sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def depth_september_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_september_average_ground_temperature` Args: value (float): value for IDD Field `depth_september_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_september_average_ground_temperature`'.format(value)) self._depth_september_average_ground_temperature = value
Corresponds to IDD Field `depth_september_average_ground_temperature` Args: value (float): value for IDD Field `depth_september_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def depth_october_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_october_average_ground_temperature` Args: value (float): value for IDD Field `depth_october_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_october_average_ground_temperature`'.format(value)) self._depth_october_average_ground_temperature = value
Corresponds to IDD Field `depth_october_average_ground_temperature` Args: value (float): value for IDD Field `depth_october_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def depth_november_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_november_average_ground_temperature` Args: value (float): value for IDD Field `depth_november_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_november_average_ground_temperature`'.format(value)) self._depth_november_average_ground_temperature = value
Corresponds to IDD Field `depth_november_average_ground_temperature` Args: value (float): value for IDD Field `depth_november_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def depth_december_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_december_average_ground_temperature` Args: value (float): value for IDD Field `depth_december_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_december_average_ground_temperature`'.format(value)) self._depth_december_average_ground_temperature = value
Corresponds to IDD Field `depth_december_average_ground_temperature` Args: value (float): value for IDD Field `depth_december_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.ground_temperature_depth)) out.append(self._to_str(self.depth_soil_conductivity)) out.append(self._to_str(self.depth_soil_density)) out.append(self._to_str(self.depth_soil_specific_heat)) out.append(self._to_str(self.depth_january_average_ground_temperature)) out.append( self._to_str( self.depth_february_average_ground_temperature)) out.append(self._to_str(self.depth_march_average_ground_temperature)) out.append(self._to_str(self.depth_april_average_ground_temperature)) out.append(self._to_str(self.depth_may_average_ground_temperature)) out.append(self._to_str(self.depth_june_average_ground_temperature)) out.append(self._to_str(self.depth_july_average_ground_temperature)) out.append(self._to_str(self.depth_august_average_ground_temperature)) out.append( self._to_str( self.depth_september_average_ground_temperature)) out.append(self._to_str(self.depth_october_average_ground_temperature)) out.append( self._to_str( self.depth_november_average_ground_temperature)) out.append( self._to_str( self.depth_december_average_ground_temperature)) return ",".join(out)
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 count = int(vals[i]) i += 1 for _ in range(count): obj = GroundTemperature() obj.read(vals[i:i + obj.field_count]) self.add_ground_temperature(obj) i += obj.field_count
Read values. Args: vals (list): list of strings representing values
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.holiday_name = None else: self.holiday_name = vals[i] i += 1 if len(vals[i]) == 0: self.holiday_day = None else: self.holiday_day = vals[i] i += 1
Read values. Args: vals (list): list of strings representing values
entailment
def holiday_name(self, value=None): """Corresponds to IDD Field `holiday_name` Args: value (str): value for IDD Field `holiday_name` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `holiday_name`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `holiday_name`') self._holiday_name = value
Corresponds to IDD Field `holiday_name` Args: value (str): value for IDD Field `holiday_name` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def holiday_day(self, value=None): """Corresponds to IDD Field `holiday_day` Args: value (str): value for IDD Field `holiday_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `holiday_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `holiday_day`') self._holiday_day = value
Corresponds to IDD Field `holiday_day` Args: value (str): value for IDD Field `holiday_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.holiday_name)) out.append(self._to_str(self.holiday_day)) return ",".join(out)
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.leapyear_observed = None else: self.leapyear_observed = vals[i] i += 1 if len(vals[i]) == 0: self.daylight_saving_start_day = None else: self.daylight_saving_start_day = vals[i] i += 1 if len(vals[i]) == 0: self.daylight_saving_end_day = None else: self.daylight_saving_end_day = vals[i] i += 1 count = int(vals[i]) i += 1 for _ in range(count): obj = Holiday() obj.read(vals[i:i + obj.field_count]) self.add_holiday(obj) i += obj.field_count
Read values. Args: vals (list): list of strings representing values
entailment
def leapyear_observed(self, value=None): """Corresponds to IDD Field `leapyear_observed` Yes if Leap Year will be observed for this file No if Leap Year days (29 Feb) should be ignored in this file. Args: value (str): value for IDD Field `leapyear_observed` Accepted values are: - Yes - No if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `leapyear_observed`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `leapyear_observed`') vals = set() vals.add("Yes") vals.add("No") if value not in vals: raise ValueError('value {} is not an accepted value for ' 'field `leapyear_observed`'.format(value)) self._leapyear_observed = value
Corresponds to IDD Field `leapyear_observed` Yes if Leap Year will be observed for this file No if Leap Year days (29 Feb) should be ignored in this file. Args: value (str): value for IDD Field `leapyear_observed` Accepted values are: - Yes - No if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def daylight_saving_start_day(self, value=None): """Corresponds to IDD Field `daylight_saving_start_day` Args: value (str): value for IDD Field `daylight_saving_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `daylight_saving_start_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `daylight_saving_start_day`') self._daylight_saving_start_day = value
Corresponds to IDD Field `daylight_saving_start_day` Args: value (str): value for IDD Field `daylight_saving_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def daylight_saving_end_day(self, value=None): """Corresponds to IDD Field `daylight_saving_end_day` Args: value (str): value for IDD Field `daylight_saving_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `daylight_saving_end_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `daylight_saving_end_day`') self._daylight_saving_end_day = value
Corresponds to IDD Field `daylight_saving_end_day` Args: value (str): value for IDD Field `daylight_saving_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.leapyear_observed)) out.append(self._to_str(self.daylight_saving_start_day)) out.append(self._to_str(self.daylight_saving_end_day)) out.append(str(len(self.holidays))) for obj in self.holidays: out.append(obj.export(top=False)) return ",".join(out)
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.comments_1 = None else: self.comments_1 = vals[i] i += 1
Read values. Args: vals (list): list of strings representing values
entailment
def comments_1(self, value=None): """Corresponds to IDD Field `comments_1` Args: value (str): value for IDD Field `comments_1` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `comments_1`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `comments_1`') self._comments_1 = value
Corresponds to IDD Field `comments_1` Args: value (str): value for IDD Field `comments_1` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.comments_2 = None else: self.comments_2 = vals[i] i += 1
Read values. Args: vals (list): list of strings representing values
entailment
def comments_2(self, value=None): """Corresponds to IDD Field `comments_2` Args: value (str): value for IDD Field `comments_2` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `comments_2`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `comments_2`') self._comments_2 = value
Corresponds to IDD Field `comments_2` Args: value (str): value for IDD Field `comments_2` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.comments_2)) return ",".join(out)
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.number_of_records_per_hour = None else: self.number_of_records_per_hour = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_name_or_description = None else: self.data_period_name_or_description = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_start_day_of_week = None else: self.data_period_start_day_of_week = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_start_day = None else: self.data_period_start_day = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_end_day = None else: self.data_period_end_day = vals[i] i += 1
Read values. Args: vals (list): list of strings representing values
entailment
def number_of_records_per_hour(self, value=None): """Corresponds to IDD Field `number_of_records_per_hour` Args: value (int): value for IDD Field `number_of_records_per_hour` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `number_of_records_per_hour`'.format(value)) self._number_of_records_per_hour = value
Corresponds to IDD Field `number_of_records_per_hour` Args: value (int): value for IDD Field `number_of_records_per_hour` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def data_period_name_or_description(self, value=None): """Corresponds to IDD Field `data_period_name_or_description` Args: value (str): value for IDD Field `data_period_name_or_description` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_name_or_description`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_name_or_description`') self._data_period_name_or_description = value
Corresponds to IDD Field `data_period_name_or_description` Args: value (str): value for IDD Field `data_period_name_or_description` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def data_period_start_day_of_week(self, value=None): """Corresponds to IDD Field `data_period_start_day_of_week` Args: value (str): value for IDD Field `data_period_start_day_of_week` Accepted values are: - Sunday - Monday - Tuesday - Wednesday - Thursday - Friday - Saturday if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_start_day_of_week`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_start_day_of_week`') vals = set() vals.add("Sunday") vals.add("Monday") vals.add("Tuesday") vals.add("Wednesday") vals.add("Thursday") vals.add("Friday") vals.add("Saturday") if value not in vals: raise ValueError( 'value {} is not an accepted value for ' 'field `data_period_start_day_of_week`'.format(value)) self._data_period_start_day_of_week = value
