sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def movie_body_count(data_set='movie_body_count'): """Data set of movies and body count for movies scraped from www.MovieBodyCounts.com created by Simon Garnier and Randy Olson for exploring differences between Python and R.""" if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'film-death-counts-Python.csv') Y = read_csv(filename) Y['Actors'] = Y['Actors'].apply(lambda x: x.split('|')) Y['Genre'] = Y['Genre'].apply(lambda x: x.split('|')) Y['Director'] = Y['Director'].apply(lambda x: x.split('|')) return data_details_return({'Y': Y, 'info' : "Data set of movies and body count for movies scraped from www.MovieBodyCounts.com created by Simon Garnier and Randy Olson for exploring differences between Python and R.", }, data_set)
Data set of movies and body count for movies scraped from www.MovieBodyCounts.com created by Simon Garnier and Randy Olson for exploring differences between Python and R.
entailment
def movie_body_count_r_classify(data_set='movie_body_count'): """Data set of movies and body count for movies scraped from www.MovieBodyCounts.com created by Simon Garnier and Randy Olson for exploring differences between Python and R.""" data = movie_body_count()['Y'] import pandas as pd import numpy as np X = data[['Year', 'Body_Count']] Y = data['MPAA_Rating']=='R' # set label to be positive for R rated films. # Create series of movie genres with the relevant index s = data['Genre'].str.split('|').apply(pd.Series, 1).stack() s.index = s.index.droplevel(-1) # to line up with df's index # Extract from the series the unique list of genres. genres = s.unique() # For each genre extract the indices where it is present and add a column to X for genre in genres: index = s[s==genre].index.tolist() values = pd.Series(np.zeros(X.shape[0]), index=X.index) values[index] = 1 X[genre] = values return data_details_return({'X': X, 'Y': Y, 'info' : "Data set of movies and body count for movies scraped from www.MovieBodyCounts.com created by Simon Garnier and Randy Olson for exploring differences between Python and R. In this variant we aim to classify whether the film is rated R or not depending on the genre, the years and the body count.", }, data_set)
Data set of movies and body count for movies scraped from www.MovieBodyCounts.com created by Simon Garnier and Randy Olson for exploring differences between Python and R.
entailment
def movielens100k(data_set='movielens100k'): """Data set of movie ratings collected by the University of Minnesota and 'cleaned up' for use.""" if not data_available(data_set): import zipfile download_data(data_set) dir_path = os.path.join(data_path, data_set) zip = zipfile.ZipFile(os.path.join(dir_path, 'ml-100k.zip'), 'r') for name in zip.namelist(): zip.extract(name, dir_path) import pandas as pd encoding = 'latin-1' movie_path = os.path.join(data_path, 'movielens100k', 'ml-100k') items = pd.read_csv(os.path.join(movie_path, 'u.item'), index_col = 'index', header=None, sep='|',names=['index', 'title', 'date', 'empty', 'imdb_url', 'unknown', 'Action', 'Adventure', 'Animation', 'Children''s', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'], encoding=encoding) users = pd.read_csv(os.path.join(movie_path, 'u.user'), index_col = 'index', header=None, sep='|', names=['index', 'age', 'sex', 'job', 'id'], encoding=encoding) parts = ['u1.base', 'u1.test', 'u2.base', 'u2.test','u3.base', 'u3.test','u4.base', 'u4.test','u5.base', 'u5.test','ua.base', 'ua.test','ub.base', 'ub.test'] ratings = [] for part in parts: rate_part = pd.read_csv(os.path.join(movie_path, part), index_col = 'index', header=None, sep='\t', names=['user', 'item', 'rating', 'index'], encoding=encoding) rate_part['split'] = part ratings.append(rate_part) Y = pd.concat(ratings) return data_details_return({'Y':Y, 'film_info':items, 'user_info':users, 'info': 'The Movielens 100k data'}, data_set)
Data set of movie ratings collected by the University of Minnesota and 'cleaned up' for use.
entailment
def ceres(data_set='ceres'): """Twenty two observations of the Dwarf planet Ceres as observed by Giueseppe Piazzi and published in the September edition of Monatlicher Correspondenz in 1801. These were the measurements used by Gauss to fit a model of the planets orbit through which the planet was recovered three months later.""" if not data_available(data_set): download_data(data_set) import pandas as pd data = pd.read_csv(os.path.join(data_path, data_set, 'ceresData.txt'), index_col = 'Tag', header=None, sep='\t',names=['Tag', 'Mittlere Sonnenzeit', 'Gerade Aufstig in Zeit', 'Gerade Aufstiegung in Graden', 'Nordlich Abweich', 'Geocentrische Laenger', 'Geocentrische Breite', 'Ort der Sonne + 20" Aberration', 'Logar. d. Distanz'], parse_dates=True, dayfirst=False) return data_details_return({'data': data}, data_set)
Twenty two observations of the Dwarf planet Ceres as observed by Giueseppe Piazzi and published in the September edition of Monatlicher Correspondenz in 1801. These were the measurements used by Gauss to fit a model of the planets orbit through which the planet was recovered three months later.
entailment
def calc_horizontal_infrared_radiation_intensity(weatherdata): """ Estimates the global horizontal infrared radiation intensity based on drybulb, dewpoint and opaque sky cover. References: Walton, G. N. 1983. Thermal Analysis Research Program Reference Manual. NBSSIR 83- 2655. National Bureau of Standards, p. 21. Clark, G. and C. Allen, "The Estimation of Atmospheric Radiation for Clear and Cloudy Skies," Proceedings 2nd National Passive Solar Conference (AS/ISES), 1978, pp. 675-678. """ temp_drybulb_K = C2K(weatherdata._dry_bulb_temperature) temp_dew_K = C2K(weatherdata.dew_point_temperature) N = weatherdata.opaque_sky_cover sky_emissivity = (0.787 + 0.764 * math.log(temp_dew_K / C2K(0.0)) * (1.0 + 0.0224 * N - 0.0035 * N ** 2 + 0.00028 * N ** 3)) hor_id = sky_emissivity * sigma * temp_drybulb_K ** 4 weatherdata.horizontal_infrared_radiation_intensity = hor_id
Estimates the global horizontal infrared radiation intensity based on drybulb, dewpoint and opaque sky cover. References: Walton, G. N. 1983. Thermal Analysis Research Program Reference Manual. NBSSIR 83- 2655. National Bureau of Standards, p. 21. Clark, G. and C. Allen, "The Estimation of Atmospheric Radiation for Clear and Cloudy Skies," Proceedings 2nd National Passive Solar Conference (AS/ISES), 1978, pp. 675-678.
entailment
def download_url(url, dir_name='.', save_name=None, store_directory=None, messages=True, suffix=''): """Download a file from a url and save it to disk.""" if sys.version_info>=(3,0): from urllib.parse import quote from urllib.request import urlopen from urllib.error import HTTPError, URLError else: from urllib2 import quote from urllib2 import urlopen from urllib2 import URLError as HTTPError i = url.rfind('/') file = url[i+1:] if store_directory is not None: dir_name = os.path.join(dir_name, store_directory) if save_name is None: save_name = file save_name = os.path.join(dir_name, save_name) print("Downloading ", url, "->", save_name) if not os.path.exists(dir_name): os.makedirs(dir_name) try: response = urlopen(url+suffix) except HTTPError as e: if not hasattr(e, "code"): raise if e.code > 399 and e.code<500: raise ValueError('Tried url ' + url + suffix + ' and received client error ' + str(e.code)) elif e.code > 499: raise ValueError('Tried url ' + url + suffix + ' and received server error ' + str(e.code)) except URLError as e: raise ValueError('Tried url ' + url + suffix + ' and failed with error ' + str(e.reason)) with open(save_name, 'wb') as f: meta = response.info() content_length_str = meta.get("Content-Length") if content_length_str: #if sys.version_info>=(3,0): try: file_size = int(content_length_str) except: try: file_size = int(content_length_str[0]) except: file_size = None if file_size == 1: file_size = None #else: # file_size = int(content_length_str) else: file_size = None status = "" file_size_dl = 0 block_sz = 8192 line_length = 30 percentage = 1./line_length if file_size: print("|"+"{:^{ll}}".format("Downloading {:7.3f}MB".format(file_size/(1048576.)), ll=line_length)+"|") from itertools import cycle cycle_str = cycle('>') sys.stdout.write("|") while True: buff = response.read(block_sz) if not buff: break file_size_dl += len(buff) f.write(buff) # If content_length_str was incorrect, we can end up with many too many equals signs, catches this edge case #correct_meta = float(file_size_dl)/file_size <= 1.0 if file_size: if (float(file_size_dl)/file_size) >= percentage: sys.stdout.write(next(cycle_str)) sys.stdout.flush() percentage += 1./line_length #percentage = "="*int(line_length*float(file_size_dl)/file_size) #status = r"[{perc: <{ll}}] {dl:7.3f}/{full:.3f}MB".format(dl=file_size_dl/(1048576.), full=file_size/(1048576.), ll=line_length, perc=percentage) else: sys.stdout.write(" "*(len(status)) + "\r") status = r"{dl:7.3f}MB".format(dl=file_size_dl/(1048576.), ll=line_length, perc="."*int(line_length*float(file_size_dl/(10*1048576.)))) sys.stdout.write(status) sys.stdout.flush() #sys.stdout.write(status) if file_size: sys.stdout.write("|") sys.stdout.flush() print(status)
Download a file from a url and save it to disk.
