n" str_problem=str_problem + " (:domain blocks)\n" str_problem=str_problem + " (:objects " for j in range(0,nblocks): str_problem=str_problem + "b"+str(j+1)+" " str_problem=str_problem + "- block " str_problem=str_problem + ")\n" str_problem=str_problem + " (:init " str_problem=str_problem + "(clear b1) " str_problem=str_problem + "(ontable b"+str(nblocks)+") " for j in range(0,nblocks-1): str_problem=str_problem + "(on b"+str(j+1)+" b"+str(j+2)+")" str_problem=str_problem + "(empty) " random.seed() bgreen = random.randint(0,nblocks) str_problem=str_problem + "(green b"+str(bgreen)+")" str_problem=str_problem + ")\n" str_problem=str_problem + " (:goal (and (have b"+str(bgreen)+"))))\n" f_problem=open("new-problem.pddl","w") f_problem.write(str_problem) f_problem.close() sys.exit(0)
true
71de6ed5f999d4ec597a8ff5cf4f8a841b70766c
Python
rmorales87atx/cosc1336_fall12
/lab01/tip_tax_total.py
UTF-8
961
4.34375
4
[]
no_license
# COSC 1336 Lab 1 Problem 1 # Robert Morales # # Test Case: # The bill amount is $100.00. The tip is $15.00, tax is $7.00, # total is $122.00. # # First probem is that input is not being correctly converted. # Using 'float()' fixes this problem. # # Second problem is in the summation of the total; the bill # total is bill + tip + tax. Changing the original "+ total" # to "+ tax" fixes this. # # Third problem, in my opinion, is that the numbers are not properly # formatted in the typical form that currency is written. # Using "format()" fixes this. Adding sep='' to the print() calls also # removes the extra space automatically placed after the currency symbol. tip_percent = 0.15 tax_percent = 0.07 bill = float(input("Enter the bill amount: $")) tip = bill * tip_percent tax = bill * tax_percent total = bill + tip + tax print("Tip: $", format(tip, ",.2f"), sep='') print("Tax: $", format(tax, ",.2f"), sep='') print("Total: $", format(total, ",.2f"), sep='')
true
6899d0950bea82651195cdea9c2c737af548730a
Python
park8989/python_example
/initial_code/dateExpressChange.py
UTF-8
636
3.890625
4
[]
no_license
#! python3 # 日付表示方法を変える import datetime today1= datetime.date.today() today2= "{0:%Y:%m:%d}".format(today1) today3= "{0:%Y.%m.%d}".format(today1) today4= "{0:%Y年%m月%d日}".format(today1) today5= "{0:%Y년%m월%d일}".format(today1) print(today1) print(today2) print(today3) print(today4) print(today5) #曜日を付け加える p = today1.weekday() day_week = {0: '月', 1 : '火', 2: '水', 3: '木', 4: '金', 5: '土', 6: '日'} # pの変数が得られる数字と曜日を関連付ける print(day_week[p]) #曜日を返す today6= "{0:%Y年%m月%d日}({1})".format(today1, day_week[p]) print(today6)
true
522536cd6e41e5af96eeec8119ede510758b5034
Python
nocproject/noc
/core/clickhouse/fields.py
UTF-8
10,912
2.59375
3
[ "BSD-3-Clause" ]
permissive
# ---------------------------------------------------------------------- # ClickHouse field types # ---------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Python modules from ast import literal_eval from datetime import datetime import itertools import socket import struct from collections import defaultdict class BaseField(object): """ BaseField class for ClickHouse structure """ FIELD_NUMBER = itertools.count() db_type = None default_value = "" def __init__(self, default=None, description=None, low_cardinality=False): """ :param default: Default field value (if value not set) :param description: Field description """ self.field_number = next(self.FIELD_NUMBER) self.name = None self.default = default or self.default_value self.description = description self.is_agg = False self.low_cardinality = low_cardinality def set_name(self, name): """ Set field name according to model :param name: Field name :return: """ self.name = name def iter_create_sql(self): """ Yields (field name, db type) for all nested fields :return: """ yield self.name, self.get_db_type() def get_db_type(self, name=None): """ Return Field type. Use it in create query :param name: Optional nested field name :return: """ if self.low_cardinality: return f"LowCardinality({self.db_type})" return self.db_type def get_displayed_type(self): """ Return Field type for external application :return: """ return self.db_type def apply_json(self, row_json, value): """ Append converted `value` to `row _json` dict :param json: Row dict :param value: Raw value :return: """ row_json[self.name] = self.to_json(value) def to_json(self, value): """ Convert `value` to JSON-serializeable format :param value: Input value :return: JSON-serializable value """ if value is None: return self.default_value return str(value) def to_python(self, value): """ Use method when field convert to python object :param value: :return: """ return value def get_select_sql(self): return self.name @staticmethod def nested_path(name): """ Split nested path to field name and nested name :param name: Nested field name :return: (Field name, Nested name) """ name = name.strip("`") if "." in name: return name.split(".", 1) return name, None class StringField(BaseField): db_type = "String" default_value = "" class DateField(BaseField): db_type = "Date" default_value = "0000-00-00" def to_json(self, value): if value is None: return self.default_value return value.strftime("%Y-%m-%d") def to_python(self, value): if not value or value == self.default_value or value == "1970-01-01": return None else: return datetime.strptime(value, "%Y-%m-%d").date() class DateTimeField(BaseField): db_type = "DateTime" default_value = "0000-00-00 00:00:00" def to_json(self, value): if value is None: return self.default_value return value.strftime("%Y-%m-%d %H:%M:%S") def to_python(self, value): if not value or value == self.default_value or value == "1970-01-01 00:00:00": return None else: return datetime.strptime(value, "%Y-%m-%d %H:%M:%S") class UInt8Field(BaseField): db_type = "UInt8" default_value = 0 def to_json(self, value): if value is None: return self.default_value return int(value) def to_python(self, value): if not value: return self.default_value return int(value) class UInt16Field(UInt8Field): db_type = "UInt16" class UInt32Field(UInt8Field): db_type = "UInt32" class UInt64Field(UInt8Field): db_type = "UInt64" class Int8Field(UInt8Field): db_type = "Int8" class Int16Field(UInt8Field): db_type = "Int16" class Int32Field(UInt8Field): db_type = "Int32" class Int64Field(UInt8Field): db_type = "Int64" class Float32Field(BaseField): db_type = "Float32" default_value = 0.0 def to_json(self, value): if value is None: return self.default_value return float(value) def to_python(self, value): if not value: return self.default_value return float(value) class Float64Field(Float32Field): db_type = "Float64" class BooleanField(UInt8Field): def to_json(self, value): return 1 if value else 0 def to_python(self, value): if not value: return False return value == "1" class ArrayField(BaseField): def __init__(self, field_type, description=None): super().