sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def _register_self(self, logfile, key=JobDetails.topkey, status=JobStatus.unknown): """Runs this link, captures output to logfile, and records the job in self.jobs""" fullkey = JobDetails.make_fullkey(self.full_linkname, key) if fullkey in self.jobs: job_details = self.jobs[fullkey] job_details.status = status else: job_details = self._register_job(key, self.args, logfile, status)
Runs this link, captures output to logfile, and records the job in self.jobs
entailment
def _archive_self(self, logfile, key=JobDetails.topkey, status=JobStatus.unknown): """Write info about a job run by this `Link` to the job archive""" self._register_self(logfile, key, status) if self._job_archive is None: return self._job_archive.register_jobs(self.get_jobs())
Write info about a job run by this `Link` to the job archive
entailment
def _set_status_self(self, key=JobDetails.topkey, status=JobStatus.unknown): """Set the status of this job, both in self.jobs and in the `JobArchive` if it is present. """ fullkey = JobDetails.make_fullkey(self.full_linkname, key) if fullkey in self.jobs: self.jobs[fullkey].status = status if self._job_archive: self._job_archive.register_job(self.jobs[fullkey]) else: self._register_self('dummy.log', key, status)
Set the status of this job, both in self.jobs and in the `JobArchive` if it is present.
entailment
def _write_status_to_log(self, return_code, stream=sys.stdout): """Write the status of this job to a log stream. This is used to check on job completion.""" stream.write("Timestamp: %i\n" % get_timestamp()) if return_code == 0: stream.write("%s\n" % self._interface.string_successful) else: stream.write("%s %i\n" % (self._interface.string_exited, return_code))
Write the status of this job to a log stream. This is used to check on job completion.
entailment
def _finalize(self, dry_run=False): """Remove / compress files as requested """ for rmfile in self.files.temp_files: if dry_run: print("remove %s" % rmfile) else: os.remove(rmfile) for gzfile in self.files.gzip_files: if dry_run: # print ("gzip %s" % gzfile) pass else: os.system('gzip -9 %s' % gzfile)
Remove / compress files as requested
entailment
def update_args(self, override_args): """Update the argument used to invoke the application Note that this will also update the dictionary of input and output files. Parameters ----------- override_args : dict Dictionary of arguments to override the current values """ self.args = extract_arguments(override_args, self.args) self._latch_file_info() scratch_dir = self.args.get('scratch', None) if is_not_null(scratch_dir): self._file_stage = FileStageManager(scratch_dir, '.')
Update the argument used to invoke the application Note that this will also update the dictionary of input and output files. Parameters ----------- override_args : dict Dictionary of arguments to override the current values
entailment
def get_failed_jobs(self, fail_running=False, fail_pending=False): """Return a dictionary with the subset of jobs that are marked as failed Parameters ---------- fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed Returns ------- failed_jobs : dict Dictionary mapping from job key to `JobDetails` for the failed jobs. """ failed_jobs = {} for job_key, job_details in self.jobs.items(): if job_details.status == JobStatus.failed: failed_jobs[job_key] = job_details elif job_details.status == JobStatus.partial_failed: failed_jobs[job_key] = job_details elif fail_running and job_details.status == JobStatus.running: failed_jobs[job_key] = job_details elif fail_pending and job_details.status <= JobStatus.pending: failed_jobs[job_key] = job_details return failed_jobs
Return a dictionary with the subset of jobs that are marked as failed Parameters ---------- fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed Returns ------- failed_jobs : dict Dictionary mapping from job key to `JobDetails` for the failed jobs.
entailment
def check_job_status(self, key=JobDetails.topkey, fail_running=False, fail_pending=False, force_check=False): """Check the status of a particular job By default this checks the status of the top-level job, but can by made to drill into the sub-jobs. Parameters ---------- key : str Key associated to the job in question fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed force_check : `bool` Drill into status of individual jobs` instead of using top level job only Returns ------- status : `JobStatus` Job status flag """ if key in self.jobs: status = self.jobs[key].status if status in [JobStatus.unknown, JobStatus.ready, JobStatus.pending, JobStatus.running] or force_check: status = self._interface.check_job(self.jobs[key]) if status == JobStatus.running and fail_running: status = JobStatus.failed if status == JobStatus.pending and fail_pending: status = JobStatus.failed self.jobs[key].status = status if self._job_archive: self._job_archive.register_job(self.jobs[key]) else: status = JobStatus.no_job return status
Check the status of a particular job By default this checks the status of the top-level job, but can by made to drill into the sub-jobs. Parameters ---------- key : str Key associated to the job in question fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed force_check : `bool` Drill into status of individual jobs` instead of using top level job only Returns ------- status : `JobStatus` Job status flag
entailment
def check_jobs_status(self, fail_running=False, fail_pending=False): """Check the status of all the jobs run from this link and return a status flag that summarizes that. Parameters ---------- fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed Returns ------- status : `JobStatus` Job status flag that summarizes the status of all the jobs, """ n_failed = 0 n_partial = 0 n_passed = 0 n_total = 0 for job_details in self.jobs.values(): n_total += 1 if job_details.status in [JobStatus.failed, JobStatus.partial_failed]: n_failed += 1 elif fail_running and job_details.status == JobStatus.running: n_failed += 1 elif fail_pending and job_details.status == JobStatus.pending: n_failed += 1 elif job_details.status == JobStatus.done: n_passed += 1 if n_failed > 0: return JobStatus.failed elif n_passed == n_total: return JobStatus.done elif n_passed > 0: return JobStatus.running return JobStatus.pending
Check the status of all the jobs run from this link and return a status flag that summarizes that. Parameters ---------- fail_running : `bool` If True, consider running jobs as failed fail_pending : `bool` If True, consider pending jobs as failed Returns ------- status : `JobStatus` Job status flag that summarizes the status of all the jobs,
entailment
def get_jobs(self, recursive=True): """Return a dictionary with all the jobs For sub-classes, if recursive is True this will include jobs from any internal `Link` """ if recursive: ret_dict = self.jobs.copy() return ret_dict return self.jobs
Return a dictionary with all the jobs For sub-classes, if recursive is True this will include jobs from any internal `Link`
entailment
def check_input_files(self, return_found=True, return_missing=True): """Check if input files exist. Parameters ---------- return_found : list A list with the paths of the files that were found. return_missing : list A list with the paths of the files that were missing. Returns ------- found : list List of the found files, if requested, otherwise `None` missing : list List of the missing files, if requested, otherwise `None` """ all_input_files = self.files.chain_input_files + self.sub_files.chain_input_files return check_files(all_input_files, self._file_stage, return_found, return_missing)
Check if input files exist. Parameters ---------- return_found : list A list with the paths of the files that were found. return_missing : list A list with the paths of the files that were missing. Returns ------- found : list List of the found files, if requested, otherwise `None` missing : list List of the missing files, if requested, otherwise `None`
entailment
def check_output_files(self, return_found=True, return_missing=True): """Check if output files exist. Parameters ---------- return_found : list A list with the paths of the files that were found. return_missing : list A list with the paths of the files that were missing. Returns ------- found : list List of the found files, if requested, otherwise `None` missing : list List of the missing files, if requested, otherwise `None` """ all_output_files = self.files.chain_output_files + \ self.sub_files.chain_output_files return check_files(all_output_files, self._file_stage, return_found, return_missing)
Check if output files exist. Parameters ---------- return_found : list A list with the paths of the files that were found. return_missing : list A list with the paths of the files that were missing. Returns ------- found : list List of the found files, if requested, otherwise `None` missing : list List of the missing files, if requested, otherwise `None`
entailment
def missing_input_files(self): """Make and return a dictionary of the missing input files. This returns a dictionary mapping filepath to list of `Link` that use the file as input. """ missing = self.check_input_files(return_found=False) ret_dict = {} for miss_file in missing: ret_dict[miss_file] = [self.linkname] return ret_dict
Make and return a dictionary of the missing input files. This returns a dictionary mapping filepath to list of `Link` that use the file as input.
entailment
def missing_output_files(self): """Make and return a dictionary of the missing output files. This returns a dictionary mapping filepath to list of links that produce the file as output. """ missing = self.check_output_files(return_found=False) ret_dict = {} for miss_file in missing: ret_dict[miss_file] = [self.linkname] return ret_dict
Make and return a dictionary of the missing output files. This returns a dictionary mapping filepath to list of links that produce the file as output.
entailment
def formatted_command(self): """Build and return the formatted command for this `Link`. This is exactly the command as called from the Unix command line. """ # FIXME, this isn't really great as it force you to have all the arguments command_template = self.command_template() format_dict = self.args.copy() for key, value in format_dict.items(): # protect whitespace if isinstance(value, list): outstr = "" if key == 'args': outkey = "" else: outkey = "--%s " for lval in value: outstr += ' ' outstr += outkey outstr += lval format_dict[key] = '"%s"' % outstr elif isinstance(value, str) and value.find(' ') >= 0 and key != 'args': format_dict[key] = '"%s"' % value elif value is None: format_dict[key] = 'none' command = command_template.format(**format_dict) return command
Build and return the formatted command for this `Link`. This is exactly the command as called from the Unix command line.
entailment
def run_command(self, stream=sys.stdout, dry_run=False): """Runs the command for this link. This method can be overridden by sub-classes to invoke a different command Parameters ---------- stream : `file` Stream that this `Link` will print to, Must have 'write' function dry_run : bool Print command but do not run it Returns ------- code : int Return code from sub-process """ command = self.formatted_command() if dry_run: stream.write("%s\n" % command) stream.flush() return 0 proc = subprocess.Popen(command.split(), stderr=stream, stdout=stream) proc.communicate() return proc.returncode
Runs the command for this link. This method can be overridden by sub-classes to invoke a different command Parameters ---------- stream : `file` Stream that this `Link` will print to, Must have 'write' function dry_run : bool Print command but do not run it Returns ------- code : int Return code from sub-process
entailment
def run_with_log(self, dry_run=False, stage_files=True, resubmit_failed=False): """Runs this link with output sent to a pre-defined logfile Parameters ----------- dry_run : bool Print command but do not run it. stage_files : bool Copy files to and from scratch staging area. resubmit_failed : bool Flag for sub-classes to resubmit failed jobs. """ fullkey = JobDetails.make_fullkey(self.full_linkname) job_details = self.jobs[fullkey] odir = os.path.dirname(job_details.logfile) try: os.makedirs(odir) except OSError: pass ostream = open(job_details.logfile, 'w') self.run(ostream, dry_run, stage_files, resubmit_failed)
Runs this link with output sent to a pre-defined logfile Parameters ----------- dry_run : bool Print command but do not run it. stage_files : bool Copy files to and from scratch staging area. resubmit_failed : bool Flag for sub-classes to resubmit failed jobs.
entailment
def command_template(self): """Build and return a string that can be used as a template invoking this chain from the command line. The actual command can be obtainted by using `self.command_template().format(**self.args)` """ com_out = self.appname arg_string = "" flag_string = "" # Loop over the key, value pairs in self.args for key, val in self.args.items(): # Check if the value is set in self._options # If so, get the value from there if val is None: opt_val = self._options[key][0] else: opt_val = val opt_type = self._options[key][2] if key == 'args': # 'args' is special, pull it out and move it to the back arg_string += ' {%s}' % key elif opt_type is bool: if opt_val: flag_string += ' --%s' % (key) elif opt_type is list: if is_null(opt_val): continue elif isinstance(opt_val, str): com_out += ' --%s %s' % (key, opt_val) elif isinstance(opt_val, list): for arg_val in opt_val: com_out += ' --%s %s' % (key, arg_val) else: com_out += ' --%s {%s}' % (key, key) com_out += flag_string com_out += arg_string return com_out
Build and return a string that can be used as a template invoking this chain from the command line. The actual command can be obtainted by using `self.command_template().format(**self.args)`
entailment
def print_summary(self, stream=sys.stdout, indent="", recurse_level=2): """Print a summary of the activity done by this `Link`. Parameters ----------- stream : `file` Stream to print to, must have 'write' method. indent : str Indentation at start of line recurse_level : int Number of recursion levels to print """ if recurse_level < 0: return stream.write("%sLink: %s\n" % (indent, self.linkname)) stream.write("%sN_jobs: %s\n" % (indent, len(self.get_jobs()))) self.sub_files.print_chain_summary(stream, indent)
Print a summary of the activity done by this `Link`. Parameters ----------- stream : `file` Stream to print to, must have 'write' method. indent : str Indentation at start of line recurse_level : int Number of recursion levels to print
entailment
def distance_to_edge(geom, skydir): """Return the angular distance from the given direction and the edge of the projection.""" # FIXME: We should add a pixel_size property in gammapy.maps # FIXME: We should make this into a MapGeom method xpix, ypix = skydir.to_pixel(geom.wcs, origin=0) deltax = np.array((xpix - geom.center_pix[0]) * geom._cdelt[0], ndmin=1) deltay = np.array((ypix - geom.center_pix[1]) * geom._cdelt[1], ndmin=1) deltax = np.abs(deltax) - 0.5 * geom.width[0] deltay = np.abs(deltay) - 0.5 * geom.width[1] m0 = (deltax < 0) & (deltay < 0) m1 = (deltax > 0) & (deltay < 0) m2 = (deltax < 0) & (deltay > 0) m3 = (deltax > 0) & (deltay > 0) mx = np.abs(deltax) <= np.abs(deltay) my = np.abs(deltay) < np.abs(deltax) delta = np.zeros(len(deltax)) delta[(m0 & mx) | (m3 & my) | m1] = deltax[(m0 & mx) | (m3 & my) | m1] delta[(m0 & my) | (m3 & mx) | m2] = deltay[(m0 & my) | (m3 & mx) | m2] return delta
Return the angular distance from the given direction and the edge of the projection.
