text
stringlengths
4
1.02M
meta
dict
""" This is a secrete schema conversion func for zon metrics migration. We have two types of metrics need to migrate which should follow our new metric schema pattern. """
{ "content_hash": "4a3cee790bc3fb732cd5b3aa3ee08530", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 68, "avg_line_length": 24.857142857142858, "alnum_prop": 0.7701149425287356, "repo_name": "yunstanford/metrics-migration", "id": "3387bde5b600e469694aa4f857d044a0b9ae3f22", "size": "174", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "migration/schema_func.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "24271" } ], "symlink_target": "" }
from six import string_types from pypif.obj.common.pio import Pio class FileReference(Pio): """ Information about a file. """ def __init__(self, relative_path=None, mime_type=None, sha256=None, md5=None, tags=None, **kwargs): """ Constructor. :param relative_path: String with the relative path (from the location of this file) of the file. :param mime_type: String with the mime type of the file. :param sha256: String with the SHA-256 hash of the file. :param md5: String with the MD5 hash of the file. :param tags: List of strings or numbers that are tags for this object. :param kwargs: Dictionary of fields that are not supported. """ super(FileReference, self).__init__(tags=tags, **kwargs) self._relative_path = None self.relative_path = relative_path self._mime_type = None self.mime_type = mime_type self._sha256 = None self.sha256 = None self._md5 = None self.md5 = None @property def relative_path(self): return self._relative_path @relative_path.setter def relative_path(self, relative_path): self._validate_type('relative_path', relative_path, string_types) self._relative_path = relative_path @relative_path.deleter def relative_path(self): self._relative_path = None @property def mime_type(self): return self._mime_type @mime_type.setter def mime_type(self, mime_type): self._validate_type('mime_type', mime_type, string_types) self._mime_type = mime_type @mime_type.deleter def mime_type(self): self._mime_type = None @property def sha256(self): return self._sha256 @sha256.setter def sha256(self, sha256): self._validate_type('sha256', sha256, string_types) self._sha256 = sha256 @sha256.deleter def sha256(self): self._sha256 = None @property def md5(self): return self._md5 @md5.setter def md5(self, md5): self._validate_type('md5', md5, string_types) self._md5 = md5 @md5.deleter def md5(self): self._md5 = None
{ "content_hash": "0c04442a6bdab772cd94a518c0f11a30", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 105, "avg_line_length": 27.567901234567902, "alnum_prop": 0.6112852664576802, "repo_name": "kjaym/pypif", "id": "29fdb0ed0c90f5dfbbb1e5dceea1593676c91c6c", "size": "2233", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "pypif/obj/common/file_reference.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "96858" } ], "symlink_target": "" }
""" Volume interface (1.1 extension). """ try: from urllib import urlencode except ImportError: from urllib.parse import urlencode import six from cinderclient import base class Volume(base.Resource): """A volume is an extra block level storage to the OpenStack instances.""" def __repr__(self): return "<Volume: %s>" % self.id def delete(self): """Delete this volume.""" self.manager.delete(self) def update(self, **kwargs): """Update the display_name or display_description for this volume.""" self.manager.update(self, **kwargs) def attach(self, instance_uuid, mountpoint): """Set attachment metadata. :param instance_uuid: uuid of the attaching instance. :param mountpoint: mountpoint on the attaching instance. """ return self.manager.attach(self, instance_uuid, mountpoint) def detach(self): """Clear attachment metadata.""" return self.manager.detach(self) def reserve(self, volume): """Reserve this volume.""" return self.manager.reserve(self) def unreserve(self, volume): """Unreserve this volume.""" return self.manager.unreserve(self) def begin_detaching(self, volume): """Begin detaching volume.""" return self.manager.begin_detaching(self) def roll_detaching(self, volume): """Roll detaching volume.""" return self.manager.roll_detaching(self) def initialize_connection(self, volume, connector): """Initialize a volume connection. :param connector: connector dict from nova. """ return self.manager.initialize_connection(self, connector) def terminate_connection(self, volume, connector): """Terminate a volume connection. :param connector: connector dict from nova. """ return self.manager.terminate_connection(self, connector) def set_metadata(self, volume, metadata): """Set or Append metadata to a volume. :param type : The :class: `Volume` to set metadata on :param metadata: A dict of key/value pairs to set """ return self.manager.set_metadata(self, metadata) def upload_to_image(self, force, image_name, container_format, disk_format): """Upload a volume to image service as an image.""" return self.manager.upload_to_image(self, force, image_name, container_format, disk_format) def force_delete(self): """Delete the specified volume ignoring its current state. :param volume: The UUID of the volume to force-delete. """ self.manager.force_delete(self) def reset_state(self, state): """Update the volume with the provided state.""" self.manager.reset_state(self, state) def extend(self, volume, new_size): """Extend the size of the specified volume. :param volume: The UUID of the volume to extend :param new_size: The desired size to extend volume to. """ self.manager.extend(self, volume, new_size) class VolumeManager(base.ManagerWithFind): """ Manage :class:`Volume` resources. """ resource_class = Volume def create(self, size, snapshot_id=None, source_volid=None, display_name=None, display_description=None, volume_type=None, user_id=None, project_id=None, availability_zone=None, metadata=None, imageRef=None): """ Create a volume. :param size: Size of volume in GB :param snapshot_id: ID of the snapshot :param display_name: Name of the volume :param display_description: Description of the volume :param volume_type: Type of volume :rtype: :class:`Volume` :param user_id: User id derived from context :param project_id: Project id derived from context :param availability_zone: Availability Zone to use :param metadata: Optional metadata to set on volume creation :param imageRef: reference to an image stored in glance :param source_volid: ID of source volume to clone from """ if metadata is None: volume_metadata = {} else: volume_metadata = metadata body = {'volume': {'size': size, 'snapshot_id': snapshot_id, 'display_name': display_name, 'display_description': display_description, 'volume_type': volume_type, 'user_id': user_id, 'project_id': project_id, 'availability_zone': availability_zone, 'status': "creating", 'attach_status': "detached", 'metadata': volume_metadata, 'imageRef': imageRef, 'source_volid': source_volid, }} return self._create('/volumes', body, 'volume') def get(self, volume_id): """ Get a volume. :param volume_id: The ID of the volume to delete. :rtype: :class:`Volume` """ return self._get("/volumes/%s" % volume_id, "volume") def list(self, detailed=True, search_opts=None): """ Get a list of all volumes. :rtype: list of :class:`Volume` """ if search_opts is None: search_opts = {} qparams = {} for opt, val in six.iteritems(search_opts): if val: qparams[opt] = val query_string = "?%s" % urlencode(qparams) if qparams else "" detail = "" if detailed: detail = "/detail" return self._list("/volumes%s%s" % (detail, query_string), "volumes") def delete(self, volume): """ Delete a volume. :param volume: The :class:`Volume` to delete. """ self._delete("/volumes/%s" % base.getid(volume)) def update(self, volume, **kwargs): """ Update the display_name or display_description for a volume. :param volume: The :class:`Volume` to delete. """ if not kwargs: return body = {"volume": kwargs} self._update("/volumes/%s" % base.getid(volume), body) def _action(self, action, volume, info=None, **kwargs): """ Perform a volume "action." """ body = {action: info} self.run_hooks('modify_body_for_action', body, **kwargs) url = '/volumes/%s/action' % base.getid(volume) return self.api.client.post(url, body=body) def attach(self, volume, instance_uuid, mountpoint): """ Set attachment metadata. :param volume: The :class:`Volume` (or its ID) you would like to attach. :param instance_uuid: uuid of the attaching instance. :param mountpoint: mountpoint on the attaching instance. """ return self._action('os-attach', volume, {'instance_uuid': instance_uuid, 'mountpoint': mountpoint}) def detach(self, volume): """ Clear attachment metadata. :param volume: The :class:`Volume` (or its ID) you would like to detach. """ return self._action('os-detach', volume) def reserve(self, volume): """ Reserve this volume. :param volume: The :class:`Volume` (or its ID) you would like to reserve. """ return self._action('os-reserve', volume) def unreserve(self, volume): """ Unreserve this volume. :param volume: The :class:`Volume` (or its ID) you would like to unreserve. """ return self._action('os-unreserve', volume) def begin_detaching(self, volume): """ Begin detaching this volume. :param volume: The :class:`Volume` (or its ID) you would like to detach. """ return self._action('os-begin_detaching', volume) def roll_detaching(self, volume): """ Roll detaching this volume. :param volume: The :class:`Volume` (or its ID) you would like to roll detaching. """ return self._action('os-roll_detaching', volume) def initialize_connection(self, volume, connector): """ Initialize a volume connection. :param volume: The :class:`Volume` (or its ID). :param connector: connector dict from nova. """ return self._action('os-initialize_connection', volume, {'connector': connector})[1]['connection_info'] def terminate_connection(self, volume, connector): """ Terminate a volume connection. :param volume: The :class:`Volume` (or its ID). :param connector: connector dict from nova. """ self._action('os-terminate_connection', volume, {'connector': connector}) def set_metadata(self, volume, metadata): """ Update/Set a volumes metadata. :param volume: The :class:`Volume`. :param metadata: A list of keys to be set. """ body = {'metadata': metadata} return self._create("/volumes/%s/metadata" % base.getid(volume), body, "metadata") def delete_metadata(self, volume, keys): """ Delete specified keys from volumes metadata. :param volume: The :class:`Volume`. :param metadata: A list of keys to be removed. """ for k in keys: self._delete("/volumes/%s/metadata/%s" % (base.getid(volume), k)) def upload_to_image(self, volume, force, image_name, container_format, disk_format): """ Upload volume to image service as image. :param volume: The :class:`Volume` to upload. """ return self._action('os-volume_upload_image', volume, {'force': force, 'image_name': image_name, 'container_format': container_format, 'disk_format': disk_format}) def force_delete(self, volume): return self._action('os-force_delete', base.getid(volume)) def reset_state(self, volume, state): """Update the provided volume with the provided state.""" return self._action('os-reset_status', volume, {'status': state}) def extend(self, volume, new_size): return self._action('os-extend', base.getid(volume), {'new_size': new_size})
{ "content_hash": "5eae3fdccf40784687715284ad568277", "timestamp": "", "source": "github", "line_count": 339, "max_line_length": 78, "avg_line_length": 32.610619469026545, "alnum_prop": 0.5536861148801447, "repo_name": "tylertian/Openstack", "id": "9c870cb30a1db778e017e5db56ab1725d1c41a9a", "size": "11691", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "openstack F/python-cinderclient/cinderclient/v1/volumes.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "239919" }, { "name": "JavaScript", "bytes": "156942" }, { "name": "Python", "bytes": "16949418" }, { "name": "Shell", "bytes": "96743" } ], "symlink_target": "" }
from . import PelicanPluginTestCase class Gh(PelicanPluginTestCase): def __init__(self, *args, **kwargs): super().__init__(__file__, '', *args, **kwargs) def test(self): self.run_pelican({ 'PLUGINS': ['m.htmlsanity', 'm.gh'] }) self.assertEqual(*self.actual_expected_contents('page.html'))
{ "content_hash": "5ed1ec922c64ff903b87c6c2a778dc61", "timestamp": "", "source": "github", "line_count": 12, "max_line_length": 69, "avg_line_length": 28.75, "alnum_prop": 0.5739130434782609, "repo_name": "mosra/m.css", "id": "091ce3a36e34fe4f0b68d0cf69a62e7ae974f6b0", "size": "1575", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "plugins/m/test/test_gh.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "29" }, { "name": "CSS", "bytes": "139738" }, { "name": "HTML", "bytes": "39793" }, { "name": "Python", "bytes": "340270" }, { "name": "Shell", "bytes": "461" } ], "symlink_target": "" }
from __future__ import (division, print_function, absolute_import, unicode_literals) __all__ = ["MPIPool"] # On some systems mpi4py is available but broken # we avoid crashes by importing it only when # an MPI Pool is explicitly created. #Still make it a global to avoid messing up other things. MPI = None class _close_pool_message(object): def __repr__(self): return "<Close pool message>" class _function_wrapper(object): def __init__(self, function): self.function = function def _error_function(task): raise RuntimeError("Pool was sent tasks before being told what " "function to apply.") class MPIPool(object): """ A pool that distributes tasks over a set of MPI processes. MPI is an API for distributed memory parallelism. This pool will let you run emcee without shared memory, letting you use much larger machines with emcee. The pool only support the :func:`map` method at the moment because this is the only functionality that emcee needs. That being said, this pool is fairly general and it could be used for other purposes. Contributed by `Joe Zuntz <https://github.com/joezuntz>`_. :param comm: (optional) The ``mpi4py`` communicator. :param debug: (optional) If ``True``, print out a lot of status updates at each step. :param loadbalance: (optional) if ``True`` and ntask > Ncpus, tries to loadbalance by sending out one task to each cpu first and then sending out the rest as the cpus get done. """ def __init__(self, comm=None, debug=False, loadbalance=False): global MPI try: import mpi4py.MPI MPI = mpi4py.MPI except ImportError: #re-raise with a more user-friendly error raise ImportError("Please install mpi4py") self.comm = MPI.COMM_WORLD if comm is None else comm self.rank = self.comm.Get_rank() self.size = self.comm.Get_size() - 1 self.debug = debug self.function = _error_function self.loadbalance = loadbalance if self.size == 0: raise ValueError("Tried to create an MPI pool, but there " "was only one MPI process available. " "Need at least two.") def is_master(self): """ Is the current process the master? """ return self.rank == 0 def wait(self): """ If this isn't the master process, wait for instructions. """ if self.is_master(): raise RuntimeError("Master node told to await jobs.") status = MPI.Status() while True: # Event loop. # Sit here and await instructions. if self.debug: print("Worker {0} waiting for task.".format(self.rank)) # Blocking receive to wait for instructions. task = self.comm.recv(source=0, tag=MPI.ANY_TAG, status=status) if self.debug: print("Worker {0} got task {1} with tag {2}." .format(self.rank, task, status.tag)) # Check if message is special sentinel signaling end. # If so, stop. if isinstance(task, _close_pool_message): if self.debug: print("Worker {0} told to quit.".format(self.rank)) break # Check if message is special type containing new function # to be applied if isinstance(task, _function_wrapper): self.function = task.function if self.debug: print("Worker {0} replaced its task function: {1}." .format(self.rank, self.function)) continue # If not a special message, just run the known function on # the input and return it asynchronously. result = self.function(task) if self.debug: print("Worker {0} sending answer {1} with tag {2}." .format(self.rank, result, status.tag)) self.comm.isend(result, dest=0, tag=status.tag) def map(self, function, tasks): """ Like the built-in :func:`map` function, apply a function to all of the values in a list and return the list of results. :param function: The function to apply to the list. :param tasks: The list of elements. """ ntask = len(tasks) # If not the master just wait for instructions. if not self.is_master(): self.wait() return if function is not self.function: if self.debug: print("Master replacing pool function with {0}." .format(function)) self.function = function F = _function_wrapper(function) # Tell all the workers what function to use. requests = [] for i in range(self.size): r = self.comm.isend(F, dest=i + 1) requests.append(r) # Wait until all of the workers have responded. See: # https://gist.github.com/4176241 MPI.Request.waitall(requests) if (not self.loadbalance) or (ntask <= self.size): # Do not perform load-balancing - the default load-balancing # scheme emcee uses. # Send all the tasks off and wait for them to be received. # Again, see the bug in the above gist. requests = [] for i, task in enumerate(tasks): worker = i % self.size + 1 if self.debug: print("Sent task {0} to worker {1} with tag {2}." .format(task, worker, i)) r = self.comm.isend(task, dest=worker, tag=i) requests.append(r) MPI.Request.waitall(requests) # Now wait for the answers. results = [] for i in range(ntask): worker = i % self.size + 1 if self.debug: print("Master waiting for worker {0} with tag {1}" .format(worker, i)) result = self.comm.recv(source=worker, tag=i) results.append(result) return results else: # Perform load-balancing. The order of the results are likely to # be different from the previous case. for i, task in enumerate(tasks[0:self.size]): worker = i+1 if self.debug: print("Sent task {0} to worker {1} with tag {2}." .format(task, worker, i)) # Send out the tasks asynchronously. self.comm.isend(task, dest=worker, tag=i) ntasks_dispatched = self.size results = [None]*ntask for itask in range(ntask): status = MPI.Status() # Receive input from workers. result = self.comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status) worker = status.source i = status.tag results[i] = result if self.debug: print("Master received from worker {0} with tag {1}" .format(worker, i)) # Now send the next task to this idle worker (if there are any # left). if ntasks_dispatched < ntask: task = tasks[ntasks_dispatched] i = ntasks_dispatched if self.debug: print("Sent task {0} to worker {1} with tag {2}." .format(task, worker, i)) # Send out the tasks asynchronously. self.comm.isend(task, dest=worker, tag=i) ntasks_dispatched += 1 return results def bcast(self, *args, **kwargs): """ Equivalent to mpi4py :func:`bcast` collective operation. """ return self.comm.bcast(*args, **kwargs) def close(self): """ Just send a message off to all the pool members which contains the special :class:`_close_pool_message` sentinel. """ if self.is_master(): for i in range(self.size): self.comm.isend(_close_pool_message(), dest=i + 1) def __enter__(self): return self def __exit__(self, *args): self.close()
{ "content_hash": "0a95eaf82e3b8fee3008f75048296b36", "timestamp": "", "source": "github", "line_count": 250, "max_line_length": 78, "avg_line_length": 35.008, "alnum_prop": 0.5324497257769653, "repo_name": "elizabethswann/RR_fitter", "id": "021e13a7f72ee31c1711acb35a77aa22c3b1307f", "size": "8799", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "codes/emcee_1/mpi_pool.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "6231" }, { "name": "Python", "bytes": "177531" }, { "name": "TeX", "bytes": "107733" } ], "symlink_target": "" }
""" head_tracker.py - Version 2.0 2013-08-23 Move the head to track an object pose published on the /target PoseStamped topic. Works with either the dynamixel_motor and abotix package. Created for the Pi Robot Project: http://www.pirobot.org Copyright (c) 2013 Patrick Goebel. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details at: http://www.gnu.org/licenses/gpl.html """ import rospy from sensor_msgs.msg import JointState from std_msgs.msg import Float64 from geometry_msgs.msg import PointStamped, Point, Pose, PoseStamped from math import radians import tf import os, thread # Initialize the node rospy.init_node("head_tracker") # Are we running in fake mode? FAKE = rospy.get_param('~sim', False) # For fake mode we use the arbotix controller package and position tracking if FAKE: CONTROLLER_TYPE = 'arbotix' TRACKER_TYPE = 'position' else: # Specify either 'dynamixel_motor' or 'arbotix' for the controller package CONTROLLER_TYPE = rospy.get_param('~controller_type', 'arbotix') # Specify either 'speed' or 'position' for the type of tracking TRACKER_TYPE = rospy.get_param('~tracker_type', 'speed') # Import the appropriate services for the type of controller if CONTROLLER_TYPE == 'arbotix': from arbotix_msgs.srv import * else: from dynamixel_controllers.srv import * class HeadTracker(): def __init__(self): rospy.on_shutdown(self.shutdown) self.rate = rospy.get_param('~rate', 10) r = rospy.Rate(self.rate) self.tick = 1.0 / self.rate self.enable_target_search = rospy.get_param('~enable_target_search', False) # How long we are willing to wait (in seconds) before searching? self.search_target_timeout = rospy.get_param('~search_target_timeout', 10) # How long we are willing to wait (in seconds) before re-centering the servos? self.recenter_timeout = rospy.get_param('~recenter_timeout', 10) # What are the names of the pan and tilt joints in the list of dynamixels? self.head_pan_joint = rospy.get_param('~head_pan_joint', 'head_pan_joint') self.head_tilt_joint = rospy.get_param('~head_tilt_joint', 'head_tilt_joint') self.joints = [self.head_pan_joint, self.head_tilt_joint] # What is the name of the camera link? self.camera_link = rospy.get_param('~camera_link', 'camera_link') # Joint speeds are given in radians per second self.default_joint_speed = rospy.get_param('~default_joint_speed', 0.3) self.max_joint_speed = rospy.get_param('~max_joint_speed', 0.5) self.min_joint_speed = rospy.get_param('~min_joint_speed', 0.01) # Only update the speed if it differs by this much (rad/s) from the last update # If this is set too low (i.e. the updates are too fast), the servo can behave # unpredictably. self.speed_update_threshold = rospy.get_param('~speed_update_threshold', 0.1) # How far ahead or behind the target (in radians) should we aim for? self.lead_target_angle = rospy.get_param('~lead_target_angle', 0.5) # How far ahead or behind the target (in radians) should we aim for? self.max_lead_target_angle = rospy.get_param('~max_lead_target_angle', 0.5) # The pan/tilt thresholds indicate how far (in radians) the target needs to be off-center # before we make a movement. self.pan_threshold = rospy.get_param('~pan_threshold', 0.02) self.tilt_threshold = rospy.get_param('~tilt_threshold', 0.02) # The gain_pan and gain_tilt parameter determine how responsive the servo movements are. # If these are set too high, oscillation can result. self.gain_pan = rospy.get_param('~gain_pan', 1.5) self.gain_tilt = rospy.get_param('~gain_tilt', 1.5) # For simulated position tracking, setting the gain too high causes oscillations if FAKE and TRACKER_TYPE == 'position': self.gain_pan = 1.5 self.gain_tilt = 1.5 # Set limits on how far we can pan or tilt self.max_pan = rospy.get_param('~max_pan', radians(125)) self.min_pan = rospy.get_param('~min_pan', radians(-125)) self.max_tilt = rospy.get_param('~max_tilt', radians(90)) self.min_tilt = rospy.get_param('~min_tilt', radians(-90)) # Initialize the servo services and publishers self.init_servos() # Initialize tf listener self.tf = tf.TransformListener() # Allow tf to catch up rospy.sleep(2) # Set a flag to indicate when the target has been lost self.target_visible = False # Set a timer to determine how long a target is no longer visible self.target_lost_time = 0.0 # A flag to indicate whether we're in wait mode self.waiting = False # Get a lock for updating the self.move_cmd values self.lock = thread.allocate_lock() # Subscribe the the 'joint_states' topic so we can know how the joints are positioned rospy.loginfo("Subscribing to joint_states...") self.joint_state = JointState() rospy.Subscriber('joint_states', JointState, self.update_joint_state) # Wait until we actually have joint state values while self.joint_state == JointState(): rospy.sleep(1) # Center the pan and tilt servos self.center_head_servos() # Initialize the pan and tilt speeds if TRACKER_TYPE == 'position': pan_speed = tilt_speed = self.max_joint_speed self.set_servo_speed(self.head_pan_joint, pan_speed) self.set_servo_speed(self.head_tilt_joint, tilt_speed) else: pan_speed = tilt_speed = 0.0 # Wait for the target topic to become alive rospy.loginfo("Waiting for target topic...") rospy.wait_for_message('target_topic', PoseStamped) # Subscribe to the target_pose topic queue no more than 1 message if CONTROLLER_TYPE == 'arbotix' and TRACKER_TYPE == 'position': rospy.Subscriber('target_topic', PoseStamped, self.update_joint_positions, queue_size=1) else: rospy.Subscriber('target_topic', PoseStamped, self.update_joint_speeds, queue_size=1) rospy.loginfo("Target messages detected. Starting tracker...") while not rospy.is_shutdown(): # Acquire the lock self.lock.acquire() try: # If we have lost the target, stop the servos incrementally for smoother tracking if not self.target_visible: if not self.waiting: pan_speed /= 1.1 tilt_speed /= 1.1 # Keep track of how long the target is lost self.target_lost_time += self.tick else: pan_speed = self.pan_speed tilt_speed = self.tilt_speed self.target_visible = False self.waiting = False self.target_lost_time = 0.0 # If the target is lost long enough, re-center the servos if self.target_lost_time > self.recenter_timeout: rospy.loginfo("Cannot find target.") self.center_head_servos() self.waiting = True self.target_lost_time = 0.0 rospy.loginfo("Waiting for target to reappear...") # If the target is lost for a bit, search for it elif self.enable_target_search and self.target_lost_time > self.search_target_timeout: rospy.loginfo("Searching for target...") self.search_for_target() self.target_lost_time += self.recenter_timeout else: # Only update the pan speed if it differs enough from the last value if TRACKER_TYPE == 'speed' and abs(self.last_pan_speed - pan_speed) > self.speed_update_threshold: self.set_servo_speed(self.head_pan_joint, pan_speed) self.last_pan_speed = pan_speed # Update the pan position self.set_servo_position(self.head_pan_joint, self.pan_position) # Only update the tilt speed if it differs enough from the last value if TRACKER_TYPE == 'speed' and abs(self.last_tilt_speed - tilt_speed) > self.speed_update_threshold: self.set_servo_speed(self.head_tilt_joint, tilt_speed) self.last_tilt_speed = tilt_speed # Update the tilt position self.set_servo_position(self.head_tilt_joint, self.tilt_position) finally: # Release the lock self.lock.release() r.sleep() def init_servos(self): # Create dictionaries to hold the speed, position and torque controllers self.servo_speed = dict() self.servo_position = dict() self.torque_enable = dict() # Connect to the set_speed services and define a position publisher for each servo rospy.loginfo("Waiting for joint controllers services...") for joint in sorted(self.joints): # The set_speed services set_speed_service = '/' + joint + '/set_speed' rospy.wait_for_service(set_speed_service) self.servo_speed[joint] = rospy.ServiceProxy(set_speed_service, SetSpeed, persistent=True) # Initialize the servo speed to the default_joint_speed self.servo_speed[joint](self.default_joint_speed) # The position controllers self.servo_position[joint] = rospy.Publisher('/' + joint + '/command', Float64) # A service to relax (disable torque) a servo if CONTROLLER_TYPE == 'arbotix': torque_service = '/' + joint + '/relax' rospy.wait_for_service(torque_service) self.torque_enable[joint] = rospy.ServiceProxy(torque_service, Relax) # Start the servo in the relaxed state self.torque_enable[joint]() else: torque_service = '/' + joint + '/torque_enable' rospy.wait_for_service(torque_service) self.torque_enable[joint] = rospy.ServiceProxy(torque_service, TorqueEnable) self.torque_enable[joint](False) self.pan_position = 0 self.tilt_position = 0 self.pan_speed = 0.0 self.tilt_speed = 0.0 self.last_tilt_speed = 0 self.last_pan_speed = 0 def set_servo_speed(self, servo, speed): self.servo_speed[servo](speed) def set_servo_position(self, servo, position): self.servo_position[servo].publish(position) def update_joint_speeds(self, msg): # Acquire the lock self.lock.acquire() try: # If message is empty, return immediately if msg == PointStamped(): return # If we get this far, the target is visible self.target_visible = True # Get position component of the message target = PointStamped() target.header.frame_id = msg.header.frame_id target.point = msg.pose.position # Project the target point onto the camera link camera_target = self.tf.transformPoint(self.camera_link, target) # The virtual camera image is in the y-z plane pan = -camera_target.point.y tilt = -camera_target.point.z # Compute the distance to the target in the x direction distance = float(abs(camera_target.point.x)) # Convert the pan and tilt values from meters to radians try: pan /= distance tilt /= distance except: # Check for exceptions (NaNs) and use minumum range as fallback pan /= 0.5 tilt /= 0.5 # Get the current pan and tilt position try: current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] current_tilt = self.joint_state.position[self.joint_state.name.index(self.head_tilt_joint)] except: return # Pan the camera only if the displacement of the target point exceeds the threshold if abs(pan) > self.pan_threshold: # Set the pan speed proportion to the horizontal displacement of the target """ self.pan_speed = trunc(min(self.max_joint_speed, max(self.min_joint_speed, self.gain_pan * abs(pan))), 2) if pan > 0: self.pan_position = max(self.min_pan, current_pan - self.lead_target_angle) else: self.pan_position = min(self.max_pan, current_pan + self.lead_target_angle) else: self.pan_position = current_pan self.pan_speed = self.min_joint_speed # Tilt the camera only if the displacement of the target point exceeds the threshold if abs(tilt) > self.tilt_threshold: # Set the tilt speed proportion to the vertical displacement of the target self.tilt_speed = trunc(min(self.max_joint_speed, max(self.min_joint_speed, self.gain_tilt * abs(tilt))), 2) if tilt < 0: self.tilt_position = max(self.min_tilt, current_tilt - self.lead_target_angle) else: self.tilt_position = min(self.max_tilt, current_tilt + self.lead_target_angle) else: self.tilt_position = current_tilt self.tilt_speed = self.min_joint_speed finally: # Release the lock self.lock.release() def update_joint_positions(self, msg): # Acquire the lock self.lock.acquire() try: # Some publishers will continue to publish and empty message even when there is no # point present. In this case we want to return without setting the target_visible flag. if msg == PointStamped(): return # If we get this far, the target is visible self.target_visible = True # We only need the position component of the target pose for tracking which can # be stored as a PointStamped() message. target = PointStamped() target.header.frame_id = msg.header.frame_id target.point = msg.pose.position # Project the target point onto the camera link camera_target = self.tf.transformPoint(self.camera_link, target) # The virtual camera image is in the y-z plane pan = -camera_target.point.y tilt = -camera_target.point.z # Compute the distance to the target in the x direction distance = float(abs(camera_target.point.x)) # Convert the pan and tilt values from meters to radians by dividing by the distance to the target. # Since the Kinect is or Xtion is blind to distance within 0.5 meters, check for an exception and # use 0.5 meters as a fall back. try: pan /= distance tilt /= distance except: pan /= 0.5 tilt /= 0.5 # Pan the camera only if the displacement of the target point exceeds the threshold. if abs(pan) > self.pan_threshold: current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] delta_pan = min(self.max_lead_target_angle, 0.25 * self.gain_pan * abs(pan)) if pan > 0: self.pan_position = max(self.min_pan, current_pan - delta_pan) else: self.pan_position = min(self.max_pan, current_pan + delta_pan) else: self.pan_position = max(self.min_pan, min(self.max_pan, pan)) # Tilt the camera only if the displacement of the target point exceeds the threshold. if abs(tilt) > self.tilt_threshold: current_tilt = self.joint_state.position[self.joint_state.name.index(self.head_tilt_joint)] delta_tilt = min(self.max_lead_target_angle, 0.25 * self.gain_tilt * abs(tilt)) if tilt < 0: self.tilt_position = max(self.min_tilt, current_tilt - delta_tilt) else: self.tilt_position = min(self.max_tilt, current_tilt + delta_tilt) else: self.tilt_position = max(self.min_tilt, min(self.max_tilt, tilt)) finally: self.lock.release() def search_for_target(self): # First pan one way with the head down a bit self.servo_speed[self.head_pan_joint](self.default_joint_speed) self.servo_speed[self.head_tilt_joint](self.default_joint_speed) self.servo_position[self.head_pan_joint].publish(self.max_pan) self.servo_position[self.head_tilt_joint].publish(0.1) current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] while not self.target_visible and not rospy.is_shutdown() and current_pan < 0.9 * self.max_pan: self.servo_position[self.head_pan_joint].publish(self.max_pan) rospy.sleep(1) current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] # Now pan the other way self.servo_position[self.head_pan_joint].publish(self.min_pan) self.servo_position[self.head_tilt_joint].publish(0.1) current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] while not self.target_visible and not rospy.is_shutdown() and current_pan > 0.9 * self.min_pan: self.servo_position[self.head_pan_joint].publish(self.min_pan) rospy.sleep(1) current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] def center_head_servos(self): rospy.loginfo("Centering servos...") self.servo_speed[self.head_pan_joint](self.default_joint_speed) self.servo_speed[self.head_tilt_joint](self.default_joint_speed) current_tilt = self.joint_state.position[self.joint_state.name.index(self.head_tilt_joint)] current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] while abs(current_tilt) > 0.05 or abs(current_pan) > 0.05: self.servo_position[self.head_pan_joint].publish(0) self.servo_position[self.head_tilt_joint].publish(0) rospy.sleep(0.5) current_tilt = self.joint_state.position[self.joint_state.name.index(self.head_tilt_joint)] current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] self.set_servo_speed(self.head_pan_joint, 0) self.set_servo_speed(self.head_tilt_joint, 0) def stop_servos(self): rospy.loginfo("Stopping servos...") current_tilt = self.joint_state.position[self.joint_state.name.index(self.head_tilt_joint)] current_pan = self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] self.servo_position[self.head_pan_joint].publish(current_tilt) self.servo_position[self.head_tilt_joint].publish(current_pan) def update_joint_state(self, msg): try: test = msg.name.index(self.head_pan_joint) self.joint_state = msg except: pass def shutdown(self): rospy.loginfo("Shutting down head tracking node...") self.center_head_servos() # Relax all servos to give them a rest. rospy.loginfo("Relaxing pan and tilt servos.") for servo in self.joints: if CONTROLLER_TYPE == 'arbotix': self.torque_enable[servo]() else: self.torque_enable[servo](False) def trunc(f, n): '''Truncates/pads a float f to n decimal places without rounding''' slen = len('%.*f' % (n, f)) return float(str(f)[:slen]) if __name__ == '__main__': try: HeadTracker() except rospy.ROSInterruptException: rospy.loginfo("Head tracking node terminated.")
{ "content_hash": "edbe95e55ee9730698485b1e8cf84ecd", "timestamp": "", "source": "github", "line_count": 522, "max_line_length": 124, "avg_line_length": 43.35057471264368, "alnum_prop": 0.5660435724070882, "repo_name": "fujy/ROS-Project", "id": "cb05e1aba30b28cab6f9b5c7326ede909dfeefa9", "size": "22652", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/rbx2/rbx2_dynamixels/nodes/head_tracker.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "14439" }, { "name": "C++", "bytes": "1896853" }, { "name": "CMake", "bytes": "12338" }, { "name": "CSS", "bytes": "322251" }, { "name": "HTML", "bytes": "49036" }, { "name": "JavaScript", "bytes": "157070" }, { "name": "Makefile", "bytes": "41" }, { "name": "Python", "bytes": "841517" }, { "name": "Shell", "bytes": "2523" } ], "symlink_target": "" }
from os.path import splitext import numpy as np import matplotlib.pylab as plt import seaborn as sbn # enumerate results files result_files = np.loadtxt('result_filenames.np', dtype=str) model_tech_time = {} # plot and save results to png for result_filename in result_files: # save ave k-fold cpu time to dictionary model_tech_time[splitext(result_filename)] = np.load(result_filename)[-1] plt.bar(range(len(model_tech_time)), model_tech_time.values(), align='center') plt.xticks(range(len(model_tech_time)), model_tech_time.keys()) plt.savefig('../images/model_tech_time.png')
{ "content_hash": "21ea0dbb47134fe90487b26603c33409", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 77, "avg_line_length": 26.91304347826087, "alnum_prop": 0.7075928917609047, "repo_name": "jvpoulos/cs289-project", "id": "79c1123cbdce8a23d1a36be7a18e14ecc415636b", "size": "619", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "code/plot_cpu_time.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "115653" }, { "name": "R", "bytes": "11839" }, { "name": "TeX", "bytes": "98759" } ], "symlink_target": "" }
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['None'] , ['Lag1Trend'] , ['Seasonal_DayOfWeek'] , ['NoAR'] );
{ "content_hash": "c15f84f7af843f2976daf8966b9ec1a7", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 84, "avg_line_length": 39.25, "alnum_prop": 0.7070063694267515, "repo_name": "antoinecarme/pyaf", "id": "f55d9f4a3089fe7c3b040c86d477de961d8a542e", "size": "157", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/model_control/detailed/transf_None/model_control_one_enabled_None_Lag1Trend_Seasonal_DayOfWeek_NoAR.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "6773299" }, { "name": "Procfile", "bytes": "24" }, { "name": "Python", "bytes": "54209093" }, { "name": "R", "bytes": "807" }, { "name": "Shell", "bytes": "3619" } ], "symlink_target": "" }
""" Unified Volume driver for IBM XIV and DS8K Storage Systems. """ from oslo_config import cfg from oslo_log import log as logging from oslo_utils import importutils from cinder import exception from cinder.volume import driver from cinder.volume.drivers.san import san xiv_ds8k_opts = [ cfg.StrOpt( 'xiv_ds8k_proxy', default='xiv_ds8k_openstack.nova_proxy.XIVDS8KNovaProxy', help='Proxy driver that connects to the IBM Storage Array'), cfg.StrOpt( 'xiv_ds8k_connection_type', default='iscsi', choices=['fibre_channel', 'iscsi'], help='Connection type to the IBM Storage Array'), cfg.StrOpt( 'xiv_chap', default='disabled', choices=['disabled', 'enabled'], help='CHAP authentication mode, effective only for iscsi' ' (disabled|enabled)'), cfg.StrOpt( 'management_ips', default='', help='List of Management IP addresses (separated by commas)'), ] CONF = cfg.CONF CONF.register_opts(xiv_ds8k_opts) LOG = logging.getLogger(__name__) class XIVDS8KDriver(san.SanDriver, driver.ManageableVD, driver.ExtendVD, driver.SnapshotVD, driver.MigrateVD, driver.ReplicaVD, driver.ConsistencyGroupVD, driver.CloneableVD, driver.CloneableImageVD, driver.RetypeVD, driver.TransferVD): """Unified IBM XIV and DS8K volume driver.""" def __init__(self, *args, **kwargs): """Initialize the driver.""" super(XIVDS8KDriver, self).__init__(*args, **kwargs) self.configuration.append_config_values(xiv_ds8k_opts) proxy = importutils.import_class(self.configuration.xiv_ds8k_proxy) # NOTE: All Array specific configurations are prefixed with: # "xiv_ds8k_array_" # These additional flags should be specified in the cinder.conf # preferably in each backend configuration. self.xiv_ds8k_proxy = proxy( { "xiv_ds8k_user": self.configuration.san_login, "xiv_ds8k_pass": self.configuration.san_password, "xiv_ds8k_address": self.configuration.san_ip, "xiv_ds8k_vol_pool": self.configuration.san_clustername, "xiv_ds8k_connection_type": self.configuration.xiv_ds8k_connection_type, "xiv_chap": self.configuration.xiv_chap, "management_ips": self.configuration.management_ips }, LOG, exception, driver=self) def do_setup(self, context): """Setup and verify IBM XIV and DS8K Storage connection.""" self.xiv_ds8k_proxy.setup(context) def ensure_export(self, context, volume): """Ensure an export.""" return self.xiv_ds8k_proxy.ensure_export(context, volume) def create_export(self, context, volume, connector): """Create an export.""" return self.xiv_ds8k_proxy.create_export(context, volume) def create_volume(self, volume): """Create a volume on the IBM XIV and DS8K Storage system.""" return self.xiv_ds8k_proxy.create_volume(volume) def delete_volume(self, volume): """Delete a volume on the IBM XIV and DS8K Storage system.""" self.xiv_ds8k_proxy.delete_volume(volume) def remove_export(self, context, volume): """Disconnect a volume from an attached instance.""" return self.xiv_ds8k_proxy.remove_export(context, volume) def initialize_connection(self, volume, connector): """Map the created volume.""" return self.xiv_ds8k_proxy.initialize_connection(volume, connector) def terminate_connection(self, volume, connector, **kwargs): """Terminate a connection to a volume.""" return self.xiv_ds8k_proxy.terminate_connection(volume, connector) def create_volume_from_snapshot(self, volume, snapshot): """Create a volume from a snapshot.""" return self.xiv_ds8k_proxy.create_volume_from_snapshot( volume, snapshot) def create_snapshot(self, snapshot): """Create a snapshot.""" return self.xiv_ds8k_proxy.create_snapshot(snapshot) def delete_snapshot(self, snapshot): """Delete a snapshot.""" return self.xiv_ds8k_proxy.delete_snapshot(snapshot) def get_volume_stats(self, refresh=False): """Get volume stats.""" return self.xiv_ds8k_proxy.get_volume_stats(refresh) def create_cloned_volume(self, tgt_volume, src_volume): """Create Cloned Volume.""" return self.xiv_ds8k_proxy.create_cloned_volume(tgt_volume, src_volume) def extend_volume(self, volume, new_size): """Extend Created Volume.""" self.xiv_ds8k_proxy.extend_volume(volume, new_size) def migrate_volume(self, context, volume, host): """Migrate the volume to the specified host.""" return self.xiv_ds8k_proxy.migrate_volume(context, volume, host) def manage_existing(self, volume, existing_ref): """Brings an existing backend storage object under Cinder management. existing_ref is passed straight through from the API request's manage_existing_ref value, and it is up to the driver how this should be interpreted. It should be sufficient to identify a storage object that the driver should somehow associate with the newly-created cinder volume structure. In the case of XIV, the existing_ref consists of a single field named 'existing_ref' representing the name of the volume on the storage. There are two ways to do this: 1. Rename the backend storage object so that it matches the, volume['name'] which is how drivers traditionally map between a cinder volume and the associated backend storage object. 2. Place some metadata on the volume, or somewhere in the backend, that allows other driver requests (e.g. delete, clone, attach, detach...) to locate the backend storage object when required. If the existing_ref doesn't make sense, or doesn't refer to an existing backend storage object, raise a ManageExistingInvalidReference exception. The volume may have a volume_type, and the driver can inspect that and compare against the properties of the referenced backend storage object. If they are incompatible, raise a ManageExistingVolumeTypeMismatch, specifying a reason for the failure. """ return self.xiv_ds8k_proxy.manage_volume(volume, existing_ref) def manage_existing_get_size(self, volume, existing_ref): """Return size of volume to be managed by manage_existing.""" return self.xiv_ds8k_proxy.manage_volume_get_size(volume, existing_ref) def unmanage(self, volume): """Removes the specified volume from Cinder management.""" return self.xiv_ds8k_proxy.unmanage_volume(volume) def reenable_replication(self, context, volume): """Re-enable volume replication. """ return self.xiv_ds8k_proxy.reenable_replication(context, volume) def get_replication_status(self, context, volume): """Return replication status.""" return self.xiv_ds8k_proxy.get_replication_status(context, volume) def promote_replica(self, context, volume): """Promote the replica to be the primary volume.""" return self.xiv_ds8k_proxy.promote_replica(context, volume) def create_replica_test_volume(self, volume, src_vref): """Creates a test replica clone of the specified replicated volume.""" return self.xiv_ds8k_proxy.create_replica_test_volume(volume, src_vref) def retype(self, ctxt, volume, new_type, diff, host): """Convert the volume to be of the new type.""" return self.xiv_ds8k_proxy.retype(ctxt, volume, new_type, diff, host) def create_consistencygroup(self, context, group): """Creates a consistency group.""" return self.xiv_ds8k_proxy.create_consistencygroup(context, group) def delete_consistencygroup(self, context, group): """Deletes a consistency group.""" return self.xiv_ds8k_proxy.delete_consistencygroup(context, group) def create_cgsnapshot(self, context, cgsnapshot): """Creates a consistency group snapshot.""" return self.xiv_ds8k_proxy.create_cgsnapshot(context, cgsnapshot) def delete_cgsnapshot(self, context, cgsnapshot): """Deletes a consistency group snapshot.""" return self.xiv_ds8k_proxy.delete_cgsnapshot(context, cgsnapshot)
{ "content_hash": "82152f002a59747c69a79d44a865aa75", "timestamp": "", "source": "github", "line_count": 245, "max_line_length": 79, "avg_line_length": 35.93469387755102, "alnum_prop": 0.6497046796910495, "repo_name": "CloudServer/cinder", "id": "93a24e206e46aa77cce034a121174092d233ceb8", "size": "9559", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cinder/volume/drivers/ibm/xiv_ds8k.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "12078537" }, { "name": "Shell", "bytes": "8111" } ], "symlink_target": "" }