entailment
def access_elementusers(self, elementuser_id, access_id=None, tenant_id=None, api_version="v2.0"): """ Get all accesses for a particular user **Parameters:**: - **elementuser_id**: Element User ID - **access_id**: (optional) Access ID - **tenant_id**: Tenant ID - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties. """ if tenant_id is None and self._parent_class.tenant_id: # Pull tenant_id from parent namespace cache. tenant_id = self._parent_class.tenant_id elif not tenant_id: # No value for tenant_id. raise TypeError("tenant_id is required but not set or cached.") cur_ctlr = self._parent_class.controller if not access_id: url = str(cur_ctlr) + "/{}/api/tenants/{}/elementusers/{}/access".format(api_version, tenant_id, elementuser_id) else: url = str(cur_ctlr) + "/{}/api/tenants/{}/elementusers/{}/access/{}".format(api_version, tenant_id, elementuser_id, access_id) api_logger.debug("URL = %s", url) return self._parent_class.rest_call(url, "get")
Get all accesses for a particular user **Parameters:**: - **elementuser_id**: Element User ID - **access_id**: (optional) Access ID - **tenant_id**: Tenant ID - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties.
entailment
def logout(self, api_version="v2.0"): """ Logout current session **Parameters:**: - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties. """ cur_ctlr = self._parent_class.controller url = str(cur_ctlr) + "/{}/api/logout".format(api_version) api_logger.debug("URL = %s", url) return self._parent_class.rest_call(url, "get")
Logout current session **Parameters:**: - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties.
entailment
def login(self, email=None, password=None): """ Interactive login using the `cloudgenix.API` object. This function is more robust and handles SAML and MSP accounts. Expects interactive capability. if this is not available, use `cloudenix.API.post.login` directly. **Parameters:**: - **email**: Email to log in for, will prompt if not entered. - **password**: Password to log in with, will prompt if not entered. Ignored for SAML v2.0 users. **Returns:** Bool. In addition the function will mutate the `cloudgenix.API` constructor items as needed. """ # if email not given in function, or if first login fails, prompt. if email is None: # If user is not set, pull from cache. If not in cache, prompt. if self._parent_class.email: email = self._parent_class.email else: email = compat_input("login: ") if password is None: # if pass not given on function, or if first login fails, prompt. if self._parent_class._password: password = self._parent_class._password else: password = getpass.getpass() # Try and login # For SAML 2.0 support, set the Referer URL prior to logging in. # add referer header to the session. self._parent_class.add_headers({'Referer': "{}/v2.0/api/login".format(self._parent_class.controller)}) # call the login API. response = self._parent_class.post.login({"email": email, "password": password}) if response.cgx_status: # Check for SAML 2.0 login if not response.cgx_content.get('x_auth_token'): urlpath = response.cgx_content.get("urlpath", "") request_id = response.cgx_content.get("requestId", "") if urlpath and request_id: # SAML 2.0 print('SAML 2.0: To finish login open the following link in a browser\n\n{0}\n\n'.format(urlpath)) found_auth_token = False for i in range(20): print('Waiting for {0} seconds for authentication...'.format((20 - i) * 5)) saml_response = self.check_sso_login(email, request_id) if saml_response.cgx_status and saml_response.cgx_content.get('x_auth_token'): found_auth_token = True break # wait before retry. time.sleep(5) if not found_auth_token: print("Login time expired! Please re-login.\n") # log response when debug try: api_logger.debug("LOGIN_FAIL_RESPONSE = %s", json.dumps(response, indent=4)) except (TypeError, ValueError): # not JSON response, don't pretty print log. api_logger.debug("LOGIN_FAIL_RESPONSE = %s", str(response)) # print login error print('Login failed, please try again', response) # Flush command-line entered login info if failure. self._parent_class.email = None self._parent_class.password = None return False api_logger.info('Login successful:') # if we got here, we either got an x_auth_token in the original login, or # we got an auth_token cookie set via SAML. Figure out which. auth_token = response.cgx_content.get('x_auth_token') if auth_token: # token in the original login (not saml) means region parsing has not been done. # do now, and recheck if cookie needs set. auth_region = self._parent_class.parse_region(response) self._parent_class.update_region_to_controller(auth_region) self._parent_class.reparse_login_cookie_after_region_update(response) # debug info if needed api_logger.debug("AUTH_TOKEN=%s", response.cgx_content.get('x_auth_token')) # Step 2: Get operator profile for tenant ID and other info. if self.interactive_update_profile_vars(): # pull tenant detail if self._parent_class.tenant_id: # add tenant values to API() object if self.interactive_tenant_update_vars(): # Step 3: Check for ESP/MSP. If so, ask which tenant this session should be for. if self._parent_class.is_esp: # ESP/MSP! choose_status, chosen_client_id = self.interactive_client_choice() if choose_status: # attempt to login as client clogin_resp = self._parent_class.post.login_clients(chosen_client_id, {}) if clogin_resp.cgx_status: # login successful, update profile and tenant info c_profile = self.interactive_update_profile_vars() t_profile = self.interactive_tenant_update_vars() if c_profile and t_profile: # successful full client login. self._parent_class._password = None # remove referer header prior to continuing. self._parent_class.remove_header('Referer') return True else: if t_profile: print("ESP Client Tenant detail retrieval failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None # remove referer header prior to continuing. self._parent_class.remove_header('Referer') return False else: print("ESP Client Login failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None # remove referer header prior to continuing. self._parent_class.remove_header('Referer') return False else: print("ESP Client Choice failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None # remove referer header prior to continuing. self._parent_class.remove_header('Referer') return False # successful! # clear password out of memory self._parent_class._password = None # remove referer header prior to continuing. self._parent_class.remove_header('Referer') return True else: print("Tenant detail retrieval failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None # remove referer header prior to continuing. self._parent_class.remove_header('Referer') return False else: # Profile detail retrieval failed self._parent_class.email = None self._parent_class._password = None return False api_logger.info("EMAIL = %s", self._parent_class.email) api_logger.info("USER_ID = %s", self._parent_class._user_id) api_logger.info("USER ROLES = %s", json.dumps(self._parent_class.roles)) api_logger.info("TENANT_ID = %s", self._parent_class.tenant_id) api_logger.info("TENANT_NAME = %s", self._parent_class.tenant_name) api_logger.info("TOKEN_SESSION = %s", self._parent_class.token_session) # remove referer header prior to continuing. self._parent_class.remove_header('Referer') else: # log response when debug api_logger.debug("LOGIN_FAIL_RESPONSE = %s", json.dumps(response.cgx_content, indent=4)) # print login error print('Login failed, please try again:', response.cgx_content) # Flush command-line entered login info if failure. self._parent_class.email = None self._parent_class.password = None # remove referer header prior to continuing. self._parent_class.remove_header('Referer') return False
Interactive login using the `cloudgenix.API` object. This function is more robust and handles SAML and MSP accounts. Expects interactive capability. if this is not available, use `cloudenix.API.post.login` directly. **Parameters:**: - **email**: Email to log in for, will prompt if not entered. - **password**: Password to log in with, will prompt if not entered. Ignored for SAML v2.0 users. **Returns:** Bool. In addition the function will mutate the `cloudgenix.API` constructor items as needed.
entailment
def use_token(self, token=None): """ Function to use static AUTH_TOKEN as auth for the constructor instead of full login process. **Parameters:**: - **token**: Static AUTH_TOKEN **Returns:** Bool on success or failure. In addition the function will mutate the `cloudgenix.API` constructor items as needed. """ api_logger.info('use_token function:') # check token is a string. if not isinstance(token, (text_type, binary_type)): api_logger.debug('"token" was not a text-style string: {}'.format(text_type(token))) return False # Start setup of constructor. session = self._parent_class.expose_session() # clear cookies session.cookies.clear() # Static Token uses X-Auth-Token header instead of cookies. self._parent_class.add_headers({ 'X-Auth-Token': token }) # Step 2: Get operator profile for tenant ID and other info. if self.interactive_update_profile_vars(): # pull tenant detail if self._parent_class.tenant_id: # add tenant values to API() object if self.interactive_tenant_update_vars(): # Step 3: Check for ESP/MSP. If so, ask which tenant this session should be for. if self._parent_class.is_esp: # ESP/MSP! choose_status, chosen_client_id = self.interactive_client_choice() if choose_status: # attempt to login as client clogin_resp = self._parent_class.post.login_clients(chosen_client_id, {}) if clogin_resp.cgx_status: # login successful, update profile and tenant info c_profile = self.interactive_update_profile_vars() t_profile = self.interactive_tenant_update_vars() if c_profile and t_profile: # successful full client login. self._parent_class._password = None return True else: if t_profile: print("ESP Client Tenant detail retrieval failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None return False else: print("ESP Client Login failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None return False else: print("ESP Client Choice failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None return False # successful! # clear password out of memory self._parent_class._password = None return True else: print("Tenant detail retrieval failed.") # clear password out of memory self._parent_class.email = None self._parent_class._password = None return False else: # Profile detail retrieval failed self._parent_class.email = None self._parent_class._password = None return False api_logger.info("EMAIL = %s", self._parent_class.email) api_logger.info("USER_ID = %s", self._parent_class._user_id) api_logger.info("USER ROLES = %s", json.dumps(self._parent_class.roles)) api_logger.info("TENANT_ID = %s", self._parent_class.tenant_id) api_logger.info("TENANT_NAME = %s", self._parent_class.tenant_name) api_logger.info("TOKEN_SESSION = %s", self._parent_class.token_session) return True
Function to use static AUTH_TOKEN as auth for the constructor instead of full login process. **Parameters:**: - **token**: Static AUTH_TOKEN **Returns:** Bool on success or failure. In addition the function will mutate the `cloudgenix.API` constructor items as needed.
