sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def cublasDgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real general matrix. """ status = _libcublas.cublasDgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for real general matrix.
entailment
def cublasCgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex general matrix. """ status = _libcublas.cublasCgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for complex general matrix.
entailment
def cublasZgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex general matrix. """ status = _libcublas.cublasZgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for complex general matrix.
entailment
def cublasSger(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on real general matrix. """ status = _libcublas.cublasSger_v2(handle, m, n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on real general matrix.
entailment
def cublasDger(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on real general matrix. """ status = _libcublas.cublasDger_v2(handle, m, n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on real general matrix.
entailment
def cublasCgeru(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on complex general matrix. """ status = _libcublas.cublasCgeru_v2(handle, m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on complex general matrix.
entailment
def cublasZgerc(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on complex general matrix. """ status = _libcublas.cublasZgerc_v2(handle, m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on complex general matrix.
entailment
def cublasSsbmv(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-banded matrix. """ status = _libcublas.cublasSsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for real symmetric-banded matrix.
entailment
def cublasDsbmv(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-banded matrix. """ status = _libcublas.cublasDsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for real symmetric-banded matrix.
entailment
def cublasSspmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-packed matrix. """ status = _libcublas.cublasSspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), ctypes.byref(ctypes.c_float(AP)), int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for real symmetric-packed matrix.
entailment
def cublasDspmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-packed matrix. """ status = _libcublas.cublasDspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), ctypes.byref(ctypes.c_double(AP)), int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for real symmetric-packed matrix.
entailment
def cublasSspr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on real symmetric-packed matrix. """ status = _libcublas.cublasSspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
Rank-1 operation on real symmetric-packed matrix.
entailment
def cublasDspr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on real symmetric-packed matrix. """ status = _libcublas.cublasDspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
Rank-1 operation on real symmetric-packed matrix.
entailment
def cublasSspr2(handle, uplo, n, alpha, x, incx, y, incy, AP): """ Rank-2 operation on real symmetric-packed matrix. """ status = _libcublas.cublasSspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
Rank-2 operation on real symmetric-packed matrix.
entailment
def cublasDspr2(handle, uplo, n, alpha, x, incx, y, incy, AP): """ Rank-2 operation on real symmetric-packed matrix. """ status = _libcublas.cublasDspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
Rank-2 operation on real symmetric-packed matrix.
entailment
def cublasSsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric matrix. """ status = _libcublas.cublasSsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for real symmetric matrix.
entailment
def cublasDsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric matrix. """ status = _libcublas.cublasDsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for real symmetric matrix.
entailment
def cublasCsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex symmetric matrix. """ status = _libcublas.cublasCsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for complex symmetric matrix.
entailment
def cublasZsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex symmetric matrix. """ status = _libcublas.cublasZsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for complex symmetric matrix.
entailment
def cublasSsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on real symmetric matrix. """ status = _libcublas.cublasSsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on real symmetric matrix.
entailment
def cublasDsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on real symmetric matrix. """ status = _libcublas.cublasDsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on real symmetric matrix.
entailment
def cublasCsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on complex symmetric matrix. """ status = _libcublas.cublasCsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on complex symmetric matrix.
entailment
def cublasZsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on complex symmetric matrix. """ status = _libcublas.cublasZsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on complex symmetric matrix.
entailment
def cublasSsyr2(handle, uplo, n, alpha, x, incx, y, incy, A, lda): """ Rank-2 operation on real symmetric matrix. """ status = _libcublas.cublasSsyr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
Rank-2 operation on real symmetric matrix.
entailment
def cublasDsyr2(handle, uplo, n, alpha, x, incx, y, incy, A, lda): """ Rank-2 operation on real symmetric matrix. """ status = _libcublas.cublasDsyr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
Rank-2 operation on real symmetric matrix.
entailment
def cublasStbmv(handle, uplo, trans, diag, n, k, A, lda, x, incx): """ Matrix-vector product for real triangular-banded matrix. """ status = _libcublas.cublasStbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, k, int(A), lda, int(x), incx) cublasCheckStatus(status)
Matrix-vector product for real triangular-banded matrix.
entailment
def cublasStpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for real triangular-packed matrix. """ status = _libcublas.cublasStpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Matrix-vector product for real triangular-packed matrix.
entailment
def cublasCtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for complex triangular-packed matrix. """ status = _libcublas.cublasCtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Matrix-vector product for complex triangular-packed matrix.
entailment
def cublasDtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for real triangular-packed matrix. """ status = _libcublas.cublasDtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Matrix-vector product for real triangular-packed matrix.
entailment
def cublasZtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for complex triangular-packed matrix. """ status = _libcublas.cublasZtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Matrix-vector product for complex triangular-packed matrix.
entailment
def cublasStpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve real triangular-packed system with one right-hand side. """ status = _libcublas.cublasStpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Solve real triangular-packed system with one right-hand side.
entailment
def cublasDtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve real triangular-packed system with one right-hand side. """ status = _libcublas.cublasDtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Solve real triangular-packed system with one right-hand side.