entailment
def create_wcs(skydir, coordsys='CEL', projection='AIT', cdelt=1.0, crpix=1., naxis=2, energies=None): """Create a WCS object. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Sky coordinate of the WCS reference point. coordsys : str projection : str cdelt : float or (float,float) In the first case the same value is used for x and y axes crpix : float or (float,float) In the first case the same value is used for x and y axes naxis : {2, 3} Number of dimensions of the projection. energies : array-like Array of energies that defines the third dimension if naxis=3. """ w = WCS(naxis=naxis) if coordsys == 'CEL': w.wcs.ctype[0] = 'RA---%s' % (projection) w.wcs.ctype[1] = 'DEC--%s' % (projection) w.wcs.crval[0] = skydir.icrs.ra.deg w.wcs.crval[1] = skydir.icrs.dec.deg elif coordsys == 'GAL': w.wcs.ctype[0] = 'GLON-%s' % (projection) w.wcs.ctype[1] = 'GLAT-%s' % (projection) w.wcs.crval[0] = skydir.galactic.l.deg w.wcs.crval[1] = skydir.galactic.b.deg else: raise Exception('Unrecognized coordinate system.') try: w.wcs.crpix[0] = crpix[0] w.wcs.crpix[1] = crpix[1] except: w.wcs.crpix[0] = crpix w.wcs.crpix[1] = crpix try: w.wcs.cdelt[0] = cdelt[0] w.wcs.cdelt[1] = cdelt[1] except: w.wcs.cdelt[0] = -cdelt w.wcs.cdelt[1] = cdelt w = WCS(w.to_header()) if naxis == 3 and energies is not None: w.wcs.crpix[2] = 1 w.wcs.crval[2] = energies[0] w.wcs.cdelt[2] = energies[1] - energies[0] w.wcs.ctype[2] = 'Energy' w.wcs.cunit[2] = 'MeV' return w
Create a WCS object. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Sky coordinate of the WCS reference point. coordsys : str projection : str cdelt : float or (float,float) In the first case the same value is used for x and y axes crpix : float or (float,float) In the first case the same value is used for x and y axes naxis : {2, 3} Number of dimensions of the projection. energies : array-like Array of energies that defines the third dimension if naxis=3.
entailment
def wcs_add_energy_axis(wcs, energies): """Copy a WCS object, and add on the energy axis. Parameters ---------- wcs : `~astropy.wcs.WCS` WCS energies : array-like Array of energies. """ if wcs.naxis != 2: raise Exception( 'wcs_add_energy_axis, input WCS naxis != 2 %i' % wcs.naxis) w = WCS(naxis=3) w.wcs.crpix[0] = wcs.wcs.crpix[0] w.wcs.crpix[1] = wcs.wcs.crpix[1] w.wcs.ctype[0] = wcs.wcs.ctype[0] w.wcs.ctype[1] = wcs.wcs.ctype[1] w.wcs.crval[0] = wcs.wcs.crval[0] w.wcs.crval[1] = wcs.wcs.crval[1] w.wcs.cdelt[0] = wcs.wcs.cdelt[0] w.wcs.cdelt[1] = wcs.wcs.cdelt[1] w = WCS(w.to_header()) w.wcs.crpix[2] = 1 w.wcs.crval[2] = energies[0] w.wcs.cdelt[2] = energies[1] - energies[0] w.wcs.ctype[2] = 'Energy' return w
Copy a WCS object, and add on the energy axis. Parameters ---------- wcs : `~astropy.wcs.WCS` WCS energies : array-like Array of energies.
entailment
def offset_to_sky(skydir, offset_lon, offset_lat, coordsys='CEL', projection='AIT'): """Convert a cartesian offset (X,Y) in the given projection into a pair of spherical coordinates.""" offset_lon = np.array(offset_lon, ndmin=1) offset_lat = np.array(offset_lat, ndmin=1) w = create_wcs(skydir, coordsys, projection) pixcrd = np.vstack((offset_lon, offset_lat)).T return w.wcs_pix2world(pixcrd, 0)
Convert a cartesian offset (X,Y) in the given projection into a pair of spherical coordinates.
entailment
def sky_to_offset(skydir, lon, lat, coordsys='CEL', projection='AIT'): """Convert sky coordinates to a projected offset. This function is the inverse of offset_to_sky.""" w = create_wcs(skydir, coordsys, projection) skycrd = np.vstack((lon, lat)).T if len(skycrd) == 0: return skycrd return w.wcs_world2pix(skycrd, 0)
Convert sky coordinates to a projected offset. This function is the inverse of offset_to_sky.
entailment
def offset_to_skydir(skydir, offset_lon, offset_lat, coordsys='CEL', projection='AIT'): """Convert a cartesian offset (X,Y) in the given projection into a SkyCoord.""" offset_lon = np.array(offset_lon, ndmin=1) offset_lat = np.array(offset_lat, ndmin=1) w = create_wcs(skydir, coordsys, projection) return SkyCoord.from_pixel(offset_lon, offset_lat, w, 0)
Convert a cartesian offset (X,Y) in the given projection into a SkyCoord.
entailment
def skydir_to_pix(skydir, wcs): """Convert skydir object to pixel coordinates. Gracefully handles 0-d coordinate arrays. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` wcs : `~astropy.wcs.WCS` Returns ------- xp, yp : `numpy.ndarray` The pixel coordinates """ if len(skydir.shape) > 0 and len(skydir) == 0: return [np.empty(0), np.empty(0)] return skydir.to_pixel(wcs, origin=0)
Convert skydir object to pixel coordinates. Gracefully handles 0-d coordinate arrays. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` wcs : `~astropy.wcs.WCS` Returns ------- xp, yp : `numpy.ndarray` The pixel coordinates
entailment
def pix_to_skydir(xpix, ypix, wcs): """Convert pixel coordinates to a skydir object. Gracefully handles 0-d coordinate arrays. Always returns a celestial coordinate. Parameters ---------- xpix : `numpy.ndarray` ypix : `numpy.ndarray` wcs : `~astropy.wcs.WCS` """ xpix = np.array(xpix) ypix = np.array(ypix) if xpix.ndim > 0 and len(xpix) == 0: return SkyCoord(np.empty(0), np.empty(0), unit='deg', frame='icrs') return SkyCoord.from_pixel(xpix, ypix, wcs, origin=0).transform_to('icrs')
Convert pixel coordinates to a skydir object. Gracefully handles 0-d coordinate arrays. Always returns a celestial coordinate. Parameters ---------- xpix : `numpy.ndarray` ypix : `numpy.ndarray` wcs : `~astropy.wcs.WCS`
entailment
def wcs_to_axes(w, npix): """Generate a sequence of bin edge vectors corresponding to the axes of a WCS object.""" npix = npix[::-1] x = np.linspace(-(npix[0]) / 2., (npix[0]) / 2., npix[0] + 1) * np.abs(w.wcs.cdelt[0]) y = np.linspace(-(npix[1]) / 2., (npix[1]) / 2., npix[1] + 1) * np.abs(w.wcs.cdelt[1]) if w.wcs.naxis == 2: return x, y cdelt2 = np.log10((w.wcs.cdelt[2] + w.wcs.crval[2]) / w.wcs.crval[2]) z = (np.linspace(0, npix[2], npix[2] + 1)) * cdelt2 z += np.log10(w.wcs.crval[2]) return x, y, z
Generate a sequence of bin edge vectors corresponding to the axes of a WCS object.
entailment
def wcs_to_coords(w, shape): """Generate an N x D list of pixel center coordinates where N is the number of pixels and D is the dimensionality of the map.""" if w.naxis == 2: y, x = wcs_to_axes(w, shape) elif w.naxis == 3: z, y, x = wcs_to_axes(w, shape) else: raise Exception("Wrong number of WCS axes %i" % w.naxis) x = 0.5 * (x[1:] + x[:-1]) y = 0.5 * (y[1:] + y[:-1]) if w.naxis == 2: x = np.ravel(np.ones(shape) * x[:, np.newaxis]) y = np.ravel(np.ones(shape) * y[np.newaxis, :]) return np.vstack((x, y)) z = 0.5 * (z[1:] + z[:-1]) x = np.ravel(np.ones(shape) * x[:, np.newaxis, np.newaxis]) y = np.ravel(np.ones(shape) * y[np.newaxis, :, np.newaxis]) z = np.ravel(np.ones(shape) * z[np.newaxis, np.newaxis, :]) return np.vstack((x, y, z))
Generate an N x D list of pixel center coordinates where N is the number of pixels and D is the dimensionality of the map.
entailment
def get_cel_to_gal_angle(skydir): """Calculate the rotation angle in radians between the longitude axes of a local projection in celestial and galactic coordinates. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Direction of projection center. Returns ------- angle : float Rotation angle in radians. """ wcs0 = create_wcs(skydir, coordsys='CEL') wcs1 = create_wcs(skydir, coordsys='GAL') x, y = SkyCoord.to_pixel(SkyCoord.from_pixel(1.0, 0.0, wcs0), wcs1) return np.arctan2(y, x)
Calculate the rotation angle in radians between the longitude axes of a local projection in celestial and galactic coordinates. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Direction of projection center. Returns ------- angle : float Rotation angle in radians.
entailment
def extract_mapcube_region(infile, skydir, outfile, maphdu=0): """Extract a region out of an all-sky mapcube file. Parameters ---------- infile : str Path to mapcube file. skydir : `~astropy.coordinates.SkyCoord` """ h = fits.open(os.path.expandvars(infile)) npix = 200 shape = list(h[maphdu].data.shape) shape[1] = 200 shape[2] = 200 wcs = WCS(h[maphdu].header) skywcs = WCS(h[maphdu].header, naxis=[1, 2]) coordsys = get_coordsys(skywcs) region_wcs = wcs.deepcopy() if coordsys == 'CEL': region_wcs.wcs.crval[0] = skydir.ra.deg region_wcs.wcs.crval[1] = skydir.dec.deg elif coordsys == 'GAL': region_wcs.wcs.crval[0] = skydir.galactic.l.deg region_wcs.wcs.crval[1] = skydir.galactic.b.deg else: raise Exception('Unrecognized coordinate system.') region_wcs.wcs.crpix[0] = npix // 2 + 0.5 region_wcs.wcs.crpix[1] = npix // 2 + 0.5 from reproject import reproject_interp data, footprint = reproject_interp(h, region_wcs.to_header(), hdu_in=maphdu, shape_out=shape) hdu_image = fits.PrimaryHDU(data, header=region_wcs.to_header()) hdulist = fits.HDUList([hdu_image, h['ENERGIES']]) hdulist.writeto(outfile, clobber=True)
Extract a region out of an all-sky mapcube file. Parameters ---------- infile : str Path to mapcube file. skydir : `~astropy.coordinates.SkyCoord`
entailment
def distance_to_edge(self, skydir): """Return the angular distance from the given direction and the edge of the projection.""" xpix, ypix = skydir.to_pixel(self.wcs, origin=0) deltax = np.array((xpix - self._pix_center[0]) * self._pix_size[0], ndmin=1) deltay = np.array((ypix - self._pix_center[1]) * self._pix_size[1], ndmin=1) deltax = np.abs(deltax) - 0.5 * self._width[0] deltay = np.abs(deltay) - 0.5 * self._width[1] m0 = (deltax < 0) & (deltay < 0) m1 = (deltax > 0) & (deltay < 0) m2 = (deltax < 0) & (deltay > 0) m3 = (deltax > 0) & (deltay > 0) mx = np.abs(deltax) <= np.abs(deltay) my = np.abs(deltay) < np.abs(deltax) delta = np.zeros(len(deltax)) delta[(m0 & mx) | (m3 & my) | m1] = deltax[(m0 & mx) | (m3 & my) | m1] delta[(m0 & my) | (m3 & mx) | m2] = deltay[(m0 & my) | (m3 & mx) | m2] return delta
Return the angular distance from the given direction and the edge of the projection.
