sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def gauss(x, sigma): """ Compute 1-D value of gaussian at position x relative to center.""" return (np.exp(-np.power(x, 2) / (2 * np.power(sigma, 2))) / (sigma * np.sqrt(2 * np.pi)))
Compute 1-D value of gaussian at position x relative to center.
entailment
def make_vector_plot(coordfile, columns=[1, 2, 3, 4], data=None, figure_id=None, title=None, axes=None, every=1, labelsize=8, ylimit=None, limit=None, xlower=None, ylower=None, output=None, headl=4, headw=3, xsh=0.0, ysh=0.0, fit=None, scale=1.0, vector=True, textscale=5, append=False, linfit=False, rms=True, plotname=None): """ Convert a XYXYMATCH file into a vector plot or set of residuals plots. This function provides a single interface for generating either a vector plot of residuals or a set of 4 plots showing residuals. The data being plotted can also be adjusted for a linear fit on-the-fly. Parameters ---------- coordfile : string Name of file with matched sets of coordinates. This input file can be a file compatible for use with IRAF's geomap. columns : list [Default: [0,1,2,3]] Column numbers for the X,Y positions from each image data : list of arrays If specified, this can be used to input matched data directly title : string Title to be used for the generated plot axes : list List of X and Y min/max values to customize the plot axes every : int [Default: 1] Slice value for the data to be plotted limit : float Radial offset limit for selecting which sources are included in the plot labelsize : int [Default: 8] or str Font size to use for tick labels, either in font points or as a string understood by tick_params(). ylimit : float Limit to use for Y range of plots. xlower : float ylower : float Limit in X and/or Y offset for selecting which sources are included in the plot output : string Filename of output file for generated plot headl : int [Default: 4] Length of arrow head to be used in vector plot headw : int [Default: 3] Width of arrow head to be used in vector plot xsh : float ysh : float Shift in X and Y from linear fit to be applied to source positions from the first image scale : float Scale from linear fit to be applied to source positions from the first image fit : array Array of linear coefficients for rotation (and scale?) in X and Y from a linear fit to be applied to source positions from the first image vector : bool [Default: True] Specifies whether or not to generate a vector plot. If False, task will generate a set of 4 residuals plots instead textscale : int [Default: 5] Scale factor for text used for labelling the generated plot append : bool [Default: False] If True, will overplot new plot on any pre-existing plot linfit : bool [Default: False] If True, a linear fit to the residuals will be generated and added to the generated residuals plots rms : bool [Default: True] Specifies whether or not to report the RMS of the residuals as a label on the generated plot(s). plotname : str [Default: None] Write out plot to a file with this name if specified. """ from matplotlib import pyplot as plt if data is None: data = readcols(coordfile, cols=columns) xy1x = data[0] xy1y = data[1] xy2x = data[2] xy2y = data[3] numpts = xy1x.shape[0] if fit is not None: xy1x, xy1y = apply_db_fit(data, fit, xsh=xsh, ysh=ysh) dx = xy2x - xy1x dy = xy2y - xy1y else: dx = xy2x - xy1x - xsh dy = xy2y - xy1y - ysh # apply scaling factor to deltas dx *= scale dy *= scale print('Total # points: {:d}'.format(len(dx))) if limit is not None: indx = np.sqrt(dx**2 + dy**2) <= limit dx = dx[indx].copy() dy = dy[indx].copy() xy1x = xy1x[indx].copy() xy1y = xy1y[indx].copy() if xlower is not None: xindx = np.abs(dx) >= xlower dx = dx[xindx].copy() dy = dy[xindx].copy() xy1x = xy1x[xindx].copy() xy1y = xy1y[xindx].copy() print('# of points after clipping: {:d}'.format(len(dx))) dr = np.sqrt(dx**2 + dy**2) max_vector = dr.max() if output is not None: write_xy_file(output, [xy1x, xy1y, dx, dy]) fig = plt.figure(num=figure_id) if not append: plt.clf() if vector: dxs = imagestats.ImageStats(dx.astype(np.float32)) dys = imagestats.ImageStats(dy.astype(np.float32)) minx = xy1x.min() maxx = xy1x.max() miny = xy1y.min() maxy = xy1y.max() plt_xrange = maxx - minx plt_yrange = maxy - miny qplot = plt.quiver(xy1x[::every], xy1y[::every], dx[::every], dy[::every], units='y', headwidth=headw, headlength=headl) key_dx = 0.01 * plt_xrange key_dy = 0.005 * plt_yrange * textscale maxvec = max_vector / 2. key_len = round(maxvec + 0.005, 2) plt.xlabel('DX: %.4f to %.4f +/- %.4f' % (dxs.min, dxs.max, dxs.stddev)) plt.ylabel('DY: %.4f to %.4f +/- %.4f' % (dys.min, dys.max, dys.stddev)) plt.title(r"$Vector\ plot\ of\ %d/%d\ residuals:\ %s$" % (xy1x.shape[0], numpts, title)) plt.quiverkey(qplot, minx + key_dx, miny - key_dy, key_len, "%0.2f pixels" % (key_len), coordinates='data', labelpos='E', labelcolor='Maroon', color='Maroon') else: plot_defs = [[xy1x, dx, "X (pixels)", "DX (pixels)"], [xy1y, dx, "Y (pixels)", "DX (pixels)"], [xy1x, dy, "X (pixels)", "DY (pixels)"], [xy1y, dy, "Y (pixels)", "DY (pixels)"]] if axes is None: # Compute a global set of axis limits for all plots minx = min(xy1x.min(), xy1y.min()) maxx = max(xy1x.max(), xy1y.max()) miny = min(dx.min(), dy.min()) maxy = max(dx.max(), dy.max()) else: minx = axes[0][0] maxx = axes[0][1] miny = axes[1][0] maxy = axes[1][1] if ylimit is not None: miny = -ylimit maxy = ylimit rms_labelled = False if title is None: fig.suptitle("Residuals [%d/%d]" % (xy1x.shape[0], numpts), ha='center', fontsize=labelsize + 6) else: # This definition of the title supports math symbols in the title fig.suptitle(r"$" + title + "$", ha='center', fontsize=labelsize + 6) for pnum, p in enumerate(plot_defs): pn = pnum + 1 ax = fig.add_subplot(2, 2, pn) plt.plot( p[0], p[1], 'b.', label='RMS(X) = %.4f, RMS(Y) = %.4f' % (dx.std(), dy.std()) ) lx = [int((p[0].min() - 500) / 500) * 500, int((p[0].max() + 500) / 500) * 500] plt.plot(lx, [0.0, 0.0], 'k', linewidth=3) plt.axis([minx, maxx, miny, maxy]) if rms and not rms_labelled: leg_handles, leg_labels = ax.get_legend_handles_labels() fig.legend(leg_handles, leg_labels, loc='center left', fontsize='small', frameon=False, bbox_to_anchor=(0.33, 0.51), borderaxespad=0) rms_labelled = True ax.tick_params(labelsize=labelsize) # Fine-tune figure; hide x ticks for top plots and y ticks for # right plots if pn <= 2: plt.setp(ax.get_xticklabels(), visible=False) else: ax.set_xlabel(plot_defs[pnum][2]) if pn % 2 == 0: plt.setp(ax.get_yticklabels(), visible=False) else: ax.set_ylabel(plot_defs[pnum][3]) if linfit: lxr = int((lx[-1] - lx[0]) / 100) lyr = int((p[1].max() - p[1].min()) / 100) a = np.vstack([p[0], np.ones(len(p[0]))]).T m, c = np.linalg.lstsq(a, p[1])[0] yr = [m * lx[0] + c, lx[-1] * m + c] plt.plot([lx[0], lx[-1]], yr, 'r') plt.text( lx[0] + lxr, p[1].max() + lyr, "%0.5g*x + %0.5g [%0.5g,%0.5g]" % (m, c, yr[0], yr[1]), color='r' ) plt.draw() if plotname: suffix = plotname[-4:] if '.' not in suffix: output += '.png' format = 'png' else: if suffix[1:] in ['png', 'pdf', 'ps', 'eps', 'svg']: format = suffix[1:] plt.savefig(plotname, format=format)
Convert a XYXYMATCH file into a vector plot or set of residuals plots. This function provides a single interface for generating either a vector plot of residuals or a set of 4 plots showing residuals. The data being plotted can also be adjusted for a linear fit on-the-fly. Parameters ---------- coordfile : string Name of file with matched sets of coordinates. This input file can be a file compatible for use with IRAF's geomap. columns : list [Default: [0,1,2,3]] Column numbers for the X,Y positions from each image data : list of arrays If specified, this can be used to input matched data directly title : string Title to be used for the generated plot axes : list List of X and Y min/max values to customize the plot axes every : int [Default: 1] Slice value for the data to be plotted limit : float Radial offset limit for selecting which sources are included in the plot labelsize : int [Default: 8] or str Font size to use for tick labels, either in font points or as a string understood by tick_params(). ylimit : float Limit to use for Y range of plots. xlower : float ylower : float Limit in X and/or Y offset for selecting which sources are included in the plot output : string Filename of output file for generated plot headl : int [Default: 4] Length of arrow head to be used in vector plot headw : int [Default: 3] Width of arrow head to be used in vector plot xsh : float ysh : float Shift in X and Y from linear fit to be applied to source positions from the first image scale : float Scale from linear fit to be applied to source positions from the first image fit : array Array of linear coefficients for rotation (and scale?) in X and Y from a linear fit to be applied to source positions from the first image vector : bool [Default: True] Specifies whether or not to generate a vector plot. If False, task will generate a set of 4 residuals plots instead textscale : int [Default: 5] Scale factor for text used for labelling the generated plot append : bool [Default: False] If True, will overplot new plot on any pre-existing plot linfit : bool [Default: False] If True, a linear fit to the residuals will be generated and added to the generated residuals plots rms : bool [Default: True] Specifies whether or not to report the RMS of the residuals as a label on the generated plot(s). plotname : str [Default: None] Write out plot to a file with this name if specified.
entailment
def find_xy_peak(img, center=None, sigma=3.0): """ Find the center of the peak of offsets """ # find level of noise in histogram istats = imagestats.ImageStats(img.astype(np.float32), nclip=1, fields='stddev,mode,mean,max,min') if istats.stddev == 0.0: istats = imagestats.ImageStats(img.astype(np.float32), fields='stddev,mode,mean,max,min') imgsum = img.sum() # clip out all values below mean+3*sigma from histogram imgc = img[:, :].copy() imgc[imgc < istats.mode + istats.stddev * sigma] = 0.0 # identify position of peak yp0, xp0 = np.where(imgc == imgc.max()) # Perform bounds checking on slice from img ymin = max(0, int(yp0[0]) - 3) ymax = min(img.shape[0], int(yp0[0]) + 4) xmin = max(0, int(xp0[0]) - 3) xmax = min(img.shape[1], int(xp0[0]) + 4) # take sum of at most a 7x7 pixel box around peak xp_slice = (slice(ymin, ymax), slice(xmin, xmax)) yp, xp = ndimage.measurements.center_of_mass(img[xp_slice]) if np.isnan(xp) or np.isnan(yp): xp = 0.0 yp = 0.0 flux = 0.0 zpqual = None else: xp += xp_slice[1].start yp += xp_slice[0].start # compute S/N criteria for this peak: flux/sqrt(mean of rest of array) flux = imgc[xp_slice].sum() delta_size = float(img.size - imgc[xp_slice].size) if delta_size == 0: delta_size = 1 delta_flux = float(imgsum - flux) if flux > imgc[xp_slice].max(): delta_flux = flux - imgc[xp_slice].max() else: delta_flux = flux zpqual = flux / np.sqrt(delta_flux / delta_size) if np.isnan(zpqual) or np.isinf(zpqual): zpqual = None if center is not None: xp -= center[0] yp -= center[1] flux = imgc[xp_slice].max() del imgc return xp, yp, flux, zpqual
Find the center of the peak of offsets
entailment
def plot_zeropoint(pars): """ Plot 2d histogram. Pars will be a dictionary containing: data, figure_id, vmax, title_str, xp,yp, searchrad """ from matplotlib import pyplot as plt xp = pars['xp'] yp = pars['yp'] searchrad = int(pars['searchrad'] + 0.5) plt.figure(num=pars['figure_id']) plt.clf() if pars['interactive']: plt.ion() else: plt.ioff() plt.imshow(pars['data'], vmin=0, vmax=pars['vmax'], interpolation='nearest') plt.viridis() plt.colorbar() plt.title(pars['title_str']) plt.plot(xp + searchrad, yp + searchrad, color='red', marker='+', markersize=24) plt.plot(searchrad, searchrad, color='yellow', marker='+', markersize=120) plt.text(searchrad, searchrad, "Offset=0,0", verticalalignment='bottom', color='yellow') plt.xlabel("Offset in X (pixels)") plt.ylabel("Offset in Y (pixels)") if pars['interactive']: plt.show() if pars['plotname']: suffix = pars['plotname'][-4:] output = pars['plotname'] if '.' not in suffix: output += '.png' format = 'png' else: if suffix[1:] in ['png', 'pdf', 'ps', 'eps', 'svg']: format = suffix[1:] plt.savefig(output, format=format)
Plot 2d histogram. Pars will be a dictionary containing: data, figure_id, vmax, title_str, xp,yp, searchrad
entailment
def build_xy_zeropoint(imgxy, refxy, searchrad=3.0, histplot=False, figure_id=1, plotname=None, interactive=True): """ Create a matrix which contains the delta between each XY position and each UV position. """ print('Computing initial guess for X and Y shifts...') # run C function to create ZP matrix zpmat = cdriz.arrxyzero(imgxy.astype(np.float32), refxy.astype(np.float32), searchrad) xp, yp, flux, zpqual = find_xy_peak(zpmat, center=(searchrad, searchrad)) if zpqual is not None: print('Found initial X and Y shifts of ', xp, yp) print(' with significance of ', zpqual, 'and ', flux, ' matches') else: # try with a lower sigma to detect a peak in a sparse set of sources xp, yp, flux, zpqual = find_xy_peak( zpmat, center=(searchrad, searchrad), sigma=1.0 ) if zpqual: print('Found initial X and Y shifts of ', xp, yp) print(' with significance of ', zpqual, 'and ', flux, ' matches') else: print('!' * 80) print('!') print('! WARNING: No valid shift found within a search radius of ', searchrad, ' pixels.') print('!') print('!' * 80) if histplot: zpstd = flux // 5 if zpstd < 10: zpstd = 10 if zpqual is None: zpstd = 10 title_str = ("Histogram of offsets: Peak has %d matches at " "(%0.4g, %0.4g)" % (flux, xp, yp)) plot_pars = {'data': zpmat, 'figure_id': figure_id, 'vmax': zpstd, 'xp': xp, 'yp': yp, 'searchrad': searchrad, 'title_str': title_str, 'plotname': plotname, 'interactive': interactive} plot_zeropoint(plot_pars) return xp, yp, flux, zpqual
Create a matrix which contains the delta between each XY position and each UV position.
entailment
def build_pos_grid(start, end, nstep, mesh=False): """ Return a grid of positions starting at X,Y given by 'start', and ending at X,Y given by 'end'. The grid will be completely filled in X and Y by every 'step' interval. """ # Build X and Y arrays dx = end[0] - start[0] if dx < 0: nstart = end end = start start = nstart dx = -dx stepx = dx / nstep # Perform linear fit to find exact line that connects start and end xarr = np.arange(start[0], end[0] + stepx / 2.0, stepx) yarr = np.interp(xarr, [start[0], end[0]], [start[1], end[1]]) # create grid of positions if mesh: xa, ya = np.meshgrid(xarr, yarr) xarr = xa.ravel() yarr = ya.ravel() return xarr, yarr
Return a grid of positions starting at X,Y given by 'start', and ending at X,Y given by 'end'. The grid will be completely filled in X and Y by every 'step' interval.