""" Contains helper classes for conversion between different NF-FG representations. """ import json import logging import re import sys from escape.util.virtualizer_helper import _res_parser try: # Import for ESCAPEv2 from escape.nffg_lib.nffg import AbstractNFFG, NFFG, NodeSAP, NFFGToolBox, \ VERSION as N_VERSION from escape.nffg_lib.nffg_elements import Constraints from escape.util.misc import VERBOSE, unicode_to_str, remove_units except (ImportError, AttributeError): import os for p in ("../nffg_lib/", "../util/"): sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), p))) # Import for standalone running from nffg import AbstractNFFG, NFFG, NFFGToolBox, VERSION as N_VERSION from nffg_elements import Constraints from misc import VERBOSE, unicode_to_str, remove_units try: # Import for ESCAPEv2 import virtualizer as virt_lib from virtualizer import __version__ as V_VERSION, Virtualizer except (ImportError, AttributeError): import os sys.path.append(os.path.abspath( os.path.join(os.path.dirname(__file__), "../../../unify_virtualizer/"))) # Import for standalone running import virtualizer as virt_lib from virtualizer import __version__ as V_VERSION, Virtualizer # noinspection PyShadowingNames class NFFGConverter(object): """ Convert different representation of NFFG in both ways. """ # port types in Virtualizer TYPE_VIRTUALIZER_PORT_ABSTRACT = "port-abstract" TYPE_VIRTUALIZER_PORT_SAP = "port-sap" # General option names in mapped NFFG assembled by the Mapping algorithm OP_TAG = 'TAG' OP_UNTAG = 'UNTAG' OP_INPORT = 'in_port' OP_OUTPUT = 'output' OP_FLOWCLASS = "flowclass" GENERAL_OPERATIONS = (OP_INPORT, OP_OUTPUT, OP_TAG, OP_UNTAG, OP_FLOWCLASS) # Specific tags TAG_SG_HOP = "sg_hop" # SAP id storing prefix SAP_NAME_PREFIX = 'SAP' # Operation formats in Virtualizer MATCH_TAG = r"dl_tag" ACTION_PUSH_TAG = r"push_tag" ACTION_POP_TAG = r"pop_tag" # Operand delimiters LABEL_DELIMITER = '|' OP_DELIMITER = ';' KV_DELIMITER = '=' # Other delimiters UNIQUE_ID_DELIMITER = '@' # Field types TYPE_MATCH = "MATCH" TYPE_ACTION = "ACTION" # Hard-coded constants REQUIREMENT_PREFIX = "REQ" def __init__ (self, domain=None, logger=None, unique_bb_id=False, unique_nf_id=False): """ Init. :param domain: domain name :type domain: str :param logger: optional logger :type logger: str or :any:`logging.Logger` :param unique_bb_id: generate unique id for nodes :type unique_bb_id: bool :return: None """ # Save domain name for define domain attribute in infras self.domain = domain # If clarify_id is True, add domain name as a prefix to the node ids self.__unique_bb_id = unique_bb_id self.__unique_nf_id = unique_nf_id self.log = logger if logger is not None else logging.getLogger(__name__) self.log.debug('Created NFFGConverter with domain name: %s' % self.domain) def disable_unique_bb_id (self): self.log.debug("Disable unique BiSBiS id recreation!") self.__unique_bb_id = False @classmethod def field_splitter (cls, type, field): """ Split the match/action field into a dict-based format for flowrule creation. :param type: the name of the field ('MATCH' or 'ACTION') :type type: str :param field: field data :type field: str :return: splitted data structure :rtype: dict """ ret = {} parts = field.split(cls.OP_DELIMITER) if len(parts) < 1: raise RuntimeError( "Wrong format: %s! Separator (%s) not found!" % ( field, cls.OP_DELIMITER)) for part in parts: kv = part.split(cls.KV_DELIMITER, 1) if len(kv) != 2: if kv[0] == cls.OP_UNTAG and type.upper() == cls.TYPE_ACTION: ret['vlan_pop'] = True continue else: raise RuntimeError("Not a key-value pair: %s" % part) if kv[0] == cls.OP_INPORT: try: ret['in_port'] = int(kv[1]) except ValueError: # self.log.warning( # "in_port is not a valid port number: %s! Skip " # "converting..." % kv[1]) ret['in_port'] = kv[1] elif kv[0] == cls.OP_TAG: if type.upper() == cls.TYPE_MATCH: ret['vlan_id'] = kv[1].split(cls.LABEL_DELIMITER)[-1] elif type.upper() == cls.TYPE_ACTION: ret['vlan_push'] = kv[1].split(cls.LABEL_DELIMITER)[-1] else: raise RuntimeError('Not supported field type: %s!' % type) elif kv[0] == cls.OP_OUTPUT: ret['out'] = kv[1] elif kv[0] == cls.OP_FLOWCLASS and type.upper() == cls.TYPE_MATCH: ret['flowclass'] = kv[1] else: raise RuntimeError("Unrecognizable key: %s" % kv[0]) return ret def _gen_unique_bb_id (self, v_node): """ Generate a unique identifier based on original ID, delimiter and marker. :param v_node: virtualizer node object :return: unique ID :rtype: str """ if self.__unique_bb_id and self.domain: return "%s%s%s" % (v_node.id.get_value(), self.UNIQUE_ID_DELIMITER, self.domain) else: return v_node.id.get_as_text() def _gen_unique_nf_id (self, v_vnf, bb_id=None): if self.__unique_nf_id: if bb_id is None: bb_id = self._gen_unique_bb_id(v_node=v_vnf.get_parent().get_parent()) return "%s%s%s" % (v_vnf.id.get_value(), self.UNIQUE_ID_DELIMITER, bb_id) else: return v_vnf.id.get_as_text() def recreate_bb_id (self, id): """ Recreate original ID based by removing trailing unique marker. :param id: unique id :type id: str :return: original ID :rtype: str """ if self.__unique_bb_id: return str(id).rsplit(self.UNIQUE_ID_DELIMITER, 1)[0] else: return str(id) def recreate_nf_id (self, id): """ Recreate original ID based by removing trailing unique marker. :param id: unique id :type id: str :return: original ID :rtype: str """ if self.__unique_nf_id: return str(id).split(self.UNIQUE_ID_DELIMITER, 1)[0] else: return str(id) def _convert_flowrule_match (self, match): """ Convert Flowrule match field from NFFG format to a unified format used by the Virtualizer. Based on Open vSwitch syntax: http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt :param match: flowrule match field :type match: str :return: converted data :rtype: str """ # E.g.: "match": "in_port=1;TAG=SAP1|comp|1" --> # E.g.: "match": "in_port=SAP2|fwd|1;TAG=SAP1|comp|1" --> # <match>(in_port=1)dl_tag=1</match> ret = [] match_part = match.split(';') if len(match_part) < 2: if not match_part[0].startswith("in_port"): self.log.warning("Invalid match field: %s" % match) return for kv in match_part: op = kv.split('=', 1) if op[0] not in self.GENERAL_OPERATIONS: self.log.warning("Unsupported match operand: %s" % op[0]) continue if op[0] == self.OP_TAG: vlan_tag = op[1].split('|')[-1] try: vlan_tag = int(vlan_tag) ret.append("%s=%s" % (self.MATCH_TAG, format(vlan_tag, '#06x'))) except ValueError: # self.log.warning("Wrong VLAN format: %s!" % op[1]) ret.append("%s=%s" % (self.MATCH_TAG, vlan_tag)) # elif op[0] == self.OP_SGHOP: # ret.append(kv) elif op[0] == self.OP_FLOWCLASS: ret.append(op[1]) return self.OP_DELIMITER.join(ret) def _convert_flowrule_action (self, action): """ Convert Flowrule action field from NFFG format to a unified format used by the Virtualizer. Based on Open vSwitch syntax: http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt :param action: flowrule action field :type action: str :return: converted data :rtype: str """ # E.g.: "action": "output=2;UNTAG" ret = [] action_part = action.split(';') if len(action_part) < 2: if not action_part[0].startswith("output"): self.log.warning("Invalid action field: %s" % action) return for kv in action_part: op = kv.split('=') if op[0] not in self.GENERAL_OPERATIONS: # self.log.warning("Unsupported action operand: %s" % op[0]) # return self.log.debug("Explicit action operand detected: %s" % op[0]) ret.append(kv) continue if op[0] == self.OP_TAG: # E.g.: <action>push_tag:0x0037</action> vlan = op[1].split('|')[-1] try: vlan = int(vlan) ret.append("%s:%s" % (self.ACTION_PUSH_TAG, format(vlan, '#06x'))) except ValueError: # self.log.warning( # "Wrong VLAN format: %s! Using raw flowrule id: %s" % (op[1], vlan)) ret.append("%s:%s" % (self.ACTION_PUSH_TAG, vlan)) elif op[0] == self.OP_UNTAG: # E.g.: <action>strip_vlan</action> ret.append(self.ACTION_POP_TAG) return self.OP_DELIMITER.join(ret) def _parse_virtualizer_node_ports (self, nffg, infra, vnode): """ Parse ports from a Virtualizer node into an :any:`NodeInfra` node. :param nffg: Container NFFG :type nffg: :class:`NFFG` :param infra: infrastructure node :type infra: :any:`NodeInfra` :param vnode: Virtualizer node :type vnode: Infra_node :return: None """ # Add ports to Infra Node for vport in vnode.ports: # If it is a port connected to a SAP: <port-type>port-sap</port-type> if vport.port_type.get_value() == self.TYPE_VIRTUALIZER_PORT_SAP: # If inter-domain SAP -> id = <sap> tag: <sap>SAP14</sap> if vport.sap.is_initialized() and vport.sap.get_value(): # Use unique SAP tag as the id of the SAP sap_id = vport.sap.get_value() # Optional port.sap self.log.debug("Detected SAP id from sap field: %s" % sap_id) # Regular SAP elif vport.id.get_as_text().startswith(self.SAP_NAME_PREFIX): # port.id is mandatory now # Use port name as the SAP.id if it is set else generate one # SAP.id <--> virtualizer.node.port.id sap_id = vport.id.get_value() self.log.debug("Detected SAP id as id field: %s" % sap_id) # SAP.id <--> virtualizer.node.port.name elif vport.name.is_initialized() and \ vport.name.get_as_text().upper().startswith( self.SAP_NAME_PREFIX + ":"): sap_id = vport.name.get_as_text()[len(self.SAP_NAME_PREFIX + ":"):] self.log.debug("Detected SAP id from name field: %s" % sap_id) elif vport.name.is_initialized() and \ vport.name.get_as_text().upper().startswith(self.SAP_NAME_PREFIX): sap_id = vport.name.get_as_text() self.log.debug("Detected SAP id as name field: %s" % sap_id) else: # Backup SAP id generation # sap_id = "SAP%s" % len([s for s in nffg.saps]) sap_id = "%s" % vport.id.get_value() self.log.debug( "No explicit SAP id was detected! Generated: %s" % sap_id) # Add port names if vport.name.is_initialized(): sap_prefix = "%s:" % self.SAP_NAME_PREFIX if vport.name.get_as_text().startswith(sap_prefix): sap_name = vport.name.get_as_text()[len(sap_prefix):] else: sap_name = vport.name.get_as_text() else: sap_name = sap_id # Create SAP and Add port to SAP sap = nffg.add_sap(id=sap_id, name=sap_name) self.log.debug("Created SAP node: %s" % sap) try: # Use port id of the Infra node as the SAP port id # because sap port info was lost during NFFG->Virtualizer conversion sap_port_id = int(vport.id.get_value()) # Mandatory port.id except ValueError: sap_port_id = vport.id.get_value() sap_port = sap.add_port(id=sap_port_id) self.log.debug("Added SAP port: %s" % sap_port) # Add port properties as metadata to SAP port if vport.sap.is_initialized(): # Add sap value to properties to be backward compatible for adaptation # layer sap_port.add_property("type", "inter-domain") sap_port.add_property("sap", vport.sap.get_value()) sap_port.sap = str(vport.sap.get_value()) # Create and add the port of the opposite Infra node try: infra_port_id = int(vport.id.get_value()) except ValueError: infra_port_id = vport.id.get_value() # Add port to Infra infra_port = infra.add_port(id=infra_port_id) self.log.debug("Added infra port: %s" % infra_port) if vport.sap.is_initialized(): # For internal use and backward compatibility infra_port.add_property("sap", vport.sap.get_value()) infra_port.sap = vport.sap.get_value() # Add port names if vport.name.is_initialized(): sap_port.name = infra_port.name = vport.name.get_as_text() # Fill SAP-specific data # Add infra port capabilities if vport.capability.is_initialized(): sap_port.capability = infra_port.capability = \ vport.capability.get_value() self.log.debug("Added capability: %s" % sap_port.capability) if vport.sap_data.is_initialized(): if vport.sap_data.technology.is_initialized(): sap_port.technology = infra_port.technology = \ vport.sap_data.technology.get_value() self.log.debug("Added technology: %s" % sap_port.technology) if vport.sap_data.role.is_initialized(): sap_port.role = infra_port.role = vport.sap_data.role.get_value() self.log.debug("Added role: %s" % sap_port.role) if vport.sap_data.resources.is_initialized(): if vport.sap_data.resources.delay.is_initialized(): try: sap_port.delay = infra_port.delay = float( vport.sap_data.resources.delay.get_value()) except ValueError: sap_port.delay = infra_port.delay = \ vport.sap_data.resources.delay.get_value() self.log.debug("Added delay: %s" % sap_port.delay) if vport.sap_data.resources.bandwidth.is_initialized(): try: sap_port.bandwidth = infra_port.bandwidth = float( vport.sap_data.resources.bandwidth.get_value()) except ValueError: sap_port.bandwidth = infra_port.bandwidth = \ vport.sap_data.resources.bandwidth.get_value() self.log.debug("Added bandwidth: %s" % sap_port.bandwidth) if vport.sap_data.resources.cost.is_initialized(): try: sap_port.cost = infra_port.cost = float( vport.sap_data.resources.cost.get_value()) except ValueError: sap_port.cost = infra_port.cost = \ vport.sap_data.resources.cost.get_value() self.log.debug("Added cost: %s" % sap_port.cost) if vport.sap_data.resources.qos.is_initialized(): try: sap_port.qos = infra_port.qos = \ vport.sap_data.resources.qos.get_value() except ValueError: sap_port.qos = infra_port.qos = \ vport.sap_data.resources.qos.get_value() self.log.debug("Added qos: %s" % sap_port.qos) if vport.control.is_initialized(): sap_port.controller = infra_port.controller = \ vport.control.controller.get_value() self.log.debug("Added controller: %s" % sap_port.controller) sap_port.orchestrator = infra_port.orchestrator = \ vport.control.orchestrator.get_value() self.log.debug("Added orchestrator: %s" % sap_port.orchestrator) if vport.addresses.is_initialized(): self.log.debug("Translate addresses...") sap_port.l2 = infra_port.l2 = vport.addresses.l2.get_value() sap_port.l4 = infra_port.l4 = vport.addresses.l4.get_value() for l3 in vport.addresses.l3.itervalues(): sap_port.l3.add_l3address(id=l3.id.get_value(), name=l3.name.get_value(), configure=l3.configure.get_value(), client=l3.client.get_value(), requested=l3.requested.get_value(), provided=l3.provided.get_value()) infra_port.l3.add_l3address(id=l3.id.get_value(), name=l3.name.get_value(), configure=l3.configure.get_value(), client=l3.client.get_value(), requested=l3.requested.get_value(), provided=l3.provided.get_value()) # Add metadata from infra port metadata to sap metadata for key in vport.metadata: # Optional - port.metadata sap_port.add_metadata(name=key, value=vport.metadata[key].value.get_value()) infra_port.add_metadata(name=key, value=vport.metadata[key].value.get_value()) self.log.debug("Added port for SAP -> %s" % infra_port) # Add connection between infra - SAP # SAP-Infra is static link --> create link for both direction l1, l2 = nffg.add_undirected_link( p1p2id="%s-%s-link" % (sap_id, infra.id), p2p1id="%s-%s-link-back" % (sap_id, infra.id), port1=sap_port, port2=infra_port, delay=sap_port.delay, bandwidth=sap_port.bandwidth, cost=sap_port.cost, qos=sap_port.qos) # Handle operation tag if vport.get_operation() is not None: self.log.debug("Found operation tag: %s for port: %s" % ( vport.get_operation(), vport.id.get_value())) sap.operation = vport.get_operation() sap_port.operation = vport.get_operation() # l1.operation = vport.get_operation() # l2.operation = vport.get_operation() self.log.debug("Added SAP-Infra connection: %s" % l1) self.log.debug("Added Infra-SAP connection: %s" % l2) # If it is not SAP port and probably connected to another infra elif vport.port_type.get_value() == self.TYPE_VIRTUALIZER_PORT_ABSTRACT: # Add Infra port try: infra_port_id = int(vport.id.get_value()) except ValueError: infra_port_id = vport.id.get_value() # Add port properties as property to Infra port infra_port = infra.add_port(id=infra_port_id) if vport.sap.is_initialized(): self.log.debug("Detected port as merged inter-domain port") infra_port.add_property("type", "inter-domain") self.log.debug("Added infra port: %s" % infra_port) self.__copy_vport_attrs(port=infra_port, vport=vport) self.log.debug("Added static %s" % infra_port) else: self.log.warning("Port type is not defined for port: %s " % vport) def _parse_virtualizer_node_nfs (self, nffg, infra, vnode): """ Parse VNFs from a Virtualizer nodes into :any:`NodeNF` list. :param nffg: Container NFFG :type nffg: :class:`NFFG` :param infra: infrastructure node :type infra: :any:`NodeInfra` :param vnode: Virtualizer node :type vnode: Infra_node :return: None """ # Create NF instances for v_vnf in vnode.NF_instances: # Get NF params nf_id = self._gen_unique_nf_id(v_vnf=v_vnf, bb_id=infra.id) # Mandatory nf_name = v_vnf.name.get_value() # Optional - nf.name, default = None nf_ftype = v_vnf.type.get_value() # Optional - nf.type, default = None # No deployment_type in Virtualizer try to get if from metadata if 'deployment_type' in v_vnf.metadata.keys(): nf_dep_type = v_vnf.metadata['deployment_type'].value.get_value() else: nf_dep_type = None # Add NF resources, remove optional units if v_vnf.resources.is_initialized(): if v_vnf.resources.cpu.is_initialized(): nf_cpu = v_vnf.resources.cpu.get_as_text().split(' ')[0] else: nf_cpu = None if v_vnf.resources.mem.is_initialized(): nf_mem = v_vnf.resources.mem.get_as_text().split(' ')[0] else: nf_mem = None if v_vnf.resources.storage.is_initialized(): nf_storage = v_vnf.resources.storage.get_as_text().split(' ')[0] else: nf_storage = None if v_vnf.resources.cost.is_initialized(): nf_cost = v_vnf.resources.cost.get_as_text().split(' ')[0] else: nf_cost = None try: nf_cpu = _res_parser(nf_cpu) if nf_cpu is not None else None except ValueError as e: self.log.warning("Resource cpu value is not valid number: %s" % e) try: nf_mem = _res_parser(nf_mem) if nf_mem is not None else None except ValueError as e: self.log.warning("Resource mem value is not valid number: %s" % e) try: nf_storage = _res_parser( nf_storage) if nf_storage is not None else None except ValueError as e: self.log.warning( "Resource storage value is not valid number: %s" % e) try: nf_cost = _res_parser(nf_cost) if nf_cost is not None else None except ValueError as e: self.log.warning( "Resource cost value is not valid number: %s" % e) else: nf_cpu = nf_mem = nf_storage = nf_cost = None # Get remained NF resources from metadata if 'delay' in v_vnf.metadata.keys(): nf_delay = v_vnf.metadata['delay'].value.get_value() else: nf_delay = None if 'bandwidth' in v_vnf.metadata.keys(): nf_bandwidth = v_vnf.metadata['bandwidth'].value.get_value() else: nf_bandwidth = None # Create NodeNF nf = nffg.add_nf(id=nf_id, name=nf_name, func_type=nf_ftype, dep_type=nf_dep_type, cpu=nf_cpu, mem=nf_mem, storage=nf_storage, delay=nf_delay, cost=nf_cost, bandwidth=nf_bandwidth) if v_vnf.status.is_initialized(): nf.status = v_vnf.status.get_value() self.log.debug("Created NF: %s" % nf) self.log.debug("Parse NF constraints...") if v_vnf.constraints.is_initialized(): # Add affinity list if v_vnf.constraints.affinity.is_initialized(): for aff in v_vnf.constraints.affinity.values(): try: aff_id = self._gen_unique_nf_id(v_vnf=aff.object.get_target()) aff = nf.constraints.add_affinity(id=aff.id.get_value(), value=aff_id) self.log.debug("Add affinity: %s to %s" % (aff, nf.id)) except StandardError as e: self.log.exception( "Skip affinity conversion due to error: %s" % e) # Add antiaffinity list if v_vnf.constraints.antiaffinity.is_initialized(): for naff in v_vnf.constraints.antiaffinity.values(): try: naff_id = self._gen_unique_nf_id(v_vnf=naff.object.get_target(), bb_id=infra.id) naff = nf.constraints.add_antiaffinity(id=naff.id.get_value(), value=naff_id) self.log.debug("Add antiaffinity: %s to %s" % (naff, nf.id)) except StandardError as e: self.log.exception( "Skip anti-affinity conversion due to error: %s" % e) # Add variables dict if v_vnf.constraints.variable.is_initialized(): for var in v_vnf.constraints.variable.values(): try: var_id = self._gen_unique_nf_id(v_vnf=var.object.get_target(), bb_id=infra.id) var = nf.constraints.add_variable(key=var.id.get_value(), id=var_id) self.log.debug("Add variable: %s to %s" % (var, nf.id)) except StandardError as e: self.log.exception( "Skip variable conversion due to error: %s" % e) # Add constraint list if v_vnf.constraints.constraint.is_initialized(): for constraint in v_vnf.constraints.constraint.values(): try: formula = nf.constraints.add_constraint( id=constraint.id.get_value(), formula=constraint.formula.get_value()) self.log.debug("Add constraint: %s to %s" % (formula, nf.id)) except StandardError as e: self.log.exception( "Skip constraint conversion due to error: %s" % e) if v_vnf.constraints.restorability.is_initialized(): nf.constraints.restorability = \ v_vnf.constraints.restorability.get_as_text() self.log.debug("Add restorability: %s to %s" % (nf.constraints.restorability, nf.id)) # Add NF metadata for key in v_vnf.metadata: if key not in ('delay', 'bandwidth'): nf.add_metadata(name=key, value=v_vnf.metadata[key].value.get_value()) # Handle operation tag if v_vnf.get_operation() is not None: self.log.debug("Found operation tag: %s for NF: %s" % ( v_vnf.get_operation(), v_vnf.id.get_value())) nf.operation = v_vnf.get_operation() # Create NF ports for vport in v_vnf.ports: # Add VNF port try: nf_port_id = int(vport.id.get_value()) except ValueError: nf_port_id = vport.id.get_value() # Create and Add port nf_port = nf.add_port(id=nf_port_id) # Fill SAP-specific data # Add port properties if vport.name.is_initialized(): nf_port.name = vport.name.get_value() # Store specific SAP port in NFs transparently if vport.port_type.is_initialized(): if vport.sap.is_initialized(): nf_port.sap = vport.sap.get_value() else: self.log.warning("Port type is missing from node: %s" % vport.id) # Add infra port capabilities if vport.capability.is_initialized(): nf_port.capability = vport.capability.get_value() if vport.sap_data.is_initialized(): if vport.sap_data.technology.is_initialized(): nf_port.technology = vport.sap_data.technology.get_value() if vport.sap_data.role.is_initialized(): nf_port.role = vport.sap_data.role.get_value() if vport.sap_data.resources.is_initialized(): if vport.sap_data.resources.delay.is_initialized(): try: nf_port.delay = float( vport.sap_data.resources.delay.get_value()) except ValueError: nf_port.delay = vport.sap_data.resources.delay.get_value() if vport.sap_data.resources.bandwidth.is_initialized(): try: nf_port.bandwidth = float( vport.sap_data.resources.bandwidth.get_value()) except ValueError: nf_port.bandwidth = \ vport.sap_data.resources.bandwidth.get_value() if vport.sap_data.resources.cost.is_initialized(): try: nf_port.cost = float( vport.sap_data.resources.cost.get_value()) except ValueError: nf_port.cost = vport.sap_data.resources.cost.get_value() if vport.control.is_initialized(): if vport.control.controller.is_initialized(): nf_port.controller = vport.control.controller.get_value() if vport.control.orchestrator.is_initialized(): nf_port.orchestrator = vport.control.orchestrator.get_value() if vport.addresses.is_initialized(): nf_port.l2 = vport.addresses.l2.get_value() nf_port.l4 = vport.addresses.l4.get_value() for l3 in vport.addresses.l3.itervalues(): nf_port.l3.add_l3address(id=l3.id.get_value(), name=l3.name.get_value(), configure=l3.configure.get_value(), client=l3.client.get_value(), requested=l3.requested.get_value(), provided=l3.provided.get_value()) # Add port metadata for key in vport.metadata: nf_port.add_metadata(name=key, value=vport.metadata[key].value.get_value()) # VNF port can not be a SAP port -> skip <port_type> saving # VNF port can not be a SAP port -> skip <sap> saving # Handle operation tag if vport.get_operation() is not None: self.log.debug("Found operation tag: %s for port: %s" % ( vport.get_operation(), vport.id.get_value())) nf_port.operation = vport.get_operation() self.log.debug("Added NF port: %s" % nf_port) # Add connection between Infra - NF # Infra - NF port on Infra side is always a dynamically generated port dyn_port = self.LABEL_DELIMITER.join((infra.id, nf_id, vport.id.get_as_text())) # Add Infra-side port infra_port = infra.add_port(id=dyn_port) self.log.debug("Added dynamic port for NF -> %s" % infra_port) # NF-Infra is dynamic link --> create special undirected link l1, l2 = nffg.add_undirected_link(port1=nf_port, port2=infra_port, dynamic=True) self.log.debug("Added dynamic VNF-Infra connection: %s" % l1) self.log.debug("Added dynamic Infra-VNF connection: %s" % l2) @staticmethod def __parse_external_port (flowentry): """ :param flowentry: :return: (domain name, node id, port id) """ res = re.match(r"(.*)://.*node\[id=(.*?)\].*port\[id=(.*?)\].*", flowentry) if len(res.groups()) != 3: log.error("Missing id from external flowrule: %s" % flowentry) return None, None, None return res.groups() def _parse_virtualizer_node_flowentries (self, nffg, infra, vnode): """ Parse FlowEntries from a Virtualizer Node into an :any:`InfraPort`. :param nffg: Container NFFG :type nffg: :class:`NFFG` :param infra: infrastructure node :type infra: :any:`NodeInfra` :param vnode: Virtualizer node :type vnode: Infra_node :return: None """ # Create Flowrules for flowentry in vnode.flowtable: vport = vport_id = None fr_external = False fr_id = flowentry.id.get_value() # Mandatory flowentry.id try: fr_id = int(fr_id) except ValueError: self.log.error("Parsed flowentry id is not valid integer!") continue # e.g. in_port=1(;TAG=SAP1|comp|1) fr_match = "in_port=" if not flowentry.port.is_initialized(): self.log.error("Port attribute is missing from flowrule:\n%s" % flowentry.xml()) continue # Check if the in port is an external port (that does not exist) if "://" in flowentry.port.get_as_text(): self.log.debug("Detected external in port reference: %s" % flowentry.port.get_as_text()) # Mark flowrule as external so SG recreation can skip it fr_external = True ext_domain, ext_node, ext_port = self.