entailment
def readlines(arg): """Read lines from a file into a list. Removes whitespace and lines that start with '#' """ fin = open(arg) lines_in = fin.readlines() fin.close() lines_out = [] for line in lines_in: line = line.strip() if not line or line[0] == '#': continue lines_out.append(line) return lines_out
Read lines from a file into a list. Removes whitespace and lines that start with '#'
entailment
def create_inputlist(arglist): """Read lines from a file and makes a list of file names. Removes whitespace and lines that start with '#' Recursively read all files with the extension '.lst' """ lines = [] if isinstance(arglist, list): for arg in arglist: if os.path.splitext(arg)[1] == '.lst': lines += readlines(arg) else: lines.append(arg) elif is_null(arglist): pass else: if os.path.splitext(arglist)[1] == '.lst': lines += readlines(arglist) else: lines.append(arglist) return lines
Read lines from a file and makes a list of file names. Removes whitespace and lines that start with '#' Recursively read all files with the extension '.lst'
entailment
def init(self): """Initialize histograms.""" evclass_shape = [16, 40, 10] evtype_shape = [16, 16, 40, 10] evclass_psf_shape = [16, 40, 10, 100] evtype_psf_shape = [16, 16, 40, 10, 100] self._hists_eff = dict() self._hists = dict(evclass_on=np.zeros(evclass_shape), evclass_off=np.zeros(evclass_shape), evclass_alpha=np.zeros([16, 40, 1]), evtype_on=np.zeros(evtype_shape), evtype_off=np.zeros(evtype_shape), evtype_alpha=np.zeros([16, 1, 40, 1]), evclass_psf_on=np.zeros(evclass_psf_shape), evclass_psf_off=np.zeros(evclass_psf_shape), evtype_psf_on=np.zeros(evtype_psf_shape), evtype_psf_off=np.zeros(evtype_psf_shape), )
Initialize histograms.
entailment
def create_hist(self, evclass, evtype, xsep, energy, ctheta, fill_sep=False, fill_evtype=False): """Load into a histogram.""" nevt = len(evclass) ebin = utils.val_to_bin(self._energy_bins, energy) scale = self._psf_scale[ebin] vals = [energy, ctheta] bins = [self._energy_bins, self._ctheta_bins] if fill_sep: vals += [xsep] bins += [self._xsep_bins] if fill_evtype: loopv = [self._evclass_bins[:-1], self._evtype_bins[:-1]] shape = [16, 16] + [len(b) - 1 for b in bins] else: loopv = [self._evclass_bins[:-1]] shape = [16] + [len(b) - 1 for b in bins] h = np.zeros(shape) for t in itertools.product(*loopv): m = (evclass[:, int(t[0])] == True) if fill_evtype: m &= (evtype[:, int(t[1])] == True) if not np.sum(m): continue z = np.vstack(vals) z = z[:, m] if fill_evtype: h[int(t[0]), int(t[1])] += np.histogramdd(z.T, bins=bins)[0] else: h[int(t[0])] += np.histogramdd(z.T, bins=bins)[0] return h
Load into a histogram.
entailment
def calc_eff(self): """Calculate the efficiency.""" hists = self.hists hists_out = self._hists_eff cth_axis_idx = dict(evclass=2, evtype=3) for k in ['evclass', 'evtype']: if k == 'evclass': ns0 = hists['evclass_on'][4][None, ...] nb0 = hists['evclass_off'][4][None, ...] else: ns0 = hists['evclass_on'][4][None, None, ...] nb0 = hists['evclass_off'][4][None, None, ...] eff, eff_var = calc_eff(ns0, nb0, hists['%s_on' % k], hists['%s_off' % k], hists['%s_alpha' % k]) hists_out['%s_cth_eff' % k] = eff hists_out['%s_cth_eff_var' % k] = eff_var eff, eff_var = calc_eff(ns0, nb0, hists['%s_on' % k], hists['%s_off' % k], hists['%s_alpha' % k], sum_axes=[cth_axis_idx[k]]) hists_out['%s_eff' % k] = np.squeeze(eff) hists_out['%s_eff_var' % k] = np.squeeze(eff_var)
Calculate the efficiency.
entailment
def calc_containment(self): """Calculate PSF containment.""" hists = self.hists hists_out = self._hists_eff quantiles = [0.34, 0.68, 0.90, 0.95] cth_axis_idx = dict(evclass=2, evtype=3) for k in ['evclass']: # ,'evtype']: print(k) non = hists['%s_psf_on' % k] noff = hists['%s_psf_off' % k] alpha = hists['%s_alpha' % k][..., None] if k == 'evclass': sep = self._sep_bins[None, :, None, 1:] else: sep = self._sep_bins[None, None, :, None, 1:] qval, qerr = calc_quantiles(sep, non, noff, alpha, quantiles) for i, q in enumerate(quantiles): hists_out['%s_cth_q%2i' % (k, q * 100)] = qval[i] hists_out['%s_cth_q%2i_err' % (k, q * 100)] = qerr[i] non = np.sum(non, axis=cth_axis_idx[k]) noff = np.sum(noff, axis=cth_axis_idx[k]) alpha = np.squeeze(alpha, axis=cth_axis_idx[k]) sep = np.squeeze(sep, axis=cth_axis_idx[k]) qval, qerr = calc_quantiles(sep, non, noff, alpha, quantiles) for i, q in enumerate(quantiles): hists_out['%s_q%2i' % (k, q * 100)] = qval[i] hists_out['%s_q%2i_err' % (k, q * 100)] = qerr[i]
Calculate PSF containment.
entailment
def create_default_config(schema): """Create a configuration dictionary from a schema dictionary. The schema defines the valid configuration keys and their default values. Each element of ``schema`` should be a tuple/list containing (default value,docstring,type) or a dict containing a nested schema.""" o = {} for key, item in schema.items(): if isinstance(item, dict): o[key] = create_default_config(item) elif isinstance(item, tuple): value, comment, item_type = item if isinstance(item_type, tuple): item_type = item_type[0] if value is None and (item_type == list or item_type == dict): value = item_type() if key in o: raise KeyError('Duplicate key in schema.') o[key] = value else: raise TypeError('Unrecognized type for schema dict element: %s %s' % (key, type(item))) return o
Create a configuration dictionary from a schema dictionary. The schema defines the valid configuration keys and their default values. Each element of ``schema`` should be a tuple/list containing (default value,docstring,type) or a dict containing a nested schema.
entailment
def update_from_schema(cfg, cfgin, schema): """Update configuration dictionary ``cfg`` with the contents of ``cfgin`` using the ``schema`` dictionary to determine the valid input keys. Parameters ---------- cfg : dict Configuration dictionary to be updated. cfgin : dict New configuration dictionary that will be merged with ``cfg``. schema : dict Configuration schema defining the valid configuration keys and their types. Returns ------- cfgout : dict """ cfgout = copy.deepcopy(cfg) for k, v in schema.items(): if k not in cfgin: continue if isinstance(v, dict): cfgout.setdefault(k, {}) cfgout[k] = update_from_schema(cfg[k], cfgin[k], v) elif v[2] is dict: cfgout[k] = utils.merge_dict(cfg[k], cfgin[k], add_new_keys=True) else: cfgout[k] = cfgin[k] return cfgout
Update configuration dictionary ``cfg`` with the contents of ``cfgin`` using the ``schema`` dictionary to determine the valid input keys. Parameters ---------- cfg : dict Configuration dictionary to be updated. cfgin : dict New configuration dictionary that will be merged with ``cfg``. schema : dict Configuration schema defining the valid configuration keys and their types. Returns ------- cfgout : dict
entailment
def write_config(self, outfile): """Write the configuration dictionary to an output file.""" utils.write_yaml(self.config, outfile, default_flow_style=False)
Write the configuration dictionary to an output file.
entailment
def create(cls, configfile): """Create a configuration dictionary from a yaml config file. This function will first populate the dictionary with defaults taken from pre-defined configuration files. The configuration dictionary is then updated with the user-defined configuration file. Any settings defined by the user will take precedence over the default settings.""" # populate config dictionary with an initial set of values # config_logging = ConfigManager.load('logging.yaml') config = {} if config['fileio']['outdir'] is None: config['fileio']['outdir'] = os.path.abspath( os.path.dirname(configfile)) user_config = cls.load(configfile) config = utils.merge_dict(config, user_config, True) config['fileio']['outdir'] = os.path.abspath( config['fileio']['outdir']) return config
Create a configuration dictionary from a yaml config file. This function will first populate the dictionary with defaults taken from pre-defined configuration files. The configuration dictionary is then updated with the user-defined configuration file. Any settings defined by the user will take precedence over the default settings.
entailment
def update_null_primary(hdu_in, hdu=None): """ 'Update' a null primary HDU This actually just checks hdu exists and creates it from hdu_in if it does not. """ if hdu is None: hdu = fits.PrimaryHDU(header=hdu_in.header) else: hdu = hdu_in hdu.header.remove('FILENAME') return hdu
'Update' a null primary HDU This actually just checks hdu exists and creates it from hdu_in if it does not.
entailment
def update_primary(hdu_in, hdu=None): """ 'Update' a primary HDU This checks hdu exists and creates it from hdu_in if it does not. If hdu does exist, this adds the data in hdu_in to hdu """ if hdu is None: hdu = fits.PrimaryHDU(data=hdu_in.data, header=hdu_in.header) else: hdu.data += hdu_in.data return hdu
'Update' a primary HDU This checks hdu exists and creates it from hdu_in if it does not. If hdu does exist, this adds the data in hdu_in to hdu
entailment
def update_image(hdu_in, hdu=None): """ 'Update' an image HDU This checks hdu exists and creates it from hdu_in if it does not. If hdu does exist, this adds the data in hdu_in to hdu """ if hdu is None: hdu = fits.ImageHDU( data=hdu_in.data, header=hdu_in.header, name=hdu_in.name) else: hdu.data += hdu_in.data return hdu
'Update' an image HDU This checks hdu exists and creates it from hdu_in if it does not. If hdu does exist, this adds the data in hdu_in to hdu
entailment
def update_ebounds(hdu_in, hdu=None): """ 'Update' the EBOUNDS HDU This checks hdu exists and creates it from hdu_in if it does not. If hdu does exist, this raises an exception if it doesn not match hdu_in """ if hdu is None: hdu = fits.BinTableHDU( data=hdu_in.data, header=hdu_in.header, name=hdu_in.name) else: for col in ['CHANNEL', 'E_MIN', 'E_MAX']: if (hdu.data[col] != hdu_in.data[col]).any(): raise ValueError("Energy bounds do not match : %s %s" % (hdu.data[col], hdu_in.data[col])) return hdu
'Update' the EBOUNDS HDU This checks hdu exists and creates it from hdu_in if it does not. If hdu does exist, this raises an exception if it doesn not match hdu_in
entailment
def merge_all_gti_data(datalist_in, nrows, first): """ Merge together all the GTI data Parameters ------- datalist_in : list of `astropy.io.fits.BinTableHDU` data The GTI data that is being merged nrows : `~numpy.ndarray` of ints Array with the number of nrows for each object in datalist_in first : `astropy.io.fits.BinTableHDU` BinTableHDU to use as a template Returns ------- out_hdu : `astropy.io.fits.BinTableHDU` BinTableHDU with the merge GTIs """ max_row = nrows.cumsum() min_row = max_row - nrows out_hdu = fits.BinTableHDU.from_columns( first.columns, header=first.header, nrows=nrows.sum()) for (imin, imax, data_in) in zip(min_row, max_row, datalist_in): for col in first.columns: out_hdu.data[col.name][imin:imax] = data_in[col.name] return out_hdu
Merge together all the GTI data Parameters ------- datalist_in : list of `astropy.io.fits.BinTableHDU` data The GTI data that is being merged nrows : `~numpy.ndarray` of ints Array with the number of nrows for each object in datalist_in first : `astropy.io.fits.BinTableHDU` BinTableHDU to use as a template Returns ------- out_hdu : `astropy.io.fits.BinTableHDU` BinTableHDU with the merge GTIs
entailment