entailment
def cublasCtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve complex triangular-packed system with one right-hand side. """ status = _libcublas.cublasCtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Solve complex triangular-packed system with one right-hand side.
entailment
def cublasZtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve complex triangular-packed system with one right-hand size. """ status = _libcublas.cublasZtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
Solve complex triangular-packed system with one right-hand size.
entailment
def cublasCtrmv(handle, uplo, trans, diag, n, A, lda, x, incx): """ Matrix-vector product for complex triangular matrix. """ status = _libcublas.cublasCtrmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(A), lda, int(x), incx) cublasCheckStatus(status)
Matrix-vector product for complex triangular matrix.
entailment
def cublasDtrmv(handle, uplo, trans, diag, n, A, lda, x, inx): """ Matrix-vector product for real triangular matrix. """ status = _libcublas.cublasDtrmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(A), lda, int(x), inx) cublasCheckStatus(status)
Matrix-vector product for real triangular matrix.
entailment
def cublasChpmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for Hermitian-packed matrix. """ status = _libcublas.cublasChpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(AP), int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for Hermitian-packed matrix.
entailment
def cublasZhpmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for Hermitian-packed matrix. """ status = _libcublas.cublasZhpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(AP), int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for Hermitian-packed matrix.
entailment
def cublasCher(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on Hermitian matrix. """ status = _libcublas.cublasCher_v2(handle, _CUBLAS_FILL_MODE[uplo], n, alpha, int(x), incx, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on Hermitian matrix.
entailment
def cublasZher(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on Hermitian matrix. """ status = _libcublas.cublasZher_v2(handle, _CUBLAS_FILL_MODE[uplo], n, alpha, int(x), incx, int(A), lda) cublasCheckStatus(status)
Rank-1 operation on Hermitian matrix.
entailment
def cublasChpr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on Hermitian-packed matrix. """ status = _libcublas.cublasChpr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
Rank-1 operation on Hermitian-packed matrix.
entailment
def cublasZhpr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on Hermitian-packed matrix. """ status = _libcublas.cublasZhpr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
Rank-1 operation on Hermitian-packed matrix.
entailment
def cublasChpr2(handle, uplo, n, alpha, x, inx, y, incy, AP): """ Rank-2 operation on Hermitian-packed matrix. """ status = _libcublas.cublasChpr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
Rank-2 operation on Hermitian-packed matrix.
entailment
def cublasZhpr2(handle, uplo, n, alpha, x, inx, y, incy, AP): """ Rank-2 operation on Hermitian-packed matrix. """ status = _libcublas.cublasZhpr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
Rank-2 operation on Hermitian-packed matrix.
entailment
def cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real general matrix. """ status = _libcublas.cublasSgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for real general matrix.
entailment
def cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real general matrix. """ status = _libcublas.cublasDgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for real general matrix.
entailment
def cublasZgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for complex general matrix. """ status = _libcublas.cublasZgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for complex general matrix.
entailment
def cublasSsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for symmetric matrix. """ status = _libcublas.cublasSsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for symmetric matrix.
entailment
def cublasDsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real symmetric matrix. """ status = _libcublas.cublasDsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for real symmetric matrix.
entailment
def cublasCsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for complex symmetric matrix. """ status = _libcublas.cublasCsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for complex symmetric matrix.
entailment
def cublasSsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on real symmetric matrix. """ status = _libcublas.cublasSsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
Rank-k operation on real symmetric matrix.
entailment
def cublasDsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on real symmetric matrix. """ status = _libcublas.cublasDsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
Rank-k operation on real symmetric matrix.
entailment
def cublasZsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on complex symmetric matrix. """ status = _libcublas.cublasZsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
Rank-k operation on complex symmetric matrix.
entailment
def cublasSsyr2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on real symmetric matrix. """ status = _libcublas.cublasSsyr2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
Rank-2k operation on real symmetric matrix.
entailment
def cublasDsyr2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on real symmetric matrix. """ status = _libcublas.cublasDsyr2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
Rank-2k operation on real symmetric matrix.
entailment
def cublasStrmm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb, C, ldc): """ Matrix-matrix product for real triangular matrix. """ status = _libcublas.cublasStrmm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for real triangular matrix.
entailment
def cublasZtrmm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb, C, ldc): """ Matrix-matrix product for complex triangular matrix. """ status = _libcublas.cublasZtrmm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, int(C), ldc) cublasCheckStatus(status)
Matrix-matrix product for complex triangular matrix.
entailment
def cublasStrsm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb): """ Solve a real triangular system with multiple right-hand sides. """ status = _libcublas.cublasStrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
Solve a real triangular system with multiple right-hand sides.
entailment
def cublasDtrsm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb): """ Solve a real triangular system with multiple right-hand sides. """ status = _libcublas.cublasDtrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
Solve a real triangular system with multiple right-hand sides.
entailment
def cublasZtrsm(handle, side, uplo, transa, diag, m, n, alpha, A, lda, B, ldb): """ Solve complex triangular system with multiple right-hand sides. """ status = _libcublas.cublasZtrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
Solve complex triangular system with multiple right-hand sides.