entailment
def find_DQ_extension(self): """ Return the suffix for the data quality extension and the name of the file which that DQ extension should be read from. """ dqfile = None # Look for additional file with DQ array, primarily for WFPC2 data indx = self._filename.find('.fits') if indx > 3: suffix = self._filename[indx-4:indx] dqfile = self._filename.replace(suffix[:3],'_c1') elif indx < 0 and len(self._filename) > 3 and \ self._filename[-4] == os.extsep and \ self._filename[-1].lower() == 'h': # assume we've got a GEIS file dqfile = self._filename[:-2]+'1'+self._filename[-1] hdulist = readgeis.readgeis(dqfile) prih = hdulist[0].header if 'FILETYPE' in prih: dq_suffix = prih['FILETYPE'].strip().upper() else: # assume extension name is 'SDQ' for WFPC2 GEIS files dq_suffix = 'SDQ' hdulist.close() return dqfile,dq_suffix else: raise ValueError("Input file {} does not appear to be neither " \ "a FITS file nor a GEIS file.".format(self._filename)) if os.path.exists(dqfile): dq_suffix = fits.getval(dqfile, "EXTNAME", ext=1, memmap=False) else: dq_suffix = "SCI" return dqfile, dq_suffix
Return the suffix for the data quality extension and the name of the file which that DQ extension should be read from.
entailment
def setInstrumentParameters(self, instrpars): """ This method overrides the superclass to set default values into the parameter dictionary, in case empty entries are provided. """ pri_header = self._image[0].header self.proc_unit = instrpars['proc_unit'] instrpars['gnkeyword'] = 'ATODGAIN' # hard-code for WFPC2 data instrpars['rnkeyword'] = None if self._isNotValid (instrpars['exptime'], instrpars['expkeyword']): instrpars['expkeyword'] = 'EXPTIME' for chip in self.returnAllChips(extname=self.scienceExt): chip._headergain = self.getInstrParameter( instrpars['gain'], pri_header, instrpars['gnkeyword'] ) chip._exptime = self.getInstrParameter( instrpars['exptime'], pri_header, instrpars['expkeyword'] ) # We need to treat Read Noise as a special case since it is # not populated in the WFPC2 primary header if instrpars['rnkeyword'] is None: chip._rdnoise = None else: chip._rdnoise = self.getInstrParameter( instrpars['rdnoise'], pri_header, instrpars['rnkeyword'] ) if chip._headergain is None or chip._exptime is None: print('ERROR: invalid instrument task parameter') raise ValueError # We need to determine if the user has used the default readnoise/gain value # since if not, they will need to supply a gain/readnoise value as well usingDefaultGain = instrpars['gnkeyword'] == 'ATODGAIN' usingDefaultReadnoise = instrpars['rnkeyword'] in [None, 'None'] # If the user has specified either the readnoise or the gain, we need to make sure # that they have actually specified both values. In the default case, the readnoise # of the system depends on what the gain if usingDefaultReadnoise and usingDefaultGain: self._setchippars() elif usingDefaultReadnoise and not usingDefaultGain: raise ValueError("ERROR: You need to supply readnoise information\n when not using the default gain for WFPC2.") elif not usingDefaultReadnoise and usingDefaultGain: raise ValueError("ERROR: You need to supply gain information when\n not using the default readnoise for WFPC2.") else: # In this case, the user has specified both a gain and readnoise values. Just use them as is. for chip in self.returnAllChips(extname=self.scienceExt): chip._gain = chip._headergain print("Using user defined values for gain and readnoise") # Convert the science data to electrons self.doUnitConversions()
This method overrides the superclass to set default values into the parameter dictionary, in case empty entries are provided.
entailment
def doUnitConversions(self): """ Apply unit conversions to all the chips, ignoring the group parameter. This insures that all the chips get the same conversions when this gets done, even if only 1 chip was specified to be processed. """ # Image information _handle = fileutil.openImage(self._filename, mode='readonly', memmap=False) # Now convert the SCI array(s) units for det in range(1,self._numchips+1): chip=self._image[self.scienceExt,det] conversionFactor = 1.0 # add D2IMFILE to outputNames for removal by 'clean()' method later if 'D2IMFILE' in _handle[0].header and _handle[0].header['D2IMFILE'] not in ["","N/A"]: chip.outputNames['d2imfile'] = _handle[0].header['D2IMFILE'] if chip._gain is not None: """ # Multiply the values of the sci extension pixels by the gain. print "Converting %s[%d] from COUNTS to ELECTRONS"%(self._filename,det) # If the exptime is 0 the science image will be zeroed out. np.multiply(_handle[self.scienceExt,det].data,chip._gain,_handle[self.scienceExt,det].data) chip.data=_handle[self.scienceExt,det].data # Set the BUNIT keyword to 'electrons' chip._bunit = 'ELECTRONS' chip.header.update('BUNIT','ELECTRONS') _handle[self.scienceExt,det].header.update('BUNIT','ELECTRONS') # Update the PHOTFLAM value photflam = _handle[self.scienceExt,det].header['PHOTFLAM'] _handle[self.scienceExt,det].header.update('PHOTFLAM',(photflam/chip._gain)) """ conversionFactor = chip._gain chip._effGain = chip._gain #1. chip._conversionFactor = conversionFactor #1. else: msg = "Invalid gain value for data, no conversion done" print(msg) raise ValueError(msg) # Close the files and clean-up _handle.close() self._effGain = conversionFactor
Apply unit conversions to all the chips, ignoring the group parameter. This insures that all the chips get the same conversions when this gets done, even if only 1 chip was specified to be processed.
entailment
def getdarkcurrent(self,exten): """ Return the dark current for the WFPC2 detector. This value will be contained within an instrument specific keyword. The value in the image header will be converted to units of electrons. Returns ------- darkcurrent : float Dark current for the WFPC3 detector in **units of counts/electrons**. """ darkrate = 0.005 # electrons / s if self.proc_unit == 'native': darkrate = darkrate / self.getGain(exten) #count/s try: chip = self._image[0] darkcurrent = chip.header['DARKTIME'] * darkrate except: msg = "#############################################\n" msg += "# #\n" msg += "# Error: #\n" msg += "# Cannot find the value for 'DARKTIME' #\n" msg += "# in the image header. WFPC2 input #\n" msg += "# images are expected to have this header #\n" msg += "# keyword. #\n" msg += "# #\n" msg += "# Error occured in the WFPC2InputImage class#\n" msg += "# #\n" msg += "#############################################\n" raise ValueError(msg) return darkcurrent
Return the dark current for the WFPC2 detector. This value will be contained within an instrument specific keyword. The value in the image header will be converted to units of electrons. Returns ------- darkcurrent : float Dark current for the WFPC3 detector in **units of counts/electrons**.
entailment
def getReadNoise(self, exten): """ Method for returning the readnoise of a detector (in counts). Returns ------- readnoise : float The readnoise of the detector in **units of counts/electrons**. """ rn = self._image[exten]._rdnoise if self.proc_unit == 'native': rn = self._rdnoise / self.getGain(exten) return rn
Method for returning the readnoise of a detector (in counts). Returns ------- readnoise : float The readnoise of the detector in **units of counts/electrons**.
entailment
def buildMask(self, chip, bits=0, write=False): """ Build masks as specified in the user parameters found in the configObj object. """ sci_chip = self._image[self.scienceExt,chip] ### For WFPC2 Data, build mask files using: maskname = sci_chip.dqrootname+'_dqmask.fits' dqmask_name = buildmask.buildShadowMaskImage(sci_chip.dqfile,sci_chip.detnum,sci_chip.extnum,maskname,bitvalue=bits,binned=sci_chip.binned) sci_chip.dqmaskname = dqmask_name sci_chip.outputNames['dqmask'] = dqmask_name sci_chip.outputNames['tmpmask'] = 'wfpc2_inmask%d.fits'%(sci_chip.detnum) dqmask = fits.getdata(dqmask_name, ext=0, memmap=False) return dqmask
Build masks as specified in the user parameters found in the configObj object.
entailment
def generateCatalog(wcs, mode='automatic', catalog=None, src_find_filters=None, **kwargs): """ Function which determines what type of catalog object needs to be instantiated based on what type of source selection algorithm the user specified. Parameters ---------- wcs : obj WCS object generated by STWCS or PyWCS catalog : str or ndarray Filename of existing catalog or ndarray of image for generation of source catalog. kwargs : dict Parameters needed to interpret source catalog from input catalog with `findmode` being required. Returns ------- catalog : obj A Catalog-based class instance for keeping track of WCS and associated source catalog """ if not isinstance(catalog,Catalog): if mode == 'automatic': # if an array is provided as the source # Create a new catalog directly from the image catalog = ImageCatalog(wcs,catalog,src_find_filters,**kwargs) else: # a catalog file was provided as the catalog source catalog = UserCatalog(wcs,catalog,**kwargs) return catalog
Function which determines what type of catalog object needs to be instantiated based on what type of source selection algorithm the user specified. Parameters ---------- wcs : obj WCS object generated by STWCS or PyWCS catalog : str or ndarray Filename of existing catalog or ndarray of image for generation of source catalog. kwargs : dict Parameters needed to interpret source catalog from input catalog with `findmode` being required. Returns ------- catalog : obj A Catalog-based class instance for keeping track of WCS and associated source catalog
entailment
def generateRaDec(self): """ Convert XY positions into sky coordinates using STWCS methods. """ self.prefix = self.PAR_PREFIX if not isinstance(self.wcs,pywcs.WCS): print( textutil.textbox( 'WCS not a valid PyWCS object. ' 'Conversion of RA/Dec not possible...' ), file=sys.stderr ) raise ValueError if self.xypos is None or len(self.xypos[0]) == 0: self.xypos = None warnstr = textutil.textbox( 'WARNING: \n' 'No objects found for this image...' ) for line in warnstr.split('\n'): log.warning(line) print(warnstr) return if self.radec is None: print(' Found {:d} objects.'.format(len(self.xypos[0]))) if self.wcs is not None: ra, dec = self.wcs.all_pix2world(self.xypos[0], self.xypos[1], self.origin) self.radec = [ra, dec] + copy.deepcopy(self.xypos[2:]) else: # If we have no WCS, simply pass along the XY input positions # under the assumption they were already sky positions. self.radec = copy.deepcopy(self.xypos)
Convert XY positions into sky coordinates using STWCS methods.
entailment
def apply_exclusions(self,exclusions): """ Trim sky catalog to remove any sources within regions specified by exclusions file. """ # parse exclusion file into list of positions and distances exclusion_coords = tweakutils.parse_exclusions(exclusions) if exclusion_coords is None: return excluded_list = [] radec_indx = list(range(len(self.radec[0]))) for ra,dec,indx in zip(self.radec[0],self.radec[1],radec_indx): src_pos = coords.SkyCoord(ra=ra,dec=dec,unit=(u.hourangle,u.deg)) # check to see whether this source is within an exclusion region for reg in exclusion_coords: if reg['units'] == 'sky': regpos = reg['pos'] regdist = reg['distance'] # units: arcsec else: regradec = self.wcs.all_pix2world([reg['pos']],1)[0] regpos = (regradec[0],regradec[1]) regdist = reg['distance']*self.wcs.pscale # units: arcsec epos = coords.SkyCoord(ra=regpos[0],dec=regpos[1],unit=(u.hourangle,u.deg)) if float(epos.separation(src_pos).to_string(unit=u.arcsec,decimal=True)) <= regdist: excluded_list.append(indx) break # create a list of all 'good' sources outside all exclusion regions for e in excluded_list: radec_indx.remove(e) radec_indx = np.array(radec_indx,dtype=int) num_excluded = len(excluded_list) if num_excluded > 0: radec_trimmed = [] xypos_trimmed = [] for arr in self.radec: radec_trimmed.append(arr[radec_indx]) for arr in self.xypos: xypos_trimmed.append(arr[radec_indx]) xypos_trimmed[-1] = np.arange(len(xypos_trimmed[0])) self.radec = radec_trimmed self.xypos = xypos_trimmed log.info('Excluded %d sources from catalog.'%num_excluded)
Trim sky catalog to remove any sources within regions specified by exclusions file.
entailment
def apply_flux_limits(self): """ Apply any user-specified limits on source selection Limits based on fluxes. """ if not self._apply_flux_limits: return # only if limits are set should they be applied if ((self.maxflux is None and self.minflux is None) or self.fluxunits is None): return print("\n Applying flux limits...") print(" minflux = {}".format(self.minflux)) print(" maxflux = {}".format(self.maxflux)) print(" fluxunits = '{:s}'".format(self.fluxunits)) print(" nbright = {}".format(self.nbright)) # start by checking to see whether fluxes were read in to use for # applying the limits if not self.flux_col: print(" WARNING: Catalog did not contain fluxes for use in trimming...") return if self.xypos is not None and self.radec is not None: if len(self.xypos) < len(self.radec): src_cat = self.radec else: src_cat = self.xypos else: src_cat = self.radec if self.xypos is None else self.xypos if src_cat is None: raise RuntimeError("No catalogs available for filtering") if len(src_cat) < 3: print(" WARNING: No fluxes read in for catalog for use in trimming...") return fluxes = copy.deepcopy(src_cat[2]) # apply limits equally to all .radec and .xypos entries # Start by clipping by any specified flux range if self.fluxunits == 'mag': if self.minflux is None: flux_mask = fluxes >= self.maxflux elif self.maxflux is None: flux_mask = fluxes <= self.minflux else: flux_mask = (fluxes <= self.minflux) & (fluxes >= self.maxflux) else: if self.minflux is None: flux_mask = fluxes <= self.maxflux elif self.maxflux is None: flux_mask = fluxes >= self.minflux else: flux_mask = (fluxes >= self.minflux) & (fluxes <= self.maxflux) if self.radec is None: all_radec = None else: all_radec = [rd[flux_mask].copy() for rd in self.radec] if self.xypos is None: all_xypos = None else: all_xypos = [xy[flux_mask].copy() for xy in self.xypos] nrem = flux_mask.size - np.count_nonzero(flux_mask) print(" Removed {:d} sources based on flux limits.".format(nrem)) if self.nbright is not None: print("Selecting catalog based on {} brightest sources".format(self.nbright)) fluxes = fluxes[flux_mask] # find indices of brightest sources idx = np.argsort(fluxes) if self.fluxunits == 'mag': idx = idx[:self.nbright] else: idx = (idx[::-1])[:self.nbright] # pick out only the brightest 'nbright' sources if all_radec is not None: all_radec = [rd[idx] for rd in all_radec] if all_xypos is not None: all_xypos = [xy[idx] for xy in all_xypos] self.radec = all_radec self.xypos = all_xypos if len(self.radec[0]) == 0: print("Trimming of catalog resulted in NO valid sources! ") raise ValueError
Apply any user-specified limits on source selection Limits based on fluxes.
entailment
def buildCatalogs(self, exclusions=None, **kwargs): """ Primary interface to build catalogs based on user inputs. """ self.generateXY(**kwargs) self.generateRaDec() if exclusions: self.apply_exclusions(exclusions) # apply selection limits as specified by the user: self.apply_flux_limits()
Primary interface to build catalogs based on user inputs.
entailment
def plotXYCatalog(self, **kwargs): """ Method which displays the original image and overlays the positions of the detected sources from this image's catalog. Plotting `kwargs` that can be provided are: vmin, vmax, cmap, marker Default colormap is `summer`. """ try: from matplotlib import pyplot as pl except: pl = None if pl is not None: # If the pyplot package could be loaded... pl.clf() pars = kwargs.copy() if 'marker' not in pars: pars['marker'] = 'b+' if 'cmap' in pars: pl_cmap = pars['cmap'] del pars['cmap'] else: pl_cmap = 'summer' pl_vmin = None pl_vmax = None if 'vmin' in pars: pl_vmin = pars['vmin'] del pars['vmin'] if 'vmax' in pars: pl_vmax = pars['vmax'] del pars['vmax'] pl.imshow(self.source,cmap=pl_cmap,vmin=pl_vmin,vmax=pl_vmax) pl.plot(self.xypos[0]-1,self.xypos[1]-1,pars['marker'])
Method which displays the original image and overlays the positions of the detected sources from this image's catalog. Plotting `kwargs` that can be provided are: vmin, vmax, cmap, marker Default colormap is `summer`.
