sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def extract_flatfield(prihdr, scihdu): """Extract flatfield data from ``PFLTFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- invflat : ndarray or `None` Inverse flatfield, if any. Multiply this to apply ``FLATCORR``. """ for ff in ['DFLTFILE', 'LFLTFILE']: vv = prihdr.get(ff, 'N/A') if vv != 'N/A': warnings.warn('{0}={1} is not accounted for'.format(ff, vv), AstropyUserWarning) flatfile = prihdr.get('PFLTFILE', 'N/A') if flatfile == 'N/A': return None flatfile = from_irafpath(flatfile) ampstring = prihdr['CCDAMP'] with fits.open(flatfile) as hduflat: if ampstring == 'ABCD': invflat = np.concatenate( (1 / hduflat['sci', 1].data, 1 / hduflat['sci', 2].data[::-1, :]), axis=1) elif ampstring in ('A', 'B', 'AB'): invflat = 1 / extract_ref(scihdu, hduflat['sci', 2]) else: invflat = 1 / extract_ref(scihdu, hduflat['sci', 1]) return invflat
Extract flatfield data from ``PFLTFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- invflat : ndarray or `None` Inverse flatfield, if any. Multiply this to apply ``FLATCORR``.
entailment
def from_irafpath(irafpath): """Resolve IRAF path like ``jref$`` into actual file path. Parameters ---------- irafpath : str Path containing IRAF syntax. Returns ------- realpath : str Actual file path. If input does not follow ``path$filename`` format, then this is the same as input. Raises ------ ValueError The required environment variable is undefined. """ s = irafpath.split('$') if len(s) != 2: return irafpath if len(s[0]) == 0: return irafpath try: refdir = os.environ[s[0]] except KeyError: raise ValueError('{0} environment variable undefined'.format(s[0])) return os.path.join(refdir, s[1])
Resolve IRAF path like ``jref$`` into actual file path. Parameters ---------- irafpath : str Path containing IRAF syntax. Returns ------- realpath : str Actual file path. If input does not follow ``path$filename`` format, then this is the same as input. Raises ------ ValueError The required environment variable is undefined.
entailment
def extract_ref(scihdu, refhdu): """Extract section of the reference image that corresponds to the given science image. This only returns a view, not a copy of the reference image's array. Parameters ---------- scihdu, refhdu : obj Extension HDU's of the science and reference image, respectively. Returns ------- refdata : array-like Section of the relevant reference image. Raises ------ NotImplementedError Either science or reference data are binned. ValueError Extracted section size mismatch. """ same_size, rx, ry, x0, y0 = find_line(scihdu, refhdu) # Use the whole reference image if same_size: return refhdu.data # Binned data if rx != 1 or ry != 1: raise NotImplementedError( 'Either science or reference data are binned') # Extract a view of the sub-section ny, nx = scihdu.data.shape refdata = refhdu.data[y0:y0+ny, x0:x0+nx] if refdata.shape != (ny, nx): raise ValueError('Extracted reference image is {0} but science image ' 'is {1}'.format(refdata.shape, (ny, nx))) return refdata
Extract section of the reference image that corresponds to the given science image. This only returns a view, not a copy of the reference image's array. Parameters ---------- scihdu, refhdu : obj Extension HDU's of the science and reference image, respectively. Returns ------- refdata : array-like Section of the relevant reference image. Raises ------ NotImplementedError Either science or reference data are binned. ValueError Extracted section size mismatch.
entailment
def find_line(scihdu, refhdu): """Obtain bin factors and corner location to extract and bin the appropriate subset of a reference image to match a science image. If the science image has zero offset and is the same size and binning as the reference image, ``same_size`` will be set to `True`. Otherwise, the values of ``rx``, ``ry``, ``x0``, and ``y0`` will be assigned. Normally the science image will be binned the same or more than the reference image. In that case, ``rx`` and ``ry`` will be the bin size of the science image divided by the bin size of the reference image. If the binning of the reference image is greater than the binning of the science image, the ratios (``rx`` and ``ry``) of the bin sizes will be the reference image size divided by the science image bin size. This is not necessarily an error. .. note:: Translated from ``calacs/lib/findbin.c``. Parameters ---------- scihdu, refhdu : obj Extension HDU's of the science and reference image, respectively. Returns ------- same_size : bool `True` if zero offset and same size and binning. rx, ry : int Ratio of bin sizes. x0, y0 : int Location of start of subimage in reference image. Raises ------ ValueError Science and reference data size mismatch. """ sci_bin, sci_corner = get_corner(scihdu.header) ref_bin, ref_corner = get_corner(refhdu.header) # We can use the reference image directly, without binning # and without extracting a subset. if (sci_corner[0] == ref_corner[0] and sci_corner[1] == ref_corner[1] and sci_bin[0] == ref_bin[0] and sci_bin[1] == ref_bin[1] and scihdu.data.shape[1] == refhdu.data.shape[1]): same_size = True rx = 1 ry = 1 x0 = 0 y0 = 0 # Reference image is binned more than the science image. elif ref_bin[0] > sci_bin[0] or ref_bin[1] > sci_bin[1]: same_size = False rx = ref_bin[0] / sci_bin[0] ry = ref_bin[1] / sci_bin[1] x0 = (sci_corner[0] - ref_corner[0]) / ref_bin[0] y0 = (sci_corner[1] - ref_corner[1]) / ref_bin[1] # For subarray input images, whether they are binned or not. else: same_size = False # Ratio of bin sizes. ratiox = sci_bin[0] / ref_bin[0] ratioy = sci_bin[1] / ref_bin[1] if (ratiox * ref_bin[0] != sci_bin[0] or ratioy * ref_bin[1] != sci_bin[1]): raise ValueError('Science and reference data size mismatch') # cshift is the offset in units of unbinned pixels. # Divide by ref_bin to convert to units of pixels in the ref image. cshift = (sci_corner[0] - ref_corner[0], sci_corner[1] - ref_corner[1]) xzero = cshift[0] / ref_bin[0] yzero = cshift[1] / ref_bin[1] if (xzero * ref_bin[0] != cshift[0] or yzero * ref_bin[1] != cshift[1]): warnings.warn('Subimage offset not divisible by bin size', AstropyUserWarning) rx = ratiox ry = ratioy x0 = xzero y0 = yzero # Ensure integer index x0 = int(x0) y0 = int(y0) return same_size, rx, ry, x0, y0
Obtain bin factors and corner location to extract and bin the appropriate subset of a reference image to match a science image. If the science image has zero offset and is the same size and binning as the reference image, ``same_size`` will be set to `True`. Otherwise, the values of ``rx``, ``ry``, ``x0``, and ``y0`` will be assigned. Normally the science image will be binned the same or more than the reference image. In that case, ``rx`` and ``ry`` will be the bin size of the science image divided by the bin size of the reference image. If the binning of the reference image is greater than the binning of the science image, the ratios (``rx`` and ``ry``) of the bin sizes will be the reference image size divided by the science image bin size. This is not necessarily an error. .. note:: Translated from ``calacs/lib/findbin.c``. Parameters ---------- scihdu, refhdu : obj Extension HDU's of the science and reference image, respectively. Returns ------- same_size : bool `True` if zero offset and same size and binning. rx, ry : int Ratio of bin sizes. x0, y0 : int Location of start of subimage in reference image. Raises ------ ValueError Science and reference data size mismatch.
entailment
def get_corner(hdr, rsize=1): """Obtain bin and corner information for a subarray. ``LTV1``, ``LTV2``, ``LTM1_1``, and ``LTM2_2`` keywords are extracted from the given extension header and converted to bin and corner values (0-indexed). ``LTV1`` for the CCD uses the beginning of the illuminated portion as the origin, not the beginning of the overscan region. Thus, the computed X-corner has the same origin as ``LTV1``, which is what we want, but it differs from the ``CENTERA1`` header keyword, which has the beginning of the overscan region as origin. .. note:: Translated from ``calacs/lib/getcorner.c``. Parameters ---------- hdr : obj Extension header. rsize : int, optional Size of reference pixel in units of high-res pixels. Returns ------- bin : tuple of int Pixel size in X and Y. corner : tuple of int Corner of subarray in X and Y. """ ltm, ltv = get_lt(hdr) return from_lt(rsize, ltm, ltv)
Obtain bin and corner information for a subarray. ``LTV1``, ``LTV2``, ``LTM1_1``, and ``LTM2_2`` keywords are extracted from the given extension header and converted to bin and corner values (0-indexed). ``LTV1`` for the CCD uses the beginning of the illuminated portion as the origin, not the beginning of the overscan region. Thus, the computed X-corner has the same origin as ``LTV1``, which is what we want, but it differs from the ``CENTERA1`` header keyword, which has the beginning of the overscan region as origin. .. note:: Translated from ``calacs/lib/getcorner.c``. Parameters ---------- hdr : obj Extension header. rsize : int, optional Size of reference pixel in units of high-res pixels. Returns ------- bin : tuple of int Pixel size in X and Y. corner : tuple of int Corner of subarray in X and Y.
entailment
def get_lt(hdr): """Obtain the LTV and LTM keyword values. Note that this returns the values just as read from the header, which means in particular that the LTV values are for one-indexed pixel coordinates. LTM keywords are the diagonal elements of MWCS linear transformation matrix, while LTV's are MWCS linear transformation vector (1-indexed). .. note:: Translated from ``calacs/lib/getlt.c``. Parameters ---------- hdr : obj Extension header. Returns ------- ltm, ltv : tuple of float ``(LTM1_1, LTM2_2)`` and ``(LTV1, LTV2)``. Values are ``(1, 1)`` and ``(0, 0)`` if not found, to accomodate reference files with missing info. Raises ------ ValueError Invalid LTM* values. """ ltm = (hdr.get('LTM1_1', 1.0), hdr.get('LTM2_2', 1.0)) if ltm[0] <= 0 or ltm[1] <= 0: raise ValueError('(LTM1_1, LTM2_2) = {0} is invalid'.format(ltm)) ltv = (hdr.get('LTV1', 0.0), hdr.get('LTV2', 0.0)) return ltm, ltv
Obtain the LTV and LTM keyword values. Note that this returns the values just as read from the header, which means in particular that the LTV values are for one-indexed pixel coordinates. LTM keywords are the diagonal elements of MWCS linear transformation matrix, while LTV's are MWCS linear transformation vector (1-indexed). .. note:: Translated from ``calacs/lib/getlt.c``. Parameters ---------- hdr : obj Extension header. Returns ------- ltm, ltv : tuple of float ``(LTM1_1, LTM2_2)`` and ``(LTV1, LTV2)``. Values are ``(1, 1)`` and ``(0, 0)`` if not found, to accomodate reference files with missing info. Raises ------ ValueError Invalid LTM* values.
entailment
def from_lt(rsize, ltm, ltv): """Compute the corner location and pixel size in units of unbinned pixels. .. note:: Translated from ``calacs/lib/fromlt.c``. Parameters ---------- rsize : int Reference pixel size. Usually 1. ltm, ltv : tuple of float See :func:`get_lt`. Returns ------- bin : tuple of int Pixel size in X and Y. corner : tuple of int Corner of subarray in X and Y. """ dbinx = rsize / ltm[0] dbiny = rsize / ltm[1] dxcorner = (dbinx - rsize) - dbinx * ltv[0] dycorner = (dbiny - rsize) - dbiny * ltv[1] # Round off to the nearest integer. bin = (_nint(dbinx), _nint(dbiny)) corner = (_nint(dxcorner), _nint(dycorner)) return bin, corner
Compute the corner location and pixel size in units of unbinned pixels. .. note:: Translated from ``calacs/lib/fromlt.c``. Parameters ---------- rsize : int Reference pixel size. Usually 1. ltm, ltv : tuple of float See :func:`get_lt`. Returns ------- bin : tuple of int Pixel size in X and Y. corner : tuple of int Corner of subarray in X and Y.
entailment
def hdr_vals_for_overscan(root): """Retrieve header keyword values from RAW and SPT FITS files to pass on to :func:`check_oscntab` and :func:`check_overscan`. Parameters ---------- root : str Rootname of the observation. Can be relative path to the file excluding the type of FITS file and extension, e.g., '/my/path/jxxxxxxxq'. Returns ------- ccdamp : str Amplifiers used to read out the CCDs. xstart : int Starting column of the readout in detector coordinates. ystart : int Starting row of the readout in detector coordinates. xsize : int Number of columns in the readout. ysize : int Number of rows in the readout. """ with fits.open(root + '_spt.fits') as hdu: spthdr = hdu[0].header with fits.open(root + '_raw.fits') as hdu: prihdr = hdu[0].header xstart = spthdr['SS_A1CRN'] ystart = spthdr['SS_A2CRN'] xsize = spthdr['SS_A1SZE'] ysize = spthdr['SS_A2SZE'] ccdamp = prihdr['CCDAMP'] return ccdamp, xstart, ystart, xsize, ysize
Retrieve header keyword values from RAW and SPT FITS files to pass on to :func:`check_oscntab` and :func:`check_overscan`. Parameters ---------- root : str Rootname of the observation. Can be relative path to the file excluding the type of FITS file and extension, e.g., '/my/path/jxxxxxxxq'. Returns ------- ccdamp : str Amplifiers used to read out the CCDs. xstart : int Starting column of the readout in detector coordinates. ystart : int Starting row of the readout in detector coordinates. xsize : int Number of columns in the readout. ysize : int Number of rows in the readout.
entailment
def check_oscntab(oscntab, ccdamp, xsize, ysize, leading, trailing): """Check if the supplied parameters are in the ``OSCNTAB`` reference file. .. note:: Even if an entry does not exist in ``OSCNTAB``, as long as the subarray does not have any overscan, it should not be a problem for CALACS. .. note:: This function does not check the virtual bias rows. Parameters ---------- oscntab : str Path to the ``OSCNTAB`` reference file being checked against. ccdamp : str Amplifier(s) used to read out the CCDs. xsize : int Number of columns in the readout. ysize : int Number of rows in the readout. leading : int Number of columns in the bias section ("TRIMX1" to be trimmed off by ``BLEVCORR``) on the A/C amplifiers side of the CCDs. trailing : int Number of columns in the bias section ("TRIMX2" to be trimmed off by ``BLEVCORR``) on the B/D amplifiers side of the CCDs. Returns ------- supported : bool Result of test if input parameters are in ``OSCNTAB``. """ tab = Table.read(oscntab) ccdamp = ccdamp.lower().rstrip() for row in tab: if (row['CCDAMP'].lower().rstrip() in ccdamp and row['NX'] == xsize and row['NY'] == ysize and row['TRIMX1'] == leading and row['TRIMX2'] == trailing): return True return False
Check if the supplied parameters are in the ``OSCNTAB`` reference file. .. note:: Even if an entry does not exist in ``OSCNTAB``, as long as the subarray does not have any overscan, it should not be a problem for CALACS. .. note:: This function does not check the virtual bias rows. Parameters ---------- oscntab : str Path to the ``OSCNTAB`` reference file being checked against. ccdamp : str Amplifier(s) used to read out the CCDs. xsize : int Number of columns in the readout. ysize : int Number of rows in the readout. leading : int Number of columns in the bias section ("TRIMX1" to be trimmed off by ``BLEVCORR``) on the A/C amplifiers side of the CCDs. trailing : int Number of columns in the bias section ("TRIMX2" to be trimmed off by ``BLEVCORR``) on the B/D amplifiers side of the CCDs. Returns ------- supported : bool Result of test if input parameters are in ``OSCNTAB``.
entailment
def check_overscan(xstart, xsize, total_prescan_pixels=24, total_science_pixels=4096): """Check image for bias columns. Parameters ---------- xstart : int Starting column of the readout in detector coordinates. xsize : int Number of columns in the readout. total_prescan_pixels : int Total prescan pixels for a single amplifier on a detector. Default is 24 for WFC. total_science_pixels : int Total science pixels across a detector. Default is 4096 for WFC (across two amplifiers). Returns ------- hasoverscan : bool Indication if there are bias columns in the image. leading : int Number of bias columns on the A/C amplifiers side of the CCDs ("TRIMX1" in ``OSCNTAB``). trailing : int Number of bias columns on the B/D amplifiers side of the CCDs ("TRIMX2" in ``OSCNTAB``). """ hasoverscan = False leading = 0 trailing = 0 if xstart < total_prescan_pixels: hasoverscan = True leading = abs(xstart - total_prescan_pixels) if (xstart + xsize) > total_science_pixels: hasoverscan = True trailing = abs(total_science_pixels - (xstart + xsize - total_prescan_pixels)) return hasoverscan, leading, trailing
Check image for bias columns. Parameters ---------- xstart : int Starting column of the readout in detector coordinates. xsize : int Number of columns in the readout. total_prescan_pixels : int Total prescan pixels for a single amplifier on a detector. Default is 24 for WFC. total_science_pixels : int Total science pixels across a detector. Default is 4096 for WFC (across two amplifiers). Returns ------- hasoverscan : bool Indication if there are bias columns in the image. leading : int Number of bias columns on the A/C amplifiers side of the CCDs ("TRIMX1" in ``OSCNTAB``). trailing : int Number of bias columns on the B/D amplifiers side of the CCDs ("TRIMX2" in ``OSCNTAB``).
entailment
def process_request(self, request): """ Ignore unnecessary actions for static file requests, posts, or ajax requests. We're only interested in redirecting following a 'natural' request redirection to the `wagtailadmin_explore_root` or `wagtailadmin_explore` views. """ referer_url = request.META.get('HTTP_REFERER') return_to_index_url = request.session.get('return_to_index_url') try: if all(( return_to_index_url, referer_url, request.method == 'GET', not request.is_ajax(), resolve(request.path).url_name in ('wagtailadmin_explore_root', 'wagtailadmin_explore'), )): perform_redirection = False referer_match = resolve(urlparse(referer_url).path) if all(( referer_match.namespace == 'wagtailadmin_pages', referer_match.url_name in ( 'add', 'edit', 'delete', 'unpublish', 'copy' ), )): perform_redirection = True elif all(( not referer_match.namespace, referer_match.url_name in ( 'wagtailadmin_pages_create', 'wagtailadmin_pages_edit', 'wagtailadmin_pages_delete', 'wagtailadmin_pages_unpublish' ), )): perform_redirection = True if perform_redirection: del request.session['return_to_index_url'] return HttpResponseRedirect(return_to_index_url) except Resolver404: pass return None
Ignore unnecessary actions for static file requests, posts, or ajax requests. We're only interested in redirecting following a 'natural' request redirection to the `wagtailadmin_explore_root` or `wagtailadmin_explore` views.