entailment
def cublasZherk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on Hermitian matrix. """ status = _libcublas.cublasZherk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
Rank-k operation on Hermitian matrix.
entailment
def cublasCher2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on Hermitian matrix. """ status = _libcublas.cublasCher2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
Rank-2k operation on Hermitian matrix.
entailment
def cublasSdgmm(handle, mode, m, n, A, lda, x, incx, C, ldc): """ Matrix-diagonal matrix product for real general matrix. """ status = _libcublas.cublasSdgmm(handle, _CUBLAS_SIDE[mode], m, n, int(A), lda, int(x), incx, int(C), ldc) cublasCheckStatus(status)
Matrix-diagonal matrix product for real general matrix.
entailment
def load_EROS_lc(filename='lm0010n22323.time'): """ Read an EROS light curve and return its data. Parameters ---------- filename : str, optional A light-curve filename. Returns ------- dates : numpy.ndarray An array of dates. magnitudes : numpy.ndarray An array of magnitudes. errors : numpy.ndarray An array of magnitudes errors. """ module_path = dirname(__file__) file_path = join(module_path, 'lightcurves', filename) data = np.loadtxt(file_path) date = data[:, 0] mag = data[:, 1] err = data[:, 2] return date, mag, err
Read an EROS light curve and return its data. Parameters ---------- filename : str, optional A light-curve filename. Returns ------- dates : numpy.ndarray An array of dates. magnitudes : numpy.ndarray An array of magnitudes. errors : numpy.ndarray An array of magnitudes errors.
entailment
def load_rf_model(): """ Return the UPSILoN random forests classifier. The classifier is trained using OGLE and EROS periodic variables (Kim et al. 2015). Returns ------- clf : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests classifier. """ import gzip try: import cPickle as pickle except: import pickle module_path = dirname(__file__) file_path = join(module_path, 'models/rf.model.sub.github.gz') # For Python 3. if sys.version_info.major >= 3: clf = pickle.load(gzip.open(file_path, 'rb'), encoding='latin1') # For Python 2. else: clf = pickle.load(gzip.open(file_path, 'rb')) return clf
Return the UPSILoN random forests classifier. The classifier is trained using OGLE and EROS periodic variables (Kim et al. 2015). Returns ------- clf : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests classifier.
entailment
def sample_dropout_mask(x, dropout_probability=.5, columns=None, stream=None, target=None, dropout_mask=None, dropout_prob_array=None): """ Samples a dropout mask and applies it in place""" assert x.flags.c_contiguous if columns is not None: assert len(columns) == 2 x_tmp = x x = extract_columns(x, columns[0], columns[1]) shape = x.shape if dropout_prob_array is None: dropout_prob_array = gpuarray.empty(shape, x.dtype, allocator=memory_pool.allocate) sampler.fill_uniform(dropout_prob_array, stream) if dropout_mask is None: dropout_mask = gpuarray.empty(shape, np.int8, allocator=memory_pool.allocate) if target is None: target = x all_kernels['sample_dropout_mask']( x, target, dropout_mask, dropout_prob_array, np.float32(dropout_probability)) if columns is not None: insert_columns(x, x_tmp, columns[0]) return dropout_mask
Samples a dropout mask and applies it in place
entailment
def reads(s, filename=None, loader=None, implicit_tuple=True, allow_errors=False): """Load but don't evaluate a GCL expression from a string.""" return ast.reads(s, filename=filename or '<input>', loader=loader or default_loader, implicit_tuple=implicit_tuple, allow_errors=allow_errors)
Load but don't evaluate a GCL expression from a string.
entailment
def read(filename, loader=None, implicit_tuple=True, allow_errors=False): """Load but don't evaluate a GCL expression from a file.""" with open(filename, 'r') as f: return reads(f.read(), filename=filename, loader=loader, implicit_tuple=implicit_tuple, allow_errors=allow_errors)
Load but don't evaluate a GCL expression from a file.
entailment
def loads(s, filename=None, loader=None, implicit_tuple=True, env={}, schema=None): """Load and evaluate a GCL expression from a string.""" ast = reads(s, filename=filename, loader=loader, implicit_tuple=implicit_tuple) if not isinstance(env, framework.Environment): # For backwards compatibility we accept an Environment object. Otherwise assume it's a dict # whose bindings will add/overwrite the default bindings. env = framework.Environment(dict(_default_bindings, **env)) obj = framework.eval(ast, env) return mod_schema.validate(obj, schema)
Load and evaluate a GCL expression from a string.
entailment
def load(filename, loader=None, implicit_tuple=True, env={}, schema=None): """Load and evaluate a GCL expression from a file.""" with open(filename, 'r') as f: return loads(f.read(), filename=filename, loader=loader, implicit_tuple=implicit_tuple, env=env, schema=schema)
Load and evaluate a GCL expression from a file.