__init__(description=description) self.field_type = field_type def to_json(self, value): return [self.field_type.to_json(v) for v in value] def get_db_type(self, name=None): return f"Array({self.field_type.get_db_type()})" def get_displayed_type(self): return "Array(%s)" % self.field_type.get_db_type() def to_python(self, value): if not value or value == "[]": return [] return [self.field_type.to_python(x.strip("'\" ")) for x in value[1:-1].split(",")] class MaterializedField(BaseField): def __init__(self, field_type, expression, description=None): super().__init__(description=description, low_cardinality=True) self.field_type = field_type self.expression = expression def get_db_type(self, name=None): return f"LowCardinality({self.field_type.get_db_type()})" def iter_create_sql(self): yield self.name, f"{self.get_db_type()} MATERIALIZED {self.expression}" class ReferenceField(BaseField): db_type = "UInt64" default_value = 0 SELF_REFERENCE = "self" def __init__(self, dict_type, description=None, model=None, low_cardinality=False): super().__init__(description=description, low_cardinality=low_cardinality) self.is_self_reference = dict_type == self.SELF_REFERENCE self.dict_type = dict_type self.model = model if self.low_cardinality: self.db_type = "String" def to_json(self, value): if value is None: return self.default_value if self.low_cardinality: return value return value.bi_id class IPv4Field(BaseField): db_type = "UInt32" def to_json(self, value): """ Convert IPv4 as integer :param value: :return: """ if value is None: return 0 return struct.unpack("!I", socket.inet_aton(value))[0] def to_python(self, value): if value is None: return "0" return socket.inet_ntoa(struct.pack("!I", int(value))) def get_displayed_type(self): return "IPv4" class IPv6Field(BaseField): db_type = "UInt128" def to_json(self, value): """ Convert IPv6 as integer :param value: :return: """ if value is None: return 0 return struct.unpack("!I", socket.inet_aton(value))[0] def to_python(self, value): if value is None: return "0" return socket.inet_ntoa(struct.pack("!I", int(value))) def get_displayed_type(self): return "IPv6" class AggregatedField(BaseField): def __init__(self, expression, field_type, agg_function, params=None, description=None): super().__init__(description=description) self.field_type = field_type self.agg_function = agg_function self.expression = expression self.params = params def to_json(self, value): return self.field_type.to_json(value) def get_db_type(self, name=None): return f"AggregateFunction({self.agg_function}, {self.agg_function.get_db_type(self.field_type)})" def get_expression(self, combinator: str = None): return self.agg_function.get_expression(self, combinator) # return self.f_expr.format(p={"field": self.name, "function": function, "f_param": f_param}) # return "{p[function]}Merge({p[field]}_{p[function]})" class MapField(BaseField): def __init__(self, field_type, description=None): super().__init__(description=description) self.field_type = field_type def to_json(self, value): if not isinstance(value, dict): raise ValueError("Value for Map Field Must be Dict") return value def get_db_type(self, name=None): return f"Map(String, {self.field_type.get_db_type()})" class NestedField(ArrayField): db_type = "Nested" def iter_create_sql(self): for nested_field in self.field_type._meta.ordered_fields: yield f"{self.name}.{nested_field.name}", self.get_db_type(nested_field.name) def apply_json(self, row_json, value): arrays = defaultdict(list) for item in value: row = {} for f in item: self.field_type._meta.fields[f].apply_json(row, item[f]) for nested_name in row: full_name = "%s.%s" % (self.name, nested_name) arrays[full_name] += [row[nested_name]] row_json.update(arrays) def get_db_type(self, name=None): if name is None: return "Nested (\n%s \n)" % self.field_type.get_create_sql() return "Array(%s)" % self.field_type._meta.fields[name].get_db_type() def get_displayed_type(self): return "Nested (\n%s \n)" % self.field_type.get_create_sql() def to_python(self, value): if not value or value == "[]": return [] value = literal_eval(value) return [ { f.name: f.to_python(v.strip("'")) for f, v in (dict(zip(self.field_type._meta.ordered_fields, v)).items()) } for v in value ] def get_select_sql(self): m = [ "toString(%s.%s[x])" % (self.name, f.name) for f in self.field_type._meta.ordered_fields ] r = [ "arrayMap(x -> [%s], arrayEnumerate(%s.%s))" % (",".join(m), self.name, self.field_type.get_pk_name()) ] return "".join(r)
true
0cdfd467f31e9f092a60f613b7a4a636ce06790f
Python
qmnguyenw/python_py4e
/geeksforgeeks/python/python_all/80_10.py
UTF-8
2,301
3.734375
4
[]
no_license
Python | Rear stray character String split Sometimes, while working with Python Strings, we can have problem in which we need to split a string. But sometimes, we can have a case in which we have after splitting a blank space at rear end of list. This is usually not desired. Lets discussed ways in which this can be avoided. **Method #1 : Usingsplit() + rstrip()** The combination of above functions can be used to solve this problem. In this, we remove the stray character from the string before split(), to avoid the empty string in split list. __ __ __ __ __ __ __ # Python3 code to demonstrate working of # Rear stray character String split # Using split() + rstrip() # initializing string test_str = 'gfg, is, best, ' # printing original string print("The original string is : " + test_str) # Rear stray character String split # Using split() + rstrip() res = test_str.rstrip(', ').split(', ') # printing result print("The evaluated result is : " + str(res)) --- __ __ **Output :** The original string is : gfg, is, best, The evaluated result is : ['gfg', 'is', 'best'] **Method #2 : Usingsplit()** The use of rstrip() can be avoided by passing additional arguments while performing the split(). __ __ __ __ __ __ __ # Python3 code to demonstrate working of # Rear stray character String split # Using split() # initializing string test_str = 'gfg, is, best, ' # printing original string print("The original string is : " + test_str) # Rear stray character String split # Using split() res = test_str.split(', ')[0:-1] # printing result print("The evaluated result is : " + str(res)) --- __ __ **Output :** The original string is : gfg, is, best, The evaluated result is : ['gfg', 'is', 'best'] Attention geek! Strengthen your foundations with the **Python Programming Foundation** Course and learn the basics. To begin with, your interview preparations Enhance your Data Structures concepts with the **Python DS** Course. My Personal Notes _arrow_drop_up_ Save