def extract_gti_data(hdu_in): """ Extract some GTI related data Parameters ------- hdu_in : `astropy.io.fits.BinTableHDU` The GTI data Returns ------- data : `astropy.io.fits.BinTableHDU` data exposure : float Exposure value taken from FITS header tstop : float TSTOP value taken from FITS header """ data = hdu_in.data exposure = hdu_in.header['EXPOSURE'] tstop = hdu_in.header['TSTOP'] return (data, exposure, tstop)
Extract some GTI related data Parameters ------- hdu_in : `astropy.io.fits.BinTableHDU` The GTI data Returns ------- data : `astropy.io.fits.BinTableHDU` data exposure : float Exposure value taken from FITS header tstop : float TSTOP value taken from FITS header
entailment
def update_hpx_skymap_allsky(map_in, map_out): """ 'Update' a HEALPix skymap This checks map_out exists and creates it from map_in if it does not. If map_out does exist, this adds the data in map_in to map_out """ if map_out is None: in_hpx = map_in.hpx out_hpx = HPX.create_hpx(in_hpx.nside, in_hpx.nest, in_hpx.coordsys, None, in_hpx.ebins, None, in_hpx.conv, None) data_out = map_in.expanded_counts_map() print(data_out.shape, data_out.sum()) map_out = HpxMap(data_out, out_hpx) else: map_out.data += map_in.expanded_counts_map() return map_out
'Update' a HEALPix skymap This checks map_out exists and creates it from map_in if it does not. If map_out does exist, this adds the data in map_in to map_out
entailment
def merge_wcs_counts_cubes(filelist): """ Merge all the files in filelist, assuming that they WCS counts cubes """ out_prim = None out_ebounds = None datalist_gti = [] exposure_sum = 0. nfiles = len(filelist) ngti = np.zeros(nfiles, int) for i, filename in enumerate(filelist): fin = fits.open(filename) sys.stdout.write('.') sys.stdout.flush() if i == 0: out_prim = update_primary(fin[0], out_prim) out_ebounds = update_ebounds(fin["EBOUNDS"], out_ebounds) (gti_data, exposure, tstop) = extract_gti_data(fin["GTI"]) datalist_gti.append(gti_data) exposure_sum += exposure ngti[i] = len(gti_data) if i == 0: first = fin elif i == nfiles - 1: date_end = fin[0].header['DATE-END'] else: fin.close() out_gti = merge_all_gti_data(datalist_gti, ngti, first['GTI']) out_gti.header['EXPOSURE'] = exposure_sum out_gti.header['TSTOP'] = tstop hdulist = [out_prim, out_ebounds, out_gti] for hdu in hdulist: hdu.header['DATE-END'] = date_end out_prim.update_header() sys.stdout.write("!\n") return fits.HDUList(hdulist)
Merge all the files in filelist, assuming that they WCS counts cubes
entailment
def merge_hpx_counts_cubes(filelist): """ Merge all the files in filelist, assuming that they HEALPix counts cubes """ out_prim = None out_skymap = None out_ebounds = None datalist_gti = [] exposure_sum = 0. nfiles = len(filelist) ngti = np.zeros(nfiles, int) out_name = None for i, filename in enumerate(filelist): fin = fits.open(filename) sys.stdout.write('.') sys.stdout.flush() if i == 0: out_prim = update_null_primary(fin[0], out_prim) out_name = fin[1].name map_in = HpxMap.create_from_hdulist(fin) out_skymap = update_hpx_skymap_allsky(map_in, out_skymap) if i == 0: try: out_ebounds = update_ebounds(fin["EBOUNDS"], out_ebounds) except KeyError: out_ebounds = update_energies(fin["ENERGIES"], out_ebounds) try: (gti_data, exposure, tstop) = extract_gti_data(fin["GTI"]) datalist_gti.append(gti_data) exposure_sum += exposure ngti[i] = len(gti_data) except KeyError: pass if i == 0: first = fin elif i == nfiles - 1: try: date_end = fin[0].header['DATE-END'] except KeyError: date_end = None else: fin.close() out_skymap_hdu = out_skymap.create_image_hdu("SKYMAP") hdulist = [out_prim, out_skymap_hdu, out_ebounds] if len(datalist_gti) > 0: out_gti = merge_all_gti_data(datalist_gti, ngti, first['GTI']) out_gti.header['EXPOSURE'] = exposure_sum out_gti.header['TSTOP'] = tstop hdulist.append(out_gti) for hdu in hdulist: if date_end: hdu.header['DATE-END'] = date_end out_prim.update_header() sys.stdout.write("!\n") return fits.HDUList(hdulist)
Merge all the files in filelist, assuming that they HEALPix counts cubes
entailment
def run_analysis(self, argv): """Run this analysis""" args = self._parser.parse_args(argv) obs = BinnedAnalysis.BinnedObs(irfs=args.irfs, expCube=args.expcube, srcMaps=args.cmap, binnedExpMap=args.bexpmap) like = BinnedAnalysis.BinnedAnalysis(obs, optimizer='MINUIT', srcModel=GtSrcmapsCatalog.NULL_MODEL, wmap=None) source_factory = pyLike.SourceFactory(obs.observation) source_factory.readXml(args.srcmdl, BinnedAnalysis._funcFactory, False, True, True) srcNames = pyLike.StringVector() source_factory.fetchSrcNames(srcNames) min_idx = args.srcmin max_idx = args.srcmax if max_idx < 0: max_idx = srcNames.size() for i in xrange(min_idx, max_idx): if i == min_idx: like.logLike.saveSourceMaps(args.outfile) pyLike.CountsMapBase.copyAndUpdateDssKeywords(args.cmap, args.outfile, None, args.irfs) srcName = srcNames[i] source = source_factory.releaseSource(srcName) like.logLike.addSource(source, False) like.logLike.saveSourceMap_partial(args.outfile, source) like.logLike.deleteSource(srcName) if args.gzip: os.system("gzip -9 %s" % args.outfile)
Run this analysis
entailment
def _make_xml_files(catalog_info_dict, comp_info_dict): """Make all the xml file for individual components """ for val in catalog_info_dict.values(): val.roi_model.write_xml(val.srcmdl_name) for val in comp_info_dict.values(): for val2 in val.values(): val2.roi_model.write_xml(val2.srcmdl_name)
Make all the xml file for individual components
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) NAME_FACTORY.update_base_dict(args['data']) if self._comp_dict is None or self._comp_dict_file != args['library']: self._comp_dict_file = args['library'] self._comp_dict = make_catalog_comp_dict(sources=self._comp_dict_file, basedir=NAME_FACTORY.base_dict['basedir']) else: print ("Using cached catalog dict from %s" % args['library']) catalog_info_dict = self._comp_dict['catalog_info_dict'] comp_info_dict = self._comp_dict['comp_info_dict'] n_src_per_job = args['nsrc'] if args['make_xml']: SrcmapsCatalog_SG._make_xml_files(catalog_info_dict, comp_info_dict) for catalog_name, catalog_info in catalog_info_dict.items(): n_cat_src = len(catalog_info.catalog.table) n_job = int(math.ceil(float(n_cat_src) / n_src_per_job)) for comp in components: zcut = "zmax%i" % comp.zmax key = comp.make_key('{ebin_name}_{evtype_name}') name_keys = dict(zcut=zcut, sourcekey=catalog_name, ebin=comp.ebin_name, psftype=comp.evtype_name, coordsys=comp.coordsys, irf_ver=NAME_FACTORY.irf_ver(), mktime='none', fullpath=True) for i_job in range(n_job): full_key = "%s_%02i" % (key, i_job) srcmin = i_job * n_src_per_job srcmax = min(srcmin + n_src_per_job, n_cat_src) outfile = NAME_FACTORY.srcmaps( **name_keys).replace('.fits', "_%02i.fits" % (i_job)) logfile = make_nfs_path(outfile.replace('.fits', '.log')) job_configs[full_key] = dict(cmap=NAME_FACTORY.ccube(**name_keys), expcube=NAME_FACTORY.ltcube(**name_keys), irfs=NAME_FACTORY.irfs(**name_keys), bexpmap=NAME_FACTORY.bexpcube(**name_keys), outfile=outfile, logfile=logfile, srcmdl=catalog_info.srcmdl_name, evtype=comp.evtype, srcmin=srcmin, srcmax=srcmax) return job_configs
Hook to build job configurations
entailment
def run_analysis(self, argv): """Run this analysis""" args = self._parser.parse_args(argv) exttype = splitext(args.infile)[-1] if exttype in ['.fits', '.npy']: castro_data = CastroData.create_from_sedfile(args.infile) elif exttype in ['.yaml']: castro_data = CastroData.create_from_yamlfile(args.infile) else: raise ValueError("Can not read file type %s for SED" % extype) ylims = [1e-8, 1e-5] plot = plotCastro(castro_data, ylims) if args.outfile: plot[0].savefig(args.outfile)
Run this analysis
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} ttype = args['ttype'] (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args) if targets_yaml is None: return job_configs targets = load_yaml(targets_yaml) for target_name, target_list in targets.items(): for targ_prof in target_list: name_keys = dict(target_type=ttype, target_name=target_name, profile=targ_prof, fullpath=True) targ_key = "%s_%s" % (target_name, targ_prof) input_path = NAME_FACTORY.sedfile(**name_keys) output_path = input_path.replace('.fits', '.png') logfile = make_nfs_path(input_path.replace('.fits', '.log')) job_config = dict(infile=input_path, outfile=output_path, logfile=logfile) job_configs[targ_key] = job_config return job_configs
Hook to build job configurations
entailment
def sed(self, name, **kwargs): """Generate a spectral energy distribution (SED) for a source. This function will fit the normalization of the source in each energy bin. By default the SED will be generated with the analysis energy bins but a custom binning can be defined with the ``loge_bins`` parameter. Parameters ---------- name : str Source name. prefix : str Optional string that will be prepended to all output files (FITS and rendered images). loge_bins : `~numpy.ndarray` Sequence of energies in log10(E/MeV) defining the edges of the energy bins. If this argument is None then the analysis energy bins will be used. The energies in this sequence must align with the bin edges of the underyling analysis instance. {options} optimizer : dict Dictionary that overrides the default optimizer settings. Returns ------- sed : dict Dictionary containing output of the SED analysis. """ timer = Timer.create(start=True) name = self.roi.get_source_by_name(name).name # Create schema for method configuration schema = ConfigSchema(self.defaults['sed'], optimizer=self.defaults['optimizer']) schema.add_option('prefix', '') schema.add_option('outfile', None, '', str) schema.add_option('loge_bins', None, '', list) config = utils.create_dict(self.config['sed'], optimizer=self.config['optimizer']) config = schema.create_config(config, **kwargs) self.logger.info('Computing SED for %s' % name) o = self._make_sed(name, **config) self.logger.info('Finished SED') outfile = config.get('outfile', None) if outfile is None: outfile = utils.format_filename(self.workdir, 'sed', prefix=[config['prefix'], name.lower().replace(' ', '_')]) else: outfile = os.path.join(self.workdir, os.path.splitext(outfile)[0]) o['file'] = None if config['write_fits']: o['file'] = os.path.basename(outfile) + '.fits' self._make_sed_fits(o, outfile + '.fits', **config) if config['write_npy']: np.save(outfile + '.npy', o) if config['make_plots']: self._plotter.make_sed_plots(o, **config) self.logger.info('Execution time: %.2f s', timer.elapsed_time) return o
Generate a spectral energy distribution (SED) for a source. This function will fit the normalization of the source in each energy bin. By default the SED will be generated with the analysis energy bins but a custom binning can be defined with the ``loge_bins`` parameter. Parameters ---------- name : str Source name. prefix : str Optional string that will be prepended to all output files (FITS and rendered images). loge_bins : `~numpy.ndarray` Sequence of energies in log10(E/MeV) defining the edges of the energy bins. If this argument is None then the analysis energy bins will be used. The energies in this sequence must align with the bin edges of the underyling analysis instance. {options} optimizer : dict Dictionary that overrides the default optimizer settings. Returns ------- sed : dict Dictionary containing output of the SED analysis.