entailment
def linear_scheduler_up(init_value, target_value, duration): """ Increases linearly and then stays flat """ value = init_value t = 0 while True: yield value t += 1 if t < duration: value = init_value + t * (target_value - init_value) / duration else: value = target_value
Increases linearly and then stays flat
entailment
def linear_scheduler_up_down(init_value, target_value, final_value, duration_up, t_decrease, duration_down): """ Increases linearly to target_value, stays at target_value until t_decrease and then decreases linearly """ value = init_value t = 0 while True: yield value t += 1 if t < duration_up: value = init_value + t * (target_value - init_value) / \ float(duration_up) elif t > t_decrease: value = target_value - (t - t_decrease) * \ (target_value - final_value) / \ float(duration_down) else: value = target_value
Increases linearly to target_value, stays at target_value until t_decrease and then decreases linearly
entailment
def load(stream, overrides=None, **kwargs): """ Loads a YAML configuration from a string or file-like object. Parameters ---------- stream : str or object Either a string containing valid YAML or a file-like object supporting the .read() interface. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`. """ global is_initialized if not is_initialized: initialize() if isinstance(stream, basestring): string = stream else: string = '\n'.join(stream.readlines()) # processed_string = preprocess(string) proxy_graph = yaml.load(string, **kwargs) from . import init init_dict = proxy_graph.get('init', {}) init(**init_dict) if overrides is not None: handle_overrides(proxy_graph, overrides) return instantiate_all(proxy_graph)
Loads a YAML configuration from a string or file-like object. Parameters ---------- stream : str or object Either a string containing valid YAML or a file-like object supporting the .read() interface. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`.
entailment
def load_path(path, overrides=None, **kwargs): """ Convenience function for loading a YAML configuration from a file. Parameters ---------- path : str The path to the file to load on disk. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`. """ f = open(path, 'r') content = ''.join(f.readlines()) f.close() if not isinstance(content, str): raise AssertionError("Expected content to be of type str but it is "+str(type(content))) return load(content, **kwargs)
Convenience function for loading a YAML configuration from a file. Parameters ---------- path : str The path to the file to load on disk. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`.
entailment
def handle_overrides(graph, overrides): """ Handle any overrides for this model configuration. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. overrides : dict A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". """ for key in overrides: levels = key.split('.') part = graph for lvl in levels[:-1]: try: part = part[lvl] except KeyError: raise KeyError("'%s' override failed at '%s'", (key, lvl)) try: part[levels[-1]] = overrides[key] except KeyError: raise KeyError("'%s' override failed at '%s'", (key, levels[-1]))
Handle any overrides for this model configuration. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. overrides : dict A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level".
entailment
def instantiate_all(graph): """ Instantiate all ObjectProxy objects in a nested hierarchy. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. Returns ------- graph : dict or object The dictionary or object resulting after the recursive instantiation. """ def should_instantiate(obj): classes = [ObjectProxy, dict, list] return True in [isinstance(obj, cls) for cls in classes] if not isinstance(graph, list): for key in graph: if should_instantiate(graph[key]): graph[key] = instantiate_all(graph[key]) if hasattr(graph, 'keys'): for key in graph.keys(): if should_instantiate(key): new_key = instantiate_all(key) graph[new_key] = graph[key] del graph[key] if isinstance(graph, ObjectProxy): graph = graph.instantiate() if isinstance(graph, list): for i, elem in enumerate(graph): if should_instantiate(elem): graph[i] = instantiate_all(elem) return graph
Instantiate all ObjectProxy objects in a nested hierarchy. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. Returns ------- graph : dict or object The dictionary or object resulting after the recursive instantiation.
entailment
def multi_constructor(loader, tag_suffix, node): """ Constructor function passed to PyYAML telling it how to construct objects from argument descriptions. See PyYAML documentation for details on the call signature. """ yaml_src = yaml.serialize(node) mapping = loader.construct_mapping(node) if '.' not in tag_suffix: classname = tag_suffix rval = ObjectProxy(classname, mapping, yaml_src) else: classname = try_to_import(tag_suffix) rval = ObjectProxy(classname, mapping, yaml_src) return rval
Constructor function passed to PyYAML telling it how to construct objects from argument descriptions. See PyYAML documentation for details on the call signature.
entailment
def multi_constructor_pkl(loader, tag_suffix, node): """ Constructor function passed to PyYAML telling it how to load objects from paths to .pkl files. See PyYAML documentation for details on the call signature. """ mapping = loader.construct_yaml_str(node) if tag_suffix != "" and tag_suffix != u"": raise AssertionError('Expected tag_suffix to be "" but it is "'+tag_suffix+'"') rval = ObjectProxy(None, {}, yaml.serialize(node)) rval.instance = serial.load(mapping) return rval
Constructor function passed to PyYAML telling it how to load objects from paths to .pkl files. See PyYAML documentation for details on the call signature.