true
28cc67917715f6c9ede4590b4c3962532693bf83
Python
andrenasx/FEUP-MNUM
/Segundo Teste/2016T2/4.py
UTF-8
250
3.140625
3
[]
no_license
# -*- coding: utf-8 -*- """ Created on Mon Dec 9 21:16:39 2019 @author: fmna """ def dyx(x,y): return -0.25*(y-42) def euler(T,t,tf,h): while(t<tf): T+=h*dyx(t,T) t+=h return T #euler(10,5,5+2*0.4,0.4)
true
6707e782bcb42b5bc6a72cd8282efdc575e2c2c7
Python
dcarrillo11/PHaDA
/features.py
UTF-8
2,011
3.0625
3
[]
no_license
#PHaDA: features v1.0 #Daniel Carrillo Martin import os import shutil from datetime import datetime from subprocess import Popen,PIPE,call from time import sleep from Bio import SeqIO def directorer(filequery,filesubject): """filequery: query fasta file filesubject: subject fasta file This functions creates the main directories used for the script and make a copy of the fasta files into the Data subdirectory.""" dt = datetime.now() maindir = "PHaDA_"+dt.strftime("%Y-%m-%d_%H-%M-%S") os.mkdir(maindir) os.mkdir("%s/Data/" % maindir) os.mkdir("%s/Results/" % maindir) shutil.copy2(filequery, "./%s/Data/" % maindir) shutil.copy2(filesubject, "./%s/Data/" % maindir) os.chdir(maindir) print("Directory %s has been created!" % maindir) print("Results will be saved there.") sleep(3) def isfasta(filename): """"filename: a file for creating a dictionary and testing. This function check if the file introduced is a fasta file while creating a dictionary of the fasta file. Returns the dictionary, bul also True if filename is a fasta file. False if it is not.""" with open(filename, "r") as handle: fastadict = SeqIO.to_dict(SeqIO.parse(handle, "fasta")) if fastadict: test = True else: test = False return test,fastadict def installcheck(command): """command = a bash command to check. This function checks whether a bash package is installed or not. Returns True if it is installed. False, if it is not.""" try: Popen([command,"-h"], stderr=PIPE, stdout=PIPE) return True except: return False def setup(): for x in range(0,4): print("> Checking everything is okay","."*x, end="\r") sleep(0.5) def header(): call("clear",shell=True) print("\n -------------------") print("\tPHaDA v1.0") print(" -------------------") print("> Daniel Carrillo, 2020 <\n")
true
ae189caa08994b60d3490b83a17a690699c69f1e
Python
fedetft/tdmh
/experiments/scripts/old/extract_graph.py
UTF-8
704
2.859375
3
[]
no_license
#!/usr/bin/python import re import sys from graphviz import Graph dot = Graph(name='Topology') dot.graph_attr['rankdir'] = 'LR' nodes = [] fname = (sys.argv[1][0: sys.argv[1].rindex(".")] if sys.argv[1].index(".") > 0 else sys.argv[1]) + '.pdf' with open(sys.argv[1], 'r') as fin: line = fin.readline() while line: node_a = int(line[1]) node_b = int(line[5]) if node_a not in nodes: dot.node(str(node_a), str(node_a)) if node_b not in nodes: dot.node(str(node_b), str(node_b)) m = re.search(r'([^ ]+) %$', line) dot.edge(str(node_a), str(node_b), m.group(1) + "%") line = fin.readline() print dot.render(fname)
true
75d596a1db2dc721cf6706059b6743a10f3827c7
Python
fherrmannsdoerfer/masterArbeit
/scriptsForPictures/compareSkellamVariance.py
UTF-8
2,686
2.828125
3
[]
no_license
import numpy as np import matplotlib.pyplot as plot def doSkellam(data): diffs=data[1:]-data[:-1] meandiff = (diffs[0]-diffs[-1])/np.float(data.shape[0]) sig2 = np.sum((meandiff-diffs)**2)/(data.shape[0]-1) return (meandiff+sig2)/2. listvarvar = [] listvarskellam = [] listmeanskellam = [] listmeanvar=[] for i in range(1,40): print i listvar =[] listskellam = [] for j in range(200000): data = np.random.poisson(i,200) listvar.append(np.var(data)) listskellam.append(doSkellam(data)) listvarvar.append(np.var(listvar)) listvarskellam.append(np.var(listskellam)) listmeanskellam.append(np.mean(listskellam)) listmeanvar.append(np.mean(listvar)) plot.figure(1) plot.plot(range(1,40), listvarvar, linewidth = 3, label="variance") plot.plot(range(1,40), listvarskellam, linewidth = 3, label="Skellam") x0=0 x1=40 y0=0 y1=40 dx = (x1-x0)/.8 dy = (y1-y0)/.8 xklein0=38 xklein1=39 yklein0=37.8 yklein1=39.2 plot.legend(loc = 'upper left', bbox_to_anchor = (0.1, 0.9), prop={'size':15}) plot.xlabel("mean of the simulated Poisson distribution", fontsize=15) plot.ylabel("variance of the estimated mean", fontsize=15) plot.tick_params(axis='both', labelsize=12) plot.savefig('/home/herrmannsdoerfer/MasterArbeit/pictures/SkellamVarVar.png', dpi=300) plot.figure(2) plot.axes([0.1,0.1,.8,.8]) plot.plot(range(1,40), listmeanvar, linewidth = 3, label="variance") plot.plot(range(1,40), listmeanskellam, linewidth = 3, label="Skellam") plot.axis([x0,x1,y0,y1]) plot.plot([xklein0,xklein1,xklein1,xklein0,xklein0],[yklein0,yklein0,yklein1,yklein1,yklein0], color = [0,0,0]) plot.plot([xklein0,(0.2-0.1)*dx],[yklein0,(0.55-0.1)*dy], color = [0,0,0], linestyle = '--') plot.plot([xklein0,(0.2-0.1)*dx],[yklein1,(0.55+0.3-0.1)*dy], color = [0,0,0], linestyle = '--') plot.plot([xklein1,(0.2+0.3-0.1)*dx],[yklein0,(0.55-0.1)*dy], color = [0,0,0], linestyle = '--') plot.plot([xklein1,(0.2+0.3-0.1)*dx],[yklein1,(0.55+0.3-0.1)*dy], color = [0,0,0], linestyle = '--') plot.xlabel("mean of the simulated Poisson distribution", fontsize=15) plot.ylabel("mean of the estimated mean", fontsize=15) plot.tick_params(axis='both', labelsize=12) plot.legend(loc = 'upper left', bbox_to_anchor = (0.6, 0.4), prop={'size':15}) plot.axes([0.2,0.55,.3,.3]) plot.plot(range(1,40), listmeanvar) plot.plot(range(1,40), listmeanskellam) plot.axis([xklein0,xklein1,yklein0,yklein1]) plot.xlabel("mean of the simulated Poisson distribution", fontsize=10) plot.ylabel("mean of the estimated mean", fontsize=10) plot.tick_params(axis='both', labelsize=12) plot.savefig('/home/herrmannsdoerfer/MasterArbeit/pictures/SkellamVarMean.png', dpi=300)
true
7655e51aa224f544226172a1c4c7be0f85fdd6ec
Python
paramita2302/algorithms
/iv/Strings/Palindrome.py
UTF-8
839
3.859375
4
[ "MIT" ]
permissive
class Palindrome(): # @param A : string # @return an integer def isPalindrome(self, A): n = len(A) if len(A) < 2: return 1 i = 0 j = n -1 while i < j: if (A[i]).isalnum() and (A[j]).isalnum(): print((A[i]).lower()) print(A[j].lower()) if A[i].lower() == A[j].lower(): i = i + 1 j = j - 1 continue else: return 0 elif not (A[i]).isalnum(): i = i + 1 elif not (A[j]).isalnum(): j = j - 1 return 1 A = "A man, a plan, a canal: Panama" # A = "race a car" # # A = "" # A = "a" A = "abba" A = "aba" A = "Malayalam" a = Palindrome() print(a.isPalindrome(A))