entailment
def writeXYCatalog(self,filename): """ Write out the X,Y catalog to a file """ if self.xypos is None: warnstr = textutil.textbox( 'WARNING: \n No X,Y source catalog to write to file. ') for line in warnstr.split('\n'): log.warning(line) print(warnstr) return f = open(filename,'w') f.write("# Source catalog derived for %s\n"%self.wcs.filename) f.write("# Columns: \n") if self.use_sharp_round: f.write('# X Y Flux ID Sharp Round1 Round2\n') else: f.write('# X Y Flux ID\n') f.write('# (%s) (%s)\n'%(self.in_units,self.in_units)) for row in range(len(self.xypos[0])): for i in range(len(self.xypos)): f.write("%g "%(self.xypos[i][row])) f.write("\n") f.close()
Write out the X,Y catalog to a file
entailment
def generateXY(self, **kwargs): """ Generate source catalog from input image using DAOFIND-style algorithm """ #x,y,flux,sharp,round = idlphot.find(array,self.pars['hmin'],self.pars['fwhm'], # roundlim=self.pars['roundlim'], sharplim=self.pars['sharplim']) print(" # Source finding for '{}', EXT={} started at: {}" .format(self.fnamenoext, self.wcs.extname, util._ptime()[0])) if self.pars['computesig']: # compute sigma for this image sigma = self._compute_sigma() else: sigma = self.pars['skysigma'] skymode = sigma**2 log.info(' Finding sources using sky sigma = %f'%sigma) if self.pars['threshold'] in [None,"INDEF",""," "]: hmin = skymode else: hmin = sigma*self.pars['threshold'] if 'mask' in kwargs and kwargs['mask'] is not None: dqmask = np.asarray(kwargs['mask'], dtype=bool) else: dqmask = None # get the mask for source finding: mask = self._combine_exclude_mask(dqmask) x, y, flux, src_id, sharp, round1, round2 = tweakutils.ndfind( self.source, hmin, self.pars['conv_width'], skymode, sharplim=[self.pars['sharplo'],self.pars['sharphi']], roundlim=[self.pars['roundlo'],self.pars['roundhi']], peakmin=self.pars['peakmin'], peakmax=self.pars['peakmax'], fluxmin=self.pars['fluxmin'], fluxmax=self.pars['fluxmax'], nsigma=self.pars['nsigma'], ratio=self.pars['ratio'], theta=self.pars['theta'], mask=mask, use_sharp_round=self.use_sharp_round, nbright=self.nbright ) if len(x) == 0: if not self.pars['computesig']: sigma = self._compute_sigma() hmin = sigma * self.pars['threshold'] log.info('No sources found with original thresholds. Trying automatic settings.') x, y, flux, src_id, sharp, round1, round2 = tweakutils.ndfind( self.source, hmin, self.pars['conv_width'], skymode, sharplim=[self.pars['sharplo'],self.pars['sharphi']], roundlim=[self.pars['roundlo'],self.pars['roundhi']], peakmin=self.pars['peakmin'], peakmax=self.pars['peakmax'], fluxmin=self.pars['fluxmin'], fluxmax=self.pars['fluxmax'], nsigma=self.pars['nsigma'], ratio=self.pars['ratio'], theta=self.pars['theta'], mask = mask, use_sharp_round = self.use_sharp_round, nbright=self.nbright ) if len(x) == 0: xypostypes = 3*[float]+[int]+(3 if self.use_sharp_round else 0)*[float] self.xypos = [np.empty(0, dtype=i) for i in xypostypes] warnstr = textutil.textbox('WARNING: \n'+ 'No valid sources found with the current parameter values!') for line in warnstr.split('\n'): log.warning(line) print(warnstr) else: # convert the positions from numpy 0-based to FITS 1-based if self.use_sharp_round: self.xypos = [x+1, y+1, flux, src_id+self.start_id, sharp, round1, round2] else: self.xypos = [x+1, y+1, flux, src_id+self.start_id] log.info('###Source finding finished at: %s'%(util._ptime()[0])) self.in_units = 'pixels' # Not strictly necessary, but documents units when determined self.sharp = sharp self.round1 = round1 self.round2 = round2 self.numcols = 7 if self.use_sharp_round else 4 self.num_objects = len(x) self._apply_flux_limits = False
Generate source catalog from input image using DAOFIND-style algorithm
entailment
def generateXY(self, **kwargs): """ Method to interpret input catalog file as columns of positions and fluxes. """ self.num_objects = 0 xycols = self._readCatalog() if xycols is not None: # convert the catalog into attribute self.xypos = xycols[:3] # convert optional columns if they are present if self.numcols > 3: self.xypos.append(np.asarray(xycols[3], dtype=int)) # source ID if self.numcols > 4: self.sharp = xycols[4] if self.numcols > 5: self.round1 = xycols[5] if self.numcols > 6: self.round2 = xycols[6] self.num_objects = len(xycols[0]) if self.numcols < 3: # account for flux column self.xypos.append(np.zeros(self.num_objects, dtype=float)) self.flux_col = False if self.numcols < 4: # add source ID column self.xypos.append(np.arange(self.num_objects)+self.start_id) if self.use_sharp_round: for i in range(len(self.xypos), 7): self.xypos.append(np.zeros(self.num_objects, dtype=float)) self.sharp_col = False if self.pars['xyunits'] == 'degrees': self.radec = [x.copy() for x in self.xypos] if self.wcs is not None: self.xypos[:2] = list(self.wcs.all_world2pix(np.array(self.xypos[:2]).T, self.origin).T)
Method to interpret input catalog file as columns of positions and fluxes.
entailment
def plotXYCatalog(self, **kwargs): """ Plots the source catalog positions using matplotlib's `pyplot.plot()` Plotting `kwargs` that can also be passed include any keywords understood by matplotlib's `pyplot.plot()` function such as:: vmin, vmax, cmap, marker """ try: from matplotlib import pyplot as pl except: pl = None if pl is not None: pl.clf() pl.plot(self.xypos[0],self.xypos[1],**kwargs)
Plots the source catalog positions using matplotlib's `pyplot.plot()` Plotting `kwargs` that can also be passed include any keywords understood by matplotlib's `pyplot.plot()` function such as:: vmin, vmax, cmap, marker
entailment
def run(configObj,wcsmap=None): """ Run the blot task based on parameters provided interactively by the user. """ # Insure all output filenames specified have .fits extensions if configObj['outdata'][-5:] != '.fits': configObj['outdata'] += '.fits' scale_pars = configObj['Data Scaling Parameters'] user_wcs_pars = configObj['User WCS Parameters'] # PyFITS can be used here as it will always operate on # output from PyDrizzle (which will always be a FITS file) # Open the input (drizzled?) image _fname,_sciextn = fileutil.parseFilename(configObj['data']) _inimg = fileutil.openImage(_fname, memmap=False) _expin = fileutil.getKeyword(configObj['data'],scale_pars['expkey'],handle=_inimg) # Return the PyFITS HDU corresponding to the named extension _scihdu = fileutil.getExtn(_inimg,_sciextn) _insci = _scihdu.data.copy() _inexptime = 1.0 if scale_pars['in_units'] == 'counts': if scale_pars['expkey'] in _inimg['PRIMARY'].header: _inexptime = _inimg['PRIMARY'].header[scale_pars['expkey']] elif 'DRIZEXPT' in _inimg['PRIMARY'].header: # Try keyword written out by new 'drizzle' if no valid 'expkey' was given _inexptime = _inimg['PRIMARY'].header['DRIZEXPT'] else: raise ValueError('No valid exposure time keyword could be found ' 'for input %s' % configObj['data']) # always convert input to 'cps' for blot() algorithm if _inexptime != 0.0 or _inexptime != 1.0: np.divide(_insci, _inexptime, _insci) _inimg.close() del _inimg # read in WCS from source (drizzled) image source_wcs = stwcs.wcsutil.HSTWCS(configObj['data']) if source_wcs.wcs.is_unity(): print("WARNING: No valid WCS found for input drizzled image: {}!".format(configObj['data'])) # define blot_wcs blot_wcs = None _refname,_refextn = fileutil.parseFilename(configObj['reference']) if os.path.exists(_refname): # read in WCS from pre-existing output image blot_wcs = stwcs.wcsutil.HSTWCS(configObj['reference']) if blot_wcs.wcs.is_unity(): print("WARNING: No valid WCS found for output image: {} !".format(configObj['reference'])) # define blot WCS based on input images or specified reference WCS values if user_wcs_pars['user_wcs']: blot_wcs = wcs_functions.build_hstwcs( user_wcs_pars['raref'], user_wcs_pars['decref'], user_wcs_pars['xrefpix'], user_wcs_pars['yrefpix'], user_wcs_pars['outnx'], user_wcs_pars['outny'], user_wcs_pars['outscale'], user_wcs_pars['orient'] ) configObj['coeffs'] = None # If blot_wcs is still not defined at this point, we have a problem... if blot_wcs is None: blot_wcs = stwcs.distortion.utils.output_wcs([source_wcs],undistort=False) out_wcs = blot_wcs.copy() # perform blotting operation now _outsci = do_blot(_insci, source_wcs, out_wcs, _expin, coeffs=configObj['coeffs'], interp=configObj['interpol'], sinscl=configObj['sinscl'], stepsize=configObj['stepsize'], wcsmap=wcsmap) # create output with proper units and exptime-scaling if scale_pars['out_units'] == 'counts': if scale_pars['expout'] == 'input': _outscale = fileutil.getKeyword(configObj['reference'],scale_pars['expkey']) #_outscale = _expin else: _outscale = float(scale_pars['expout']) print("Output blotted images scaled by exptime of {}".format(_outscale)) np.multiply(_outsci, _outscale, _outsci) # Add sky back in to the blotted image, as specified by the user if configObj['addsky']: skyval = _scihdu.header['MDRIZSKY'] else: skyval = configObj['skyval'] print("Added {} counts back in to blotted image as sky.".format(skyval)) _outsci += skyval del _scihdu # Write output Numpy objects to a PyFITS file # Blotting only occurs from a drizzled SCI extension # to a blotted SCI extension... outputimage.writeSingleFITS(_outsci,blot_wcs, configObj['outdata'],configObj['reference'])
Run the blot task based on parameters provided interactively by the user.
entailment
def runBlot(imageObjectList, output_wcs, configObj={}, wcsmap=wcs_functions.WCSMap, procSteps=None): """ runBlot(imageObjectList, output_wcs, configObj={}, wcsmap=wcs_functions.WCSMap, procSteps=None) """ if procSteps is not None: procSteps.addStep('Blot') blot_name = util.getSectionName(configObj, _blot_step_num_) # This can be called directly from MultiDrizle, so only execute if # switch has been turned on (no guarantee MD will check before calling). if configObj[blot_name]['blot']: paramDict = buildBlotParamDict(configObj) log.info('USER INPUT PARAMETERS for Blot Step:') util.printParams(paramDict, log=log) run_blot(imageObjectList, output_wcs.single_wcs, paramDict, wcsmap=wcsmap) else: log.info('Blot step not performed.') if procSteps is not None: procSteps.endStep('Blot')
runBlot(imageObjectList, output_wcs, configObj={}, wcsmap=wcs_functions.WCSMap, procSteps=None)
entailment
def run_blot(imageObjectList,output_wcs,paramDict,wcsmap=wcs_functions.WCSMap): """ run_blot(imageObjectList, output_wcs, paramDict, wcsmap=wcs_functions.WCSMap) Perform the blot operation on the list of images. """ # Insure that input imageObject is a list if not isinstance(imageObjectList, list): imageObjectList = [imageObjectList] # # Setup the versions info dictionary for output to PRIMARY header # The keys will be used as the name reported in the header, as-is # _versions = {'AstroDrizzle':__version__, 'PyFITS':util.__fits_version__, 'Numpy':util.__numpy_version__} _hdrlist = [] for img in imageObjectList: for chip in img.returnAllChips(extname=img.scienceExt): print(' Blot: creating blotted image: ',chip.outputNames['data']) #### Check to see what names need to be included here for use in _hdrlist chip.outputNames['driz_version'] = _versions['AstroDrizzle'] outputvals = chip.outputNames.copy() outputvals.update(img.outputValues) outputvals['blotnx'] = chip.wcs.naxis1 outputvals['blotny'] = chip.wcs.naxis2 _hdrlist.append(outputvals) plist = outputvals.copy() plist.update(paramDict) # PyFITS can be used here as it will always operate on # output from PyDrizzle (which will always be a FITS file) # Open the input science file medianPar = 'outMedian' outMedianObj = img.getOutputName(medianPar) if img.inmemory: outMedian = img.outputNames[medianPar] _fname,_sciextn = fileutil.parseFilename(outMedian) _inimg = outMedianObj else: outMedian = outMedianObj _fname,_sciextn = fileutil.parseFilename(outMedian) _inimg = fileutil.openImage(_fname, memmap=False) # Return the PyFITS HDU corresponding to the named extension _scihdu = fileutil.getExtn(_inimg,_sciextn) _insci = _scihdu.data.copy() _inimg.close() del _inimg, _scihdu _outsci = do_blot(_insci, output_wcs, chip.wcs, chip._exptime, coeffs=paramDict['coeffs'], interp=paramDict['blot_interp'], sinscl=paramDict['blot_sinscl'], wcsmap=wcsmap) # Apply sky subtraction and unit conversion to blotted array to # match un-modified input array if paramDict['blot_addsky']: skyval = chip.computedSky else: skyval = paramDict['blot_skyval'] _outsci /= chip._conversionFactor if skyval is not None: _outsci += skyval log.info('Applying sky value of %0.6f to blotted image %s'% (skyval,chip.outputNames['data'])) # Write output Numpy objects to a PyFITS file # Blotting only occurs from a drizzled SCI extension # to a blotted SCI extension... _outimg = outputimage.OutputImage(_hdrlist, paramDict, build=False, wcs=chip.wcs, blot=True) _outimg.outweight = None _outimg.outcontext = None outimgs = _outimg.writeFITS(plist['data'],_outsci,None, versions=_versions,blend=False, virtual=img.inmemory) img.saveVirtualOutputs(outimgs) #_buildOutputFits(_outsci,None,plist['outblot']) _hdrlist = [] del _outsci del _outimg
run_blot(imageObjectList, output_wcs, paramDict, wcsmap=wcs_functions.WCSMap) Perform the blot operation on the list of images.
entailment
def do_blot(source, source_wcs, blot_wcs, exptime, coeffs = True, interp='poly5', sinscl=1.0, stepsize=10, wcsmap=None): """ Core functionality of performing the 'blot' operation to create a single blotted image from a single source image. All distortion information is assumed to be included in the WCS specification of the 'output' blotted image given in 'blot_wcs'. This is the simplest interface that can be called for stand-alone use of the blotting function. Parameters ---------- source Input numpy array of undistorted source image in units of 'cps'. source_wcs HSTWCS object representing source image distortion-corrected WCS. blot_wcs (py)wcs.WCS object representing the blotted image WCS. exptime exptime to use for scaling output blot image. A value of 1 will result in output blot image in units of 'cps'. coeffs Flag to specify whether or not to use distortion coefficients associated with blot_wcs. If False, do not apply any distortion model. interp Form of interpolation to use when blotting pixels. Valid options:: "nearest","linear","poly3", "poly5"(default), "spline3", "sinc" sinscl Scale for sinc interpolation kernel (in output, blotted pixels) stepsize Number of pixels for WCS interpolation wcsmap Custom mapping class to use to provide transformation from drizzled to blotted WCS. Default will be to use `drizzlepac.wcs_functions.WCSMap`. """ _outsci = np.zeros(blot_wcs.array_shape, dtype=np.float32) # Now pass numpy objects to callable version of Blot... build=False misval = 0.0 kscale = 1.0 xmin = 1 ymin = 1 xmax, ymax = source_wcs.pixel_shape # compute the undistorted 'natural' plate scale for this chip if coeffs: wcslin = distortion.utils.make_orthogonal_cd(blot_wcs) else: wcslin = blot_wcs blot_wcs.sip = None blot_wcs.cpdis1 = None blot_wcs.cpdis2 = None blot_wcs.det2im = None if wcsmap is None and cdriz is not None: """ Use default C mapping function. """ print('Using default C-based coordinate transformation...') mapping = cdriz.DefaultWCSMapping( blot_wcs, source_wcs, blot_wcs.pixel_shape[0], blot_wcs.pixel_shape[1], stepsize ) pix_ratio = source_wcs.pscale/wcslin.pscale else: # ##Using the Python class for the WCS-based transformation # # Use user provided mapping function print('Using coordinate transformation defined by user...') if wcsmap is None: wcsmap = wcs_functions.WCSMap wmap = wcsmap(blot_wcs,source_wcs) mapping = wmap.forward pix_ratio = source_wcs.pscale/wcslin.pscale t = cdriz.tblot( source, _outsci,xmin,xmax,ymin,ymax, pix_ratio, kscale, 1.0, 1.0, 'center',interp, exptime, misval, sinscl, 1, mapping) del mapping return _outsci
Core functionality of performing the 'blot' operation to create a single blotted image from a single source image. All distortion information is assumed to be included in the WCS specification of the 'output' blotted image given in 'blot_wcs'. This is the simplest interface that can be called for stand-alone use of the blotting function. Parameters ---------- source Input numpy array of undistorted source image in units of 'cps'. source_wcs HSTWCS object representing source image distortion-corrected WCS. blot_wcs (py)wcs.WCS object representing the blotted image WCS. exptime exptime to use for scaling output blot image. A value of 1 will result in output blot image in units of 'cps'. coeffs Flag to specify whether or not to use distortion coefficients associated with blot_wcs. If False, do not apply any distortion model. interp Form of interpolation to use when blotting pixels. Valid options:: "nearest","linear","poly3", "poly5"(default), "spline3", "sinc" sinscl Scale for sinc interpolation kernel (in output, blotted pixels) stepsize Number of pixels for WCS interpolation wcsmap Custom mapping class to use to provide transformation from drizzled to blotted WCS. Default will be to use `drizzlepac.wcs_functions.WCSMap`.