entailment
def initialize(): """ Initialize the configuration system by installing YAML handlers. Automatically done on first call to load() specified in this file. """ global is_initialized # Add the custom multi-constructor yaml.add_multi_constructor('!obj:', multi_constructor) yaml.add_multi_constructor('!pkl:', multi_constructor_pkl) yaml.add_multi_constructor('!import:', multi_constructor_import) yaml.add_multi_constructor('!include:', multi_constructor_include) def import_constructor(loader, node): value = loader.construct_scalar(node) return try_to_import(value) yaml.add_constructor('!import', import_constructor) yaml.add_implicit_resolver( '!import', re.compile(r'(?:[a-zA-Z_][\w_]+\.)+[a-zA-Z_][\w_]+') ) is_initialized = True
Initialize the configuration system by installing YAML handlers. Automatically done on first call to load() specified in this file.
entailment
def instantiate(self): """ Instantiate this object with the supplied parameters in `self.kwds`, or if already instantiated, return the cached instance. """ if self.instance is None: self.instance = checked_call(self.cls, self.kwds) #endif try: self.instance.yaml_src = self.yaml_src except AttributeError: pass return self.instance
Instantiate this object with the supplied parameters in `self.kwds`, or if already instantiated, return the cached instance.
entailment
def feed_forward(self, input_data, prediction=False): """Propagate forward through the layer. **Parameters:** input_data : ``GPUArray`` Inpute data to compute activations for. prediction : bool, optional Whether to use prediction model. Only relevant when using dropout. If true, then weights are multiplied by 1 - dropout if the layer uses dropout. **Returns:** activations : ``GPUArray`` The activations of the output units. """ if input_data.shape[1] != self.W.shape[0]: raise ValueError('Number of outputs from previous layer (%d) ' 'does not match number of inputs to this layer (%d)' % (input_data.shape[1], self.W.shape[0])) activations = linalg.dot(input_data, self.W) activations = add_vec_to_mat(activations, self.b, inplace=True) return activations
Propagate forward through the layer. **Parameters:** input_data : ``GPUArray`` Inpute data to compute activations for. prediction : bool, optional Whether to use prediction model. Only relevant when using dropout. If true, then weights are multiplied by 1 - dropout if the layer uses dropout. **Returns:** activations : ``GPUArray`` The activations of the output units.
entailment
def fasper(x, y, ofac, hifac, n_threads, MACC=4): """ Given abscissas x (which need not be equally spaced) and ordinates y, and given a desired oversampling factor ofac (a typical value being 4 or larger). this routine creates an array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up to hifac times the "average" Nyquist frequency, and creates an array wk2 with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered. This routine also returns jmax such that wk2(jmax) is the maximum element in wk2, and prob, an estimate of the significance of that maximum against the hypothesis of random noise. A small value of prob indicates that a significant periodic signal is present. Reference: Press, W. H. & Rybicki, G. B. 1989 ApJ vol. 338, p. 277-280. Fast algorithm for spectral analysis of unevenly sampled data (1989ApJ...338..277P) Arguments: X : Abscissas array, (e.g. an array of times). Y : Ordinates array, (e.g. corresponding counts). Ofac : Oversampling factor. Hifac : Hifac * "average" Nyquist frequency = highest frequency for which values of the Lomb normalized periodogram will be calculated. n_threads : number of threads to use. Returns: Wk1 : An array of Lomb periodogram frequencies. Wk2 : An array of corresponding values of the Lomb periodogram. Nout : Wk1 & Wk2 dimensions (number of calculated frequencies) Jmax : The array index corresponding to the MAX( Wk2 ). Prob : False Alarm Probability of the largest Periodogram value MACC : Number of interpolation points per 1/4 cycle of highest frequency History: 02/23/2009, v1.0, MF Translation of IDL code (orig. Numerical recipies) """ #Check dimensions of input arrays n = long(len(x)) if n != len(y): print('Incompatible arrays.') return #print x, y, hifac, ofac nout = int(0.5*ofac*hifac*n) nfreqt = long(ofac*hifac*n*MACC) #Size the FFT as next power nfreq = 64 # of 2 above nfreqt. while nfreq < nfreqt: nfreq = 2*nfreq ndim = long(2*nfreq) #Compute the mean, variance ave = y.mean() ##sample variance because the divisor is N-1 var = ((y - y.mean())**2).sum()/(len(y) - 1) # and range of the data. xmin = x.min() xmax = x.max() xdif = xmax - xmin #extrapolate the data into the workspaces if is_pyfftw: wk1 = pyfftw.n_byte_align_empty(int(ndim), 16, 'complex') * 0. wk2 = pyfftw.n_byte_align_empty(int(ndim), 16, 'complex') * 0. else: wk1 = zeros(ndim, dtype='complex') wk2 = zeros(ndim, dtype='complex') fac = ndim/(xdif*ofac) fndim = ndim ck = ((x - xmin)*fac) % fndim ckk = (2.0*ck) % fndim for j in range(0, n): __spread__(y[j] - ave, wk1, ndim, ck[j], MACC) __spread__(1.0, wk2, ndim, ckk[j], MACC) #Take