__parse_external_port( flowentry.port.get_value()) vport_id = "EXTERNAL:%s" % ext_port bb_node = nffg[self._gen_unique_bb_id(vnode)] if vport_id in bb_node.ports: self.log.debug("External port: %s already exits! Skip creating..." % vport_id) vport = bb_node.ports[vport_id] else: vport = bb_node.add_port(id=vport_id) self.log.debug("Added external in port: %s" % vport) # Mark dynamic port as external for later processing try: ext_port = int(ext_port) except ValueError: pass vport.role = "EXTERNAL" vport.add_property("domain", ext_domain) vport.add_property("node", ext_node) vport.add_property("port", ext_port) vport.add_property("path", flowentry.port.get_as_text()) fr_match += vport_id # Add SAP to request if vport_id in nffg and vport_id in nffg[vport_id].ports: # SAP with port already exist if nffg[vport_id].ports[vport_id].role != "EXTERNAL": self.log.error("SAP: %s already exists but it is not an external " "SAP!" % nffg[vport_id].ports[vport_id]) else: self.log.debug("External SAP: %s already exists! Skip creation..." % nffg[vport_id].ports[vport_id]) else: ext_sap = nffg.add_sap(id=vport_id) ext_sap_port = ext_sap.add_port(id=vport_id) ext_sap_port.role = "EXTERNAL" ext_sap_port.add_property("path", flowentry.port.get_as_text()) nffg.add_undirected_link(port1=vport, port2=ext_sap_port) self.log.debug("Created external SAP: %s" % ext_sap) # Set v_fe_port for further use v_fe_port = None else: try: v_fe_port = flowentry.port.get_target() except StandardError: self.log.exception("Got unexpected exception during acquisition of " "IN Port in Flowentry: %s!" % flowentry.xml()) continue # Check if src port is a VNF port --> create the tagged port name if "NF_instances" in flowentry.port.get_as_text(): v_src_nf = v_fe_port.get_parent().get_parent() v_src_node = v_src_nf.get_parent().get_parent() # Add domain name to the node id if unique_id is set src_node = self._gen_unique_bb_id(v_src_node) src_nf = self._gen_unique_nf_id(v_vnf=v_src_nf, bb_id=infra.id) fr_match += self.LABEL_DELIMITER.join((src_node, src_nf, v_fe_port.id.get_as_text())) else: # Else just Infra port --> add only the port number fr_match += v_fe_port.id.get_as_text() # Pre-check target-less dst port flowrule fr_action = "output=" if not flowentry.out.is_initialized(): self.log.error("Out attribute is missing from flowrule:\n%s" % flowentry.xml()) continue if "://" in flowentry.out.get_as_text(): self.log.debug("Detected external out port reference: %s" % flowentry.out.get_as_text()) # Mark flowrule as external so SG recreation can skip it fr_external = True ext_domain, ext_node, ext_port = self.__parse_external_port( flowentry.out.get_value()) ext_port_id = "EXTERNAL:%s" % ext_port bb_node = nffg[self._gen_unique_bb_id(vnode)] if ext_port_id in bb_node.ports: self.log.debug("External port: %s already exits! Skip creating..." % ext_port_id) ext_vport = bb_node.ports[ext_port_id] else: ext_vport = bb_node.add_port(id=ext_port_id) self.log.debug("Added external out port: %s" % ext_vport) # Mark dynamic port as external for later processing try: ext_port = int(ext_port) except ValueError: pass ext_vport.role = "EXTERNAL" # ext_vport.sap = ext_port ext_vport.add_property("domain", ext_domain) ext_vport.add_property("node", ext_node) ext_vport.add_property("port", ext_port) ext_vport.add_property("path", flowentry.out.get_as_text()) fr_action += ext_port_id # Add SAP to request if ext_port_id in nffg and ext_port_id in nffg[ext_port_id].ports: # SAP with port already exist if nffg[ext_port_id].ports[ext_port_id].role != "EXTERNAL": self.log.error("SAP: %s already exists but it is not an external " "SAP!" % nffg[ext_port_id].ports[ext_port_id]) else: self.log.debug("External SAP: %s already exists! Skip creating..." % nffg[ext_port_id].ports[ext_port_id]) else: ext_sap = nffg.add_sap(id=ext_port_id) ext_sap_port = ext_sap.add_port(id=ext_port_id) ext_sap_port.role = "EXTERNAL" ext_sap_port.add_property("path", flowentry.out.get_as_text()) nffg.add_undirected_link(port1=ext_vport, port2=ext_sap_port) self.log.debug("Created external SAP: %s" % ext_sap) # Set v_fe_out for further use v_fe_out = None else: try: v_fe_out = flowentry.out.get_target() except StandardError: self.log.exception( "Got unexpected exception during acquisition of OUT " "Port in Flowentry: %s!" % flowentry.xml()) continue # Check if dst port is a VNF port --> create the tagged port name if "NF_instances" in flowentry.out.get_as_text(): v_dst_nf = v_fe_out.get_parent().get_parent() v_dst_node = v_dst_nf.get_parent().get_parent() dst_node = self._gen_unique_bb_id(v_dst_node) dst_nf = self._gen_unique_nf_id(v_vnf=v_dst_nf, bb_id=infra.id) fr_action += self.LABEL_DELIMITER.join((dst_node, dst_nf, v_fe_out.id.get_as_text())) else: # Else just Infra port --> add only the port number fr_action += v_fe_out.id.get_as_text() # Check if there is a matching operation -> currently just TAG is used if flowentry.match.is_initialized() and flowentry.match.get_value(): for op in flowentry.match.get_as_text().split(self.OP_DELIMITER): if op.startswith(self.OP_INPORT): pass # e.g. <match>dl_tag=0x0004</match> --> in_port=1;TAG=SAP2|fwd|4 elif op.startswith(self.MATCH_TAG): # if src or dst was a SAP: SAP.id == port.name # if scr or dst is a VNF port name of parent of port if v_fe_port is None: _src_name = "external" elif v_fe_port.port_type.get_as_text() == \ self.TYPE_VIRTUALIZER_PORT_SAP: # If port is an inter-domain SAP port --> port.sap if v_fe_port.sap.is_initialized() and v_fe_port.sap.get_value(): _src_name = v_fe_port.sap.get_as_text() # If port is local SAP --> SAP:<sap_name> elif v_fe_port.name.is_initialized() and str( v_fe_port.name.get_value()).startswith(self.SAP_NAME_PREFIX): _src_name = v_fe_port.name.get_as_text()[ len(self.SAP_NAME_PREFIX + ":"):] else: _src_name = str(v_fe_port.name.get_value()) else: _src_name = v_fe_port.get_parent().get_parent().id.get_as_text() # If port is an inter-domain SAP port --> port.sap if v_fe_out is None: _dst_name = "external" elif v_fe_out.port_type.get_as_text() == \ self.TYPE_VIRTUALIZER_PORT_SAP: # If port is an inter-domain SAP port --> port.sap if v_fe_out.sap.is_initialized() and v_fe_out.sap.get_value(): _dst_name = v_fe_out.sap.get_as_text() # If port is local SAP --> SAP:<sap_name> elif v_fe_out.name.is_initialized() and str( v_fe_out.name.get_value()).startswith(self.SAP_NAME_PREFIX): _dst_name = v_fe_out.name.get_as_text()[ len(self.SAP_NAME_PREFIX + ':'):] else: _dst_name = v_fe_out.name.get_as_text() else: _dst_name = v_fe_out.get_parent().get_parent().id.get_as_text() # Convert from int/hex to int _tag = int(op.split('=')[1], base=0) fr_match += ";%s=%s" % (self.OP_TAG, self.LABEL_DELIMITER.join( (_src_name, _dst_name, str(_tag)))) else: # Everything else is must come from flowclass fr_match += ";%s=%s" % (self.OP_FLOWCLASS, op) # Check if there is an action operation if flowentry.action.is_initialized() and flowentry.action.get_value(): for op in flowentry.action.get_as_text().split(self.OP_DELIMITER): # e.g. <action>push_tag:0x0003</action> --> # output=1;TAG=decomp|SAP2|3 if op.startswith(self.ACTION_PUSH_TAG): # tag: src element name | dst element name | tag # if src or dst was a SAP: SAP.id == port.name # if scr or dst is a VNF port name of parent of port if v_fe_port is None: _src_name = "external" elif v_fe_port.port_type.get_as_text() == \ self.TYPE_VIRTUALIZER_PORT_SAP: # If port is an inter-domain SAP port --> port.sap if v_fe_port.sap.is_initialized() and v_fe_port.sap.get_value(): _src_name = v_fe_port.sap.get_as_text() # If port is local SAP --> SAP:<sap_name> elif v_fe_port.name.is_initialized() and str( v_fe_port.name.get_value()).startswith(self.SAP_NAME_PREFIX): _src_name = v_fe_port.name.get_as_text()[ len(self.SAP_NAME_PREFIX + ':'):] else: _src_name = v_fe_port.name.get_as_text() else: _src_name = v_fe_port.get_parent().get_parent().id.get_as_text() if v_fe_out is None: _dst_name = "external" elif v_fe_out.port_type.get_as_text() == \ self.TYPE_VIRTUALIZER_PORT_SAP: # If port is an inter-domain SAP port --> port.sap if v_fe_out.sap.is_initialized() and v_fe_out.sap.get_value(): _dst_name = v_fe_out.sap.get_as_text() elif v_fe_out.name.is_initialized() and str( v_fe_out.name.get_value()).startswith(self.SAP_NAME_PREFIX): _dst_name = v_fe_out.name.get_as_text()[ len(self.SAP_NAME_PREFIX + ':'):] else: _dst_name = v_fe_out.name.get_as_text() else: _dst_name = v_fe_out.get_parent().get_parent().id.get_as_text() # Convert from int/hex to int _tag = int(op.split(':')[1], base=0) fr_action += ";%s=%s" % (self.OP_TAG, self.LABEL_DELIMITER.join( (_src_name, _dst_name, str(_tag)))) # e.g. <action>strip_vlan</action> --> output=EE2|fwd|1;UNTAG elif op.startswith(self.ACTION_POP_TAG): fr_action += ";%s" % self.OP_UNTAG else: fr_action += ";%s" % op # Get the src (port where fr need to store) and dst port id if vport_id is None: try: vport_id = int(v_fe_port.id.get_value()) except ValueError: vport_id = v_fe_port.id.get_value() # Get port from NFFG in which need to store the fr if vport is None: try: # If the port is an Infra port if "NF_instances" not in flowentry.port.get_as_text(): vport = nffg[infra.id].ports[vport_id] # If the port is a VNF port -> get the dynamic port in the Infra else: _vnf_id = self._gen_unique_nf_id( v_vnf=v_fe_port.get_parent().get_parent(), bb_id=infra.id) _dyn_port = [l.dst.id for u, v, l in nffg.network.edges_iter([_vnf_id], data=True) if l.type == NFFG.TYPE_LINK_DYNAMIC and str(l.src.id) == str(vport_id)] if len(_dyn_port) > 1: self.log.warning("Multiple dynamic link detected for NF(id: %s) " "Use first link ..." % _vnf_id) elif len(_dyn_port) < 1: raise RuntimeError("Missing infra-vnf dynamic link for vnf: %s" % _vnf_id) # Get dynamic port from infra vport = nffg[infra.id].ports[_dyn_port[0]] except RuntimeError as e: self.log.error("Port: %s is not found in the NFFG: " "%s from the flowrule:\n%s" % (vport_id, e.message, flowentry.xml())) continue # Get resource values self.log.debug("Parse flowrule resources...") if flowentry.resources.is_initialized(): if flowentry.resources.bandwidth.is_initialized(): try: fr_bw = float(flowentry.resources.bandwidth.get_value()) except ValueError: fr_bw = flowentry.resources.bandwidth.get_value() else: fr_bw = None if flowentry.resources.delay.is_initialized(): try: fr_delay = float(flowentry.resources.delay.get_value()) except ValueError: fr_delay = flowentry.resources.delay.get_value() else: fr_delay = None if flowentry.resources.cost.is_initialized(): try: fr_cost = float(flowentry.resources.cost.get_value()) except ValueError: fr_cost = flowentry.resources.cost.get_value() else: fr_cost = None if flowentry.resources.qos.is_initialized(): fr_qos = flowentry.resources.qos.get_value() else: fr_qos = None else: fr_bw = fr_delay = fr_cost = fr_qos = None # Add constraints self.log.debug("Parse flowrule constraints...") fr_constraints = Constraints() if flowentry.constraints.is_initialized(): # Add affinity list if flowentry.constraints.affinity.is_initialized(): for aff in flowentry.constraints.affinity.values(): aff = fr_constraints.add_affinity(id=aff.id.get_value(), value=aff.object.get_value()) self.log.debug("Add affinity: %s to %s" % (aff, fr_id)) # Add antiaffinity list if flowentry.constraints.antiaffinity.is_initialized(): for naff in flowentry.constraints.antiaffinity.values(): naff = fr_constraints.add_antiaffinity(id=naff.id.get_value(), value=naff.object.get_value()) self.log.debug("Add antiaffinity: %s to %s" % (naff, fr_id)) # Add variables dict if flowentry.constraints.variable.is_initialized(): for var in flowentry.constraints.variable.values(): var = fr_constraints.add_variable(key=var.id.get_value(), id=var.object.get_value()) self.log.debug("Add variable: %s to %s" % (var, fr_id)) # Add constraint list if flowentry.constraints.constraint.is_initialized(): for constraint in flowentry.constraints.constraint.values(): formula = fr_constraints.add_constraint( id=constraint.id.get_value(), formula=constraint.formula.get_value()) self.log.debug("Add constraint: %s to %s" % (formula, fr_id)) if flowentry.constraints.restorability.is_initialized(): fr_constraints.restorability = \ flowentry.constraints.restorability.get_as_text() self.log.debug("Add restorability: %s to %s" % (fr_constraints.restorability, fr_id)) # Add flowrule to port fr = vport.add_flowrule(id=fr_id, match=fr_match, action=fr_action, bandwidth=fr_bw, delay=fr_delay, cost=fr_cost, qos=fr_qos, external=fr_external, constraints=fr_constraints) # Handle operation tag if flowentry.get_operation() is not None: self.log.debug("Found operation tag: %s for flowentry: %s" % ( flowentry.get_operation(), flowentry.id.get_value())) fr.operation = flowentry.get_operation() self.log.debug("Added %s" % fr) def _parse_virtualizer_nodes (self, nffg, virtualizer): """ Parse Infrastructure node from Virtualizer. :param nffg: Container NFFG :type nffg: :class:`NFFG` :param virtualizer: Virtualizer object :type virtualizer: Virtualizer :return: None """ # Iterate over virtualizer/nodes --> node = Infra for vnode in virtualizer.nodes: # Node params # Add domain name to the node id if unique_id is set node_id = self._gen_unique_bb_id(vnode) if vnode.name.is_initialized(): # Optional - node.name node_name = vnode.name.get_value() else: node_name = None node_domain = self.domain # Set domain as the domain of the Converter node_type = vnode.type.get_value() # Mandatory - virtualizer.type # Node-resources params if vnode.resources.is_initialized(): # Remove units and store the value only node_cpu = vnode.resources.cpu.get_as_text().split(' ')[0] node_mem = vnode.resources.mem.get_as_text().split(' ')[0] node_storage = vnode.resources.storage.get_as_text().split(' ')[0] node_cost = vnode.resources.cost.get_value() node_zone = vnode.resources.zone.get_value() try: node_cpu = _res_parser(node_cpu) if node_cpu is not None else None except ValueError as e: self.log.warning("Resource cpu value is not valid number: %s" % e) try: node_mem = _res_parser(node_mem) if node_mem is not None else None except ValueError as e: self.log.warning("Resource mem value is not valid number: %s" % e) try: node_storage = _res_parser( node_storage) if node_storage is not None else None except ValueError as e: self.log.warning("Resource storage value is not valid number: %s" % e) else: # Default value for cpu,mem,storage: None node_cpu = node_mem = node_storage = node_cost = node_zone = None # Try to get bw value from metadata if 'bandwidth' in vnode.metadata: # Converted to float in Infra constructor node_bw = vnode.metadata['bandwidth'].value.get_value() else: # Iterate over links to summarize bw value for infra node node_bw = [ float(vlink.resources.bandwidth.get_value()) for vlink in vnode.links if vlink.resources.is_initialized() and vlink.resources.bandwidth.is_initialized()] # Default value: None node_bw = min(node_bw) if node_bw else None try: if node_bw is not None: node_bw = float(node_bw) except ValueError as e: self.log.warning( "Resource bandwidth value is not valid number: %s" % e) if 'delay' in vnode.metadata: # Converted to float in Infra constructor node_delay = vnode.metadata['delay'].value.get_value() else: # Iterate over links to summarize delay value for infra node node_delay = [ float(vlink.resources.delay.get_value()) for vlink in vnode.links if vlink.resources.is_initialized() and vlink.resources.delay.is_initialized()] # Default value: None node_delay = max(node_delay) if node_delay else None try: if node_delay is not None: node_delay = float(node_delay) except ValueError as e: self.log.warning("Resource delay value is not valid number: %s" % e) # Add Infra Node to NFFG infra = nffg.add_infra(id=node_id, name=node_name, domain=node_domain, infra_type=node_type, cpu=node_cpu, mem=node_mem, cost=node_cost, zone=node_zone, storage=node_storage, delay=node_delay, bandwidth=node_bw) self.log.debug("Created INFRA node: %s" % infra) self.log.debug("Parsed resources: %s" % infra.resources) for vlink in vnode.links: if vlink.resources.is_initialized() and \ vlink.resources.delay.is_initialized(): try: dm_src = vlink.src.get_target().id.get_value() dm_dst = vlink.dst.get_target().id.get_value() except StandardError: self.log.exception( "Got unexpected exception during acquisition of src/dst " "Port in Link: %s!" % vlink.xml()) continue dm_delay = float(vlink.resources.delay.get_value()) infra.delay_matrix.add_delay(src=dm_src, dst=dm_dst, delay=dm_delay) self.log.debug("Added delay: %s to delay matrix [%s --> %s]" % (dm_delay, dm_src, dm_dst)) # Add supported types shrinked from the supported NF list for sup_nf in vnode.capabilities.supported_NFs: infra.add_supported_type(sup_nf.type.get_value()) # Handle operation tag if vnode.get_operation() is not None: self.log.debug("Found operation tag: %s for node: %s" % ( vnode.get_operation(), vnode.id.get_value())) infra.operation = vnode.get_operation() # Parse Ports self._parse_virtualizer_node_ports(nffg=nffg, infra=infra, vnode=vnode) # Parse NF_instances self._parse_virtualizer_node_nfs(nffg=nffg, infra=infra, vnode=vnode) # Parse Flowentries self._parse_virtualizer_node_flowentries(nffg=nffg, infra=infra, vnode=vnode) self.log.debug("Parse INFRA node constraints...") if vnode.constraints.is_initialized(): # Add affinity list if vnode.constraints.affinity.is_initialized(): for aff in vnode.constraints.affinity.values(): aff = infra.constraints.add_affinity( id=aff.id.get_value(), value=aff.object.get_value()) self.log.debug("Add affinity: %s to %s" % (aff, infra.id)) # Add antiaffinity list if vnode.constraints.antiaffinity.is_initialized(): for naff in vnode.constraints.antiaffinity.values(): naff = infra.constraints.add_antiaffinity( id=naff.id.get_value(), value=naff.object.get_value()) self.log.debug("Add antiaffinity: %s to %s" % (naff, infra.id)) # Add variables dict if vnode.constraints.variable.is_initialized(): for var in vnode.constraints.variable.values(): var = infra.constraints.add_variable( key=var.id.get_value(), id=var.object.get_value()) self.log.debug("Add variable: %s to %s" % (var, infra.id)) # Add constraint list if vnode.constraints.constraint.is_initialized(): for constraint in vnode.constraints.constraint.values(): formula = infra.constraints.add_constraint( id=constraint.id.get_value(), formula=constraint.formula.get_value()) self.log.debug("Add constraint: %s to %s" % (formula, infra.id)) # Copy metadata self.log.debug("Parse Infra node metadata...") for key in vnode.metadata: # Optional - node.metadata if key in ('bandwidth', 'delay'): # Internally used metadata --> already processed pass elif str(key).startswith("constraint"): self.log.debug("Constraint entry detected!") raw = vnode.metadata[key].value.get_value() values = json.loads(raw.replace("'", '"')) self.log.log(VERBOSE, "Parsed metadata:\n%s" % values) bandwidth = path = delay = None if "bandwidth" in values: try: bandwidth = float(values['bandwidth']['value']) except ValueError: self.log.warning("Bandwidth in requirement metadata: %s is not a " "valid float value!" % values['bandwidth']) path = values['bandwidth']['path'] if "delay" in values: try: delay = float(values['delay']['value']) except ValueError: self.log.warning("Delay in requirement metadata: %s is not a " "valid float value!" % values['delay']) if path != values['delay']['path']: self.log.warning( "Delay/bandwidth path entry is different in E2E requirement " "metadata: %s!" % raw) continue src_port = dst_port = None if path is None: continue sg_id = int(path[0]) for p in infra.ports: for f in p.flowrules: if f.id == sg_id: src_port = p self.log.debug("Found src port: %s" % p.id) break sg_id = int(path[-1]) for f in infra.flowrules(): if f.id == sg_id: dst_port_id = f.action.split(';')[0].split('=')[1] dst_port = infra.ports[dst_port_id] self.log.debug("Found dst port: %s" % dst_port_id) break if src_port is None or dst_port is None: self.log.warning( "Port reference is missing for Requirement link!") continue req_id = str(key).split(':')[1] req = nffg.add_req(id=req_id, src_port=src_port, dst_port=dst_port, bandwidth=bandwidth, delay=delay, sg_path=path) self.log.debug("Created Requirement link: %s" % req) else: infra.add_metadata(name=key, value=vnode.metadata[key].value.get_value()) def _parse_virtualizer_links (self, nffg, virtualizer): """ Parse links from Virtualizer. :param nffg: Container NFFG :type nffg: :class:`NFFG` :param virtualizer: Virtualizer object :type virtualizer: Virtualizer :return: None """ # Store added link in a separate structure for simplicity and speed added_links = [] # Add links connecting infras for vlink in virtualizer.links: try: src_port = vlink.src.get_target() except StandardError: self.log.exception( "Got unexpected exception during acquisition of link's src Port!") src_node = src_port.get_parent().get_parent() # Add domain name to the node id if unique_id is set src_node_id = self._gen_unique_bb_id(src_node) try: dst_port = vlink.dst.get_target() except StandardError: self.log.exception( "Got unexpected exception during acquisition of link's dst Port!") dst_node = dst_port.get_parent().get_parent() # Add domain name to the node id if unique_id is set dst_node_id = self._gen_unique_bb_id(dst_node) try: src_port_id = int(src_port.id.get_value()) except ValueError: # self.log.warning("Source port id is not a valid number: %s" % e) src_port_id = src_port.id.get_value() try: dst_port_id = int(dst_port.id.get_value()) except ValueError: # self.log.warning("Destination port id is not a valid number: %s" % e) dst_port_id = dst_port.id.get_value() params = dict() params['id'] = vlink.id.get_value() # Mandatory - link.id if vlink.resources.is_initialized(): params['delay'] = float(vlink.resources.delay.get_value()) \ if vlink.resources.delay.is_initialized() else None params['bandwidth'] = float(vlink.resources.bandwidth.get_value()) \ if vlink.resources.bandwidth.is_initialized() else None params['cost'] = vlink.resources.cost.get_value() params['qos'] = vlink.resources.qos.get_value() # Check the link is a possible backward link possible_backward = ( "%s:%s-%s:%s" % (dst_node_id, dst_port_id, src_node_id, src_port_id)) if possible_backward in added_links: params['backward'] = True # Add unidirectional link l1 = nffg.add_link(src_port=nffg[src_node_id].ports[src_port_id], dst_port=nffg[dst_node_id].ports[dst_port_id], **params) self.log.debug("Add static %slink: %s" % ( "backward " if "backward" in params else "", l1)) # Handle operation tag if vlink.get_operation() is not None: self.log.debug("Found operation tag: %s for link: %s" % ( vlink.get_operation(), vlink.get_value())) l1.operation = vlink.get_operation() # Register the added link added_links.append( "%s:%s-%s:%s" % (src_node, src_port, dst_node, dst_port)) @staticmethod def _parse_virtualizer_metadata (nffg, virtualizer): """ Parse metadata from Virtualizer. Optionally can parse requirement links if they are stored in metadata. :param nffg: Container NFFG :type nffg: :class:`NFFG` :param virtualizer: Virtualizer object :type virtualizer: Virtualizer :return: None """ for key in virtualizer.metadata: nffg.add_metadata(name=key, value=virtualizer.metadata[key].value.get_value()) def __process_variables (self, infra, variables): frs = [] type = set() for var in variables: var = var.strip() for fr in infra.flowrules(): if fr.delay == var: frs.append(fr) type.add("delay") if fr.bandwidth == var: frs.append(fr) type.add("bandwidth") if len(type) != 1: self.log.warning("Variables: %s refer to multiple type of fields: %s" % (variables, type)) return None, None type = type.pop() return frs, type def _parse_virtualizer_requirement (self, nffg): self.log.debug("Process requirement formulas...") reqs = {} for infra in nffg.infras: deletable_ids = [] for i, (id, formula) in enumerate( infra.constraints.constraint.iteritems()): self.log.debug("Detected formula: %s" % formula) try: splitted = formula.split('|') variables = splitted[0].strip().split('+') value = float(splitted[-1]) except: self.log.warning("Wrong formula format: %s" % formula) continue frs, type = self.