Corresponds to IDD Field `data_period_start_day_of_week` Args: value (str): value for IDD Field `data_period_start_day_of_week` Accepted values are: - Sunday - Monday - Tuesday - Wednesday - Thursday - Friday - Saturday if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def data_period_start_day(self, value=None): """Corresponds to IDD Field `data_period_start_day` Args: value (str): value for IDD Field `data_period_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_start_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_start_day`') self._data_period_start_day = value
Corresponds to IDD Field `data_period_start_day` Args: value (str): value for IDD Field `data_period_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def data_period_end_day(self, value=None): """Corresponds to IDD Field `data_period_end_day` Args: value (str): value for IDD Field `data_period_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_end_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_end_day`') self._data_period_end_day = value
Corresponds to IDD Field `data_period_end_day` Args: value (str): value for IDD Field `data_period_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.number_of_records_per_hour)) out.append(self._to_str(self.data_period_name_or_description)) out.append(self._to_str(self.data_period_start_day_of_week)) out.append(self._to_str(self.data_period_start_day)) out.append(self._to_str(self.data_period_end_day)) return ",".join(out)
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 count = int(vals[i]) i += 1 for _ in range(count): obj = DataPeriod() obj.read(vals[i:i + obj.field_count]) self.add_data_period(obj) i += obj.field_count
Read values. Args: vals (list): list of strings representing values
entailment
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.year = None else: self.year = vals[i] i += 1 if len(vals[i]) == 0: self.month = None else: self.month = vals[i] i += 1 if len(vals[i]) == 0: self.day = None else: self.day = vals[i] i += 1 if len(vals[i]) == 0: self.hour = None else: self.hour = vals[i] i += 1 if len(vals[i]) == 0: self.minute = None else: self.minute = vals[i] i += 1 if len(vals[i]) == 0: self.data_source_and_uncertainty_flags = None else: self.data_source_and_uncertainty_flags = vals[i] i += 1 if len(vals[i]) == 0: self.dry_bulb_temperature = None else: self.dry_bulb_temperature = vals[i] i += 1 if len(vals[i]) == 0: self.dew_point_temperature = None else: self.dew_point_temperature = vals[i] i += 1 if len(vals[i]) == 0: self.relative_humidity = None else: self.relative_humidity = vals[i] i += 1 if len(vals[i]) == 0: self.atmospheric_station_pressure = None else: self.atmospheric_station_pressure = vals[i] i += 1 if len(vals[i]) == 0: self.extraterrestrial_horizontal_radiation = None else: self.extraterrestrial_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.extraterrestrial_direct_normal_radiation = None else: self.extraterrestrial_direct_normal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.horizontal_infrared_radiation_intensity = None else: self.horizontal_infrared_radiation_intensity = vals[i] i += 1 if len(vals[i]) == 0: self.global_horizontal_radiation = None else: self.global_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.direct_normal_radiation = None else: self.direct_normal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.diffuse_horizontal_radiation = None else: self.diffuse_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.global_horizontal_illuminance = None else: self.global_horizontal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.direct_normal_illuminance = None else: self.direct_normal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.diffuse_horizontal_illuminance = None else: self.diffuse_horizontal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.zenith_luminance = None else: self.zenith_luminance = vals[i] i += 1 if len(vals[i]) == 0: self.wind_direction = None else: self.wind_direction = vals[i] i += 1 if len(vals[i]) == 0: self.wind_speed = None else: self.wind_speed = vals[i] i += 1 if len(vals[i]) == 0: self.total_sky_cover = None else: self.total_sky_cover = vals[i] i += 1 if len(vals[i]) == 0: self.opaque_sky_cover = None else: self.opaque_sky_cover = vals[i] i += 1 if len(vals[i]) == 0: self.visibility = None else: self.visibility = vals[i] i += 1 if len(vals[i]) == 0: self.ceiling_height = None else: self.ceiling_height = vals[i] i += 1 if len(vals[i]) == 0: self.present_weather_observation = None else: self.present_weather_observation = vals[i] i += 1 if len(vals[i]) == 0: self.present_weather_codes = None else: self.present_weather_codes = vals[i] i += 1 if len(vals[i]) == 0: self.precipitable_water = None else: self.precipitable_water = vals[i] i += 1 if len(vals[i]) == 0: self.aerosol_optical_depth = None else: self.aerosol_optical_depth = vals[i] i += 1 if len(vals[i]) == 0: self.snow_depth = None else: self.snow_depth = vals[i] i += 1 if len(vals[i]) == 0: self.days_since_last_snowfall = None else: self.days_since_last_snowfall = vals[i] i += 1 if len(vals[i]) == 0: self.albedo = None else: self.albedo = vals[i] i += 1 if len(vals[i]) == 0: self.liquid_precipitation_depth = None else: self.liquid_precipitation_depth = vals[i] i += 1 if len(vals[i]) == 0: self.liquid_precipitation_quantity = None else: self.liquid_precipitation_quantity = vals[i] i += 1
Read values. Args: vals (list): list of strings representing values
entailment
def year(self, value=None): """Corresponds to IDD Field `year` Args: value (int): value for IDD Field `year` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `year`'.format(value)) self._year = value
Corresponds to IDD Field `year` Args: value (int): value for IDD Field `year` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def month(self, value=None): """Corresponds to IDD Field `month` Args: value (int): value for IDD Field `month` value >= 1 value <= 12 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `month`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `month`') if value > 12: raise ValueError('value need to be smaller 12 ' 'for field `month`') self._month = value
Corresponds to IDD Field `month` Args: value (int): value for IDD Field `month` value >= 1 value <= 12 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def day(self, value=None): """Corresponds to IDD Field `day` Args: value (int): value for IDD Field `day` value >= 1 value <= 31 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `day`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `day`') if value > 31: raise ValueError('value need to be smaller 31 ' 'for field `day`') self._day = value
Corresponds to IDD Field `day` Args: value (int): value for IDD Field `day` value >= 1 value <= 31 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def hour(self, value=None): """Corresponds to IDD Field `hour` Args: value (int): value for IDD Field `hour` value >= 1 value <= 24 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `hour`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `hour`') if value > 24: raise ValueError('value need to be smaller 24 ' 'for field `hour`') self._hour = value
Corresponds to IDD Field `hour` Args: value (int): value for IDD Field `hour` value >= 1 value <= 24 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def minute(self, value=None): """Corresponds to IDD Field `minute` Args: value (int): value for IDD Field `minute` value >= 0 value <= 60 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `minute`'.format(value)) if value < 0: raise ValueError('value need to be greater or equal 0 ' 'for field `minute`') if value > 60: raise ValueError('value need to be smaller 60 ' 'for field `minute`') self._minute = value
Corresponds to IDD Field `minute` Args: value (int): value for IDD Field `minute` value >= 0 value <= 60 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def data_source_and_uncertainty_flags(self, value=None): """Corresponds to IDD Field `data_source_and_uncertainty_flags` Initial day of weather file is checked by EnergyPlus for validity (as shown below) Each field is checked for "missing" as shown below. Reasonable values, calculated values or the last "good" value is substituted. Args: value (str): value for IDD Field `data_source_and_uncertainty_flags` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_source_and_uncertainty_flags`'.format(value)) if ',' in value: raise ValueError( 'value should not contain a comma ' 'for field `data_source_and_uncertainty_flags`') self._data_source_and_uncertainty_flags = value
Corresponds to IDD Field `data_source_and_uncertainty_flags` Initial day of weather file is checked by EnergyPlus for validity (as shown below) Each field is checked for "missing" as shown below. Reasonable values, calculated values or the last "good" value is substituted. Args: value (str): value for IDD Field `data_source_and_uncertainty_flags` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def dry_bulb_temperature(self, value=99.9): """Corresponds to IDD Field `dry_bulb_temperature` Args: value (float): value for IDD Field `dry_bulb_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `dry_bulb_temperature`'.format(value)) if value <= -70.0: raise ValueError('value need to be greater -70.0 ' 'for field `dry_bulb_temperature`') if value >= 70.0: raise ValueError('value need to be smaller 70.0 ' 'for field `dry_bulb_temperature`') self._dry_bulb_temperature = value
Corresponds to IDD Field `dry_bulb_temperature` Args: value (float): value for IDD Field `dry_bulb_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def dew_point_temperature(self, value=99.9): """Corresponds to IDD Field `dew_point_temperature` Args: value (float): value for IDD Field `dew_point_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `dew_point_temperature`'.format(value)) if value <= -70.0: raise ValueError('value need to be greater -70.0 ' 'for field `dew_point_temperature`') if value >= 70.0: raise ValueError('value need to be smaller 70.0 ' 'for field `dew_point_temperature`') self._dew_point_temperature = value
Corresponds to IDD Field `dew_point_temperature` Args: value (float): value for IDD Field `dew_point_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def relative_humidity(self, value=999): """Corresponds to IDD Field `relative_humidity` Args: value (int): value for IDD Field `relative_humidity` value >= 0 value <= 110 Missing value: 999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `relative_humidity`'.format(value)) if value < 0: raise ValueError('value need to be greater or equal 0 ' 'for field `relative_humidity`') if value > 110: raise ValueError('value need to be smaller 110 ' 'for field `relative_humidity`') self._relative_humidity = value
Corresponds to IDD Field `relative_humidity` Args: value (int): value for IDD Field `relative_humidity` value >= 0 value <= 110 Missing value: 999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def atmospheric_station_pressure(self, value=999999): """Corresponds to IDD Field `atmospheric_station_pressure` Args: value (int): value for IDD Field `atmospheric_station_pressure` Unit: Pa value > 31000 value < 120000 Missing value: 999999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `atmospheric_station_pressure`'.format(value)) if value <= 31000: raise ValueError('value need to be greater 31000 ' 'for field `atmospheric_station_pressure`') if value >= 120000: raise ValueError('value need to be smaller 120000 ' 'for field `atmospheric_station_pressure`') self._atmospheric_station_pressure = value