entailment
def run_analysis(self, argv): """Run this analysis""" args = self._parser.parse_args(argv) obs = BinnedAnalysis.BinnedObs(irfs=args.irfs, expCube=args.expcube, srcMaps=args.cmap, binnedExpMap=args.bexpmap) if args.no_psf: performConvolution = False else: performConvolution = True config = BinnedAnalysis.BinnedConfig(performConvolution=performConvolution) like = BinnedAnalysis.BinnedAnalysis(obs, optimizer='MINUIT', srcModel=GtSrcmapsDiffuse.NULL_MODEL, wmap=None, config=config) source_factory = pyLike.SourceFactory(obs.observation) source_factory.readXml(args.srcmdl, BinnedAnalysis._funcFactory, False, True, True) source = source_factory.releaseSource(args.source) try: diffuse_source = pyLike.DiffuseSource.cast(source) except TypeError: diffuse_source = None if diffuse_source is not None: try: diffuse_source.mapBaseObject().projmap().setExtrapolation(False) except RuntimeError: pass like.logLike.saveSourceMap_partial(args.outfile, source, args.kmin, args.kmax) if args.gzip: os.system("gzip -9 %s" % args.outfile)
Run this analysis
entailment
def _write_xml(xmlfile, srcs): """Save the ROI model as an XML """ root = ElementTree.Element('source_library') root.set('title', 'source_library') for src in srcs: src.write_xml(root) output_file = open(xmlfile, 'w') output_file.write(utils.prettify_xml(root))
Save the ROI model as an XML
entailment
def _handle_component(sourcekey, comp_dict): """Make the source objects and write the xml for a component """ if comp_dict.comp_key is None: fullkey = sourcekey else: fullkey = "%s_%s" % (sourcekey, comp_dict.comp_key) srcdict = make_sources(fullkey, comp_dict) if comp_dict.model_type == 'IsoSource': print("Writing xml for %s to %s: %s %s" % (fullkey, comp_dict.srcmdl_name, comp_dict.model_type, comp_dict.Spectral_Filename)) elif comp_dict.model_type == 'MapCubeSource': print("Writing xml for %s to %s: %s %s" % (fullkey, comp_dict.srcmdl_name, comp_dict.model_type, comp_dict.Spatial_Filename)) SrcmapsDiffuse_SG._write_xml(comp_dict.srcmdl_name, srcdict.values())
Make the source objects and write the xml for a component
entailment
def _make_xml_files(diffuse_comp_info_dict): """Make all the xml file for individual components """ try: os.makedirs('srcmdls') except OSError: pass for sourcekey in sorted(diffuse_comp_info_dict.keys()): comp_info = diffuse_comp_info_dict[sourcekey] if comp_info.components is None: SrcmapsDiffuse_SG._handle_component(sourcekey, comp_info) else: for sub_comp_info in comp_info.components.values(): SrcmapsDiffuse_SG._handle_component(sourcekey, sub_comp_info)
Make all the xml file for individual components
entailment
def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) NAME_FACTORY.update_base_dict(args['data']) ret_dict = make_diffuse_comp_info_dict(components=components, library=args['library'], basedir='.') diffuse_comp_info_dict = ret_dict['comp_info_dict'] if args['make_xml']: SrcmapsDiffuse_SG._make_xml_files(diffuse_comp_info_dict) for diffuse_comp_info_key in sorted(diffuse_comp_info_dict.keys()): diffuse_comp_info_value = diffuse_comp_info_dict[diffuse_comp_info_key] no_psf = diffuse_comp_info_value.no_psf for comp in components: zcut = "zmax%i" % comp.zmax key = comp.make_key('{ebin_name}_{evtype_name}') if diffuse_comp_info_value.components is None: sub_comp_info = diffuse_comp_info_value else: sub_comp_info = diffuse_comp_info_value.get_component_info(comp) name_keys = dict(zcut=zcut, sourcekey=sub_comp_info.sourcekey, ebin=comp.ebin_name, psftype=comp.evtype_name, mktime='none', coordsys=comp.coordsys, irf_ver=NAME_FACTORY.irf_ver(), fullpath=True) kmin = 0 kmax = comp.enumbins + 1 outfile_base = NAME_FACTORY.srcmaps(**name_keys) kstep = HPX_ORDER_TO_KSTEP[comp.hpx_order] base_dict = dict(cmap=NAME_FACTORY.ccube(**name_keys), expcube=NAME_FACTORY.ltcube(**name_keys), irfs=NAME_FACTORY.irfs(**name_keys), bexpmap=NAME_FACTORY.bexpcube(**name_keys), srcmdl=sub_comp_info.srcmdl_name, source=sub_comp_info.source_name, no_psf=no_psf, evtype=comp.evtype) if kstep < 0: kstep = kmax else: pass for k in range(kmin, kmax, kstep): full_key = "%s_%s_%02i" % (diffuse_comp_info_key, key, k) khi = min(kmax, k + kstep) full_dict = base_dict.copy() outfile = outfile_base.replace('.fits', '_%02i.fits' % k) logfile = make_nfs_path(outfile_base.replace('.fits', '_%02i.log' % k)) full_dict.update(dict(outfile=outfile, kmin=k, kmax=khi, logfile=logfile)) job_configs[full_key] = full_dict return job_configs
Hook to build job configurations
entailment
def fit_error_ellipse(tsmap, xy=None, dpix=3, zmin=None): """Fit a positional uncertainty ellipse from a TS map. The fit will be performed over pixels in the vicinity of the peak pixel with D < dpix OR z > zmin where D is the distance from the peak pixel in pixel coordinates and z is the difference in amplitude from the peak pixel. Parameters ---------- tsmap : `~gammapy.maps.WcsMap` xy : tuple dpix : float zmin : float Returns ------- fit : dict Dictionary with fit results. """ if xy is None: ix, iy = np.unravel_index(np.argmax(tsmap.data.T), tsmap.data.T.shape) else: ix, iy = xy pbfit0 = utils.fit_parabola(tsmap.data.T, ix, iy, dpix=1.5) pbfit1 = utils.fit_parabola(tsmap.data.T, ix, iy, dpix=dpix, zmin=zmin) wcs = tsmap.geom.wcs cdelt0 = tsmap.geom.wcs.wcs.cdelt[0] cdelt1 = tsmap.geom.wcs.wcs.cdelt[1] npix0 = tsmap.data.T.shape[0] npix1 = tsmap.data.T.shape[1] o = {} o['fit_success'] = pbfit0['fit_success'] o['fit_inbounds'] = True if pbfit0['fit_success']: o['xpix'] = pbfit0['x0'] o['ypix'] = pbfit0['y0'] o['zoffset'] = pbfit0['z0'] else: o['xpix'] = float(ix) o['ypix'] = float(iy) o['zoffset'] = tsmap.data.T[ix, iy] if pbfit1['fit_success']: sigmax = 2.0**0.5 * pbfit1['sigmax'] * np.abs(cdelt0) sigmay = 2.0**0.5 * pbfit1['sigmay'] * np.abs(cdelt1) theta = pbfit1['theta'] sigmax = min(sigmax, np.abs(2.0 * npix0 * cdelt0)) sigmay = min(sigmay, np.abs(2.0 * npix1 * cdelt1)) elif pbfit0['fit_success']: sigmax = 2.0**0.5 * pbfit0['sigmax'] * np.abs(cdelt0) sigmay = 2.0**0.5 * pbfit0['sigmay'] * np.abs(cdelt1) theta = pbfit0['theta'] sigmax = min(sigmax, np.abs(2.0 * npix0 * cdelt0)) sigmay = min(sigmay, np.abs(2.0 * npix1 * cdelt1)) else: pix_area = np.abs(cdelt0) * np.abs(cdelt1) mask = get_region_mask(tsmap.data, 1.0, (ix, iy)) area = np.sum(mask) * pix_area sigmax = (area / np.pi)**0.5 sigmay = (area / np.pi)**0.5 theta = 0.0 if (o['xpix'] <= 0 or o['xpix'] >= npix0 - 1 or o['ypix'] <= 0 or o['ypix'] >= npix1 - 1): o['fit_inbounds'] = False o['xpix'] = float(ix) o['ypix'] = float(iy) o['peak_offset'] = np.sqrt((float(ix) - o['xpix'])**2 + (float(iy) - o['ypix'])**2) skydir = SkyCoord.from_pixel(o['xpix'], o['ypix'], wcs) sigma = (sigmax * sigmay)**0.5 r68 = 2.30**0.5 * sigma r95 = 5.99**0.5 * sigma r99 = 9.21**0.5 * sigma if sigmax < sigmay: o['pos_err_semimajor'] = sigmay o['pos_err_semiminor'] = sigmax o['theta'] = np.fmod(2 * np.pi + np.pi / 2. + theta, np.pi) else: o['pos_err_semimajor'] = sigmax o['pos_err_semiminor'] = sigmay o['theta'] = np.fmod(2 * np.pi + theta, np.pi) o['pos_angle'] = np.degrees(o['theta']) o['pos_err'] = sigma o['pos_r68'] = r68 o['pos_r95'] = r95 o['pos_r99'] = r99 o['ra'] = skydir.icrs.ra.deg o['dec'] = skydir.icrs.dec.deg o['glon'] = skydir.galactic.l.deg o['glat'] = skydir.galactic.b.deg a = o['pos_err_semimajor'] b = o['pos_err_semiminor'] o['pos_ecc'] = np.sqrt(1 - b**2 / a**2) o['pos_ecc2'] = np.sqrt(a**2 / b**2 - 1) o['skydir'] = skydir if tsmap.geom.coordsys == 'GAL': gal_cov = utils.ellipse_to_cov(o['pos_err_semimajor'], o['pos_err_semiminor'], o['theta']) theta_cel = wcs_utils.get_cel_to_gal_angle(skydir) cel_cov = utils.ellipse_to_cov(o['pos_err_semimajor'], o['pos_err_semiminor'], o['theta'] + theta_cel) else: cel_cov = utils.ellipse_to_cov(o['pos_err_semimajor'], o['pos_err_semiminor'], o['theta']) theta_gal = 2 * np.pi - wcs_utils.get_cel_to_gal_angle(skydir) gal_cov = utils.ellipse_to_cov(o['pos_err_semimajor'], o['pos_err_semiminor'], o['theta'] + theta_gal) o['pos_gal_cov'] = gal_cov o['pos_cel_cov'] = cel_cov o['pos_gal_corr'] = utils.cov_to_correlation(gal_cov) o['pos_cel_corr'] = utils.cov_to_correlation(cel_cov) o['glon_err'], o['glat_err'] = np.sqrt( gal_cov[0, 0]), np.sqrt(gal_cov[1, 1]) o['ra_err'], o['dec_err'] = np.sqrt(cel_cov[0, 0]), np.sqrt(cel_cov[1, 1]) return o
Fit a positional uncertainty ellipse from a TS map. The fit will be performed over pixels in the vicinity of the peak pixel with D < dpix OR z > zmin where D is the distance from the peak pixel in pixel coordinates and z is the difference in amplitude from the peak pixel. Parameters ---------- tsmap : `~gammapy.maps.WcsMap` xy : tuple dpix : float zmin : float Returns ------- fit : dict Dictionary with fit results.
entailment
def find_peaks(input_map, threshold, min_separation=0.5): """Find peaks in a 2-D map object that have amplitude larger than `threshold` and lie a distance at least `min_separation` from another peak of larger amplitude. The implementation of this method uses `~scipy.ndimage.filters.maximum_filter`. Parameters ---------- input_map : `~gammapy.maps.WcsMap` threshold : float min_separation : float Radius of region size in degrees. Sets the minimum allowable separation between peaks. Returns ------- peaks : list List of dictionaries containing the location and amplitude of each peak. """ data = input_map.data cdelt = max(input_map.geom.wcs.wcs.cdelt) min_separation = max(min_separation, 2 * cdelt) region_size_pix = int(min_separation / cdelt) region_size_pix = max(3, region_size_pix) deltaxy = utils.make_pixel_distance(region_size_pix * 2 + 3) deltaxy *= max(input_map.geom.wcs.wcs.cdelt) region = deltaxy < min_separation local_max = maximum_filter(data, footprint=region) == data local_max[data < threshold] = False labeled, num_objects = scipy.ndimage.label(local_max) slices = scipy.ndimage.find_objects(labeled) peaks = [] for s in slices: skydir = SkyCoord.from_pixel(s[1].start, s[0].start, input_map.geom.wcs) peaks.append({'ix': s[1].start, 'iy': s[0].start, 'skydir': skydir, 'amp': data[s[0].start, s[1].start]}) return sorted(peaks, key=lambda t: t['amp'], reverse=True)
Find peaks in a 2-D map object that have amplitude larger than `threshold` and lie a distance at least `min_separation` from another peak of larger amplitude. The implementation of this method uses `~scipy.ndimage.filters.maximum_filter`. Parameters ---------- input_map : `~gammapy.maps.WcsMap` threshold : float min_separation : float Radius of region size in degrees. Sets the minimum allowable separation between peaks. Returns ------- peaks : list List of dictionaries containing the location and amplitude of each peak.