true
fac34e0cbc83b5acaebbbb2346201622afbef9b3
Python
wulinlw/leetcode_cn
/leetcode-vscode/92.反转链表-ii.py
UTF-8
2,076
3.828125
4
[]
no_license
# # @lc app=leetcode.cn id=92 lang=python3 # # [92] 反转链表 II # # https://leetcode-cn.com/problems/reverse-linked-list-ii/description/ # # algorithms # Medium (49.23%) # Likes: 314 # Dislikes: 0 # Total Accepted: 38.3K # Total Submissions: 77.5K # Testcase Example: '[1,2,3,4,5]\n2\n4' # # 反转从位置 m 到 n 的链表。请使用一趟扫描完成反转。 # # 说明: # 1 ≤ m ≤ n ≤ 链表长度。 # # 示例: # # 输入: 1->2->3->4->5->NULL, m = 2, n = 4 # 输出: 1->4->3->2->5->NULL # # # @lc code=start # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def initlinklist(self, nums): head = ListNode(nums[0]) re = head for i in nums[1:]: re.next = ListNode(i) re = re.next return head def printlinklist(self, head): re = [] while head: re.append(head.val) head = head.next print(re) def reverseBetween(self, head: ListNode, m: int, n: int) -> ListNode: successor = None def reverseN(head, n): nonlocal successor if n==1: # 记录第 n + 1 个节点 successor = head.next return head last = reverseN(head.next, n-1) head.next.next = head head.next = successor return last if m==1: return reverseN(head, n) head.next = self.reverseBetween(head.next, m-1, n-1) return head # 写出了翻转前n个元素的方法后, # 翻转 m 到 n 的问题,和 m-1 到 n-1 的问题一样,都是区间翻转 # 那当 m==1 时,问题退化成了翻转前 n 个元素 # 递归就可以了 # head.next 在递归中接上翻转后到节点 # @lc code=end nums = [1,2,3,4,5] m = 2 n = 4 o = Solution() head = o.initlinklist(nums) o.printlinklist(head) h = o.reverseBetween(head, m, n) o.printlinklist(h)
true
b99f0f7eb61850c527bc566cb41233ba9a114e11
Python
SWHarrison/CS-2.1-Trees-Sorting
/Code/tree_project/B_plus_tree.py
UTF-8
11,251
3.796875
4
[]
no_license
class B_plus_tree_node: def __init__(self, is_leaf = True): self.keys = [] self.children = [] self.is_leaf = is_leaf self.next_leaf = None # currently unused and non-functional def add_node(self, key, new_node): for i in range(len(self.keys)): if key < self.keys[i]: #self.children[i] = new_node # change to insert at i self.children = self.children[0:i] + [key] + self.children[i:] return self.children.append(new_node) def __repr__(self): return str(self.keys) class B_plus_tree: def __init__(self,order = 4): self.root = None self.size = 0 self.order = order def is_empty(self): return self.size == 0 def contains(self, item): if self.is_empty(): return False current_node = self.root while current_node.is_leaf == False: print(current_node) child_index = 0 while child_index < len(current_node.keys) and item >= current_node.keys[child_index]: print(item, " is greater than or equal to", current_node.keys[child_index]) child_index += 1 current_node = current_node.children[child_index] print("current node is",current_node, "checking for", item) print("current node leaf?", current_node.is_leaf) return item in current_node.keys def all_values(self): to_return = [] current_node = self.root while current_node.is_leaf == False: current_node = current_node.children[0] while current_node.next_leaf: for item in current_node.keys: to_return.append(item) current_node = current_node.next_leaf for item in current_node.keys: to_return.append(item) return to_return def insert(self,item): # empty tree creates root if self.is_empty(): self.root = B_plus_tree_node() self.root.keys.append(item) self.size += 1 else: current_node = self.root eject = self._insert_helper(current_node, item) self.size += 1 if eject != None: self.root = B_plus_tree_node(False) self.root.keys.append(eject[0]) self.root.children.append(eject[2]) self.root.children.append(eject[1]) print("new root is",self.root) print("children are",self.root.children) ''' From Wikipedia B+ tree article Perform a search to determine what bucket the new record should go into. If the bucket is not full (at most b − 1) entries after the insertion), add the record. Otherwise, before inserting the new record split the bucket original node has ⎡(L+1)/2⎤ items new node has ⎣(L+1)/2⎦ items Move ⎡(L+1)/2⎤-th key to the parent, and insert the new node to the parent. Repeat until a parent is found that need not split. If the root splits, treat it as if it has an empty parent and split as outline above.''' def _insert_helper(self, current_node, item): """ Recursive helper function that adds new item to tree. Always adds item to leaf node, then pushes middle value up if needed. """ if current_node.is_leaf: print("current node is:",current_node) current_node.keys.append(item) keys = current_node.keys index = len(keys) - 1 while index > 0 and keys[index] < keys[index - 1]: print(item, "is smaller than",keys[index - 1]) print("swapping") keys[index], keys[index - 1] = keys[index - 1], keys[index] print(current_node) index -= 1 # if number of keys is greater than maximum number of keys, eject middle key to parent if len(keys) >= self.order: print("current node full, ejecting") print("current node before ejection:",current_node) mid = len(keys) // 2 #eject = keys.pop(len(keys)//2) eject = keys[mid] print("ejecting",eject) new_node = B_plus_tree_node() new_node.keys = keys[mid:] new_node.next_leaf = current_node.next_leaf current_node.keys = keys[0:mid] current_node.next_leaf = new_node print("new node (right)",new_node) print("old node (left)",current_node) return (eject, new_node, current_node) else: return None else: child_index = len(current_node.keys) for i in range(len(current_node.keys)): print("item:",item,"key:",current_node.keys[i]) if item <= current_node.keys[i]: print(item," is less than",current_node.keys[i]) child_index = i break print("child index is",child_index, "node will be",current_node.children[child_index]) child_node = current_node.children[child_index] ejected_item = self._insert_helper(child_node, item) if ejected_item == None: return None else: print("ejected items",ejected_item) print("current_node",current_node) print("current_node children are", current_node.children) to_add = ejected_item[0] new_node = ejected_item[1] old_node = ejected_item[2] current_node.children.insert(child_index+1,new_node) print("current_node children",current_node.children) # should now handle next_leaf when at leaf level #if old_node.is_leaf: # old.node.next_leaf = new_node current_node.keys.append(to_add) keys = current_node.keys index = len(keys) - 1 while index > 0 and keys[index] < keys[index - 1]: keys[index], keys[index - 1] = keys[index - 1], keys[index] index -= 1 # if number of keys is greater than maximum number of keys, eject middle key to parent if len(keys) >= self.order: print("current node full, ejecting") print("current node before ejection:",current_node) mid = len(keys) // 2 #eject = keys.pop(len(keys)//2) eject = keys[mid] print("ejecting*****",eject) new_node = B_plus_tree_node(False) new_node.keys = keys[mid+1:] new_node.children = current_node.children[mid+1:] current_node.keys = keys[0:mid] current_node.children = current_node.children[0:mid+1] print("new node (right)",new_node) print("old node (left)",current_node) return (eject, new_node, current_node) else: return None def delete(self, item): if self.is_empty(): raise ValueError("Tree is empty!") else: current_node = self.root key_changes = self._delete_helper(current_node, item) self.size -= 1 # first attempt at delete oh lawdy this sucks ''' def _delete_helper(self, current_node, item): if current_node.is_leaf: removed = None for i in range(len(current_node.keys)): if current_node.keys[i] == item: removed = current_node.keys.pop(i) break # no item removed, item not in tree if removed == None: print("value not found") return (None, False) #raise ValueError(item, "not in tree!") else: # check if work needs to be done to fix tree if len(current_node.keys) == 0: return (removed, True) else: return (removed, False) else: child_index = len(current_node.keys) for i in range(len(current_node.keys)): #print("item:",item,"key:",current_node.keys[i]) if item <= current_node.keys[i]: #print(item," is less than",current_node.keys[i]) child_index = i break print("child index is",child_index, "node will be",current_node.children[child_index]) child_node = current_node.children[child_index] returned_value = self._delete_helper(child_node, item) if returned_value[1] == False: if returned_value[0] in current_node.keys: # need to change index keys in current_node to fix tree structure print("why is this so hard") return None else: if child_node.is_leaf: # need to fix tree, start by checking siblings left_sibling = current_node.children[child_index - 1] if child_index > 0 else None if left_sibling: if len(left_sibling.keys) >= 2: # left sibling has enough to steal from value = left_sibling.keys.pop() child_node.keys.insert(0,value) current_node.keys[child_index - 1] = value return (removed, False) right_sibling = current_node.children[child_index + 1] if child_index < len(current_node.children) - 1 else None if right_sibling: if len(right_sibling.keys) >= 2: # left sibling has enough to steal from value = right_sibling.keys.pop(0) child_node.keys.append(value) current_node.keys[child_index] = value return (removed, False) # no siblings can give value, merging necessary''' def test_bptree(): tree = B_plus_tree(5) items = [40,30,20,50,60,10,70,80,15,25,45,85] for item in items: print("inserting", item) tree.insert(item) print("root",tree.root) print("children",len(tree.root.children)) for child in tree.root.children: print(child) print("children are",child.children) for child2 in child.children: print(child2) print("next leaf is",child2.next_leaf) print("next leaf is",child.next_leaf) print("\n\n *********** DONE INSERTING") print(tree.contains(60)) print(tree.contains(40)) print(tree.contains(75)) print(tree.all_values()) tree.delete(40) if __name__ == '__main__': test_bptree()
true
b08f4fc892d2727a77ca5945e1e017bcd59c1ac4
Python
Orbedi/Daily-coding-problem
/Daily_coding_problem_2.py
UTF-8
1,519
4.59375
5
[]
no_license
""" Problem: Given an array of integers, return a new array such that each element at index i of the new array is the product of all the numbers in the original array except the one at i. For example, if our input was [1, 2, 3, 4, 5], the expected output would be [120, 60, 40, 30, 24]. If our input was [3, 2, 1], the expected output would be [2, 3, 6]. Follow-up: what if you can't use division? """ def product_of_each_element(list_): result = [1] * len(list_) for i, elem_i in enumerate(list_): for j, elem_j in enumerate(list_): if i != j: result[i] *= elem_j return result # If there is a zero in the list, this method will not work correctly def product_of_each_element_with_division(list_): result = [1] * len(list_) for i, elem in enumerate(list_[1::]): result[0] *= elem for i in range(1, len(list_)): result[i] = int((result[i-1] / list_[i]) * list_[i-1]) return result def product_of_each_element_left_to_right(list_): aux = 1 result = [1] * len(list_) for i,elem in enumerate(list_): result[i] = aux aux *= elem aux = 1 for i in range(len(list_)-1, -1, -1): result[i] *= aux aux *= list_[i] return result def main(): list_ = [2.5, 7.6, 1.2] list_ = [3, 5, 2, 1, 6] print(product_of_each_element(list_)) print(product_of_each_element_with_division(list_)) print(product_of_each_element_left_to_right(list_)) if __name__ == '__main__': main()
true
765fbb9f14447f829cdba2fc8a957a1512507a02
Python
chrismabdo/airport-python
/apps/weather.py
UTF-8
191
3.03125
3
[]
no_license
import random class Weather: def __init__(self): self.conditions = ["sunny", "overcast", "stormy"] def weather_check(self): return random.choice(self.conditions)
true
5b5ad3ea5ad60085ceec65e5999aa5c98cf58fd8
Python
brennan6/DSCI551
/project_final/mysqlRanksConnector.py
UTF-8
868
2.640625
3
[]
no_license
from mysql.connector import Error import mysql.connector import json cnx = mysql.connector.connect(host = 'project-dsci551-ranks.c8u9e3pxnupz.us-east-1.rds.amazonaws.com', user = 'mbrennan6', password = 'songdsci551', database = 'songRanks') def pull_down_ranks(): """ (2) Pull down all of the necessary data from the Ranks MySQL Database in RDS """ global cnx ranks_dict = {} ranks_dict["ranks"] = [] cursor = cnx.cursor() query = "select * from ranks;" cursor.execute(query) rows = cursor.fetchall() for rank in rows: ranks_dict["ranks"].append({"song": rank[0], "score": rank[1]}) return ranks_dict def write_json_file(dict_ranks): with open('ranks_data.json', 'w') as outfile: json.dump(dict_ranks["ranks"], outfile) ranks_d = pull_down_ranks() write_json_file(ranks_d)
true
07fa944369a136a34c5d1b9b20b56821eed2da03
Python
mylesmcleroy/planar-data-classifier
/planar_data_classifier.py
UTF-8
12,295
3.59375
4
[]
no_license