entailment
def interactive_tenant_update_vars(self): """ Function to update the `cloudgenix.API` object with tenant login info. Run after login or client login. **Returns:** Boolean on success/failure, """ api_logger.info('interactive_tenant_update_vars function:') tenant_resp = self._parent_class.get.tenants(self._parent_class.tenant_id) status = tenant_resp.cgx_status tenant_dict = tenant_resp.cgx_content if status: api_logger.debug("new tenant_dict: %s", tenant_dict) # Get Tenant info. self._parent_class.tenant_name = tenant_dict.get('name', self._parent_class.tenant_id) # is ESP/MSP? self._parent_class.is_esp = tenant_dict.get('is_esp') # grab tenant address for location. address_lookup = tenant_dict.get('address', None) if address_lookup: tenant_address = address_lookup.get('street', "") + ", " tenant_address += (str(address_lookup.get('street2', "")) + ", ") tenant_address += (str(address_lookup.get('city', "")) + ", ") tenant_address += (str(address_lookup.get('state', "")) + ", ") tenant_address += (str(address_lookup.get('post_code', "")) + ", ") tenant_address += (str(address_lookup.get('country', "")) + ", ") else: tenant_address = "Unknown" self._parent_class.address = tenant_address return True else: # update failed return False
Function to update the `cloudgenix.API` object with tenant login info. Run after login or client login. **Returns:** Boolean on success/failure,
entailment
def interactive_update_profile_vars(self): """ Function to update the `cloudgenix.API` object with profile info. Run after login or client login. **Returns:** Boolean on success/failure, """ profile = self._parent_class.get.profile() if profile.cgx_status: # if successful, save tenant id and email info to cli state. self._parent_class.tenant_id = profile.cgx_content.get('tenant_id') self._parent_class.email = profile.cgx_content.get('email') self._parent_class._user_id = profile.cgx_content.get('id') self._parent_class.roles = profile.cgx_content.get('roles', []) self._parent_class.token_session = profile.cgx_content.get('token_session') return True else: print("Profile retrieval failed.") # clear password out of memory self._parent_class._password = None return False
Function to update the `cloudgenix.API` object with profile info. Run after login or client login. **Returns:** Boolean on success/failure,
entailment
def interactive_client_choice(self): """ Present a menu for user to select from ESP/MSP managed clients they have permission to. **Returns:** Tuple with (Boolean success, selected client ID). """ clients = self._parent_class.get.clients_t() clients_perms = self._parent_class.get.permissions_clients_d(self._parent_class._user_id) client_status = clients.cgx_status clients_dict = clients.cgx_content c_perms_status = clients_perms.cgx_status c_perms_dict = clients_perms.cgx_content # Build MSP/ESP id-name dict, get list of allowed tenants. if client_status and c_perms_status: client_id_name = {} for client in clients_dict.get('items', []): if type(client) is dict: # create client ID to name map table. client_id_name[client.get('id', "err")] = client.get('canonical_name') # Valid clients w/permissions - create list of tuples for menu menu_list = [] for client in c_perms_dict.get('items', []): if type(client) is dict: # add entry client_id = client.get('client_id') # create tuple of ( client name, client id ) to append to list menu_list.append( (client_id_name.get(client_id, client_id), client_id) ) # empty menu? if not menu_list: # no clients print("No ESP/MSP clients allowed for user.") return False, {} # ask user to select client _, chosen_client_id = self.quick_menu("ESP/MSP Detected. Select a client to use:", "{0}) {1}", menu_list) return True, chosen_client_id else: print("ESP/MSP detail retrieval failed.") return False, {}
Present a menu for user to select from ESP/MSP managed clients they have permission to. **Returns:** Tuple with (Boolean success, selected client ID).
entailment
def quick_menu(self, banner, list_line_format, choice_list): """ Function to display a quick menu for user input **Parameters:** - **banner:** Text to display before menu - **list_line_format:** Print'ing string with format spots for index + tuple values - **choice_list:** List of tuple values that you want returned if selected (and printed) **Returns:** Tuple that was selected. """ # Setup menu invalid = True menu_int = -1 # loop until valid while invalid: print(banner) for item_index, item_value in enumerate(choice_list): print(list_line_format.format(item_index + 1, *item_value)) menu_choice = compat_input("\nChoose a Number or (Q)uit: ") if str(menu_choice).lower() in ['q']: # exit print("Exiting..") # best effort logout self._parent_class.get.logout() sys.exit(0) # verify number entered try: menu_int = int(menu_choice) sanity = True except ValueError: # not a number print("ERROR: ", menu_choice) sanity = False # validate number chosen if sanity and 1 <= menu_int <= len(choice_list): invalid = False else: print("Invalid input, needs to be between 1 and {0}.\n".format(len(choice_list))) # return the choice_list tuple that matches the entry. return choice_list[int(menu_int) - 1]
Function to display a quick menu for user input **Parameters:** - **banner:** Text to display before menu - **list_line_format:** Print'ing string with format spots for index + tuple values - **choice_list:** List of tuple values that you want returned if selected (and printed) **Returns:** Tuple that was selected.
entailment
def check_sso_login(self, operator_email, request_id): """ Login to the CloudGenix API, and see if SAML SSO has occurred. This function is used to check and see if SAML SSO has succeeded while waiting. **Parameters:** - **operator_email:** String with the username to log in with - **request_id:** String containing the SAML 2.0 Request ID from previous login attempt. **Returns:** Tuple (Boolean success, Token on success, JSON response on error.) """ data = { "email": operator_email, "requestId": request_id } # If debug is set.. api_logger.info('check_sso_login function:') response = self._parent_class.post.login(data=data) # If valid response, but no token. if not response.cgx_content.get('x_auth_token'): # no valid login yet. return response # update with token and region auth_region = self._parent_class.parse_region(response) self._parent_class.update_region_to_controller(auth_region) self._parent_class.reparse_login_cookie_after_region_update(response) return response
Login to the CloudGenix API, and see if SAML SSO has occurred. This function is used to check and see if SAML SSO has succeeded while waiting. **Parameters:** - **operator_email:** String with the username to log in with - **request_id:** String containing the SAML 2.0 Request ID from previous login attempt. **Returns:** Tuple (Boolean success, Token on success, JSON response on error.)
entailment
def logout(self, force=False): """ Interactive logout - ensures uid/tid cleared so `cloudgenix.API` object/ requests.Session can be re-used. **Parameters:**: - **force**: Bool, force logout API call, even when using a static AUTH_TOKEN. **Returns:** Bool of whether the operation succeeded. """ # Extract requests session for manipulation. session = self._parent_class.expose_session() # if force = True, or token_session = None/False, call logout API. if force or not self._parent_class.token_session: # Call Logout result = self._parent_class.get.logout() if result.cgx_status: # clear info from session. self._parent_class.tenant_id = None self._parent_class.tenant_name = None self._parent_class.is_esp = None self._parent_class.client_id = None self._parent_class.address_string = None self._parent_class.email = None self._parent_class._user_id = None self._parent_class._password = None self._parent_class.roles = None self._parent_class.token_session = None # Cookies are removed via LOGOUT API call. if X-Auth-Token set, clear. if session.headers.get('X-Auth-Token'): self._parent_class.remove_header('X-Auth-Token') return result.cgx_status else: # Token Session and not forced. api_logger.debug('TOKEN SESSION, LOGOUT API NOT CALLED.') # clear info from session. self._parent_class.tenant_id = None self._parent_class.tenant_name = None self._parent_class.is_esp = None self._parent_class.client_id = None self._parent_class.address_string = None self._parent_class.email = None self._parent_class._user_id = None self._parent_class._password = None self._parent_class.roles = None self._parent_class.token_session = None # if X-Auth-Token set, clear. if session.headers.get('X-Auth-Token'): self._parent_class.remove_header('X-Auth-Token') return True
Interactive logout - ensures uid/tid cleared so `cloudgenix.API` object/ requests.Session can be re-used. **Parameters:**: - **force**: Bool, force logout API call, even when using a static AUTH_TOKEN. **Returns:** Bool of whether the operation succeeded.
entailment
def jd(api_response): """ JD (JSON Dump) function. Meant for quick pretty-printing of CloudGenix Response objects. Example: `jd(cgx_sess.get.sites())` **Returns:** No Return, directly prints all output. """ try: # attempt to print the cgx_content. should always be a Dict if it exists. print(json.dumps(api_response.cgx_content, indent=4)) except (TypeError, ValueError, AttributeError): # cgx_content did not exist, or was not JSON serializable. Try pretty printing the base obj. try: print(json.dumps(api_response, indent=4)) except (TypeError, ValueError, AttributeError): # Same issue, just raw print the passed data. Let any exceptions happen here. print(api_response) return
JD (JSON Dump) function. Meant for quick pretty-printing of CloudGenix Response objects. Example: `jd(cgx_sess.get.sites())` **Returns:** No Return, directly prints all output.