entailment
def estimate_pos_and_err_parabolic(tsvals): """Solve for the position and uncertainty of source in one dimension assuming that you are near the maximum and the errors are parabolic Parameters ---------- tsvals : `~numpy.ndarray` The TS values at the maximum TS, and for each pixel on either side Returns ------- The position and uncertainty of the source, in pixel units w.r.t. the center of the maximum pixel """ a = tsvals[2] - tsvals[0] bc = 2. * tsvals[1] - tsvals[0] - tsvals[2] s = a / (2 * bc) err = np.sqrt(2 / bc) return s, err
Solve for the position and uncertainty of source in one dimension assuming that you are near the maximum and the errors are parabolic Parameters ---------- tsvals : `~numpy.ndarray` The TS values at the maximum TS, and for each pixel on either side Returns ------- The position and uncertainty of the source, in pixel units w.r.t. the center of the maximum pixel
entailment
def refine_peak(tsmap, pix): """Solve for the position and uncertainty of source assuming that you are near the maximum and the errors are parabolic Parameters ---------- tsmap : `~numpy.ndarray` Array with the TS data. Returns ------- The position and uncertainty of the source, in pixel units w.r.t. the center of the maximum pixel """ # Note the annoying WCS convention nx = tsmap.shape[1] ny = tsmap.shape[0] if pix[0] == 0 or pix[0] == (nx - 1): xval = float(pix[0]) xerr = -1 else: x_arr = tsmap[pix[1], pix[0] - 1:pix[0] + 2] xval, xerr = estimate_pos_and_err_parabolic(x_arr) xval += float(pix[0]) if pix[1] == 0 or pix[1] == (ny - 1): yval = float(pix[1]) yerr = -1 else: y_arr = tsmap[pix[1] - 1:pix[1] + 2, pix[0]] yval, yerr = estimate_pos_and_err_parabolic(y_arr) yval += float(pix[1]) return (xval, yval), (xerr, yerr)
Solve for the position and uncertainty of source assuming that you are near the maximum and the errors are parabolic Parameters ---------- tsmap : `~numpy.ndarray` Array with the TS data. Returns ------- The position and uncertainty of the source, in pixel units w.r.t. the center of the maximum pixel
entailment
def create_source_table(scan_shape): """Create an empty source table. Returns ------- tab : `~astropy.table.Table` """ cols_dict = collections.OrderedDict() cols_dict['Source_Name'] = dict(dtype='S48', format='%s') cols_dict['name'] = dict(dtype='S48', format='%s') cols_dict['class'] = dict(dtype='S32', format='%s') cols_dict['SpectrumType'] = dict(dtype='S32', format='%s') cols_dict['SpatialType'] = dict(dtype='S32', format='%s') cols_dict['SourceType'] = dict(dtype='S32', format='%s') cols_dict['SpatialModel'] = dict(dtype='S32', format='%s') cols_dict['RAJ2000'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['DEJ2000'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['GLON'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['GLAT'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['ts'] = dict(dtype='f8', format='%.3f') cols_dict['loglike'] = dict(dtype='f8', format='%.3f') cols_dict['npred'] = dict(dtype='f8', format='%.3f') cols_dict['offset'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['offset_ra'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['offset_dec'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['offset_glon'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['offset_glat'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['offset_roi_edge'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['pivot_energy'] = dict(dtype='f8', format='%.3f', unit='MeV') cols_dict['flux_scan'] = dict(dtype='f8', format='%.3f', shape=scan_shape) cols_dict['eflux_scan'] = dict(dtype='f8', format='%.3f', shape=scan_shape) cols_dict['norm_scan'] = dict(dtype='f8', format='%.3f', shape=scan_shape) cols_dict['dloglike_scan'] = dict(dtype='f8', format='%.3f', shape=scan_shape) cols_dict['loglike_scan'] = dict(dtype='f8', format='%.3f', shape=scan_shape) # Add source dictionary columns for k, v in sorted(defaults.source_output.items()): if not k in cols_dict.keys(): if v[2] == float: cols_dict[k] = dict(dtype='f8', format='%f') elif k == 'Spectrum_Filename' or k == 'Spatial_Filename': cols_dict[k] = dict(dtype='S128', format='%s') elif v[2] == str: cols_dict[k] = dict(dtype='S32', format='%s') cols_dict['param_names'] = dict(dtype='S32', format='%s', shape=(10,)) cols_dict['param_values'] = dict(dtype='f8', format='%f', shape=(10,)) cols_dict['param_errors'] = dict(dtype='f8', format='%f', shape=(10,)) # Catalog Parameters cols_dict['Flux_Density'] = dict( dtype='f8', format='%.5g', unit='1 / (MeV cm2 s)') cols_dict['Spectral_Index'] = dict(dtype='f8', format='%.3f') cols_dict['Pivot_Energy'] = dict(dtype='f8', format='%.3f', unit='MeV') cols_dict['beta'] = dict(dtype='f8', format='%.3f') cols_dict['Exp_Index'] = dict(dtype='f8', format='%.3f') cols_dict['Cutoff'] = dict(dtype='f8', format='%.3f', unit='MeV') cols_dict['Expfactor'] = dict(dtype='f8', format='%.3f') cols_dict['Conf_68_PosAng'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['Conf_68_SemiMajor'] = dict( dtype='f8', format='%.3f', unit='deg') cols_dict['Conf_68_SemiMinor'] = dict( dtype='f8', format='%.3f', unit='deg') cols_dict['Conf_95_PosAng'] = dict(dtype='f8', format='%.3f', unit='deg') cols_dict['Conf_95_SemiMajor'] = dict( dtype='f8', format='%.3f', unit='deg') cols_dict['Conf_95_SemiMinor'] = dict( dtype='f8', format='%.3f', unit='deg') for t in ['eflux', 'eflux100', 'eflux1000', 'eflux10000']: cols_dict[t] = dict(dtype='f8', format='%.3f', unit='MeV / (cm2 s)') cols_dict[t + '_err'] = dict(dtype='f8', format='%.3f', unit='MeV / (cm2 s)') for t in ['eflux_ul95', 'eflux100_ul95', 'eflux1000_ul95', 'eflux10000_ul95']: cols_dict[t] = dict(dtype='f8', format='%.3f', unit='MeV / (cm2 s)') for t in ['flux', 'flux100', 'flux1000', 'flux10000']: cols_dict[t] = dict(dtype='f8', format='%.3f', unit='1 / (cm2 s)') cols_dict[t + '_err'] = dict(dtype='f8', format='%.3f', unit='1 / (cm2 s)') for t in ['flux_ul95', 'flux100_ul95', 'flux1000_ul95', 'flux10000_ul95']: cols_dict[t] = dict(dtype='f8', format='%.3f', unit='1 / (cm2 s)') for t in ['dnde', 'dnde100', 'dnde1000', 'dnde10000']: cols_dict[t] = dict(dtype='f8', format='%.3f', unit='1 / (MeV cm2 s)') cols_dict[t + '_err'] = dict(dtype='f8', format='%.3f', unit='1 / (MeV cm2 s)') cols = [Column(name=k, **v) for k, v in cols_dict.items()] tab = Table(cols) return tab
Create an empty source table. Returns ------- tab : `~astropy.table.Table`
entailment
def get_skydir_distance_mask(src_skydir, skydir, dist, min_dist=None, square=False, coordsys='CEL'): """Retrieve sources within a certain angular distance of an (ra,dec) coordinate. This function supports two types of geometric selections: circular (square=False) and square (square=True). The circular selection finds all sources with a given angular distance of the target position. The square selection finds sources within an ROI-like region of size R x R where R = 2 x dist. Parameters ---------- src_skydir : `~astropy.coordinates.SkyCoord` Array of sky directions. skydir : `~astropy.coordinates.SkyCoord` Sky direction with respect to which the selection will be applied. dist : float Maximum distance in degrees from the sky coordinate. square : bool Choose whether to apply a circular or square selection. coordsys : str Coordinate system to use when applying a selection with square=True. """ if dist is None: dist = 180. if not square: dtheta = src_skydir.separation(skydir).rad elif coordsys == 'CEL': dtheta = get_linear_dist(skydir, src_skydir.ra.rad, src_skydir.dec.rad, coordsys=coordsys) elif coordsys == 'GAL': dtheta = get_linear_dist(skydir, src_skydir.galactic.l.rad, src_skydir.galactic.b.rad, coordsys=coordsys) else: raise Exception('Unrecognized coordinate system: %s' % coordsys) msk = (dtheta < np.radians(dist)) if min_dist is not None: msk &= (dtheta > np.radians(min_dist)) return msk
Retrieve sources within a certain angular distance of an (ra,dec) coordinate. This function supports two types of geometric selections: circular (square=False) and square (square=True). The circular selection finds all sources with a given angular distance of the target position. The square selection finds sources within an ROI-like region of size R x R where R = 2 x dist. Parameters ---------- src_skydir : `~astropy.coordinates.SkyCoord` Array of sky directions. skydir : `~astropy.coordinates.SkyCoord` Sky direction with respect to which the selection will be applied. dist : float Maximum distance in degrees from the sky coordinate. square : bool Choose whether to apply a circular or square selection. coordsys : str Coordinate system to use when applying a selection with square=True.
entailment
def spectral_pars_from_catalog(cat): """Create spectral parameters from 3FGL catalog columns.""" spectrum_type = cat['SpectrumType'] pars = get_function_defaults(cat['SpectrumType']) par_idxs = {k: i for i, k in enumerate(get_function_par_names(cat['SpectrumType']))} for k in pars: pars[k]['value'] = cat['param_values'][par_idxs[k]] if spectrum_type == 'PowerLaw': pars['Index']['value'] *= -1.0 pars['Index']['scale'] = -1.0 pars['Scale']['scale'] = 1.0 pars['Index']['max'] = max(5.0, pars['Index']['value'] + 1.0) pars['Index']['min'] = min(0.0, pars['Index']['value'] - 1.0) pars['Prefactor'] = make_parameter_dict(pars['Prefactor']) pars['Scale'] = make_parameter_dict(pars['Scale'], True, False) pars['Index'] = make_parameter_dict(pars['Index'], False, False) elif spectrum_type == 'LogParabola': pars['norm'] = make_parameter_dict(pars['norm'], False, True) pars['Eb'] = make_parameter_dict(pars['Eb'], True, False) pars['alpha'] = make_parameter_dict(pars['alpha'], False, False) pars['beta'] = make_parameter_dict(pars['beta'], False, False) elif spectrum_type == 'PLSuperExpCutoff': pars['Index1']['value'] *= -1.0 pars['Index1']['scale'] = -1.0 pars['Index2']['scale'] = 1.0 pars['Prefactor'] = make_parameter_dict(pars['Prefactor']) pars['Scale'] = make_parameter_dict(pars['Scale'], True, False) pars['Index1'] = make_parameter_dict(pars['Index1'], False, False) pars['Index2'] = make_parameter_dict(pars['Index2'], False, False) pars['Cutoff'] = make_parameter_dict(pars['Cutoff'], False, True) elif spectrum_type == 'PLSuperExpCutoff2': pars['Index1']['value'] *= -1.0 pars['Index1']['scale'] = -1.0 pars['Index2']['scale'] = 1.0 pars['Prefactor'] = make_parameter_dict(pars['Prefactor']) pars['Scale'] = make_parameter_dict(pars['Scale'], True, False) pars['Index1'] = make_parameter_dict(pars['Index1'], False, False) pars['Index2'] = make_parameter_dict(pars['Index2'], False, False) pars['Expfactor'] = make_parameter_dict(pars['Expfactor'], False, True) else: raise Exception('Unsupported spectral type:' + spectrum_type) return pars
Create spectral parameters from 3FGL catalog columns.
entailment
def is_free(self): """ returns True if any of the spectral model parameters is set to free, else False """ return bool(np.array([int(value.get("free", False)) for key, value in self.spectral_pars.items()]).sum())
returns True if any of the spectral model parameters is set to free, else False
entailment
def set_position(self, skydir): """ Set the position of the source. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` """ if not isinstance(skydir, SkyCoord): skydir = SkyCoord(ra=skydir[0], dec=skydir[1], unit=u.deg) if not skydir.isscalar: skydir = np.ravel(skydir)[0] radec = np.array([skydir.icrs.ra.deg, skydir.icrs.dec.deg]) self._set_radec(radec)
Set the position of the source. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord`
entailment
def skydir(self): """Return a SkyCoord representation of the source position. Returns ------- skydir : `~astropy.coordinates.SkyCoord` """ return SkyCoord(self.radec[0] * u.deg, self.radec[1] * u.deg)
Return a SkyCoord representation of the source position. Returns ------- skydir : `~astropy.coordinates.SkyCoord`
entailment
def create_from_dict(cls, src_dict, roi_skydir=None, rescale=False): """Create a source object from a python dictionary. Parameters ---------- src_dict : dict Dictionary defining the properties of the source. """ src_dict = copy.deepcopy(src_dict) src_dict.setdefault('SpatialModel', 'PointSource') src_dict.setdefault('Spectrum_Filename', None) src_dict.setdefault('SpectrumType', 'PowerLaw') src_dict['SpatialType'] = get_spatial_type(src_dict['SpatialModel']) spectrum_type = src_dict['SpectrumType'] spatial_type = src_dict['SpatialType'] spectral_pars = src_dict.pop('spectral_pars', {}) spatial_pars = src_dict.pop('spatial_pars', {}) if not spectral_pars: spectral_pars = extract_pars_from_dict(spectrum_type, src_dict) norm_par_name = get_function_norm_par_name(spectrum_type) if norm_par_name is not None: spectral_pars[norm_par_name].setdefault('free', True) if not spatial_pars: spatial_pars = extract_pars_from_dict(spatial_type, src_dict) for k in ['RA', 'DEC', 'Prefactor']: if k in spatial_pars: del spatial_pars[k] spectral_pars = create_pars_from_dict(spectrum_type, spectral_pars, rescale) spatial_pars = create_pars_from_dict(spatial_type, spatial_pars, False) if 'file' in src_dict: src_dict['Spectrum_Filename'] = src_dict.pop('file') if spectrum_type == 'DMFitFunction' and src_dict['Spectrum_Filename'] is None: src_dict['Spectrum_Filename'] = os.path.join('$FERMIPY_DATA_DIR', 'gammamc_dif.dat') src_dict['spectral_pars'] = cast_pars_dict(spectral_pars) src_dict['spatial_pars'] = cast_pars_dict(spatial_pars) if 'name' in src_dict: name = src_dict['name'] src_dict['Source_Name'] = src_dict.pop('name') elif 'Source_Name' in src_dict: name = src_dict['Source_Name'] else: raise Exception('Source name undefined.') skydir = wcs_utils.get_target_skydir(src_dict, roi_skydir) src_dict['RAJ2000'] = skydir.ra.deg src_dict['DEJ2000'] = skydir.dec.deg radec = np.array([skydir.ra.deg, skydir.dec.deg]) return cls(name, src_dict, radec=radec)
Create a source object from a python dictionary. Parameters ---------- src_dict : dict Dictionary defining the properties of the source.
entailment
def create_from_xmlfile(cls, xmlfile, extdir=None): """Create a Source object from an XML file. Parameters ---------- xmlfile : str Path to XML file. extdir : str Path to the extended source archive. """ root = ElementTree.ElementTree(file=xmlfile).getroot() srcs = root.findall('source') if len(srcs) == 0: raise Exception('No sources found.') return cls.create_from_xml(srcs[0], extdir=extdir)
Create a Source object from an XML file. Parameters ---------- xmlfile : str Path to XML file. extdir : str Path to the extended source archive.