Corresponds to IDD Field `atmospheric_station_pressure` Args: value (int): value for IDD Field `atmospheric_station_pressure` Unit: Pa value > 31000 value < 120000 Missing value: 999999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def extraterrestrial_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `extraterrestrial_horizontal_radiation` Args: value (float): value for IDD Field `extraterrestrial_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `extraterrestrial_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `extraterrestrial_horizontal_radiation`') self._extraterrestrial_horizontal_radiation = value
Corresponds to IDD Field `extraterrestrial_horizontal_radiation` Args: value (float): value for IDD Field `extraterrestrial_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def extraterrestrial_direct_normal_radiation(self, value=9999.0): """Corresponds to IDD Field `extraterrestrial_direct_normal_radiation` Args: value (float): value for IDD Field `extraterrestrial_direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `extraterrestrial_direct_normal_radiation`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `extraterrestrial_direct_normal_radiation`') self._extraterrestrial_direct_normal_radiation = value
Corresponds to IDD Field `extraterrestrial_direct_normal_radiation` Args: value (float): value for IDD Field `extraterrestrial_direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def horizontal_infrared_radiation_intensity(self, value=9999.0): """Corresponds to IDD Field `horizontal_infrared_radiation_intensity` Args: value (float): value for IDD Field `horizontal_infrared_radiation_intensity` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `horizontal_infrared_radiation_intensity`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `horizontal_infrared_radiation_intensity`') self._horizontal_infrared_radiation_intensity = value
Corresponds to IDD Field `horizontal_infrared_radiation_intensity` Args: value (float): value for IDD Field `horizontal_infrared_radiation_intensity` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def global_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `global_horizontal_radiation` Args: value (float): value for IDD Field `global_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `global_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `global_horizontal_radiation`') self._global_horizontal_radiation = value
Corresponds to IDD Field `global_horizontal_radiation` Args: value (float): value for IDD Field `global_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def direct_normal_radiation(self, value=9999.0): """Corresponds to IDD Field `direct_normal_radiation` Args: value (float): value for IDD Field `direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `direct_normal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `direct_normal_radiation`') self._direct_normal_radiation = value
Corresponds to IDD Field `direct_normal_radiation` Args: value (float): value for IDD Field `direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def diffuse_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `diffuse_horizontal_radiation` Args: value (float): value for IDD Field `diffuse_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `diffuse_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `diffuse_horizontal_radiation`') self._diffuse_horizontal_radiation = value
Corresponds to IDD Field `diffuse_horizontal_radiation` Args: value (float): value for IDD Field `diffuse_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def global_horizontal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `global_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `global_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `global_horizontal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `global_horizontal_illuminance`') self._global_horizontal_illuminance = value
Corresponds to IDD Field `global_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `global_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def direct_normal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `direct_normal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `direct_normal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `direct_normal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `direct_normal_illuminance`') self._direct_normal_illuminance = value
Corresponds to IDD Field `direct_normal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `direct_normal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def diffuse_horizontal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `diffuse_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `diffuse_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `diffuse_horizontal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `diffuse_horizontal_illuminance`') self._diffuse_horizontal_illuminance = value
Corresponds to IDD Field `diffuse_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `diffuse_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def zenith_luminance(self, value=9999.0): """ Corresponds to IDD Field `zenith_luminance` will be missing if >= 9999 Args: value (float): value for IDD Field `zenith_luminance` Unit: Cd/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `zenith_luminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `zenith_luminance`') self._zenith_luminance = value
Corresponds to IDD Field `zenith_luminance` will be missing if >= 9999 Args: value (float): value for IDD Field `zenith_luminance` Unit: Cd/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def wind_direction(self, value=999.0): """Corresponds to IDD Field `wind_direction` Args: value (float): value for IDD Field `wind_direction` Unit: degrees value >= 0.0 value <= 360.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `wind_direction`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `wind_direction`') if value > 360.0: raise ValueError('value need to be smaller 360.0 ' 'for field `wind_direction`') self._wind_direction = value
Corresponds to IDD Field `wind_direction` Args: value (float): value for IDD Field `wind_direction` Unit: degrees value >= 0.0 value <= 360.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def wind_speed(self, value=999.0): """Corresponds to IDD Field `wind_speed` Args: value (float): value for IDD Field `wind_speed` Unit: m/s value >= 0.0 value <= 40.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `wind_speed`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `wind_speed`') if value > 40.0: raise ValueError('value need to be smaller 40.0 ' 'for field `wind_speed`') self._wind_speed = value
Corresponds to IDD Field `wind_speed` Args: value (float): value for IDD Field `wind_speed` Unit: m/s value >= 0.0 value <= 40.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def total_sky_cover(self, value=99.0): """Corresponds to IDD Field `total_sky_cover` This is the value for total sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena at the hour indicated at the time indicated.) Args: value (float): value for IDD Field `total_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `total_sky_cover`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `total_sky_cover`') if value > 10.0: raise ValueError('value need to be smaller 10.0 ' 'for field `total_sky_cover`') self._total_sky_cover = value
Corresponds to IDD Field `total_sky_cover` This is the value for total sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena at the hour indicated at the time indicated.) Args: value (float): value for IDD Field `total_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def opaque_sky_cover(self, value=99.0): """Corresponds to IDD Field `opaque_sky_cover` This is the value for opaque sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena that prevent observing the sky or higher cloud layers at the time indicated.) This is not used unless the field for Horizontal Infrared Radiation Intensity is missing and then it is used to calculate Horizontal Infrared Radiation Intensity. Args: value (float): value for IDD Field `opaque_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `opaque_sky_cover`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `opaque_sky_cover`') if value > 10.0: raise ValueError('value need to be smaller 10.0 ' 'for field `opaque_sky_cover`') self._opaque_sky_cover = value
Corresponds to IDD Field `opaque_sky_cover` This is the value for opaque sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena that prevent observing the sky or higher cloud layers at the time indicated.) This is not used unless the field for Horizontal Infrared Radiation Intensity is missing and then it is used to calculate Horizontal Infrared Radiation Intensity. Args: value (float): value for IDD Field `opaque_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def visibility(self, value=9999.0): """Corresponds to IDD Field `visibility` This is the value for visibility in km. (Horizontal visibility at the time indicated.) Args: value (float): value for IDD Field `visibility` Unit: km Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `visibility`'.format(value)) self._visibility = value
Corresponds to IDD Field `visibility` This is the value for visibility in km. (Horizontal visibility at the time indicated.) Args: value (float): value for IDD Field `visibility` Unit: km Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def ceiling_height(self, value=99999.0): """Corresponds to IDD Field `ceiling_height` This is the value for ceiling height in m. (77777 is unlimited ceiling height. 88888 is cirroform ceiling.) It is not currently used in EnergyPlus calculations. Args: value (float): value for IDD Field `ceiling_height` Unit: m Missing value: 99999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `ceiling_height`'.format(value)) self._ceiling_height = value
Corresponds to IDD Field `ceiling_height` This is the value for ceiling height in m. (77777 is unlimited ceiling height. 88888 is cirroform ceiling.) It is not currently used in EnergyPlus calculations. Args: value (float): value for IDD Field `ceiling_height` Unit: m Missing value: 99999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def present_weather_observation(self, value=None): """Corresponds to IDD Field `present_weather_observation` If the value of the field is 0, then the observed weather codes are taken from the following field. If the value of the field is 9, then "missing" weather is assumed. Since the primary use of these fields (Present Weather Observation and Present Weather Codes) is for rain/wet surfaces, a missing observation field or a missing weather code implies "no rain". Args: value (int): value for IDD Field `present_weather_observation` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `present_weather_observation`'.format(value)) self._present_weather_observation = value