entailment
def acs2d(input, exec_path='', time_stamps=False, verbose=False, quiet=False, exe_args=None): r""" Run the acs2d.e executable as from the shell. Output is automatically named based on input suffix: +--------------------+----------------+------------------------------+ | INPUT | OUTPUT | EXPECTED DATA | +====================+================+==============================+ | ``*_raw.fits`` | ``*_flt.fits`` | SBC image. | +--------------------+----------------+------------------------------+ | ``*_blv_tmp.fits`` | ``*_flt.fits`` | ACSCCD output. | +--------------------+----------------+------------------------------+ | ``*_blc_tmp.fits`` | ``*_flc.fits`` | ACSCCD output with PCTECORR. | +--------------------+----------------+------------------------------+ | ``*_crj_tmp.fits`` | ``*_crj.fits`` | ACSREJ output. | +--------------------+----------------+------------------------------+ | ``*_crc_tmp.fits`` | ``*_crc.fits`` | ACSREJ output with PCTECORR. | +--------------------+----------------+------------------------------+ Parameters ---------- input : str or list of str Input filenames in one of these formats: * a single filename ('j1234567q_blv_tmp.fits') * a Python list of filenames * a partial filename with wildcards ('\*blv_tmp.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) exec_path : str, optional The complete path to ACS2D executable. If not given, run ACS2D given by 'acs2d.e'. time_stamps : bool, optional Set to True to turn on the printing of time stamps. verbose : bool, optional Set to True for verbose output. quiet : bool, optional Set to True for quiet output. exe_args : list, optional Arbitrary arguments passed to underlying executable call. Note: Implementation uses subprocess.call and whitespace is not permitted. E.g. use exe_args=['--nThreads', '1'] """ from stsci.tools import parseinput # Optional package dependency if exec_path: if not os.path.exists(exec_path): raise OSError('Executable not found: ' + exec_path) call_list = [exec_path] else: call_list = ['acs2d.e'] # Parse input to get list of filenames to process. # acs2d.e only takes 'file1,file2,...' infiles, dummy_out = parseinput.parseinput(input) call_list.append(','.join(infiles)) if time_stamps: call_list.append('-t') if verbose: call_list.append('-v') if quiet: call_list.append('-q') if exe_args: call_list.extend(exe_args) subprocess.check_call(call_list)
r""" Run the acs2d.e executable as from the shell. Output is automatically named based on input suffix: +--------------------+----------------+------------------------------+ | INPUT | OUTPUT | EXPECTED DATA | +====================+================+==============================+ | ``*_raw.fits`` | ``*_flt.fits`` | SBC image. | +--------------------+----------------+------------------------------+ | ``*_blv_tmp.fits`` | ``*_flt.fits`` | ACSCCD output. | +--------------------+----------------+------------------------------+ | ``*_blc_tmp.fits`` | ``*_flc.fits`` | ACSCCD output with PCTECORR. | +--------------------+----------------+------------------------------+ | ``*_crj_tmp.fits`` | ``*_crj.fits`` | ACSREJ output. | +--------------------+----------------+------------------------------+ | ``*_crc_tmp.fits`` | ``*_crc.fits`` | ACSREJ output with PCTECORR. | +--------------------+----------------+------------------------------+ Parameters ---------- input : str or list of str Input filenames in one of these formats: * a single filename ('j1234567q_blv_tmp.fits') * a Python list of filenames * a partial filename with wildcards ('\*blv_tmp.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) exec_path : str, optional The complete path to ACS2D executable. If not given, run ACS2D given by 'acs2d.e'. time_stamps : bool, optional Set to True to turn on the printing of time stamps. verbose : bool, optional Set to True for verbose output. quiet : bool, optional Set to True for quiet output. exe_args : list, optional Arbitrary arguments passed to underlying executable call. Note: Implementation uses subprocess.call and whitespace is not permitted. E.g. use exe_args=['--nThreads', '1']
entailment
def run(configobj=None): """ TEAL interface for the `acs2d` function. """ acs2d(configobj['input'], exec_path=configobj['exec_path'], time_stamps=configobj['time_stamps'], verbose=configobj['verbose'], quiet=configobj['quiet'] )
TEAL interface for the `acs2d` function.
entailment
def run(configobj=None): """ TEAL interface for the `acscte` function. """ acscte(configobj['input'], exec_path=configobj['exec_path'], time_stamps=configobj['time_stamps'], verbose=configobj['verbose'], quiet=configobj['quiet'], single_core=configobj['single_core'] )
TEAL interface for the `acscte` function.
entailment
def _check_inputs(self): """Check the inputs to ensure they are valid. Returns ------- status : bool True if all inputs are valid, False if one is not. """ valid_detector = True valid_filter = True valid_date = True # Determine the submitted detector is valid if self.detector not in self._valid_detectors: msg = ('{} is not a valid detector option.\n' 'Please choose one of the following:\n{}\n' '{}'.format(self.detector, '\n'.join(self._valid_detectors), self._msg_div)) LOG.error(msg) valid_detector = False # Determine if the submitted filter is valid if (self.filt is not None and valid_detector and self.filt not in self.valid_filters[self.detector]): msg = ('{} is not a valid filter for {}\n' 'Please choose one of the following:\n{}\n' '{}'.format(self.filt, self.detector, '\n'.join(self.valid_filters[self.detector]), self._msg_div)) LOG.error(msg) valid_filter = False # Determine if the submitted date is valid date_check = self._check_date() if date_check is not None: LOG.error('{}\n{}'.format(date_check, self._msg_div)) valid_date = False if not valid_detector or not valid_filter or not valid_date: return False return True
Check the inputs to ensure they are valid. Returns ------- status : bool True if all inputs are valid, False if one is not.
entailment
def _check_date(self, fmt='%Y-%m-%d'): """Convenience method for determining if the input date is valid. Parameters ---------- fmt : str The format of the date string. The default is ``%Y-%m-%d``, which corresponds to ``YYYY-MM-DD``. Returns ------- status : str or `None` If the date is valid, returns `None`. If the date is invalid, returns a message explaining the issue. """ result = None try: dt_obj = dt.datetime.strptime(self.date, fmt) except ValueError: result = '{} does not match YYYY-MM-DD format'.format(self.date) else: if dt_obj < self._acs_installation_date: result = ('The observation date cannot occur ' 'before ACS was installed ({})' .format(self._acs_installation_date.strftime(fmt))) elif dt_obj > self._extrapolation_date: result = ('The observation date cannot occur after the ' 'maximum allowable date, {}. Extrapolations of the ' 'instrument throughput after this date lead to ' 'high uncertainties and are therefore invalid.' .format(self._extrapolation_date.strftime(fmt))) finally: return result
Convenience method for determining if the input date is valid. Parameters ---------- fmt : str The format of the date string. The default is ``%Y-%m-%d``, which corresponds to ``YYYY-MM-DD``. Returns ------- status : str or `None` If the date is valid, returns `None`. If the date is invalid, returns a message explaining the issue.
entailment
def _submit_request(self): """Submit a request to the ACS Zeropoint Calculator. If an exception is raised during the request, an error message is given. Otherwise, the response is saved in the corresponding attribute. """ try: self._response = urlopen(self._url) except URLError as e: msg = ('{}\n{}\nThe query failed! Please check your inputs. ' 'If the error persists, submit a ticket to the ' 'ACS Help Desk at hsthelp.stsci.edu with the error message ' 'displayed above.'.format(str(e), self._msg_div)) LOG.error(msg) self._failed = True else: self._failed = False
Submit a request to the ACS Zeropoint Calculator. If an exception is raised during the request, an error message is given. Otherwise, the response is saved in the corresponding attribute.
entailment
def _parse_and_format(self): """ Parse and format the results returned by the ACS Zeropoint Calculator. Using ``beautifulsoup4``, find all the ``<tb> </tb>`` tags present in the response. Format the results into an astropy.table.QTable with corresponding units and assign it to the zpt_table attribute. """ soup = BeautifulSoup(self._response.read(), 'html.parser') # Grab all elements in the table returned by the ZPT calc. td = soup.find_all('td') # Remove the units attached to PHOTFLAM and PHOTPLAM column names. td = [val.text.split(' ')[0] for val in td] # Turn the single list into a 2-D numpy array data = np.reshape(td, (int(len(td) / self._block_size), self._block_size)) # Create the QTable, note that sometimes self._response will be empty # even though the return was successful; hence the try/except to catch # any potential index errors. Provide the user with a message and # set the zpt_table to None. try: tab = QTable(data[1:, :], names=data[0], dtype=[str, float, float, float, float, float]) except IndexError as e: msg = ('{}\n{}\n There was an issue parsing the request. ' 'Try resubmitting the query. If this issue persists, please ' 'submit a ticket to the Help Desk at' 'https://stsci.service-now.com/hst' .format(e, self._msg_div)) LOG.info(msg) self._zpt_table = None else: # If and only if no exception was raised, attach the units to each # column of the QTable. Note we skip the FILTER column because # Quantity objects in astropy must be numerical (i.e. not str) for col in tab.colnames: if col.lower() == 'filter': continue tab[col].unit = self._data_units[col] self._zpt_table = tab
Parse and format the results returned by the ACS Zeropoint Calculator. Using ``beautifulsoup4``, find all the ``<tb> </tb>`` tags present in the response. Format the results into an astropy.table.QTable with corresponding units and assign it to the zpt_table attribute.
entailment
def fetch(self): """Submit the request to the ACS Zeropoints Calculator. This method will: * submit the request * parse the response * format the results into a table with the correct units Returns ------- tab : `astropy.table.QTable` or `None` If the request was successful, returns a table; otherwise, `None`. """ LOG.info('Checking inputs...') valid_inputs = self._check_inputs() if valid_inputs: LOG.info('Submitting request to {}'.format(self._url)) self._submit_request() if self._failed: return LOG.info('Parsing the response and formatting the results...') self._parse_and_format() return self.zpt_table LOG.error('Please fix the incorrect input(s)')
Submit the request to the ACS Zeropoints Calculator. This method will: * submit the request * parse the response * format the results into a table with the correct units Returns ------- tab : `astropy.table.QTable` or `None` If the request was successful, returns a table; otherwise, `None`.
entailment
def get_queryset(self, request): """ Returns a QuerySet of all model instances that can be edited by the admin site. """ qs = self.model._default_manager.get_queryset() ordering = self.get_ordering(request) if ordering: qs = qs.order_by(*ordering) return qs
Returns a QuerySet of all model instances that can be edited by the admin site.
entailment
def index_view(self, request): """ Instantiates a class-based view to provide listing functionality for the assigned model. The view class used can be overridden by changing the 'index_view_class' attribute. """ kwargs = {'model_admin': self} view_class = self.index_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view to provide listing functionality for the assigned model. The view class used can be overridden by changing the 'index_view_class' attribute.
entailment
def create_view(self, request): """ Instantiates a class-based view to provide 'creation' functionality for the assigned model, or redirect to Wagtail's create view if the assigned model extends 'Page'. The view class used can be overridden by changing the 'create_view_class' attribute. """ kwargs = {'model_admin': self} view_class = self.create_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view to provide 'creation' functionality for the assigned model, or redirect to Wagtail's create view if the assigned model extends 'Page'. The view class used can be overridden by changing the 'create_view_class' attribute.
entailment
def choose_parent_view(self, request): """ Instantiates a class-based view to provide a view that allows a parent page to be chosen for a new object, where the assigned model extends Wagtail's Page model, and there is more than one potential parent for new instances. The view class used can be overridden by changing the 'choose_parent_view_class' attribute. """ kwargs = {'model_admin': self} view_class = self.choose_parent_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view to provide a view that allows a parent page to be chosen for a new object, where the assigned model extends Wagtail's Page model, and there is more than one potential parent for new instances. The view class used can be overridden by changing the 'choose_parent_view_class' attribute.
entailment
def edit_view(self, request, object_id): """ Instantiates a class-based view to provide 'edit' functionality for the assigned model, or redirect to Wagtail's edit view if the assigned model extends 'Page'. The view class used can be overridden by changing the 'edit_view_class' attribute. """ kwargs = {'model_admin': self, 'object_id': object_id} view_class = self.edit_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view to provide 'edit' functionality for the assigned model, or redirect to Wagtail's edit view if the assigned model extends 'Page'. The view class used can be overridden by changing the 'edit_view_class' attribute.
entailment
def confirm_delete_view(self, request, object_id): """ Instantiates a class-based view to provide 'delete confirmation' functionality for the assigned model, or redirect to Wagtail's delete confirmation view if the assigned model extends 'Page'. The view class used can be overridden by changing the 'confirm_delete_view_class' attribute. """ kwargs = {'model_admin': self, 'object_id': object_id} view_class = self.confirm_delete_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view to provide 'delete confirmation' functionality for the assigned model, or redirect to Wagtail's delete confirmation view if the assigned model extends 'Page'. The view class used can be overridden by changing the 'confirm_delete_view_class' attribute.
entailment
def unpublish_view(self, request, object_id): """ Instantiates a class-based view that redirects to Wagtail's 'unpublish' view for models that extend 'Page' (if the user has sufficient permissions). We do this via our own view so that we can reliably control redirection of the user back to the index_view once the action is completed. The view class used can be overridden by changing the 'unpublish_view_class' attribute. """ kwargs = {'model_admin': self, 'object_id': object_id} view_class = self.unpublish_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view that redirects to Wagtail's 'unpublish' view for models that extend 'Page' (if the user has sufficient permissions). We do this via our own view so that we can reliably control redirection of the user back to the index_view once the action is completed. The view class used can be overridden by changing the 'unpublish_view_class' attribute.
entailment
def copy_view(self, request, object_id): """ Instantiates a class-based view that redirects to Wagtail's 'copy' view for models that extend 'Page' (if the user has sufficient permissions). We do this via our own view so that we can reliably control redirection of the user back to the index_view once the action is completed. The view class used can be overridden by changing the 'copy_view_class' attribute. """ kwargs = {'model_admin': self, 'object_id': object_id} view_class = self.copy_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view that redirects to Wagtail's 'copy' view for models that extend 'Page' (if the user has sufficient permissions). We do this via our own view so that we can reliably control redirection of the user back to the index_view once the action is completed. The view class used can be overridden by changing the 'copy_view_class' attribute.
entailment
def get_templates(self, action='index'): """ Utility function that provides a list of templates to try for a given view, when the template isn't overridden by one of the template attributes on the class. """ app = self.opts.app_label model_name = self.opts.model_name return [ 'wagtailmodeladmin/%s/%s/%s.html' % (app, model_name, action), 'wagtailmodeladmin/%s/%s.html' % (app, action), 'wagtailmodeladmin/%s.html' % (action,), ]
Utility function that provides a list of templates to try for a given view, when the template isn't overridden by one of the template attributes on the class.
entailment
def get_permissions_for_registration(self): """ Utilised by Wagtail's 'register_permissions' hook to allow permissions for a model to be assigned to groups in settings. This is only required if the model isn't a Page model, and isn't registered as a Snippet """ from wagtail.wagtailsnippets.models import SNIPPET_MODELS if not self.is_pagemodel and self.model not in SNIPPET_MODELS: return self.permission_helper.get_all_model_permissions() return Permission.objects.none()
Utilised by Wagtail's 'register_permissions' hook to allow permissions for a model to be assigned to groups in settings. This is only required if the model isn't a Page model, and isn't registered as a Snippet
entailment
def get_admin_urls_for_registration(self): """ Utilised by Wagtail's 'register_admin_urls' hook to register urls for our the views that class offers. """ urls = ( url(get_url_pattern(self.opts), self.index_view, name=get_url_name(self.opts)), url(get_url_pattern(self.opts, 'create'), self.create_view, name=get_url_name(self.opts, 'create')), url(get_object_specific_url_pattern(self.opts, 'edit'), self.edit_view, name=get_url_name(self.opts, 'edit')), url(get_object_specific_url_pattern(self.opts, 'confirm_delete'), self.confirm_delete_view, name=get_url_name(self.opts, 'confirm_delete')), ) if self.inspect_view_enabled: urls = urls + ( url(get_object_specific_url_pattern(self.opts, 'inspect'), self.inspect_view, name=get_url_name(self.opts, 'inspect')), ) if self.is_pagemodel: urls = urls + ( url(get_url_pattern(self.opts, 'choose_parent'), self.choose_parent_view, name=get_url_name(self.opts, 'choose_parent')), url(get_object_specific_url_pattern(self.opts, 'unpublish'), self.unpublish_view, name=get_url_name(self.opts, 'unpublish')), url(get_object_specific_url_pattern(self.opts, 'copy'), self.copy_view, name=get_url_name(self.opts, 'copy')), ) return urls def construct_main_menu(self, request, menu_items): warnings.warn(( "The 'construct_main_menu' method is now deprecated. You " "should also remove the construct_main_menu hook from " "wagtail_hooks.py in your app folder."), DeprecationWarning) return menu_items
Utilised by Wagtail's 'register_admin_urls' hook to register urls for our the views that class offers.
entailment
def get_menu_item(self): """ Utilised by Wagtail's 'register_menu_item' hook to create a menu for this group with a SubMenu linking to listing pages for any associated ModelAdmin instances """ if self.modeladmin_instances: submenu = SubMenu(self.get_submenu_items()) return GroupMenuItem(self, self.get_menu_order(), submenu)
Utilised by Wagtail's 'register_menu_item' hook to create a menu for this group with a SubMenu linking to listing pages for any associated ModelAdmin instances
entailment
def get_permissions_for_registration(self): """ Utilised by Wagtail's 'register_permissions' hook to allow permissions for a all models grouped by this class to be assigned to Groups in settings. """ qs = Permission.objects.none() for instance in self.modeladmin_instances: qs = qs | instance.get_permissions_for_registration() return qs
Utilised by Wagtail's 'register_permissions' hook to allow permissions for a all models grouped by this class to be assigned to Groups in settings.
entailment
def get_admin_urls_for_registration(self): """ Utilised by Wagtail's 'register_admin_urls' hook to register urls for used by any associated ModelAdmin instances """ urls = [] for instance in self.modeladmin_instances: urls.extend(instance.get_admin_urls_for_registration()) return urls
Utilised by Wagtail's 'register_admin_urls' hook to register urls for used by any associated ModelAdmin instances
entailment
def is_shown(self, request): """ If there aren't any visible items in the submenu, don't bother to show this menu item """ for menuitem in self.menu._registered_menu_items: if menuitem.is_shown(request): return True return False
If there aren't any visible items in the submenu, don't bother to show this menu item
entailment
def run(configobj=None): """ TEAL interface for the `acscteforwardmodel` function. """ acscteforwardmodel(configobj['input'], exec_path=configobj['exec_path'], time_stamps=configobj['time_stamps'], verbose=configobj['verbose'], quiet=configobj['quiet'], single_core=configobj['single_core'] )
TEAL interface for the `acscteforwardmodel` function.
entailment
def run(configobj=None): """ TEAL interface for the `acsccd` function. """ acsccd(configobj['input'], exec_path=configobj['exec_path'], time_stamps=configobj['time_stamps'], verbose=configobj['verbose'], quiet=configobj['quiet'] #, #dqicorr=configobj['dqicorr'], #atodcorr=configobj['atodcorr'], #blevcorr=configobj['blevcorr'], #biascorr=configobj['biascorr'] )
TEAL interface for the `acsccd` function.