the Fast Fourier Transforms. if is_pyfftw: fft_wk1 = pyfftw.builders.ifft(wk1, planner_effort='FFTW_ESTIMATE', threads=n_threads) wk1 = fft_wk1() * len(wk1) fft_wk2 = pyfftw.builders.ifft(wk2, planner_effort='FFTW_ESTIMATE', threads=n_threads) wk2 = fft_wk2() * len(wk2) else: wk1 = ifft(wk1)*len(wk1) wk2 = ifft(wk2)*len(wk1) wk1 = wk1[1:nout + 1] wk2 = wk2[1:nout + 1] rwk1 = wk1.real iwk1 = wk1.imag rwk2 = wk2.real iwk2 = wk2.imag df = 1.0/(xdif*ofac) #Compute the Lomb value for each frequency hypo2 = 2.0*abs(wk2) hc2wt = rwk2/hypo2 hs2wt = iwk2/hypo2 cwt = sqrt(0.5 + hc2wt) swt = sign(hs2wt)*(sqrt(0.5 - hc2wt)) den = 0.5*n + hc2wt*rwk2 + hs2wt*iwk2 cterm = (cwt*rwk1 + swt*iwk1)**2./den sterm = (cwt*iwk1 - swt*rwk1)**2./(n - den) wk1 = df*(arange(nout, dtype='float') + 1.) wk2 = (cterm + sterm)/(2.0*var) pmax = wk2.max() jmax = wk2.argmax() #Significance estimation #expy = exp(-wk2) #effm = 2.0*(nout)/ofac #sig = effm*expy #ind = (sig > 0.01).nonzero() #sig[ind] = 1.0-(1.0-expy[ind])**effm #Estimate significance of largest peak value expy = exp(-pmax) effm = 2.0*(nout)/ofac prob = effm*expy if prob > 0.01: prob = 1.0 - (1.0 - expy)**effm return wk1, wk2, nout, jmax, prob
Given abscissas x (which need not be equally spaced) and ordinates y, and given a desired oversampling factor ofac (a typical value being 4 or larger). this routine creates an array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up to hifac times the "average" Nyquist frequency, and creates an array wk2 with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered. This routine also returns jmax such that wk2(jmax) is the maximum element in wk2, and prob, an estimate of the significance of that maximum against the hypothesis of random noise. A small value of prob indicates that a significant periodic signal is present. Reference: Press, W. H. & Rybicki, G. B. 1989 ApJ vol. 338, p. 277-280. Fast algorithm for spectral analysis of unevenly sampled data (1989ApJ...338..277P) Arguments: X : Abscissas array, (e.g. an array of times). Y : Ordinates array, (e.g. corresponding counts). Ofac : Oversampling factor. Hifac : Hifac * "average" Nyquist frequency = highest frequency for which values of the Lomb normalized periodogram will be calculated. n_threads : number of threads to use. Returns: Wk1 : An array of Lomb periodogram frequencies. Wk2 : An array of corresponding values of the Lomb periodogram. Nout : Wk1 & Wk2 dimensions (number of calculated frequencies) Jmax : The array index corresponding to the MAX( Wk2 ). Prob : False Alarm Probability of the largest Periodogram value MACC : Number of interpolation points per 1/4 cycle of highest frequency History: 02/23/2009, v1.0, MF Translation of IDL code (orig. Numerical recipies)
entailment
def get_no_validate(self, key): """Return an item without validating the schema.""" x, env = self.get_thunk_env(key) # Check if this is a Thunk that needs to be lazily evaluated before we # return it. if isinstance(x, framework.Thunk): x = framework.eval(x, env) return x
Return an item without validating the schema.
entailment
def env(self, current_scope): """Return an environment that will look up in current_scope for keys in this tuple, and the parent env otherwise. """ return self.__env_cache.get( current_scope.ident, framework.Environment, current_scope, names=self.keys(), parent=framework.Environment({'self': current_scope}, parent=self.__parent_env))
Return an environment that will look up in current_scope for keys in this tuple, and the parent env otherwise.
entailment
def get_thunk_env(self, k): """Return the thunk AND environment for validating it in for the given key. There might be different envs in case the thunk comes from a different (composed) tuple. If the thunk needs its environment bound on retrieval, that will be done here. """ if k not in self.__items: raise exceptions.EvaluationError('Unknown key: %r in tuple %r' % (k, self)) x = self.__items[k] env = self.env(self) # Bind this to the tuple's parent environment if isinstance(x, framework.BindableThunk): return x.bind(self.__parent_env), env return x, env
Return the thunk AND environment for validating it in for the given key. There might be different envs in case the thunk comes from a different (composed) tuple. If the thunk needs its environment bound on retrieval, that will be done here.
entailment
def attach_schema(self, schem): """Add a tuple schema to this object (externally imposed)""" self.tuple_schema = schema.AndSchema.make(self.tuple_schema, schem)
Add a tuple schema to this object (externally imposed)
entailment
def get_schema_spec(self, key): """Return the evaluated schema expression from a subkey.""" member_node = self._ast_node.member.get(key, None) if not member_node: return schema.AnySchema() s = framework.eval(member_node.member_schema, self.env(self)) if not isinstance(s, schema.Schema): raise ValueError('Node %r with schema node %r should evaluate to Schema, got %r' % (member_node, member_node.member_schema, s)) return s
Return the evaluated schema expression from a subkey.