Corresponds to IDD Field `present_weather_observation` If the value of the field is 0, then the observed weather codes are taken from the following field. If the value of the field is 9, then "missing" weather is assumed. Since the primary use of these fields (Present Weather Observation and Present Weather Codes) is for rain/wet surfaces, a missing observation field or a missing weather code implies "no rain". Args: value (int): value for IDD Field `present_weather_observation` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def present_weather_codes(self, value=None): """Corresponds to IDD Field `present_weather_codes` Args: value (int): value for IDD Field `present_weather_codes` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `present_weather_codes`'.format(value)) self._present_weather_codes = value
Corresponds to IDD Field `present_weather_codes` Args: value (int): value for IDD Field `present_weather_codes` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def precipitable_water(self, value=999.0): """Corresponds to IDD Field `precipitable_water` Args: value (float): value for IDD Field `precipitable_water` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `precipitable_water`'.format(value)) self._precipitable_water = value
Corresponds to IDD Field `precipitable_water` Args: value (float): value for IDD Field `precipitable_water` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def aerosol_optical_depth(self, value=0.999): """Corresponds to IDD Field `aerosol_optical_depth` Args: value (float): value for IDD Field `aerosol_optical_depth` Unit: thousandths Missing value: 0.999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `aerosol_optical_depth`'.format(value)) self._aerosol_optical_depth = value
Corresponds to IDD Field `aerosol_optical_depth` Args: value (float): value for IDD Field `aerosol_optical_depth` Unit: thousandths Missing value: 0.999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def snow_depth(self, value=999.0): """Corresponds to IDD Field `snow_depth` Args: value (float): value for IDD Field `snow_depth` Unit: cm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `snow_depth`'.format(value)) self._snow_depth = value
Corresponds to IDD Field `snow_depth` Args: value (float): value for IDD Field `snow_depth` Unit: cm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def days_since_last_snowfall(self, value=99): """Corresponds to IDD Field `days_since_last_snowfall` Args: value (int): value for IDD Field `days_since_last_snowfall` Missing value: 99 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `days_since_last_snowfall`'.format(value)) self._days_since_last_snowfall = value
Corresponds to IDD Field `days_since_last_snowfall` Args: value (int): value for IDD Field `days_since_last_snowfall` Missing value: 99 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def albedo(self, value=999.0): """Corresponds to IDD Field `albedo` Args: value (float): value for IDD Field `albedo` Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `albedo`'.format(value)) self._albedo = value
Corresponds to IDD Field `albedo` Args: value (float): value for IDD Field `albedo` Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def liquid_precipitation_depth(self, value=999.0): """Corresponds to IDD Field `liquid_precipitation_depth` Args: value (float): value for IDD Field `liquid_precipitation_depth` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `liquid_precipitation_depth`'.format(value)) self._liquid_precipitation_depth = value
Corresponds to IDD Field `liquid_precipitation_depth` Args: value (float): value for IDD Field `liquid_precipitation_depth` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def liquid_precipitation_quantity(self, value=99.0): """Corresponds to IDD Field `liquid_precipitation_quantity` Args: value (float): value for IDD Field `liquid_precipitation_quantity` Unit: hr Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `liquid_precipitation_quantity`'.format(value)) self._liquid_precipitation_quantity = value
Corresponds to IDD Field `liquid_precipitation_quantity` Args: value (float): value for IDD Field `liquid_precipitation_quantity` Unit: hr Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
entailment
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.year)) out.append(self._to_str(self.month)) out.append(self._to_str(self.day)) out.append(self._to_str(self.hour)) out.append(self._to_str(self.minute)) out.append(self._to_str(self.data_source_and_uncertainty_flags)) out.append(self._to_str(self.dry_bulb_temperature)) out.append(self._to_str(self.dew_point_temperature)) out.append(self._to_str(self.relative_humidity)) out.append(self._to_str(self.atmospheric_station_pressure)) out.append(self._to_str(self.extraterrestrial_horizontal_radiation)) out.append(self._to_str(self.extraterrestrial_direct_normal_radiation)) out.append(self._to_str(self.horizontal_infrared_radiation_intensity)) out.append(self._to_str(self.global_horizontal_radiation)) out.append(self._to_str(self.direct_normal_radiation)) out.append(self._to_str(self.diffuse_horizontal_radiation)) out.append(self._to_str(self.global_horizontal_illuminance)) out.append(self._to_str(self.direct_normal_illuminance)) out.append(self._to_str(self.diffuse_horizontal_illuminance)) out.append(self._to_str(self.zenith_luminance)) out.append(self._to_str(self.wind_direction)) out.append(self._to_str(self.wind_speed)) out.append(self._to_str(self.total_sky_cover)) out.append(self._to_str(self.opaque_sky_cover)) out.append(self._to_str(self.visibility)) out.append(self._to_str(self.ceiling_height)) out.append(self._to_str(self.present_weather_observation)) out.append(self._to_str(self.present_weather_codes)) out.append(self._to_str(self.precipitable_water)) out.append(self._to_str(self.aerosol_optical_depth)) out.append(self._to_str(self.snow_depth)) out.append(self._to_str(self.days_since_last_snowfall)) out.append(self._to_str(self.albedo)) out.append(self._to_str(self.liquid_precipitation_depth)) out.append(self._to_str(self.liquid_precipitation_quantity)) return ",".join(out)
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
entailment
def add_weatherdata(self, data): """Appends weather data. Args: data (WeatherData): weather data object """ if not isinstance(data, WeatherData): raise ValueError('Weather data need to be of type WeatherData') self._data["WEATHER DATA"].append(data)
Appends weather data. Args: data (WeatherData): weather data object
entailment
def save(self, path, check=True): """Save WeatherData in EPW format to path. Args: path (str): path where EPW file should be saved """ with open(path, 'w') as f: if check: if ("LOCATION" not in self._data or self._data["LOCATION"] is None): raise ValueError('location is not valid.') if ("DESIGN CONDITIONS" not in self._data or self._data["DESIGN CONDITIONS"] is None): raise ValueError('design_conditions is not valid.') if ("TYPICAL/EXTREME PERIODS" not in self._data or self._data["TYPICAL/EXTREME PERIODS"] is None): raise ValueError( 'typical_or_extreme_periods is not valid.') if ("GROUND TEMPERATURES" not in self._data or self._data["GROUND TEMPERATURES"] is None): raise ValueError('ground_temperatures is not valid.') if ("HOLIDAYS/DAYLIGHT SAVINGS" not in self._data or self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is None): raise ValueError( 'holidays_or_daylight_savings is not valid.') if ("COMMENTS 1" not in self._data or self._data["COMMENTS 1"] is None): raise ValueError('comments_1 is not valid.') if ("COMMENTS 2" not in self._data or self._data["COMMENTS 2"] is None): raise ValueError('comments_2 is not valid.') if ("DATA PERIODS" not in self._data or self._data["DATA PERIODS"] is None): raise ValueError('data_periods is not valid.') if ("LOCATION" in self._data and self._data["LOCATION"] is not None): f.write(self._data["LOCATION"].export() + "\n") if ("DESIGN CONDITIONS" in self._data and self._data["DESIGN CONDITIONS"] is not None): f.write(self._data["DESIGN CONDITIONS"].export() + "\n") if ("TYPICAL/EXTREME PERIODS" in self._data and self._data["TYPICAL/EXTREME PERIODS"] is not None): f.write(self._data["TYPICAL/EXTREME PERIODS"].export() + "\n") if ("GROUND TEMPERATURES" in self._data and self._data["GROUND TEMPERATURES"] is not None): f.write(self._data["GROUND TEMPERATURES"].export() + "\n") if ("HOLIDAYS/DAYLIGHT SAVINGS" in self._data and self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is not None): f.write( self._data["HOLIDAYS/DAYLIGHT SAVINGS"].export() + "\n") if ("COMMENTS 1" in self._data and self._data["COMMENTS 1"] is not None): f.write(self._data["COMMENTS 1"].export() + "\n") if ("COMMENTS 2" in self._data and self._data["COMMENTS 2"] is not None): f.write(self._data["COMMENTS 2"].export() + "\n") if ("DATA PERIODS" in self._data and self._data["DATA PERIODS"] is not None): f.write(self._data["DATA PERIODS"].export() + "\n") for item in self._data["WEATHER DATA"]: f.write(item.export(False) + "\n")
Save WeatherData in EPW format to path. Args: path (str): path where EPW file should be saved
entailment
def _create_datadict(cls, internal_name): """Creates an object depending on `internal_name` Args: internal_name (str): IDD name Raises: ValueError: if `internal_name` cannot be matched to a data dictionary object """ if internal_name == "LOCATION": return Location() if internal_name == "DESIGN CONDITIONS": return DesignConditions() if internal_name == "TYPICAL/EXTREME PERIODS": return TypicalOrExtremePeriods() if internal_name == "GROUND TEMPERATURES": return GroundTemperatures() if internal_name == "HOLIDAYS/DAYLIGHT SAVINGS": return HolidaysOrDaylightSavings() if internal_name == "COMMENTS 1": return Comments1() if internal_name == "COMMENTS 2": return Comments2() if internal_name == "DATA PERIODS": return DataPeriods() raise ValueError( "No DataDictionary known for {}".format(internal_name))
Creates an object depending on `internal_name` Args: internal_name (str): IDD name Raises: ValueError: if `internal_name` cannot be matched to a data dictionary object
entailment
def read(self, path): """Read EPW weather data from path. Args: path (str): path to read weather data from """ with open(path, "r") as f: for line in f: line = line.strip() match_obj_name = re.search(r"^([A-Z][A-Z/ \d]+),", line) if match_obj_name is not None: internal_name = match_obj_name.group(1) if internal_name in self._data: self._data[internal_name] = self._create_datadict( internal_name) data_line = line[len(internal_name) + 1:] vals = data_line.strip().split(',') self._data[internal_name].read(vals) else: wd = WeatherData() wd.read(line.strip().split(',')) self.add_weatherdata(wd)
Read EPW weather data from path. Args: path (str): path to read weather data from
entailment
def display_url(target): """Displaying URL in an IPython notebook to allow the user to click and check on information. With thanks to Fernando Perez for putting together the implementation! :param target: the url to display. :type target: string.""" prefix = u"http://" if not target.startswith("http") else u"" target = prefix + target display(HTML(u'<a href="{t}" target=_blank>{t}</a>'.format(t=target)))
Displaying URL in an IPython notebook to allow the user to click and check on information. With thanks to Fernando Perez for putting together the implementation! :param target: the url to display. :type target: string.