entailment
def destripe_plus(inputfile, suffix='strp', stat='pmode1', maxiter=15, sigrej=2.0, lower=None, upper=None, binwidth=0.3, scimask1=None, scimask2=None, dqbits=None, rpt_clean=0, atol=0.01, cte_correct=True, clobber=False, verbose=True): r"""Calibrate post-SM4 ACS/WFC exposure(s) and use standalone :ref:`acsdestripe`. This takes a RAW image and generates a FLT file containing its calibrated and destriped counterpart. If CTE correction is performed, FLC will also be present. Parameters ---------- inputfile : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*raw.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) suffix : str The string to use to add to each input file name to indicate an output product of ``acs_destripe``. This only affects the intermediate output file that will be automatically renamed to ``*blv_tmp.fits`` during the processing. stat : { 'pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt' } (Default = 'pmode1') Specifies the statistics to be used for computation of the background in image rows: * 'pmode1' - SEXTRACTOR-like mode estimate based on a modified `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``2.5*median-1.5*mean``; * 'pmode2' - mode estimate based on `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``3*median-2*mean``; * 'mean' - the mean of the distribution of the "good" pixels (after clipping, masking, etc.); * 'mode' - the mode of the distribution of the "good" pixels; * 'median' - the median of the distribution of the "good" pixels; * 'midpt' - estimate of the median of the distribution of the "good" pixels based on an algorithm similar to IRAF's `imagestats` task (``CDF(midpt)=1/2``). .. note:: The midpoint and mode are computed in two passes through the image. In the first pass the standard deviation of the pixels is calculated and used with the *binwidth* parameter to compute the resolution of the data histogram. The midpoint is estimated by integrating the histogram and computing by interpolation the data value at which exactly half the pixels are below that data value and half are above it. The mode is computed by locating the maximum of the data histogram and fitting the peak by parabolic interpolation. maxiter : int This parameter controls the maximum number of iterations to perform when computing the statistics used to compute the row-by-row corrections. sigrej : float This parameters sets the sigma level for the rejection applied during each iteration of statistics computations for the row-by-row corrections. lower : float, None (Default = None) Lower limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). upper : float, None (Default = None) Upper limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). binwidth : float (Default = 0.1) Histogram's bin width, in sigma units, used to sample the distribution of pixel brightness values in order to compute the background statistics. This parameter is aplicable *only* to *stat* parameter values of `'mode'` or `'midpt'`. clobber : bool Specify whether or not to 'clobber' (delete then replace) previously generated products with the same names. scimask1 : str or list of str Mask images for *calibrated* ``SCI,1``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. scimask2 : str or list of str Mask images for *calibrated* ``SCI,2``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. This is not used for subarrays. dqbits : int, str, None (Default = None) Integer sum of all the DQ bit values from the input image's DQ array that should be considered "good" when building masks for de-striping computations. For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ "defects" having flags 2 and 4 as being acceptable for de-striping computations, then `dqbits` should be set to 2+4=6. Then a DQ pixel having values 2,4, or 6 will be considered a good pixel, while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a "bad" pixel. Alternatively, one can enter a comma- or '+'-separated list of integer bit flags that should be added to obtain the final "good" bits. For example, both ``4,8`` and ``4+8`` are equivalent to setting `dqbits` to 12. | Set `dqbits` to 0 to make *all* non-zero pixels in the DQ mask to be considered "bad" pixels, and the corresponding image pixels not to be used for de-striping computations. | Default value (`None`) will turn off the use of image's DQ array for de-striping computations. | In order to reverse the meaning of the `dqbits` parameter from indicating values of the "good" DQ flags to indicating the "bad" DQ flags, prepend '~' to the string value. For example, in order not to use pixels with DQ flags 4 and 8 for sky computations and to consider as "good" all other pixels (regardless of their DQ flag), set `dqbits` to ``~4+8``, or ``~4,8``. To obtain the same effect with an `int` input value (except for 0), enter -(4+8+1)=-9. Following this convention, a `dqbits` string value of ``'~0'`` would be equivalent to setting ``dqbits=None``. .. note:: DQ masks (if used), *will be* combined with user masks specified in the `scimask1` and `scimask2` parameters (if any). rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. cte_correct : bool Perform CTE correction. verbose : bool Print informational messages. Default = True. Raises ------ ImportError ``stsci.tools`` not found. IOError Input file does not exist. ValueError Invalid header values or CALACS version. """ # Optional package dependencies from stsci.tools import parseinput try: from stsci.tools.bitmask import interpret_bit_flags except ImportError: from stsci.tools.bitmask import ( interpret_bits_value as interpret_bit_flags ) # process input file(s) and if we have multiple input files - recursively # call acs_destripe_plus for each input image: flist = parseinput.parseinput(inputfile)[0] if isinstance(scimask1, str): mlist1 = parseinput.parseinput(scimask1)[0] elif isinstance(scimask1, np.ndarray): mlist1 = [scimask1.copy()] elif scimask1 is None: mlist1 = [] elif isinstance(scimask1, list): mlist1 = [] for m in scimask1: if isinstance(m, np.ndarray): mlist1.append(m.copy()) elif isinstance(m, str): mlist1 += parseinput.parseinput(m)[0] else: raise TypeError("'scimask1' must be a list of str or " "numpy.ndarray values.") else: raise TypeError("'scimask1' must be either a str, or a " "numpy.ndarray, or a list of the two type of " "values.") if isinstance(scimask2, str): mlist2 = parseinput.parseinput(scimask2)[0] elif isinstance(scimask2, np.ndarray): mlist2 = [scimask2.copy()] elif scimask2 is None: mlist2 = [] elif isinstance(scimask2, list): mlist2 = [] for m in scimask2: if isinstance(m, np.ndarray): mlist2.append(m.copy()) elif isinstance(m, str): mlist2 += parseinput.parseinput(m)[0] else: raise TypeError("'scimask2' must be a list of str or " "numpy.ndarray values.") else: raise TypeError("'scimask2' must be either a str, or a " "numpy.ndarray, or a list of the two type of " "values.") n_input = len(flist) n_mask1 = len(mlist1) n_mask2 = len(mlist2) if n_input == 0: raise ValueError( 'No input file(s) provided or the file(s) do not exist') if n_mask1 == 0: mlist1 = [None] * n_input elif n_mask1 != n_input: raise ValueError('Insufficient masks for [SCI,1]') if n_mask2 == 0: mlist2 = [None] * n_input elif n_mask2 != n_input: raise ValueError('Insufficient masks for [SCI,2]') if n_input > 1: for img, mf1, mf2 in zip(flist, mlist1, mlist2): destripe_plus( inputfile=img, suffix=suffix, stat=stat, lower=lower, upper=upper, binwidth=binwidth, maxiter=maxiter, sigrej=sigrej, scimask1=scimask1, scimask2=scimask2, dqbits=dqbits, cte_correct=cte_correct, clobber=clobber, verbose=verbose ) return inputfile = flist[0] scimask1 = mlist1[0] scimask2 = mlist2[0] # verify that the RAW image exists in cwd cwddir = os.getcwd() if not os.path.exists(os.path.join(cwddir, inputfile)): raise IOError("{0} does not exist.".format(inputfile)) # get image's primary header: header = fits.getheader(inputfile) # verify masks defined (or not) simultaneously: if (header['CCDAMP'] == 'ABCD' and ((scimask1 is not None and scimask2 is None) or (scimask1 is None and scimask2 is not None))): raise ValueError("Both 'scimask1' and 'scimask2' must be specified " "or not specified together.") calacs_str = subprocess.check_output(['calacs.e', '--version']).split()[0] calacs_ver = [int(x) for x in calacs_str.decode().split('.')] if calacs_ver < [8, 3, 1]: raise ValueError('CALACS {0} is incomptible. ' 'Must be 8.3.1 or later.'.format(calacs_str)) # check date for post-SM4 and if supported subarray or full frame is_subarray = False ctecorr = header['PCTECORR'] aperture = header['APERTURE'] detector = header['DETECTOR'] date_obs = Time(header['DATE-OBS']) # intermediate filenames blvtmp_name = inputfile.replace('raw', 'blv_tmp') blctmp_name = inputfile.replace('raw', 'blc_tmp') # output filenames tra_name = inputfile.replace('_raw.fits', '.tra') flt_name = inputfile.replace('raw', 'flt') flc_name = inputfile.replace('raw', 'flc') if detector != 'WFC': raise ValueError("{0} is not a WFC image, please check the 'DETECTOR'" " keyword.".format(inputfile)) if date_obs < SM4_DATE: raise ValueError( "{0} is a pre-SM4 image.".format(inputfile)) if header['SUBARRAY'] and cte_correct: if aperture in SUBARRAY_LIST: is_subarray = True else: LOG.warning('Using non-supported subarray, ' 'turning CTE correction off') cte_correct = False # delete files from previous CALACS runs if clobber: for tmpfilename in [blvtmp_name, blctmp_name, flt_name, flc_name, tra_name]: if os.path.exists(tmpfilename): os.remove(tmpfilename) # run ACSCCD on RAW acsccd.acsccd(inputfile) # modify user mask with DQ masks if requested dqbits = interpret_bit_flags(dqbits) if dqbits is not None: # save 'tra' file in memory to trick the log file # not to save first acs2d log as this is done only # for the purpose of obtaining DQ masks. # WISH: it would have been nice is there was an easy way of obtaining # just the DQ masks as if data were calibrated but without # having to recalibrate them with acs2d. if os.path.isfile(tra_name): with open(tra_name) as fh: tra_lines = fh.readlines() else: tra_lines = None # apply flats, etc. acs2d.acs2d(blvtmp_name, verbose=False, quiet=True) # extract DQ arrays from the FLT image: dq1, dq2 = _read_DQ_arrays(flt_name) mask1 = _get_mask(scimask1, 1) scimask1 = acs_destripe._mergeUserMaskAndDQ(dq1, mask1, dqbits) mask2 = _get_mask(scimask2, 2) if dq2 is not None: scimask2 = acs_destripe._mergeUserMaskAndDQ(dq2, mask2, dqbits) elif mask2 is None: scimask2 = None # reconstruct trailer file: if tra_lines is not None: with open(tra_name, mode='w') as fh: fh.writelines(tra_lines) # delete temporary FLT image: if os.path.isfile(flt_name): os.remove(flt_name) # execute destriping (post-SM4 data only) acs_destripe.clean( blvtmp_name, suffix, stat=stat, maxiter=maxiter, sigrej=sigrej, lower=lower, upper=upper, binwidth=binwidth, mask1=scimask1, mask2=scimask2, dqbits=dqbits, rpt_clean=rpt_clean, atol=atol, clobber=clobber, verbose=verbose) blvtmpsfx = 'blv_tmp_{0}'.format(suffix) os.rename(inputfile.replace('raw', blvtmpsfx), blvtmp_name) # update subarray header if is_subarray and cte_correct: fits.setval(blvtmp_name, 'PCTECORR', value='PERFORM') ctecorr = 'PERFORM' # perform CTE correction on destriped image if cte_correct: if ctecorr == 'PERFORM': acscte.acscte(blvtmp_name) else: LOG.warning( "PCTECORR={0}, cannot run CTE correction".format(ctecorr)) cte_correct = False # run ACS2D to get FLT and FLC images acs2d.acs2d(blvtmp_name) if cte_correct: acs2d.acs2d(blctmp_name) # delete intermediate files os.remove(blvtmp_name) if cte_correct and os.path.isfile(blctmp_name): os.remove(blctmp_name) info_str = 'Done.\nFLT: {0}\n'.format(flt_name) if cte_correct: info_str += 'FLC: {0}\n'.format(flc_name) LOG.info(info_str)
r"""Calibrate post-SM4 ACS/WFC exposure(s) and use standalone :ref:`acsdestripe`. This takes a RAW image and generates a FLT file containing its calibrated and destriped counterpart. If CTE correction is performed, FLC will also be present. Parameters ---------- inputfile : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*raw.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) suffix : str The string to use to add to each input file name to indicate an output product of ``acs_destripe``. This only affects the intermediate output file that will be automatically renamed to ``*blv_tmp.fits`` during the processing. stat : { 'pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt' } (Default = 'pmode1') Specifies the statistics to be used for computation of the background in image rows: * 'pmode1' - SEXTRACTOR-like mode estimate based on a modified `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``2.5*median-1.5*mean``; * 'pmode2' - mode estimate based on `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``3*median-2*mean``; * 'mean' - the mean of the distribution of the "good" pixels (after clipping, masking, etc.); * 'mode' - the mode of the distribution of the "good" pixels; * 'median' - the median of the distribution of the "good" pixels; * 'midpt' - estimate of the median of the distribution of the "good" pixels based on an algorithm similar to IRAF's `imagestats` task (``CDF(midpt)=1/2``). .. note:: The midpoint and mode are computed in two passes through the image. In the first pass the standard deviation of the pixels is calculated and used with the *binwidth* parameter to compute the resolution of the data histogram. The midpoint is estimated by integrating the histogram and computing by interpolation the data value at which exactly half the pixels are below that data value and half are above it. The mode is computed by locating the maximum of the data histogram and fitting the peak by parabolic interpolation. maxiter : int This parameter controls the maximum number of iterations to perform when computing the statistics used to compute the row-by-row corrections. sigrej : float This parameters sets the sigma level for the rejection applied during each iteration of statistics computations for the row-by-row corrections. lower : float, None (Default = None) Lower limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). upper : float, None (Default = None) Upper limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). binwidth : float (Default = 0.1) Histogram's bin width, in sigma units, used to sample the distribution of pixel brightness values in order to compute the background statistics. This parameter is aplicable *only* to *stat* parameter values of `'mode'` or `'midpt'`. clobber : bool Specify whether or not to 'clobber' (delete then replace) previously generated products with the same names. scimask1 : str or list of str Mask images for *calibrated* ``SCI,1``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. scimask2 : str or list of str Mask images for *calibrated* ``SCI,2``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. This is not used for subarrays. dqbits : int, str, None (Default = None) Integer sum of all the DQ bit values from the input image's DQ array that should be considered "good" when building masks for de-striping computations. For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ "defects" having flags 2 and 4 as being acceptable for de-striping computations, then `dqbits` should be set to 2+4=6. Then a DQ pixel having values 2,4, or 6 will be considered a good pixel, while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a "bad" pixel. Alternatively, one can enter a comma- or '+'-separated list of integer bit flags that should be added to obtain the final "good" bits. For example, both ``4,8`` and ``4+8`` are equivalent to setting `dqbits` to 12. | Set `dqbits` to 0 to make *all* non-zero pixels in the DQ mask to be considered "bad" pixels, and the corresponding image pixels not to be used for de-striping computations. | Default value (`None`) will turn off the use of image's DQ array for de-striping computations. | In order to reverse the meaning of the `dqbits` parameter from indicating values of the "good" DQ flags to indicating the "bad" DQ flags, prepend '~' to the string value. For example, in order not to use pixels with DQ flags 4 and 8 for sky computations and to consider as "good" all other pixels (regardless of their DQ flag), set `dqbits` to ``~4+8``, or ``~4,8``. To obtain the same effect with an `int` input value (except for 0), enter -(4+8+1)=-9. Following this convention, a `dqbits` string value of ``'~0'`` would be equivalent to setting ``dqbits=None``. .. note:: DQ masks (if used), *will be* combined with user masks specified in the `scimask1` and `scimask2` parameters (if any). rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. cte_correct : bool Perform CTE correction. verbose : bool Print informational messages. Default = True. Raises ------ ImportError ``stsci.tools`` not found. IOError Input file does not exist. ValueError Invalid header values or CALACS version.
entailment
def run(configobj=None): """TEAL interface for :func:`destripe_plus`.""" destripe_plus( configobj['input'], suffix=configobj['suffix'], stat=configobj['stat'], maxiter=configobj['maxiter'], sigrej=configobj['sigrej'], lower=configobj['lower'], upper=configobj['upper'], binwidth=configobj['binwidth'], scimask1=configobj['scimask1'], scimask2=configobj['scimask2'], dqbits=configobj['dqbits'], rpt_clean=configobj['rpt_clean'], atol=configobj['atol'], cte_correct=configobj['cte_correct'], clobber=configobj['clobber'], verbose=configobj['verbose'])
TEAL interface for :func:`destripe_plus`.
entailment
def main(): """Command line driver.""" import argparse # Parse input parameters parser = argparse.ArgumentParser( prog=__taskname__, description=( 'Run CALACS and standalone acs_destripe script on given post-SM4 ' 'ACS/WFC RAW full-frame or supported subarray image.')) parser.add_argument( 'arg0', metavar='input', type=str, help='Input file') parser.add_argument( '--suffix', type=str, default='strp', help='Output suffix for acs_destripe') parser.add_argument( '--stat', type=str, default='pmode1', help='Background statistics') parser.add_argument( '--maxiter', type=int, default=15, help='Max #iterations') parser.add_argument( '--sigrej', type=float, default=2.0, help='Rejection sigma') parser.add_argument( '--lower', nargs='?', type=float, default=None, help='Lower limit for "good" pixels.') parser.add_argument( '--upper', nargs='?', type=float, default=None, help='Upper limit for "good" pixels.') parser.add_argument( '--binwidth', type=float, default=0.1, help='Bin width for distribution sampling.') parser.add_argument( '--sci1_mask', nargs=1, type=str, default=None, help='Mask image for calibrated [SCI,1]') parser.add_argument( '--sci2_mask', nargs=1, type=str, default=None, help='Mask image for calibrated [SCI,2]') parser.add_argument( '--dqbits', nargs='?', type=str, default=None, help='DQ bits to be considered "good".') parser.add_argument( '--rpt_clean', type=int, default=0, help='Number of *repeated* bias de-stripes to perform.') parser.add_argument( '--atol', nargs='?', type=float, default=0.01, help='Absolute tolerance to stop *repeated* bias de-stripes.') parser.add_argument( '--nocte', action='store_true', help='Turn off CTE correction.') parser.add_argument( '--clobber', action='store_true', help='Clobber output') parser.add_argument( '-q', '--quiet', action="store_true", help='Do not print informational messages') parser.add_argument( '--version', action='version', version='{0} v{1} ({2})'.format(__taskname__, __version__, __vdate__)) options = parser.parse_args() if options.sci1_mask: mask1 = options.sci1_mask[0] else: mask1 = options.sci1_mask if options.sci2_mask: mask2 = options.sci2_mask[0] else: mask2 = options.sci2_mask destripe_plus(options.arg0, suffix=options.suffix, maxiter=options.maxiter, sigrej=options.sigrej, lower=options.lower, upper=options.upper, binwidth=options.binwidth, scimask1=mask1, scimask2=mask2, dqbits=options.dqbits, rpt_clean=options.rpt_clean, atol=options.atol, cte_correct=not options.nocte, clobber=options.clobber, verbose=not options.quiet)
Command line driver.
entailment
def get_search_results(self, request, queryset, search_term): """ Returns a tuple containing a queryset to implement the search, and a boolean indicating if the results may contain duplicates. """ # Apply keyword searches. def construct_search(field_name): if field_name.startswith('^'): return "%s__istartswith" % field_name[1:] elif field_name.startswith('='): return "%s__iexact" % field_name[1:] elif field_name.startswith('@'): return "%s__search" % field_name[1:] else: return "%s__icontains" % field_name use_distinct = False if self.search_fields and search_term: orm_lookups = [construct_search(str(search_field)) for search_field in self.search_fields] for bit in search_term.split(): or_queries = [models.Q(**{orm_lookup: bit}) for orm_lookup in orm_lookups] queryset = queryset.filter(reduce(operator.or_, or_queries)) if not use_distinct: for search_spec in orm_lookups: if lookup_needs_distinct(self.opts, search_spec): use_distinct = True break return queryset, use_distinct
Returns a tuple containing a queryset to implement the search, and a boolean indicating if the results may contain duplicates.
entailment
def get_filters_params(self, params=None): """ Returns all params except IGNORED_PARAMS """ if not params: params = self.params lookup_params = params.copy() # a dictionary of the query string # Remove all the parameters that are globally and systematically # ignored. for ignored in IGNORED_PARAMS: if ignored in lookup_params: del lookup_params[ignored] return lookup_params
Returns all params except IGNORED_PARAMS
entailment
def get_ordering_field(self, field_name): """ Returns the proper model field name corresponding to the given field_name to use for ordering. field_name may either be the name of a proper model field or the name of a method (on the admin or model) or a callable with the 'admin_order_field' attribute. Returns None if no proper model field name can be matched. """ try: field = self.opts.get_field(field_name) return field.name except FieldDoesNotExist: # See whether field_name is a name of a non-field # that allows sorting. if callable(field_name): attr = field_name elif hasattr(self.model_admin, field_name): attr = getattr(self.model_admin, field_name) else: attr = getattr(self.model, field_name) return getattr(attr, 'admin_order_field', None)
Returns the proper model field name corresponding to the given field_name to use for ordering. field_name may either be the name of a proper model field or the name of a method (on the admin or model) or a callable with the 'admin_order_field' attribute. Returns None if no proper model field name can be matched.
entailment
def get_ordering(self, request, queryset): """ Returns the list of ordering fields for the change list. First we check the get_ordering() method in model admin, then we check the object's default ordering. Then, any manually-specified ordering from the query string overrides anything. Finally, a deterministic order is guaranteed by ensuring the primary key is used as the last ordering field. """ params = self.params ordering = list(self.get_default_ordering(request)) if ORDER_VAR in params: # Clear ordering and used params ordering = [] order_params = params[ORDER_VAR].split('.') for p in order_params: try: none, pfx, idx = p.rpartition('-') field_name = self.list_display[int(idx)] order_field = self.get_ordering_field(field_name) if not order_field: continue # No 'admin_order_field', skip it # reverse order if order_field has already "-" as prefix if order_field.startswith('-') and pfx == "-": ordering.append(order_field[1:]) else: ordering.append(pfx + order_field) except (IndexError, ValueError): continue # Invalid ordering specified, skip it. # Add the given query's ordering fields, if any. ordering.extend(queryset.query.order_by) # Ensure that the primary key is systematically present in the list of # ordering fields so we can guarantee a deterministic order across all # database backends. pk_name = self.opts.pk.name if not (set(ordering) & {'pk', '-pk', pk_name, '-' + pk_name}): # The two sets do not intersect, meaning the pk isn't present. So # we add it. ordering.append('-pk') return ordering
Returns the list of ordering fields for the change list. First we check the get_ordering() method in model admin, then we check the object's default ordering. Then, any manually-specified ordering from the query string overrides anything. Finally, a deterministic order is guaranteed by ensuring the primary key is used as the last ordering field.