entailment
def process(inFile,force=False,newpath=None, inmemory=False, num_cores=None, headerlets=True, align_to_gaia=True): """ Run astrodrizzle on input file/ASN table using default values for astrodrizzle parameters. """ # We only need to import this package if a user run the task import drizzlepac from drizzlepac import processInput # used for creating new ASNs for _flc inputs from stwcs import updatewcs from drizzlepac import alignimages # interpret envvar variable, if specified if envvar_compute_name in os.environ: val = os.environ[envvar_compute_name].lower() if val not in envvar_bool_dict: msg = "ERROR: invalid value for {}.".format(envvar_compute_name) msg += " \n Valid Values: on, off, yes, no, true, false" raise ValueError(msg) align_to_gaia = envvar_bool_dict[val] if envvar_new_apriori_name in os.environ: # Reset ASTROMETRY_STEP_CONTROL based on this variable # This provides backward-compatibility until ASTROMETRY_STEP_CONTROL # gets removed entirely. val = os.environ[envvar_new_apriori_name].lower() if val not in envvar_dict: msg = "ERROR: invalid value for {}.".format(envvar_new_apriori_name) msg += " \n Valid Values: on, off, yes, no, true, false" raise ValueError(msg) os.environ[envvar_old_apriori_name] = envvar_dict[val] if headerlets or align_to_gaia: from stwcs.wcsutil import headerlet # Open the input file try: # Make sure given filename is complete and exists... inFilename = fileutil.buildRootname(inFile,ext=['.fits']) if not os.path.exists(inFilename): print("ERROR: Input file - %s - does not exist." % inFilename) return except TypeError: print("ERROR: Inappropriate input file.") return #If newpath was specified, move all files to that directory for processing if newpath: orig_processing_dir = os.getcwd() new_processing_dir = _createWorkingDir(newpath,inFilename) _copyToNewWorkingDir(new_processing_dir,inFilename) os.chdir(new_processing_dir) # Initialize for later use... _mname = None _new_asn = None _calfiles = [] # Identify WFPC2 inputs to account for differences in WFPC2 inputs wfpc2_input = fits.getval(inFilename, 'instrume') == 'WFPC2' cal_ext = None # Check input file to see if [DRIZ/DITH]CORR is set to PERFORM if '_asn' in inFilename: # We are working with an ASN table. # Use asnutil code to extract filename inFilename = _lowerAsn(inFilename) _new_asn = [inFilename] _asndict = asnutil.readASNTable(inFilename,None,prodonly=False) _cal_prodname = _asndict['output'].lower() #_fname = fileutil.buildRootname(_cal_prodname,ext=['_drz.fits']) # Retrieve the first member's rootname for possible use later _fimg = fits.open(inFilename, memmap=False) for name in _fimg[1].data.field('MEMNAME'): if name[-1] != '*': _mname = name.split('\0', 1)[0].lower() break _fimg.close() del _fimg else: # Check to see if input is a _RAW file # If it is, strip off the _raw.fits extension... _indx = inFilename.find('_raw') if _indx < 0: _indx = len(inFilename) # ... and build the CALXXX product rootname. if wfpc2_input: # force code to define _c0m file as calibrated product to be used cal_ext = ['_c0m.fits'] _mname = fileutil.buildRootname(inFilename[:_indx], ext=cal_ext) _cal_prodname = inFilename[:_indx] # Reset inFilename to correspond to appropriate input for # drizzle: calibrated product name. inFilename = _mname if _mname is None: errorMsg = 'Could not find calibrated product!' raise Exception(errorMsg) # Create trailer filenames based on ASN output filename or # on input name for single exposures if '_raw' in inFile: # Output trailer file to RAW file's trailer _trlroot = inFile[:inFile.find('_raw')] elif '_asn' in inFile: # Output trailer file to ASN file's trailer, not product's trailer _trlroot = inFile[:inFile.find('_asn')] else: # Default: trim off last suffix of input filename # and replacing with .tra _indx = inFile.rfind('_') if _indx > 0: _trlroot = inFile[:_indx] else: _trlroot = inFile _trlfile = _trlroot + '.tra' # Open product and read keyword value # Check to see if product already exists... dkey = 'DRIZCORR' # ...if product does NOT exist, interrogate input file # to find out whether 'dcorr' has been set to PERFORM # Check if user wants to process again regardless of DRIZCORR keyword value if force: dcorr = 'PERFORM' else: if _mname : _fimg = fits.open(fileutil.buildRootname(_mname,ext=['_raw.fits']), memmap=False) _phdr = _fimg['PRIMARY'].header if dkey in _phdr: dcorr = _phdr[dkey] else: dcorr = None _fimg.close() del _fimg else: dcorr = None time_str = _getTime() _tmptrl = _trlroot + '_tmp.tra' _drizfile = _trlroot + '_pydriz' _drizlog = _drizfile + ".log" # the '.log' gets added automatically by astrodrizzle _alignlog = _trlroot + '_align.log' if dcorr == 'PERFORM': if '_asn.fits' not in inFilename: # Working with a singleton # However, we always want to make sure we always use # a calibrated product as input, if available. _infile = fileutil.buildRootname(_cal_prodname, ext=cal_ext) _infile_flc = fileutil.buildRootname(_cal_prodname,ext=['_flc.fits']) _cal_prodname = _infile _inlist = _calfiles = [_infile] # Add CTE corrected filename as additional input if present if os.path.exists(_infile_flc) and _infile_flc != _infile: _inlist.append(_infile_flc) else: # Working with an ASN table... _infile = inFilename flist,duplist = processInput.checkForDuplicateInputs(_asndict['order']) _calfiles = flist if len(duplist) > 0: origasn = processInput.changeSuffixinASN(inFilename,'flt') dupasn = processInput.changeSuffixinASN(inFilename,'flc') _inlist = [origasn,dupasn] else: _inlist = [_infile] # We want to keep the original specification of the calibration # product name, though, not a lower-case version... _cal_prodname = inFilename _new_asn.extend(_inlist) # kept so we can delete it when finished # check to see whether FLC files are also present, and need to be updated # generate list of FLC files align_files = None _calfiles_flc = [f.replace('_flt.fits','_flc.fits') for f in _calfiles] # insure these files exist, if not, blank them out # Also pick out what files will be used for additional alignment to GAIA if not os.path.exists(_calfiles_flc[0]): _calfiles_flc = None align_files = _calfiles align_update_files = None else: align_files = _calfiles_flc align_update_files = _calfiles # Run updatewcs on each list of images updatewcs.updatewcs(_calfiles) if _calfiles_flc: updatewcs.updatewcs(_calfiles_flc) if align_to_gaia: # Perform additional alignment on the FLC files, if present ############### # # call hlapipeline code here on align_files list of files # ############### # Create trailer marker message for start of align_to_GAIA processing _trlmsg = _timestamp("Align_to_GAIA started ") print(_trlmsg) ftmp = open(_tmptrl,'w') ftmp.writelines(_trlmsg) ftmp.close() _appendTrlFile(_trlfile,_tmptrl) _trlmsg = "" # Create an empty astropy table so it can be used as input/output for the perform_align function #align_table = Table() try: align_table = alignimages.perform_align(align_files,update_hdr_wcs=True, runfile=_alignlog) for row in align_table: if row['status'] == 0: trlstr = "Successfully aligned {} to {} astrometric frame\n" _trlmsg += trlstr.format(row['imageName'], row['catalog']) else: trlstr = "Could not align {} to absolute astrometric frame\n" _trlmsg += trlstr.format(row['imageName']) except Exception: # Something went wrong with alignment to GAIA, so report this in # trailer file _trlmsg = "EXCEPTION encountered in alignimages...\n" _trlmsg += " No correction to absolute astrometric frame applied!\n" # Write the perform_align log to the trailer file...(this will delete the _alignlog) _appendTrlFile(_trlfile,_alignlog) # Append messages from this calling routine post-perform_align ftmp = open(_tmptrl,'w') ftmp.writelines(_trlmsg) ftmp.close() _appendTrlFile(_trlfile,_tmptrl) _trlmsg = "" #Check to see whether there are any additional input files that need to # be aligned (namely, FLT images) if align_update_files and align_table: # Apply headerlets from alignment to FLT version of the files for fltfile, flcfile in zip(align_update_files, align_files): row = align_table[align_table['imageName']==flcfile] headerletFile = row['headerletFile'][0] if headerletFile != "None": headerlet.apply_headerlet_as_primary(fltfile, headerletFile, attach=True, archive=True) # append log file contents to _trlmsg for inclusion in trailer file _trlstr = "Applying headerlet {} as Primary WCS to {}\n" _trlmsg += _trlstr.format(headerletFile, fltfile) else: _trlmsg += "No absolute astrometric headerlet applied to {}\n".format(fltfile) # Finally, append any further messages associated with alignement from this calling routine _trlmsg += _timestamp('Align_to_GAIA completed ') print(_trlmsg) ftmp = open(_tmptrl,'w') ftmp.writelines(_trlmsg) ftmp.close() _appendTrlFile(_trlfile,_tmptrl) # Run astrodrizzle and send its processing statements to _trlfile _pyver = drizzlepac.astrodrizzle.__version__ for _infile in _inlist: # Run astrodrizzle for all inputs # Create trailer marker message for start of astrodrizzle processing _trlmsg = _timestamp('astrodrizzle started ') _trlmsg += __trlmarker__ _trlmsg += '%s: Processing %s with astrodrizzle Version %s\n' % (time_str,_infile,_pyver) print(_trlmsg) # Write out trailer comments to trailer file... ftmp = open(_tmptrl,'w') ftmp.writelines(_trlmsg) ftmp.close() _appendTrlFile(_trlfile,_tmptrl) _pyd_err = _trlroot+'_pydriz.stderr' try: b = drizzlepac.astrodrizzle.AstroDrizzle(input=_infile,runfile=_drizfile, configobj='defaults',in_memory=inmemory, num_cores=num_cores, **pipeline_pars) except Exception as errorobj: _appendTrlFile(_trlfile,_drizlog) _appendTrlFile(_trlfile,_pyd_err) _ftrl = open(_trlfile,'a') _ftrl.write('ERROR: Could not complete astrodrizzle processing of %s.\n' % _infile) _ftrl.write(str(sys.exc_info()[0])+': ') _ftrl.writelines(str(errorobj)) _ftrl.write('\n') _ftrl.close() print('ERROR: Could not complete astrodrizzle processing of %s.' % _infile) raise Exception(str(errorobj)) # Now, append comments created by PyDrizzle to CALXXX trailer file print('Updating trailer file %s with astrodrizzle comments.' % _trlfile) _appendTrlFile(_trlfile,_drizlog) # Save this for when astropy.io.fits can modify a file 'in-place' # Update calibration switch _fimg = fits.open(_cal_prodname, mode='update', memmap=False) _fimg['PRIMARY'].header[dkey] = 'COMPLETE' _fimg.close() del _fimg # Enforce pipeline convention of all lower-case product # names _prodlist = glob.glob('*drz.fits') for _prodname in _prodlist: _plower = _prodname.lower() if _prodname != _plower: os.rename(_prodname,_plower) else: # Create default trailer file messages when astrodrizzle is not # run on a file. This will typically apply only to BIAS,DARK # and other reference images. # Start by building up the message... _trlmsg = _timestamp('astrodrizzle skipped ') _trlmsg = _trlmsg + __trlmarker__ _trlmsg = _trlmsg + '%s: astrodrizzle processing not requested for %s.\n' % (time_str,inFilename) _trlmsg = _trlmsg + ' astrodrizzle will not be run at this time.\n' print(_trlmsg) # Write message out to temp file and append it to full trailer file ftmp = open(_tmptrl,'w') ftmp.writelines(_trlmsg) ftmp.close() _appendTrlFile(_trlfile,_tmptrl) # Append final timestamp to trailer file... _final_msg = '%s: Finished processing %s \n' % (time_str,inFilename) _final_msg += _timestamp('astrodrizzle completed ') _trlmsg += _final_msg ftmp = open(_tmptrl,'w') ftmp.writelines(_trlmsg) ftmp.close() _appendTrlFile(_trlfile,_tmptrl) # If we created a new ASN table, we need to remove it if _new_asn is not None: for _name in _new_asn: fileutil.removeFile(_name) # Clean up any generated OrIg_files directory if os.path.exists("OrIg_files"): # check to see whether this directory is empty flist = glob.glob('OrIg_files/*.fits') if len(flist) == 0: os.rmdir("OrIg_files") else: print('OrIg_files directory NOT removed as it still contained images...') # If headerlets have already been written out by alignment code, # do NOT write out this version of the headerlets if headerlets: # Generate headerlets for each updated FLT image hlet_msg = _timestamp("Writing Headerlets started") for fname in _calfiles: frootname = fileutil.buildNewRootname(fname) hname = "%s_flt_hlet.fits"%frootname # Write out headerlet file used by astrodrizzle, however, # do not overwrite any that was already written out by alignimages if not os.path.exists(hname): hlet_msg += "Created Headerlet file %s \n"%hname try: headerlet.write_headerlet(fname,'OPUS',output='flt', wcskey='PRIMARY', author="OPUS",descrip="Default WCS from Pipeline Calibration", attach=False,clobber=True,logging=False) except ValueError: hlet_msg += _timestamp("SKIPPED: Headerlet not created for %s \n"%fname) # update trailer file to log creation of headerlet files hlet_msg += _timestamp("Writing Headerlets completed") ftrl = open(_trlfile,'a') ftrl.write(hlet_msg) ftrl.close() # If processing was done in a temp working dir, restore results to original # processing directory, return to original working dir and remove temp dir if newpath: _restoreResults(new_processing_dir,orig_processing_dir) os.chdir(orig_processing_dir) _removeWorkingDir(new_processing_dir) # Provide feedback to user print(_final_msg)
Run astrodrizzle on input file/ASN table using default values for astrodrizzle parameters.
entailment
def _lowerAsn(asnfile): """ Create a copy of the original asn file and change the case of all members to lower-case. """ # Start by creating a new name for the ASN table _indx = asnfile.find('_asn.fits') _new_asn = asnfile[:_indx]+'_pipeline'+asnfile[_indx:] if os.path.exists(_new_asn): os.remove(_new_asn) # copy original ASN table to new table shutil.copy(asnfile,_new_asn) # Open up the new copy and convert all MEMNAME's to lower-case fasn = fits.open(_new_asn, mode='update', memmap=False) for i in range(len(fasn[1].data)): fasn[1].data[i].setfield('MEMNAME',fasn[1].data[i].field('MEMNAME').lower()) fasn.close() return _new_asn
Create a copy of the original asn file and change the case of all members to lower-case.
entailment
def _appendTrlFile(trlfile,drizfile): """ Append drizfile to already existing trlfile from CALXXX. """ if not os.path.exists(drizfile): return # Open already existing CALWF3 trailer file for appending ftrl = open(trlfile,'a') # Open astrodrizzle trailer file fdriz = open(drizfile) # Read in drizzle comments _dlines = fdriz.readlines() # Append them to CALWF3 trailer file ftrl.writelines(_dlines) # Close all files ftrl.close() fdriz.close() # Now, clean up astrodrizzle trailer file os.remove(drizfile)
Append drizfile to already existing trlfile from CALXXX.
entailment
def _timestamp(_process_name): """Create formatted time string recognizable by OPUS.""" _prefix= time.strftime("%Y%j%H%M%S-I-----",time.localtime()) _lenstr = 60 - len(_process_name) return _prefix+_process_name+(_lenstr*'-')+'\n'
Create formatted time string recognizable by OPUS.