entailment
def get_required_fields(self): """Return the names of fields that are required according to the schema.""" return [m.name for m in self._ast_node.members if m.member_schema.required]
Return the names of fields that are required according to the schema.
entailment
def get_member_node(self, key): """Return the AST node for the given member, from the first tuple that serves it.""" for tup, _ in self.lookups: if key in tup: return tup.get_member_node(key) raise RuntimeError('Key not found in composite tuple: %r' % key)
Return the AST node for the given member, from the first tuple that serves it.
entailment
def exportable_keys(self): """Return a list of keys that are exportable from this tuple. Returns all keys that are not private in any of the tuples. """ keys = collections.defaultdict(list) for tup in self._tuples: for key, private in tup._keys_and_privacy().items(): keys[key].append(private) return [k for k, ps in keys.items() if not any(ps)]
Return a list of keys that are exportable from this tuple. Returns all keys that are not private in any of the tuples.
entailment
def resolve(self, current_file, rel_path): """Search the filesystem.""" search_path = [path.dirname(current_file)] + self.search_path target_path = None for search in search_path: if self.exists(path.join(search, rel_path)): target_path = path.normpath(path.join(search, rel_path)) break if not target_path: raise exceptions.EvaluationError('No such file: %r, searched %s' % (rel_path, ':'.join(search_path))) return target_path, path.abspath(target_path)
Search the filesystem.
entailment
def resolve(self, current_file, rel_path): """Search the filesystem.""" p = path.join(path.dirname(current_file), rel_path) if p not in self.file_dict: raise RuntimeError('No such fake file: %r' % p) return p, p
Search the filesystem.
entailment
def check_call_arguments(to_call, kwargs): """ Check the call signature against a dictionary of proposed arguments, raising an informative exception in the case of mismatch. Parameters ---------- to_call : class or callable Function or class to examine (in the case of classes, the constructor call signature is analyzed) kwargs : dict Dictionary mapping parameter names (including positional arguments) to proposed values. """ if 'self' in kwargs.keys(): raise TypeError("Your dictionary includes an entry for 'self', " "which is just asking for trouble") orig_to_call = getattr(to_call, '__name__', str(to_call)) if not isinstance(to_call, types.FunctionType): if hasattr(to_call, '__init__'): to_call = to_call.__init__ elif hasattr(to_call, '__call__'): to_call = to_call.__call__ args, varargs, keywords, defaults = inspect.getargspec(to_call) if any(not isinstance(arg, str) for arg in args): raise TypeError('%s uses argument unpacking, which is deprecated and ' 'unsupported by this pylearn2' % orig_to_call) if varargs is not None: raise TypeError('%s has a variable length argument list, but ' 'this is not supported by config resolution' % orig_to_call) if keywords is None: bad_keywords = [arg_name for arg_name in kwargs.keys() if arg_name not in args] if len(bad_keywords) > 0: bad = ', '.join(bad_keywords) args = [ arg for arg in args if arg != 'self' ] if len(args) == 0: matched_str = '(It does not support any keywords, actually)' else: matched = [ match(keyword, args) for keyword in bad_keywords ] matched_str = 'Did you mean %s?' % (', '.join(matched)) raise TypeError('%s does not support the following ' 'keywords: %s. %s' % (orig_to_call, bad, matched_str)) if defaults is None: num_defaults = 0 else: num_defaults = len(defaults) required = args[:len(args) - num_defaults] missing = [arg for arg in required if arg not in kwargs] if len(missing) > 0: #iff the im_self (or __self__) field is present, this is a # bound method, which has 'self' listed as an argument, but # which should not be supplied by kwargs is_bound = hasattr(to_call, 'im_self') or hasattr(to_call, '__self__') if len(missing) > 1 or missing[0] != 'self' or not is_bound: if 'self' in missing: missing.remove('self') missing = ', '.join([str(m) for m in missing]) raise TypeError('%s did not get these expected ' 'arguments: %s' % (orig_to_call, missing))
Check the call signature against a dictionary of proposed arguments, raising an informative exception in the case of mismatch. Parameters ---------- to_call : class or callable Function or class to examine (in the case of classes, the constructor call signature is analyzed) kwargs : dict Dictionary mapping parameter names (including positional arguments) to proposed values.
entailment
def predict(rf_model, features): """ Return label and probability estimated. Parameters ---------- rf_model : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests model. features : array_like A list of features estimated by UPSILoN. Returns ------- label : str A predicted label (i.e. class). probability : float Class probability. flag : int Classification flag. """ import numpy as np from upsilon.extract_features.feature_set import get_feature_set feature_set = get_feature_set() # Grab only necessary features. cols = [feature for feature in features if feature in feature_set] cols = sorted(cols) filtered_features = [] for i in range(len(cols)): filtered_features.append(features[cols[i]]) filtered_features = np.array(filtered_features).reshape(1, -1) # Classify. classes = rf_model.classes_ # Note that we're classifying a single source, so [0] need tobe added. probabilities = rf_model.predict_proba(filtered_features)[0] # Classification flag. flag = 0 if features['period_SNR'] < 20. or is_period_alias(features['period']): flag = 1 # Return class, probability, and flag. max_index = np.where(probabilities == np.max(probabilities)) return classes[max_index][0], probabilities[max_index][0], flag
Return label and probability estimated. Parameters ---------- rf_model : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests model. features : array_like A list of features estimated by UPSILoN. Returns ------- label : str A predicted label (i.e. class). probability : float Class probability. flag : int Classification flag.