entailment
def get_ordering_field_columns(self): """ Returns an OrderedDict of ordering field column numbers and asc/desc """ # We must cope with more than one column having the same underlying # sort field, so we base things on column numbers. ordering = self._get_default_ordering() ordering_fields = OrderedDict() if ORDER_VAR not in self.params: # for ordering specified on model_admin or model Meta, we don't # know the right column numbers absolutely, because there might be # morr than one column associated with that ordering, so we guess. for field in ordering: if field.startswith('-'): field = field[1:] order_type = 'desc' else: order_type = 'asc' for index, attr in enumerate(self.list_display): if self.get_ordering_field(attr) == field: ordering_fields[index] = order_type break else: for p in self.params[ORDER_VAR].split('.'): none, pfx, idx = p.rpartition('-') try: idx = int(idx) except ValueError: continue # skip it ordering_fields[idx] = 'desc' if pfx == '-' else 'asc' return ordering_fields
Returns an OrderedDict of ordering field column numbers and asc/desc
entailment
def get_field_label(self, field_name, field=None): """ Return a label to display for a field """ label = None if field is not None: label = getattr(field, 'verbose_name', None) if label is None: label = getattr(field, 'name', None) if label is None: label = field_name return label.capitalize()
Return a label to display for a field
entailment
def get_field_display_value(self, field_name, field=None): """ Return a display value for a field """ """ Firstly, check for a 'get_fieldname_display' property/method on the model, and return the value of that, if present. """ val_funct = getattr(self.instance, 'get_%s_display' % field_name, None) if val_funct is not None: if callable(val_funct): return val_funct() return val_funct """ Secondly, if we have a real field, we can try to display something more useful for it. """ if field is not None: try: field_type = field.get_internal_type() if ( field_type == 'ForeignKey' and field.related_model == get_image_model() ): # The field is an image return self.get_image_field_display(field_name, field) if ( field_type == 'ForeignKey' and field.related_model == Document ): # The field is a document return self.get_document_field_display(field_name, field) except AttributeError: pass """ Resort to getting the value of 'field_name' from the instance. """ return getattr(self.instance, field_name, self.model_admin.get_empty_value_display())
Return a display value for a field
entailment
def get_image_field_display(self, field_name, field): """ Render an image """ image = getattr(self.instance, field_name) if image: fltr, _ = Filter.objects.get_or_create(spec='max-400x400') rendition = image.get_rendition(fltr) return rendition.img_tag return self.model_admin.get_empty_value_display()
Render an image
entailment
def get_document_field_display(self, field_name, field): """ Render a link to a document """ document = getattr(self.instance, field_name) if document: return mark_safe( '<a href="%s">%s <span class="meta">(%s, %s)</span></a>' % ( document.url, document.title, document.file_extension.upper(), filesizeformat(document.file.size), ) ) return self.model_admin.get_empty_value_display()
Render a link to a document
entailment
def get_dict_for_field(self, field_name): """ Return a dictionary containing `label` and `value` values to display for a field. """ try: field = self.model._meta.get_field(field_name) except FieldDoesNotExist: field = None return { 'label': self.get_field_label(field_name, field), 'value': self.get_field_display_value(field_name, field), }
Return a dictionary containing `label` and `value` values to display for a field.
entailment
def get_fields_dict(self): """ Return a list of `label`/`value` dictionaries to represent the fiels named by the model_admin class's `get_inspect_view_fields` method """ fields = [] for field_name in self.model_admin.get_inspect_view_fields(): fields.append(self.get_dict_for_field(field_name)) return fields
Return a list of `label`/`value` dictionaries to represent the fiels named by the model_admin class's `get_inspect_view_fields` method
entailment
def items_for_result(view, result): """ Generates the actual list of data. """ model_admin = view.model_admin for field_name in view.list_display: empty_value_display = model_admin.get_empty_value_display() row_classes = ['field-%s' % field_name] try: f, attr, value = lookup_field(field_name, result, model_admin) except ObjectDoesNotExist: result_repr = empty_value_display else: empty_value_display = getattr(attr, 'empty_value_display', empty_value_display) if f is None or f.auto_created: allow_tags = getattr(attr, 'allow_tags', False) boolean = getattr(attr, 'boolean', False) if boolean or not value: allow_tags = True if django.VERSION >= (1, 9): result_repr = display_for_value(value, empty_value_display, boolean) else: result_repr = display_for_value(value, boolean) # Strip HTML tags in the resulting text, except if the # function has an "allow_tags" attribute set to True. if allow_tags: result_repr = mark_safe(result_repr) if isinstance(value, (datetime.date, datetime.time)): row_classes.append('nowrap') else: if isinstance(f, models.ManyToOneRel): field_val = getattr(result, f.name) if field_val is None: result_repr = empty_value_display else: result_repr = field_val else: if django.VERSION >= (1, 9): result_repr = display_for_field(value, f, empty_value_display) else: result_repr = display_for_field(value, f) if isinstance(f, (models.DateField, models.TimeField, models.ForeignKey)): row_classes.append('nowrap') if force_text(result_repr) == '': result_repr = mark_safe('&nbsp;') row_classes.extend(model_admin.get_extra_class_names_for_field_col(field_name, result)) row_attributes_dict = model_admin.get_extra_attrs_for_field_col(field_name, result) row_attributes_dict['class'] = ' ' . join(row_classes) row_attributes = ''.join(' %s="%s"' % (key, val) for key, val in row_attributes_dict.items()) row_attributes_safe = mark_safe(row_attributes) yield format_html('<td{}>{}</td>', row_attributes_safe, result_repr)
Generates the actual list of data.
entailment
def result_list(context): """ Displays the headers and data list together """ view = context['view'] object_list = context['object_list'] headers = list(result_headers(view)) num_sorted_fields = 0 for h in headers: if h['sortable'] and h['sorted']: num_sorted_fields += 1 context.update({ 'result_headers': headers, 'num_sorted_fields': num_sorted_fields, 'results': list(results(view, object_list))}) return context
Displays the headers and data list together
entailment
def run(configobj=None): """ TEAL interface for the `acssum` function. """ acssum(configobj['input'], configobj['output'], exec_path=configobj['exec_path'], time_stamps=configobj['time_stamps'], verbose=configobj['verbose'], quiet=configobj['quiet'] )
TEAL interface for the `acssum` function.
entailment
def _detsat_one(filename, ext, sigma=2.0, low_thresh=0.1, h_thresh=0.5, small_edge=60, line_len=200, line_gap=75, percentile=(4.5, 93.0), buf=200, plot=False, verbose=False): """Called by :func:`detsat`.""" if verbose: t_beg = time.time() fname = '{0}[{1}]'.format(filename, ext) # check extension if ext not in (1, 4, 'SCI', ('SCI', 1), ('SCI', 2)): warnings.warn('{0} is not a valid science extension for ' 'ACS/WFC'.format(ext), AstropyUserWarning) # get the data image = fits.getdata(filename, ext) # image = im.astype('float64') # rescale the image p1, p2 = np.percentile(image, percentile) # there should always be some counts in the image, anything lower should # be set to one. Makes things nicer for finding edges. if p1 < 0: p1 = 0.0 if verbose: print('Rescale intensity percentiles: {0}, {1}'.format(p1, p2)) image = exposure.rescale_intensity(image, in_range=(p1, p2)) # get the edges immax = np.max(image) edge = canny(image, sigma=sigma, low_threshold=immax * low_thresh, high_threshold=immax * h_thresh) # clean up the small objects, will make less noise morph.remove_small_objects(edge, min_size=small_edge, connectivity=8, in_place=True) # create an array of angles from 0 to 180, exactly 0 will get bad columns # but it is unlikely that a satellite will be exactly at 0 degrees, so # don't bother checking. # then, convert to radians. angle = np.radians(np.arange(2, 178, 0.5, dtype=float)) # perform Hough Transform to detect straight lines. # only do if plotting to visualize the image in hough space. # otherwise just preform a Probabilistic Hough Transform. if plot and plt is not None: h, theta, d = transform.hough_line(edge, theta=angle) plt.ion() # perform Probabilistic Hough Transformation to get line segments. # NOTE: Results are slightly different from run to run! result = transform.probabilistic_hough_line( edge, threshold=210, line_length=line_len, line_gap=line_gap, theta=angle) result = np.asarray(result) n_result = len(result) # initially assume there is no satellite satellite = False # only continue if there was more than one point (at least a line) # returned from the PHT if n_result > 1: if verbose: print('Length of PHT result: {0}'.format(n_result)) # create lists for X and Y positions of lines and build points x0 = result[:, 0, 0] y0 = result[:, 0, 1] x1 = result[:, 1, 0] y1 = result[:, 1, 1] # set some boundries ymax, xmax = image.shape topx = xmax - buf topy = ymax - buf if verbose: print('min(x0)={0:4d}, min(x1)={1:4d}, min(y0)={2:4d}, ' 'min(y1)={3:4d}'.format(min(x0), min(x1), min(y0), min(y1))) print('max(x0)={0:4d}, max(x1)={1:4d}, max(y0)={2:4d}, ' 'max(y1)={3:4d}'.format(max(x0), max(x1), max(y0), max(y1))) print('buf={0}'.format(buf)) print('topx={0}, topy={1}'.format(topx, topy)) # set up trail angle "tracking" arrays. # find the angle of each segment and filter things out. # TODO: this may be wrong. Try using arctan2. trail_angle = np.degrees(np.arctan((y1 - y0) / (x1 - x0))) # round to the nearest 5 degrees, trail should not be that curved round_angle = (5 * np.round(trail_angle * 0.2)).astype(int) # take out 90 degree things mask = round_angle % 90 != 0 if not np.any(mask): if verbose: print('No round_angle found') return np.empty(0) round_angle = round_angle[mask] trail_angle = trail_angle[mask] result = result[mask] ang, num = stats.mode(round_angle) # do the filtering truth = round_angle == ang[0] if verbose: print('trail_angle: {0}'.format(trail_angle)) print('round_angle: {0}'.format(round_angle)) print('mode(round_angle): {0}'.format(ang[0])) # filter out the outliers trail_angle = trail_angle[truth] result = result[truth] n_result = len(result) if verbose: print('Filtered trail_angle: {0}'.format(trail_angle)) if n_result < 1: return np.empty(0) # if there is an unreasonable amount of points, it picked up garbage elif n_result > 300: warnings.warn( 'Way too many segments results to be correct ({0}). ' 'Rejecting detection on {1}.'.format(n_result, fname), AstropyUserWarning) return np.empty(0) # remake the point lists with things taken out x0 = result[:, 0, 0] y0 = result[:, 0, 1] x1 = result[:, 1, 0] y1 = result[:, 1, 1] min_x0 = min(x0) min_y0 = min(y0) min_x1 = min(x1) min_y1 = min(y1) max_x0 = max(x0) max_y0 = max(y0) max_x1 = max(x1) max_y1 = max(y1) mean_angle = np.mean(trail_angle) # make decisions on where the trail went and determine if a trail # traversed the image # top to bottom if (((min_y0 < buf) or (min_y1 < buf)) and ((max_y0 > topy) or (max_y1 > topy))): satellite = True if verbose: print('Trail Direction: Top to Bottom') # right to left elif (((min_x0 < buf) or (min_x1 < buf)) and ((max_x0 > topx) or (max_x1 > topx))): satellite = True if verbose: print('Trail Direction: Right to Left') # bottom to left elif (((min_x0 < buf) or (min_x1 < buf)) and ((min_y0 < buf) or (min_y1 < buf)) and (-1 > mean_angle > -89)): satellite = True if verbose: print('Trail Direction: Bottom to Left') # top to left elif (((min_x0 < buf) or (min_x1 < buf)) and ((max_y0 > topy) or (max_y1 > topy)) and (89 > mean_angle > 1)): satellite = True if verbose: print('Trail Direction: Top to Left') # top to right elif (((max_x0 > topx) or (max_x1 > topx)) and ((max_y0 > topy) or (max_y1 > topy)) and (-1 > mean_angle > -89)): satellite = True if verbose: print('Trail Direction: Top to Right') # bottom to right elif (((max_x0 > topx) or (max_x1 > topx)) and ((min_y0 < buf) or (min_y1 < buf)) and (89 > mean_angle > 1)): satellite = True if verbose: print('Trail Direction: Bottom to Right') if satellite: if verbose: print('{0} trail segment(s) detected'.format(n_result)) print('Trail angle list (not returned): ') print(trail_angle) print('End point list:') for i, ((px0, py0), (px1, py1)) in enumerate(result, 1): print('{0:5d}. ({1:4d}, {2:4d}), ({3:4d}, {4:4d})'.format( i, px0, py0, px1, py1)) if plot and plt is not None: mean = np.median(image) stddev = image.std() lower = mean - stddev upper = mean + stddev fig1, ax1 = plt.subplots() ax1.imshow(edge, cmap=plt.cm.gray) ax1.set_title('Edge image for {0}'.format(fname)) for (px0, py0), (px1, py1) in result: # Draw trails ax1.plot((px0, px1), (py0, py1), scalex=False, scaley=False) fig2, ax2 = plt.subplots() ax2.imshow( np.log(1 + h), extent=(np.rad2deg(theta[-1]), np.rad2deg(theta[0]), d[-1], d[0]), aspect=0.02) ax2.set_title('Hough Transform') ax2.set_xlabel('Angles (degrees)') ax2.set_ylabel('Distance from Origin (pixels)') fig3, ax3 = plt.subplots() ax3.imshow(image, vmin=lower, vmax=upper, cmap=plt.cm.gray) ax3.set_title(fname) for (px0, py0), (px1, py1) in result: # Draw trails ax3.plot((px0, px1), (py0, py1), scalex=False, scaley=False) plt.draw() else: # length of result was too small result = np.empty(0) if verbose: print('No trail detected; found {0} segments'.format(n_result)) if plot and plt is not None: fig1, ax1 = plt.subplots() ax1.imshow(edge, cmap=plt.cm.gray) ax1.set_title(fname) # Draw trails for (px0, py0), (px1, py1) in result: ax1.plot((px0, px1), (py0, py1), scalex=False, scaley=False) if verbose: t_end = time.time() print('Run time: {0} s'.format(t_end - t_beg)) return result
Called by :func:`detsat`.
entailment
def _get_valid_indices(shape, ix0, ix1, iy0, iy1): """Give array shape and desired indices, return indices that are correctly bounded by the shape.""" ymax, xmax = shape if ix0 < 0: ix0 = 0 if ix1 > xmax: ix1 = xmax if iy0 < 0: iy0 = 0 if iy1 > ymax: iy1 = ymax if iy1 <= iy0 or ix1 <= ix0: raise IndexError( 'array[{0}:{1},{2}:{3}] is invalid'.format(iy0, iy1, ix0, ix1)) return list(map(int, [ix0, ix1, iy0, iy1]))
Give array shape and desired indices, return indices that are correctly bounded by the shape.
entailment
def _rotate_point(point, angle, ishape, rshape, reverse=False): """Transform a point from original image coordinates to rotated image coordinates and back. It assumes the rotation point is the center of an image. This works on a simple rotation transformation:: newx = (startx) * np.cos(angle) - (starty) * np.sin(angle) newy = (startx) * np.sin(angle) + (starty) * np.cos(angle) It takes into account the differences in image size. Parameters ---------- point : tuple Point to be rotated, in the format of ``(x, y)`` measured from origin. angle : float The angle in degrees to rotate the point by as measured counter-clockwise from the X axis. ishape : tuple The shape of the original image, taken from ``image.shape``. rshape : tuple The shape of the rotated image, in the form of ``rotate.shape``. reverse : bool, optional Transform from rotated coordinates back to non-rotated image. Returns ------- rotated_point : tuple Rotated point in the format of ``(x, y)`` as measured from origin. """ # unpack the image and rotated images shapes if reverse: angle = (angle * -1) temp = ishape ishape = rshape rshape = temp # transform into center of image coordinates yhalf, xhalf = ishape yrhalf, xrhalf = rshape yhalf = yhalf / 2 xhalf = xhalf / 2 yrhalf = yrhalf / 2 xrhalf = xrhalf / 2 startx = point[0] - xhalf starty = point[1] - yhalf # do the rotation newx = startx * np.cos(angle) - starty * np.sin(angle) newy = startx * np.sin(angle) + starty * np.cos(angle) # add back the padding from changing the size of the image newx = newx + xrhalf newy = newy + yrhalf return (newx, newy)
Transform a point from original image coordinates to rotated image coordinates and back. It assumes the rotation point is the center of an image. This works on a simple rotation transformation:: newx = (startx) * np.cos(angle) - (starty) * np.sin(angle) newy = (startx) * np.sin(angle) + (starty) * np.cos(angle) It takes into account the differences in image size. Parameters ---------- point : tuple Point to be rotated, in the format of ``(x, y)`` measured from origin. angle : float The angle in degrees to rotate the point by as measured counter-clockwise from the X axis. ishape : tuple The shape of the original image, taken from ``image.shape``. rshape : tuple The shape of the rotated image, in the form of ``rotate.shape``. reverse : bool, optional Transform from rotated coordinates back to non-rotated image. Returns ------- rotated_point : tuple Rotated point in the format of ``(x, y)`` as measured from origin.