entailment
def create_from_xml(root, extdir=None): """Create a Source object from an XML node. Parameters ---------- root : `~xml.etree.ElementTree.Element` XML node containing the source. extdir : str Path to the extended source archive. """ src_type = root.attrib['type'] spec = utils.load_xml_elements(root, 'spectrum') spectral_pars = utils.load_xml_elements(root, 'spectrum/parameter') spectral_type = spec['type'] spectral_pars = cast_pars_dict(spectral_pars) spat = {} spatial_pars = {} nested_sources = [] if src_type == 'CompositeSource': spatial_type = 'CompositeSource' source_library = root.findall('source_library')[0] for node in source_library.findall('source'): nested_sources += [Source.create_from_xml(node, extdir=extdir)] else: spat = utils.load_xml_elements(root, 'spatialModel') spatial_pars = utils.load_xml_elements( root, 'spatialModel/parameter') spatial_pars = cast_pars_dict(spatial_pars) spatial_type = spat['type'] xml_dict = copy.deepcopy(root.attrib) src_dict = {'catalog': xml_dict} src_dict['Source_Name'] = xml_dict['name'] src_dict['SpectrumType'] = spectral_type src_dict['SpatialType'] = spatial_type src_dict['SourceType'] = src_type src_dict['Spatial_Filename'] = None src_dict['Spectrum_Filename'] = None if 'file' in spat: src_dict['Spatial_Filename'] = utils.xmlpath_to_path(spat['file']) if not os.path.isfile(src_dict['Spatial_Filename']) \ and extdir is not None: src_dict['Spatial_Filename'] = \ os.path.join(extdir, 'Templates', src_dict['Spatial_Filename']) if 'file' in spec: src_dict['Spectrum_Filename'] = utils.xmlpath_to_path(spec['file']) if src_type == 'PointSource': src_dict['SpatialModel'] = 'PointSource' elif src_type == 'CompositeSource': src_dict['SpatialModel'] = 'CompositeSource' elif spatial_type == 'SpatialMap': src_dict['SpatialModel'] = 'SpatialMap' else: src_dict['SpatialModel'] = spatial_type if src_type == 'PointSource' or \ spatial_type in ['SpatialMap', 'RadialGaussian', 'RadialDisk']: if 'RA' in xml_dict: src_dict['RAJ2000'] = float(xml_dict['RA']) src_dict['DEJ2000'] = float(xml_dict['DEC']) elif 'RA' in spatial_pars: src_dict['RAJ2000'] = float(spatial_pars['RA']['value']) src_dict['DEJ2000'] = float(spatial_pars['DEC']['value']) else: try: skydir = wcs_utils.get_map_skydir(os.path.expandvars( src_dict['Spatial_Filename'])) except Exception: skydir = hpx_utils.get_map_skydir(os.path.expandvars( src_dict['Spatial_Filename'])) src_dict['RAJ2000'] = skydir.ra.deg src_dict['DEJ2000'] = skydir.dec.deg radec = np.array([src_dict['RAJ2000'], src_dict['DEJ2000']]) src_dict['spectral_pars'] = spectral_pars src_dict['spatial_pars'] = spatial_pars return Source(src_dict['Source_Name'], src_dict, radec=radec) elif src_type == 'DiffuseSource' and spatial_type == 'ConstantValue': return IsoSource(src_dict['Source_Name'], {'Spectrum_Filename': spec['file'], 'spectral_pars': spectral_pars, 'spatial_pars': spatial_pars}) elif src_type == 'DiffuseSource' and spatial_type == 'MapCubeFunction': return MapCubeSource(src_dict['Source_Name'], {'Spatial_Filename': spat['file'], 'SpectrumType': spectral_type, 'spectral_pars': spectral_pars, 'spatial_pars': spatial_pars}) elif src_type == 'CompositeSource': return CompositeSource(src_dict['Source_Name'], {'SpectrumType': spectral_type, 'nested_sources': nested_sources}) else: raise Exception( 'Unrecognized type for source: %s %s' % (src_dict['Source_Name'], src_type))
Create a Source object from an XML node. Parameters ---------- root : `~xml.etree.ElementTree.Element` XML node containing the source. extdir : str Path to the extended source archive.
entailment
def write_xml(self, root): """Write this source to an XML node.""" if not self.extended: try: source_element = utils.create_xml_element(root, 'source', dict(name=self['Source_Name'], type='PointSource')) except TypeError as msg: print (self['Source_Name'], self) raise TypeError(msg) spat_el = ElementTree.SubElement(source_element, 'spatialModel') spat_el.set('type', 'SkyDirFunction') elif self['SpatialType'] == 'SpatialMap': source_element = utils.create_xml_element(root, 'source', dict(name=self['Source_Name'], type='DiffuseSource')) filename = utils.path_to_xmlpath(self['Spatial_Filename']) spat_el = utils.create_xml_element(source_element, 'spatialModel', dict(map_based_integral='True', type='SpatialMap', file=filename)) else: source_element = utils.create_xml_element(root, 'source', dict(name=self['Source_Name'], type='DiffuseSource')) spat_el = utils.create_xml_element(source_element, 'spatialModel', dict(type=self['SpatialType'])) for k, v in self.spatial_pars.items(): utils.create_xml_element(spat_el, 'parameter', v) el = ElementTree.SubElement(source_element, 'spectrum') stype = self['SpectrumType'].strip() el.set('type', stype) if self['Spectrum_Filename'] is not None: filename = utils.path_to_xmlpath(self['Spectrum_Filename']) el.set('file', filename) for k, v in self.spectral_pars.items(): utils.create_xml_element(el, 'parameter', v)
Write this source to an XML node.
entailment
def clear(self): """Clear the contents of the ROI.""" self._srcs = [] self._diffuse_srcs = [] self._src_dict = collections.defaultdict(list) self._src_radius = []
Clear the contents of the ROI.
entailment
def _create_diffuse_src_from_xml(self, config, src_type='FileFunction'): """Load sources from an XML file. """ diffuse_xmls = config.get('diffuse_xml') srcs_out = [] for diffuse_xml in diffuse_xmls: srcs_out += self.load_xml(diffuse_xml, coordsys=config.get('coordsys', 'CEL')) return srcs_out
Load sources from an XML file.
entailment
def create_source(self, name, src_dict, build_index=True, merge_sources=True, rescale=True): """Add a new source to the ROI model from a dictionary or an existing source object. Parameters ---------- name : str src_dict : dict or `~fermipy.roi_model.Source` Returns ------- src : `~fermipy.roi_model.Source` """ src_dict = copy.deepcopy(src_dict) if isinstance(src_dict, dict): src_dict['name'] = name src = Model.create_from_dict(src_dict, self.skydir, rescale=rescale) else: src = src_dict src.set_name(name) if isinstance(src, Source): src.set_roi_direction(self.skydir) src.set_roi_geom(self.geom) self.load_source(src, build_index=build_index, merge_sources=merge_sources) return self.get_source_by_name(name)
Add a new source to the ROI model from a dictionary or an existing source object. Parameters ---------- name : str src_dict : dict or `~fermipy.roi_model.Source` Returns ------- src : `~fermipy.roi_model.Source`
entailment
def load_sources(self, sources): """Delete all sources in the ROI and load the input source list.""" self.clear() for s in sources: if isinstance(s, dict): s = Model.create_from_dict(s) self.load_source(s, build_index=False) self._build_src_index()
Delete all sources in the ROI and load the input source list.
entailment
def load_source(self, src, build_index=True, merge_sources=True, **kwargs): """ Load a single source. Parameters ---------- src : `~fermipy.roi_model.Source` Source object that will be added to the ROI. merge_sources : bool When a source matches an existing source in the model update that source with the properties of the new source. build_index : bool Re-make the source index after loading this source. """ src = copy.deepcopy(src) name = src.name.replace(' ', '').lower() min_sep = kwargs.get('min_separation', None) if min_sep is not None: sep = src.skydir.separation(self._src_skydir).deg if len(sep) > 0 and np.min(sep) < min_sep: return match_srcs = self.match_source(src) if len(match_srcs) == 1: # self.logger.debug('Found matching source for %s : %s', # src.name, match_srcs[0].name) if merge_sources: match_srcs[0].update_from_source(src) else: match_srcs[0].add_name(src.name) self._add_source_alias(src.name.replace(' ', '').lower(), match_srcs[0]) return elif len(match_srcs) > 2: raise Exception('Multiple sources with name %s' % name) self._add_source_alias(src.name, src) for name in src.names: self._add_source_alias(name.replace(' ', '').lower(), src) if isinstance(src, Source): self._srcs.append(src) else: self._diffuse_srcs.append(src) if build_index: self._build_src_index()
Load a single source. Parameters ---------- src : `~fermipy.roi_model.Source` Source object that will be added to the ROI. merge_sources : bool When a source matches an existing source in the model update that source with the properties of the new source. build_index : bool Re-make the source index after loading this source.
entailment
def match_source(self, src): """Look for source or sources in the model that match the given source. Sources are matched by name and any association columns defined in the assoc_xmatch_columns parameter. """ srcs = [] names = [src.name] for col in self.config['assoc_xmatch_columns']: if col in src.assoc and src.assoc[col]: names += [src.assoc[col]] for name in names: name = name.replace(' ', '').lower() if name not in self._src_dict: continue srcs += [s for s in self._src_dict[name] if s not in srcs] return srcs
Look for source or sources in the model that match the given source. Sources are matched by name and any association columns defined in the assoc_xmatch_columns parameter.
entailment
def load(self, **kwargs): """Load both point source and diffuse components.""" coordsys = kwargs.get('coordsys', 'CEL') extdir = kwargs.get('extdir', self.extdir) srcname = kwargs.get('srcname', None) self.clear() self.load_diffuse_srcs() for c in self.config['catalogs']: if isinstance(c, catalog.Catalog): self.load_existing_catalog(c) continue extname = os.path.splitext(c)[1] if extname != '.xml': self.load_fits_catalog(c, extdir=extdir, coordsys=coordsys, srcname=srcname) elif extname == '.xml': self.load_xml(c, extdir=extdir, coordsys=coordsys) else: raise Exception('Unrecognized catalog file extension: %s' % c) for c in self.config['sources']: if 'name' not in c: raise Exception( 'No name field in source dictionary:\n ' + str(c)) self.create_source(c['name'], c, build_index=False) self._build_src_index()
Load both point source and diffuse components.
entailment
def create_from_roi_data(cls, datafile): """Create an ROI model.""" data = np.load(datafile).flat[0] roi = cls() roi.load_sources(data['sources'].values()) return roi
Create an ROI model.
entailment
def create(cls, selection, config, **kwargs): """Create an ROIModel instance.""" if selection['target'] is not None: return cls.create_from_source(selection['target'], config, **kwargs) else: target_skydir = wcs_utils.get_target_skydir(selection) return cls.create_from_position(target_skydir, config, **kwargs)
Create an ROIModel instance.
entailment
def create_from_position(cls, skydir, config, **kwargs): """Create an ROIModel instance centered on a sky direction. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Sky direction on which the ROI will be centered. config : dict Model configuration dictionary. """ coordsys = kwargs.pop('coordsys', 'CEL') roi = cls(config, skydir=skydir, coordsys=coordsys, **kwargs) return roi
Create an ROIModel instance centered on a sky direction. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Sky direction on which the ROI will be centered. config : dict Model configuration dictionary.
entailment
def create_from_source(cls, name, config, **kwargs): """Create an ROI centered on the given source.""" coordsys = kwargs.pop('coordsys', 'CEL') roi = cls(config, src_radius=None, src_roiwidth=None, srcname=name, **kwargs) src = roi.get_source_by_name(name) return cls.create_from_position(src.skydir, config, coordsys=coordsys, **kwargs)
Create an ROI centered on the given source.
entailment
def get_source_by_name(self, name): """Return a single source in the ROI with the given name. The input name string can match any of the strings in the names property of the source object. Case and whitespace are ignored when matching name strings. If no sources are found or multiple sources then an exception is thrown. Parameters ---------- name : str Name string. Returns ------- srcs : `~fermipy.roi_model.Model` A source object. """ srcs = self.get_sources_by_name(name) if len(srcs) == 1: return srcs[0] elif len(srcs) == 0: raise Exception('No source matching name: ' + name) elif len(srcs) > 1: raise Exception('Multiple sources matching name: ' + name)
Return a single source in the ROI with the given name. The input name string can match any of the strings in the names property of the source object. Case and whitespace are ignored when matching name strings. If no sources are found or multiple sources then an exception is thrown. Parameters ---------- name : str Name string. Returns ------- srcs : `~fermipy.roi_model.Model` A source object.