entailment
def quick_confirm(prompt, default_value): """ Function to display a quick confirmation for user input **Parameters:** - **prompt:** Text to display before confirm - **default_value:** Default value for no entry **Returns:** 'y', 'n', or Default value. """ valid = False value = default_value.lower() while not valid: input_val = compat_input(prompt + "[{0}]: ".format(default_value)) if input_val == "": value = default_value.lower() valid = True else: try: if input_val.lower() in ['y', 'n']: value = input_val.lower() valid = True else: print("ERROR: enter 'Y' or 'N'.") valid = False except ValueError: print("ERROR: enter 'Y' or 'N'.") valid = False return value
Function to display a quick confirmation for user input **Parameters:** - **prompt:** Text to display before confirm - **default_value:** Default value for no entry **Returns:** 'y', 'n', or Default value.
entailment
def quick_int_input(prompt, default_value, min_val=1, max_val=30): """ Function to display a quick question for integer user input **Parameters:** - **prompt:** Text / question to display - **default_value:** Default value for no entry - **min_val:** Lowest allowed integer - **max_val:** Highest allowed integer **Returns:** integer or default_value. """ valid = False num_val = default_value while not valid: input_val = compat_input(prompt + "[{0}]: ".format(default_value)) if input_val == "": num_val = default_value valid = True else: try: num_val = int(input_val) if min_val <= num_val <= max_val: valid = True else: print("ERROR: must be between {0} and {1}.".format(min, max)) valid = False except ValueError: print("ERROR: must be a number.") valid = False return num_val
Function to display a quick question for integer user input **Parameters:** - **prompt:** Text / question to display - **default_value:** Default value for no entry - **min_val:** Lowest allowed integer - **max_val:** Highest allowed integer **Returns:** integer or default_value.
entailment
def quick_str_input(prompt, default_value): """ Function to display a quick question for text input. **Parameters:** - **prompt:** Text / question to display - **default_value:** Default value for no entry **Returns:** text_type() or default_value. """ valid = False str_val = default_value while not valid: input_val = raw_input(prompt + "[{0}]: ".format(default_value)) if input_val == "": str_val = default_value valid = True else: try: str_val = text_type(input_val) valid = True except ValueError: print("ERROR: must be text.") valid = False return str_val
Function to display a quick question for text input. **Parameters:** - **prompt:** Text / question to display - **default_value:** Default value for no entry **Returns:** text_type() or default_value.
entailment
def compare_digests(digest_1, digest_2, is_hex_1=True, is_hex_2=True, threshold=None): """ computes bit difference between two nilsisa digests takes params for format, default is hex string but can accept list of 32 length ints Optimized method originally from https://gist.github.com/michelp/6255490 If `threshold` is set, and the comparison will be less than `threshold`, then bail out early and return a value just below the threshold. This is a speed optimization that accelerates comparisons of very different items; e.g. tests show a ~20-30% speed up. `threshold` must be an integer in the range [-128, 128]. """ # if we have both hexes use optimized method if threshold is not None: threshold -= 128 threshold *= -1 if is_hex_1 and is_hex_2: bits = 0 for i in range_(0, 63, 2): bits += POPC[255 & int(digest_1[i:i+2], 16) ^ int(digest_2[i:i+2], 16)] if threshold is not None and bits > threshold: break return 128 - bits else: # at least one of the inputs is a list of unsigned ints if is_hex_1: digest_1 = convert_hex_to_ints(digest_1) if is_hex_2: digest_2 = convert_hex_to_ints(digest_2) bit_diff = 0 for i in range(len(digest_1)): bit_diff += POPC[255 & digest_1[i] ^ digest_2[i]] if threshold is not None and bit_diff > threshold: break return 128 - bit_diff
computes bit difference between two nilsisa digests takes params for format, default is hex string but can accept list of 32 length ints Optimized method originally from https://gist.github.com/michelp/6255490 If `threshold` is set, and the comparison will be less than `threshold`, then bail out early and return a value just below the threshold. This is a speed optimization that accelerates comparisons of very different items; e.g. tests show a ~20-30% speed up. `threshold` must be an integer in the range [-128, 128].
entailment
def tran_hash(self, a, b, c, n): """implementation of the tran53 hash function""" return (((TRAN[(a+n)&255]^TRAN[b]*(n+n+1))+TRAN[(c)^TRAN[n]])&255)
implementation of the tran53 hash function
entailment
def process(self, chunk): """ computes the hash of all of the trigrams in the chunk using a window of length 5 """ self._digest = None if isinstance(chunk, text_type): chunk = chunk.encode('utf-8') # chunk is a byte string for char in chunk: self.num_char += 1 if PY3: # In Python 3, iterating over bytes yields integers c = char else: c = ord(char) if len(self.window) > 1: # seen at least three characters self.acc[self.tran_hash(c, self.window[0], self.window[1], 0)] += 1 if len(self.window) > 2: # seen at least four characters self.acc[self.tran_hash(c, self.window[0], self.window[2], 1)] += 1 self.acc[self.tran_hash(c, self.window[1], self.window[2], 2)] += 1 if len(self.window) > 3: # have a full window self.acc[self.tran_hash(c, self.window[0], self.window[3], 3)] += 1 self.acc[self.tran_hash(c, self.window[1], self.window[3], 4)] += 1 self.acc[self.tran_hash(c, self.window[2], self.window[3], 5)] += 1 # duplicate hashes, used to maintain 8 trigrams per character self.acc[self.tran_hash(self.window[3], self.window[0], c, 6)] += 1 self.acc[self.tran_hash(self.window[3], self.window[2], c, 7)] += 1 # add current character to the window, remove the previous character if len(self.window) < 4: self.window = [c] + self.window else: self.window = [c] + self.window[:3]
computes the hash of all of the trigrams in the chunk using a window of length 5
entailment
def compute_digest(self): """ using a threshold (mean of the accumulator), computes the nilsimsa digest """ num_trigrams = 0 if self.num_char == 3: # 3 chars -> 1 trigram num_trigrams = 1 elif self.num_char == 4: # 4 chars -> 4 trigrams num_trigrams = 4 elif self.num_char > 4: # > 4 chars -> 8 for each char num_trigrams = 8 * self.num_char - 28 # threshhold is the mean of the acc buckets threshold = num_trigrams / 256.0 digest = [0] * 32 for i in range(256): if self.acc[i] > threshold: digest[i >> 3] += 1 << (i & 7) # equivalent to i/8, 2**(i mod 7) self._digest = digest[::-1]
using a threshold (mean of the accumulator), computes the nilsimsa digest
entailment
def from_file(self, fname): """read in a file and compute digest""" f = open(fname, "rb") data = f.read() self.update(data) f.close()
read in a file and compute digest
entailment
def compare(self, digest_2, is_hex = False): """ returns difference between the nilsimsa digests between the current object and a given digest """ # convert hex string to list of ints if is_hex: digest_2 = convert_hex_to_ints(digest_2) bit_diff = 0 for i in range(len(self.digest)): bit_diff += POPC[self.digest[i] ^ digest_2[i]] #computes the bit diff between the i'th position of the digests return 128 - bit_diff
returns difference between the nilsimsa digests between the current object and a given digest
entailment
def login(self, data, api_version="v2.0"): """ Login api **Parameters:**: - **data**: Dictionary containing data to POST as JSON - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties. """ cur_ctlr = self._parent_class.controller url = str(cur_ctlr) + "/{}/api/login".format(api_version) api_logger.debug("URL = %s", url) return self._parent_class.rest_call(url, "post", data=data, sensitive=True)
Login api **Parameters:**: - **data**: Dictionary containing data to POST as JSON - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties.
entailment
def tenant_forgot_password_login(self, data, tenant_id=None, api_version="v2.0"): """ Forgot password API **Parameters:**: - **data**: Dictionary containing data to POST as JSON - **tenant_id**: Tenant ID - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties. """ if tenant_id is None and self._parent_class.tenant_id: # Pull tenant_id from parent namespace cache. tenant_id = self._parent_class.tenant_id elif not tenant_id: # No value for tenant_id. raise TypeError("tenant_id is required but not set or cached.") cur_ctlr = self._parent_class.controller url = str(cur_ctlr) + "/{}/api/tenants/{}/login/password/forgot".format(api_version, tenant_id) api_logger.debug("URL = %s", url) return self._parent_class.rest_call(url, "post", data=data, sensitive=True)
Forgot password API **Parameters:**: - **data**: Dictionary containing data to POST as JSON - **tenant_id**: Tenant ID - **api_version**: API version to use (default v2.0) **Returns:** requests.Response object extended with cgx_status and cgx_content properties.
entailment
def is_valid_file(parser,arg): """verify the validity of the given file. Never trust the End-User""" if not os.path.exists(arg): parser.error("File %s not found"%arg) else: return arg
verify the validity of the given file. Never trust the End-User
entailment
def getID(code_file): """Get the language ID of the input file language""" json_path = ghostfolder+'/'+json_file if os.path.exists(json_path): pass else: download_file('https://ghostbin.com/languages.json') lang = detect_lang(code_file) json_data = json.load(file(json_path))#don't think i need this though ID = '' for i in range(len(json_data)): temp = len(json_data[i]['languages']) for j in range(temp): if json_data[i]['languages'][j]['name'].lower() == lang.lower(): ID = json_data[i]['languages'][j]['id'] print('Gotten language ID from \'languages.json\': {0}'.format(ID)) return ID
Get the language ID of the input file language
entailment
def detect_lang(path): """Detect the language used in the given file.""" blob = FileBlob(path, os.getcwd()) if blob.is_text: print('Programming language of the file detected: {0}'.format(blob.language.name)) return blob.language.name else:#images, binary and what-have-you won't be pasted print('File not a text file. Exiting...') sys.exit()
Detect the language used in the given file.