entailment
def make_mask(filename, ext, trail_coords, sublen=75, subwidth=200, order=3, sigma=4, pad=10, plot=False, verbose=False): """Create DQ mask for an image for a given satellite trail. This mask can be added to existing DQ data using :func:`update_dq`. .. note:: Unlike :func:`detsat`, multiprocessing is not available for this function. Parameters ---------- filename : str FITS image filename. ext : int, str, or tuple Extension for science data, as accepted by ``astropy.io.fits``. trail_coords : ndarray One of the trails returned by :func:`detsat`. This must be in the format of ``[[x0, y0], [x1, y1]]``. sublen : int, optional Length of strip to use as the fitting window for the trail. subwidth : int, optional Width of box to fit trail on. order : int, optional The order of the spline interpolation for image rotation. See :func:`skimage.transform.rotate`. sigma : float, optional Sigma of the satellite trail for detection. If points are a given sigma above the background in the subregion then it is marked as a satellite. This may need to be lowered for resolved trails. pad : int, optional Amount of extra padding in pixels to give the satellite mask. plot : bool, optional Plot the result. verbose : bool, optional Print extra information to the terminal, mostly for debugging. Returns ------- mask : ndarray Boolean array marking the satellite trail with `True`. Raises ------ ImportError Missing scipy or skimage>=0.11 packages. IndexError Invalid subarray indices. ValueError Image has no positive values, trail subarray too small, or trail profile not found. """ if not HAS_OPDEP: raise ImportError('Missing scipy or skimage>=0.11 packages') if verbose: t_beg = time.time() fname = '{0}[{1}]'.format(filename, ext) image = fits.getdata(filename, ext) dx = image.max() if dx <= 0: raise ValueError('Image has no positive values') # rescale the image image = image / dx # make sure everything is at least 0 image[image < 0] = 0 (x0, y0), (x1, y1) = trail_coords # p0, p1 # Find out how much to rotate the image rad = np.arctan2(y1 - y0, x1 - x0) newrad = (np.pi * 2) - rad deg = np.degrees(rad) if verbose: print('Rotation: {0}'.format(deg)) rotate = transform.rotate(image, deg, resize=True, order=order) if plot and plt is not None: plt.ion() mean = np.median(image) stddev = image.std() lower = mean - stddev upper = mean + stddev fig1, ax1 = plt.subplots() ax1.imshow(image, vmin=lower, vmax=upper, cmap=plt.cm.gray) ax1.set_title(fname) fig2, ax2 = plt.subplots() ax2.imshow(rotate, vmin=lower, vmax=upper, cmap=plt.cm.gray) ax2.set_title('{0} rotated by {1} deg'.format(fname, deg)) plt.draw() # Will do all of this in the loop, but want to make sure there is a # good point first and that there is indeed a profile to fit. # get starting point sx, sy = _rotate_point((x0, y0), newrad, image.shape, rotate.shape) # start with one subarray around p0 dx = int(subwidth / 2) ix0, ix1, iy0, iy1 = _get_valid_indices( rotate.shape, sx - dx, sx + dx, sy - sublen, sy + sublen) subr = rotate[iy0:iy1, ix0:ix1] if len(subr) <= sublen: raise ValueError('Trail subarray size is {0} but expected {1} or ' 'larger'.format(len(subr), sublen)) # Flatten the array so we are looking along rows # Take median of each row, should filter out most outliers # This list will get appended in the loop medarr = np.median(subr, axis=1) flat = [medarr] # get the outliers # mean = biweight_location(medarr) mean = sigma_clipped_stats(medarr)[0] stddev = biweight_midvariance(medarr) # only flag things that are sigma from the mean z = np.where(medarr > (mean + (sigma * stddev)))[0] if plot and plt is not None: fig1, ax1 = plt.subplots() ax1.plot(medarr, 'b.') ax1.plot(z, medarr[z], 'r.') ax1.set_xlabel('Index') ax1.set_ylabel('Value') ax1.set_title('Median array in flat[0]') plt.draw() # Make sure there is something in the first pass before trying to move on if len(z) < 1: raise ValueError( 'First look at finding a profile failed. ' 'Nothing found at {0} from background! ' 'Adjust parameters and try again.'.format(sigma)) # get the bounds of the flagged points lower = z.min() upper = z.max() diff = upper - lower # add in a pading value to make sure all of the wings are accounted for lower = lower - pad upper = upper + pad # for plotting see how the profile was made (append to plot above) if plot and plt is not None: padind = np.arange(lower, upper) ax1.plot(padind, medarr[padind], 'yx') plt.draw() # start to create a mask mask = np.zeros(rotate.shape) lowerx, upperx, lowery, uppery = _get_valid_indices( mask.shape, np.floor(sx - subwidth), np.ceil(sx + subwidth), np.floor(sy - sublen + lower), np.ceil(sy - sublen + upper)) mask[lowery:uppery, lowerx:upperx] = 1 done = False first = True nextx = upperx # np.ceil(sx + subwidth) centery = np.ceil(lowery + diff) # np.ceil(sy - sublen + lower + diff) counter = 0 while not done: # move to the right of the centerpoint first. do the same # as above but keep moving right until the edge is hit. ix0, ix1, iy0, iy1 = _get_valid_indices( rotate.shape, nextx - dx, nextx + dx, centery - sublen, centery + sublen) subr = rotate[iy0:iy1, ix0:ix1] # determines the edge, if the subr is not good, then the edge was # hit. if 0 in subr.shape: if verbose: print('Hit edge, subr shape={0}, first={1}'.format( subr.shape, first)) if first: first = False centery = sy nextx = sx else: done = True continue medarr = np.median(subr, axis=1) flat.append(medarr) # mean = biweight_location(medarr) mean = sigma_clipped_stats(medarr, sigma=sigma)[0] # Might give RuntimeWarning stddev = biweight_midvariance(medarr) z = np.where(medarr > (mean + (sigma * stddev)))[0] if len(z) < 1: if first: if verbose: print('No good profile found for counter={0}. Start ' 'moving left from starting point.'.format(counter)) centery = sy nextx = sx first = False else: if verbose: print('z={0} is less than 1, subr shape={1}, ' 'we are done'.format(z, subr.shape)) done = True continue # get the bounds of the flagged points lower = z.min() upper = z.max() diff = upper - lower # add in a pading value to make sure all of the wings # are accounted for lower = np.floor(lower - pad) upper = np.ceil(upper + pad) lowerx, upperx, lowery, uppery = _get_valid_indices( mask.shape, np.floor(nextx - subwidth), np.ceil(nextx + subwidth), np.floor(centery - sublen + lower), np.ceil(centery - sublen + upper)) mask[lowery:uppery, lowerx:upperx] = 1 # lower_p = (lowerx, lowery) upper_p = (upperx, uppery) # lower_t = _rotate_point( # lower_p, newrad, image.shape, rotate.shape, reverse=True) upper_t = _rotate_point( upper_p, newrad, image.shape, rotate.shape, reverse=True) # lowy = np.floor(lower_t[1]) highy = np.ceil(upper_t[1]) # lowx = np.floor(lower_t[0]) highx = np.ceil(upper_t[0]) # Reset the next subr to be at the center of the profile if first: nextx = nextx + dx centery = lowery + diff # centery - sublen + lower + diff if (nextx + subwidth) > rotate.shape[1]: if verbose: print('Hit rotate edge at counter={0}'.format(counter)) first = False elif (highy > image.shape[0]) or (highx > image.shape[1]): if verbose: print('Hit image edge at counter={0}'.format(counter)) first = False if not first: centery = sy nextx = sx # Not first, this is the pass the other way. else: nextx = nextx - dx centery = lowery + diff # centery - sublen + lower + diff if (nextx - subwidth) < 0: if verbose: print('Hit rotate edge at counter={0}'.format(counter)) done = True elif (highy > image.shape[0]) or (highx > image.shape[1]): if verbose: print('Hit image edge at counter={0}'.format(counter)) done = True counter += 1 # make sure it does not try to go infinetly if counter > 500: if verbose: print('Too many loops, exiting') done = True # End while rot = transform.rotate(mask, -deg, resize=True, order=1) ix0 = (rot.shape[1] - image.shape[1]) / 2 iy0 = (rot.shape[0] - image.shape[0]) / 2 lowerx, upperx, lowery, uppery = _get_valid_indices( rot.shape, ix0, image.shape[1] + ix0, iy0, image.shape[0] + iy0) mask = rot[lowery:uppery, lowerx:upperx] if mask.shape != image.shape: warnings.warn( 'Output mask shape is {0} but input image shape is ' '{1}'.format(mask.shape, image.shape), AstropyUserWarning) # Change to boolean mask mask = mask.astype(np.bool) if plot and plt is not None: # debugging array test = image.copy() test[mask] = 0 mean = np.median(test) stddev = test.std() lower = mean - stddev upper = mean + stddev fig1, ax1 = plt.subplots() ax1.imshow(test, vmin=lower, vmax=upper, cmap=plt.cm.gray) ax1.set_title('Masked image') fig2, ax2 = plt.subplots() ax2.imshow(mask, cmap=plt.cm.gray) ax2.set_title('DQ mask') plt.draw() if verbose: t_end = time.time() print('Run time: {0} s'.format(t_end - t_beg)) return mask
Create DQ mask for an image for a given satellite trail. This mask can be added to existing DQ data using :func:`update_dq`. .. note:: Unlike :func:`detsat`, multiprocessing is not available for this function. Parameters ---------- filename : str FITS image filename. ext : int, str, or tuple Extension for science data, as accepted by ``astropy.io.fits``. trail_coords : ndarray One of the trails returned by :func:`detsat`. This must be in the format of ``[[x0, y0], [x1, y1]]``. sublen : int, optional Length of strip to use as the fitting window for the trail. subwidth : int, optional Width of box to fit trail on. order : int, optional The order of the spline interpolation for image rotation. See :func:`skimage.transform.rotate`. sigma : float, optional Sigma of the satellite trail for detection. If points are a given sigma above the background in the subregion then it is marked as a satellite. This may need to be lowered for resolved trails. pad : int, optional Amount of extra padding in pixels to give the satellite mask. plot : bool, optional Plot the result. verbose : bool, optional Print extra information to the terminal, mostly for debugging. Returns ------- mask : ndarray Boolean array marking the satellite trail with `True`. Raises ------ ImportError Missing scipy or skimage>=0.11 packages. IndexError Invalid subarray indices. ValueError Image has no positive values, trail subarray too small, or trail profile not found.
entailment
def update_dq(filename, ext, mask, dqval=16384, verbose=True): """Update the given image and DQ extension with the given satellite trails mask and flag. Parameters ---------- filename : str FITS image filename to update. ext : int, str, or tuple DQ extension, as accepted by ``astropy.io.fits``, to update. mask : ndarray Boolean mask, with `True` marking the satellite trail(s). This can be the result(s) from :func:`make_mask`. dqval : int, optional DQ value to use for the trail. Default value of 16384 is tailored for ACS/WFC. verbose : bool, optional Print extra information to the terminal. """ with fits.open(filename, mode='update') as pf: dqarr = pf[ext].data old_mask = (dqval & dqarr) != 0 # Existing flagged trails new_mask = mask & ~old_mask # Only flag previously unflagged trails npix_updated = np.count_nonzero(new_mask) # Update DQ extension only if necessary if npix_updated > 0: pf[ext].data[new_mask] += dqval pf['PRIMARY'].header.add_history('{0} satdet v{1}({2})'.format( time.ctime(), __version__, __vdate__)) pf['PRIMARY'].header.add_history( ' Updated {0} px in EXT {1} with DQ={2}'.format( npix_updated, ext, dqval)) if verbose: fname = '{0}[{1}]'.format(filename, ext) print('DQ flag value is {0}'.format(dqval)) print('Input... flagged NPIX={0}'.format(np.count_nonzero(mask))) print('Existing flagged NPIX={0}'.format(np.count_nonzero(old_mask))) print('Newly... flagged NPIX={0}'.format(npix_updated)) if npix_updated > 0: print('{0} updated'.format(fname)) else: print('No updates necessary for {0}'.format(fname))
Update the given image and DQ extension with the given satellite trails mask and flag. Parameters ---------- filename : str FITS image filename to update. ext : int, str, or tuple DQ extension, as accepted by ``astropy.io.fits``, to update. mask : ndarray Boolean mask, with `True` marking the satellite trail(s). This can be the result(s) from :func:`make_mask`. dqval : int, optional DQ value to use for the trail. Default value of 16384 is tailored for ACS/WFC. verbose : bool, optional Print extra information to the terminal.
entailment
def _satdet_worker(work_queue, done_queue, sigma=2.0, low_thresh=0.1, h_thresh=0.5, small_edge=60, line_len=200, line_gap=75, percentile=(4.5, 93.0), buf=200): """Multiprocessing worker.""" for fil, chip in iter(work_queue.get, 'STOP'): try: result = _detsat_one( fil, chip, sigma=sigma, low_thresh=low_thresh, h_thresh=h_thresh, small_edge=small_edge, line_len=line_len, line_gap=line_gap, percentile=percentile, buf=buf, plot=False, verbose=False) except Exception as e: retcode = False result = '{0}: {1}'.format(type(e), str(e)) else: retcode = True done_queue.put((retcode, fil, chip, result)) return True
Multiprocessing worker.
entailment
def detsat(searchpattern, chips=[1, 4], n_processes=4, sigma=2.0, low_thresh=0.1, h_thresh=0.5, small_edge=60, line_len=200, line_gap=75, percentile=(4.5, 93.0), buf=200, plot=False, verbose=True): """Find satellite trails in the given images and extensions. The trails are calculated using Probabilistic Hough Transform. .. note:: The trail endpoints found here are crude approximations. Use :func:`make_mask` to create the actual DQ mask for the trail(s) of interest. Parameters ---------- searchpattern : str Search pattern for input FITS images, as accepted by :py:func:`glob.glob`. chips : list List of extensions for science data, as accepted by ``astropy.io.fits``. The default values of ``[1, 4]`` are tailored for ACS/WFC. n_processes : int Number of processes for multiprocessing, which is only useful if you are processing a lot of images or extensions. If 1 is given, no multiprocessing is done. sigma : float, optional The size of a Gaussian filter to use before edge detection. The default is 2, which is good for almost all images. low_thresh : float, optional The lower threshold for hysteresis linking of edge pieces. This should be between 0 and 1, and less than ``h_thresh``. h_thresh : float, optional The upper threshold for hysteresis linking of edge pieces. This should be between 0 and 1, and greater than ``low_thresh``. small_edge : int, optional Size of perimeter of small objects to remove in edge image. This significantly reduces noise before doing Hough Transform. If it is set too high, you will remove the edge of the satellite you are trying to find. line_len : int, optional Minimum line length for Probabilistic Hough Transform to fit. line_gap : int, optional The largest gap in points allowed for the Probabilistic Hough Transform. percentile : tuple of float, optional The percent boundaries to scale the image to before creating edge image. buf : int, optional How close to the edge of the image the satellite trail has to be to be considered a trail. plot : bool, optional Make plots of edge image, Hough space transformation, and rescaled image. This is only applicable if ``n_processes=1``. verbose : bool, optional Print extra information to the terminal, mostly for debugging. In multiprocessing mode, info from individual process is not printed. Returns ------- results : dict Dictionary mapping ``(filename, ext)`` to an array of endpoints of line segments in the format of ``[[x0, y0], [x1, y1]]`` (if found) or an empty array (if not). These are the segments that have been identified as making up part of a satellite trail. errors : dict Dictionary mapping ``(filename, ext)`` to the error message explaining why processing failed. Raises ------ ImportError Missing scipy or skimage>=0.11 packages. """ if not HAS_OPDEP: raise ImportError('Missing scipy or skimage>=0.11 packages') if verbose: t_beg = time.time() files = glob.glob(searchpattern) n_files = len(files) n_chips = len(chips) n_tot = n_files * n_chips n_cpu = multiprocessing.cpu_count() results = {} errors = {} if verbose: print('{0} file(s) found...'.format(n_files)) # Nothing to do if n_files < 1 or n_chips < 1: return results, errors # Adjust number of processes if n_tot < n_processes: n_processes = n_tot if n_processes > n_cpu: n_processes = n_cpu # No multiprocessing if n_processes == 1: for fil in files: for chip in chips: if verbose: print('\nProcessing {0}[{1}]...'.format(fil, chip)) key = (fil, chip) try: result = _detsat_one( fil, chip, sigma=sigma, low_thresh=low_thresh, h_thresh=h_thresh, small_edge=small_edge, line_len=line_len, line_gap=line_gap, percentile=percentile, buf=buf, plot=plot, verbose=verbose) except Exception as e: errmsg = '{0}: {1}'.format(type(e), str(e)) errors[key] = errmsg if verbose: print(errmsg) else: results[key] = result if verbose: print() # Multiprocessing. # The work queue is for things that need to be done and is shared by all # processes. When a worker finishes, its output is put into done queue. else: if verbose: print('Using {0} processes'.format(n_processes)) work_queue = Queue() done_queue = Queue() processes = [] for fil in files: for chip in chips: work_queue.put((fil, chip)) for w in range(n_processes): p = Process( target=_satdet_worker, args=(work_queue, done_queue), kwargs={ 'sigma': sigma, 'low_thresh': low_thresh, 'h_thresh': h_thresh, 'small_edge': small_edge, 'line_len': line_len, 'line_gap': line_gap, 'percentile': percentile, 'buf': buf}) p.start() processes.append(p) work_queue.put('STOP') for p in processes: p.join() done_queue.put('STOP') # return a dictionary of lists for status in iter(done_queue.get, 'STOP'): key = (status[1], status[2]) if status[0]: # Success results[key] = status[3] else: # Failed errors[key] = status[3] if verbose: if len(results) > 0: print('Number of trail segment(s) found:') for key in sorted(results): print(' {0}[{1}]: {2}'.format( key[0], key[1], len(results[key]))) if len(errors) > 0: print('These have errors:') for key in sorted(errors): print(' {0}[{1}]'.format(key[0], key[1])) if verbose: t_end = time.time() print('Total run time: {0} s'.format(t_end - t_beg)) return results, errors
Find satellite trails in the given images and extensions. The trails are calculated using Probabilistic Hough Transform. .. note:: The trail endpoints found here are crude approximations. Use :func:`make_mask` to create the actual DQ mask for the trail(s) of interest. Parameters ---------- searchpattern : str Search pattern for input FITS images, as accepted by :py:func:`glob.glob`. chips : list List of extensions for science data, as accepted by ``astropy.io.fits``. The default values of ``[1, 4]`` are tailored for ACS/WFC. n_processes : int Number of processes for multiprocessing, which is only useful if you are processing a lot of images or extensions. If 1 is given, no multiprocessing is done. sigma : float, optional The size of a Gaussian filter to use before edge detection. The default is 2, which is good for almost all images. low_thresh : float, optional The lower threshold for hysteresis linking of edge pieces. This should be between 0 and 1, and less than ``h_thresh``. h_thresh : float, optional The upper threshold for hysteresis linking of edge pieces. This should be between 0 and 1, and greater than ``low_thresh``. small_edge : int, optional Size of perimeter of small objects to remove in edge image. This significantly reduces noise before doing Hough Transform. If it is set too high, you will remove the edge of the satellite you are trying to find. line_len : int, optional Minimum line length for Probabilistic Hough Transform to fit. line_gap : int, optional The largest gap in points allowed for the Probabilistic Hough Transform. percentile : tuple of float, optional The percent boundaries to scale the image to before creating edge image. buf : int, optional How close to the edge of the image the satellite trail has to be to be considered a trail. plot : bool, optional Make plots of edge image, Hough space transformation, and rescaled image. This is only applicable if ``n_processes=1``. verbose : bool, optional Print extra information to the terminal, mostly for debugging. In multiprocessing mode, info from individual process is not printed. Returns ------- results : dict Dictionary mapping ``(filename, ext)`` to an array of endpoints of line segments in the format of ``[[x0, y0], [x1, y1]]`` (if found) or an empty array (if not). These are the segments that have been identified as making up part of a satellite trail. errors : dict Dictionary mapping ``(filename, ext)`` to the error message explaining why processing failed. Raises ------ ImportError Missing scipy or skimage>=0.11 packages.
entailment
def on(self, event: str) -> Callable: """ Decorator for subscribing a function to a specific event. :param event: Name of the event to subscribe to. :type event: str :return: The outer function. :rtype: Callable """ def outer(func): self.add_event(func, event) @wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper return outer
Decorator for subscribing a function to a specific event. :param event: Name of the event to subscribe to. :type event: str :return: The outer function. :rtype: Callable
entailment
def add_event(self, func: Callable, event: str) -> None: """ Adds a function to a event. :param func: The function to call when event is emitted :type func: Callable :param event: Name of the event. :type event: str """ self._events[event].add(func)
Adds a function to a event. :param func: The function to call when event is emitted :type func: Callable :param event: Name of the event. :type event: str
entailment
def emit(self, event: str, *args, **kwargs) -> None: """ Emit an event and run the subscribed functions. :param event: Name of the event. :type event: str .. notes: Passing in threads=True as a kwarg allows to run emitted events as separate threads. This can significantly speed up code execution depending on the code being executed. """ threads = kwargs.pop('threads', None) if threads: events = [ Thread(target=f, args=args, kwargs=kwargs) for f in self._event_funcs(event) ] for event in events: event.start() else: for func in self._event_funcs(event): func(*args, **kwargs)
Emit an event and run the subscribed functions. :param event: Name of the event. :type event: str .. notes: Passing in threads=True as a kwarg allows to run emitted events as separate threads. This can significantly speed up code execution depending on the code being executed.