# coding: utf-8 # Planar data classification with one hidden layer # Packages # - [numpy](www.numpy.org) is the fundamental package for scientific computing with Python. # - [sklearn](http://scikit-learn.org/stable/) provides simple and efficient tools for data mining and data analysis. # - [matplotlib](http://matplotlib.org) is a library for plotting graphs in Python. # - test_cases provides some test examples to assess the correctness of these functions # - planar_utils provide various useful functions used in this classifier # Package imports import numpy as np import matplotlib.pyplot as plt from test_cases import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets get_ipython().magic('matplotlib inline') np.random.seed(1) # set a seed so that the results are consistent # Dataset X, Y = load_planar_dataset() # Visualize the dataset using matplotlib. # The data looks like a "flower" with some red (label y=0) and some blue (y=1) points. plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral); # X - a numpy-array (matrix) that contains features (x1, x2) # Y - a numpy-array (vector) that contains labels (red:0, blue:1). # Verify X and Y shape_X = X.shape shape_Y = Y.shape m = shape_Y[1] # training set size print('The shape of X is: ' + str(shape_X)) print('The shape of Y is: ' + str(shape_Y)) print('I have m = %d training examples!' % (m)) # Logistic Regression # Before building the neural network, first see how logistic regression performs on this problem. # Train the logistic regression classifier clf = sklearn.linear_model.LogisticRegressionCV(); clf.fit(X.T, Y.T); # Plot the decision boundary for logistic regression plot_decision_boundary(lambda x: clf.predict(x), X, Y) plt.title("Logistic Regression") # Print accuracy LR_predictions = clf.predict(X.T) print('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + "(percentage of correctly labelled datapoints)") # The dataset is not linearly separable, so logistic regression doesn't perform well. # Neural Network model # The general methodology to build a Neural Network is to: # 1. Define the neural network structure (# of input units, # of hidden units, etc). # 2. Initialize the model's parameters # 3. Loop: # - Implement forward propagation # - Compute loss # - Implement backward propagation to get the gradients # - Update parameters (gradient descent) # Define neural network structure def layer_sizes(X, Y): """ Arguments: X -- input dataset of shape (input size, number of examples) Y -- labels of shape (output size, number of examples) Returns: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ n_x = X.shape[0] # size of input layer n_h = 4 # size of hidden layer n_y = Y.shape[0] # size of output layer return (n_x, n_h, n_y) # Test layer_sizes X_assess, Y_assess = layer_sizes_test_case() (n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess) print("The size of the input layer is: n_x = " + str(n_x)) print("The size of the hidden layer is: n_h = " + str(n_h)) print("The size of the output layer is: n_y = " + str(n_y)) # Initialize the model's parameters def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(2) # set up a seed so that output matches test cases W1 = np.random.randn(n_h, n_x) * 0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h) * 0.01 b2 = np.zeros((n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters # Test initialize_parameters n_x, n_h, n_y = initialize_parameters_test_case() parameters = initialize_parameters(n_x, n_h, n_y) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # One pass of forward prop def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- Python dictionary containing parameters (output of initialization function) Returns: A2 -- sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ # Retrieve each parameter from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] # Implement forward prop to calculate A2 (probabilities) Z1 = np.dot(W1, X) + b1 A1 = np.tanh(Z1) Z2 = np.dot(W2, A1) + b2 A2 = sigmoid(Z2) cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} return A2, cache # Test forward_propagation X_assess, parameters = forward_propagation_test_case() A2, cache = forward_propagation(X_assess, parameters) print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2'])) # Compute the value of the cost J(w, b). def compute_cost(A2, Y, parameters): """ Computes the cross-entropy cost. Arguments: A2 -- sigmoid output of the second activation, of shape (1, # of examples) Y -- "true" labels vector of shape (1, # of examples) parameters -- Python dictionary containing parameters W1, b1, W2 and b2 Returns: cost -- cross-entropy cost """ m = Y.shape[1] # number of examples # Compute the cross-entropy cost logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2)) cost = -np.sum(logprobs) / m cost = np.squeeze(cost) # makes sure cost is the dimension we expect. # E.g., turns [[17]] into 17 return cost # Test compute_cost A2, Y_assess, parameters = compute_cost_test_case() print("cost = " + str(compute_cost(A2, Y_assess, parameters))) # Backward prop using the cache computed during forward propagation. def backward_propagation(parameters, cache, X, Y): """ Arguments: parameters -- Python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, # of examples) Y -- "true" labels vector of shape (1, # of examples) Returns: grads -- python dictionary containing gradients with respect to different parameters """ m = X.shape[1] # First, retrieve W1 and W2 from the dictionary "parameters". W1 = parameters['W1'] W2 = parameters['W2'] # Retrieve also A1 and A2 from dictionary "cache". A1 = cache['A1'] A2 = cache['A2'] # Backward propagation: calculate dW1, db1, dW2, db2. dZ2 = A2 - Y dW2 = 1/m * np.dot(dZ2, A1.T) db2 = 1/m * np.sum(dZ2, axis=1, keepdims=True) dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2)) dW1 = 1/m * np.dot(dZ1, X.T) db1 = 1/m * np.sum(dZ1, axis=1, keepdims=True) grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} return grads # Test backward_propagation parameters, cache, X_assess, Y_assess = backward_propagation_test_case() grads = backward_propagation(parameters, cache, X_assess, Y_assess) print("dW1 = "+ str(grads["dW1"])) print("db1 = "+ str(grads["db1"])) print("dW2 = "+ str(grads["dW2"])) print("db2 = "+ str(grads["db2"])) # Update parameters using gradient descent def update_parameters(parameters, grads, learning_rate = 1.2): """ Updates parameters using the gradient descent update rule. Arguments: parameters -- Python dictionary containing parameters grads -- Python dictionary containing gradients Returns: parameters -- Python dictionary containing updated parameters """ # Retrieve each parameter from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] # Retrieve each gradient from the dictionary "grads" dW1 = grads['dW1'] db1 = grads['db1'] dW2 = grads['dW2'] db2 = grads['db2'] # Update rule for each parameter W1 -= learning_rate * dW1 b1 -= learning_rate * db1 W2 -= learning_rate * dW2 b2 -= learning_rate * db2 parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters # Test update_parameters parameters, grads = update_parameters_test_case() parameters = update_parameters(parameters, grads) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # Create neural network model using above functions def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False): """ Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of hidden layer num_iterations -- # of iterations in gradient descent loop print_cost -- if True, print cost every 1000 iterations Returns: parameters -- parameters learnt by the model. """ np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2] # Initialize parameters, then retrieve W1, b1, W2, b2. parameters = initialize_parameters(n_x, n_h, n_y) W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] # Loop (gradient descent) for i in range(num_iterations): # Forward propagation. A2, cache = forward_propagation(X, parameters) # Cost function. cost = compute_cost(A2, Y, parameters) # Backpropagation. grads = backward_propagation(parameters, cache, X, Y) # Gradient descent parameter update. parameters = update_parameters(parameters, grads) # Print the cost every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration %i: %f" %(i, cost)) return parameters # Test nn_model X_assess, Y_assess = nn_model_test_case() parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=True) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # Predict using nn_model def predict(parameters, X): """ Using the learned parameters, predicts a class for each example in X Arguments: parameters -- Python dictionary containing parameters X -- input data of size (n_x, m) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold. A2, cache = forward_propagation(X, parameters) predictions = A2 >= 0.5 return predictions # Test predict parameters, X_assess = predict_test_case() predictions = predict(parameters, X_assess) print("predictions mean = " + str(np.mean(predictions))) # Run the model and see how it performs on a planar dataset. # Build a model with a n_h-dimensional hidden layer parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True) # Plot the decision boundary plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) plt.title("Decision Boundary for hidden layer size " + str(4)) # Print accuracy predictions = predict(parameters, X) print('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
true
cf29797e76a030296d6e52e6cf545063b6b3bf60
Python
liuhanyu200/pygame
/8/8-9.py
UTF-8
174
2.859375
3
[ "BSD-3-Clause" ]
permissive
# coding:utf-8 def show_magicians(magicians): for magician in magicians: print(magician) show_magicians(['gekongquwu', 'kongshoutaobailang', 'dianjujinghun'])
true
031ed4581c78c49b3b3552a76ab014529852c95e
Python
Bassmann/deepsecurity
/python/computer-status.py
UTF-8
7,268
2.625
3
[]
no_license
import json import os import sys import warnings import deepsecurity as api from deepsecurity.rest import ApiException from datetime import datetime def format_for_csv(line_item): """Converts a list into a string of comma-separated values, ending with a newline character. :param line_item: The list of lists to convert to a string of comma-spearated values :return: A string that can be saved as a CSV file. """ csv_line = "" for num, item in enumerate(line_item): csv_line += str(item) if num != (len(line_item) - 1): csv_line += ";" else: csv_line += "\n" return csv_line # Setup if not sys.warnoptions: warnings.simplefilter("ignore") # Get the DSM URL and API key from a JSON file property_file = os.path.dirname(os.path.abspath(__file__)) + '/../properties.json' with open(property_file) as raw_properties: properties = json.load(raw_properties) secret_key = properties['secretkey'] url = properties['url'] api_version = 'v1' # Add DSM host information to the API client configuration configuration = api.Configuration() configuration.host = url configuration.api_key['api-secret-key'] = secret_key # Initialization # Set Any Required Values api_instance = api.ComputersApi(api.ApiClient(configuration)) # Add AV and IPS information expand_options = api.Expand() expand_options.add(api.Expand.computer_status) expand_options.add(api.Expand.security_updates) expand_options.add(api.Expand.intrusion_prevention) expand_options.add(api.Expand.anti_malware) expand_options.add(api.Expand.interfaces) expand_options.add(api.Expand.azure_arm_virtual_machine_summary) expand = expand_options.list() overrides = False # Set search criteria search_criteria = api.SearchCriteria() search_criteria.id_value = 0 search_criteria.id_test = "greater-than" # Create a search filter with maximum returned items page_size = 50 search_filter = api.SearchFilter() search_filter.max_items = page_size search_filter.search_criteria = [search_criteria] # Add column titles to comma-separated values string csv = "Host Name;Displayname;DNS Name;Agent version;Platform;IP Address;Agent Status;Agent Status Message;PolicyId;GroupId;Last Communication;Last Policy Sent;Last Policy Success;Update Status;AM Module State;AM Status;AM Status Message;AM Update Status;IPS Status;IPS Status Message\n" try: # Perform the search and do work on the results print("Start reading computers") while True: computers = api_instance.search_computers(api_version, search_filter=search_filter, expand=expand, overrides=False) num_found = len(computers.computers) if num_found == 0: print("No computers found.") break for computer in computers.computers: # Module information to add to the CSV string module_info = [] module_info.append(computer.host_name) module_info.append(computer.display_name) if computer.azure_arm_virtual_machine_summary: module_info.append(computer.azure_arm_virtual_machine_summary.dns_name) else: module_info.append("None") module_info.append(computer.agent_version) module_info.append(computer.platform) ips_list = [] if computer.interfaces: for interface in computer.interfaces.interfaces: if type(interface.ips) is list: ips_list.append(", ".join(interface.ips)) if computer.azure_arm_virtual_machine_summary: ips_list.append(computer.azure_arm_virtual_machine_summary.public_ip_address) ips_list.append(computer.azure_arm_virtual_machine_summary.private_ip_address) module_info.append(" ".join(ips_list)) module_info.append(computer.computer_status.agent_status) agent_status_message = ' '.join(computer.computer_status.agent_status_messages) module_info.append(agent_status_message) module_info.append(computer.policy_id) module_info.append(computer.group_id) if