entailment
def _createWorkingDir(rootdir,input): """ Create a working directory based on input name under the parent directory specified as rootdir """ # extract rootname from input rootname = input[:input.find('_')] newdir = os.path.join(rootdir,rootname) if not os.path.exists(newdir): os.mkdir(newdir) return newdir
Create a working directory based on input name under the parent directory specified as rootdir
entailment
def _copyToNewWorkingDir(newdir,input): """ Copy input file and all related files necessary for processing to the new working directory. This function works in a greedy manner, in that all files associated with all inputs(have the same rootname) will be copied to the new working directory. """ flist = [] if '_asn.fits' in input: asndict = asnutil.readASNTable(input,None) flist.append(input[:input.find('_')]) flist.extend(asndict['order']) flist.append(asndict['output']) else: flist.append(input[:input.find('_')]) # copy all files related to these rootnames into new dir for rootname in flist: for fname in glob.glob(rootname+'*'): shutil.copy(fname,os.path.join(newdir,fname))
Copy input file and all related files necessary for processing to the new working directory. This function works in a greedy manner, in that all files associated with all inputs(have the same rootname) will be copied to the new working directory.
entailment
def _restoreResults(newdir,origdir): """ Move (not copy) all files from newdir back to the original directory """ for fname in glob.glob(os.path.join(newdir,'*')): shutil.move(fname,os.path.join(origdir,os.path.basename(fname)))
Move (not copy) all files from newdir back to the original directory
entailment
def median(input=None, configObj=None, editpars=False, **inputDict): """ Create a median image from the seperately drizzled images. """ if input is not None: inputDict["input"] = input else: raise ValueError("Please supply an input image") configObj = util.getDefaultConfigObj(__taskname__, configObj, inputDict, loadOnly=(not editpars)) if configObj is None: return if not editpars: run(configObj)
Create a median image from the seperately drizzled images.
entailment
def createMedian(imgObjList, configObj, procSteps=None): """ Top-level interface to createMedian step called from top-level AstroDrizzle. This function parses the input parameters then calls the `_median()` function to median-combine the input images into a single image. """ if imgObjList is None: msg = "Please provide a list of imageObjects to the median step" print(msg, file=sys.stderr) raise ValueError(msg) if procSteps is not None: procSteps.addStep('Create Median') step_name = util.getSectionName(configObj, _step_num_) if not configObj[step_name]['median']: log.info('Median combination step not performed.') return paramDict = configObj[step_name] paramDict['proc_unit'] = configObj['proc_unit'] # include whether or not compression was performed driz_sep_name = util.getSectionName(configObj, _single_step_num_) driz_sep_paramDict = configObj[driz_sep_name] paramDict['compress'] = driz_sep_paramDict['driz_sep_compress'] log.info('USER INPUT PARAMETERS for Create Median Step:') util.printParams(paramDict, log=log) _median(imgObjList, paramDict) if procSteps is not None: procSteps.endStep('Create Median')
Top-level interface to createMedian step called from top-level AstroDrizzle. This function parses the input parameters then calls the `_median()` function to median-combine the input images into a single image.
entailment
def _median(imageObjectList, paramDict): """Create a median image from the list of image Objects that has been given. """ newmasks = paramDict['median_newmasks'] comb_type = paramDict['combine_type'].lower() nlow = paramDict['combine_nlow'] nhigh = paramDict['combine_nhigh'] grow = paramDict['combine_grow'] if 'minmed' in comb_type else 0 maskpt = paramDict['combine_maskpt'] proc_units = paramDict['proc_unit'] compress = paramDict['compress'] bufsizeMB = paramDict['combine_bufsize'] sigma = paramDict["combine_nsigma"] sigmaSplit = sigma.split() nsigma1 = float(sigmaSplit[0]) nsigma2 = float(sigmaSplit[1]) if paramDict['combine_lthresh'] is None: lthresh = None else: lthresh = float(paramDict['combine_lthresh']) if paramDict['combine_hthresh'] is None: hthresh = None else: hthresh = float(paramDict['combine_hthresh']) # the name of the output median file isdefined in the output wcs object and # stuck in the image.outputValues["outMedian"] dict of every imageObject medianfile = imageObjectList[0].outputNames["outMedian"] # Build combined array from single drizzled images. # Start by removing any previous products... if os.access(medianfile, os.F_OK): os.remove(medianfile) # Define lists for instrument specific parameters, these should be in # the image objects need to be passed to the minmed routine readnoiseList = [] exposureTimeList = [] backgroundValueList = [] # list of MDRIZSKY *platescale values singleDrizList = [] # these are the input images singleWeightList = [] # pointers to the data arrays wht_mean = [] # Compute the mean value of each wht image single_hdr = None virtual = None # for each image object for image in imageObjectList: if virtual is None: virtual = image.inmemory det_gain = image.getGain(1) img_exptime = image._image['sci', 1]._exptime native_units = image.native_units native_units_lc = native_units.lower() if proc_units.lower() == 'native': if native_units_lc not in ['counts', 'electrons', 'counts/s', 'electrons/s']: raise ValueError("Unexpected native units: '{}'" .format(native_units)) if lthresh is not None: if native_units_lc.startswith('counts'): lthresh *= det_gain if native_units_lc.endswith('/s'): lthresh *= img_exptime if hthresh is not None: if native_units_lc.startswith('counts'): hthresh *= det_gain if native_units_lc.endswith('/s'): hthresh *= img_exptime singleDriz = image.getOutputName("outSingle") singleDriz_name = image.outputNames['outSingle'] singleWeight = image.getOutputName("outSWeight") singleWeight_name = image.outputNames['outSWeight'] # If compression was used, reference ext=1 as CompImageHDU only writes # out MEF files, not simple FITS. if compress: wcs_ext = '[1]' wcs_extnum = 1 else: wcs_ext = '[0]' wcs_extnum = 0 if not virtual: if isinstance(singleDriz, str): iter_singleDriz = singleDriz + wcs_ext iter_singleWeight = singleWeight + wcs_ext else: iter_singleDriz = singleDriz[wcs_extnum] iter_singleWeight = singleWeight[wcs_extnum] else: iter_singleDriz = singleDriz_name + wcs_ext iter_singleWeight = singleWeight_name + wcs_ext # read in WCS from first single drizzle image to use as WCS for # median image if single_hdr is None: if virtual: single_hdr = singleDriz[wcs_extnum].header else: single_hdr = fits.getheader(singleDriz_name, ext=wcs_extnum, memmap=False) single_image = iterfile.IterFitsFile(iter_singleDriz) if virtual: single_image.handle = singleDriz single_image.inmemory = True singleDrizList.append(single_image) # add to an array for bookkeeping # If it exists, extract the corresponding weight images if (not virtual and os.access(singleWeight, os.F_OK)) or ( virtual and singleWeight): weight_file = iterfile.IterFitsFile(iter_singleWeight) if virtual: weight_file.handle = singleWeight weight_file.inmemory = True singleWeightList.append(weight_file) try: tmp_mean_value = ImageStats(weight_file.data, lower=1e-8, fields="mean", nclip=0).mean except ValueError: tmp_mean_value = 0.0 wht_mean.append(tmp_mean_value * maskpt) # Extract instrument specific parameters and place in lists # If an image has zero exposure time we will # redefine that value as '1'. Although this will cause inaccurate # scaling of the data to occur in the 'minmed' combination # algorith, this is a necessary evil since it avoids divide by # zero exceptions. It is more important that the divide by zero # exceptions not cause AstroDrizzle to crash in the pipeline than # it is to raise an exception for this obviously bad data even # though this is not the type of data you would wish to process # with AstroDrizzle. # # Get the exposure time from the InputImage object # # MRD 19-May-2011 # Changed exposureTimeList to take exposure time from img_exptime # variable instead of hte image._exptime attribute, since # image._exptime was just giving 1. # exposureTimeList.append(img_exptime) # Use only "commanded" chips to extract subtractedSky and rdnoise: rdnoise = 0.0 nchips = 0 bsky = None # minimum sky across **used** chips for chip in image.returnAllChips(extname=image.scienceExt): # compute sky value as sky/pixel using the single_drz # pixel scale: if bsky is None or bsky > chip.subtractedSky: bsky = chip.subtractedSky * chip._conversionFactor # Extract the readnoise value for the chip rdnoise += chip._rdnoise**2 nchips += 1 if bsky is None: bsky = 0.0 if nchips > 0: rdnoise = math.sqrt(rdnoise/nchips) backgroundValueList.append(bsky) readnoiseList.append(rdnoise) print("reference sky value for image '{}' is {}" .format(image._filename, backgroundValueList[-1])) # # END Loop over input image list # # create an array for the median output image, use the size of the first # image in the list. Store other useful image characteristics: single_driz_data = singleDrizList[0].data data_item_size = single_driz_data.itemsize single_data_dtype = single_driz_data.dtype imrows, imcols = single_driz_data.shape medianImageArray = np.zeros_like(single_driz_data) del single_driz_data if comb_type == "minmed" and not newmasks: # Issue a warning if minmed is being run with newmasks turned off. print('\nWARNING: Creating median image without the application of ' 'bad pixel masks!\n') # The overlap value needs to be set to 2*grow in order to # avoid edge effects when scrolling down the image, and to # insure that the last section returned from the iterator # has enough rows to span the kernel used in the boxcar method # within minmed. overlap = 2 * grow buffsize = BUFSIZE if bufsizeMB is None else (BUFSIZE * bufsizeMB) section_nrows = min(imrows, int(buffsize / (imcols * data_item_size))) if section_nrows == 0: buffsize = imcols * data_item_size print("WARNING: Buffer size is too small to hold a single row.\n" " Buffer size size will be increased to minimal " "required: {}MB".format(float(buffsize) / 1048576.0)) section_nrows = 1 if section_nrows < overlap + 1: new_grow = int((section_nrows - 1) / 2) if section_nrows == imrows: print("'grow' parameter is too large for actual image size. " "Reducing 'grow' to {}".format(new_grow)) else: print("'grow' parameter is too large for requested buffer size. " "Reducing 'grow' to {}".format(new_grow)) grow = new_grow overlap = 2 * grow nbr = section_nrows - overlap nsec = (imrows - overlap) // nbr if (imrows - overlap) % nbr > 0: nsec += 1 for k in range(nsec): e1 = k * nbr e2 = e1 + section_nrows u1 = grow u2 = u1 + nbr if k == 0: # first section u1 = 0 if k == nsec - 1: # last section e2 = min(e2, imrows) e1 = min(e1, e2 - overlap - 1) u2 = e2 - e1 imdrizSectionsList = np.empty( (len(singleDrizList), e2 - e1, imcols), dtype=single_data_dtype ) for i, w in enumerate(singleDrizList): imdrizSectionsList[i, :, :] = w[e1:e2] if singleWeightList: weightSectionsList = np.empty( (len(singleWeightList), e2 - e1, imcols), dtype=single_data_dtype ) for i, w in enumerate(singleWeightList): weightSectionsList[i, :, :] = w[e1:e2] else: weightSectionsList = None weight_mask_list = None if newmasks and weightSectionsList is not None: # Build new masks from single drizzled images. # Generate new pixel mask file for median step. # This mask will be created from the single-drizzled # weight image for this image. # The mean of the weight array will be computed and all # pixels with values less than 0.7 of the mean will be flagged # as bad in this mask. This mask will then be used when # creating the median image. # 0 means good, 1 means bad here... weight_mask_list = np.less( weightSectionsList, np.asarray(wht_mean)[:, None, None] ).astype(np.uint8) if 'minmed' in comb_type: # Do MINMED # set up use of 'imedian'/'imean' in minmed algorithm fillval = comb_type.startswith('i') # Create the combined array object using the minmed algorithm result = min_med( imdrizSectionsList, weightSectionsList, readnoiseList, exposureTimeList, backgroundValueList, weight_masks=weight_mask_list, combine_grow=grow, combine_nsigma1=nsigma1, combine_nsigma2=nsigma2, fillval=fillval ) else: # DO NUMCOMBINE # Create the combined array object using the numcombine task result = numcombine.num_combine( imdrizSectionsList, masks=weight_mask_list, combination_type=comb_type, nlow=nlow, nhigh=nhigh, upper=hthresh, lower=lthresh ) # Write out the processed image sections to the final output array: medianImageArray[e1+u1:e1+u2, :] = result[u1:u2, :] # Write out the combined image # use the header from the first single drizzled image in the list pf = _writeImage(medianImageArray, inputHeader=single_hdr) if virtual: mediandict = {} mediandict[medianfile] = pf for img in imageObjectList: img.saveVirtualOutputs(mediandict) else: try: print("Saving output median image to: '{}'".format(medianfile)) pf.writeto(medianfile) except IOError: msg = "Problem writing file '{}'".format(medianfile) print(msg) raise IOError(msg) # Always close any files opened to produce median image; namely, # single drizzle images and singly-drizzled weight images # for img in singleDrizList: if not virtual: img.close() # Close all singly drizzled weight images used to create median image. for img in singleWeightList: if not virtual: img.close()
Create a median image from the list of image Objects that has been given.
entailment
def _writeImage(dataArray=None, inputHeader=None): """ Writes out the result of the combination step. The header of the first 'outsingle' file in the association parlist is used as the header of the new image. Parameters ---------- dataArray : arr Array of data to be written to a fits.PrimaryHDU object inputHeader : obj fits.header.Header object to use as basis for the PrimaryHDU header """ prihdu = fits.PrimaryHDU(data=dataArray, header=inputHeader) pf = fits.HDUList() pf.append(prihdu) return pf
Writes out the result of the combination step. The header of the first 'outsingle' file in the association parlist is used as the header of the new image. Parameters ---------- dataArray : arr Array of data to be written to a fits.PrimaryHDU object inputHeader : obj fits.header.Header object to use as basis for the PrimaryHDU header
entailment
def tran(inimage,outimage,direction='forward',x=None,y=None, coords=None, coordfile=None,colnames=None,separator=None, precision=6, output=None,verbose=True): """ Primary interface to perform coordinate transformations in pixel coordinates between 2 images using STWCS and full distortion models read from each image's header. """ single_coord = False # Only use value provided in `coords` if nothing has been specified for coordfile if coords is not None and coordfile is None: coordfile = coords warnings.simplefilter('always',DeprecationWarning) warnings.warn("Please update calling code to pass in `coordfile` instead of `coords`.", category=DeprecationWarning) warnings.simplefilter('default',DeprecationWarning) if coordfile is not None: if colnames in util.blank_list: colnames = ['c1','c2'] # Determine columns which contain pixel positions cols = util.parse_colnames(colnames,coordfile) # read in columns from input coordinates file xyvals = np.loadtxt(coordfile,usecols=cols,delimiter=separator) if xyvals.ndim == 1: # only 1 entry in coordfile xlist = [xyvals[0].copy()] ylist = [xyvals[1].copy()] else: xlist = xyvals[:,0].copy() ylist = xyvals[:,1].copy() del xyvals else: if isinstance(x,np.ndarray): xlist = x.tolist() ylist = y.tolist() elif not isinstance(x,list): xlist = [x] ylist = [y] single_coord = True else: xlist = x ylist = y # start by reading in WCS+distortion info for each image im1wcs = wcsutil.HSTWCS(inimage) if im1wcs.wcs.is_unity(): print("####\nNo valid input WCS found in {}.\n Results may be invalid.\n####\n".format(inimage)) if util.is_blank(outimage): fname,fextn = fileutil.parseFilename(inimage) numsci = fileutil.countExtn(fname) chips = [] for e in range(1,numsci+1): chips.append(wcsutil.HSTWCS(fname,ext=('sci',e))) if len(chips) == 0: chips = [im1wcs] im2wcs = distortion.utils.output_wcs(chips) else: im2wcs = wcsutil.HSTWCS(outimage) if im2wcs.wcs.is_unity(): print("####\nNo valid output WCS found in {}.\n Results may be invalid.\n####\n".format(outimage)) # Setup the transformation p2p = wcs_functions.WCSMap(im1wcs,im2wcs) if direction[0].lower() == 'f': outx,outy = p2p.forward(xlist,ylist) else: outx,outy = p2p.backward(xlist,ylist) if isinstance(outx,np.ndarray): outx = outx.tolist() outy = outy.tolist() # add formatting based on precision here... xstr = [] ystr = [] fmt = "%."+repr(precision)+"f" for ox,oy in zip(outx,outy): xstr.append(fmt%ox) ystr.append(fmt%oy) if verbose or (not verbose and util.is_blank(output)): print('# Coordinate transformations for ',inimage) print('# X(in) Y(in) X(out) Y(out)\n') for xs,ys,a,b in zip(xlist,ylist,xstr,ystr): print("%.4f %.4f %s %s"%(xs,ys,a,b)) # Create output file, if specified if output: f = open(output,mode='w') f.write("# Coordinates converted from %s\n"%inimage) for xs,ys in zip(xstr,ystr): f.write('%s %s\n'%(xs,ys)) f.close() print('Wrote out results to: ',output) if single_coord: outx = outx[0] outy = outy[0] return outx,outy
Primary interface to perform coordinate transformations in pixel coordinates between 2 images using STWCS and full distortion models read from each image's header.