entailment
def emit_only(self, event: str, func_names: Union[str, List[str]], *args, **kwargs) -> None: """ Specifically only emits certain subscribed events. :param event: Name of the event. :type event: str :param func_names: Function(s) to emit. :type func_names: Union[ str | List[str] ] """ if isinstance(func_names, str): func_names = [func_names] for func in self._event_funcs(event): if func.__name__ in func_names: func(*args, **kwargs)
Specifically only emits certain subscribed events. :param event: Name of the event. :type event: str :param func_names: Function(s) to emit. :type func_names: Union[ str | List[str] ]
entailment
def emit_after(self, event: str) -> Callable: """ Decorator that emits events after the function is completed. :param event: Name of the event. :type event: str :return: Callable .. note: This plainly just calls functions without passing params into the subscribed callables. This is great if you want to do some kind of post processing without the callable requiring information before doing so. """ def outer(func): @wraps(func) def wrapper(*args, **kwargs): returned = func(*args, **kwargs) self.emit(event) return returned return wrapper return outer
Decorator that emits events after the function is completed. :param event: Name of the event. :type event: str :return: Callable .. note: This plainly just calls functions without passing params into the subscribed callables. This is great if you want to do some kind of post processing without the callable requiring information before doing so.
entailment
def remove_event(self, func_name: str, event: str) -> None: """ Removes a subscribed function from a specific event. :param func_name: The name of the function to be removed. :type func_name: str :param event: The name of the event. :type event: str :raise EventDoesntExist if there func_name doesn't exist in event. """ event_funcs_copy = self._events[event].copy() for func in self._event_funcs(event): if func.__name__ == func_name: event_funcs_copy.remove(func) if self._events[event] == event_funcs_copy: err_msg = "function doesn't exist inside event {} ".format(event) raise EventDoesntExist(err_msg) else: self._events[event] = event_funcs_copy
Removes a subscribed function from a specific event. :param func_name: The name of the function to be removed. :type func_name: str :param event: The name of the event. :type event: str :raise EventDoesntExist if there func_name doesn't exist in event.
entailment
def _event_funcs(self, event: str) -> Iterable[Callable]: """ Returns an Iterable of the functions subscribed to a event. :param event: Name of the event. :type event: str :return: A iterable to do things with. :rtype: Iterable """ for func in self._events[event]: yield func
Returns an Iterable of the functions subscribed to a event. :param event: Name of the event. :type event: str :return: A iterable to do things with. :rtype: Iterable
entailment
def _event_func_names(self, event: str) -> List[str]: """ Returns string name of each function subscribed to an event. :param event: Name of the event. :type event: str :return: Names of functions subscribed to a specific event. :rtype: list """ return [func.__name__ for func in self._events[event]]
Returns string name of each function subscribed to an event. :param event: Name of the event. :type event: str :return: Names of functions subscribed to a specific event. :rtype: list
entailment
def _subscribed_event_count(self) -> int: """ Returns the total amount of subscribed events. :return: Integer amount events. :rtype: int """ event_counter = Counter() # type: Dict[Any, int] for key, values in self._events.items(): event_counter[key] = len(values) return sum(event_counter.values())
Returns the total amount of subscribed events. :return: Integer amount events. :rtype: int
entailment
def clean(input, suffix, stat="pmode1", maxiter=15, sigrej=2.0, lower=None, upper=None, binwidth=0.3, mask1=None, mask2=None, dqbits=None, rpt_clean=0, atol=0.01, clobber=False, verbose=True): r"""Remove horizontal stripes from ACS WFC post-SM4 data. Parameters ---------- input : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*flt.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) suffix : str The string to use to add to each input file name to indicate an output product. This string will be appended to the suffix in each input filename to create the new output filename. For example, setting `suffix='csck'` will create '\*_csck.fits' images. stat : { 'pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt' } (Default = 'pmode1') Specifies the statistics to be used for computation of the background in image rows: * 'pmode1' - SEXTRACTOR-like mode estimate based on a modified `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``2.5*median-1.5*mean``; * 'pmode2' - mode estimate based on `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``3*median-2*mean``; * 'mean' - the mean of the distribution of the "good" pixels (after clipping, masking, etc.); * 'mode' - the mode of the distribution of the "good" pixels; * 'median' - the median of the distribution of the "good" pixels; * 'midpt' - estimate of the median of the distribution of the "good" pixels based on an algorithm similar to IRAF's ``imagestats`` task (``CDF(midpt)=1/2``). .. note:: The midpoint and mode are computed in two passes through the image. In the first pass the standard deviation of the pixels is calculated and used with the *binwidth* parameter to compute the resolution of the data histogram. The midpoint is estimated by integrating the histogram and computing by interpolation the data value at which exactly half the pixels are below that data value and half are above it. The mode is computed by locating the maximum of the data histogram and fitting the peak by parabolic interpolation. maxiter : int This parameter controls the maximum number of iterations to perform when computing the statistics used to compute the row-by-row corrections. sigrej : float This parameters sets the sigma level for the rejection applied during each iteration of statistics computations for the row-by-row corrections. lower : float, None (Default = None) Lower limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). upper : float, None (Default = None) Upper limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). binwidth : float (Default = 0.1) Histogram's bin width, in sigma units, used to sample the distribution of pixel brightness values in order to compute the background statistics. This parameter is aplicable *only* to *stat* parameter values of `'mode'` or `'midpt'`. clobber : bool Specify whether or not to 'clobber' (delete then replace) previously generated products with the same names. mask1 : str, numpy.ndarray, None, or list of these types Mask images for ``SCI,1``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. mask2 : str, numpy.ndarray, None, or list of these types Mask images for ``SCI,2``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. This is not used for subarrays. dqbits : int, str, None (Default = None) Integer sum of all the DQ bit values from the input image's DQ array that should be considered "good" when building masks for de-striping computations. For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ "defects" having flags 2 and 4 as being acceptable for de-striping computations, then `dqbits` should be set to 2+4=6. Then a DQ pixel having values 2,4, or 6 will be considered a good pixel, while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a "bad" pixel. Alternatively, one can enter a comma- or '+'-separated list of integer bit flags that should be added to obtain the final "good" bits. For example, both ``4,8`` and ``4+8`` are equivalent to setting `dqbits` to 12. | Set `dqbits` to 0 to make *all* non-zero pixels in the DQ mask to be considered "bad" pixels, and the corresponding image pixels not to be used for de-striping computations. | Default value (`None`) will turn off the use of image's DQ array for de-striping computations. | In order to reverse the meaning of the `dqbits` parameter from indicating values of the "good" DQ flags to indicating the "bad" DQ flags, prepend '~' to the string value. For example, in order not to use pixels with DQ flags 4 and 8 for sky computations and to consider as "good" all other pixels (regardless of their DQ flag), set `dqbits` to ``~4+8``, or ``~4,8``. To obtain the same effect with an `int` input value (except for 0), enter -(4+8+1)=-9. Following this convention, a `dqbits` string value of ``'~0'`` would be equivalent to setting ``dqbits=None``. .. note:: DQ masks (if used), *will be* combined with user masks specified in the `mask1` and `mask2` parameters (if any). rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. verbose : bool Print informational messages. Default = True. """ from stsci.tools import parseinput # Optional package dependency flist = parseinput.parseinput(input)[0] if isinstance(mask1, str): mlist1 = parseinput.parseinput(mask1)[0] elif isinstance(mask1, np.ndarray): mlist1 = [mask1.copy()] elif mask1 is None: mlist1 = [] elif isinstance(mask1, list): mlist1 = [] for m in mask1: if isinstance(m, np.ndarray): mlist1.append(m.copy()) elif isinstance(m, str): mlist1 += parseinput.parseinput(m)[0] else: raise TypeError("'mask1' must be a list of str or " "numpy.ndarray values.") else: raise TypeError("'mask1' must be either a str, or a " "numpy.ndarray, or a list of the two type of " "values.") if isinstance(mask2, str): mlist2 = parseinput.parseinput(mask2)[0] elif isinstance(mask2, np.ndarray): mlist2 = [mask2.copy()] elif mask2 is None: mlist2 = [] elif isinstance(mask2, list): mlist2 = [] for m in mask2: if isinstance(m, np.ndarray): mlist2.append(m.copy()) elif isinstance(m, str): mlist2 += parseinput.parseinput(m)[0] else: raise TypeError("'mask2' must be a list of str or " "numpy.ndarray values.") else: raise TypeError("'mask2' must be either a str or a " "numpy.ndarray, or a list of the two type of " "values.") n_input = len(flist) n_mask1 = len(mlist1) n_mask2 = len(mlist2) if n_input == 0: raise ValueError("No input file(s) provided or " "the file(s) do not exist") if n_mask1 == 0: mlist1 = [None] * n_input elif n_mask1 != n_input: raise ValueError('Insufficient masks for [SCI,1]') if n_mask2 == 0: mlist2 = [None] * n_input elif n_mask2 != n_input: raise ValueError('Insufficient masks for [SCI,2]') for image, maskfile1, maskfile2 in zip(flist, mlist1, mlist2): # Skip processing pre-SM4 images if (fits.getval(image, 'EXPSTART') <= MJD_SM4): LOG.warning('{0} is pre-SM4. Skipping...'.format(image)) continue # Data must be in ELECTRONS if (fits.getval(image, 'BUNIT', ext=1) != 'ELECTRONS'): LOG.warning('{0} is not in ELECTRONS. Skipping...'.format(image)) continue # Skip processing CTECORR-ed images if (fits.getval(image, 'PCTECORR') == 'COMPLETE'): LOG.warning('{0} already has PCTECORR applied. ' 'Skipping...'.format(image)) continue # generate output filename for each input based on specification # of the output suffix output = image.replace('.fits', '_' + suffix + '.fits') LOG.info('Processing ' + image) # verify masks defined (or not) simultaneously: if (fits.getval(image, 'CCDAMP') == 'ABCD' and ((mask1 is not None and mask2 is None) or (mask1 is None and mask2 is not None))): raise ValueError("Both 'mask1' and 'mask2' must be specified " "or not specified together.") maskdata = _read_mask(maskfile1, maskfile2) perform_correction(image, output, stat=stat, maxiter=maxiter, sigrej=sigrej, lower=lower, upper=upper, binwidth=binwidth, mask=maskdata, dqbits=dqbits, rpt_clean=rpt_clean, atol=atol, clobber=clobber, verbose=verbose) LOG.info(output + ' created')
r"""Remove horizontal stripes from ACS WFC post-SM4 data. Parameters ---------- input : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*flt.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) suffix : str The string to use to add to each input file name to indicate an output product. This string will be appended to the suffix in each input filename to create the new output filename. For example, setting `suffix='csck'` will create '\*_csck.fits' images. stat : { 'pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt' } (Default = 'pmode1') Specifies the statistics to be used for computation of the background in image rows: * 'pmode1' - SEXTRACTOR-like mode estimate based on a modified `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``2.5*median-1.5*mean``; * 'pmode2' - mode estimate based on `Pearson's rule <http://en.wikipedia.org/wiki/Nonparametric_skew#Pearson.27s_rule>`_: ``3*median-2*mean``; * 'mean' - the mean of the distribution of the "good" pixels (after clipping, masking, etc.); * 'mode' - the mode of the distribution of the "good" pixels; * 'median' - the median of the distribution of the "good" pixels; * 'midpt' - estimate of the median of the distribution of the "good" pixels based on an algorithm similar to IRAF's ``imagestats`` task (``CDF(midpt)=1/2``). .. note:: The midpoint and mode are computed in two passes through the image. In the first pass the standard deviation of the pixels is calculated and used with the *binwidth* parameter to compute the resolution of the data histogram. The midpoint is estimated by integrating the histogram and computing by interpolation the data value at which exactly half the pixels are below that data value and half are above it. The mode is computed by locating the maximum of the data histogram and fitting the peak by parabolic interpolation. maxiter : int This parameter controls the maximum number of iterations to perform when computing the statistics used to compute the row-by-row corrections. sigrej : float This parameters sets the sigma level for the rejection applied during each iteration of statistics computations for the row-by-row corrections. lower : float, None (Default = None) Lower limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). upper : float, None (Default = None) Upper limit of usable pixel values for computing the background. This value should be specified in the units of the input image(s). binwidth : float (Default = 0.1) Histogram's bin width, in sigma units, used to sample the distribution of pixel brightness values in order to compute the background statistics. This parameter is aplicable *only* to *stat* parameter values of `'mode'` or `'midpt'`. clobber : bool Specify whether or not to 'clobber' (delete then replace) previously generated products with the same names. mask1 : str, numpy.ndarray, None, or list of these types Mask images for ``SCI,1``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. mask2 : str, numpy.ndarray, None, or list of these types Mask images for ``SCI,2``, one for each input file. Pixels with zero values will be masked out, in addition to clipping. This is not used for subarrays. dqbits : int, str, None (Default = None) Integer sum of all the DQ bit values from the input image's DQ array that should be considered "good" when building masks for de-striping computations. For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ "defects" having flags 2 and 4 as being acceptable for de-striping computations, then `dqbits` should be set to 2+4=6. Then a DQ pixel having values 2,4, or 6 will be considered a good pixel, while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a "bad" pixel. Alternatively, one can enter a comma- or '+'-separated list of integer bit flags that should be added to obtain the final "good" bits. For example, both ``4,8`` and ``4+8`` are equivalent to setting `dqbits` to 12. | Set `dqbits` to 0 to make *all* non-zero pixels in the DQ mask to be considered "bad" pixels, and the corresponding image pixels not to be used for de-striping computations. | Default value (`None`) will turn off the use of image's DQ array for de-striping computations. | In order to reverse the meaning of the `dqbits` parameter from indicating values of the "good" DQ flags to indicating the "bad" DQ flags, prepend '~' to the string value. For example, in order not to use pixels with DQ flags 4 and 8 for sky computations and to consider as "good" all other pixels (regardless of their DQ flag), set `dqbits` to ``~4+8``, or ``~4,8``. To obtain the same effect with an `int` input value (except for 0), enter -(4+8+1)=-9. Following this convention, a `dqbits` string value of ``'~0'`` would be equivalent to setting ``dqbits=None``. .. note:: DQ masks (if used), *will be* combined with user masks specified in the `mask1` and `mask2` parameters (if any). rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. verbose : bool Print informational messages. Default = True.
entailment
def perform_correction(image, output, stat="pmode1", maxiter=15, sigrej=2.0, lower=None, upper=None, binwidth=0.3, mask=None, dqbits=None, rpt_clean=0, atol=0.01, clobber=False, verbose=True): """ Clean each input image. Parameters ---------- image : str Input image name. output : str Output image name. mask : `numpy.ndarray` Mask array. maxiter, sigrej, clobber See :func:`clean`. dqbits : int, str, or None Data quality bits to be considered as "good" (or "bad"). See :func:`clean` for more details. rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. verbose : bool Print informational messages. Default = True. """ # construct the frame to be cleaned, including the # associated data stuctures needed for cleaning frame = StripeArray(image) # combine user mask with image's DQ array: mask = _mergeUserMaskAndDQ(frame.dq, mask, dqbits) # Do the stripe cleaning Success, NUpdRows, NMaxIter, Bkgrnd, STDDEVCorr, MaxCorr, Nrpt = clean_streak( frame, stat=stat, maxiter=maxiter, sigrej=sigrej, lower=lower, upper=upper, binwidth=binwidth, mask=mask, rpt_clean=rpt_clean, atol=atol, verbose=verbose ) if Success: if verbose: LOG.info('perform_correction - ===== Overall statistics for ' 'de-stripe corrections: =====') if (STDDEVCorr > 1.5*0.9): LOG.warning('perform_correction - STDDEV of applied de-stripe ' 'corrections ({:.3g}) exceeds\nknown bias striping ' 'STDDEV of 0.9e (see ISR ACS 2011-05) more than ' '1.5 times.'.format(STDDEVCorr)) elif verbose: LOG.info('perform_correction - STDDEV of applied de-stripe ' 'corrections {:.3g}.'.format(STDDEVCorr)) if verbose: LOG.info('perform_correction - Estimated background: ' '{:.5g}.'.format(Bkgrnd)) LOG.info('perform_correction - Maximum applied correction: ' '{:.3g}.'.format(MaxCorr)) LOG.info('perform_correction - Effective number of clipping ' 'iterations: {}.'.format(NMaxIter)) LOG.info('perform_correction - Effective number of additional ' '(repeated) cleanings: {}.'.format(Nrpt)) LOG.info('perform_correction - Total number of corrected rows: ' '{}.'.format(NUpdRows)) frame.write_corrected(output, clobber=clobber) frame.close()
Clean each input image. Parameters ---------- image : str Input image name. output : str Output image name. mask : `numpy.ndarray` Mask array. maxiter, sigrej, clobber See :func:`clean`. dqbits : int, str, or None Data quality bits to be considered as "good" (or "bad"). See :func:`clean` for more details. rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. verbose : bool Print informational messages. Default = True.