entailment
def get_sources_by_name(self, name): """Return a list of sources in the ROI matching the given name. The input name string can match any of the strings in the names property of the source object. Case and whitespace are ignored when matching name strings. Parameters ---------- name : str Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects. """ index_name = name.replace(' ', '').lower() if index_name in self._src_dict: return list(self._src_dict[index_name]) else: raise Exception('No source matching name: ' + name)
Return a list of sources in the ROI matching the given name. The input name string can match any of the strings in the names property of the source object. Case and whitespace are ignored when matching name strings. Parameters ---------- name : str Returns ------- srcs : list A list of `~fermipy.roi_model.Model` objects.
entailment
def get_sources(self, skydir=None, distance=None, cuts=None, minmax_ts=None, minmax_npred=None, exclude=None, square=False, coordsys='CEL', names=None): """Retrieve list of source objects satisfying the following selections: * Angular separation from ``skydir`` or ROI center (if ``skydir`` is None) less than ``distance``. * Cuts on source properties defined in ``cuts`` list. * TS and Npred in range specified by ``minmax_ts`` and ``minmax_npred``. * Name matching a value in ``names`` Sources can be excluded from the selection by adding their name to the ``exclude`` list. Returns ------- srcs : list List of source objects. """ if skydir is None: skydir = self.skydir if exclude is None: exclude = [] rsrc, srcs = self.get_sources_by_position(skydir, distance, square=square, coordsys=coordsys) o = [] for s in srcs + self.diffuse_sources: if names and s.name not in names: continue if s.name in exclude: continue if not s.check_cuts(cuts): continue ts = s['ts'] npred = s['npred'] if not utils.apply_minmax_selection(ts, minmax_ts): continue if not utils.apply_minmax_selection(npred, minmax_npred): continue o.append(s) return o
Retrieve list of source objects satisfying the following selections: * Angular separation from ``skydir`` or ROI center (if ``skydir`` is None) less than ``distance``. * Cuts on source properties defined in ``cuts`` list. * TS and Npred in range specified by ``minmax_ts`` and ``minmax_npred``. * Name matching a value in ``names`` Sources can be excluded from the selection by adding their name to the ``exclude`` list. Returns ------- srcs : list List of source objects.
entailment
def get_sources_by_position(self, skydir, dist, min_dist=None, square=False, coordsys='CEL'): """Retrieve sources within a certain angular distance of a sky coordinate. This function supports two types of geometric selections: circular (square=False) and square (square=True). The circular selection finds all sources with a given angular distance of the target position. The square selection finds sources within an ROI-like region of size R x R where R = 2 x dist. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Sky direction with respect to which the selection will be applied. dist : float Maximum distance in degrees from the sky coordinate. square : bool Choose whether to apply a circular or square selection. coordsys : str Coordinate system to use when applying a selection with square=True. """ msk = get_skydir_distance_mask(self._src_skydir, skydir, dist, min_dist=min_dist, square=square, coordsys=coordsys) radius = self._src_skydir.separation(skydir).deg radius = radius[msk] srcs = [self._srcs[i] for i in np.nonzero(msk)[0]] isort = np.argsort(radius) radius = radius[isort] srcs = [srcs[i] for i in isort] return radius, srcs
Retrieve sources within a certain angular distance of a sky coordinate. This function supports two types of geometric selections: circular (square=False) and square (square=True). The circular selection finds all sources with a given angular distance of the target position. The square selection finds sources within an ROI-like region of size R x R where R = 2 x dist. Parameters ---------- skydir : `~astropy.coordinates.SkyCoord` Sky direction with respect to which the selection will be applied. dist : float Maximum distance in degrees from the sky coordinate. square : bool Choose whether to apply a circular or square selection. coordsys : str Coordinate system to use when applying a selection with square=True.
entailment
def load_fits_catalog(self, name, **kwargs): """Load sources from a FITS catalog file. Parameters ---------- name : str Catalog name or path to a catalog FITS file. """ # EAC split this function to make it easier to load an existing catalog cat = catalog.Catalog.create(name) self.load_existing_catalog(cat, **kwargs)
Load sources from a FITS catalog file. Parameters ---------- name : str Catalog name or path to a catalog FITS file.
entailment
def load_existing_catalog(self, cat, **kwargs): """Load sources from an existing catalog object. Parameters ---------- cat : `~fermipy.catalog.Catalog` Catalog object. """ coordsys = kwargs.get('coordsys', 'CEL') extdir = kwargs.get('extdir', self.extdir) srcname = kwargs.get('srcname', None) m0 = get_skydir_distance_mask(cat.skydir, self.skydir, self.config['src_radius']) m1 = get_skydir_distance_mask(cat.skydir, self.skydir, self.config['src_radius_roi'], square=True, coordsys=coordsys) m = (m0 & m1) if srcname is not None: m &= utils.find_rows_by_string(cat.table, [srcname], self.src_name_cols) offset = self.skydir.separation(cat.skydir).deg offset_cel = wcs_utils.sky_to_offset(self.skydir, cat.radec[:, 0], cat.radec[:, 1], 'CEL') offset_gal = wcs_utils.sky_to_offset(self.skydir, cat.glonlat[ :, 0], cat.glonlat[:, 1], 'GAL') for i, (row, radec) in enumerate(zip(cat.table[m], cat.radec[m])): catalog_dict = catalog.row_to_dict(row) src_dict = {'catalog': catalog_dict} src_dict['Source_Name'] = row['Source_Name'] src_dict['SpectrumType'] = row['SpectrumType'] if row['extended']: src_dict['SourceType'] = 'DiffuseSource' src_dict['SpatialType'] = str(row['Spatial_Function']) src_dict['SpatialModel'] = str(row['Spatial_Function']) search_dirs = [] if extdir is not None: search_dirs += [extdir, os.path.join(extdir, 'Templates')] search_dirs += [row['extdir'], os.path.join(row['extdir'], 'Templates')] if src_dict['SpatialType'] == 'SpatialMap': src_dict['Spatial_Filename'] = utils.resolve_file_path( row['Spatial_Filename'], search_dirs=search_dirs) else: src_dict['SourceType'] = 'PointSource' src_dict['SpatialType'] = 'SkyDirFunction' src_dict['SpatialModel'] = 'PointSource' src_dict['spectral_pars'] = spectral_pars_from_catalog( catalog_dict) src_dict['spatial_pars'] = spatial_pars_from_catalog(catalog_dict) src = Source(src_dict['Source_Name'], src_dict, radec=radec) src.data['offset'] = offset[m][i] src.data['offset_ra'] = offset_cel[:, 0][m][i] src.data['offset_dec'] = offset_cel[:, 1][m][i] src.data['offset_glon'] = offset_gal[:, 0][m][i] src.data['offset_glat'] = offset_gal[:, 1][m][i] self.load_source(src, False, merge_sources=self.config['merge_sources']) self._build_src_index()
Load sources from an existing catalog object. Parameters ---------- cat : `~fermipy.catalog.Catalog` Catalog object.
entailment
def load_xml(self, xmlfile, **kwargs): """Load sources from an XML file.""" extdir = kwargs.get('extdir', self.extdir) coordsys = kwargs.get('coordsys', 'CEL') if not os.path.isfile(xmlfile): xmlfile = os.path.join(fermipy.PACKAGE_DATA, 'catalogs', xmlfile) root = ElementTree.ElementTree(file=xmlfile).getroot() diffuse_srcs = [] srcs = [] ra, dec = [], [] for s in root.findall('source'): src = Source.create_from_xml(s, extdir=extdir) if src.diffuse: diffuse_srcs += [src] else: srcs += [src] ra += [src['RAJ2000']] dec += [src['DEJ2000']] src_skydir = SkyCoord(ra=np.array(ra) * u.deg, dec=np.array(dec) * u.deg) radec = np.vstack((src_skydir.ra.deg, src_skydir.dec.deg)).T glonlat = np.vstack((src_skydir.galactic.l.deg, src_skydir.galactic.b.deg)).T offset = self.skydir.separation(src_skydir).deg offset_cel = wcs_utils.sky_to_offset(self.skydir, radec[:, 0], radec[:, 1], 'CEL') offset_gal = wcs_utils.sky_to_offset(self.skydir, glonlat[:, 0], glonlat[:, 1], 'GAL') m0 = get_skydir_distance_mask(src_skydir, self.skydir, self.config['src_radius']) m1 = get_skydir_distance_mask(src_skydir, self.skydir, self.config['src_radius_roi'], square=True, coordsys=coordsys) m = (m0 & m1) srcs = np.array(srcs)[m] for i, s in enumerate(srcs): s.data['offset'] = offset[m][i] s.data['offset_ra'] = offset_cel[:, 0][m][i] s.data['offset_dec'] = offset_cel[:, 1][m][i] s.data['offset_glon'] = offset_gal[:, 0][m][i] s.data['offset_glat'] = offset_gal[:, 1][m][i] self.load_source(s, False, merge_sources=self.config['merge_sources']) for i, s in enumerate(diffuse_srcs): self.load_source(s, False, merge_sources=self.config['merge_sources']) self._build_src_index() return srcs
Load sources from an XML file.
entailment
def _build_src_index(self): """Build an indices for fast lookup of a source given its name or coordinates.""" self._srcs = sorted(self._srcs, key=lambda t: t['offset']) nsrc = len(self._srcs) radec = np.zeros((2, nsrc)) for i, src in enumerate(self._srcs): radec[:, i] = src.radec self._src_skydir = SkyCoord(ra=radec[0], dec=radec[1], unit=u.deg) self._src_radius = self._src_skydir.separation(self.skydir)
Build an indices for fast lookup of a source given its name or coordinates.
entailment
def write_xml(self, xmlfile, config=None): """Save the ROI model as an XML file.""" root = ElementTree.Element('source_library') root.set('title', 'source_library') for s in self._srcs: s.write_xml(root) if config is not None: srcs = self.create_diffuse_srcs(config) diffuse_srcs = {s.name: s for s in srcs} for s in self._diffuse_srcs: src = copy.deepcopy(diffuse_srcs.get(s.name, s)) src.update_spectral_pars(s.spectral_pars) src.write_xml(root) else: for s in self._diffuse_srcs: s.write_xml(root) output_file = open(xmlfile, 'w') output_file.write(utils.prettify_xml(root))
Save the ROI model as an XML file.
entailment
def create_table(self, names=None): """Create an astropy Table object with the contents of the ROI model. """ scan_shape = (1,) for src in self._srcs: scan_shape = max(scan_shape, src['dloglike_scan'].shape) tab = create_source_table(scan_shape) for s in self._srcs: if names is not None and s.name not in names: continue s.add_to_table(tab) return tab
Create an astropy Table object with the contents of the ROI model.
entailment
def write_fits(self, fitsfile): """Write the ROI model to a FITS file.""" tab = self.create_table() hdu_data = fits.table_to_hdu(tab) hdus = [fits.PrimaryHDU(), hdu_data] fits_utils.write_hdus(hdus, fitsfile)
Write the ROI model to a FITS file.
entailment
def to_ds9(self, free='box',fixed='cross',frame='fk5',color='green',header=True): """Returns a list of ds9 region definitions Parameters ---------- free: bool one of the supported ds9 point symbols, used for free sources, see here: http://ds9.si.edu/doc/ref/region.html fixed: bool as free but for fixed sources frame: str typically fk5, more to be implemented color: str color used for symbols (only ds9 compatible colors) header: bool if True, will prepend a global header line. Returns ------- lines : list list of regions (and header if requested) """ # todo: add support for extended sources?! allowed_symbols = ['circle','box','diamond','cross','x','arrow','boxcircle'] # adding some checks. assert free in allowed_symbols, "symbol %s not supported"%free assert fixed in allowed_symbols, "symbol %s not supported"%fixed lines = [] if header: lines.append("global color=%s"%color) for src in self.get_sources(): # self.get_sources will return both Source, but also IsoSource and MapCube, in which case the sources # should be ignored (since they are by construction all-sky and have no corresponding ds9 region string) if not isinstance(src, Source): continue # otherwise get ra, dec ra, dec = src.radec line = "%s; point( %1.5f, %1.5f) # point=%s text={%s} color=%s"%(frame,ra, dec, free if src.is_free else fixed, src.name, color) lines.append(line) return lines
Returns a list of ds9 region definitions Parameters ---------- free: bool one of the supported ds9 point symbols, used for free sources, see here: http://ds9.si.edu/doc/ref/region.html fixed: bool as free but for fixed sources frame: str typically fk5, more to be implemented color: str color used for symbols (only ds9 compatible colors) header: bool if True, will prepend a global header line. Returns ------- lines : list list of regions (and header if requested)
entailment
def write_ds9region(self, region, *args, **kwargs): """Create a ds9 compatible region file from the ROI. It calls the `to_ds9` method and write the result to the region file. Only the file name is required. All other parameters will be forwarded to the `to_ds9` method, see the documentation of that method for all accepted parameters and options. Parameters ---------- region : str name of the region file (string) """ lines = self.to_ds9(*args,**kwargs) with open(region,'w') as fo: fo.write("\n".join(lines))
Create a ds9 compatible region file from the ROI. It calls the `to_ds9` method and write the result to the region file. Only the file name is required. All other parameters will be forwarded to the `to_ds9` method, see the documentation of that method for all accepted parameters and options. Parameters ---------- region : str name of the region file (string)
entailment