entailment
def set_serial(self, android_serial): """ Specify given *android_serial* device to perform test. You do not have to specify the device when there is only one device connects to the computer. When you need to use multiple devices, do not use this keyword to switch between devices in test execution. Using different library name when importing this library according to http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.8.5. | Setting | Value | Value | Value | | Library | Mobile | WITH NAME | Mobile1 | | Library | Mobile | WITH NAME | Mobile2 | And set the serial to each library. | Test Case | Action | Argument | | Multiple Devices | Mobile1.Set Serial | device_1's serial | | | Mobile2.Set Serial | device_2's serial | """ self.adb = ADB(android_serial) self.device = Device(android_serial) self.test_helper = TestHelper(self.adb)
Specify given *android_serial* device to perform test. You do not have to specify the device when there is only one device connects to the computer. When you need to use multiple devices, do not use this keyword to switch between devices in test execution. Using different library name when importing this library according to http://robotframework.googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.html?r=2.8.5. | Setting | Value | Value | Value | | Library | Mobile | WITH NAME | Mobile1 | | Library | Mobile | WITH NAME | Mobile2 | And set the serial to each library. | Test Case | Action | Argument | | Multiple Devices | Mobile1.Set Serial | device_1's serial | | | Mobile2.Set Serial | device_2's serial |
entailment
def click_at_coordinates(self, x, y): """ Click at (x,y) coordinates. """ self.device.click(int(x), int(y))
Click at (x,y) coordinates.
entailment
def swipe_by_coordinates(self, sx, sy, ex, ey, steps=10): """ Swipe from (sx, sy) to (ex, ey) with *steps* . Example: | Swipe By Coordinates | 540 | 1340 | 940 | 1340 | | # Swipe from (540, 1340) to (940, 100) with default steps 10 | | Swipe By Coordinates | 540 | 1340 | 940 | 1340 | 100 | # Swipe from (540, 1340) to (940, 100) with steps 100 | """ self.device.swipe(sx, sy, ex, ey, steps)
Swipe from (sx, sy) to (ex, ey) with *steps* . Example: | Swipe By Coordinates | 540 | 1340 | 940 | 1340 | | # Swipe from (540, 1340) to (940, 100) with default steps 10 | | Swipe By Coordinates | 540 | 1340 | 940 | 1340 | 100 | # Swipe from (540, 1340) to (940, 100) with steps 100 |
entailment
def swipe_left(self, steps=10, *args, **selectors): """ Swipe the UI object with *selectors* from center to left. Example: | Swipe Left | description=Home screen 3 | | # swipe the UI object left | | Swipe Left | 5 | description=Home screen 3 | # swipe the UI object left with steps=5 | See `introduction` for details about Identified UI object. """ self.device(**selectors).swipe.left(steps=steps)
Swipe the UI object with *selectors* from center to left. Example: | Swipe Left | description=Home screen 3 | | # swipe the UI object left | | Swipe Left | 5 | description=Home screen 3 | # swipe the UI object left with steps=5 | See `introduction` for details about Identified UI object.
entailment
def swipe_right(self, steps=10, *args, **selectors): """ Swipe the UI object with *selectors* from center to right See `Swipe Left` for more details. """ self.device(**selectors).swipe.right(steps=steps)
Swipe the UI object with *selectors* from center to right See `Swipe Left` for more details.
entailment
def swipe_top(self, steps=10, *args, **selectors): """ Swipe the UI object with *selectors* from center to top See `Swipe Left` for more details. """ self.device(**selectors).swipe.up(steps=steps)
Swipe the UI object with *selectors* from center to top See `Swipe Left` for more details.
entailment
def swipe_bottom(self, steps=10, *args, **selectors): """ Swipe the UI object with *selectors* from center to bottom See `Swipe Left` for more details. """ self.device(**selectors).swipe.down(steps=steps)
Swipe the UI object with *selectors* from center to bottom See `Swipe Left` for more details.
entailment
def drag_by_coordinates(self,sx, sy, ex, ey, steps=10): """ Drag from (sx, sy) to (ex, ey) with steps See `Swipe By Coordinates` also. """ self.device.drag(sx, sy, ex, ey, steps)
Drag from (sx, sy) to (ex, ey) with steps See `Swipe By Coordinates` also.
entailment
def wait_for_exists(self, timeout=0, *args, **selectors): """ Wait for the object which has *selectors* within the given timeout. Return true if the object *appear* in the given timeout. Else return false. """ return self.device(**selectors).wait.exists(timeout=timeout)
Wait for the object which has *selectors* within the given timeout. Return true if the object *appear* in the given timeout. Else return false.
entailment
def wait_until_gone(self, timeout=0, *args, **selectors): """ Wait for the object which has *selectors* within the given timeout. Return true if the object *disappear* in the given timeout. Else return false. """ return self.device(**selectors).wait.gone(timeout=timeout)
Wait for the object which has *selectors* within the given timeout. Return true if the object *disappear* in the given timeout. Else return false.
entailment
def fling_forward_horizontally(self, *args, **selectors): """ Perform fling forward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be fling or not. """ return self.device(**selectors).fling.horiz.forward()
Perform fling forward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be fling or not.
entailment
def fling_backward_horizontally(self, *args, **selectors): """ Perform fling backward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be fling or not. """ return self.device(**selectors).fling.horiz.backward()
Perform fling backward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be fling or not.
entailment
def fling_forward_vertically(self, *args, **selectors): """ Perform fling forward (vertically)action on the object which has *selectors* attributes. Return whether the object can be fling or not. """ return self.device(**selectors).fling.vert.forward()
Perform fling forward (vertically)action on the object which has *selectors* attributes. Return whether the object can be fling or not.
entailment
def fling_backward_vertically(self, *args, **selectors): """ Perform fling backward (vertically)action on the object which has *selectors* attributes. Return whether the object can be fling or not. """ return self.device(**selectors).fling.vert.backward()
Perform fling backward (vertically)action on the object which has *selectors* attributes. Return whether the object can be fling or not.
entailment
def scroll_to_beginning_horizontally(self, steps=10, *args,**selectors): """ Scroll the object which has *selectors* attributes to *beginning* horizontally. See `Scroll Forward Vertically` for more details. """ return self.device(**selectors).scroll.horiz.toBeginning(steps=steps)
Scroll the object which has *selectors* attributes to *beginning* horizontally. See `Scroll Forward Vertically` for more details.
entailment
def scroll_to_end_horizontally(self, steps=10, *args, **selectors): """ Scroll the object which has *selectors* attributes to *end* horizontally. See `Scroll Forward Vertically` for more details. """ return self.device(**selectors).scroll.horiz.toEnd(steps=steps)
Scroll the object which has *selectors* attributes to *end* horizontally. See `Scroll Forward Vertically` for more details.
entailment
def scroll_forward_horizontally(self, steps=10, *args, **selectors): """ Perform scroll forward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. See `Scroll Forward Vertically` for more details. """ return self.device(**selectors).scroll.horiz.forward(steps=steps)
Perform scroll forward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. See `Scroll Forward Vertically` for more details.
entailment
def scroll_backward_horizontally(self, steps=10, *args, **selectors): """ Perform scroll backward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. See `Scroll Forward Vertically` for more details. """ return self.device(**selectors).scroll.horiz.backward(steps=steps)
Perform scroll backward (horizontally)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. See `Scroll Forward Vertically` for more details.
entailment
def scroll_to_horizontally(self, obj, *args,**selectors): """ Scroll(horizontally) on the object: obj to specific UI object which has *selectors* attributes appears. Return true if the UI object, else return false. See `Scroll To Vertically` for more details. """ return obj.scroll.horiz.to(**selectors)
Scroll(horizontally) on the object: obj to specific UI object which has *selectors* attributes appears. Return true if the UI object, else return false. See `Scroll To Vertically` for more details.
entailment
def scroll_to_beginning_vertically(self, steps=10, *args,**selectors): """ Scroll the object which has *selectors* attributes to *beginning* vertically. See `Scroll Forward Vertically` for more details. """ return self.device(**selectors).scroll.vert.toBeginning(steps=steps)
Scroll the object which has *selectors* attributes to *beginning* vertically. See `Scroll Forward Vertically` for more details.
entailment
def scroll_to_end_vertically(self, steps=10, *args, **selectors): """ Scroll the object which has *selectors* attributes to *end* vertically. See `Scroll Forward Vertically` for more details. """ return self.device(**selectors).scroll.vert.toEnd(steps=steps)
Scroll the object which has *selectors* attributes to *end* vertically. See `Scroll Forward Vertically` for more details.
entailment
def scroll_forward_vertically(self, steps=10, *args, **selectors): """ Perform scroll forward (vertically)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. Example: | ${can_be_scroll} | Scroll Forward Vertically | className=android.widget.ListView | | # Scroll forward the UI object with class name | | ${can_be_scroll} | Scroll Forward Vertically | 100 | className=android.widget.ListView | # Scroll with steps | """ return self.device(**selectors).scroll.vert.forward(steps=steps)
Perform scroll forward (vertically)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. Example: | ${can_be_scroll} | Scroll Forward Vertically | className=android.widget.ListView | | # Scroll forward the UI object with class name | | ${can_be_scroll} | Scroll Forward Vertically | 100 | className=android.widget.ListView | # Scroll with steps |
entailment
def scroll_backward_vertically(self, steps=10, *args, **selectors): """ Perform scroll backward (vertically)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. See `Scroll Forward Vertically` for more details. """ return self.device(**selectors).scroll.vert.backward(steps=steps)
Perform scroll backward (vertically)action on the object which has *selectors* attributes. Return whether the object can be Scroll or not. See `Scroll Forward Vertically` for more details.