entailment
def fetch_uri_contents(self, uri: str) -> URI: """ Return content-addressed URI stored at registry URI. """ address, pkg_name, pkg_version = parse_registry_uri(uri) self.w3.enable_unstable_package_management_api() self.w3.pm.set_registry(address) _, _, manifest_uri = self.w3.pm.get_release_data(pkg_name, pkg_version) return manifest_uri
Return content-addressed URI stored at registry URI.
entailment
def pin_assets(self, file_or_dir_path: Path) -> List[Dict[str, str]]: """ Return a dict containing the IPFS hash, file name, and size of a file. """ if file_or_dir_path.is_dir(): asset_data = [dummy_ipfs_pin(path) for path in file_or_dir_path.glob("*")] elif file_or_dir_path.is_file(): asset_data = [dummy_ipfs_pin(file_or_dir_path)] else: raise FileNotFoundError( f"{file_or_dir_path} is not a valid file or directory path." ) return asset_data
Return a dict containing the IPFS hash, file name, and size of a file.
entailment
async def create_task(app: web.Application, coro: Coroutine, *args, **kwargs ) -> asyncio.Task: """ Convenience function for calling `TaskScheduler.create(coro)` This will use the default `TaskScheduler` to create a new background task. Example: import asyncio from datetime import datetime from brewblox_service import scheduler, service async def current_time(interval): while True: await asyncio.sleep(interval) print(datetime.now()) async def start(app): await scheduler.create_task(app, current_time(interval=2)) app = service.create_app(default_name='example') scheduler.setup(app) app.on_startup.append(start) service.furnish(app) service.run(app) """ return await get_scheduler(app).create(coro, *args, **kwargs)
Convenience function for calling `TaskScheduler.create(coro)` This will use the default `TaskScheduler` to create a new background task. Example: import asyncio from datetime import datetime from brewblox_service import scheduler, service async def current_time(interval): while True: await asyncio.sleep(interval) print(datetime.now()) async def start(app): await scheduler.create_task(app, current_time(interval=2)) app = service.create_app(default_name='example') scheduler.setup(app) app.on_startup.append(start) service.furnish(app) service.run(app)
entailment
async def cancel_task(app: web.Application, task: asyncio.Task, *args, **kwargs ) -> Any: """ Convenience function for calling `TaskScheduler.cancel(task)` This will use the default `TaskScheduler` to cancel the given task. Example: import asyncio from datetime import datetime from brewblox_service import scheduler, service async def current_time(interval): while True: await asyncio.sleep(interval) print(datetime.now()) async def stop_after(app, task, duration): await asyncio.sleep(duration) await scheduler.cancel_task(app, task) print('stopped!') async def start(app): # Start first task task = await scheduler.create_task(app, current_time(interval=2)) # Start second task to stop the first await scheduler.create_task(app, stop_after(app, task, duration=10)) app = service.create_app(default_name='example') scheduler.setup(app) app.on_startup.append(start) service.furnish(app) service.run(app) """ return await get_scheduler(app).cancel(task, *args, **kwargs)
Convenience function for calling `TaskScheduler.cancel(task)` This will use the default `TaskScheduler` to cancel the given task. Example: import asyncio from datetime import datetime from brewblox_service import scheduler, service async def current_time(interval): while True: await asyncio.sleep(interval) print(datetime.now()) async def stop_after(app, task, duration): await asyncio.sleep(duration) await scheduler.cancel_task(app, task) print('stopped!') async def start(app): # Start first task task = await scheduler.create_task(app, current_time(interval=2)) # Start second task to stop the first await scheduler.create_task(app, stop_after(app, task, duration=10)) app = service.create_app(default_name='example') scheduler.setup(app) app.on_startup.append(start) service.furnish(app) service.run(app)
entailment
async def _cleanup(self): """ Periodically removes completed tasks from the collection, allowing fire-and-forget tasks to be garbage collected. This does not delete the task object, it merely removes the reference in the scheduler. """ while True: await asyncio.sleep(CLEANUP_INTERVAL_S) self._tasks = {t for t in self._tasks if not t.done()}
Periodically removes completed tasks from the collection, allowing fire-and-forget tasks to be garbage collected. This does not delete the task object, it merely removes the reference in the scheduler.
entailment
async def create(self, coro: Coroutine) -> asyncio.Task: """ Starts execution of a coroutine. The created asyncio.Task is returned, and added to managed tasks. The scheduler guarantees that it is cancelled during application shutdown, regardless of whether it was already cancelled manually. Args: coro (Coroutine): The coroutine to be wrapped in a task, and executed. Returns: asyncio.Task: An awaitable Task object. During Aiohttp shutdown, the scheduler will attempt to cancel and await this task. The task can be safely cancelled manually, or using `TaskScheduler.cancel(task)`. """ task = asyncio.get_event_loop().create_task(coro) self._tasks.add(task) return task
Starts execution of a coroutine. The created asyncio.Task is returned, and added to managed tasks. The scheduler guarantees that it is cancelled during application shutdown, regardless of whether it was already cancelled manually. Args: coro (Coroutine): The coroutine to be wrapped in a task, and executed. Returns: asyncio.Task: An awaitable Task object. During Aiohttp shutdown, the scheduler will attempt to cancel and await this task. The task can be safely cancelled manually, or using `TaskScheduler.cancel(task)`.
entailment
async def cancel(self, task: asyncio.Task, wait_for: bool = True) -> Any: """ Cancels and waits for an `asyncio.Task` to finish. Removes it from the collection of managed tasks. Args: task (asyncio.Task): The to be cancelled task. It is not required that the task was was created with `TaskScheduler.create_task()`. wait_for (bool, optional): Whether to wait for the task to finish execution. If falsey, this function returns immediately after cancelling the task. Returns: Any: The return value of `task`. None if `wait_for` is falsey. """ if task is None: return task.cancel() with suppress(KeyError): self._tasks.remove(task) with suppress(Exception): return (await task) if wait_for else None
Cancels and waits for an `asyncio.Task` to finish. Removes it from the collection of managed tasks. Args: task (asyncio.Task): The to be cancelled task. It is not required that the task was was created with `TaskScheduler.create_task()`. wait_for (bool, optional): Whether to wait for the task to finish execution. If falsey, this function returns immediately after cancelling the task. Returns: Any: The return value of `task`. None if `wait_for` is falsey.
entailment
def create_content_addressed_github_uri(uri: URI) -> URI: """ Returns a content-addressed Github "git_url" that conforms to this scheme. https://api.github.com/repos/:owner/:repo/git/blobs/:file_sha Accepts Github-defined "url" that conforms to this scheme https://api.github.com/repos/:owner/:repo/contents/:path/:to/manifest.json """ if not is_valid_api_github_uri(uri): raise CannotHandleURI(f"{uri} does not conform to Github's API 'url' scheme.") response = requests.get(uri) response.raise_for_status() contents = json.loads(response.content) if contents["type"] != "file": raise CannotHandleURI( f"Expected url to point to a 'file' type, instead received {contents['type']}." ) return contents["git_url"]
Returns a content-addressed Github "git_url" that conforms to this scheme. https://api.github.com/repos/:owner/:repo/git/blobs/:file_sha Accepts Github-defined "url" that conforms to this scheme https://api.github.com/repos/:owner/:repo/contents/:path/:to/manifest.json
entailment
def is_valid_github_uri(uri: URI, expected_path_terms: Tuple[str, ...]) -> bool: """ Return a bool indicating whether or not the URI fulfills the following specs Valid Github URIs *must*: - Have 'https' scheme - Have 'api.github.com' authority - Have a path that contains all "expected_path_terms" """ if not is_text(uri): return False parsed = parse.urlparse(uri) path, scheme, authority = parsed.path, parsed.scheme, parsed.netloc if not all((path, scheme, authority)): return False if any(term for term in expected_path_terms if term not in path): return False if scheme != "https": return False if authority != GITHUB_API_AUTHORITY: return False return True
Return a bool indicating whether or not the URI fulfills the following specs Valid Github URIs *must*: - Have 'https' scheme - Have 'api.github.com' authority - Have a path that contains all "expected_path_terms"
entailment
def validate_blob_uri_contents(contents: bytes, blob_uri: str) -> None: """ Raises an exception if the sha1 hash of the contents does not match the hash found in te blob_uri. Formula for how git calculates the hash found here: http://alblue.bandlem.com/2011/08/git-tip-of-week-objects.html """ blob_path = parse.urlparse(blob_uri).path blob_hash = blob_path.split("/")[-1] contents_str = to_text(contents) content_length = len(contents_str) hashable_contents = "blob " + str(content_length) + "\0" + contents_str hash_object = hashlib.sha1(to_bytes(text=hashable_contents)) if hash_object.hexdigest() != blob_hash: raise ValidationError( f"Hash of contents fetched from {blob_uri} do not match its hash: {blob_hash}." )
Raises an exception if the sha1 hash of the contents does not match the hash found in te blob_uri. Formula for how git calculates the hash found here: http://alblue.bandlem.com/2011/08/git-tip-of-week-objects.html
entailment
def parse_registry_uri(uri: str) -> RegistryURI: """ Validate and return (authority, pkg name, version) from a valid registry URI """ validate_registry_uri(uri) parsed_uri = parse.urlparse(uri) authority = parsed_uri.netloc pkg_name = parsed_uri.path.strip("/") pkg_version = parsed_uri.query.lstrip("version=").strip("/") return RegistryURI(authority, pkg_name, pkg_version)
Validate and return (authority, pkg name, version) from a valid registry URI
entailment
def is_supported_content_addressed_uri(uri: URI) -> bool: """ Returns a bool indicating whether provided uri is currently supported. Currently Py-EthPM only supports IPFS and Github blob content-addressed uris. """ if not is_ipfs_uri(uri) and not is_valid_content_addressed_github_uri(uri): return False return True
Returns a bool indicating whether provided uri is currently supported. Currently Py-EthPM only supports IPFS and Github blob content-addressed uris.
entailment
def create_BIP122_uri( chain_id: str, resource_type: str, resource_identifier: str ) -> URI: """ See: https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki """ if resource_type != BLOCK: raise ValueError("Invalid resource_type. Must be one of 'block'") elif not is_block_or_transaction_hash(resource_identifier): raise ValueError( "Invalid resource_identifier. Must be a hex encoded 32 byte value" ) elif not is_block_or_transaction_hash(chain_id): raise ValueError("Invalid chain_id. Must be a hex encoded 32 byte value") return URI( parse.urlunsplit( [ "blockchain", remove_0x_prefix(chain_id), f"{resource_type}/{remove_0x_prefix(resource_identifier)}", "", "", ] ) )
See: https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki
entailment
def update_w3(self, w3: Web3) -> "Package": """ Returns a new instance of `Package` containing the same manifest, but connected to a different web3 instance. .. doctest:: >>> new_w3 = Web3(Web3.EthereumTesterProvider()) >>> NewPackage = OwnedPackage.update_w3(new_w3) >>> assert NewPackage.w3 == new_w3 >>> assert OwnedPackage.manifest == NewPackage.manifest """ validate_w3_instance(w3) return Package(self.manifest, w3, self.uri)
Returns a new instance of `Package` containing the same manifest, but connected to a different web3 instance. .. doctest:: >>> new_w3 = Web3(Web3.EthereumTesterProvider()) >>> NewPackage = OwnedPackage.update_w3(new_w3) >>> assert NewPackage.w3 == new_w3 >>> assert OwnedPackage.manifest == NewPackage.manifest
entailment
def from_file(cls, file_path: Path, w3: Web3) -> "Package": """ Returns a ``Package`` instantiated by a manifest located at the provided Path. ``file_path`` arg must be a ``pathlib.Path`` instance. A valid ``Web3`` instance is required to instantiate a ``Package``. """ if isinstance(file_path, Path): raw_manifest = file_path.read_text() validate_raw_manifest_format(raw_manifest) manifest = json.loads(raw_manifest) else: raise TypeError( "The Package.from_file method expects a pathlib.Path instance." f"Got {type(file_path)} instead." ) return cls(manifest, w3, file_path.as_uri())
Returns a ``Package`` instantiated by a manifest located at the provided Path. ``file_path`` arg must be a ``pathlib.Path`` instance. A valid ``Web3`` instance is required to instantiate a ``Package``.
entailment
def from_uri(cls, uri: URI, w3: Web3) -> "Package": """ Returns a Package object instantiated by a manifest located at a content-addressed URI. A valid ``Web3`` instance is also required. URI schemes supported: - IPFS `ipfs://Qm...` - HTTP `https://api.github.com/repos/:owner/:repo/git/blobs/:file_sha` - Registry `ercXXX://registry.eth/greeter?version=1.0.0` .. code:: python OwnedPackage = Package.from_uri('ipfs://QmbeVyFLSuEUxiXKwSsEjef7icpdTdA4kGG9BcrJXKNKUW', w3) # noqa: E501 """ contents = to_text(resolve_uri_contents(uri)) validate_raw_manifest_format(contents) manifest = json.loads(contents) return cls(manifest, w3, uri)
Returns a Package object instantiated by a manifest located at a content-addressed URI. A valid ``Web3`` instance is also required. URI schemes supported: - IPFS `ipfs://Qm...` - HTTP `https://api.github.com/repos/:owner/:repo/git/blobs/:file_sha` - Registry `ercXXX://registry.eth/greeter?version=1.0.0` .. code:: python OwnedPackage = Package.from_uri('ipfs://QmbeVyFLSuEUxiXKwSsEjef7icpdTdA4kGG9BcrJXKNKUW', w3) # noqa: E501
entailment
def get_contract_factory(self, name: ContractName) -> Contract: """ Return the contract factory for a given contract type, generated from the data vailable in ``Package.manifest``. Contract factories are accessible from the package class. .. code:: python Owned = OwnedPackage.get_contract_factory('owned') In cases where a contract uses a library, the contract factory will have unlinked bytecode. The ``ethpm`` package ships with its own subclass of ``web3.contract.Contract``, ``ethpm.contract.LinkableContract`` with a few extra methods and properties related to bytecode linking. .. code:: python >>> math = owned_package.contract_factories.math >>> math.needs_bytecode_linking True >>> linked_math = math.link_bytecode({'MathLib': '0x1234...'}) >>> linked_math.needs_bytecode_linking False """ validate_contract_name(name) if "contract_types" not in self.manifest: raise InsufficientAssetsError( "This package does not contain any contract type data." ) try: contract_data = self.manifest["contract_types"][name] except KeyError: raise InsufficientAssetsError( "This package does not contain any package data to generate " f"a contract factory for contract type: {name}. Available contract types include: " f"{ list(self.manifest['contract_types'].keys()) }." ) validate_minimal_contract_factory_data(contract_data) contract_kwargs = generate_contract_factory_kwargs(contract_data) contract_factory = self.w3.eth.contract(**contract_kwargs) return contract_factory
Return the contract factory for a given contract type, generated from the data vailable in ``Package.manifest``. Contract factories are accessible from the package class. .. code:: python Owned = OwnedPackage.get_contract_factory('owned') In cases where a contract uses a library, the contract factory will have unlinked bytecode. The ``ethpm`` package ships with its own subclass of ``web3.contract.Contract``, ``ethpm.contract.LinkableContract`` with a few extra methods and properties related to bytecode linking. .. code:: python >>> math = owned_package.contract_factories.math >>> math.needs_bytecode_linking True >>> linked_math = math.link_bytecode({'MathLib': '0x1234...'}) >>> linked_math.needs_bytecode_linking False
entailment
def get_contract_instance(self, name: ContractName, address: Address) -> Contract: """ Will return a ``Web3.contract`` instance generated from the contract type data available in ``Package.manifest`` and the provided ``address``. The provided ``address`` must be valid on the connected chain available through ``Package.w3``. """ validate_address(address) validate_contract_name(name) try: self.manifest["contract_types"][name]["abi"] except KeyError: raise InsufficientAssetsError( "Package does not have the ABI required to generate a contract instance " f"for contract: {name} at address: {address}." ) contract_kwargs = generate_contract_factory_kwargs( self.manifest["contract_types"][name] ) canonical_address = to_canonical_address(address) contract_instance = self.w3.eth.contract( address=canonical_address, **contract_kwargs ) return contract_instance
Will return a ``Web3.contract`` instance generated from the contract type data available in ``Package.manifest`` and the provided ``address``. The provided ``address`` must be valid on the connected chain available through ``Package.w3``.