computer.last_agent_communication: posix_time = int(computer.last_agent_communication)/1000 last_comm = datetime.fromtimestamp(posix_time).isoformat() else: last_comm = None if computer.last_send_policy_request: posix_time = int(computer.last_send_policy_request)/1000 last_send = datetime.fromtimestamp(posix_time).isoformat() else: last_send = None if computer.last_send_policy_success: posix_time = int(computer.last_send_policy_success)/1000 last_success = datetime.fromtimestamp(posix_time).isoformat() else: last_success = None module_info.append(last_comm) module_info.append(last_send) module_info.append(last_success) if computer.security_updates: update_status = "{} ({})".format(computer.security_updates.update_status.status,computer.security_updates.update_status.status_message) else: update_status = "No update status available" module_info.append(update_status) module_info.append(computer.anti_malware.state) # Check that the computer has a an agent status if computer.anti_malware.module_status: am_agent_status = computer.anti_malware.module_status.agent_status am_agent_status_message = computer.anti_malware.module_status.agent_status_message else: am_agent_status = None am_agent_status_message = None module_info.append(am_agent_status) module_info.append(am_agent_status_message) update_status = [] if computer.security_updates: for am_update in computer.security_updates.anti_malware: update_status.append(" {} ({} {})".format(am_update.name, am_update.version, am_update.latest)) module_info.append(''.join(update_status)) if computer.intrusion_prevention.module_status: ips_agent_status = computer.intrusion_prevention.module_status.agent_status else: ips_agent_status = None module_info.append(ips_agent_status) module_info.append(computer.intrusion_prevention.module_status.agent_status_message) # Add the module info to the CSV string csv += format_for_csv(module_info) # Get the ID of the last computer in the page and return it with the # number of computers on the page last_id = computers.computers[-1].id search_criteria.id_value = last_id print("Last ID: " + str(last_id), "Computers found: " + str(num_found)) if num_found != page_size: break with open("../output/computers.csv", "w") as text_file: text_file.write(csv) except ApiException as e: print("An exception occurred when calling ComputersApi.list_computers: %s\n" % e)
true
584bc2883fc95f60403141f029fab7a1b61ace20
Python
etmitchell/MTTime
/MTTime.py
UTF-8
2,004
3.28125
3
[]
no_license
from datetime import datetime import time import Tkinter def DateTimeInMagic(MEDITECH): MEDITECH = float(long(MEDITECH)) MTTime = MEDITECH if time.daylight == 1: #Add the difference between UTC Daylight Savings and MEDITECH time (320734800 seconds) MTTime += 320731200 else: #Add the difference between UTC and MEDITECH time (320734800 seconds) MTTime += 320734800 #1068915786 = 1/13/14 17:03:06 EST #UTC time d = datetime.utcfromtimestamp(MTTime) #Calculate offset based off OS time UTC to EST offset offset = datetime.now() - datetime.utcnow() #Add offset to UTC return d + offset class TimeGUI(Tkinter.Tk): def __init__(self,parent): Tkinter.Tk.__init__(self,parent) self.parent = parent self.initialize() def initialize(self): self.grid() self.entryVariable = Tkinter.StringVar() self.entry = Tkinter.Entry(self,textvariable=self.entryVariable) self.entry.grid(column=0,row=0,sticky='EW') self.entry.bind("<Return>", self.OnPressEnter) self.entryVariable.set(u"Enter time here.") button = Tkinter.Button(self,text=u"Convert", command=self.OnButtonClick) button.grid(column=1,row=0) self.labelVariable = Tkinter.StringVar() label = Tkinter.Label(self,textvariable=self.labelVariable, anchor="w",fg="white",bg="lightblue") label.grid(column=0,row=1,columnspan=2,sticky='EW') self.labelVariable.set(u"Time:") self.grid_columnconfigure(0,weight=1) self.resizable(True,False) def OnButtonClick(self): self.labelVariable.set(DateTimeInMagic(self.entryVariable.get())) def OnPressEnter(self,event): self.labelVariable.set(DateTimeInMagic(self.entryVariable.get())) if __name__ == "__main__": app = TimeGUI(None) app.title('MEDITECH Time') app.mainloop()
true
a92c4d44866769a62a10908e3a1aaa0ae6fdb0c8
Python
shikha735/Programs
/Competitive Programming/IB_Strings_Reverse_String.py
UTF-8
422
3.75
4
[]
no_license
# https://www.interviewbit.com/problems/reverse-the-string/ ''' Given an input string, reverse the string word by word. Example: Given s = "the sky is blue", return "blue is sky the". ''' class Solution: # @param A : string # @return string def reverseWords(self, A): li = A.split() li.reverse() str = "" for i in li: str = str + i + ' ' return str[:-1]
true
0c855755ae66b018c20a0d7a2b57769e63a5f89f
Python
roquesrolando/holberton-system_engineering-devops
/0x15-api/3-dictionary_of_list_of_dictionaries.py
UTF-8
713
2.6875
3
[]
no_license
#!/usr/bin/python3 """Gather data from API""" import json import requests import sys if __name__ == "__main__": info = {} site = 'https://jsonplaceholder.typicode.com/' user = requests.get(site + 'users').json() for x in user: ID = x.get('id') dos = requests.get(site + 'todos?userId={}'.format(ID)).json() name = x.get('username') form = [] for i in dos: task = {'task': i['title'], 'completed': i['completed'], 'username': name } form.append(task) info[ID] = form with open('todo_all_employees.json', 'w') as export: json.dump(info, export)
true
1979b6d72815c967bf012d65effed314ceafdf31
Python
dm-alexi/acmp
/0001_0100/0031/0031.py
UTF-8
352
3.09375
3
[]
no_license
def derange(n): return 1 if n == 0 else 0 if n == 1 else n * derange(n - 1) + (-1)**n def c(n, k): a = b = 1 while n > k: a *= n b *= n - k n -= 1 return a // b with open("input.txt", "r") as f, open("output.txt", "w") as q: n, k = map(int, f.readline().split()) q.write(str(c(n, k) * derange(n - k)))
true
4a80871374293318b3ecc2737f15a675731c4bc3
Python
iamshivamgoswami/Random-DSA-Questions
/task scheduler.py
UTF-8
746
2.859375
3
[]
no_license
import collections class Solution: def leastInterval(self, tasks: List[str], k: int) -> int: s = "".join(tasks) c = collections.Counter(s) stack = sorted(c.items(), key=lambda x: x[1]) char, count = stack.pop() lst = [[char] for i in range(count)] while stack and stack[-1][1] == count: char, _ = stack.pop() for l in lst: l.append(char) res = "".join(c * n for c, n in stack) for i, c in enumerate(res): lst[i % (len(lst) - 1)].append(c) print(lst) Count = 0 for l in lst[:-1]: if len(l) <= k: print(l) Count += k - len(l) + 1 return Count + len(s)
true