entailment
def scroll_to_vertically(self, obj, *args,**selectors): """ Scroll(vertically) on the object: obj to specific UI object which has *selectors* attributes appears. Return true if the UI object, else return false. Example: | ${list} | Get Object | className=android.widget.ListView | | # Get the list object | | ${is_web_view} | Scroll To Vertically | ${list} | text=WebView | # Scroll to text:WebView. | """ return obj.scroll.vert.to(**selectors)
Scroll(vertically) on the object: obj to specific UI object which has *selectors* attributes appears. Return true if the UI object, else return false. Example: | ${list} | Get Object | className=android.widget.ListView | | # Get the list object | | ${is_web_view} | Scroll To Vertically | ${list} | text=WebView | # Scroll to text:WebView. |
entailment
def screenshot(self, scale=None, quality=None): """ Take a screenshot of device and log in the report with timestamp, scale for screenshot size and quality for screenshot quality default scale=1.0 quality=100 """ output_dir = BuiltIn().get_variable_value('${OUTPUTDIR}') ts = time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%Y%m%d%H%M%S') screenshot_path = '%s%s%s.png' % (output_dir, os.sep, st) self.device.screenshot(screenshot_path, scale, quality) logger.info('\n<a href="%s">%s</a><br><img src="%s">' % (screenshot_path, st, screenshot_path), html=True)
Take a screenshot of device and log in the report with timestamp, scale for screenshot size and quality for screenshot quality default scale=1.0 quality=100
entailment
def register_click_watcher(self, watcher_name, selectors, *condition_list): """ The watcher click on the object which has the *selectors* when conditions match. """ watcher = self.device.watcher(watcher_name) for condition in condition_list: watcher.when(**self.__unicode_to_dict(condition)) watcher.click(**self.__unicode_to_dict(selectors)) self.device.watchers.run()
The watcher click on the object which has the *selectors* when conditions match.
entailment
def register_press_watcher(self, watcher_name, press_keys, *condition_list): """ The watcher perform *press_keys* action sequentially when conditions match. """ def unicode_to_list(a_unicode): a_list = list() comma_count = a_unicode.count(',') for count in range(comma_count + 1): comma_position = a_unicode.find(',') if comma_position == -1: a_list.append(str(a_unicode)) else: a_list.append(a_unicode[0:comma_position]) a_unicode = a_unicode[comma_position + 1:] return a_list watcher = self.device.watcher(watcher_name) for condition in condition_list: watcher.when(**self.__unicode_to_dict(condition)) watcher.press(*unicode_to_list(press_keys)) self.device.watchers.run()
The watcher perform *press_keys* action sequentially when conditions match.
entailment
def remove_watchers(self, watcher_name = None): """ Remove watcher with *watcher_name* or remove all watchers. """ if watcher_name == None: self.device.watchers.remove() else: self.device.watchers.remove(watcher_name)
Remove watcher with *watcher_name* or remove all watchers.
entailment
def get_count(self, *args, **selectors): """ Return the count of UI object with *selectors* Example: | ${count} | Get Count | text=Accessibility | # Get the count of UI object text=Accessibility | | ${accessibility_text} | Get Object | text=Accessibility | # These two keywords combination | | ${count} | Get Count Of Object | ${accessibility_text} | # do the same thing. | """ obj = self.get_object(**selectors) return self.get_count_of_object(obj)
Return the count of UI object with *selectors* Example: | ${count} | Get Count | text=Accessibility | # Get the count of UI object text=Accessibility | | ${accessibility_text} | Get Object | text=Accessibility | # These two keywords combination | | ${count} | Get Count Of Object | ${accessibility_text} | # do the same thing. |
entailment
def get_info_of_object(self, obj, selector=None): """ return info dictionary of the *obj* The info example: { u'contentDescription': u'', u'checked': False, u'scrollable': True, u'text': u'', u'packageName': u'com.android.launcher', u'selected': False, u'enabled': True, u'bounds': { u'top': 231, u'left': 0, u'right': 1080, u'bottom': 1776 }, u'className': u'android.view.View', u'focusable': False, u'focused': False, u'clickable': False, u'checkable': False, u'chileCount': 1, u'longClickable': False, u'visibleBounds': { u'top': 231, u'left': 0, u'right': 1080, u'bottom': 1776 } } """ if selector: return obj.info.get(selector) else: return obj.info
return info dictionary of the *obj* The info example: { u'contentDescription': u'', u'checked': False, u'scrollable': True, u'text': u'', u'packageName': u'com.android.launcher', u'selected': False, u'enabled': True, u'bounds': { u'top': 231, u'left': 0, u'right': 1080, u'bottom': 1776 }, u'className': u'android.view.View', u'focusable': False, u'focused': False, u'clickable': False, u'checkable': False, u'chileCount': 1, u'longClickable': False, u'visibleBounds': { u'top': 231, u'left': 0, u'right': 1080, u'bottom': 1776 } }
entailment
def call(self, obj, method, *args, **selectors): """ This keyword can use object method from original python uiautomator See more details from https://github.com/xiaocong/uiautomator Example: | ${accessibility_text} | Get Object | text=Accessibility | # Get the UI object | | Call | ${accessibility_text} | click | # Call the method of the UI object 'click' | """ func = getattr(obj, method) return func(**selectors)
This keyword can use object method from original python uiautomator See more details from https://github.com/xiaocong/uiautomator Example: | ${accessibility_text} | Get Object | text=Accessibility | # Get the UI object | | Call | ${accessibility_text} | click | # Call the method of the UI object 'click' |
entailment
def set_text(self, input_text, *args, **selectors): """ Set *input_text* to the UI object with *selectors* """ self.device(**selectors).set_text(input_text)
Set *input_text* to the UI object with *selectors*
entailment
def clear_text(self, *args, **selectors): """ Clear text of the UI object with *selectors* """ while True: target = self.device(**selectors) text = target.info['text'] target.clear_text() remain_text = target.info['text'] if text == '' or remain_text == text: break
Clear text of the UI object with *selectors*
entailment
def open_notification(self): """ Open notification Built in support for Android 4.3 (API level 18) Using swipe action as a workaround for API level lower than 18 """ sdk_version = self.device.info['sdkInt'] if sdk_version < 18: height = self.device.info['displayHeight'] self.device.swipe(1, 1, 1, height - 1, 1) else: self.device.open.notification()
Open notification Built in support for Android 4.3 (API level 18) Using swipe action as a workaround for API level lower than 18
entailment
def sleep(self, time): """ Sleep(no action) for *time* (in millisecond) """ target = 'wait for %s' % str(time) self.device(text=target).wait.exists(timeout=time)
Sleep(no action) for *time* (in millisecond)
entailment
def connect_to_wifi(self, ssid, password=None): """ [Test Agent] Connect to *ssid* with *password* """ cmd = 'am broadcast -a testagent -e action CONNECT_TO_WIFI -e ssid %s -e password %s' % (ssid, password) self.adb.shell_cmd(cmd)
[Test Agent] Connect to *ssid* with *password*
entailment
def merge_sims(oldsims, newsims, clip=None): """Merge two precomputed similarity lists, truncating the result to `clip` most similar items.""" if oldsims is None: result = newsims or [] elif newsims is None: result = oldsims else: result = sorted(oldsims + newsims, key=lambda item: -item[1]) if clip is not None: result = result[:clip] return result
Merge two precomputed similarity lists, truncating the result to `clip` most similar items.
entailment
def terminate(self): """Delete all files created by this index, invalidating `self`. Use with care.""" try: self.id2sims.terminate() except: pass import glob for fname in glob.glob(self.fname + '*'): try: os.remove(fname) logger.info("deleted %s" % fname) except Exception, e: logger.warning("failed to delete %s: %s" % (fname, e)) for val in self.__dict__.keys(): try: delattr(self, val) except: pass
Delete all files created by this index, invalidating `self`. Use with care.
entailment
def index_documents(self, fresh_docs, model): """ Update fresh index with new documents (potentially replacing old ones with the same id). `fresh_docs` is a dictionary-like object (=dict, sqlitedict, shelve etc) that maps document_id->document. """ docids = fresh_docs.keys() vectors = (model.docs2vecs(fresh_docs[docid] for docid in docids)) logger.info("adding %i documents to %s" % (len(docids), self)) self.qindex.add_documents(vectors) self.qindex.save() self.update_ids(docids)
Update fresh index with new documents (potentially replacing old ones with the same id). `fresh_docs` is a dictionary-like object (=dict, sqlitedict, shelve etc) that maps document_id->document.
entailment
def update_ids(self, docids): """Update id->pos mapping with new document ids.""" logger.info("updating %i id mappings" % len(docids)) for docid in docids: if docid is not None: pos = self.id2pos.get(docid, None) if pos is not None: logger.info("replacing existing document %r in %s" % (docid, self)) del self.pos2id[pos] self.id2pos[docid] = self.length try: del self.id2sims[docid] except: pass self.length += 1 self.id2sims.sync() self.update_mappings()
Update id->pos mapping with new document ids.