__process_variables(infra=infra, variables=variables) if not (frs or type): continue # Recreate sg_path sg_path = [fr.id for fr in frs] self.log.debug("Recreated sg_hop list: %s" % sg_path) try: sport = NFFGToolBox.get_inport_of_flowrule(infra, frs[0].id) dport = NFFGToolBox.get_output_port_of_flowrule(infra, frs[-1]) except RuntimeError as e: self.log.error("Referred port is missing from infra node: %s" % e) continue if (sport, dport) not in reqs: req_link = nffg.add_req(src_port=sport, dst_port=dport, id="req%s" % i, sg_path=sg_path) self.log.debug("Created requirement link: %s" % req_link) reqs[(sport, dport)] = req_link else: req_link = reqs[(sport, dport)] setattr(req_link, type, value) self.log.debug("Set requirement value: %s --> %s" % (type, value)) # Remove variables from flowrules for fr in frs: setattr(fr, type, None) # Mark formula for deletion deletable_ids.append(id) for formula_id in deletable_ids: infra.constraints.del_constraint(id=formula_id) def _parse_sghops_from_flowrules (self, nffg): """ Recreate the SG hop links based on the flowrules. Use the flowrule id as the is of the SG hop link. :param nffg: Container NFFG :type nffg: :class:`NFFG` :return: None """ if not nffg.is_SBB(): return self.log.debug( "Detected SingleBiSBiS view! Recreate SG hop links based on flowrules...") for sbb in nffg.infras: for flowrule in sbb.flowrules(): # Get source port / in_port in_port = None flowclass = None fr_id = flowrule.id for item in flowrule.match.split(';'): if item.startswith('in_port'): in_port = item.split('=')[1] elif item.startswith('TAG') or item.startswith('UNTAG'): pass elif item.startswith('flowclass'): flowclass = item.split('=', 1)[1] else: flowclass = item if in_port is not None: # Detect the connected NF/SAP port for sg_hop opposite_node = [l.dst for u, v, l in nffg.real_out_edges_iter(sbb.id) if l.src.id == in_port] if len(opposite_node) == 1: in_port = opposite_node.pop() self.log.debug("Detected src port for SG hop: %s" % in_port) else: self.log.warning( "src port for SG hop: %s cannot be detected! Possible ports: %s" % (fr_id, opposite_node)) continue else: self.log.warning( "in_port for SG hop link cannot be determined from: %s. Skip SG " "hop recreation..." % flowrule) return # Get destination port / output output = None for item in flowrule.action.split(';'): if item.startswith('output'): output = item.split('=')[1] if output is not None: # Detect the connected NF/SAP port for sg_hop opposite_node = [l.dst for u, v, l in nffg.real_out_edges_iter(sbb.id) if l.src.id == output] if len(opposite_node) == 1: output = opposite_node.pop() self.log.debug("Detected dst port for SG hop: %s" % output) else: self.log.warning( "dst port for SG hop: %s cannot be detected! Possible ports: %s" % (fr_id, opposite_node)) continue else: self.log.warning( "output for SG hop link cannot be determined from: %s. Skip SG " "hop recreation..." % flowrule) return sg = nffg.add_sglink(id=fr_id, src_port=in_port, dst_port=output, flowclass=flowclass, delay=flowrule.delay, bandwidth=flowrule.bandwidth, constraints=flowrule.constraints) self.log.debug("Recreated SG hop: %s" % sg) def parse_from_Virtualizer (self, vdata, with_virt=False, create_sg_hops=False): """ Convert Virtualizer3-based XML str --> NFFGModel based NFFG object :param vdata: XML plain data or Virtualizer object :type: vdata: str or Virtualizer :param with_virt: return with the Virtualizer object too (default: False) :type with_virt: bool :param create_sg_hops: create the SG hops (default: False) :type create_sg_hops: bool :return: created NF-FG :rtype: :class:`NFFG` """ self.log.debug( "START conversion: Virtualizer(ver: %s) --> NFFG(ver: %s)" % ( V_VERSION, N_VERSION)) # Already in Virtualizer format if isinstance(vdata, virt_lib.Virtualizer): virtualizer = vdata # Plain XML string elif isinstance(vdata, basestring): try: self.log.debug("Converting data to graph-based NFFG structure...") virtualizer = virt_lib.Virtualizer.parse_from_text(text=vdata) except Exception as e: self.log.error("Got ParseError during XML->Virtualizer conversion!") raise RuntimeError('ParseError: %s' % e.message) else: self.log.error("Not supported type for vdata: %s" % type(vdata)) return # Get NFFG init params nffg_id = virtualizer.id.get_value() # Mandatory - virtualizer.id if virtualizer.name.is_initialized(): # Optional - virtualizer.name nffg_name = virtualizer.name.get_value() else: nffg_name = None self.log.debug("Construct NFFG based on Virtualizer(id=%s, name=%s)" % ( nffg_id, nffg_name)) # Create NFFG nffg = NFFG(id=nffg_id, name=nffg_name) # Parse Infrastructure Nodes from Virtualizer self._parse_virtualizer_nodes(nffg=nffg, virtualizer=virtualizer) # Parse Infrastructure links from Virtualizer self._parse_virtualizer_links(nffg=nffg, virtualizer=virtualizer) # Parse Metadata and from Virtualizer self._parse_virtualizer_metadata(nffg=nffg, virtualizer=virtualizer) # Parse requirement links from Virtualizer self._parse_virtualizer_requirement(nffg=nffg) # If the received NFFG is a SingleBiSBiS, recreate the SG hop links # which are in compliance with flowrules in SBB node if create_sg_hops: self._parse_sghops_from_flowrules(nffg=nffg) else: self.log.debug("Skip SG hop recreation...") self.log.debug("END conversion: Virtualizer(ver: %s) --> NFFG(ver: %s)" % ( V_VERSION, N_VERSION)) return (nffg, virtualizer) if with_virt else nffg def _convert_nffg_infras (self, nffg, virtualizer): """ Convert infras in the given :class:`NFFG` into the given Virtualizer. :param nffg: NFFG object :type nffg: :class:`NFFG` :param virtualizer: Virtualizer object :type virtualizer: Virtualizer :return: None """ self.log.debug("Converting infras...") for infra in nffg.infras: # Check in it's needed to remove domain from the end of id v_node_id = self.recreate_bb_id(id=infra.id) v_node_name = infra.name # optional v_node_type = infra.infra_type # Mandatory v_node = virt_lib.Infra_node(id=v_node_id, name=v_node_name, type=v_node_type) # Add resources nodes/node/resources v_node.resources.cpu.set_value(infra.resources.cpu) v_node.resources.mem.set_value(infra.resources.mem) v_node.resources.storage.set_value(infra.resources.storage) v_node.resources.cost.set_value(infra.resources.cost) v_node.resources.zone.set_value(infra.resources.zone) # Migrate metadata for key, value in infra.metadata.iteritems(): v_node.metadata.add(virt_lib.MetadataMetadata(key=key, value=value)) # Add remained NFFG-related information into metadata if infra.resources.delay is not None: v_node.metadata.add(virt_lib.MetadataMetadata( key="delay", value=infra.resources.delay)) if infra.resources.bandwidth is not None: v_node.metadata.add(virt_lib.MetadataMetadata( key="bandwidth", value=infra.resources.bandwidth)) if infra.operation is not None: self.log.debug("Convert operation tag: %s for infra: %s" % ( infra.operation, infra.id)) v_node.set_operation(operation=infra.operation, recursive=False) self.log.debug("Converted %s" % infra) # Add ports to infra for port in infra.ports: # Check if the port is a dynamic port : 23412423523445 or sap1|comp|1 # If it is a dynamic port, skip conversion try: if not int(port.id) < 65536: # Dynamic port connected to a VNF - skip continue except ValueError: # port is not a number if '|' in str(port.id): continue if str(port.id).startswith("EXTERNAL"): self.log.debug("Port: %s in infra %s is EXTERNAL. Skip adding..." % (port.id, infra.id)) continue v_port = virt_lib.Port(id=str(port.id)) # If SAP property is exist: this port connected to a SAP if port.sap is not None: v_port.sap.set_value(port.sap) elif port.get_property('sap'): v_port.sap.set_value(port.get_property('sap')) # Set default port-type to port-abstract # during SAP detection the SAP<->Node port-type will be overridden v_port.port_type.set_value(self.TYPE_VIRTUALIZER_PORT_ABSTRACT) # Additional values of SAP/NF will be set later # Migrate port attributes self.__copy_port_attrs(v_port=v_port, port=port) # port_type: port-abstract & sap: - --> regular port # port_type: port-abstract & sap: <SAP...> --> was connected to # an inter-domain port - set this data in Virtualizer if port.operation is not None: self.log.debug("Convert operation tag: %s for port: %s" % ( port.operation, port.id)) v_port.set_operation(operation=port.operation, recursive=False) v_node.ports.add(v_port) self.log.debug("Added static %s" % port) # Add minimalistic Nodes for supported NFs based on supported list of NFFG for sup in infra.supported: v_node.capabilities.supported_NFs.add(virt_lib.Node(id=sup, type=sup)) # Add infra to virtualizer if v_node_id in virtualizer.nodes.node.keys(): self.log.warning("Virtualizer node: %s already exists in Virtualizer: " "%s!" % (v_node_id, virtualizer.id.get_value())) else: virtualizer.nodes.add(v_node) # Add intra-node link based on delay_matrix for src, dst, delay in infra.delay_matrix: if src in v_node.ports.port.keys(): v_link_src = v_node.ports[src] else: # self.log.warning("Missing port: %s from Virtualizer node: %s" # % (src, v_node_id)) continue if dst in v_node.ports.port.keys(): v_link_dst = v_node.ports[dst] else: # self.log.warning("Missing port: %s from Virtualizer node: %s" # % (dst, v_node_id)) continue v_link = virt_lib.Link(id="link-%s-%s" % (v_link_src.id.get_value(), v_link_dst.id.get_value()), src=v_link_src, dst=v_link_dst, resources=virt_lib.Link_resource( delay=delay)) v_node.links.add(v_link) self.log.debug("Added intra-BiSBiS resource link [%s --> %s] " "with delay: %s" % (src, dst, delay)) def __copy_port_attrs (self, v_port, port): # Set sap.name if it has not used for storing SAP.id if port.name is not None: v_port.name.set_value(port.name) self.log.debug("Added name: %s" % v_port.name.get_value()) # Convert other SAP-port-specific data v_port.capability.set_value(port.capability) v_port.sap_data.technology.set_value(port.technology) v_port.sap_data.role.set_value(port.role) v_port.sap_data.resources.delay.set_value(port.delay) v_port.sap_data.resources.bandwidth.set_value(port.bandwidth) v_port.sap_data.resources.cost.set_value(port.cost) v_port.sap_data.resources.qos.set_value(port.qos) v_port.control.controller.set_value(port.controller) v_port.control.orchestrator.set_value(port.orchestrator) v_port.addresses.l2.set_value(port.l2) v_port.addresses.l4.set_value(port.l4) for l3 in port.l3: v_port.addresses.l3.add(virt_lib.L3_address(id=l3.id, name=l3.name, configure=l3.configure, requested=l3.requested, provided=l3.provided)) # Migrate metadata for key, value in port.metadata.iteritems(): v_port.metadata.add(virt_lib.MetadataMetadata(key=key, value=value)) if port.operation is not None: self.log.debug("Convert operation tag: %s for port: %s" % ( port.operation, port.id)) v_port.set_operation(operation=port.operation, recursive=False) def __copy_vport_attrs (self, port, vport): if vport.name.is_initialized(): # infra_port.add_property("name", vport.name.get_value()) port.name = vport.name.get_value() self.log.debug("Added name: %s" % port.name) # If sap is set and port_type is port-abstract -> this port # connected to an inter-domain SAP before -> save this metadata if vport.sap.is_initialized(): port.add_property("sap", vport.sap.get_value()) port.sap = vport.sap.get_value() if vport.capability.is_initialized(): port.capability = vport.capability.get_value() self.log.debug("Added capability: %s" % port.capability) if vport.sap_data.is_initialized(): if vport.sap_data.technology.is_initialized(): port.technology = vport.sap_data.technology.get_value() self.log.debug("Added technology: %s" % port.technology) if vport.sap_data.role.is_initialized(): port.role = vport.sap_data.technology.get_value() self.log.debug("Added role: %s" % port.role) if vport.sap_data.resources.is_initialized(): if vport.sap_data.resources.delay.is_initialized(): port.delay = vport.sap_data.resources.delay.get_value() self.log.debug("Added delay: %s" % port.delay) if vport.sap_data.resources.bandwidth.is_initialized(): port.bandwidth = vport.sap_data.resources.bandwidth.get_value() self.log.debug("Added bandwidth: %s" % port.bandwidth) if vport.sap_data.resources.cost.is_initialized(): port.cost = vport.sap_data.resources.cost.get_value() self.log.debug("Added cost: %s" % port.cost) if vport.sap_data.resources.qos.is_initialized(): port.qos = vport.sap_data.resources.qos.get_value() self.log.debug("Added qos: %s" % port.qos) if vport.control.is_initialized(): if vport.control.controller.is_initialized(): port.controller = vport.conntrol.controller.get_value() self.log.debug("Added controller: %s" % port.controller) if vport.control.orchestrator.is_initialized(): port.orchestrator = vport.conntrol.orchestrator.get_value() self.log.debug("Added orchestrator: %s" % port.orchestrator) if vport.addresses.is_initialized(): self.log.debug("Translate addresses...") port.l2 = vport.addresses.l2.get_value() port.l4 = vport.addresses.l4.get_value() for l3 in vport.addresses.l3.itervalues(): port.l3.add_l3address(id=l3.id.get_value(), name=l3.name.get_value(), configure=l3.configure.get_value(), client=l3.client.get_value(), requested=l3.requested.get_value(), provided=l3.provided.get_value()) # Add metadata from non-sap port to infra port metadata for key in vport.metadata: port.add_metadata(name=key, value=vport.metadata[key].value.get_value()) # Handle operation tag if vport.get_operation() is not None: self.log.debug("Found operation tag: %s for port: %s" % ( vport.get_operation(), vport.id.get_value())) port.operation = vport.get_operation() pass def _convert_nffg_saps (self, nffg, virtualizer): """ Convert SAPs in the given :class:`NFFG` into the given Virtualizer. :param nffg: NFFG object :type nffg: :class:`NFFG` :param virtualizer: Virtualizer object :type virtualizer: Virtualizer :return: None """ self.log.debug("Converting SAPs...") # Rewrite SAP - Node ports to add SAP to Virtualizer for sap in nffg.saps: if str(sap.id).startswith("EXTERNAL"): self.log.debug("SAP: %s is an EXTERNAL dynamic SAP. Skipping..." % sap.id) continue for s, n, link in nffg.network.edges_iter([sap.id], data=True): if link.type != NFFG.TYPE_LINK_STATIC: continue sap_port = link.src # Rewrite port-type to port-sap infra_id = self.recreate_bb_id(id=n) v_sap_port = virtualizer.nodes[infra_id].ports[str(link.dst.id)] if link.src.role == "EXTERNAL": self.log.debug("SAP: %s is an EXTERNAL dynamic SAP. Removing..." % sap.id) virtualizer.nodes[infra_id].ports.remove(v_sap_port) continue v_sap_port.port_type.set_value(self.TYPE_VIRTUALIZER_PORT_SAP) # Check if the SAP is an inter-domain SAP if sap_port.sap is not None: # Set static 'sap' value v_sap_port.sap.set_value(sap_port.sap) elif sap_port.has_property("type") == "inter-domain": # If sap metadata is set by merge, use this value else the SAP.id if sap_port.has_property('sap'): v_sap_port.sap.set_value(sap_port.get_property('sap')) else: v_sap_port.sap.set_value(sap.id) # Check if the SAP is a bound, inter-domain SAP (no sap and port # property are set in this case) elif sap.binding is not None: v_sap_port.sap.set_value(s) self.log.debug( "Set port: %s in infra: %s as an inter-domain SAP with" " 'sap' value: %s" % (link.dst.id, n, v_sap_port.sap.get_value())) else: # If sap is not inter-domain SAP, use name field to store sap id and v_sap_port.name.set_value("%s:%s" % (self.SAP_NAME_PREFIX, sap.id)) self.__copy_port_attrs(v_port=v_sap_port, port=sap_port) self.log.debug( "Converted %s to port: %s in infra: %s" % (sap, link.dst.id, n)) def _convert_nffg_edges (self, nffg, virtualizer): """ Convert edge links in the given :class:`NFFG` into the given Virtualizer. :param nffg: NFFG object :type nffg: :class:`NFFG` :param virtualizer: Virtualizer object :type virtualizer: Virtualizer :return: None """ self.log.debug("Converting edges...") # Add edge-link to Virtualizer for link in nffg.links: # Skip backward and non-static link conversion <-- Virtualizer links # are bidirectional if link.type != NFFG.TYPE_LINK_STATIC: continue # SAP - Infra links are not stored in Virtualizer format if link.src.node.type == NFFG.TYPE_SAP or \ link.dst.node.type == NFFG.TYPE_SAP: continue self.log.debug( "Added link: Node: %s, port: %s <--> Node: %s, port: %s" % ( link.src.node.id, link.src.id, link.dst.node.id, link.dst.id)) src_node_id = self.recreate_bb_id(id=link.src.node.id) dst_node_id = self.recreate_bb_id(id=link.dst.node.id) v_link = virt_lib.Link( id=link.id, src=virtualizer.nodes[src_node_id].ports[str(link.src.id)], dst=virtualizer.nodes[dst_node_id].ports[str(link.dst.id)], resources=virt_lib.Link_resource(delay=link.delay, bandwidth=link.bandwidth, cost=link.cost, qos=link.qos)) # Handel operation tag if link.operation is not None: self.log.debug( "Convert operation tag: %s for link: %s" % (link.operation, link.id)) v_link.set_operation(operation=link.operation, recursive=False) # Call bind to resolve src,dst references to workaround a bug # v_link.bind() virtualizer.links.add(v_link) def _convert_nffg_reqs (self, nffg, virtualizer): """ Convert requirement links in the given :class:`NFFG` into given Virtualizer using infra node's metadata list. :param nffg: NFFG object :type nffg: :class:`NFFG` :param virtualizer: Virtualizer object :type virtualizer: Virtualizer :return: None """ self.log.debug("Converting requirement links...") for req in nffg.reqs: self.log.debug('Converting requirement link: %s' % req) # Get container node if req.src.node.id != req.dst.node.id: self.log.warning("Requirement link has wrong format: src/dst port is " "not connected to the same BiSBiS node!") continue infra_id = self.recreate_bb_id(id=req.src.node.id) self.log.debug("Detected infra node: %s for requirement link: %s" % (infra_id, req)) # Assembly delay req if req.delay is not None: self.log.debug("Creating formula for delay requirement...") formula = [] for hop in req.sg_path: try: v_fe = virtualizer.nodes[infra_id].flowtable[str(hop)] except: self.log.warning("Flowrule: %s was not found in Virtualizer!" % hop) continue try: var_delay = v_fe.resources.delay.get_value() except: var_delay = None if not (var_delay and str(var_delay).startswith('$')): dvar = "$d" + str(v_fe.id.get_value()) self.log.debug("Delay value: %s is not a variable! " "Replacing with: %s" % (var_delay, dvar)) v_fe.resources.delay.set_value(dvar) formula.append("$d" + str(v_fe.id.get_value())) else: formula.append(var_delay) log.debug("Registered delay variable: %s" % var_delay) formula = '+'.join(formula) + "|max|%s" % req.delay self.log.debug("Generated delay formula: %s" % formula) virtualizer.nodes[infra_id].constraints.constraint.add( virt_lib.ConstraintsConstraint(id="delay-" + str(req.id), formula=formula)) # Assemble bandwidth req if req.bandwidth is not None: self.log.debug("Creating formula for bandwidth requirement...") formula = [] for hop in req.sg_path: try: v_fe = virtualizer.nodes[infra_id].flowtable[str(hop)] except: self.log.warning("Flowrule: %s was not found in Virtualizer!" % hop) continue try: var_bw = v_fe.resources.bandwidth.get_value() except: var_bw = None if not (var_bw and str(var_bw).startswith('$')): bwvar = "$bw" + str(v_fe.id.get_value()) self.log.debug("Bandwidth value: %s is not a variable! " "Replacing with: %s" % (var_bw, bwvar)) v_fe.resources.bandwidth.set_value(bwvar) formula.append("$bw" + str(v_fe.id.get_value())) else: formula.append(var_bw) self.log.debug("Registered bandwidth variable: %s" % var_bw) formula = '+'.join(formula) + "||%s" % req.bandwidth self.log.debug("Generated bandwidth formula: %s" % formula) virtualizer.nodes[infra_id].constraints.constraint.add( virt_lib.ConstraintsConstraint(id="bandwidth-" + str(req.id), formula=formula)) def __assemble_virt_nf (self, nf): v_nf_id = self.recreate_nf_id(nf.id) # Create Node object for NF v_nf = virt_lib.Node(id=v_nf_id, name=nf.name, type=nf.functional_type, status=nf.status, resources=virt_lib.Software_resource( cpu=nf.resources.cpu, mem=nf.resources.mem, storage=nf.resources.storage, cost=nf.resources.cost, zone=nf.resources.zone)) # Set deployment type, delay, bandwidth as a metadata if nf.deployment_type is not None: v_nf.metadata.add( virt_lib.MetadataMetadata(key='deployment_type', value=nf.deployment_type)) if nf.resources.delay is not None: v_nf.metadata.add( virt_lib.MetadataMetadata(key='delay', value=nf.resources.delay)) if nf.resources.bandwidth is not None: v_nf.metadata.add( virt_lib.MetadataMetadata(key='bandwidth', value=nf.resources.bandwidth)) # Migrate metadata for key, value in nf.metadata.iteritems(): if key not in ('deployment_type', 'delay', 'bandwidth'): v_nf.metadata.add( virt_lib.MetadataMetadata(key=key, value=value)) # Handle operation tag if nf.operation is not None: self.log.debug("Convert operation tag: %s for NF: %s" % (nf.operation, nf.id)) v_nf.set_operation(operation=nf.operation, recursive=False) return v_nf def __assemble_virt_nf_port (self, port): v_nf_port = virt_lib.Port(id=str(port.id), port_type=self.TYPE_VIRTUALIZER_PORT_ABSTRACT) # Convert other SAP-specific data v_nf_port.name.set_value(port.name) if 'port-type' in port.properties: self.log.warning("Unexpected inter-domain port in NF: %s" % port) if 'sap' in port.properties: v_nf_port.sap.set_value(port.properties['sap']) v_nf_port.port_type.set_value(self.TYPE_VIRTUALIZER_PORT_SAP) elif port.sap is not None: v_nf_port.sap.set_value(port.sap) v_nf_port.port_type.set_value(self.TYPE_VIRTUALIZER_PORT_SAP) if port.capability: self.log.debug("Translate capability...") v_nf_port.capability.set_value(port.capability) if any((port.technology, port.role, port.delay, port.bandwidth, port.cost)): self.log.debug("Translate sap_data...") v_nf_port.sap_data.technology.set_value(port.technology) v_nf_port.sap_data.role.set_value(port.role) v_nf_port.sap_data.resources.delay.set_value(port.delay) v_nf_port.sap_data.resources.bandwidth.set_value( port.bandwidth) v_nf_port.sap_data.resources.cost.set_value(port.cost) v_nf_port.sap_data.resources.qos.set_value(port.qos) if any((port.controller, port.orchestrator)): self.log.debug("Translate controller...") v_nf_port.control.controller.set_value(port.controller) v_nf_port.control.orchestrator.set_value(port.orchestrator) if any((port.l2, port.l4, len(port.l3))): self.log.debug("Translate addresses...") v_nf_port.addresses.l2.set_value(port.l2) v_nf_port.addresses.l4.set_value(port.l4) for l3 in port.l3: v_nf_port.addresses.l3.add( virt_lib.L3_address(id=l3.id, name=l3.name, configure=l3.configure, requested=l3.requested, provided=l3.provided)) # Migrate metadata if len(port.metadata): self.log.debug("Translate metadata...") for property, value in port.metadata.iteritems(): v_nf_port.metadata.add(virt_lib.MetadataMetadata(key=property, value=value)) # Handle operation tag if port.operation is not None: self.log.debug("Convert operation tag: %s for port: %s" % ( port.operation, port.id)) v_nf_port.set_operation(operation=port.operation, recursive=False) return v_nf_port def _convert_nffg_nfs (self, virtualizer, nffg): """ Convert NFs in the given :class:`NFFG` into the given Virtualizer. :param virtualizer: Virtualizer object based on ETH's XML/Yang version. :param nffg: splitted NFFG (not necessarily in valid syntax) :return: modified Virtualizer object :rtype: :class:`Virtualizer` """ self.log.debug("Converting NFs...") # Check every infra Node for infra in nffg.infras: # Cache discovered NF to avoid multiple detection of NF which has more # than one port discovered_nfs = [] # Recreate the original Node id v_node_id = self.recreate_bb_id(id=infra.id) # Check in Infra exists in the Virtualizer if v_node_id not in virtualizer.nodes.node.keys(): self.log.warning( "InfraNode: %s is not in the Virtualizer(nodes: %s)! Skip related " "initiations..." % (infra, virtualizer.nodes.node.keys())) continue # Get Infra node from Virtualizer v_node = virtualizer.nodes[v_node_id] # Check every outgoing edge and observe only the NF neighbours for nf in nffg.running_nfs(infra.id): v_nf_id = self.recreate_nf_id(nf.id) # Skip already detected NFs if v_nf_id in discovered_nfs: continue # Check if the NF is exist in the InfraNode if v_nf_id not in v_node.NF_instances.node.keys(): self.log.debug("Found uninitiated NF: %s in mapped NFFG" % nf) # Create Node object for NF v_nf = self.__assemble_virt_nf(nf=nf) # Add NF to Infra object v_node.NF_instances.add(v_nf) # Cache discovered NF discovered_nfs.append(v_nf_id) self.log.debug( "Added NF: %s to Infra node(id=%s, name=%s, type=%s)" % ( nf, v_node.id.get_as_text(), v_node.name.get_as_text(), v_node.type.get_as_text())) # Add NF ports for port in nf.ports: v_nf_port = self.