entailment
def clean_streak(image, stat="pmode1", maxiter=15, sigrej=2.0, lower=None, upper=None, binwidth=0.3, mask=None, rpt_clean=0, atol=0.01, verbose=True): """ Apply destriping algorithm to input array. Parameters ---------- image : `StripeArray` object Arrays are modifed in-place. stat : str Statistics for background computations (see :py:func:`clean` for more details) mask : `numpy.ndarray` Mask array. Pixels with zero values are masked out. maxiter, sigrej : see `clean` rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. verbose : bool Print informational messages. Default = True. Returns ------- Success : bool Indicates successful execution. NUpdRows : int Number of updated rows in the image. NMaxIter : int Maximum number of clipping iterations performed on image rows. Bkgrnd, STDDEVCorr, MaxCorr : float Background, standard deviation of corrections and maximum correction applied to the non-flat-field-corrected (i.e., RAW) image rows. Nrpt : int Number of *additional* (performed *after* initial run) cleanings. """ # Optional package dependency try: from stsci.imagestats import ImageStats except ImportError: ImageStats = None if mask is not None and image.science.shape != mask.shape: raise ValueError('Mask shape does not match science data shape') Nrpt = 0 warn_maxiter = False NUpdRows = 0 NMaxIter = 0 STDDEVCorr = 0.0 MaxCorr = 0.0 wmean = 0.0 stat = stat.lower().strip() if stat not in ['pmode1', 'pmode2', 'mean', 'mode', 'median', 'midpt']: raise ValueError("Unsupported value for 'stat'.") # array to hold the stripe amplitudes corr = np.empty(image.science.shape[0], dtype=np.float64) # array to hold cumulative stripe amplitudes and latest row npix: cumcorr = np.zeros(image.science.shape[0], dtype=np.float64) cnpix = np.zeros(image.science.shape[0], dtype=np.int) # other arrays corr_scale = np.empty(image.science.shape[0], dtype=np.float64) npix = np.empty(image.science.shape[0], dtype=np.int) sigcorr2 = np.zeros(image.science.shape[0], dtype=np.float64) updrows = np.zeros(image.science.shape[0], dtype=np.int) # for speed-up and to reduce rounding errors in ERR computations, # keep a copy of the squared error array: imerr2 = image.err**2 # arrays for detecting oscillatory behaviour: nonconvi0 = np.arange(image.science.shape[0]) corr0 = np.zeros(image.science.shape[0], dtype=np.float64) if stat == 'pmode1': # SExtractor-esque central value statistic; slightly sturdier against # skewness of pixel histogram due to faint source flux def getcorr(): return (2.5 * SMedian - 1.5 * SMean) elif stat == 'pmode2': # "Original Pearson"-ian estimate for mode: def getcorr(): return (3.0 * SMedian - 2.0 * SMean) elif stat == 'mean': def getcorr(): return (SMean) elif stat == 'median': def getcorr(): return (SMedian) elif stat == 'mode': if ImageStats is None: raise ImportError('stsci.imagestats is missing') def getcorr(): imstat = ImageStats(image.science[i][BMask], 'mode', lower=lower, upper=upper, nclip=0) assert(imstat.npix == NPix) return (imstat.mode) elif stat == 'midpt': if ImageStats is None: raise ImportError('stsci.imagestats is missing') def getcorr(): imstat = ImageStats(image.science[i][BMask], 'midpt', lower=lower, upper=upper, nclip=0) assert(imstat.npix == NPix) return (imstat.midpt) nmax_rpt = 1 if rpt_clean is None else max(1, rpt_clean+1) for rpt in range(nmax_rpt): Nrpt += 1 if verbose: if Nrpt <= 1: if nmax_rpt > 1: LOG.info("clean_streak - Performing initial image bias " "de-stripe:") else: LOG.info("clean_streak - Performing image bias de-stripe:") else: LOG.info("clean_streak - Performing repeated image bias " "de-stripe #{}:".format(Nrpt - 1)) # reset accumulators and arrays: corr[:] = 0.0 corr_scale[:] = 0.0 npix[:] = 0 tcorr = 0.0 tnpix = 0 tnpix2 = 0 NMaxIter = 0 # loop over rows to fit the stripe amplitude mask_arr = None for i in range(image.science.shape[0]): if mask is not None: mask_arr = mask[i] # row-by-row iterative sigma-clipped mean; # sigma, iters are adjustable SMean, SSig, SMedian, NPix, NIter, BMask = djs_iterstat( image.science[i], MaxIter=maxiter, SigRej=sigrej, Min=lower, Max=upper, Mask=mask_arr, lineno=i+1 ) if NPix > 0: corr[i] = getcorr() npix[i] = NPix corr_scale[i] = 1.0 / np.average(image.invflat[i][BMask]) sigcorr2[i] = corr_scale[i]**2 * \ np.sum((image.err[i][BMask])**2)/NPix**2 cnpix[i] = NPix tnpix += NPix tnpix2 += NPix*NPix tcorr += corr[i] * NPix if NIter > NMaxIter: NMaxIter = NIter if tnpix <= 0: LOG.warning('clean_streak - No good data points; cannot de-stripe.') return False, 0, 0, 0.0, 0.0, 0 if NMaxIter >= maxiter: warn_maxiter = True # require that bias stripe corrections have zero mean: # 1. compute weighted background of the flat-fielded image: wmean = tcorr / tnpix Bkgrnd = wmean # 2. estimate corrections: corr[npix > 0] -= wmean # convert corrections to the "raw" space: corr *= corr_scale # weighted mean and max value for current corrections # to the *RAW* image: trim_npix = npix[npix > 0] trim_corr = corr[npix > 0] cwmean = np.sum(trim_npix * trim_corr) / tnpix current_max_corr = np.amax(np.abs(trim_corr - cwmean)) wvar = np.sum(trim_npix * (trim_corr - cwmean) ** 2) / tnpix uwvar = wvar / (1.0 - float(tnpix2) / float(tnpix) ** 2) STDDEVCorr = np.sqrt(uwvar) # keep track of total corrections: cumcorr += corr # apply corrections row-by-row for i in range(image.science.shape[0]): if npix[i] < 1: continue updrows[i] = 1 ffdark = (image.dark[i] + image.flash[i]) * image.invflat[i] t1 = np.maximum(image.science[i] + ffdark, 0.0) # stripe is constant along the row, before flatfielding; # afterwards it has the shape of the inverse flatfield truecorr = corr[i] * image.invflat[i] #truecorr_sig2 = sigcorr2[i] * image.invflat[i]**2 # DEBUG # correct the SCI extension image.science[i] -= truecorr t2 = np.maximum(image.science[i] + ffdark, 0.0) T = (t1 - t2) * image.invflat[i] # correct the ERR extension # NOTE: np.abs() in the err array recomputation is used for safety # only and, in principle, assuming no errors have been made # in the derivation of the formula, np.abs() should not be # necessary. imerr2[i] -= T image.err[i] = np.sqrt(np.abs(imerr2[i])) # NOTE: for debugging purposes, one may want to uncomment # next line: #assert( np.all(imerr2 >= 0.0)) if atol is not None: if current_max_corr < atol: break # detect oscilatory non-convergence: nonconvi = np.nonzero(np.abs(corr) > atol)[0] nonconvi_int = np.intersect1d(nonconvi, nonconvi0) if (nonconvi.shape[0] == nonconvi0.shape[0] and nonconvi.shape[0] == nonconvi_int.shape[0] and np.all(corr0[nonconvi]*corr[nonconvi] < 0.0) and Nrpt > 1): LOG.warning("clean_streak - Repeat bias stripe cleaning\n" "process appears to be oscillatory for {:d} image " "rows.\nTry to adjust 'sigrej', 'maxiter', and/or " "'dqbits' parameters.\n" "In addition, consider using masks or adjust " "existing masks.".format(nonconvi.shape[0])) break nonconvi0 = nonconvi.copy() corr0 = corr.copy() if verbose: if Nrpt <= 1: LOG.info("clean_streak - Image bias de-stripe: Done.") else: LOG.info("clean_streak - Repeated (#{}) image bias de-stripe: " "Done.".format(Nrpt - 1)) if verbose and Nrpt > 1: LOG.info('clean_streak - ===== Repeated de-stripe "residual" ' 'estimates: =====') LOG.info('clean_streak - STDDEV of the last applied de-stripe ' 'corrections {:.3g}'.format(STDDEVCorr)) LOG.info('clean_streak - Maximum of the last applied correction: ' '{:.3g}.'.format(current_max_corr)) # add (in quadratures) an error term associated with the accuracy of # bias stripe correction: truecorr_sig2 = ((sigcorr2 * (image.invflat ** 2).T).T).astype(image.err.dtype) # noqa # update the ERR extension image.err[:, :] = np.sqrt(np.abs(imerr2 + truecorr_sig2)) if warn_maxiter: LOG.warning( 'clean_streak - Maximum number of clipping iterations ' 'specified by the user ({}) has been reached.'.format(maxiter)) # weighted mean, sample variance, and max value for # total (cummulative) corrections to the *RAW* image: trim_cnpix = cnpix[cnpix > 0] trim_cumcorr = cumcorr[cnpix > 0] tcnpix = np.sum(trim_cnpix) tcnpix2 = np.sum(trim_cnpix ** 2) cwmean = np.sum(trim_cnpix * trim_cumcorr) / tcnpix trim_cumcorr -= cwmean wvar = np.sum(trim_cnpix * trim_cumcorr ** 2) / tcnpix uwvar = wvar / (1.0 - float(tcnpix2) / float(tcnpix) ** 2) STDDEVCorr = np.sqrt(uwvar) MaxCorr = np.amax(np.abs(trim_cumcorr)) NUpdRows = np.sum(updrows) return True, NUpdRows, NMaxIter, Bkgrnd, STDDEVCorr, MaxCorr, Nrpt-1
Apply destriping algorithm to input array. Parameters ---------- image : `StripeArray` object Arrays are modifed in-place. stat : str Statistics for background computations (see :py:func:`clean` for more details) mask : `numpy.ndarray` Mask array. Pixels with zero values are masked out. maxiter, sigrej : see `clean` rpt_clean : int An integer indicating how many *additional* times stripe cleaning should be performed on the input image. Default = 0. atol : float, None The threshold for maximum absolute value of bias stripe correction below which repeated cleanings can stop. When `atol` is `None` cleaning will be repeated `rpt_clean` number of times. Default = 0.01 [e]. verbose : bool Print informational messages. Default = True. Returns ------- Success : bool Indicates successful execution. NUpdRows : int Number of updated rows in the image. NMaxIter : int Maximum number of clipping iterations performed on image rows. Bkgrnd, STDDEVCorr, MaxCorr : float Background, standard deviation of corrections and maximum correction applied to the non-flat-field-corrected (i.e., RAW) image rows. Nrpt : int Number of *additional* (performed *after* initial run) cleanings.
entailment
def djs_iterstat(InputArr, MaxIter=10, SigRej=3.0, Max=None, Min=None, Mask=None, lineno=None): """ Iterative sigma-clipping. Parameters ---------- InputArr : `numpy.ndarray` Input image array. MaxIter, SigRej : see `clean` Max, Min : float Max and min values for clipping. Mask : `numpy.ndarray` Mask array to indicate pixels to reject, in addition to clipping. Pixels where mask is zero will be rejected. If not given, all pixels will be used. lineno : int or None Line number to be used in log and/or warning messages. Returns ------- FMean, FSig, FMedian, NPix : float Mean, sigma, and median of final result. NIter : int Number of performed clipping iterations BMask : `numpy.ndarray` Logical image mask from the final iteration. """ NGood = InputArr.size ArrShape = InputArr.shape if NGood == 0: imrow = _write_row_number(lineno=lineno, offset=0, pad=1) LOG.warning('djs_iterstat - No data points given' + imrow) return 0, 0, 0, 0, 0, None if NGood == 1: imrow = _write_row_number(lineno=lineno, offset=0, pad=1) LOG.warning('djs_iterstat - Only one data point; ' 'cannot compute stats{0}'.format(imrow)) return 0, 0, 0, 0, 0, None if np.unique(InputArr).size == 1: imrow = _write_row_number(lineno=lineno, offset=0, pad=1) LOG.warning('djs_iterstat - Only one value in data; ' 'cannot compute stats{0}'.format(imrow)) return 0, 0, 0, 0, 0, None # Determine Max and Min if Max is None: Max = InputArr.max() if Min is None: Min = InputArr.min() # Use all pixels if no mask is provided if Mask is None: Mask = np.ones(ArrShape, dtype=np.byte) else: Mask = Mask.copy() # Reject those above Max and those below Min Mask[InputArr > Max] = 0 Mask[InputArr < Min] = 0 FMean = np.sum(1.0 * InputArr * Mask) / NGood FSig = np.sqrt(np.sum((1.0 * InputArr - FMean) ** 2 * Mask) / (NGood - 1)) NLast = -1 Iter = 0 NGood = np.sum(Mask) if NGood < 2: imrow = _write_row_number(lineno=lineno, offset=0, pad=1) LOG.warning('djs_iterstat - No good data points; ' 'cannot compute stats{0}'.format(imrow)) return 0, 0, 0, 0, 0, None SaveMask = Mask.copy() if Iter >= MaxIter: # to support MaxIter=0 NLast = NGood while (Iter < MaxIter) and (NLast != NGood) and (NGood >= 2): LoVal = FMean - SigRej * FSig HiVal = FMean + SigRej * FSig Mask[InputArr < LoVal] = 0 Mask[InputArr > HiVal] = 0 NLast = NGood npix = np.sum(Mask) if npix >= 2: FMean = np.sum(1.0 * InputArr * Mask) / npix FSig = np.sqrt(np.sum( (1.0 * InputArr - FMean) ** 2 * Mask) / (npix - 1)) SaveMask = Mask.copy() # last mask used for computation of mean NGood = npix Iter += 1 else: break logical_mask = SaveMask.astype(np.bool) if NLast > 1: FMedian = np.median(InputArr[logical_mask]) NLast = NGood else: FMedian = FMean return FMean, FSig, FMedian, NLast, Iter, logical_mask
Iterative sigma-clipping. Parameters ---------- InputArr : `numpy.ndarray` Input image array. MaxIter, SigRej : see `clean` Max, Min : float Max and min values for clipping. Mask : `numpy.ndarray` Mask array to indicate pixels to reject, in addition to clipping. Pixels where mask is zero will be rejected. If not given, all pixels will be used. lineno : int or None Line number to be used in log and/or warning messages. Returns ------- FMean, FSig, FMedian, NPix : float Mean, sigma, and median of final result. NIter : int Number of performed clipping iterations BMask : `numpy.ndarray` Logical image mask from the final iteration.
entailment
def run(configobj=None): """TEAL interface for the `clean` function.""" clean(configobj['input'], suffix=configobj['suffix'], stat=configobj['stat'], maxiter=configobj['maxiter'], sigrej=configobj['sigrej'], lower=configobj['lower'], upper=configobj['upper'], binwidth=configobj['binwidth'], mask1=configobj['mask1'], mask2=configobj['mask2'], dqbits=configobj['dqbits'], rpt_clean=configobj['rpt_clean'], atol=configobj['atol'], cte_correct=configobj['cte_correct'], clobber=configobj['clobber'], verbose=configobj['verbose'])
TEAL interface for the `clean` function.
entailment
def main(): """Command line driver.""" import argparse parser = argparse.ArgumentParser( prog=__taskname__, description='Remove horizontal stripes from ACS WFC post-SM4 data.') parser.add_argument( 'arg0', metavar='input', type=str, help='Input file') parser.add_argument( 'arg1', metavar='suffix', type=str, help='Output suffix') parser.add_argument( 'maxiter', nargs='?', type=int, default=15, help='Max #iterations') parser.add_argument( 'sigrej', nargs='?', type=float, default=2.0, help='Rejection sigma') parser.add_argument( '--stat', type=str, default='pmode1', help='Background statistics') parser.add_argument( '--lower', nargs='?', type=float, default=None, help='Lower limit for "good" pixels.') parser.add_argument( '--upper', nargs='?', type=float, default=None, help='Upper limit for "good" pixels.') parser.add_argument( '--binwidth', type=float, default=0.1, help='Bin width for distribution sampling.') parser.add_argument( '--mask1', nargs=1, type=str, default=None, help='Mask image for [SCI,1]') parser.add_argument( '--mask2', nargs=1, type=str, default=None, help='Mask image for [SCI,2]') parser.add_argument( '--dqbits', nargs='?', type=str, default=None, help='DQ bits to be considered "good".') parser.add_argument( '--rpt_clean', type=int, default=0, help='Number of *repeated* bias de-stripes to perform.') parser.add_argument( '--atol', nargs='?', type=float, default=0.01, help='Absolute tolerance to stop *repeated* bias de-stripes.') parser.add_argument( '-c', '--clobber', action="store_true", help='Clobber output') parser.add_argument( '-q', '--quiet', action='store_true', help='Do not print informational messages') parser.add_argument( '--version', action="version", version='{0} v{1} ({2})'.format(__taskname__, __version__, __vdate__)) args = parser.parse_args() if args.mask1: mask1 = args.mask1[0] else: mask1 = args.mask1 if args.mask2: mask2 = args.mask2[0] else: mask2 = args.mask2 clean(args.arg0, args.arg1, stat=args.stat, maxiter=args.maxiter, sigrej=args.sigrej, lower=args.lower, upper=args.upper, binwidth=args.binwidth, mask1=mask1, mask2=mask2, dqbits=args.dqbits, rpt_clean=args.rpt_clean, atol=args.atol, clobber=args.clobber, verbose=not args.quiet)
Command line driver.
entailment
def configure_arrays(self): """Get the SCI and ERR data.""" self.science = self.hdulist['sci', 1].data self.err = self.hdulist['err', 1].data self.dq = self.hdulist['dq', 1].data if (self.ampstring == 'ABCD'): self.science = np.concatenate( (self.science, self.hdulist['sci', 2].data[::-1, :]), axis=1) self.err = np.concatenate( (self.err, self.hdulist['err', 2].data[::-1, :]), axis=1) self.dq = np.concatenate( (self.dq, self.hdulist['dq', 2].data[::-1, :]), axis=1) self.ingest_dark() self.ingest_flash() self.ingest_flatfield()
Get the SCI and ERR data.
entailment
def ingest_flatfield(self): """Process flatfield.""" self.invflat = extract_flatfield( self.hdulist[0].header, self.hdulist[1]) # If BIAS or DARK, set flatfield to unity if self.invflat is None: self.invflat = np.ones_like(self.science) return # Apply the flatfield if necessary if self.flatcorr != 'COMPLETE': self.science = self.science * self.invflat self.err = self.err * self.invflat
Process flatfield.
entailment
def ingest_flash(self): """Process post-flash.""" self.flash = extract_flash(self.hdulist[0].header, self.hdulist[1]) # Set post-flash to zeros if self.flash is None: self.flash = np.zeros_like(self.science) return # Apply the flash subtraction if necessary. # Not applied to ERR, to be consistent with ingest_dark() if self.flshcorr != 'COMPLETE': self.science = self.science - self.flash
Process post-flash.
entailment
def ingest_dark(self): """Process dark.""" self.dark = extract_dark(self.hdulist[0].header, self.hdulist[1]) # If BIAS or DARK, set dark to zeros if self.dark is None: self.dark = np.zeros_like(self.science) return # Apply the dark subtraction if necessary. # Effect of DARK on ERR is insignificant for de-striping. if self.darkcorr != 'COMPLETE': self.science = self.science - self.dark
Process dark.
entailment
def write_corrected(self, output, clobber=False): """Write out the destriped data.""" # un-apply the flatfield if necessary if self.flatcorr != 'COMPLETE': self.science = self.science / self.invflat self.err = self.err / self.invflat # un-apply the post-flash if necessary if self.flshcorr != 'COMPLETE': self.science = self.science + self.flash # un-apply the dark if necessary if self.darkcorr != 'COMPLETE': self.science = self.science + self.dark # reverse the amp merge if (self.ampstring == 'ABCD'): tmp_1, tmp_2 = np.split(self.science, 2, axis=1) self.hdulist['sci', 1].data = tmp_1.copy() self.hdulist['sci', 2].data = tmp_2[::-1, :].copy() tmp_1, tmp_2 = np.split(self.err, 2, axis=1) self.hdulist['err', 1].data = tmp_1.copy() self.hdulist['err', 2].data = tmp_2[::-1, :].copy() else: self.hdulist['sci', 1].data = self.science.copy() self.hdulist['err', 1].data = self.err.copy() # Write the output self.hdulist.writeto(output, overwrite=clobber)
Write out the destriped data.
entailment
def calacs(input_file, exec_path=None, time_stamps=False, temp_files=False, verbose=False, debug=False, quiet=False, single_core=False, exe_args=None): """ Run the calacs.e executable as from the shell. By default this will run the calacs given by 'calacs.e'. Parameters ---------- input_file : str Name of input file. exec_path : str, optional The complete path to a calacs executable. time_stamps : bool, optional Set to True to turn on the printing of time stamps. temp_files : bool, optional Set to True to have CALACS save temporary files. verbose : bool, optional Set to True for verbose output. debug : bool, optional Set to True to turn on debugging output. quiet : bool, optional Set to True for quiet output. single_core : bool, optional CTE correction in CALACS will by default try to use all available CPUs on your computer. Set this to True to force the use of just one CPU. exe_args : list, optional Arbitrary arguments passed to underlying executable call. Note: Implementation uses subprocess.call and whitespace is not permitted. E.g. use exe_args=['--nThreads', '1'] """ if exec_path: if not os.path.exists(exec_path): raise OSError('Executable not found: ' + exec_path) call_list = [exec_path] else: call_list = ['calacs.e'] if time_stamps: call_list.append('-t') if temp_files: call_list.append('-s') if verbose: call_list.append('-v') if debug: call_list.append('-d') if quiet: call_list.append('-q') if single_core: call_list.append('-1') if not os.path.exists(input_file): raise IOError('Input file not found: ' + input_file) call_list.append(input_file) if exe_args: call_list.extend(exe_args) subprocess.check_call(call_list)
Run the calacs.e executable as from the shell. By default this will run the calacs given by 'calacs.e'. Parameters ---------- input_file : str Name of input file. exec_path : str, optional The complete path to a calacs executable. time_stamps : bool, optional Set to True to turn on the printing of time stamps. temp_files : bool, optional Set to True to have CALACS save temporary files. verbose : bool, optional Set to True for verbose output. debug : bool, optional Set to True to turn on debugging output. quiet : bool, optional Set to True for quiet output. single_core : bool, optional CTE correction in CALACS will by default try to use all available CPUs on your computer. Set this to True to force the use of just one CPU. exe_args : list, optional Arbitrary arguments passed to underlying executable call. Note: Implementation uses subprocess.call and whitespace is not permitted. E.g. use exe_args=['--nThreads', '1']
entailment
def run(configobj=None): """ TEAL interface for the `calacs` function. """ calacs(configobj['input_file'], exec_path=configobj['exec_path'], time_stamps=configobj['time_stamps'], temp_files=configobj['temp_files'], verbose=configobj['verbose'], debug=configobj['debug'], quiet=configobj['quiet'], single_core=configobj['single_core'] )
TEAL interface for the `calacs` function.