entailment
def update_mappings(self): """Synchronize id<->position mappings.""" self.pos2id = dict((v, k) for k, v in self.id2pos.iteritems()) assert len(self.pos2id) == len(self.id2pos), "duplicate ids or positions detected"
Synchronize id<->position mappings.
entailment
def delete(self, docids): """Delete documents (specified by their ids) from the index.""" logger.debug("deleting %i documents from %s" % (len(docids), self)) deleted = 0 for docid in docids: try: del self.id2pos[docid] deleted += 1 del self.id2sims[docid] except: pass self.id2sims.sync() if deleted: logger.info("deleted %i documents from %s" % (deleted, self)) self.update_mappings()
Delete documents (specified by their ids) from the index.
entailment
def sims2scores(self, sims, eps=1e-7): """Convert raw similarity vector to a list of (docid, similarity) results.""" result = [] if isinstance(sims, numpy.ndarray): sims = abs(sims) # TODO or maybe clip? are opposite vectors "similar" or "dissimilar"?! for pos in numpy.argsort(sims)[::-1]: if pos in self.pos2id and sims[pos] > eps: # ignore deleted/rewritten documents # convert positions of resulting docs back to ids result.append((self.pos2id[pos], sims[pos])) if len(result) == self.topsims: break else: for pos, score in sims: if pos in self.pos2id and abs(score) > eps: # ignore deleted/rewritten documents # convert positions of resulting docs back to ids result.append((self.pos2id[pos], abs(score))) if len(result) == self.topsims: break return result
Convert raw similarity vector to a list of (docid, similarity) results.
entailment
def vec_by_id(self, docid): """Return indexed vector corresponding to document `docid`.""" pos = self.id2pos[docid] return self.qindex.vector_by_id(pos)
Return indexed vector corresponding to document `docid`.
entailment
def sims_by_id(self, docid): """Find the most similar documents to the (already indexed) document with `docid`.""" result = self.id2sims.get(docid, None) if result is None: self.qindex.num_best = self.topsims sims = self.qindex.similarity_by_id(self.id2pos[docid]) result = self.sims2scores(sims) return result
Find the most similar documents to the (already indexed) document with `docid`.
entailment
def sims_by_vec(self, vec, normalize=None): """ Find the most similar documents to a given vector (=already processed document). """ if normalize is None: normalize = self.qindex.normalize norm, self.qindex.normalize = self.qindex.normalize, normalize # store old value self.qindex.num_best = self.topsims sims = self.qindex[vec] self.qindex.normalize = norm # restore old value of qindex.normalize return self.sims2scores(sims)
Find the most similar documents to a given vector (=already processed document).
entailment
def merge(self, other): """Merge documents from the other index. Update precomputed similarities in the process.""" other.qindex.normalize, other.qindex.num_best = False, self.topsims # update precomputed "most similar" for old documents (in case some of # the new docs make it to the top-N for some of the old documents) logger.info("updating old precomputed values") pos, lenself = 0, len(self.qindex) for chunk in self.qindex.iter_chunks(): for sims in other.qindex[chunk]: if pos in self.pos2id: # ignore masked entries (deleted, overwritten documents) docid = self.pos2id[pos] sims = self.sims2scores(sims) self.id2sims[docid] = merge_sims(self.id2sims[docid], sims, self.topsims) pos += 1 if pos % 10000 == 0: logger.info("PROGRESS: updated doc #%i/%i" % (pos, lenself)) self.id2sims.sync() logger.info("merging fresh index into optimized one") pos, docids = 0, [] for chunk in other.qindex.iter_chunks(): for vec in chunk: if pos in other.pos2id: # don't copy deleted documents self.qindex.add_documents([vec]) docids.append(other.pos2id[pos]) pos += 1 self.qindex.save() self.update_ids(docids) logger.info("precomputing most similar for the fresh index") pos, lenother = 0, len(other.qindex) norm, self.qindex.normalize = self.qindex.normalize, False topsims, self.qindex.num_best = self.qindex.num_best, self.topsims for chunk in other.qindex.iter_chunks(): for sims in self.qindex[chunk]: if pos in other.pos2id: # ignore masked entries (deleted, overwritten documents) docid = other.pos2id[pos] self.id2sims[docid] = self.sims2scores(sims) pos += 1 if pos % 10000 == 0: logger.info("PROGRESS: precomputed doc #%i/%i" % (pos, lenother)) self.qindex.normalize, self.qindex.num_best = norm, topsims self.id2sims.sync()
Merge documents from the other index. Update precomputed similarities in the process.
entailment
def doc2vec(self, doc): """Convert a single SimilarityDocument to vector.""" bow = self.dictionary.doc2bow(doc['tokens']) if self.method == 'lsi': return self.lsi[self.tfidf[bow]] elif self.method == 'lda': return self.lda[bow] elif self.method == 'lda_tfidf': return self.lda[self.tfidf[bow]] elif self.method == 'logentropy': return self.logent[bow]
Convert a single SimilarityDocument to vector.
entailment
def docs2vecs(self, docs): """Convert multiple SimilarityDocuments to vectors (batch version of doc2vec).""" bows = (self.dictionary.doc2bow(doc['tokens']) for doc in docs) if self.method == 'lsi': return self.lsi[self.tfidf[bows]] elif self.method == 'lda': return self.lda[bows] elif self.method == 'lda_tfidf': return self.lda[self.tfidf[bows]] elif self.method == 'logentropy': return self.logent[bows]
Convert multiple SimilarityDocuments to vectors (batch version of doc2vec).
entailment
def flush(self, save_index=False, save_model=False, clear_buffer=False): """Commit all changes, clear all caches.""" if save_index: if self.fresh_index is not None: self.fresh_index.save(self.location('index_fresh')) if self.opt_index is not None: self.opt_index.save(self.location('index_opt')) if save_model: if self.model is not None: self.model.save(self.location('model')) self.payload.commit() if clear_buffer: if hasattr(self, 'fresh_docs'): try: self.fresh_docs.terminate() # erase all buffered documents + file on disk except: pass self.fresh_docs = SqliteDict(journal_mode=JOURNAL_MODE) # buffer defaults to a random location in temp self.fresh_docs.sync()
Commit all changes, clear all caches.
entailment
def close(self): """Explicitly close open file handles, databases etc.""" try: self.payload.close() except: pass try: self.model.close() except: pass try: self.fresh_index.close() except: pass try: self.opt_index.close() except: pass try: self.fresh_docs.terminate() except: pass
Explicitly close open file handles, databases etc.
entailment
def buffer(self, documents): """ Add a sequence of documents to be processed (indexed or trained on). Here, the documents are simply collected; real processing is done later, during the `self.index` or `self.train` calls. `buffer` can be called repeatedly; the result is the same as if it was called once, with a concatenation of all the partial document batches. The point is to save memory when sending large corpora over network: the entire `documents` must be serialized into RAM. See `utils.upload_chunked()`. A call to `flush()` clears this documents-to-be-processed buffer (`flush` is also implicitly called when you call `index()` and `train()`). """ logger.info("adding documents to temporary buffer of %s" % (self)) for doc in documents: docid = doc['id'] # logger.debug("buffering document %r" % docid) if docid in self.fresh_docs: logger.warning("asked to re-add id %r; rewriting old value" % docid) self.fresh_docs[docid] = doc self.fresh_docs.sync()
Add a sequence of documents to be processed (indexed or trained on). Here, the documents are simply collected; real processing is done later, during the `self.index` or `self.train` calls. `buffer` can be called repeatedly; the result is the same as if it was called once, with a concatenation of all the partial document batches. The point is to save memory when sending large corpora over network: the entire `documents` must be serialized into RAM. See `utils.upload_chunked()`. A call to `flush()` clears this documents-to-be-processed buffer (`flush` is also implicitly called when you call `index()` and `train()`).
entailment
def train(self, corpus=None, method='auto', clear_buffer=True, params=None): """ Create an indexing model. Will overwrite the model if it already exists. All indexes become invalid, because documents in them use a now-obsolete representation. The model is trained on documents previously entered via `buffer`, or directly on `corpus`, if specified. """ if corpus is not None: # use the supplied corpus only (erase existing buffer, if any) self.flush(clear_buffer=True) self.buffer(corpus) if not self.fresh_docs: msg = "train called but no training corpus specified for %s" % self logger.error(msg) raise ValueError(msg) if method == 'auto': numdocs = len(self.fresh_docs) if numdocs < 1000: logging.warning("too few training documents; using simple log-entropy model instead of latent semantic indexing") method = 'logentropy' else: method = 'lsi' if params is None: params = {} self.model = SimModel(self.fresh_docs, method=method, params=params) self.flush(save_model=True, clear_buffer=clear_buffer)
Create an indexing model. Will overwrite the model if it already exists. All indexes become invalid, because documents in them use a now-obsolete representation. The model is trained on documents previously entered via `buffer`, or directly on `corpus`, if specified.