entailment
def iframe_url(target, width=500, height=400, scrolling=True, border=0, frameborder=0): """Produce an iframe for displaying an item in HTML window. :param target: the target url. :type target: string :param width: the width of the iframe (default 500). :type width: int :param height: the height of the iframe (default 400). :type height: int :param scrolling: whether or not to allow scrolling (default True). :type scrolling: bool :param border: width of the border. :type border: int :param frameborder: width of the frameborder. :type frameborder: int""" prefix = u"http://" if not target.startswith("http") else u"" target = prefix + target if scrolling: scroll_val = 'yes' else: scroll_val = 'no' return u'<iframe frameborder="{frameborder}" scrolling="{scrolling}" style="border:{border}px" src="{url}", width={width} height={height}></iframe>'.format(frameborder=frameborder, scrolling=scroll_val, border=border, url=target, width=width, height=height)
Produce an iframe for displaying an item in HTML window. :param target: the target url. :type target: string :param width: the width of the iframe (default 500). :type width: int :param height: the height of the iframe (default 400). :type height: int :param scrolling: whether or not to allow scrolling (default True). :type scrolling: bool :param border: width of the border. :type border: int :param frameborder: width of the frameborder. :type frameborder: int
entailment
def display_iframe_url(target, **kwargs): """Display the contents of a URL in an IPython notebook. :param target: the target url. :type target: string .. seealso:: `iframe_url()` for additional arguments.""" txt = iframe_url(target, **kwargs) display(HTML(txt))
Display the contents of a URL in an IPython notebook. :param target: the target url. :type target: string .. seealso:: `iframe_url()` for additional arguments.
entailment
def display_google_book(id, page=None, width=700, height=500, **kwargs): """Display an embedded version of a Google book. :param id: the id of the google book to display. :type id: string :param page: the start page for the book. :type id: string or int.""" if isinstance(page, int): url = 'http://books.google.co.uk/books?id={id}&pg=PA{page}&output=embed'.format(id=id, page=page) else: url = 'http://books.google.co.uk/books?id={id}&pg={page}&output=embed'.format(id=id, page=page) display_iframe_url(url, width=width, height=height, **kwargs)
Display an embedded version of a Google book. :param id: the id of the google book to display. :type id: string :param page: the start page for the book. :type id: string or int.
entailment
def code_toggle(start_show=False, message=None): """Toggling on and off code in a notebook. :param start_show: Whether to display the code or not on first load (default is False). :type start_show: bool :param message: the message used to toggle display of the code. :type message: string The tip that this idea is based on is from Damian Kao (http://blog.nextgenetics.net/?e=102).""" html ='<script>\n' if message is None: message = u'The raw code for this jupyter notebook can be hidden for easier reading.' if start_show: html += u'code_show=true;\n' else: html += u'code_show=false;\n' html+='''function code_toggle() { if (code_show){ $('div.input').show(); } else { $('div.input').hide(); } code_show = !code_show } $( document ).ready(code_toggle); </script> ''' html += message + ' To toggle on/off the raw code, click <a href="javascript:code_toggle()">here</a>.' display(HTML(html))
Toggling on and off code in a notebook. :param start_show: Whether to display the code or not on first load (default is False). :type start_show: bool :param message: the message used to toggle display of the code. :type message: string The tip that this idea is based on is from Damian Kao (http://blog.nextgenetics.net/?e=102).
entailment
def display_prediction(basis, num_basis=4, wlim=(-1.,1.), fig=None, ax=None, xlim=None, ylim=None, num_points=1000, offset=0.0, **kwargs): """Interactive widget for displaying a prediction function based on summing separate basis functions. :param basis: a function handle that calls the basis functions. :type basis: function handle. :param xlim: limits of the x axis to use. :param ylim: limits of the y axis to use. :param wlim: limits for the basis function weights.""" import numpy as np import pylab as plt if fig is not None: if ax is None: ax = fig.gca() if xlim is None: if ax is not None: xlim = ax.get_xlim() else: xlim = (-2., 2.) if ylim is None: if ax is not None: ylim = ax.get_ylim() else: ylim = (-1., 1.) # initialise X and set up W arguments. x = np.zeros((num_points, 1)) x[:, 0] = np.linspace(xlim[0], xlim[1], num_points) param_args = {} for i in range(num_basis): lim = list(wlim) if i ==0: lim[0] += offset lim[1] += offset param_args['w_' + str(i)] = tuple(lim) # helper function for making basis prediction. def predict_basis(w, basis, x, num_basis, **kwargs): Phi = basis(x, num_basis, **kwargs) f = np.dot(Phi, w) return f, Phi if type(basis) is dict: use_basis = basis[list(basis.keys())[0]] else: use_basis = basis f, Phi = predict_basis(np.zeros((num_basis, 1)), use_basis, x, num_basis, **kwargs) if fig is None: fig, ax=plt.subplots(figsize=(12,4)) ax.set_ylim(ylim) ax.set_xlim(xlim) predline = ax.plot(x, f, linewidth=2)[0] basislines = [] for i in range(num_basis): basislines.append(ax.plot(x, Phi[:, i], 'r')[0]) ax.set_ylim(ylim) ax.set_xlim(xlim) def generate_function(basis, num_basis, predline, basislines, basis_args, display_basis, offset, **kwargs): w = np.zeros((num_basis, 1)) for i in range(num_basis): w[i] = kwargs['w_'+ str(i)] f, Phi = predict_basis(w, basis, x, num_basis, **basis_args) predline.set_xdata(x[:, 0]) predline.set_ydata(f) for i in range(num_basis): basislines[i].set_xdata(x[:, 0]) basislines[i].set_ydata(Phi[:, i]) if display_basis: for i in range(num_basis): basislines[i].set_alpha(1) # make visible else: for i in range(num_basis): basislines[i].set_alpha(0) display(fig) if type(basis) is not dict: basis = fixed(basis) plt.close(fig) interact(generate_function, basis=basis, num_basis=fixed(num_basis), predline=fixed(predline), basislines=fixed(basislines), basis_args=fixed(kwargs), offset = fixed(offset), display_basis = False, **param_args)
Interactive widget for displaying a prediction function based on summing separate basis functions. :param basis: a function handle that calls the basis functions. :type basis: function handle. :param xlim: limits of the x axis to use. :param ylim: limits of the y axis to use. :param wlim: limits for the basis function weights.