entailment
def build_dependencies(self) -> "Dependencies": """ Return `Dependencies` instance containing the build dependencies available on this Package. The ``Package`` class should provide access to the full dependency tree. .. code:: python >>> owned_package.build_dependencies['zeppelin'] <ZeppelinPackage> """ validate_build_dependencies_are_present(self.manifest) dependencies = self.manifest["build_dependencies"] dependency_packages = {} for name, uri in dependencies.items(): try: validate_build_dependency(name, uri) dependency_package = Package.from_uri(uri, self.w3) except PyEthPMError as e: raise FailureToFetchIPFSAssetsError( f"Failed to retrieve build dependency: {name} from URI: {uri}.\n" f"Got error: {e}." ) else: dependency_packages[name] = dependency_package return Dependencies(dependency_packages)
Return `Dependencies` instance containing the build dependencies available on this Package. The ``Package`` class should provide access to the full dependency tree. .. code:: python >>> owned_package.build_dependencies['zeppelin'] <ZeppelinPackage>
entailment
def deployments(self) -> Union["Deployments", Dict[None, None]]: """ Returns a ``Deployments`` object containing all the deployment data and contract factories of a ``Package``'s `contract_types`. Automatically filters deployments to only expose those available on the current ``Package.w3`` instance. .. code:: python package.deployments.get_instance("ContractType") """ if not check_for_deployments(self.manifest): return {} all_blockchain_uris = self.manifest["deployments"].keys() matching_uri = validate_single_matching_uri(all_blockchain_uris, self.w3) deployments = self.manifest["deployments"][matching_uri] all_contract_factories = { deployment_data["contract_type"]: self.get_contract_factory( deployment_data["contract_type"] ) for deployment_data in deployments.values() } validate_deployments_tx_receipt(deployments, self.w3, allow_missing_data=True) linked_deployments = get_linked_deployments(deployments) if linked_deployments: for deployment_data in linked_deployments.values(): on_chain_bytecode = self.w3.eth.getCode( to_canonical_address(deployment_data["address"]) ) unresolved_linked_refs = normalize_linked_references( deployment_data["runtime_bytecode"]["link_dependencies"] ) resolved_linked_refs = tuple( self._resolve_linked_references(link_ref, deployments) for link_ref in unresolved_linked_refs ) for linked_ref in resolved_linked_refs: validate_linked_references(linked_ref, on_chain_bytecode) return Deployments(deployments, all_contract_factories, self.w3)
Returns a ``Deployments`` object containing all the deployment data and contract factories of a ``Package``'s `contract_types`. Automatically filters deployments to only expose those available on the current ``Package.w3`` instance. .. code:: python package.deployments.get_instance("ContractType")
entailment
def dummy_ipfs_pin(path: Path) -> Dict[str, str]: """ Return IPFS data as if file was pinned to an actual node. """ ipfs_return = { "Hash": generate_file_hash(path.read_bytes()), "Name": path.name, "Size": str(path.stat().st_size), } return ipfs_return
Return IPFS data as if file was pinned to an actual node.
entailment
def extract_ipfs_path_from_uri(value: str) -> str: """ Return the path from an IPFS URI. Path = IPFS hash & following path. """ parse_result = parse.urlparse(value) if parse_result.netloc: if parse_result.path: return "".join((parse_result.netloc, parse_result.path.rstrip("/"))) else: return parse_result.netloc else: return parse_result.path.strip("/")
Return the path from an IPFS URI. Path = IPFS hash & following path.
entailment
def is_ipfs_uri(value: str) -> bool: """ Return a bool indicating whether or not the value is a valid IPFS URI. """ parse_result = parse.urlparse(value) if parse_result.scheme != "ipfs": return False if not parse_result.netloc and not parse_result.path: return False return True
Return a bool indicating whether or not the value is a valid IPFS URI.
entailment
def get_instance(self, contract_name: str) -> None: """ Fetches a contract instance belonging to deployment after validating contract name. """ self._validate_name_and_references(contract_name) # Use a deployment's "contract_type" to lookup contract factory # in case the deployment uses a contract alias contract_type = self.deployment_data[contract_name]["contract_type"] factory = self.contract_factories[contract_type] address = to_canonical_address(self.deployment_data[contract_name]["address"]) contract_kwargs = { "abi": factory.abi, "bytecode": factory.bytecode, "bytecode_runtime": factory.bytecode_runtime, } return self.w3.eth.contract(address=address, **contract_kwargs)
Fetches a contract instance belonging to deployment after validating contract name.
entailment
def validate_address(address: Any) -> None: """ Raise a ValidationError if an address is not canonicalized. """ if not is_address(address): raise ValidationError(f"Expected an address, got: {address}") if not is_canonical_address(address): raise ValidationError( "Py-EthPM library only accepts canonicalized addresses. " f"{address} is not in the accepted format." )
Raise a ValidationError if an address is not canonicalized.
entailment
def validate_empty_bytes(offset: int, length: int, bytecode: bytes) -> None: """ Validates that segment [`offset`:`offset`+`length`] of `bytecode` is comprised of empty bytes (b'\00'). """ slot_length = offset + length slot = bytecode[offset:slot_length] if slot != bytearray(length): raise ValidationError( f"Bytecode segment: [{offset}:{slot_length}] is not comprised of empty bytes, " f"rather: {slot}." )
Validates that segment [`offset`:`offset`+`length`] of `bytecode` is comprised of empty bytes (b'\00').
entailment
def validate_package_name(pkg_name: str) -> None: """ Raise an exception if the value is not a valid package name as defined in the EthPM-Spec. """ if not bool(re.match(PACKAGE_NAME_REGEX, pkg_name)): raise ValidationError(f"{pkg_name} is not a valid package name.")
Raise an exception if the value is not a valid package name as defined in the EthPM-Spec.
entailment
def validate_registry_uri(uri: str) -> None: """ Raise an exception if the URI does not conform to the registry URI scheme. """ parsed = parse.urlparse(uri) scheme, authority, pkg_name, query = ( parsed.scheme, parsed.netloc, parsed.path, parsed.query, ) validate_registry_uri_scheme(scheme) validate_registry_uri_authority(authority) if query: validate_registry_uri_version(query) validate_package_name(pkg_name[1:])
Raise an exception if the URI does not conform to the registry URI scheme.
entailment
def validate_registry_uri_authority(auth: str) -> None: """ Raise an exception if the authority is not a valid ENS domain or a valid checksummed contract address. """ if is_ens_domain(auth) is False and not is_checksum_address(auth): raise ValidationError(f"{auth} is not a valid registry URI authority.")
Raise an exception if the authority is not a valid ENS domain or a valid checksummed contract address.
entailment
def validate_registry_uri_version(query: str) -> None: """ Raise an exception if the version param is malformed. """ query_dict = parse.parse_qs(query, keep_blank_values=True) if "version" not in query_dict: raise ValidationError(f"{query} is not a correctly formatted version param.")
Raise an exception if the version param is malformed.
entailment
def validate_single_matching_uri(all_blockchain_uris: List[str], w3: Web3) -> str: """ Return a single block URI after validating that it is the *only* URI in all_blockchain_uris that matches the w3 instance. """ matching_uris = [ uri for uri in all_blockchain_uris if check_if_chain_matches_chain_uri(w3, uri) ] if not matching_uris: raise ValidationError("Package has no matching URIs on chain.") elif len(matching_uris) != 1: raise ValidationError( f"Package has too many ({len(matching_uris)}) matching URIs: {matching_uris}." ) return matching_uris[0]
Return a single block URI after validating that it is the *only* URI in all_blockchain_uris that matches the w3 instance.
entailment
def validate_meta_object(meta: Dict[str, Any], allow_extra_meta_fields: bool) -> None: """ Validates that every key is one of `META_FIELDS` and has a value of the expected type. """ for key, value in meta.items(): if key in META_FIELDS: if type(value) is not META_FIELDS[key]: raise ValidationError( f"Values for {key} are expected to have the type {META_FIELDS[key]}, " f"instead got {type(value)}." ) elif allow_extra_meta_fields: if key[:2] != "x-": raise ValidationError( "Undefined meta fields need to begin with 'x-', " f"{key} is not a valid undefined meta field." ) else: raise ValidationError( f"{key} is not a permitted meta field. To allow undefined fields, " "set `allow_extra_meta_fields` to True." )
Validates that every key is one of `META_FIELDS` and has a value of the expected type.
entailment
def validate_manifest_against_schema(manifest: Dict[str, Any]) -> None: """ Load and validate manifest against schema located at MANIFEST_SCHEMA_PATH. """ schema_data = _load_schema_data() try: validate(manifest, schema_data) except jsonValidationError as e: raise ValidationError( f"Manifest invalid for schema version {schema_data['version']}. " f"Reason: {e.message}" )
Load and validate manifest against schema located at MANIFEST_SCHEMA_PATH.
entailment
def validate_manifest_deployments(manifest: Dict[str, Any]) -> None: """ Validate that a manifest's deployments contracts reference existing contract_types. """ if set(("contract_types", "deployments")).issubset(manifest): all_contract_types = list(manifest["contract_types"].keys()) all_deployments = list(manifest["deployments"].values()) all_deployment_names = extract_contract_types_from_deployments(all_deployments) missing_contract_types = set(all_deployment_names).difference( all_contract_types ) if missing_contract_types: raise ValidationError( f"Manifest missing references to contracts: {missing_contract_types}." )
Validate that a manifest's deployments contracts reference existing contract_types.
entailment
def validate_raw_manifest_format(raw_manifest: str) -> None: """ Raise a ValidationError if a manifest ... - is not tightly packed (i.e. no linebreaks or extra whitespace) - does not have alphabetically sorted keys - has duplicate keys - is not UTF-8 encoded - has a trailing newline """ try: manifest_dict = json.loads(raw_manifest, encoding="UTF-8") except json.JSONDecodeError as err: raise json.JSONDecodeError( "Failed to load package data. File is not a valid JSON document.", err.doc, err.pos, ) compact_manifest = json.dumps(manifest_dict, sort_keys=True, separators=(",", ":")) if raw_manifest != compact_manifest: raise ValidationError( "The manifest appears to be malformed. Please ensure that it conforms to the " "EthPM-Spec for document format. " "http://ethpm.github.io/ethpm-spec/package-spec.html#document-format " )
Raise a ValidationError if a manifest ... - is not tightly packed (i.e. no linebreaks or extra whitespace) - does not have alphabetically sorted keys - has duplicate keys - is not UTF-8 encoded - has a trailing newline
entailment
def build(obj: Dict[str, Any], *fns: Callable[..., Any]) -> Dict[str, Any]: """ Wrapper function to pipe manifest through build functions. Does not validate the manifest by default. """ return pipe(obj, *fns)
Wrapper function to pipe manifest through build functions. Does not validate the manifest by default.
entailment
def get_names_and_paths(compiler_output: Dict[str, Any]) -> Dict[str, str]: """ Return a mapping of contract name to relative path as defined in compiler output. """ return { contract_name: make_path_relative(path) for path in compiler_output for contract_name in compiler_output[path].keys() }
Return a mapping of contract name to relative path as defined in compiler output.
entailment
def make_path_relative(path: str) -> str: """ Returns the given path prefixed with "./" if the path is not already relative in the compiler output. """ if "../" in path: raise ManifestBuildingError( f"Path: {path} appears to be outside of the virtual source tree. " "Please make sure all sources are within the virtual source tree root directory." ) if path[:2] != "./": return f"./{path}" return path
Returns the given path prefixed with "./" if the path is not already relative in the compiler output.
entailment
def contract_type( name: str, compiler_output: Dict[str, Any], alias: Optional[str] = None, abi: Optional[bool] = False, compiler: Optional[bool] = False, contract_type: Optional[bool] = False, deployment_bytecode: Optional[bool] = False, natspec: Optional[bool] = False, runtime_bytecode: Optional[bool] = False, ) -> Manifest: """ Returns a copy of manifest with added contract_data field as specified by kwargs. If no kwargs are present, all available contract_data found in the compiler output will be included. To include specific contract_data fields, add kwarg set to True (i.e. `abi=True`) To alias a contract_type, include a kwarg `alias` (i.e. `alias="OwnedAlias"`) If only an alias kwarg is provided, all available contract data will be included. Kwargs must match fields as defined in the EthPM Spec (except "alias") if user wants to include them in custom contract_type. """ contract_type_fields = { "contract_type": contract_type, "deployment_bytecode": deployment_bytecode, "runtime_bytecode": runtime_bytecode, "abi": abi, "natspec": natspec, "compiler": compiler, } selected_fields = [k for k, v in contract_type_fields.items() if v] return _contract_type(name, compiler_output, alias, selected_fields)
Returns a copy of manifest with added contract_data field as specified by kwargs. If no kwargs are present, all available contract_data found in the compiler output will be included. To include specific contract_data fields, add kwarg set to True (i.e. `abi=True`) To alias a contract_type, include a kwarg `alias` (i.e. `alias="OwnedAlias"`) If only an alias kwarg is provided, all available contract data will be included. Kwargs must match fields as defined in the EthPM Spec (except "alias") if user wants to include them in custom contract_type.
entailment
def filter_all_data_by_selected_fields( all_type_data: Dict[str, Any], selected_fields: List[str] ) -> Iterable[Tuple[str, Any]]: """ Raises exception if selected field data is not available in the contract type data automatically gathered by normalize_compiler_output. Otherwise, returns the data. """ for field in selected_fields: if field in all_type_data: yield field, all_type_data[field] else: raise ManifestBuildingError( f"Selected field: {field} not available in data collected from solc output: " f"{list(sorted(all_type_data.keys()))}. Please make sure the relevant data " "is present in your solc output." )
Raises exception if selected field data is not available in the contract type data automatically gathered by normalize_compiler_output. Otherwise, returns the data.
entailment
def normalize_compiler_output(compiler_output: Dict[str, Any]) -> Dict[str, Any]: """ Return compiler output with normalized fields for each contract type, as specified in `normalize_contract_type`. """ paths_and_names = [ (path, contract_name) for path in compiler_output for contract_name in compiler_output[path].keys() ] paths, names = zip(*paths_and_names) if len(names) != len(set(names)): raise ManifestBuildingError( "Duplicate contract names were found in the compiler output." ) return { name: normalize_contract_type(compiler_output[path][name]) for path, name in paths_and_names }
Return compiler output with normalized fields for each contract type, as specified in `normalize_contract_type`.
entailment
def normalize_contract_type( contract_type_data: Dict[str, Any] ) -> Iterable[Tuple[str, Any]]: """ Serialize contract_data found in compiler output to the defined fields. """ yield "abi", contract_type_data["abi"] if "evm" in contract_type_data: if "bytecode" in contract_type_data["evm"]: yield "deployment_bytecode", normalize_bytecode_object( contract_type_data["evm"]["bytecode"] ) if "deployedBytecode" in contract_type_data["evm"]: yield "runtime_bytecode", normalize_bytecode_object( contract_type_data["evm"]["deployedBytecode"] ) if any(key in contract_type_data for key in NATSPEC_FIELDS): natspec = deep_merge_dicts( contract_type_data.get("userdoc", {}), contract_type_data.get("devdoc", {}) ) yield "natspec", natspec # make sure metadata isn't an empty string in solc output if "metadata" in contract_type_data and contract_type_data["metadata"]: yield "compiler", normalize_compiler_object( json.loads(contract_type_data["metadata"]) )
Serialize contract_data found in compiler output to the defined fields.
entailment
def process_bytecode(link_refs: Dict[str, Any], bytecode: bytes) -> str: """ Replace link_refs in bytecode with 0's. """ all_offsets = [y for x in link_refs.values() for y in x.values()] # Link ref validation. validate_link_ref_fns = ( validate_link_ref(ref["start"] * 2, ref["length"] * 2) for ref in concat(all_offsets) ) pipe(bytecode, *validate_link_ref_fns) # Convert link_refs in bytecode to 0's link_fns = ( replace_link_ref_in_bytecode(ref["start"] * 2, ref["length"] * 2) for ref in concat(all_offsets) ) processed_bytecode = pipe(bytecode, *link_fns) return add_0x_prefix(processed_bytecode)
Replace link_refs in bytecode with 0's.