entailment
def fmt(str, args=None, env=None): """fmt(string, [tuple]) -> string Interpolate a string, replacing {patterns} with the variables with the same name. If given a tuple, use the keys from the tuple to substitute. If not given a tuple, uses the current environment as the variable source. """ # Normally, we'd just call str.format(**args), but we only want to evaluate # values from the tuple which are actually used in the string interpolation, # so we use proxy objects. # If no args are given, we're able to take the current environment. args = args or env proxies = {k: StringInterpolationProxy(args, k) for k in args.keys()} return str.format(**proxies)
fmt(string, [tuple]) -> string Interpolate a string, replacing {patterns} with the variables with the same name. If given a tuple, use the keys from the tuple to substitute. If not given a tuple, uses the current environment as the variable source.
entailment
def compose_all(tups): """Compose all given tuples together.""" from . import ast # I weep for humanity return functools.reduce(lambda x, y: x.compose(y), map(ast.make_tuple, tups), ast.make_tuple({}))
Compose all given tuples together.
entailment
def has_key(tup, key): """has(tuple, string) -> bool Return whether a given tuple has a key and the key is bound. """ if isinstance(tup, framework.TupleLike): return tup.is_bound(key) if isinstance(tup, dict): return key in tup if isinstance(tup, list): if not isinstance(key, int): raise ValueError('Key must be integer when checking list index') return key < len(tup) raise ValueError('Not a tuple-like object: %r' % tup)
has(tuple, string) -> bool Return whether a given tuple has a key and the key is bound.
entailment
def flatten(list_of_lists): """flatten([[A]]) -> [A] Flatten a list of lists. """ ret = [] for lst in list_of_lists: if not isinstance(lst, list): raise ValueError('%r is not a list' % lst) ret.extend(lst) return ret
flatten([[A]]) -> [A] Flatten a list of lists.
entailment
def extract_dark(prihdr, scihdu): """Extract superdark data from ``DARKFILE`` or ``DRKCFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- dark : ndarray or `None` Superdark, if any. Subtract this to apply ``DARKCORR``. """ if prihdr.get('PCTECORR', 'OMIT') == 'COMPLETE': darkfile = prihdr.get('DRKCFILE', 'N/A') else: darkfile = prihdr.get('DARKFILE', 'N/A') if darkfile == 'N/A': return None darkfile = from_irafpath(darkfile) ampstring = prihdr['CCDAMP'] # Calculate DARKTIME exptime = prihdr.get('EXPTIME', 0.0) flashdur = prihdr.get('FLASHDUR', 0.0) darktime = exptime + flashdur if exptime > 0: # Not BIAS darktime += 3.0 with fits.open(darkfile) as hdudark: if ampstring == 'ABCD': dark = np.concatenate( (hdudark['sci', 1].data, hdudark['sci', 2].data[::-1, :]), axis=1) elif ampstring in ('A', 'B', 'AB'): dark = extract_ref(scihdu, hdudark['sci', 2]) else: dark = extract_ref(scihdu, hdudark['sci', 1]) dark = dark * darktime return dark
Extract superdark data from ``DARKFILE`` or ``DRKCFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- dark : ndarray or `None` Superdark, if any. Subtract this to apply ``DARKCORR``.
entailment
def extract_flash(prihdr, scihdu): """Extract postflash data from ``FLSHFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- flash : ndarray or `None` Postflash, if any. Subtract this to apply ``FLSHCORR``. """ flshfile = prihdr.get('FLSHFILE', 'N/A') flashsta = prihdr.get('FLASHSTA', 'N/A') flashdur = prihdr.get('FLASHDUR', 0.0) if flshfile == 'N/A' or flashdur <= 0: return None if flashsta != 'SUCCESSFUL': warnings.warn('Flash status is {0}'.format(flashsta), AstropyUserWarning) flshfile = from_irafpath(flshfile) ampstring = prihdr['CCDAMP'] with fits.open(flshfile) as hduflash: if ampstring == 'ABCD': flash = np.concatenate( (hduflash['sci', 1].data, hduflash['sci', 2].data[::-1, :]), axis=1) elif ampstring in ('A', 'B', 'AB'): flash = extract_ref(scihdu, hduflash['sci', 2]) else: flash = extract_ref(scihdu, hduflash['sci', 1]) flash = flash * flashdur return flash
Extract postflash data from ``FLSHFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- flash : ndarray or `None` Postflash, if any. Subtract this to apply ``FLSHCORR``.
entailment