entailment
def display_plots(filebase, directory=None, width=700, height=500, **kwargs): """Display a series of plots controlled by sliders. The function relies on Python string format functionality to index through a series of plots.""" def show_figure(filebase, directory, **kwargs): """Helper function to load in the relevant plot for display.""" filename = filebase.format(**kwargs) if directory is not None: filename = directory + '/' + filename display(HTML("<img src='{filename}'>".format(filename=filename))) interact(show_figure, filebase=fixed(filebase), directory=fixed(directory), **kwargs)
Display a series of plots controlled by sliders. The function relies on Python string format functionality to index through a series of plots.
entailment
def answer(part, module='mlai2014.json'): """Returns the answers to the lab classes.""" marks = json.load(open(os.path.join(data_directory, module), 'rb')) return marks['Lab ' + str(part+1)]
Returns the answers to the lab classes.
entailment
def latex(self): """Gives a latex representation of the assessment.""" output = self.latex_preamble output += self._repr_latex_() output += self.latex_post return output
Gives a latex representation of the assessment.
entailment
def html(self): """Gives an html representation of the assessment.""" output = self.html_preamble output += self._repr_html_() output += self.html_post return output
Gives an html representation of the assessment.
entailment
def marksheet(self): """Returns an pandas empty dataframe object containing rows and columns for marking. This can then be passed to a google doc that is distributed to markers for editing with the mark for each section.""" columns=['Number', 'Question', 'Correct (a fraction)', 'Max Mark', 'Comments'] mark_sheet = pd.DataFrame() for qu_number, question in enumerate(self.answers): part_no = 0 for number, part in enumerate(question): if number>0: if part[2] > 0: part_no += 1 index = str(qu_number+1) +'_'+str(part_no) frame = pd.DataFrame(columns=columns, index=[index]) frame.loc[index]['Number'] = index frame.loc[index]['Question'] = part[0] frame.loc[index]['Max Mark'] = part[2] mark_sheet = mark_sheet.append(frame) return mark_sheet.sort(columns='Number')
Returns an pandas empty dataframe object containing rows and columns for marking. This can then be passed to a google doc that is distributed to markers for editing with the mark for each section.
entailment
def total_marks(self): """Compute the total mark for the assessment.""" total = 0 for answer in self.answers: for number, part in enumerate(answer): if number>0: if part[2]>0: total+=part[2] return total
Compute the total mark for the assessment.
entailment
def download(name, course, github='SheffieldML/notebook/master/lab_classes/'): """Download a lab class from the relevant course :param course: the course short name to download the class from. :type course: string :param reference: reference to the course for downloading the class. :type reference: string :param github: github repo for downloading the course from. :type string: github repo for downloading the lab.""" github_stub = 'https://raw.githubusercontent.com/' if not name.endswith('.ipynb'): name += '.ipynb' from pods.util import download_url download_url(os.path.join(github_stub, github, course, name), store_directory=course)
Download a lab class from the relevant course :param course: the course short name to download the class from. :type course: string :param reference: reference to the course for downloading the class. :type reference: string :param github: github repo for downloading the course from. :type string: github repo for downloading the lab.
entailment
def read(self, vals): """ Read values Args: vals (list): list of strings representing values """ i = 0 {%- for field in fields %} {%- if field.is_list %} count = int(vals[i]) i += 1 for _ in range(count): obj = {{field.object_name}}() obj.read(vals[i:i + obj.field_count]) self.add_{{field.field_name}}(obj) i += obj.field_count {%- else %} if len(vals[i]) == 0: self.{{field.field_name}} = None else: self.{{field.field_name}} = vals[i] i += 1 {%- endif %} {%- endfor %}
Read values Args: vals (list): list of strings representing values
entailment
def permute(num): "Permutation for randomizing data order." if permute_data: return np.random.permutation(num) else: logging.warning("Warning not permuting data") return np.arange(num)
Permutation for randomizing data order.
entailment
def discrete(cats, name='discrete'): """Return a class category that shows the encoding""" import json ks = list(cats) for key in ks: if isinstance(key, bytes): cats[key.decode('utf-8')] = cats.pop(key) return 'discrete(' + json.dumps([cats, name]) + ')'
Return a class category that shows the encoding
entailment
def prompt_stdin(prompt): """Ask user for agreeing to data set licenses.""" # raw_input returns the empty string for "enter" yes = set(['yes', 'y']) no = set(['no','n']) try: print(prompt) if sys.version_info>=(3,0): choice = input().lower() else: choice = raw_input().lower() # would like to test for which exceptions here except: print('Stdin is not implemented.') print('You need to set') print('overide_manual_authorize=True') print('to proceed with the download. Please set that variable and continue.') raise if choice in yes: return True elif choice in no: return False else: print("Your response was a " + choice) print("Please respond with 'yes', 'y' or 'no', 'n'")
Ask user for agreeing to data set licenses.
entailment
def clear_cache(dataset_name=None): """Remove a data set from the cache""" dr = data_resources[dataset_name] if 'dirs' in dr: for dirs, files in zip(dr['dirs'], dr['files']): for dir, file in zip(dirs, files): path = os.path.join(data_path, dataset_name, dir, file) if os.path.exists(path): logging.info("clear_cache: removing " + path) os.unlink(path) for dir in dirs: path = os.path.join(data_path, dataset_name, dir) if os.path.exists(path): logging.info("clear_cache: remove directory " + path) os.rmdir(path) else: for file_list in dr['files']: for file in file_list: path = os.path.join(data_path, dataset_name, file) if os.path.exists(path): logging.info("clear_cache: remove " + path) os.unlink(path)
Remove a data set from the cache
entailment
def data_available(dataset_name=None): """Check if the data set is available on the local machine already.""" dr = data_resources[dataset_name] if 'dirs' in dr: for dirs, files in zip(dr['dirs'], dr['files']): for dir, file in zip(dirs, files): if not os.path.exists(os.path.join(data_path, dataset_name, dir, file)): return False else: for file_list in dr['files']: for file in file_list: if not os.path.exists(os.path.join(data_path, dataset_name, file)): return False return True
Check if the data set is available on the local machine already.
entailment
def download_data(dataset_name=None, prompt=prompt_stdin): """Check with the user that the are happy with terms and conditions for the data set, then download it.""" dr = data_resources[dataset_name] if not authorize_download(dataset_name, prompt=prompt): raise Exception("Permission to download data set denied.") if 'suffices' in dr: for url, files, suffices in zip(dr['urls'], dr['files'], dr['suffices']): for file, suffix in zip(files, suffices): download_url(url=os.path.join(url,file), dir_name = data_path, store_directory=dataset_name, suffix=suffix) elif 'dirs' in dr: for url, dirs, files in zip(dr['urls'], dr['dirs'], dr['files']): for file, dir in zip(files, dirs): print(file, dir) download_url( url=os.path.join(url,dir,file), dir_name = data_path, store_directory=os.path.join(dataset_name,dir) ) else: for url, files in zip(dr['urls'], dr['files']): for file in files: download_url( url=os.path.join(url,file), dir_name = data_path, store_directory=dataset_name ) return True
Check with the user that the are happy with terms and conditions for the data set, then download it.