__assemble_virt_nf_port(port=port) v_node.NF_instances[v_nf.id.get_value()].ports.add(v_nf_port) self.log.debug("Added Port: %s to NF node: %s" % (port, v_nf.id.get_as_text())) else: self.log.debug("%s already exists in the Virtualizer(id=%s, " "name=%s)" % (nf, virtualizer.id.get_as_text(), virtualizer.name.get_as_text())) # noinspection PyDefaultArgument def _convert_nffg_flowrules (self, virtualizer, nffg): """ Convert flowrules in the given :class:`NFFG` into the given Virtualizer. :param virtualizer: Virtualizer object based on ETH's XML/Yang version. :param nffg: splitted NFFG (not necessarily in valid syntax) :return: modified Virtualizer object :rtype: :class:`Virtualizer` """ self.log.debug("Converting flowrules...") # Check every infra Node for infra in nffg.infras: # Recreate the original Node id v_node_id = self.recreate_bb_id(id=infra.id) # Check in Infra exists in the Virtualizer if v_node_id not in virtualizer.nodes.node.keys(): self.log.warning( "InfraNode: %s is not in the Virtualizer(nodes: %s)! Skip related " "initiations..." % (infra, virtualizer.nodes.node.keys())) continue # Get Infra node from Virtualizer v_node = virtualizer.nodes[v_node_id] # traverse every port in the Infra node for port in infra.ports: # Check every flowrule for fr in port.flowrules: self.log.debug("Converting flowrule: %s..." % fr) # Mandatory id fe_id = fr.id # Define constant priority # fe_pri = str(100) fe_pri = None # Check if match starts with in_port fe = fr.match.split(';') if fe[0].split('=')[0] != "in_port": self.log.warning("Missing 'in_port' from match in %s. Skip " "flowrule conversion..." % fr) continue # Check if the src port is a physical or virtual port in_port = fe[0].split('=')[1] if in_port in v_node.ports.port.keys(): # Flowrule in_port is a phy port in Infra Node in_port = v_node.ports[in_port] self.log.debug("Identify in_port: %s in match as a physical port " "in the Virtualizer" % in_port.id.get_as_text()) else: ext_sap = [l.dst for u, v, l in nffg.network.out_edges_iter([infra.id], data=True) if l.dst.node.type == "SAP" and str(l.src.id) == in_port and l.dst.role == "EXTERNAL"] if len(ext_sap) > 0: self.log.debug("Identify in_port: %s in match as an EXTERNAL " "port." % in_port) in_port = ext_sap[0].get_property("path") else: self.log.debug("Identify in_port: %s in match as a dynamic port. " "Tracking associated NF port in the " "Virtualizer..." % in_port) # in_port is a dynamic port --> search for connected NF's port v_nf_port = [l.dst for u, v, l in nffg.network.out_edges_iter([infra.id], data=True) if l.type == NFFG.TYPE_LINK_DYNAMIC and str(l.src.id) == in_port] # There should be only one link between infra and NF if len(v_nf_port) < 1: self.log.warning("NF port is not found for dynamic Infra port: " "%s defined in match field! Skip flowrule " "conversion..." % in_port) continue v_nf_port = v_nf_port[0] v_nf_id = self.recreate_nf_id(v_nf_port.node.id) in_port = v_node.NF_instances[v_nf_id].ports[str(v_nf_port.id)] self.log.debug("Found associated NF port: node=%s, port=%s" % ( in_port.get_parent().get_parent().id.get_as_text(), in_port.id.get_as_text())) # Process match field match = self._convert_flowrule_match(fr.match) # Check if action starts with outport fe = fr.action.split(';') if fe[0].split('=')[0] != "output": self.log.warning("Missing 'output' from action in %s." "Skip flowrule conversion..." % fr) continue # Check if the dst port is a physical or virtual port out_port = fe[0].split('=')[1] if out_port in v_node.ports.port.keys(): # Flowrule output is a phy port in Infra Node out_port = v_node.ports[out_port] self.log.debug("Identify outport: %s in action as a physical port " "in the Virtualizer" % out_port.id.get_as_text()) else: ext_sap = [l.dst for u, v, l in nffg.network.out_edges_iter([infra.id], data=True) if l.dst.node.type == "SAP" and str(l.src.id) == out_port and l.dst.role == "EXTERNAL"] if len(ext_sap) > 0: self.log.debug("Identify out_port: %s in action as an EXTERNAL " "port." % out_port) out_port = ext_sap[0].get_property("path") else: self.log.debug( "Identify outport: %s in action as a dynamic port. " "Track associated NF port in the Virtualizer..." % out_port) # out_port is a dynamic port --> search for connected NF's port v_nf_port = [l.dst for u, v, l in nffg.network.out_edges_iter([infra.id], data=True) if l.type == NFFG.TYPE_LINK_DYNAMIC and str(l.src.id) == out_port] if len(v_nf_port) < 1: self.log.warning("NF port is not found for dynamic Infra port: " "%s defined in action field! Skip flowrule " "conversion..." % out_port) continue v_nf_port = v_nf_port[0] v_nf_id = self.recreate_nf_id(v_nf_port.node.id) out_port = v_node.NF_instances[v_nf_id].ports[str(v_nf_port.id)] self.log.debug("Found associated NF port: node=%s, port=%s" % ( out_port.get_parent().get_parent().id.get_as_text(), out_port.id.get_as_text())) # Process action field action = self._convert_flowrule_action(fr.action) # Process resource fields _resources = virt_lib.Link_resource( delay=fr.delay if fr.delay else None, bandwidth=fr.bandwidth if fr.bandwidth else None, cost=fr.cost if fr.cost else None, qos=fr.qos if fr.qos else None) # Flowrule name is not used v_fe_name = None # Add Flowentry with converted params virt_fe = virt_lib.Flowentry(id=fe_id, priority=fe_pri, port=in_port, match=match, action=action, out=out_port, resources=_resources, name=v_fe_name) self.log.log(VERBOSE, "Generated Flowentry:\n%s" % v_node.flowtable.add(virt_fe).xml()) # Handel operation tag if fr.operation is not None: self.log.debug("Convert operation tag: %s for flowrule: %s" % ( fr.operation, fr.id)) virt_fe.set_operation(operation=str(fr.operation), recursive=False) def _get_vnode_by_id (self, virtualizer, id): for vnode in virtualizer.nodes: bb_node_id = self.recreate_bb_id(id) if vnode.id.get_as_text() == bb_node_id: return vnode for vnf in vnode.NF_instances: vnf_id = self.recreate_nf_id(id) if vnf.id.get_value() == vnf_id: return vnf def __set_vnode_constraints (self, vnode, infra, virtualizer): # Add affinity for id, aff in infra.constraints.affinity.iteritems(): v_aff_node = self._get_vnode_by_id(virtualizer=virtualizer, id=aff) if v_aff_node is None: self.log.warning("Referenced Node: %s is not found for affinity!" % aff) continue self.log.debug( "Found reference for affinity: %s in Infra: %s" % (aff, infra.id)) vnode.constraints.affinity.add( virt_lib.ConstraintsAffinity(id=str(id), object=v_aff_node.get_path())) # Add antiaffinity for id, naff in infra.constraints.antiaffinity.iteritems(): v_naff_node = self._get_vnode_by_id(virtualizer=virtualizer, id=naff) if v_naff_node is None: self.log.warning("Referenced Node: %s is not found for anti-affinity!" % naff) continue self.log.debug( "Found reference for antiaffinity: %s in Infra: %s" % ( naff, infra.id)) vnode.constraints.antiaffinity.add( virt_lib.ConstraintsAntiaffinity(id=str(id), object=v_naff_node.get_path())) # Add variable for key, value in infra.constraints.variable.iteritems(): v_var_node = self._get_vnode_by_id(virtualizer=virtualizer, id=value) if v_var_node is None: self.log.warning("Referenced Node: %s is not found for variable: " "%s!" % (value, key)) continue self.log.debug( "Found reference for variable: %s in Infra: %s" % (key, infra.id)) vnode.constraints.constraint.add( virt_lib.ConstraintsVariable(id=str(key), object=v_var_node.get_path())) # Add constraint for id, cons in infra.constraints.constraint.iteritems(): self.log.debug("Add formula: %s to Infra: %s" % (cons, infra.id)) vnode.constraints.constraint.add( virt_lib.ConstraintsConstraint(id=str(id), formula=cons)) # Add restorability if infra.constraints.restorability is not None: self.log.debug("Add restorability: %s to Infra: %s" % (infra.constraints.restorability, infra.id)) vnode.constraints.restorability.set_value(infra.constraints.restorability) def __set_vnf_constraints (self, vnode, nf, virtualizer): v_nf_id = self.recreate_nf_id(nf.id) vnf = vnode.NF_instances[v_nf_id] # Add affinity for id, aff in nf.constraints.affinity.iteritems(): v_aff_node = self._get_vnode_by_id(virtualizer=virtualizer, id=aff) if v_aff_node is None: self.log.warning("Referenced Node: %s is not found for affinity!" % aff) continue self.log.debug( "Found reference for affinity: %s in NF: %s" % (aff, nf.id)) vnf.constraints.affinity.add( virt_lib.ConstraintsAffinity(id=str(id), object=v_aff_node.get_path())) # Add antiaffinity for id, naff in nf.constraints.antiaffinity.iteritems(): v_naff_node = self._get_vnode_by_id(virtualizer=virtualizer, id=naff) if v_naff_node is None: self.log.warning( "Referenced Node: %s is not found for anti-affinity!" % naff) continue self.log.debug( "Found reference for antiaffinity: %s in NF: %s" % (naff, nf.id)) vnf.constraints.antiaffinity.add( virt_lib.ConstraintsAntiaffinity(id=str(id), object=v_naff_node.get_path())) # Add variable for key, value in nf.constraints.variable.iteritems(): v_var_node = self._get_vnode_by_id(virtualizer=virtualizer, id=value) if v_var_node is None: self.log.warning("Referenced Node: %s is not found for variable: " "%s!" % (value, key)) continue self.log.debug( "Found reference for variable: %s in NF: %s" % (key, nf.id)) vnf.constraints.constraint.add( virt_lib.ConstraintsVariable(id=str(key), object=v_var_node.get_path())) # Add constraint for id, cons in nf.constraints.constraint.iteritems(): self.log.debug("Add formula: %s to NF: %s" % (cons, nf.id)) vnf.constraints.constraint.add( virt_lib.ConstraintsConstraint(id=str(id), formula=cons)) # Add restorability if nf.constraints.restorability is not None: self.log.debug("Add restorability: %s to NF: %s" % (nf.constraints.restorability, nf.id)) vnf.constraints.restorability.set_value(nf.constraints.restorability) def __set_flowentry_constraints (self, vnode, flowrule, virtualizer): v_fe = vnode.flowtable[str(flowrule.id)] # Add affinity for id, aff in flowrule.constraints.affinity.iteritems(): v_aff_node = self._get_vnode_by_id(virtualizer=virtualizer, id=aff) if v_aff_node is None: self.log.warning("Referenced Node: %s is not found for affinity!" % aff) continue self.log.debug("Found reference for affinity: %s in Flowrule: %s" % (aff, flowrule.id)) v_fe.constraints.affinity.add( virt_lib.ConstraintsAffinity(id=str(id), object=v_aff_node.get_path())) # Add antiaffinity for id, naff in flowrule.constraints.antiaffinity.iteritems(): v_naff_node = self._get_vnode_by_id(virtualizer=virtualizer, id=naff) if v_naff_node is None: self.log.warning("Referenced Node: %s is not found for anti-affinity!" % naff) continue self.log.debug("Found reference for antiaffinity: %s in Flowrule: %s" % (naff, flowrule.id)) v_fe.constraints.antiaffinity.add( virt_lib.ConstraintsAntiaffinity(id=str(id), object=v_naff_node.get_path())) # Add variable for key, value in flowrule.constraints.variable.iteritems(): v_var_node = self._get_vnode_by_id(virtualizer=virtualizer, id=value) if v_var_node is None: self.log.warning("Referenced Node: %s is not found for variable: %s!" % (value, key)) continue self.log.debug("Found reference for variable: %s in Flowrule: %s" % (key, flowrule.id)) v_fe.constraints.constraint.add( virt_lib.ConstraintsVariable(id=str(key), object=v_var_node.get_path())) # Add constraint for id, cons in flowrule.constraints.constraint.iteritems(): self.log.debug("Add constraint: %s:%s to Flowrule: %s" % (id, cons, flowrule.id)) v_fe.constraints.constraint.add( virt_lib.ConstraintsConstraint(id=str(id), formula=cons)) # Add restorability if flowrule.constraints.restorability is not None: self.log.debug("Add restorability: %s to Flowrule: %s" % (flowrule.constraints.restorability, flowrule.id)) v_fe.constraints.restorability.set_value( flowrule.constraints.restorability) def _convert_nffg_constraints (self, virtualizer, nffg): self.log.debug("Convert constraints...") for infra in nffg.infras: # Recreate the original Node id v_node_id = self.recreate_bb_id(id=infra.id) # Check if Infra exists in the Virtualizer if v_node_id not in virtualizer.nodes.node.keys(): self.log.warning( "InfraNode: %s is not in the Virtualizer(nodes: %s)! Skip related " "initiations..." % (infra, virtualizer.nodes.node.keys())) continue # Get Infra node from Virtualizer vnode = virtualizer.nodes[v_node_id] self.__set_vnode_constraints(vnode=vnode, infra=infra, virtualizer=virtualizer) # Check connected NF constraints for nf in nffg.running_nfs(infra.id): self.__set_vnf_constraints(vnode=vnode, nf=nf, virtualizer=virtualizer) for flowrule in infra.flowrules(): self.__set_flowentry_constraints(vnode=vnode, flowrule=flowrule, virtualizer=virtualizer) def dump_to_Virtualizer (self, nffg): """ Convert given :class:`NFFG` to Virtualizer format. :param nffg: topology description :type nffg: :class:`NFFG` :return: topology in Virtualizer format :rtype: Virtualizer """ self.log.debug( "START conversion: NFFG(ver: %s) --> Virtualizer(ver: %s)" % ( N_VERSION, V_VERSION)) self.log.debug("Converting data to XML-based Virtualizer structure...") # Create Virtualizer with default id,name v_id = str(nffg.id) v_name = str(nffg.name) if nffg.name else None virtualizer = virt_lib.Virtualizer(id=v_id, name=v_name) self.log.debug("Creating Virtualizer based on %s" % nffg) # Convert NFFG metadata for key, value in nffg.metadata.iteritems(): meta_key = str(key) meta_value = str(value) if value is not None else None virtualizer.metadata.add(item=virt_lib.MetadataMetadata(key=meta_key, value=meta_value)) # Convert Infras self._convert_nffg_infras(nffg=nffg, virtualizer=virtualizer) # Convert SAPs self._convert_nffg_saps(nffg=nffg, virtualizer=virtualizer) # Convert edge links self._convert_nffg_edges(nffg=nffg, virtualizer=virtualizer) # Convert NFs self._convert_nffg_nfs(nffg=nffg, virtualizer=virtualizer) # Convert Flowrules self._convert_nffg_flowrules(nffg=nffg, virtualizer=virtualizer) # Convert requirement links as metadata self._convert_nffg_reqs(nffg=nffg, virtualizer=virtualizer) # Convert constraints self._convert_nffg_constraints(nffg=nffg, virtualizer=virtualizer) # explicitly call bind to resolve relative paths for safety reason virtualizer.bind(relative=True) self.log.debug( "END conversion: NFFG(ver: %s) --> Virtualizer(ver: %s)" % ( N_VERSION, V_VERSION)) # Return with created Virtualizer return virtualizer @staticmethod def clear_installed_elements (virtualizer): """ Remove NFs and flowrules from given Virtualizer. :param virtualizer: Virtualizer object need to clear :type virtualizer: Virtualizer :return: cleared original virtualizer :rtype: Virtualizer """ for vnode in virtualizer.nodes: vnode.NF_instances.node.clear_data() vnode.flowtable.flowentry.clear_data() # explicitly call bind to resolve absolute paths for safety reason # virtualizer.bind(relative=True) return virtualizer def adapt_mapping_into_Virtualizer (self, virtualizer, nffg, reinstall=False): """ Install the mapping related modification into a Virtualizer and return with the new Virtualizer object. :param virtualizer: Virtualizer object based on ETH's XML/Yang version. :param nffg: splitted NFFG (not necessarily in valid syntax) :param reinstall: need to clear every NF/flowrules from given virtualizer :type reinstall: bool :return: modified Virtualizer object :rtype: :class:`Virtualizer` """ virt = virtualizer.yang_copy() # Remove previously installed NFs and flowrules from Virtualizer for # e.g. correct diff calculation if reinstall: self.log.debug("Remove pre-installed NFs/flowrules...") self.clear_installed_elements(virtualizer=virt) self.log.debug( "START adapting modifications from %s into Virtualizer(id=%s, name=%s)" % (nffg, virt.id.get_as_text(), virt.name.get_as_text())) self._convert_nffg_nfs(virtualizer=virt, nffg=nffg) self._convert_nffg_flowrules(virtualizer=virt, nffg=nffg) self._convert_nffg_reqs(virtualizer=virt, nffg=nffg) self._convert_nffg_constraints(virtualizer=virt, nffg=nffg) # explicitly call bind to resolve absolute paths for safety reason virt.bind(relative=True) # virt.bind(relative=True) self.log.debug( "END adapting modifications from %s into Virtualizer(id=%s, name=%s)" % ( nffg, virt.id.get_as_text(), virt.name.get_as_text())) # Return with modified Virtualizer return virt @staticmethod def unescape_output_hack (data): return data.replace("&lt;", "<").replace("&gt;", ">") def _generate_sbb_base (self, request): """ Generate a SingleBiSBiS node for service request conversion utilize the topology specific data and SAPs from the given `request`. :param request: utilized service request :type request: :class:`NFFG` :return: generated SBB :rtype: :class:`Virtualizer` """ # Generate base SBB node self.log.debug("Add main Virtualizer...") base = Virtualizer(id="SingleBiSBiS", name="Single-BiSBiS-View") self.log.debug("Add SBB node...") sbb = base.nodes.add(item=virt_lib.Infra_node(id="SingleBiSBiS", name="SingleBiSBiS", type="BiSBiS")) sbb.metadata.add(virt_lib.MetadataMetadata(key="generated", value=True)) self.log.debug("Add SAPs from request...") # Add topology specific SAPs from request for sap in request.saps: v_sap_port = sbb.ports.add( virt_lib.Port(id=sap.id, name=sap.name, port_type=self.TYPE_VIRTUALIZER_PORT_SAP)) if len(sap.ports) > 1: self.log.warning("Multiple SAP port detected!") sap_port = sap.ports.container[0] self.__copy_port_attrs(v_port=v_sap_port, port=sap_port) self.log.debug("Added SAP port: %s" % v_sap_port.id.get_value()) return base def convert_service_request_init (self, request, base=None, reinstall=False): """ Convert service requests (given in NFFG format) into Virtualizer format using the given `base` Virtualizer. :param request: service request :type request: :class:`NFFG` :param base: base Virtualizer :type base: :class:`Virtualizer` :param reinstall: need to clear every NF/flowrules from given virtualizer :type reinstall: bool :return: converted service request :rtype: :class:`Virtualizer` """ if base is not None: self.log.debug("Using given base Virtualizer: %s" % base.id.get_value()) base = base.yang_copy() # Remove previously installed NFs and flowrules from Virtualizer for # e.g. correct diff calculation if reinstall: self.log.debug("Remove pre-installed NFs/flowrules...") self.clear_installed_elements(virtualizer=base) else: self.log.debug("No base Virtualizer is given! Generating SingleBiSBiS...") base = self._generate_sbb_base(request=request) self.log.debug("Transfer service request ID...") base.id.set_value(request.id) base.name.set_value(request.name) if base.nodes.node.length() < 1: self.log.warning("No BiSBiS node was detected!") return base elif base.nodes.node.length() > 1: self.log.warning( "Multiple BiSBiS nodes were detected in the Virtualizer!") sbb = base.nodes.node[base.nodes.node.keys().pop()] self.log.debug("Detected SBB node: %s" % sbb.id.get_value()) # Add NFs self.log.debug("Converting NFs...") for nf in request.nfs: if str(nf.id) in sbb.NF_instances.node.keys(): self.log.error("%s already exists in the Virtualizer!" % nf.id) continue # Create Node object for NF v_nf = self.__assemble_virt_nf(nf=nf) # Add NF to Infra object sbb.NF_instances.add(v_nf) self.log.debug("Added NF: %s to Infra node(id=%s)" % (nf.id, sbb.id.get_as_text())) # Add NF ports for port in nf.ports: v_nf_port = self.__assemble_virt_nf_port(port=port) sbb.NF_instances[str(nf.id)].ports.add(v_nf_port) self.log.debug("Added Port: %s to NF node: %s" % (port, v_nf.id.get_as_text())) self.log.log(VERBOSE, "Created NF:\n%s" % v_nf.xml()) # Add flowrules self.log.debug("Converting SG hops into flowrules...") for hop in request.sg_hops: # Get src port if isinstance(hop.src.node, NodeSAP): v_src = sbb.ports[str(hop.src.node.id)] else: v_src = sbb.NF_instances[str(hop.src.node.id)].ports[str(hop.src.id)] # Get dst port if isinstance(hop.dst.node, NodeSAP): v_dst = sbb.ports[str(hop.dst.node.id)] else: v_dst = sbb.NF_instances[str(hop.dst.node.id)].ports[str(hop.dst.id)] fe = sbb.flowtable.add(item=virt_lib.Flowentry(id=hop.id, priority=100, port=v_src, out=v_dst, match=hop.flowclass)) fe.resources.delay.set_value(hop.delay) fe.resources.bandwidth.set_value(hop.bandwidth) self.log.debug("Added flowrule: %s" % fe.id.get_value()) self.log.log(VERBOSE, "Created Flowrule:\n%s" % fe.xml()) # Add requirements self._convert_nffg_reqs(nffg=request, virtualizer=base) # Check connected NF constraints self.log.debug("Converting constraints...") for nf in request.nfs: self.__set_vnf_constraints(vnode=sbb, nf=nf, virtualizer=base) # Convert NFFG metadata for key, value in request.metadata.iteritems(): meta_key = str(key) meta_value = str(value) if value is not None else None base.metadata.add(item=virt_lib.MetadataMetadata(key=meta_key, value=meta_value)) base.bind(relative=True) return base def convert_service_request_del (self, request, base): """ Delete given service request from given virtualizer. :param request: service request :type request: :class:`NFFG` :param base: base Virtualizer :type base: :class:`Virtualizer` :return: generated delete request :rtype: :class:`Virtualizer` """ self.log.debug("Using given base Virtualizer: %s" % base.id.get_value()) base = base.full_copy() self.log.debug("Transfer service request ID...") base.id.set_value(request.id) base.name.set_value(request.name) if base.nodes.node.length() > 1: self.log.warning("Multiple BiSBiS node detected in the Virtualizer!") sbb = base.nodes.node[base.nodes.node.keys().pop()] self.log.debug("Detected SBB node: %s" % sbb.id.get_value()) # Add NFs self.log.debug("Removing NFs...") for nf in request.nfs: if str(nf.id) not in sbb.NF_instances.node.keys(): self.log.error("NF: %s is missing from Virtualizer!" % nf.id) continue deleted = sbb.NF_instances.remove(nf.id) self.log.debug("Removed NF: %s" % deleted.id.get_value()) # Add flowrules self.log.debug("Removing flowrules...") for hop in request.sg_hops: if str(hop.id) not in sbb.flowtable.flowentry.keys(): self.log.error("Flowrule: %s is missing from Virtualizer!" % hop.id) continue deleted = sbb.flowtable.remove(str(hop.id)) self.log.debug("Removed flowrule: %s" % deleted.id.get_value()) return base # noinspection PyShadowingNames class UC3MNFFGConverter(object): """ Convert JSON-based UC3M format to :class:`NFFG`. Currently the format contains limited information therefore the conversion is very rudimentary. """ def __init__ (self, domain=None, logger=None): """ Init. :param domain: domain name :type domain: str :param logger: optional logger :type logger: str or :any:`logging.Logger` :return: None """ # Save domain name for define domain attribute in infras self.domain = domain self.log = logger if logger is not None else logging.getLogger(__name__) self.log.debug("Created UC3MCNFFGConverter with domain name: %s" % self.domain) def parse_from_raw (self, raw_data, filter_empty_nodes=False, level=logging.DEBUG): """ Convert JSON-based Virtualizer-like format to NFFG. :param raw_data: raw data :type raw_data: str :param filter_empty_nodes: skip nodes which only exist for valid inter-BiSBiS links (default: False) :type filter_empty_nodes: bool :param level: optional logging level (default: DEBUG) :type level: int :return: converted NFFG :rtype: :class:`NFFG` """ try: topo = json.loads(raw_data, object_hook=unicode_to_str) return self.parse_from_json(data=topo, filter_empty_nodes=filter_empty_nodes, level=level) except ValueError: self.log.error("Received data is not valid JSON!") def parse_from_json (self, data, filter_empty_nodes=False, level=logging.DEBUG): """ Convert JSON-based Virtualizer-like format to NFFG. :param data: parsed JSON :type data: dict :param filter_empty_nodes: skip nodes which only exist for valid inter-BiSBiS links (default: False) :type filter_empty_nodes: bool :param level: logging level :return: converted NFFG :rtype: :class:`NFFG` """ self.log.log(level, "START conversion: TADS topology --> NFFG") try: # Create main NFFG nffg = NFFG() for node in data['nodes']['node']: node_id = node['id'] self.log.log(level, 'Detected node: %s' % node_id) if filter_empty_nodes: if len(node['links']['link']) == 0 and \ len(node.get('resources', ())) == 0: # There is no intra BisBis link --> empty BB self.log.log(level, "Node is a bare BiSBiS! Jump to next node...") continue # Add Infra BiSBiS infra = nffg.add_infra(id=node_id, name="ExternalNode", domain=self.domain, infra_type=NFFG.TYPE_INFRA_BISBIS) if 'resources' in node: # Add resources if detected node is not a bare Node infra.resources.cpu = _res_parser(node['resources'].get('cpu')) infra.resources.mem = _res_parser(node['resources'].get('mem')) infra.resources.storage = _res_parser( node['resources'].get('storage')) # Add Infra BiSBiS metadata for meta in node['metadata']: self.log.log(level, "Add metadata to Infra node: %s" % meta) infra.add_metadata(name=meta['key'], value=meta['value']) # Add ports for port in node['ports']['port']: port_id = port['id'] self.log.log(level, "Add port to Infra node: %s" % port_id) infra.add_port(id=port_id) for meta in port['metadata']: port.add_metadata(name=meta['key'], value=meta['value']) # Add main metadata for meta in data['metadata']: self.log.log(level, "Add metadata to NFFG: %s" % meta) nffg.add_metadata(name=meta['key'], value=meta['value']) for link in data['links']['link']: src_node, src_port = self.__parse_abs_link(link_data=link['src']) dst_node, dst_port = self.__parse_abs_link(link_data=link['dst']) # In the received Virtualizer-like format there are in most cases links # which are contains references to nodes of external BGP domains which # are not in the topology --> broken links, skip processing try: nffg.add_link(src_port=nffg[src_node].ports[src_port], dst_port=nffg[dst_node].ports[dst_port]) except KeyError as e: self.log.log(VERBOSE, "Got broken link with non-existent element: %s!" " Skip processing link..." % e) pass self.log.log(level, "END conversion: TADS topology --> NFFG") return nffg except ValueError: self.log.error("Received data from BGP-LS speaker is not valid JSON!") except KeyError as e: self.log.exception("Missing required field from topology data: %s!" % e) @staticmethod def __parse_abs_link (link_data): """ Parse the link ports and return the (node_id, port_id) tuple :param link_data: link port path :type link_data: str :return: tuple of node, port ids :rtype: tuple """ node_id = None port_id = None for item in link_data.split('/'): if item.startswith('node[id='): node_id = item.split('=')[1].rstrip(']') if item.startswith('port[id='): port_id = item.split('=')[1].rstrip(']') return node_id, port_id if __name__ == "__main__": # test_NFFGConverter() # test_UC3MNFFGConverter() import argparse logging.basicConfig(level=logging.DEBUG) log = logging.getLogger(__name__) parser = argparse.ArgumentParser( description="Converter NFFG <--> Virtualizer", add_help=True) parser.add_argument("-p", "--path", metavar="path", type=str, help="file path") parser.add_argument("-u", "--uc3m", action="store_true", default=False, help="set to convert UC3M format vice-versa") args = parser.parse_args() if args.uc3m: print "Not implemented this parameter!" else: if str(args.path).endswith('.nffg'): c = NFFGConverter(domain="TEST", # ensure_unique_id=True, logger=log) nffg = NFFG.parse_from_file(args.path) log.info("Parsed NFFG:\n%s" % nffg.dump()) virt = c.dump_to_Virtualizer(nffg=nffg) log.info("Reconverted Virtualizer:\n%s" % virt.xml()) elif str(args.path).endswith('.xml'): c = NFFGConverter(domain="TEST", # ensure_unique_id=True, logger=log) virt = Virtualizer.parse_from_file(args.path) virt.bind() log.info("Parsed Virtualizer:\n%s" % virt.xml()) nffg = c.parse_from_Virtualizer(vdata=virt.xml()) log.info("Reconverted NFFG:\n%s" % nffg.dump())