entailment
def index(self, corpus=None, clear_buffer=True): """ Permanently index all documents previously added via `buffer`, or directly index documents from `corpus`, if specified. The indexing model must already exist (see `train`) before this function is called. """ if not self.model: msg = 'must initialize model for %s before indexing documents' % self.basename logger.error(msg) raise AttributeError(msg) if corpus is not None: # use the supplied corpus only (erase existing buffer, if any) self.flush(clear_buffer=True) self.buffer(corpus) if not self.fresh_docs: msg = "index called but no indexing corpus specified for %s" % self logger.error(msg) raise ValueError(msg) if not self.fresh_index: logger.info("starting a new fresh index for %s" % self) self.fresh_index = SimIndex(self.location('index_fresh'), self.model.num_features) self.fresh_index.index_documents(self.fresh_docs, self.model) if self.opt_index is not None: self.opt_index.delete(self.fresh_docs.keys()) logger.info("storing document payloads") for docid in self.fresh_docs: payload = self.fresh_docs[docid].get('payload', None) if payload is None: # HACK: exit on first doc without a payload (=assume all docs have payload, or none does) break self.payload[docid] = payload self.flush(save_index=True, clear_buffer=clear_buffer)
Permanently index all documents previously added via `buffer`, or directly index documents from `corpus`, if specified. The indexing model must already exist (see `train`) before this function is called.
entailment
def optimize(self): """ Precompute top similarities for all indexed documents. This speeds up `find_similar` queries by id (but not queries by fulltext). Internally, documents are moved from a fresh index (=no precomputed similarities) to an optimized index (precomputed similarities). Similarity queries always query both indexes, so this split is transparent to clients. If you add documents later via `index`, they go to the fresh index again. To precompute top similarities for these new documents too, simply call `optimize` again. """ if self.fresh_index is None: logger.warning("optimize called but there are no new documents") return # nothing to do! if self.opt_index is None: logger.info("starting a new optimized index for %s" % self) self.opt_index = SimIndex(self.location('index_opt'), self.model.num_features) self.opt_index.merge(self.fresh_index) self.fresh_index.terminate() # delete old files self.fresh_index = None self.flush(save_index=True)
Precompute top similarities for all indexed documents. This speeds up `find_similar` queries by id (but not queries by fulltext). Internally, documents are moved from a fresh index (=no precomputed similarities) to an optimized index (precomputed similarities). Similarity queries always query both indexes, so this split is transparent to clients. If you add documents later via `index`, they go to the fresh index again. To precompute top similarities for these new documents too, simply call `optimize` again.
entailment
def drop_index(self, keep_model=True): """Drop all indexed documents. If `keep_model` is False, also dropped the model.""" modelstr = "" if keep_model else "and model " logger.info("deleting similarity index " + modelstr + "from %s" % self.basename) # delete indexes for index in [self.fresh_index, self.opt_index]: if index is not None: index.terminate() self.fresh_index, self.opt_index = None, None # delete payload if self.payload is not None: self.payload.close() fname = self.location('payload') try: if os.path.exists(fname): os.remove(fname) logger.info("deleted %s" % fname) except Exception, e: logger.warning("failed to delete %s" % fname) self.payload = SqliteDict(self.location('payload'), autocommit=True, journal_mode=JOURNAL_MODE) # optionally, delete the model as well if not keep_model and self.model is not None: self.model.close() fname = self.location('model') try: if os.path.exists(fname): os.remove(fname) logger.info("deleted %s" % fname) except Exception, e: logger.warning("failed to delete %s" % fname) self.model = None self.flush(save_index=True, save_model=True, clear_buffer=True)
Drop all indexed documents. If `keep_model` is False, also dropped the model.
entailment
def delete(self, docids): """Delete specified documents from the index.""" logger.info("asked to drop %i documents" % len(docids)) for index in [self.opt_index, self.fresh_index]: if index is not None: index.delete(docids) self.flush(save_index=True)
Delete specified documents from the index.
entailment
def find_similar(self, doc, min_score=0.0, max_results=100): """ Find `max_results` most similar articles in the index, each having similarity score of at least `min_score`. The resulting list may be shorter than `max_results`, in case there are not enough matching documents. `doc` is either a string (=document id, previously indexed) or a dict containing a 'tokens' key. These tokens are processed to produce a vector, which is then used as a query against the index. The similar documents are returned in decreasing similarity order, as `(doc_id, similarity_score, doc_payload)` 3-tuples. The payload returned is identical to what was supplied for this document during indexing. """ logger.debug("received query call with %r" % doc) if self.is_locked(): msg = "cannot query while the server is being updated" logger.error(msg) raise RuntimeError(msg) sims_opt, sims_fresh = None, None for index in [self.fresh_index, self.opt_index]: if index is not None: index.topsims = max_results if isinstance(doc, basestring): # query by direct document id docid = doc if self.opt_index is not None and docid in self.opt_index: sims_opt = self.opt_index.sims_by_id(docid) if self.fresh_index is not None: vec = self.opt_index.vec_by_id(docid) sims_fresh = self.fresh_index.sims_by_vec(vec, normalize=False) elif self.fresh_index is not None and docid in self.fresh_index: sims_fresh = self.fresh_index.sims_by_id(docid) if self.opt_index is not None: vec = self.fresh_index.vec_by_id(docid) sims_opt = self.opt_index.sims_by_vec(vec, normalize=False) else: raise ValueError("document %r not in index" % docid) else: if 'topics' in doc: # user supplied vector directly => use that vec = gensim.matutils.any2sparse(doc['topics']) else: # query by an arbitrary text (=tokens) inside doc['tokens'] vec = self.model.doc2vec(doc) # convert document (text) to vector if self.opt_index is not None: sims_opt = self.opt_index.sims_by_vec(vec) if self.fresh_index is not None: sims_fresh = self.fresh_index.sims_by_vec(vec) merged = merge_sims(sims_opt, sims_fresh) logger.debug("got %s raw similars, pruning with max_results=%s, min_score=%s" % (len(merged), max_results, min_score)) result = [] for docid, score in merged: if score < min_score or 0 < max_results <= len(result): break result.append((docid, float(score), self.payload.get(docid, None))) return result
Find `max_results` most similar articles in the index, each having similarity score of at least `min_score`. The resulting list may be shorter than `max_results`, in case there are not enough matching documents. `doc` is either a string (=document id, previously indexed) or a dict containing a 'tokens' key. These tokens are processed to produce a vector, which is then used as a query against the index. The similar documents are returned in decreasing similarity order, as `(doc_id, similarity_score, doc_payload)` 3-tuples. The payload returned is identical to what was supplied for this document during indexing.
entailment
def keys(self): """Return ids of all indexed documents.""" result = [] if self.fresh_index is not None: result += self.fresh_index.keys() if self.opt_index is not None: result += self.opt_index.keys() return result
Return ids of all indexed documents.
entailment
def check_session(self): """ Make sure a session is open. If it's not and autosession is turned on, create a new session automatically. If it's not and autosession is off, raise an exception. """ if self.session is None: if self.autosession: self.open_session() else: msg = "must open a session before modifying %s" % self raise RuntimeError(msg)
Make sure a session is open. If it's not and autosession is turned on, create a new session automatically. If it's not and autosession is off, raise an exception.
entailment
def open_session(self): """ Open a new session to modify this server. You can either call this fnc directly, or turn on autosession which will open/commit sessions for you transparently. """ if self.session is not None: msg = "session already open; commit it or rollback before opening another one in %s" % self logger.error(msg) raise RuntimeError(msg) logger.info("opening a new session") logger.info("removing %s" % self.loc_session) try: shutil.rmtree(self.loc_session) except: logger.info("failed to delete %s" % self.loc_session) logger.info("cloning server from %s to %s" % (self.loc_stable, self.loc_session)) shutil.copytree(self.loc_stable, self.loc_session) self.session = SimServer(self.loc_session, use_locks=self.use_locks) self.lock_update.acquire()
Open a new session to modify this server. You can either call this fnc directly, or turn on autosession which will open/commit sessions for you transparently.
entailment
def buffer(self, *args, **kwargs): """Buffer documents, in the current session""" self.check_session() result = self.session.buffer(*args, **kwargs) return result
Buffer documents, in the current session
entailment
def index(self, *args, **kwargs): """Index documents, in the current session""" self.check_session() result = self.session.index(*args, **kwargs) if self.autosession: self.commit() return result
Index documents, in the current session
entailment
def drop_index(self, keep_model=True): """Drop all indexed documents from the session. Optionally, drop model too.""" self.check_session() result = self.session.drop_index(keep_model) if self.autosession: self.commit() return result
Drop all indexed documents from the session. Optionally, drop model too.
entailment
def delete(self, docids): """Delete documents from the current session.""" self.check_session() result = self.session.delete(docids) if self.autosession: self.commit() return result
Delete documents from the current session.
entailment
def optimize(self): """Optimize index for faster by-document-id queries.""" self.check_session() result = self.session.optimize() if self.autosession: self.commit() return result
Optimize index for faster by-document-id queries.
entailment
def commit(self): """Commit changes made by the latest session.""" if self.session is not None: logger.info("committing transaction in %s" % self) tmp = self.stable self.stable, self.session = self.session, None self.istable = 1 - self.istable self.write_istable() tmp.close() # don't wait for gc, release resources manually self.lock_update.release() else: logger.warning("commit called but there's no open session in %s" % self)
Commit changes made by the latest session.
entailment
def rollback(self): """Ignore all changes made in the latest session (terminate the session).""" if self.session is not None: logger.info("rolling back transaction in %s" % self) self.session.close() self.session = None self.lock_update.release() else: logger.warning("rollback called but there's no open session in %s" % self)
Ignore all changes made in the latest session (terminate the session).
entailment
def set_autosession(self, value=None): """ Turn autosession (automatic committing after each modification call) on/off. If value is None, only query the current value (don't change anything). """ if value is not None: self.rollback() self.autosession = value return self.autosession
Turn autosession (automatic committing after each modification call) on/off. If value is None, only query the current value (don't change anything).
entailment