entailment
def df2arff(df, dataset_name, pods_data): """Write an arff file from a data set loaded in from pods""" def java_simple_date(date_format): date_format = date_format.replace('%Y', 'yyyy').replace('%m', 'MM').replace('%d', 'dd').replace('%H', 'HH') return date_format.replace('%h', 'hh').replace('%M', 'mm').replace('%S', 'ss').replace('%f', 'SSSSSS') def tidy_field(atr): return str(atr).replace(' / ', '/').replace(' ', '_') types = {'STRING': [str], 'INTEGER': [int, np.int64, np.uint8], 'REAL': [np.float64]} d = {} d['attributes'] = [] for atr in df.columns: if isinstance(atr, str): if len(atr)>8 and atr[:9] == 'discrete(': import json elements = json.loads(atr[9:-1]) d['attributes'].append((tidy_field(elements[1]), list(elements[0].keys()))) mask = {} c = pd.Series(index=df.index) for key, val in elements[0].items(): mask = df[atr]==val c[mask] = key df[atr] = c continue if len(atr)>7 and atr[:8] == 'integer(': name = atr[8:-1] d['attributes'].append((tidy_field(name), 'INTEGER')) df[atr] = df[atr].astype(int) continue if len(atr)>7 and atr[:8]=='datenum(': from matplotlib.dates import num2date elements = atr[8:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = num2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>9 and atr[:10]=='timestamp(': def timestamp2date(values): import datetime """Convert timestamp into a date object""" new = [] for value in values: new.append(np.datetime64(datetime.datetime.fromtimestamp(value))) return np.asarray(new) elements = atr[10:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = timestamp2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>10 and atr[:11]=='datetime64(': elements = atr[11:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>11 and atr[:12]=='decimalyear(': def decyear2date(values): """Convert decimal year into a date object""" new = [] for i, decyear in enumerate(values): year = int(np.floor(decyear)) dec = decyear-year end = np.datetime64(str(year+1)+'-01-01') start = np.datetime64(str(year)+'-01-01') diff=end-start days = dec*(diff/np.timedelta64(1, 'D')) # round to nearest day add = np.timedelta64(int(np.round(days)), 'D') new.append(start+add) return np.asarray(new) elements = atr[12:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = decyear2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue field = tidy_field(atr) el = df[atr][0] type_assigned=False for t in types: if isinstance(el, tuple(types[t])): d['attributes'].append((field, t)) type_assigned=True break if not type_assigned: import json d['attributes'].append((field+'_json', 'STRING')) df[atr] = df[atr].apply(json.dumps) d['data'] = [] for ind, row in df.iterrows(): d['data'].append(list(row)) import textwrap as tw width = 78 d['description'] = dataset_name + "\n\n" if 'info' in pods_data and pods_data['info']: d['description'] += "\n".join(tw.wrap(pods_data['info'], width)) + "\n\n" if 'details' in pods_data and pods_data['details']: d['description'] += "\n".join(tw.wrap(pods_data['details'], width)) if 'citation' in pods_data and pods_data['citation']: d['description'] += "\n\n" + "Citation" "\n\n" + "\n".join(tw.wrap(pods_data['citation'], width)) d['relation'] = dataset_name import arff string = arff.dumps(d) import re string = re.sub(r'\@ATTRIBUTE "?(.*)_datenum_(.*)"? STRING', r'@ATTRIBUTE "\1" DATE [\2]', string) f = open(dataset_name + '.arff', 'w') f.write(string) f.close()
Write an arff file from a data set loaded in from pods
entailment
def to_arff(dataset, **kwargs): """Take a pods data set and write it as an ARFF file""" pods_data = dataset(**kwargs) vals = list(kwargs.values()) for i, v in enumerate(vals): if isinstance(v, list): vals[i] = '|'.join(v) else: vals[i] = str(v) args = '_'.join(vals) n = dataset.__name__ if len(args)>0: n += '_' + args n = n.replace(' ', '-') ks = pods_data.keys() d = None if 'Y' in ks and 'X' in ks: d = pd.DataFrame(pods_data['X']) if 'Xtest' in ks: d = d.append(pd.DataFrame(pods_data['Xtest']), ignore_index=True) if 'covariates' in ks: d.columns = pods_data['covariates'] dy = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: dy = dy.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) if 'response' in ks: dy.columns = pods_data['response'] for c in dy.columns: if c not in d.columns: d[c] = dy[c] else: d['y'+str(c)] = dy[c] elif 'Y' in ks: d = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: d = d.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) elif 'data' in ks: d = pd.DataFrame(pods_data['data']) if d is not None: df2arff(d, n, pods_data)
Take a pods data set and write it as an ARFF file
entailment
def epomeo_gpx(data_set='epomeo_gpx', sample_every=4): """Data set of three GPS traces of the same movement on Mt Epomeo in Ischia. Requires gpxpy to run.""" import gpxpy import gpxpy.gpx if not data_available(data_set): download_data(data_set) files = ['endomondo_1', 'endomondo_2', 'garmin_watch_via_endomondo','viewranger_phone', 'viewranger_tablet'] X = [] for file in files: gpx_file = open(os.path.join(data_path, 'epomeo_gpx', file + '.gpx'), 'r') gpx = gpxpy.parse(gpx_file) segment = gpx.tracks[0].segments[0] points = [point for track in gpx.tracks for segment in track.segments for point in segment.points] data = [[(point.time-datetime.datetime(2013,8,21)).total_seconds(), point.latitude, point.longitude, point.elevation] for point in points] X.append(np.asarray(data)[::sample_every, :]) gpx_file.close() if pandas_available: X = pd.DataFrame(X[0], columns=['seconds', 'latitude', 'longitude', 'elevation']) X.set_index(keys='seconds', inplace=True) return data_details_return({'X' : X, 'info' : 'Data is an array containing time in seconds, latitude, longitude and elevation in that order.'}, data_set)
Data set of three GPS traces of the same movement on Mt Epomeo in Ischia. Requires gpxpy to run.
entailment
def pmlr(volumes='all', data_set='pmlr'): """Abstracts from the Proceedings of Machine Learning Research""" if not data_available(data_set): download_data(data_set) proceedings_file = open(os.path.join(data_path, data_set, 'proceedings.yaml'), 'r') import yaml proceedings = yaml.load(proceedings_file) # Create a new resources entry for downloading contents of proceedings. data_name_full = 'pmlr_volumes' data_resources[data_name_full] = data_resources[data_set].copy() data_resources[data_name_full]['files'] = [] data_resources[data_name_full]['dirs'] = [] data_resources[data_name_full]['urls'] = [] for entry in proceedings: if volumes=='all' or entry['volume'] in volumes: file = entry['yaml'].split('/')[-1] dir = 'v' + str(entry['volume']) data_resources[data_name_full]['files'].append([file]) data_resources[data_name_full]['dirs'].append([dir]) data_resources[data_name_full]['urls'].append(data_resources[data_set]['urls'][0]) Y = [] # Download the volume data if not data_available(data_name_full): download_data(data_name_full) for entry in reversed(proceedings): volume = entry['volume'] if volumes == 'all' or volume in volumes: file = entry['yaml'].split('/')[-1] volume_file = open(os.path.join( data_path, data_name_full, 'v'+str(volume), file ), 'r') Y+=yaml.load(volume_file) if pandas_available: Y = pd.DataFrame(Y) Y['published'] = pd.to_datetime(Y['published']) #Y.columns.values[4] = json_object('authors') #Y.columns.values[7] = json_object('editors') Y['issued'] = Y['issued'].apply(lambda x: np.datetime64(datetime.datetime(*x['date-parts']))) Y['author'] = Y['author'].apply(lambda x: [str(author['given']) + ' ' + str(author['family']) for author in x]) Y['editor'] = Y['editor'].apply(lambda x: [str(editor['given']) + ' ' + str(editor['family']) for editor in x]) columns = list(Y.columns) columns[14] = datetime64_('published') columns[11] = datetime64_('issued') Y.columns = columns return data_details_return({'Y' : Y, 'info' : 'Data is a pandas data frame containing each paper, its abstract, authors, volumes and venue.'}, data_set)
Abstracts from the Proceedings of Machine Learning Research
entailment
def football_data(season='1617', data_set='football_data'): """Football data from English games since 1993. This downloads data from football-data.co.uk for the given season. """ league_dict = {'E0':0, 'E1':1, 'E2': 2, 'E3': 3, 'EC':4} def league2num(string): if isinstance(string, bytes): string = string.decode('utf-8') return league_dict[string] def football2num(string): if isinstance(string, bytes): string = string.decode('utf-8') if string in football_dict: return football_dict[string] else: football_dict[string] = len(football_dict)+1 return len(football_dict)+1 def datestr2num(s): import datetime from matplotlib.dates import date2num return date2num(datetime.datetime.strptime(s.decode('utf-8'),'%d/%m/%y')) data_set_season = data_set + '_' + season data_resources[data_set_season] = copy.deepcopy(data_resources[data_set]) data_resources[data_set_season]['urls'][0]+=season + '/' start_year = int(season[0:2]) end_year = int(season[2:4]) files = ['E0.csv', 'E1.csv', 'E2.csv', 'E3.csv'] if start_year>4 and start_year < 93: files += ['EC.csv'] data_resources[data_set_season]['files'] = [files] if not data_available(data_set_season): download_data(data_set_season) start = True for file in reversed(files): filename = os.path.join(data_path, data_set_season, file) # rewrite files removing blank rows. writename = os.path.join(data_path, data_set_season, 'temp.csv') input = open(filename, encoding='ISO-8859-1') output = open(writename, 'w') writer = csv.writer(output) for row in csv.reader(input): if any(field.strip() for field in row): writer.writerow(row) input.close() output.close() table = np.loadtxt(writename,skiprows=1, usecols=(0, 1, 2, 3, 4, 5), converters = {0: league2num, 1: datestr2num, 2:football2num, 3:football2num}, delimiter=',') if start: X = table[:, :4] Y = table[:, 4:] start=False else: X = np.append(X, table[:, :4], axis=0) Y = np.append(Y, table[:, 4:], axis=0) return data_details_return({'X': X, 'Y': Y, 'covariates': [discrete(league_dict, 'league'), datenum('match_day'), discrete(football_dict, 'home team'), discrete(football_dict, 'away team')], 'response': [integer('home score'), integer('away score')]}, data_set)
Football data from English games since 1993. This downloads data from football-data.co.uk for the given season.