entailment
def has_any_permissions(self, user): """ Return a boolean to indicate whether the supplied user has any permissions at all on the associated model """ for perm in self.get_all_model_permissions(): if self.has_specific_permission(user, perm.codename): return True return False
Return a boolean to indicate whether the supplied user has any permissions at all on the associated model
entailment
def get_valid_parent_pages(self, user): """ Identifies possible parent pages for the current user by first looking at allowed_parent_page_models() on self.model to limit options to the correct type of page, then checking permissions on those individual pages to make sure we have permission to add a subpage to it. """ # Start with empty qs parents_qs = Page.objects.none() # Add pages of the correct type for pt in self.model.allowed_parent_page_models(): pt_items = Page.objects.type(pt) parents_qs = parents_qs | pt_items # Exclude pages that we can't add subpages to for page in parents_qs.all(): if not page.permissions_for_user(user).can_add_subpage(): parents_qs = parents_qs.exclude(pk=page.pk) return parents_qs
Identifies possible parent pages for the current user by first looking at allowed_parent_page_models() on self.model to limit options to the correct type of page, then checking permissions on those individual pages to make sure we have permission to add a subpage to it.
entailment
def acsrej(input, output, exec_path='', time_stamps=False, verbose=False, shadcorr=False, crrejtab='', crmask=False, scalense=None, initgues='', skysub='', crsigmas='', crradius=None, crthresh=None, badinpdq=None, newbias=False, readnoise_only=False, exe_args=None): r""" Run the acsrej.e executable as from the shell. Parameters ---------- input : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*flt.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) output : str Output filename. exec_path : str, optional The complete path to ACSREJ executable. If not given, run ACSREJ given by 'acsrej.e'. time_stamps : bool, optional Set to True to turn on the printing of time stamps. verbose : bool, optional Set to True for verbose output. shadcorr : bool, optional Perform shutter shading correction. If this is False but SHADCORR is set to PERFORM in the header of the first image, the correction will be applied anyway. Only use this with CCD image, not SBC MAMA. crrejtab : str, optional CRREJTAB to use. If not given, will use CRREJTAB given in the primary header of the first input image. crmask : bool, optional Flag CR-rejected pixels in input files. If False, will use CRMASK value in CRREJTAB. scalense : float, optional Multiplicative scale factor (in percents) applied to noise. Acceptable values are 0 to 100, inclusive. If None, will use SCALENSE from CRREJTAB. initgues : {'med', 'min'}, optional Scheme for computing initial-guess image. If not given, will use INITGUES from CRREJTAB. skysub : {'none', 'mode'}, optional Scheme for computing sky levels to be subtracted. If not given, will use SKYSUB from CRREJTAB. crsigmas : str, optional Cosmic ray rejection thresholds given in the format of 'sig1,sig2,...'. Number of sigmas given will be the number of rejection iterations done. At least 1 and at most 20 sigmas accepted. If not given, will use CRSIGMAS from CRREJTAB. crradius : float, optional Radius (in pixels) to propagate the cosmic ray. If None, will use CRRADIUS from CRREJTAB. crthresh : float, optional Cosmic ray rejection propagation threshold. If None, will use CRTHRESH from CRREJTAB. badinpdq : int, optional Data quality flag used for cosmic ray rejection. If None, will use BADINPDQ from CRREJTAB. newbias : bool, optional This option has been deprecated. Use ``readnoise_only``. readnoise_only : bool, optional ERR is just read noise, not Poisson noise. This is used for BIAS images. exe_args : list, optional Arbitrary arguments passed to underlying executable call. Note: Implementation uses subprocess.call and whitespace is not permitted. E.g. use exe_args=['--nThreads', '1'] """ from stsci.tools import parseinput # Optional package dependency if exec_path: if not os.path.exists(exec_path): raise OSError('Executable not found: ' + exec_path) call_list = [exec_path] else: call_list = ['acsrej.e'] # Parse input to get list of filenames to process. # acsrej.e only takes 'file1,file2,...' infiles, dummy_out = parseinput.parseinput(input) call_list.append(','.join(infiles)) call_list.append(output) if time_stamps: call_list.append('-t') if verbose: call_list.append('-v') if shadcorr: call_list.append('-shadcorr') if crrejtab: call_list += ['-table', crrejtab] if crmask: call_list.append('-crmask') if scalense is not None: if scalense < 0 or scalense > 100: raise ValueError('SCALENSE must be 0 to 100') call_list += ['-scale', str(scalense)] if initgues: if initgues not in ('med', 'min'): raise ValueError('INITGUES must be "med" or "min"') call_list += ['-init', initgues] if skysub: if skysub not in ('none', 'mode'): raise ValueError('SKYSUB must be "none" or "mode"') call_list += ['-sky', skysub] if crsigmas: call_list += ['-sigmas', crsigmas] if crradius is not None: call_list += ['-radius', str(crradius)] if crthresh is not None: call_list += ['-thresh ', str(crthresh)] if badinpdq is not None: call_list += ['-pdq', str(badinpdq)] # Backward-compatibility for readnoise_only. # TODO: Remove this option entirely in a future release. if newbias: warnings.warn('newbias is deprecated, use readnoise_only', ACSREJDeprecationWarning) readnoise_only = newbias if readnoise_only: call_list.append('-readnoise_only') if exe_args: call_list.extend(exe_args) subprocess.check_call(call_list)
r""" Run the acsrej.e executable as from the shell. Parameters ---------- input : str or list of str Input filenames in one of these formats: * a Python list of filenames * a partial filename with wildcards ('\*flt.fits') * filename of an ASN table ('j12345670_asn.fits') * an at-file (``@input``) output : str Output filename. exec_path : str, optional The complete path to ACSREJ executable. If not given, run ACSREJ given by 'acsrej.e'. time_stamps : bool, optional Set to True to turn on the printing of time stamps. verbose : bool, optional Set to True for verbose output. shadcorr : bool, optional Perform shutter shading correction. If this is False but SHADCORR is set to PERFORM in the header of the first image, the correction will be applied anyway. Only use this with CCD image, not SBC MAMA. crrejtab : str, optional CRREJTAB to use. If not given, will use CRREJTAB given in the primary header of the first input image. crmask : bool, optional Flag CR-rejected pixels in input files. If False, will use CRMASK value in CRREJTAB. scalense : float, optional Multiplicative scale factor (in percents) applied to noise. Acceptable values are 0 to 100, inclusive. If None, will use SCALENSE from CRREJTAB. initgues : {'med', 'min'}, optional Scheme for computing initial-guess image. If not given, will use INITGUES from CRREJTAB. skysub : {'none', 'mode'}, optional Scheme for computing sky levels to be subtracted. If not given, will use SKYSUB from CRREJTAB. crsigmas : str, optional Cosmic ray rejection thresholds given in the format of 'sig1,sig2,...'. Number of sigmas given will be the number of rejection iterations done. At least 1 and at most 20 sigmas accepted. If not given, will use CRSIGMAS from CRREJTAB. crradius : float, optional Radius (in pixels) to propagate the cosmic ray. If None, will use CRRADIUS from CRREJTAB. crthresh : float, optional Cosmic ray rejection propagation threshold. If None, will use CRTHRESH from CRREJTAB. badinpdq : int, optional Data quality flag used for cosmic ray rejection. If None, will use BADINPDQ from CRREJTAB. newbias : bool, optional This option has been deprecated. Use ``readnoise_only``. readnoise_only : bool, optional ERR is just read noise, not Poisson noise. This is used for BIAS images. exe_args : list, optional Arbitrary arguments passed to underlying executable call. Note: Implementation uses subprocess.call and whitespace is not permitted. E.g. use exe_args=['--nThreads', '1']
entailment
def run(configobj=None): """ TEAL interface for the `acsrej` function. """ acsrej(configobj['input'], configobj['output'], exec_path=configobj['exec_path'], time_stamps=configobj['time_stamps'], verbose=configobj['verbose'], shadcorr=configobj['shadcorr'], crrejtab=configobj['crrejtab'], crmask=configobj['crmask'], scalense=configobj['scalense'], initgues=configobj['initgues'], skysub=configobj['skysub'], crsigmas=configobj['crsigmas'], crradius=configobj['crradius'], crthresh=configobj['crthresh'], badinpdq=configobj['badinpdq'], readnoise_only=configobj['readnoise_only'])
TEAL interface for the `acsrej` function.
entailment
def monkeypatch_os_fork_functions(): """ Replace os.fork* with wrappers that use ForkSafeLock to acquire all locks before forking and release them afterwards. """ builtin_function = type(''.join) if hasattr(os, 'fork') and isinstance(os.fork, builtin_function): global _orig_os_fork _orig_os_fork = os.fork os.fork = os_fork_wrapper if hasattr(os, 'forkpty') and isinstance(os.forkpty, builtin_function): global _orig_os_forkpty _orig_os_forkpty = os.forkpty os.forkpty = os_forkpty_wrapper
Replace os.fork* with wrappers that use ForkSafeLock to acquire all locks before forking and release them afterwards.
entailment
def atfork(prepare=None, parent=None, child=None): """A Python work-a-like of pthread_atfork. Any time a fork() is called from Python, all 'prepare' callables will be called in the order they were registered using this function. After the fork (successful or not), all 'parent' callables will be called in the parent process. If the fork succeeded, all 'child' callables will be called in the child process. No exceptions may be raised from any of the registered callables. If so they will be printed to sys.stderr after the fork call once it is safe to do so. """ assert not prepare or callable(prepare) assert not parent or callable(parent) assert not child or callable(child) _fork_lock.acquire() try: if prepare: _prepare_call_list.append(prepare) if parent: _parent_call_list.append(parent) if child: _child_call_list.append(child) finally: _fork_lock.release()
A Python work-a-like of pthread_atfork. Any time a fork() is called from Python, all 'prepare' callables will be called in the order they were registered using this function. After the fork (successful or not), all 'parent' callables will be called in the parent process. If the fork succeeded, all 'child' callables will be called in the child process. No exceptions may be raised from any of the registered callables. If so they will be printed to sys.stderr after the fork call once it is safe to do so.
entailment
def _call_atfork_list(call_list): """ Given a list of callables in call_list, call them all in order and save and return a list of sys.exc_info() tuples for each exception raised. """ exception_list = [] for func in call_list: try: func() except: exception_list.append(sys.exc_info()) return exception_list
Given a list of callables in call_list, call them all in order and save and return a list of sys.exc_info() tuples for each exception raised.
entailment
def parent_after_fork_release(): """ Call all parent after fork callables, release the lock and print all prepare and parent callback exceptions. """ prepare_exceptions = list(_prepare_call_exceptions) del _prepare_call_exceptions[:] exceptions = _call_atfork_list(_parent_call_list) _fork_lock.release() _print_exception_list(prepare_exceptions, 'before fork') _print_exception_list(exceptions, 'after fork from parent')
Call all parent after fork callables, release the lock and print all prepare and parent callback exceptions.
entailment
def _print_exception_list(exceptions, message, output_file=None): """ Given a list of sys.exc_info tuples, print them all using the traceback module preceeded by a message and separated by a blank line. """ output_file = output_file or sys.stderr message = 'Exception %s:\n' % message for exc_type, exc_value, exc_traceback in exceptions: output_file.write(message) traceback.print_exception(exc_type, exc_value, exc_traceback, file=output_file) output_file.write('\n')
Given a list of sys.exc_info tuples, print them all using the traceback module preceeded by a message and separated by a blank line.
entailment
def os_forkpty_wrapper(): """Wraps os.forkpty() to run atfork handlers.""" pid = None prepare_to_fork_acquire() try: pid, fd = _orig_os_forkpty() finally: if pid == 0: child_after_fork_release() else: parent_after_fork_release() return pid, fd
Wraps os.forkpty() to run atfork handlers.
entailment
def maybe(value): """Wraps an object with a Maybe instance. >>> maybe("I'm a value") Something("I'm a value") >>> maybe(None); Nothing Testing for value: >>> maybe("I'm a value").is_some() True >>> maybe("I'm a value").is_none() False >>> maybe(None).is_some() False >>> maybe(None).is_none() True Simplifying IF statements: >>> maybe("I'm a value").get() "I'm a value" >>> maybe("I'm a value").or_else(lambda: "No value") "I'm a value" >>> maybe(None).get() Traceback (most recent call last): ... NothingValueError: No such element >>> maybe(None).or_else(lambda: "value") 'value' >>> maybe(None).or_else("value") 'value' Wrap around values from object's attributes: class Person(object): def __init__(name): self.eran = name eran = maybe(Person('eran')) >>> eran.name Something('eran') >>> eran.phone_number Nothing >>> eran.phone_number.or_else('no phone number') 'no phone number' >>> maybe(4) + 8 Something(12) >>> maybe(4) - 2 Something(2) >>> maybe(4) * 2 Something(8) And methods: >>> maybe('VALUE').lower().get() 'value' >>> maybe(None).invalid().method().or_else('unknwon') 'unknwon' Enabled easily using NestedDictionaries without having to worry if a value is missing. For example lets assume we want to load some value from the following dictionary: nested_dict = maybe({ 'store': { 'name': 'MyStore', 'departments': { 'sales': { 'head_count': '10' } } } }) >>> nested_dict['store']['name'].get() 'MyStore' >>> nested_dict['store']['address'] Nothing >>> nested_dict['store']['address']['street'].or_else('No Address Specified') 'No Address Specified' >>> nested_dict['store']['address']['street'].or_none() is None True >>> nested_dict['store']['address']['street'].or_empty_list() [] >>> nested_dict['store']['departments']['sales']['head_count'].or_else('0') '10' >>> nested_dict['store']['departments']['marketing']['head_count'].or_else('0') '0' """ if isinstance(value, Maybe): return value if value is not None: return Something(value) return Nothing()
Wraps an object with a Maybe instance. >>> maybe("I'm a value") Something("I'm a value") >>> maybe(None); Nothing Testing for value: >>> maybe("I'm a value").is_some() True >>> maybe("I'm a value").is_none() False >>> maybe(None).is_some() False >>> maybe(None).is_none() True Simplifying IF statements: >>> maybe("I'm a value").get() "I'm a value" >>> maybe("I'm a value").or_else(lambda: "No value") "I'm a value" >>> maybe(None).get() Traceback (most recent call last): ... NothingValueError: No such element >>> maybe(None).or_else(lambda: "value") 'value' >>> maybe(None).or_else("value") 'value' Wrap around values from object's attributes: class Person(object): def __init__(name): self.eran = name eran = maybe(Person('eran')) >>> eran.name Something('eran') >>> eran.phone_number Nothing >>> eran.phone_number.or_else('no phone number') 'no phone number' >>> maybe(4) + 8 Something(12) >>> maybe(4) - 2 Something(2) >>> maybe(4) * 2 Something(8) And methods: >>> maybe('VALUE').lower().get() 'value' >>> maybe(None).invalid().method().or_else('unknwon') 'unknwon' Enabled easily using NestedDictionaries without having to worry if a value is missing. For example lets assume we want to load some value from the following dictionary: nested_dict = maybe({ 'store': { 'name': 'MyStore', 'departments': { 'sales': { 'head_count': '10' } } } }) >>> nested_dict['store']['name'].get() 'MyStore' >>> nested_dict['store']['address'] Nothing >>> nested_dict['store']['address']['street'].or_else('No Address Specified') 'No Address Specified' >>> nested_dict['store']['address']['street'].or_none() is None True >>> nested_dict['store']['address']['street'].or_empty_list() [] >>> nested_dict['store']['departments']['sales']['head_count'].or_else('0') '10' >>> nested_dict['store']['departments']['marketing']['head_count'].or_else('0') '0'
entailment
def setup(self): '''Called after instantiation''' TelnetHandlerBase.setup(self) # Spawn a greenlet to handle socket input self.greenlet_ic = eventlet.spawn(self.inputcooker) # Note that inputcooker exits on EOF # Sleep for 0.5 second to allow options negotiation eventlet.sleep(0.5)
Called after instantiation
entailment
def inputcooker_store_queue(self, char): """Put the cooked data in the input queue (no locking needed)""" if type(char) in [type(()), type([]), type("")]: for v in char: self.cookedq.put(v) else: self.cookedq.put(char)
Put the cooked data in the input queue (no locking needed)
entailment
def setup(self): '''Setup the connection.''' log.debug( 'New request from address %s, port %d', self.client_address ) try: self.transport.load_server_moduli() except: log.exception( '(Failed to load moduli -- gex will be unsupported.)' ) raise try: self.transport.add_server_key(self.host_key) except: if self.host_key is None: log.critical('Host key not set! SSHHandler MUST define the host_key parameter.') raise NotImplementedError('Host key not set! SSHHandler instance must define the host_key parameter. Try host_key = paramiko_ssh.getRsaKeyFile("server_rsa.key").') try: # Tell transport to use this object as a server log.debug( 'Starting SSH server-side negotiation' ) self.transport.start_server(server=self) except SSHException, e: log.warn('SSH negotiation failed. %s', e) raise # Accept any requested channels while True: channel = self.transport.accept(20) if channel is None: # check to see if any thread is running any_running = False for c, thread in self.channels.items(): if thread.is_alive(): any_running = True break if not any_running: break else: log.info( 'Accepted channel %s', channel )
Setup the connection.
entailment
def streamserver_handle(cls, socket, address): '''Translate this class for use in a StreamServer''' request = cls.dummy_request() request._sock = socket server = None cls(request, address, server)
Translate this class for use in a StreamServer
entailment
def check_channel_shell_request(self, channel): '''Request to start a shell on the given channel''' try: self.channels[channel].start() except KeyError: log.error('Requested to start a channel (%r) that was not previously set up.', channel) return False else: return True
Request to start a shell on the given channel
entailment
def check_channel_pty_request(self, channel, term, width, height, pixelwidth, pixelheight, modes): '''Request to allocate a PTY terminal.''' #self.sshterm = term #print "term: %r, modes: %r" % (term, modes) log.debug('PTY requested. Setting up %r.', self.telnet_handler) pty_thread = Thread( target=self.start_pty_request, args=(channel, term, modes) ) self.channels[channel] = pty_thread return True
Request to allocate a PTY terminal.
entailment
def download(url, file_name): r = requests.get(url, stream=True) file_size = int(r.headers['Content-length']) ''' if py3: file_size = int(u.getheader("Content-Length")[0]) else: file_size = int(u.info().getheaders("Content-Length")[0]) ''' file_exists = False if os.path.isfile(file_name): local_file_size = os.path.getsize(file_name) if local_file_size == file_size: sha1_file = file_name + '.sha1' if os.path.isfile(sha1_file): print('sha1 found') with open(sha1_file) as f: expected_sha1 = f.read() BLOCKSIZE = 65536 sha1 = hashlib.sha1() with open(file_name) as f: buff = f.read(BLOCKSIZE) while len(buff) > 0: sha1.update(buff) buff = f.read(BLOCKSIZE) if expected_sha1 == sha1: file_exists = True else: print("File corrupt. Downloading again.") os.remove(file_name) else: file_exists = True else: print("File corrupt. Downloading again.") os.remove(file_name) if not file_exists: factor = int(math.floor(math.log(file_size) / math.log(1024))) display_file_size = str(file_size / 1024 ** factor) + \ ['B', 'KB', 'MB', 'GB', 'TB', 'PB'][factor] print("Source: " + url) print("Destination " + file_name) print("Size: " + display_file_size) file_size_dl = 0 block_sz = 8192 f = open(file_name, 'wb') pbar = ProgressBar(file_size) for chunk in r.iter_content(chunk_size=block_sz): if not chunk: continue chunk_size = len(chunk) file_size_dl += chunk_size f.write(chunk) pbar.update(chunk_size) # status = r"%10d [%3.2f%%]" % (file_size_dl, file_size_dl * 100. / file_size) # status = status + chr(8)*(len(status)+1) # print(status) f.close() else: print("File already exists - " + file_name) return True
if py3: file_size = int(u.getheader("Content-Length")[0]) else: file_size = int(u.info().getheaders("Content-Length")[0])
entailment