{ "content_hash": "0da33b43d518466e3f8b92360c3fedf2", "timestamp": "", "source": "github", "line_count": 2956, "max_line_length": 81, "avg_line_length": 43.68335588633288, "alnum_prop": 0.5763351093488631, "repo_name": "hsnlab/escape", "id": "36ed2ce679e3e827719617b1dd27897dadb05963", "size": "129746", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "escape/escape/util/conversion.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "381" }, { "name": "C", "bytes": "9773701" }, { "name": "C++", "bytes": "1144774" }, { "name": "Dockerfile", "bytes": "4497" }, { "name": "HTML", "bytes": "423218" }, { "name": "JavaScript", "bytes": "9048" }, { "name": "Makefile", "bytes": "121260" }, { "name": "Objective-C", "bytes": "2964" }, { "name": "Python", "bytes": "2856844" }, { "name": "Roff", "bytes": "80820" }, { "name": "Shell", "bytes": "190566" } ], "symlink_target": "" }
from django.db import IntegrityError, transaction from django.test import TestCase, skipIfDBFeature, skipUnlessDBFeature from .fields import MyWrapper from .models import Bar, Business, CustomAutoFieldModel, Employee, Foo class BasicCustomPKTests(TestCase): @classmethod def setUpTestData(cls): cls.dan = Employee.objects.create( employee_code=123, first_name="Dan", last_name="Jones", ) cls.fran = Employee.objects.create( employee_code=456, first_name="Fran", last_name="Bones", ) cls.business = Business.objects.create(name="Sears") cls.business.employees.add(cls.dan, cls.fran) def test_querysets(self): """ Both pk and custom attribute_name can be used in filter and friends """ self.assertSequenceEqual(Employee.objects.filter(pk=123), [self.dan]) self.assertSequenceEqual(Employee.objects.filter(employee_code=123), [self.dan]) self.assertSequenceEqual( Employee.objects.filter(pk__in=[123, 456]), [self.fran, self.dan], ) self.assertSequenceEqual(Employee.objects.all(), [self.fran, self.dan]) self.assertQuerySetEqual( Business.objects.filter(name="Sears"), ["Sears"], lambda b: b.name ) self.assertQuerySetEqual( Business.objects.filter(pk="Sears"), [ "Sears", ], lambda b: b.name, ) def test_querysets_related_name(self): """ Custom pk doesn't affect related_name based lookups """ self.assertSequenceEqual( self.business.employees.all(), [self.fran, self.dan], ) self.assertQuerySetEqual( self.fran.business_set.all(), [ "Sears", ], lambda b: b.name, ) def test_querysets_relational(self): """ Queries across tables, involving primary key """ self.assertSequenceEqual( Employee.objects.filter(business__name="Sears"), [self.fran, self.dan], ) self.assertSequenceEqual( Employee.objects.filter(business__pk="Sears"), [self.fran, self.dan], ) self.assertQuerySetEqual( Business.objects.filter(employees__employee_code=123), [ "Sears", ], lambda b: b.name, ) self.assertQuerySetEqual( Business.objects.filter(employees__pk=123), [ "Sears", ], lambda b: b.name, ) self.assertQuerySetEqual( Business.objects.filter(employees__first_name__startswith="Fran"), [ "Sears", ], lambda b: b.name, ) def test_get(self): """ Get can accept pk or the real attribute name """ self.assertEqual(Employee.objects.get(pk=123), self.dan) self.assertEqual(Employee.objects.get(pk=456), self.fran) with self.assertRaises(Employee.DoesNotExist): Employee.objects.get(pk=42) # Use the name of the primary key, rather than pk. self.assertEqual(Employee.objects.get(employee_code=123), self.dan) def test_pk_attributes(self): """ pk and attribute name are available on the model No default id attribute is added """ # pk can be used as a substitute for the primary key. # The primary key can be accessed via the pk property on the model. e = Employee.objects.get(pk=123) self.assertEqual(e.pk, 123) # Or we can use the real attribute name for the primary key: self.assertEqual(e.employee_code, 123) with self.assertRaisesMessage( AttributeError, "'Employee' object has no attribute 'id'" ): e.id def test_in_bulk(self): """ Custom pks work with in_bulk, both for integer and non-integer types """ emps = Employee.objects.in_bulk([123, 456]) self.assertEqual(emps[123], self.dan) self.assertEqual( Business.objects.in_bulk(["Sears"]), { "Sears": self.business, }, ) def test_save(self): """ custom pks do not affect save """ fran = Employee.objects.get(pk=456) fran.last_name = "Jones" fran.save() self.assertSequenceEqual( Employee.objects.filter(last_name="Jones"), [self.dan, fran], ) class CustomPKTests(TestCase): def test_custom_pk_create(self): """ New objects can be created both with pk and the custom name """ Employee.objects.create(employee_code=1234, first_name="Foo", last_name="Bar") Employee.objects.create(pk=1235, first_name="Foo", last_name="Baz") Business.objects.create(name="Bears") Business.objects.create(pk="Tears") def test_unicode_pk(self): # Primary key may be Unicode string. Business.objects.create(name="jaźń") def test_unique_pk(self): # The primary key must also be unique, so trying to create a new object # with the same primary key will fail. Employee.objects.create( employee_code=123, first_name="Frank", last_name="Jones" ) with self.assertRaises(IntegrityError): with transaction.atomic(): Employee.objects.create( employee_code=123, first_name="Fred", last_name="Jones" ) def test_zero_non_autoincrement_pk(self): Employee.objects.create(employee_code=0, first_name="Frank", last_name="Jones") employee = Employee.objects.get(pk=0) self.assertEqual(employee.employee_code, 0) def test_custom_field_pk(self): # Regression for #10785 -- Custom fields can be used for primary keys. new_bar = Bar.objects.create() new_foo = Foo.objects.create(bar=new_bar) f = Foo.objects.get(bar=new_bar.pk) self.assertEqual(f, new_foo) self.assertEqual(f.bar, new_bar) f = Foo.objects.get(bar=new_bar) self.assertEqual(f, new_foo), self.assertEqual(f.bar, new_bar) # SQLite lets objects be saved with an empty primary key, even though an # integer is expected. So we can't check for an error being raised in that # case for SQLite. Remove it from the suite for this next bit. @skipIfDBFeature("supports_unspecified_pk") def test_required_pk(self): # The primary key must be specified, so an error is raised if you # try to create an object without it. with self.assertRaises(IntegrityError): with transaction.atomic(): Employee.objects.create(first_name="Tom", last_name="Smith") def test_auto_field_subclass_create(self): obj = CustomAutoFieldModel.objects.create() self.assertIsInstance(obj.id, MyWrapper) @skipUnlessDBFeature("can_return_rows_from_bulk_insert") def test_auto_field_subclass_bulk_create(self): obj = CustomAutoFieldModel() CustomAutoFieldModel.objects.bulk_create([obj]) self.assertIsInstance(obj.id, MyWrapper)
{ "content_hash": "26d3db21d56927166e17f08695631b2f", "timestamp": "", "source": "github", "line_count": 220, "max_line_length": 88, "avg_line_length": 33.75454545454546, "alnum_prop": 0.5861836789657958, "repo_name": "manhhomienbienthuy/django", "id": "47838714ca7a965e968300a7d74b9ac650dcbf65", "size": "7428", "binary": false, "copies": "9", "ref": "refs/heads/main", "path": "tests/custom_pk/tests.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "91648" }, { "name": "HTML", "bytes": "238916" }, { "name": "JavaScript", "bytes": "158214" }, { "name": "Makefile", "bytes": "125" }, { "name": "Procfile", "bytes": "47" }, { "name": "Python", "bytes": "16134531" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "392" } ], "symlink_target": "" }
from splinter import Browser class UreportApplication: def __init__(self): self.browser = Browser() def close(self): self.browser.quit() def navigate_to_home_page(self): return HomePage(self.browser).load() class HomePage(): def __init__(self, browser): self.browser = browser def load(self): self.browser.visit("http://localhost:8088/") return self def get_number_of_previous_polls(self): list_of_polls = self.browser.find_by_id("list_of_polls") return len(list_of_polls.find_by_name("poll"))
{ "content_hash": "07e9fe0b6b9ec54d033b007614eb4b64", "timestamp": "", "source": "github", "line_count": 27, "max_line_length": 64, "avg_line_length": 21.925925925925927, "alnum_prop": 0.6199324324324325, "repo_name": "mbanje/ureport_uganda", "id": "642ae785b424367e77b57edd92786aecb78055d6", "size": "592", "binary": false, "copies": "2", "ref": "refs/heads/branch_of_tests", "path": "functional_test/fixtures/home_page.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "44849" }, { "name": "Shell", "bytes": "16165" } ], "symlink_target": "" }
from pyjamas.ui.Sink import Sink, SinkInfo from pyjamas.ui.MenuBar import MenuBar from pyjamas.ui.MenuItem import MenuItem from pyjamas import Window from pyjamas.ui.HTML import HTML from pyjamas.ui.VerticalPanel import VerticalPanel from pyjamas import DOM from pyjamas.ui.ContextMenuPopupPanel import ContextMenuPopupPanel class Menus(Sink): def __init__(self): Sink.__init__(self) self.menu = MenuBar() subMenu = MenuBar(True) subMenu.addItem("<code>Code</code>", True, self) subMenu.addItem("<strike>Strikethrough</strike>", True, self) subMenu.addItem("<u>Underlined</u>", True, self) menu0 = MenuBar(True) menu0.addItem("<b>Bold</b>", True, self) menu0.addItem("<i>Italicized</i>", True, self) menu0.addItem("More &#187;", True, subMenu) menu1 = MenuBar(True) menu1.addItem("<font color='#FF0000'><b>Apple</b></font>", True, self) menu1.addItem("<font color='#FFFF00'><b>Banana</b></font>", True, self) menu1.addItem("<font color='#FFFFFF'><b>Coconut</b></font>", True, self) menu1.addItem("<font color='#8B4513'><b>Donut</b></font>", True, self) menu2 = MenuBar(True) menu2.addItem("Bling", self) menu2.addItem("Ginormous", self) menu2.addItem("<code>w00t!</code>", True, self) self.menu.addItem(MenuItem("Style", menu0)) self.menu.addItem(MenuItem("Fruit", menu1)) self.menu.addItem(MenuItem("Term", menu2)) self.menu.setWidth("100%") self.panel = VerticalPanel() self.context = HTML("""Right-Click me<br/>to show a context menu.<br /> Left-click me<br />to do absolutely nothing.""") self.panel.add(self.menu) self.panel.add(self.context) self.initWidget(self.panel) self.context.setContextMenu(self) def onContextMenu(self, sender): event = DOM.eventGetCurrentEvent() subMenu = MenuBar(True) subMenu.addItem("<code>Code</code>", True, self) subMenu.addItem("<strike>Strikethrough</strike>", True, self) subMenu.addItem("<u>Underlined</u>", True, self) x = DOM.eventGetClientX(event) + 2 y = DOM.eventGetClientY(event) + 2 popup = ContextMenuPopupPanel(subMenu) popup.showAt(x, y) def execute(self): Window.alert("Thank you for selecting a menu item.") def onShow(self): pass def init(): return SinkInfo("Menus", "The GWT <code>MenuBar</code> class makes it easy to build menus, including cascading sub-menus.", Menus)
{ "content_hash": "580e17a0eb5eb9128710877e5a4bb2a4", "timestamp": "", "source": "github", "line_count": 75, "max_line_length": 134, "avg_line_length": 34.906666666666666, "alnum_prop": 0.627196333078686, "repo_name": "pombredanne/pyjs", "id": "1d354575453140312373aaa815cd18a057572f81", "size": "2618", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "examples/kitchensink/sink/Menus.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "4640" }, { "name": "Groff", "bytes": "6633" }, { "name": "HTML", "bytes": "10106" }, { "name": "JavaScript", "bytes": "63385" }, { "name": "Makefile", "bytes": "453" }, { "name": "Python", "bytes": "5515375" }, { "name": "Shell", "bytes": "4264" } ], "symlink_target": "" }
from toontown.estate.DistributedClosetAI import DistributedClosetAI from toontown.toon.ToonDNA import ToonDNA, HAT, GLASSES, BACKPACK, SHOES from direct.distributed.ClockDelta import globalClockDelta import ClosetGlobals class DistributedTrunkAI(DistributedClosetAI): notify = directNotify.newCategory('DistributedTrunkAI') def __init__(self, air, furnitureMgr, itemType): DistributedClosetAI.__init__(self, air, furnitureMgr, itemType) self.hatList = [] self.glassesList = [] self.backpackList = [] self.shoesList = [] self.removedHats = [] self.removedGlasses = [] self.removedBackpacks = [] self.removedShoes = [] def generate(self): if self.furnitureMgr.ownerId: owner = self.air.doId2do.get(self.furnitureMgr.ownerId) if owner: self.hatList = owner.hatList self.glassesList = owner.glassesList self.backpackList = owner.backpackList self.shoesList = owner.shoesList self.gender = owner.dna.gender else: self.air.dbInterface.queryObject(self.air.dbId, self.furnitureMgr.ownerId, self.__gotOwner) def __gotOwner(self, dclass, fields): if dclass != self.air.dclassesByName['DistributedToonAI']: self.notify.warning('Got object of wrong type!') return self.hatList = fields['setHatList'][0] self.glassesList = fields['setGlassesList'][0] self.backpackList = fields['setBackpackList'][0] self.shoesList = fields['setShoesList'][0] dna = ToonDNA(str=fields['setDNAString'][0]) self.gender = dna.gender def __verifyAvatarInMyZone(self, av): return av.getLocation() == self.getLocation() def setState(self, mode, avId, ownerId, gender, hatList, glassesList, backpackList, shoesList): self.sendUpdate('setState', [mode, avId, ownerId, gender, hatList, glassesList, backpackList, shoesList]) def removeItem(self, itemIdx, textureIdx, colorIdx, which): avId = self.air.getAvatarIdFromSender() if avId != self.furnitureMgr.ownerId: self.air.writeServerEvent('suspicious', avId=avId, issue='Tried to remove item from someone else\'s closet!') return if avId != self.avId: self.air.writeServerEvent('suspicious', avId=avId, issue='Tried to remove item while not interacting with closet!') return av = self.air.doId2do.get(avId) if not av: self.air.writeServerEvent('suspicious', avId=avId, issue='Tried to interact with a closet from another shard!') return if which == HAT: self.removedHats.append((itemIdx, textureIdx, colorIdx)) elif which == GLASSES: self.removedGlasses.append((itemIdx, textureIdx, colorIdx)) elif which == BACKPACK: self.removedBackpacks.append((itemIdx, textureIdx, colorIdx)) elif which == SHOES: self.removedShoes.append((itemIdx, textureIdx, colorIdx)) def setDNA(self, hatIdx, hatTexture, hatColor, glassesIdx, glassesTexture, glassesColor, backpackIdx, backpackTexture, backpackColor, shoesIdx, shoesTexture, shoesColor, finished, which): avId = self.air.getAvatarIdFromSender() if avId != self.avId: self.air.writeServerEvent('suspicious', avId, 'Tried to set DNA from closet while not using it!') return av = self.air.doId2do.get(avId) if not av: self.air.writeServerEvent('suspicious', avId, 'Interacted with a closet from another shard!') return if not self.__verifyAvatarInMyZone(av): self.air.writeServerEvent('suspicious', avId, 'Tried to setDNA while in another zone!') return if not finished: # They changed one of their accessories. if which == HAT: av.b_setHat(hatIdx, hatTexture, hatColor) if which == GLASSES: av.b_setGlasses(glassesIdx, glassesTexture, glassesColor) if which == BACKPACK: av.b_setBackpack(backpackIdx, backpackTexture, backpackColor) if which == SHOES: av.b_setShoes(shoesIdx, shoesTexture, shoesColor) elif finished == 1: # The user pressed the cancel button. All we need to do is free him. # Reset the removed items and our user. av.b_setHat(hatIdx, hatTexture, hatColor) av.b_setGlasses(glassesIdx, glassesTexture, glassesColor) av.b_setBackpack(backpackIdx, backpackTexture, backpackColor) av.b_setShoes(shoesIdx, shoesTexture, shoesColor) self.removedHats = [] self.removedGlasses = [] self.removedBackpacks = [] self.removedShoes = [] self.avId = None # Free the user. self.d_setMovie(ClosetGlobals.CLOSET_MOVIE_COMPLETE, avId, globalClockDelta.getRealNetworkTime()) self.setState(ClosetGlobals.CLOSED, 0, self.furnitureMgr.ownerId, self.gender, self.hatList, self.glassesList, self.backpackList, self.shoesList) elif finished == 2: # They are done using the trunk. Update their removed items. # Is the user actually the owner? if avId != self.furnitureMgr.ownerId: self.air.writeServerEvent('suspicious', avId, 'Tried to set their clothes from somebody else\'s closet!') return # Put on the accessories they want... if which & HAT: av.b_setHat(hatIdx, hatTexture, hatColor) if which & GLASSES: av.b_setGlasses(glassesIdx, glassesTexture, glassesColor) if which & BACKPACK: av.b_setBackpack(backpackIdx, backpackTexture, backpackColor) if which & SHOES: av.b_setShoes(shoesIdx, shoesTexture, shoesColor) # Delete all their items they want to be deleted... for hat in self.removedHats: id, texture, color = hat av.removeItemInAccessoriesList(HAT, id, texture, color) for glasses in self.removedGlasses: id, texture, color = glasses av.removeItemInAccessoriesList(GLASSES, id, texture, color) for backpack in self.removedBackpacks: id, texture, color = backpack av.removeItemInAccessoriesList(BACKPACK, id, texture, color) for shoe in self.removedShoes: id, texture, color = shoe av.removeItemInAccessoriesList(SHOES, id, texture, color) # Regenerate the available accessories... self.removedHats = [] self.removedGlasses = [] self.removedBackpacks = [] self.removedShoes = [] self.generate() self.avId = None # We are done, free the user! self.d_setMovie(ClosetGlobals.CLOSET_MOVIE_COMPLETE, avId, globalClockDelta.getRealNetworkTime()) self.setState(ClosetGlobals.CLOSED, 0, self.furnitureMgr.ownerId, self.gender, self.hatList, self.glassesList, self.backpackList, self.shoesList) def enterAvatar(self): avId = self.air.getAvatarIdFromSender() if self.avId: if self.avId == avId: self.air.writeServerEvent('suspicious', avId=avId, issue='Tried to use closet twice!') self.sendUpdateToAvatarId(avId, 'freeAvatar', []) return av = self.air.doId2do.get(avId) if not av: self.air.writeServerEvent('suspicious', avId=avId, issue='Not in same shard as closet!') return if not self.__verifyAvatarInMyZone(av): self.air.writeServerEvent('suspicious', avId=avId, issue='Not in same zone as closet!') return self.avId = avId self.setState(ClosetGlobals.OPEN, avId, self.furnitureMgr.ownerId, self.gender, self.hatList, self.glassesList, self.backpackList, self.shoesList)
{ "content_hash": "1058fc21d606869264d5b58057029965", "timestamp": "", "source": "github", "line_count": 171, "max_line_length": 191, "avg_line_length": 47.71345029239766, "alnum_prop": 0.6240960902071332, "repo_name": "silly-wacky-3-town-toon/SOURCE-COD", "id": "80e4beca5da83a4bb8872855e686ac9fb215a3d8", "size": "8159", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "toontown/estate/DistributedTrunkAI.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "10249" }, { "name": "C", "bytes": "1752256" }, { "name": "C#", "bytes": "8440" }, { "name": "C++", "bytes": "5485400" }, { "name": "Emacs Lisp", "bytes": "210083" }, { "name": "F#", "bytes": "2310" }, { "name": "Forth", "bytes": "506" }, { "name": "GLSL", "bytes": "1040" }, { "name": "JavaScript", "bytes": "7003" }, { "name": "Makefile", "bytes": "895" }, { "name": "Mask", "bytes": "969" }, { "name": "NSIS", "bytes": "1009050" }, { "name": "Objective-C", "bytes": "21821" }, { "name": "PLSQL", "bytes": "10200" }, { "name": "Pascal", "bytes": "4986" }, { "name": "Perl6", "bytes": "30612" }, { "name": "Puppet", "bytes": "259" }, { "name": "Python", "bytes": "33566014" }, { "name": "Shell", "bytes": "14642" }, { "name": "Tcl", "bytes": "2084458" } ], "symlink_target": "" }