entailment
def lee_yeast_ChIP(data_set='lee_yeast_ChIP'): """Yeast ChIP data from Lee et al.""" if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'binding_by_gene.tsv') S = read_csv(filename, header=1, index_col=0, sep='\t') transcription_factors = [col for col in S.columns if col[:7] != 'Unnamed'] annotations = S[['Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3']] S = S[transcription_factors] return data_details_return({'annotations' : annotations, 'Y' : S, 'transcription_factors': transcription_factors}, data_set)
Yeast ChIP data from Lee et al.
entailment
def google_trends(query_terms=['big data', 'machine learning', 'data science'], data_set='google_trends', refresh_data=False): """ Data downloaded from Google trends for given query terms. Warning, if you use this function multiple times in a row you get blocked due to terms of service violations. The function will cache the result of any query in an attempt to avoid this. If you wish to refresh an old query set refresh_data to True. The function is inspired by this notebook: http://nbviewer.ipython.org/github/sahuguet/notebooks/blob/master/GoogleTrends%20meet%20Notebook.ipynb """ query_terms.sort() import pandas as pd # Create directory name for data dir_path = os.path.join(data_path,'google_trends') if not os.path.isdir(dir_path): os.makedirs(dir_path) dir_name = '-'.join(query_terms) dir_name = dir_name.replace(' ', '_') dir_path = os.path.join(dir_path,dir_name) file = 'data.csv' file_name = os.path.join(dir_path,file) if not os.path.exists(file_name) or refresh_data: print("Accessing Google trends to acquire the data. Note that repeated accesses will result in a block due to a google terms of service violation. Failure at this point may be due to such blocks.") # quote the query terms. quoted_terms = [] for term in query_terms: quoted_terms.append(quote(term)) print("Query terms: ", ', '.join(query_terms)) print("Fetching query:") query = 'http://www.google.com/trends/fetchComponent?q=%s&cid=TIMESERIES_GRAPH_0&export=3' % ",".join(quoted_terms) data = urlopen(query).read().decode('utf8') print("Done.") # In the notebook they did some data cleaning: remove Javascript header+footer, and translate new Date(....,..,..) into YYYY-MM-DD. header = """// Data table response\ngoogle.visualization.Query.setResponse(""" data = data[len(header):-2] data = re.sub('new Date\((\d+),(\d+),(\d+)\)', (lambda m: '"%s-%02d-%02d"' % (m.group(1).strip(), 1+int(m.group(2)), int(m.group(3)))), data) timeseries = json.loads(data) columns = [k['label'] for k in timeseries['table']['cols']] rows = list(map(lambda x: [k['v'] for k in x['c']], timeseries['table']['rows'])) df = pd.DataFrame(rows, columns=columns) if not os.path.isdir(dir_path): os.makedirs(dir_path) df.to_csv(file_name) else: print("Reading cached data for google trends. To refresh the cache set 'refresh_data=True' when calling this function.") print("Query terms: ", ', '.join(query_terms)) df = pd.read_csv(file_name, parse_dates=[0]) columns = df.columns terms = len(query_terms) import datetime from matplotlib.dates import date2num X = np.asarray([(date2num(datetime.datetime.strptime(df.ix[row]['Date'], '%Y-%m-%d')), i) for i in range(terms) for row in df.index]) Y = np.asarray([[df.ix[row][query_terms[i]]] for i in range(terms) for row in df.index ]) output_info = columns[1:] cats = {} for i in range(terms): cats[query_terms[i]] = i return data_details_return({'data frame' : df, 'X': X, 'Y': Y, 'query_terms': query_terms, 'info': "Data downloaded from google trends with query terms: " + ', '.join(query_terms) + '.', 'covariates' : [datenum('date'), discrete(cats, 'query_terms')], 'response' : ['normalized interest']}, data_set)
Data downloaded from Google trends for given query terms. Warning, if you use this function multiple times in a row you get blocked due to terms of service violations. The function will cache the result of any query in an attempt to avoid this. If you wish to refresh an old query set refresh_data to True. The function is inspired by this notebook: http://nbviewer.ipython.org/github/sahuguet/notebooks/blob/master/GoogleTrends%20meet%20Notebook.ipynb
entailment
def osu_run1(data_set='osu_run1', sample_every=4): """Ohio State University's Run1 motion capture data set.""" path = os.path.join(data_path, data_set) if not data_available(data_set): import zipfile download_data(data_set) zip = zipfile.ZipFile(os.path.join(data_path, data_set, 'run1TXT.ZIP'), 'r') for name in zip.namelist(): zip.extract(name, path) from . import mocap Y, connect = mocap.load_text_data('Aug210106', path) Y = Y[0:-1:sample_every, :] return data_details_return({'Y': Y, 'connect' : connect}, data_set)
Ohio State University's Run1 motion capture data set.
entailment
def toy_linear_1d_classification(seed=default_seed): """Simple classification data in one dimension for illustrating models.""" def sample_class(f): p = 1. / (1. + np.exp(-f)) c = np.random.binomial(1, p) c = np.where(c, 1, -1) return c np.random.seed(seed=seed) x1 = np.random.normal(-3, 5, 20) x2 = np.random.normal(3, 5, 20) X = (np.r_[x1, x2])[:, None] return {'X': X, 'Y': sample_class(2.*X), 'F': 2.*X, 'covariates' : ['X'], 'response': [discrete({'positive': 1, 'negative': -1})],'seed' : seed}
Simple classification data in one dimension for illustrating models.
entailment
def airline_delay(data_set='airline_delay', num_train=700000, num_test=100000, seed=default_seed): """Airline delay data used in Gaussian Processes for Big Data by Hensman, Fusi and Lawrence""" if not data_available(data_set): download_data(data_set) dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'filtered_data.pickle') # 1. Load the dataset import pandas as pd data = pd.read_pickle(filename) # WARNING: removing year data.pop('Year') # Get data matrices Yall = data.pop('ArrDelay').values[:,None] Xall = data.values # Subset the data (memory!!) all_data = num_train+num_test Xall = Xall[:all_data] Yall = Yall[:all_data] # Get testing points np.random.seed(seed=seed) N_shuffled = permute(Yall.shape[0]) train, test = N_shuffled[num_test:], N_shuffled[:num_test] X, Y = Xall[train], Yall[train] Xtest, Ytest = Xall[test], Yall[test] covariates = ['month', 'day of month', 'day of week', 'departure time', 'arrival time', 'air time', 'distance to travel', 'age of aircraft / years'] response = ['delay'] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'seed' : seed, 'info': "Airline delay data used for demonstrating Gaussian processes for big data.", 'covariates': covariates, 'response': response}, data_set)
Airline delay data used in Gaussian Processes for Big Data by Hensman, Fusi and Lawrence
entailment
def olympic_sprints(data_set='rogers_girolami_data'): """All olympics sprint winning times for multiple output prediction.""" X = np.zeros((0, 2)) Y = np.zeros((0, 1)) cats = {} for i, dataset in enumerate([olympic_100m_men, olympic_100m_women, olympic_200m_men, olympic_200m_women, olympic_400m_men, olympic_400m_women]): data = dataset() year = data['X'] time = data['Y'] X = np.vstack((X, np.hstack((year, np.ones_like(year)*i)))) Y = np.vstack((Y, time)) cats[dataset.__name__] = i data['X'] = X data['Y'] = Y data['info'] = "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning." return data_details_return({ 'X': X, 'Y': Y, 'covariates' : [decimalyear('year', '%Y'), discrete(cats, 'event')], 'response' : ['time'], 'info': "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning.", 'output_info': { 0:'100m Men', 1:'100m Women', 2:'200m Men', 3:'200m Women', 4:'400m Men', 5:'400m Women'} }, data_set)
All olympics sprint winning times for multiple output prediction.
entailment