entailment
def deployment_type( *, contract_instance: str, contract_type: str, deployment_bytecode: Dict[str, Any] = None, runtime_bytecode: Dict[str, Any] = None, compiler: Dict[str, Any] = None, ) -> Manifest: """ Returns a callable that allows the user to add deployments of the same type across multiple chains. """ return _deployment_type( contract_instance, contract_type, deployment_bytecode, runtime_bytecode, compiler, )
Returns a callable that allows the user to add deployments of the same type across multiple chains.
entailment
def deployment( *, block_uri: URI, contract_instance: str, contract_type: str, address: HexStr, transaction: HexStr = None, block: HexStr = None, deployment_bytecode: Dict[str, Any] = None, runtime_bytecode: Dict[str, Any] = None, compiler: Dict[str, Any] = None, ) -> Manifest: """ Returns a manifest, with the newly included deployment. Requires a valid blockchain URI, however no validation is provided that this URI is unique amongst the other deployment URIs, so the user must take care that each blockchain URI represents a unique blockchain. """ return _deployment( contract_instance, contract_type, deployment_bytecode, runtime_bytecode, compiler, block_uri, address, transaction, block, )
Returns a manifest, with the newly included deployment. Requires a valid blockchain URI, however no validation is provided that this URI is unique amongst the other deployment URIs, so the user must take care that each blockchain URI represents a unique blockchain.
entailment
def _build_deployments_object( contract_type: str, deployment_bytecode: Dict[str, Any], runtime_bytecode: Dict[str, Any], compiler: Dict[str, Any], address: HexStr, tx: HexStr, block: HexStr, manifest: Dict[str, Any], ) -> Iterable[Tuple[str, Any]]: """ Returns a dict with properly formatted deployment data. """ yield "contract_type", contract_type yield "address", to_hex(address) if deployment_bytecode: yield "deployment_bytecode", deployment_bytecode if compiler: yield "compiler", compiler if tx: yield "transaction", tx if block: yield "block", block if runtime_bytecode: yield "runtime_bytecode", runtime_bytecode
Returns a dict with properly formatted deployment data.
entailment
def init_manifest( package_name: str, version: str, manifest_version: Optional[str] = "2" ) -> Dict[str, Any]: """ Returns an initial dict with the minimal requried fields for a valid manifest. Should only be used as the first fn to be piped into a `build()` pipeline. """ return { "package_name": package_name, "version": version, "manifest_version": manifest_version, }
Returns an initial dict with the minimal requried fields for a valid manifest. Should only be used as the first fn to be piped into a `build()` pipeline.
entailment
def write_to_disk( manifest_root_dir: Optional[Path] = None, manifest_name: Optional[str] = None, prettify: Optional[bool] = False, ) -> Manifest: """ Write the active manifest to disk Defaults - Writes manifest to cwd unless Path is provided as manifest_root_dir. - Writes manifest with a filename of Manifest[version].json unless a desired manifest name (which must end in json) is provided as manifest_name. - Writes the minified manifest version to disk unless prettify is set to True. """ return _write_to_disk(manifest_root_dir, manifest_name, prettify)
Write the active manifest to disk Defaults - Writes manifest to cwd unless Path is provided as manifest_root_dir. - Writes manifest with a filename of Manifest[version].json unless a desired manifest name (which must end in json) is provided as manifest_name. - Writes the minified manifest version to disk unless prettify is set to True.
entailment
def pin_to_ipfs( manifest: Manifest, *, backend: BaseIPFSBackend, prettify: Optional[bool] = False ) -> List[Dict[str, str]]: """ Returns the IPFS pin data after pinning the manifest to the provided IPFS Backend. `pin_to_ipfs()` Should *always* be the last argument in a builder, as it will return the pin data and not the manifest. """ contents = format_manifest(manifest, prettify=prettify) with tempfile.NamedTemporaryFile() as temp: temp.write(to_bytes(text=contents)) temp.seek(0) return backend.pin_assets(Path(temp.name))
Returns the IPFS pin data after pinning the manifest to the provided IPFS Backend. `pin_to_ipfs()` Should *always* be the last argument in a builder, as it will return the pin data and not the manifest.
entailment
def create_parser(default_name: str) -> argparse.ArgumentParser: """ Creates the default brewblox_service ArgumentParser. Service-agnostic arguments are added. The parser allows calling code to add additional arguments before using it in create_app() Args: default_name (str): default value for the --name commandline argument. Returns: argparse.ArgumentParser: a Python ArgumentParser with defaults set. """ argparser = argparse.ArgumentParser(fromfile_prefix_chars='@') argparser.add_argument('-H', '--host', help='Host to which the app binds. [%(default)s]', default='0.0.0.0') argparser.add_argument('-p', '--port', help='Port to which the app binds. [%(default)s]', default=5000, type=int) argparser.add_argument('-o', '--output', help='Logging output. [%(default)s]') argparser.add_argument('-n', '--name', help='Service name. This will be used as prefix for all endpoints. [%(default)s]', default=default_name) argparser.add_argument('--debug', help='Run the app in debug mode. [%(default)s]', action='store_true') argparser.add_argument('--eventbus-host', help='Hostname at which the eventbus can be reached [%(default)s]', default='eventbus') argparser.add_argument('--eventbus-port', help='Port at which the eventbus can be reached [%(default)s]', default=5672, type=int) return argparser
Creates the default brewblox_service ArgumentParser. Service-agnostic arguments are added. The parser allows calling code to add additional arguments before using it in create_app() Args: default_name (str): default value for the --name commandline argument. Returns: argparse.ArgumentParser: a Python ArgumentParser with defaults set.
entailment
def create_app( default_name: str = None, parser: argparse.ArgumentParser = None, raw_args: List[str] = None ) -> web.Application: """ Creates and configures an Aiohttp application. Args: default_name (str, optional): Default value for the --name commandline argument. This value is required if `parser` is not provided. This value will be ignored if `parser` is provided. parser (argparse.ArgumentParser, optional): Application-specific parser. If not provided, the return value of `create_parser()` will be used. raw_args (list of str, optional): Explicit commandline arguments. Defaults to sys.argv[1:] Returns: web.Application: A configured Aiohttp Application object. This Application must be furnished, and is not yet running. """ if parser is None: assert default_name, 'Default service name is required' parser = create_parser(default_name) args = parser.parse_args(raw_args) _init_logging(args) LOGGER.info(f'Creating [{args.name}] application') app = web.Application() app['config'] = vars(args) return app
Creates and configures an Aiohttp application. Args: default_name (str, optional): Default value for the --name commandline argument. This value is required if `parser` is not provided. This value will be ignored if `parser` is provided. parser (argparse.ArgumentParser, optional): Application-specific parser. If not provided, the return value of `create_parser()` will be used. raw_args (list of str, optional): Explicit commandline arguments. Defaults to sys.argv[1:] Returns: web.Application: A configured Aiohttp Application object. This Application must be furnished, and is not yet running.
entailment
def furnish(app: web.Application): """ Configures Application routes, readying it for running. This function modifies routes and resources that were added by calling code, and must be called immediately prior to `run(app)`. Args: app (web.Application): The Aiohttp Application as created by `create_app()` """ app_name = app['config']['name'] prefix = '/' + app_name.lstrip('/') app.router.add_routes(routes) cors_middleware.enable_cors(app) # Configure CORS and prefixes on all endpoints. known_resources = set() for route in list(app.router.routes()): if route.resource in known_resources: continue known_resources.add(route.resource) route.resource.add_prefix(prefix) # Configure swagger settings # We set prefix explicitly here aiohttp_swagger.setup_swagger(app, swagger_url=prefix + '/api/doc', description='', title=f'Brewblox Service "{app_name}"', api_version='0.0', contact='development@brewpi.com') LOGGER.info('Service info: ' + getenv('SERVICE_INFO', 'UNKNOWN')) for route in app.router.routes(): LOGGER.info(f'Endpoint [{route.method}] {route.resource}') for name, impl in app.get(features.FEATURES_KEY, {}).items(): LOGGER.info(f'Feature [{name}] {impl}')
Configures Application routes, readying it for running. This function modifies routes and resources that were added by calling code, and must be called immediately prior to `run(app)`. Args: app (web.Application): The Aiohttp Application as created by `create_app()`
entailment
def run(app: web.Application): """ Runs the application in an async context. This function will block indefinitely until the application is shut down. Args: app (web.Application): The Aiohttp Application as created by `create_app()` """ host = app['config']['host'] port = app['config']['port'] # starts app. run_app() will automatically start the async context. web.run_app(app, host=host, port=port)
Runs the application in an async context. This function will block indefinitely until the application is shut down. Args: app (web.Application): The Aiohttp Application as created by `create_app()`
entailment
def get_linked_deployments(deployments: Dict[str, Any]) -> Dict[str, Any]: """ Returns all deployments found in a chain URI's deployment data that contain link dependencies. """ linked_deployments = { dep: data for dep, data in deployments.items() if get_in(("runtime_bytecode", "link_dependencies"), data) } for deployment, data in linked_deployments.items(): if any( link_dep["value"] == deployment for link_dep in data["runtime_bytecode"]["link_dependencies"] ): raise BytecodeLinkingError( f"Link dependency found in {deployment} deployment that references its " "own contract instance, which is disallowed" ) return linked_deployments
Returns all deployments found in a chain URI's deployment data that contain link dependencies.
entailment
def validate_linked_references( link_deps: Tuple[Tuple[int, bytes], ...], bytecode: bytes ) -> None: """ Validates that normalized linked_references (offset, expected_bytes) match the corresponding bytecode. """ offsets, values = zip(*link_deps) for idx, offset in enumerate(offsets): value = values[idx] # https://github.com/python/mypy/issues/4975 offset_value = int(offset) dep_length = len(value) end_of_bytes = offset_value + dep_length # Ignore b/c whitespace around ':' conflict b/w black & flake8 actual_bytes = bytecode[offset_value:end_of_bytes] # noqa: E203 if actual_bytes != values[idx]: raise ValidationError( "Error validating linked reference. " f"Offset: {offset} " f"Value: {values[idx]} " f"Bytecode: {bytecode} ." )
Validates that normalized linked_references (offset, expected_bytes) match the corresponding bytecode.
entailment
def normalize_linked_references( data: List[Dict[str, Any]] ) -> Generator[Tuple[int, str, str], None, None]: """ Return a tuple of information representing all insertions of a linked reference. (offset, type, value) """ for deployment in data: for offset in deployment["offsets"]: yield offset, deployment["type"], deployment["value"]
Return a tuple of information representing all insertions of a linked reference. (offset, type, value)
entailment
def validate_deployments_tx_receipt( deployments: Dict[str, Any], w3: Web3, allow_missing_data: bool = False ) -> None: """ Validate that address and block hash found in deployment data match what is found on-chain. :allow_missing_data: by default, enforces validation of address and blockHash. """ # todo: provide hook to lazily look up tx receipt via binary search if missing data for name, data in deployments.items(): if "transaction" in data: tx_hash = data["transaction"] tx_receipt = w3.eth.getTransactionReceipt(tx_hash) # tx_address will be None if contract created via contract factory tx_address = tx_receipt["contractAddress"] if tx_address is None and allow_missing_data is False: raise ValidationError( "No contract address found in tx receipt. Unable to verify " "address found in tx receipt matches address in manifest's deployment data. " "If this validation is not necessary, please enable `allow_missing_data` arg. " ) if tx_address is not None and not is_same_address( tx_address, data["address"] ): raise ValidationError( f"Error validating tx_receipt for {name} deployment. " f"Address found in manifest's deployment data: {data['address']} " f"Does not match address found on tx_receipt: {tx_address}." ) if "block" in data: if tx_receipt["blockHash"] != to_bytes(hexstr=data["block"]): raise ValidationError( f"Error validating tx_receipt for {name} deployment. " f"Block found in manifest's deployment data: {data['block']} does not " f"Does not match block found on tx_receipt: {tx_receipt['blockHash']}." ) elif allow_missing_data is False: raise ValidationError( "No block hash found in deployment data. " "Unable to verify block hash on tx receipt. " "If this validation is not necessary, please enable `allow_missing_data` arg." ) elif allow_missing_data is False: raise ValidationError( "No transaction hash found in deployment data. " "Unable to validate tx_receipt. " "If this validation is not necessary, please enable `allow_missing_data` arg." )
Validate that address and block hash found in deployment data match what is found on-chain. :allow_missing_data: by default, enforces validation of address and blockHash.
entailment
def is_prelinked_bytecode(bytecode: bytes, link_refs: List[Dict[str, Any]]) -> bool: """ Returns False if all expected link_refs are unlinked, otherwise returns True. todo support partially pre-linked bytecode (currently all or nothing) """ for link_ref in link_refs: for offset in link_ref["offsets"]: try: validate_empty_bytes(offset, link_ref["length"], bytecode) except ValidationError: return True return False
Returns False if all expected link_refs are unlinked, otherwise returns True. todo support partially pre-linked bytecode (currently all or nothing)
entailment
def apply_all_link_refs( bytecode: bytes, link_refs: List[Dict[str, Any]], attr_dict: Dict[str, str] ) -> bytes: """ Applies all link references corresponding to a valid attr_dict to the bytecode. """ if link_refs is None: return bytecode link_fns = ( apply_link_ref(offset, ref["length"], attr_dict[ref["name"]]) for ref in link_refs for offset in ref["offsets"] ) linked_bytecode = pipe(bytecode, *link_fns) return linked_bytecode
Applies all link references corresponding to a valid attr_dict to the bytecode.
entailment
def apply_link_ref(offset: int, length: int, value: bytes, bytecode: bytes) -> bytes: """ Returns the new bytecode with `value` put into the location indicated by `offset` and `length`. """ try: validate_empty_bytes(offset, length, bytecode) except ValidationError: raise BytecodeLinkingError("Link references cannot be applied to bytecode") new_bytes = ( # Ignore linting error b/c conflict b/w black & flake8 bytecode[:offset] + value + bytecode[offset + length :] # noqa: E201, E203 ) return new_bytes
Returns the new bytecode with `value` put into the location indicated by `offset` and `length`.
entailment
def link_bytecode(cls, attr_dict: Dict[str, str]) -> Type["LinkableContract"]: """ Return a cloned contract factory with the deployment / runtime bytecode linked. :attr_dict: Dict[`ContractType`: `Address`] for all deployment and runtime link references. """ if not cls.unlinked_references and not cls.linked_references: raise BytecodeLinkingError("Contract factory has no linkable bytecode.") if not cls.needs_bytecode_linking: raise BytecodeLinkingError( "Bytecode for this contract factory does not require bytecode linking." ) cls.validate_attr_dict(attr_dict) bytecode = apply_all_link_refs(cls.bytecode, cls.unlinked_references, attr_dict) runtime = apply_all_link_refs( cls.bytecode_runtime, cls.linked_references, attr_dict ) linked_class = cls.factory( cls.web3, bytecode_runtime=runtime, bytecode=bytecode ) if linked_class.needs_bytecode_linking: raise BytecodeLinkingError( "Expected class to be fully linked, but class still needs bytecode linking." ) return linked_class
Return a cloned contract factory with the deployment / runtime bytecode linked. :attr_dict: Dict[`ContractType`: `Address`] for all deployment and runtime link references.
entailment
def validate_attr_dict(self, attr_dict: Dict[str, str]) -> None: """ Validates that ContractType keys in attr_dict reference existing manifest ContractTypes. """ attr_dict_names = list(attr_dict.keys()) if not self.unlinked_references and not self.linked_references: raise BytecodeLinkingError( "Unable to validate attr dict, this contract has no linked/unlinked references." ) unlinked_refs = self.unlinked_references or ({},) linked_refs = self.linked_references or ({},) all_link_refs = unlinked_refs + linked_refs all_link_names = [ref["name"] for ref in all_link_refs] if set(attr_dict_names) != set(all_link_names): raise BytecodeLinkingError( "All link references must be defined when calling " "`link_bytecode` on a contract factory." ) for address in attr_dict.values(): if not is_canonical_address(address): raise BytecodeLinkingError( f"Address: {address} as specified in the attr_dict is not " "a valid canoncial address." )
Validates that ContractType keys in attr_dict reference existing manifest ContractTypes.
entailment