import re import os import six from builtins import zip from gevent import subprocess def _pattern2re(pattern): """Transforms a GA pattern to a regular expression.""" i = 0 escaped = False regex = '' # Keep track of the index where the character class started, None if we're not # currently parsing a character class. charclass_start = None while i < len(pattern): to_skip = 1 to_add = pattern[i] if escaped: escaped = False elif pattern[i] == '\\': escaped = True elif pattern[i] == '[': charclass_start = i elif pattern[i] == ']': # When ']' is the first character after a character class starts, it # doesn't end it, it just means ']' is part of the character class. if charclass_start < i - 1: charclass_start = None elif pattern[i] == '?' and charclass_start is None: # '?' shouldn't be replaced inside character classes. to_add = '[^/]' elif pattern[i] == '*' and charclass_start is None: # '*' shouldn't be replaced inside character classes. if pattern[i:i+3] == '**/': to_add = '((.+/)?)' to_skip = 3 elif pattern[i:i+2] == '**': to_add = '.+' to_skip = 2 else: to_add = '[^/]*' elif charclass_start is None: to_add = re.escape(pattern[i]) regex += to_add i += to_skip if regex.startswith(r'\/'): regex = '^' + regex else: regex = '/' + regex return regex + '$' def _parse_gitattr_line(line): """Parses a line in a GA files. Args: line (str) - A line in a GA file. Returns: If the line is empty, a comment, or doesn't modify the 'recipes' attribute, this function returns None. Otherwise, it returns a pair with |pattern| and |has_recipes|, where |pattern| is a regex encoding the pattern, and |has_recipes| is True if the 'recipes' attribute was set and False if it was unset (-) or unspecified (!) """ line = line.strip() if not line or line.startswith('#'): return None if line.startswith((r'\#', r'\!')): line = line[1:] if not line.startswith('"'): line = line.split() pattern = line[0] attributes = line[1:] else: is_escaped = False pattern = '' for i, c in enumerate(line[1:], 1): if is_escaped: pattern += c is_escaped = False elif c == '\\': is_escaped = True elif c == '"': attributes = line[i+1:].strip().split() break else: pattern += c has_recipes = None for attribute in reversed(attributes): action = True if attribute.startswith(('-', '!')): action = False attribute = attribute[1:] if attribute == 'recipes': has_recipes = action break if has_recipes is None: return None return _pattern2re(pattern), has_recipes class AttrChecker(object): def __init__(self, repo, shortcircuit=True): self._repo = repo # Shortcircuit means we only care about whether any of the files we check # has the 'recipes' attribute set (which is useful when checking if the # revision is interesting), and not about the results for each individual # file (which is useful for testing). self._shortcircuit = shortcircuit # A map from the git blob hash of a .gitattributes file to a list of the # rules specified in that file that affect the 'recipes' attribute. # Each rule is a pair of (pattern, action) where |pattern| is a compiled # regex that matches the affected files, and action is True if the 'recipes' # attributes is to be set or False otherwise. # Rules are stored in the order they appear in the .gitattributes file. self._gitattr_files_cache = {} # Stores the gitattributes files for the current revision. self._gitattr_files = None def _git(self, cmd, stdin=None): """Executes a git command and returns the standard output.""" p = subprocess.Popen(['git'] + cmd, cwd=self._repo, stdin=subprocess.PIPE, stdout=subprocess.PIPE) stdout, _ = p.communicate(six.ensure_binary(stdin) if stdin else None) if p.returncode != 0: raise subprocess.CalledProcessError(p.returncode, ['git'] + cmd, None) return six.ensure_str(stdout).strip().splitlines() def _get_directories(self, files): """Lists all the directories touched by any of the |files|.""" dirs = set(['']) for f in files: f = os.path.dirname(f) while f and f not in dirs: dirs.add(f) f = os.path.dirname(f) return dirs def _ensure_gitattributes_files_loaded(self, revision, files): """Loads and parses all the .gitattributes files in the given revision.""" self._gitattr_files = [] # We list all the directories that were touched by any of the files, and # search for .gitattributes files in them. touched_dirs = self._get_directories(files) possible_gitattr_paths = '\n'.join( '%s:%s' % (revision, os.path.join(d, '.gitattributes')) for d in touched_dirs) # We ask git to list the hashes for all the .gitattributes files we listed # above. If the file doesn't exist, git returns '<object> missing', where # object is the revision and .gitattribute file we asked for. possible_gitattr_blobs = self._git( ['cat-file', '--batch-check=%(objectname)'], possible_gitattr_paths) for line, d in zip(possible_gitattr_blobs, touched_dirs): if line.endswith(' missing'): continue if d != '': d += '/' self._gitattr_files.append(('/' + d, self._parse_gitattr_file(line))) # Store the paths in desc. order of length. self._gitattr_files.sort() self._gitattr_files.reverse() def _parse_gitattr_file(self, blob_hash): """Returns a list of patterns and actions parsed from the GA file. Parses the .gitattributes file pointed at by |blob_hash|, and returns the patterns that set, unset or unspecify the 'recipes' attribute. Args: blob_hash (sha1) - A hash that points to a .gitattributes file in the git repository. Returns: A list of |(pattern, action)| where |pattern| is a compiled regular expression encoding a pattern in the GA file, and |action| is True if 'recipes' was set, and False if it was unset (-) or unspecified (!). """ if blob_hash in self._gitattr_files_cache: return self._gitattr_files_cache[blob_hash] rules = [] for line in self._git(['cat-file', 'blob', blob_hash]): parsed_line = _parse_gitattr_line(line) if parsed_line is None: continue pattern, attr_value = parsed_line if rules and rules[-1][1] == attr_value: rules[-1][0] = '((%s)|(%s))' % (rules[-1][0], pattern) else: if rules: rules[-1][0] = re.compile(rules[-1][0]) rules.append([pattern, attr_value]) if rules: rules[-1][0] = re.compile(rules[-1][0]) self._gitattr_files_cache[blob_hash] = rules return rules def _check_file(self, f): """Check whether |f| has the 'recipes' attribute set. Returns True if the file |f| has the 'recipes' attribute set, and False otherwise. """ # If the file path starts with the GA path, then the path is a parent of # the file. Note that since the GA paths are sorted desc. according to # length, the first we find will be the most specific one. for path, rules in self._gitattr_files: if not f.startswith(path): continue # Iterate over the rules in reverse, so the last rule comes first and we # can return early. result = None for pattern, action in reversed(rules): if pattern.search(f): result = action break # If the result is not None, then the GA told us how to handle the file # and we can stop looking. if result is not None: return result # No GA specified a rule for the file, so the attribute is unspecified and # not set. return False def check_files(self, revision, files): """Checks the 'recipes' attribute for the |files| at the given |revision|. If |shortcircuit| was specified when creating this object, returns True if any of the |files| has the 'recipes' attribute set. Otherwise, returns a list with an entry for each file |f| specifying whether it has the 'recipes' attribute set or not. """ # Make sure the gitattribute files are loaded at the right revision. self._ensure_gitattributes_files_loaded(revision, files) results = (self._check_file('/' + f) for f in files) if self._shortcircuit: return any(results) return list(results)
{ "content_hash": "78e9e1d66c230bc7514dc0f51fa5e305", "timestamp": "", "source": "github", "line_count": 252, "max_line_length": 80, "avg_line_length": 34.48412698412698, "alnum_prop": 0.6271576524741082, "repo_name": "luci/recipes-py", "id": "298d05d84386fd456767ae76e454f275308a3eb5", "size": "8864", "binary": false, "copies": "2", "ref": "refs/heads/main", "path": "recipe_engine/internal/gitattr_checker.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "26" }, { "name": "Python", "bytes": "900422" }, { "name": "Shell", "bytes": "5746" } ], "symlink_target": "" }
from __future__ import absolute_import from django.test import TestCase from django.core.cache import cache from django.core import mail from model_mommy import mommy from system.models import Configuration from dbaas.tests.helpers import DatabaseHelper class EmailBaseTest(TestCase): action = 'update_ssl' def setUp(self): cache.clear() mail.outbox = [] self.email_from = Configuration( name='email_addr_from', value='dbaas@mail.com' ) self.email_from.save() self.email_adm = Configuration( name='new_user_notify_email', value='adm@mail.com' ) self.email_adm.save() self.team = mommy.make( 'Team', name='team_1', email='team_1@email.test.com', contacts='contact_1', role__name='fake_role', organization__name='fake_organization' ) self.database = DatabaseHelper.create( name='fake_db_name', team=self.team ) self.task_schedule = mommy.make( 'TaskSchedule', method_path=self.action, database=self.database )
{ "content_hash": "c64fa7c2b68fb240113736f722cd2895", "timestamp": "", "source": "github", "line_count": 43, "max_line_length": 62, "avg_line_length": 27.41860465116279, "alnum_prop": 0.5869380831212893, "repo_name": "globocom/database-as-a-service", "id": "85ccb44c9336c71f6dba05380189864467d5243e", "size": "1179", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "dbaas/util/tests/test_email_notification/base.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "243568" }, { "name": "Dockerfile", "bytes": "1372" }, { "name": "HTML", "bytes": "310401" }, { "name": "JavaScript", "bytes": "988830" }, { "name": "Makefile", "bytes": "5199" }, { "name": "Python", "bytes": "9674426" }, { "name": "Shell", "bytes": "215115" } ], "symlink_target": "" }
""" Entry point for raw requests. Can be used to compute queries of API parts for which specific methods have not been yet implemented, and still benefit from the core methods. for instance, client.raw() """ def raw(client, url, extra_params=None, verbose=False, multipage=None, page_limit=10, count_per_page=100): if not multipage: return client._get(url=url, extra_params=extra_params, verbose=verbose) else: return client._get_multipage(url=url, extra_params=extra_params, verbose=verbose, page_limit=page_limit, count=count_per_page)
{ "content_hash": "d9575757556c076c306b689fda278d2c", "timestamp": "", "source": "github", "line_count": 12, "max_line_length": 172, "avg_line_length": 47.083333333333336, "alnum_prop": 0.7380530973451327, "repo_name": "leonardbinet/navitia_client", "id": "cf70face3c7a912f22254fb707ac7338c8f28bec", "size": "565", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "navitia_client/raw.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "50783" } ], "symlink_target": "" }
"""Support for the Philips Hue system.""" import ipaddress import logging from aiohue.util import normalize_bridge_id import voluptuous as vol from homeassistant import config_entries, core from homeassistant.components import persistent_notification from homeassistant.const import CONF_HOST from homeassistant.helpers import config_validation as cv, device_registry as dr from .bridge import HueBridge from .const import ( CONF_ALLOW_HUE_GROUPS, CONF_ALLOW_UNREACHABLE, DEFAULT_ALLOW_HUE_GROUPS, DEFAULT_ALLOW_UNREACHABLE, DOMAIN, ) _LOGGER = logging.getLogger(__name__) CONF_BRIDGES = "bridges" DATA_CONFIGS = "hue_configs" PHUE_CONFIG_FILE = "phue.conf" BRIDGE_CONFIG_SCHEMA = vol.Schema( { # Validate as IP address and then convert back to a string. vol.Required(CONF_HOST): vol.All(ipaddress.ip_address, cv.string), vol.Optional(CONF_ALLOW_UNREACHABLE): cv.boolean, vol.Optional(CONF_ALLOW_HUE_GROUPS): cv.boolean, vol.Optional("filename"): str, } ) CONFIG_SCHEMA = vol.Schema( vol.All( cv.deprecated(DOMAIN, invalidation_version="0.115.0"), { DOMAIN: vol.Schema( { vol.Optional(CONF_BRIDGES): vol.All( cv.ensure_list, [BRIDGE_CONFIG_SCHEMA], ) } ) }, ), extra=vol.ALLOW_EXTRA, ) async def async_setup(hass, config): """Set up the Hue platform.""" conf = config.get(DOMAIN) if conf is None: conf = {} hass.data[DOMAIN] = {} hass.data[DATA_CONFIGS] = {} # User has not configured bridges if CONF_BRIDGES not in conf: return True bridges = conf[CONF_BRIDGES] configured_hosts = { entry.data.get("host") for entry in hass.config_entries.async_entries(DOMAIN) } for bridge_conf in bridges: host = bridge_conf[CONF_HOST] # Store config in hass.data so the config entry can find it hass.data[DATA_CONFIGS][host] = bridge_conf if host in configured_hosts: continue # No existing config entry found, trigger link config flow. Because we're # inside the setup of this component we'll have to use hass.async_add_job # to avoid a deadlock: creating a config entry will set up the component # but the setup would block till the entry is created! hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={"host": bridge_conf[CONF_HOST]}, ) ) return True async def async_setup_entry( hass: core.HomeAssistant, entry: config_entries.ConfigEntry ): """Set up a bridge from a config entry.""" host = entry.data["host"] config = hass.data[DATA_CONFIGS].get(host) # Migrate allow_unreachable from config entry data to config entry options if ( CONF_ALLOW_UNREACHABLE not in entry.options and CONF_ALLOW_UNREACHABLE in entry.data and entry.data[CONF_ALLOW_UNREACHABLE] != DEFAULT_ALLOW_UNREACHABLE ): options = { **entry.options, CONF_ALLOW_UNREACHABLE: entry.data[CONF_ALLOW_UNREACHABLE], } data = entry.data.copy() data.pop(CONF_ALLOW_UNREACHABLE) hass.config_entries.async_update_entry(entry, data=data, options=options) # Migrate allow_hue_groups from config entry data to config entry options if ( CONF_ALLOW_HUE_GROUPS not in entry.options and CONF_ALLOW_HUE_GROUPS in entry.data and entry.data[CONF_ALLOW_HUE_GROUPS] != DEFAULT_ALLOW_HUE_GROUPS ): options = { **entry.options, CONF_ALLOW_HUE_GROUPS: entry.data[CONF_ALLOW_HUE_GROUPS], } data = entry.data.copy() data.pop(CONF_ALLOW_HUE_GROUPS) hass.config_entries.async_update_entry(entry, data=data, options=options) # Overwrite from YAML configuration if config is not None: options = {} if CONF_ALLOW_HUE_GROUPS in config and ( CONF_ALLOW_HUE_GROUPS not in entry.options or config[CONF_ALLOW_HUE_GROUPS] != entry.options[CONF_ALLOW_HUE_GROUPS] ): options[CONF_ALLOW_HUE_GROUPS] = config[CONF_ALLOW_HUE_GROUPS] if CONF_ALLOW_UNREACHABLE in config and ( CONF_ALLOW_UNREACHABLE not in entry.options or config[CONF_ALLOW_UNREACHABLE] != entry.options[CONF_ALLOW_UNREACHABLE] ): options[CONF_ALLOW_UNREACHABLE] = config[CONF_ALLOW_UNREACHABLE] if options: hass.config_entries.async_update_entry( entry, options={**entry.options, **options}, ) bridge = HueBridge(hass, entry) if not await bridge.async_setup(): return False hass.data[DOMAIN][entry.entry_id] = bridge config = bridge.api.config # For backwards compat unique_id = normalize_bridge_id(config.bridgeid) if entry.unique_id is None: hass.config_entries.async_update_entry(entry, unique_id=unique_id) # For recovering from bug where we incorrectly assumed homekit ID = bridge ID elif entry.unique_id != unique_id: # Find entries with this unique ID other_entry = next( ( entry for entry in hass.config_entries.async_entries(DOMAIN) if entry.unique_id == unique_id ), None, ) if other_entry is None: # If no other entry, update unique ID of this entry ID. hass.config_entries.async_update_entry(entry, unique_id=unique_id) elif other_entry.source == config_entries.SOURCE_IGNORE: # There is another entry but it is ignored, delete that one and update this one hass.async_create_task( hass.config_entries.async_remove(other_entry.entry_id) ) hass.config_entries.async_update_entry(entry, unique_id=unique_id) else: # There is another entry that already has the right unique ID. Delete this entry hass.async_create_task(hass.config_entries.async_remove(entry.entry_id)) return False device_registry = await dr.async_get_registry(hass) device_registry.async_get_or_create( config_entry_id=entry.entry_id, connections={(dr.CONNECTION_NETWORK_MAC, config.mac)}, identifiers={(DOMAIN, config.bridgeid)}, manufacturer="Signify", name=config.name, model=config.modelid, sw_version=config.swversion, ) if config.modelid == "BSB002" and config.swversion < "1935144040": persistent_notification.async_create( hass, "Your Hue hub has a known security vulnerability ([CVE-2020-6007](https://cve.circl.lu/cve/CVE-2020-6007)). Go to the Hue app and check for software updates.", "Signify Hue", "hue_hub_firmware", ) elif config.swupdate2_bridge_state == "readytoinstall": err = ( "Please check for software updates of the bridge in the Philips Hue App.", "Signify Hue", "hue_hub_firmware", ) _LOGGER.warning(err) return True async def async_unload_entry(hass, entry): """Unload a config entry.""" bridge = hass.data[DOMAIN].pop(entry.entry_id) return await bridge.async_reset()
{ "content_hash": "bf3c1bbabc4604d5e83c0d2112941e7b", "timestamp": "", "source": "github", "line_count": 228, "max_line_length": 171, "avg_line_length": 33.05701754385965, "alnum_prop": 0.6221308212816771, "repo_name": "titilambert/home-assistant", "id": "1131d68baeccc8d9e569d9e412e5f5f4bac3884b", "size": "7537", "binary": false, "copies": "3", "ref": "refs/heads/dev", "path": "homeassistant/components/hue/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "1488" }, { "name": "Python", "bytes": "25849092" }, { "name": "Shell", "bytes": "4410" } ], "symlink_target": "" }
my_<caret> from source import *
{ "content_hash": "dc6b567f9c81a85b3fbc093adf8f1960", "timestamp": "", "source": "github", "line_count": 3, "max_line_length": 20, "avg_line_length": 11, "alnum_prop": 0.696969696969697, "repo_name": "smmribeiro/intellij-community", "id": "f077e8e6c4e027e1175bbf2e0df81d5893d9d417", "size": "33", "binary": false, "copies": "14", "ref": "refs/heads/master", "path": "python/testData/completion/beforeImport/beforeStarImport.py", "mode": "33188", "license": "apache-2.0", "language": [], "symlink_target": "" }
import controller # bool that specifies wheter it is a development environment DEBUG = True # list of controller modules CONTROLLERS = [controller]
{ "content_hash": "422795ffe4131f357e39b56388a6cbf2", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 60, "avg_line_length": 21.428571428571427, "alnum_prop": 0.7933333333333333, "repo_name": "ral99/weppy", "id": "1931ce10aa7de26248d50ab62a6f36e9267e7771", "size": "150", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "scripts/weppy_project/settings.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "1671" }, { "name": "Python", "bytes": "72716" } ], "symlink_target": "" }
""" Event views for editorial app. editorial/views/eventviews.py """ # -*- coding: utf-8 -*- from __future__ import unicode_literals import json from actstream import action from braces.views import LoginRequiredMixin, FormMessagesMixin from django.conf import settings from django.shortcuts import redirect, get_object_or_404 from django.http import HttpResponse from django.core.urlresolvers import reverse from django.views.generic import UpdateView, CreateView, DeleteView, View from editorial.forms import ( EventForm, CommentForm, NoteForm, SimpleImageForm, SimpleDocumentForm, SimpleImageLibraryAssociateForm, SimpleDocumentLibraryAssociateForm, ) from editorial.models import ( Organization, Project, Story, Event, Discussion, ) # ----------------------------------------------------------------------# # Events Views # ----------------------------------------------------------------------# # ACCESS: Any org user, or user from an organization that is in collaborate_with # should be able to create an event for P, Sr, St, F. # Contractors should only be able to create events for P, Sr or St they are # assigned to. class EventCreateView(LoginRequiredMixin, FormMessagesMixin, CreateView): """A logged in user can create a event. Events are used to manage information about events. Events can either manage events that an organization are hosting or events that an organization is reporting on. Ex: Hosting = A townhall discussion hosted by an organization Ex: Reporting = A press conference at city hall covered for a story. Ex. Administrative = An internal event like an org or team meeting. Events have a connection to either a Project, Story or Event. """ model = Event form_class = EventForm template_name = "editorial/events/event_form.html" form_invalid_message = "Check the form." form_valid_message = "Event created." def get_form_kwargs(self): """Pass user organization to the form.""" kw = super(EventCreateView, self).get_form_kwargs() kw.update({'organization': self.request.user.organization}) return kw def form_valid(self, form): """Save -- but first adding owner and organization.""" self.object = event = form.save(commit=False) # create and set discussion discussion = Discussion.objects.create_discussion("EV") event.discussion = discussion # set user specific values event.owner = self.request.user event.organization = self.request.user.organization event.save() form.save_m2m() # record action for activity stream action.send(self.request.user, verb="created", action_object=event) return redirect(self.get_success_url()) # ACCESS: Any org user, or user from an organization that is in collaborate_with # should be able to edit an event for P, Sr, St, F. # Contractors should only be able to edit events for P, Sr or St they are # assigned to. class EventUpdateView(LoginRequiredMixin, FormMessagesMixin, UpdateView): """ The detail page for a event. Displays the event information. """ model = Event form_class = EventForm template_name = "editorial/events/event_form.html" form_invalid_message = "Something went wrong. Check the form." form_valid_message = "Changes saved." def get_form_kwargs(self): """Pass organization to form.""" kw = super(EventUpdateView, self).get_form_kwargs() kw.update({'organization': self.request.user.organization, 'event': self.object}) return kw def event_discussion(self): """Get discussion, comments and comment form for the event.""" self.object = self.get_object() discussion = self.object.discussion comments = discussion.comment_set.all().order_by('date') form = CommentForm() return {'discussion': discussion, 'comments': comments, 'form': form, } def event_notes(self): """Get notes and note form for event.""" self.object = self.get_object() notes = self.object.notes.all().order_by('-creation_date') form = NoteForm() return {'notes': notes, 'form': form} def simple_images(self): """Return simple images.""" images = self.object.simple_image_assets.all() form = SimpleImageForm() addform = SimpleImageLibraryAssociateForm(organization=self.request.user.organization) return {'images': images, 'form': form, 'addform': addform,} def simple_documents(self): """Return simple documents.""" documents = self.object.simple_document_assets.all() form = SimpleDocumentForm() addform = SimpleDocumentLibraryAssociateForm(organization=self.request.user.organization) return {'documents': documents, 'form': form, 'addform': addform,} def get_success_url(self): action.send(self.request.user, verb="edited", action_object=self.object) return super(EventUpdateView, self).get_success_url() # ACCESS: Any org user that is an admin or editor should be able to delete an # event associated with their org, or an org PSS. class EventDeleteView(LoginRequiredMixin, FormMessagesMixin, DeleteView): """View for handling deletion of an event. In this project, we expect deletion to be done via a JS pop-up UI; we don't expect to actually use the "do you want to delete this?" Django-generated page. However, this is available if useful. """ model = Event template_name = "editorial/events/event_delete.html" form_valid_message = "Deleted." form_invalid_message = "Please check form." def get_success_url(self): """Post-deletion, return to the task parent URL.""" if self.object.project: project = self.object.project return reverse('project_event_list', kwargs={'pk': project.id}) if self.object.story: story = self.object.story return reverse('story_event_list', kwargs={'pk': story.id}) if self.object.evt_organization: organization = self.object.evt_organization return reverse('organization_event_list', kwargs={'pk': organization.id}) # ----------------------------------------------------------------------# # Content Event Views # ----------------------------------------------------------------------# # ACCESS: Any org user should be able to create an event associated # with their organization class OrganizationEventView(LoginRequiredMixin, CreateView): """Display all the events associated with an organization. """ context_object_name = 'events' template_name = 'editorial/events/event_list.html' form_class = EventForm def get_form_kwargs(self): """Pass organization to form.""" kw = super(OrganizationEventView, self).get_form_kwargs() kw.update({'organization': self.request.user.organization}) return kw def get_context_data(self, **kwargs): """Return events belonging to the organization.""" context = super(OrganizationEventView, self).get_context_data(**kwargs) organization = get_object_or_404(Organization, id=self.kwargs['pk']) events = organization.event_set.all() reporting_ct = organization.event_set.filter(event_type="Reporting").count() hosting_ct = organization.event_set.filter(event_type="Hosting").count() administrative_ct = organization.event_set.filter(event_type="Administrative").count() other_ct = organization.event_set.filter(event_type="Other").count() context['organization'] = organization context['events'] = events context['reporting_ct'] = reporting_ct context['hosting_ct'] = hosting_ct context['administrative_ct'] = administrative_ct context['other_ct'] = other_ct return context # TODO # class OrganizationEventSchedule(View): # """Return JSON of organization event schedule.""" # # def get(self, request, *args, **kwargs): # org_id = self.kwargs['pk'] # org = Organization.objects.get(id=org_id) # org_event_cal = org.get_org_event_schedule() # # return HttpResponse(json.dumps(org_event_cal), content_type='application/json') # ACCESS: Any org user should be able to view/create an event associated a project owned # by their organization # A user from an organization that is in collaborate_with on a project # should be able to view/create an event for a project they have access to. class ProjectEventView(LoginRequiredMixin, CreateView): """Display all the events associated with a project. """ context_object_name = 'events' template_name = 'editorial/events/event_list.html' form_class = EventForm def get_form_kwargs(self): """Pass organization to form.""" kw = super(ProjectEventView, self).get_form_kwargs() kw.update({'organization': self.request.user.organization}) return kw def get_context_data(self, **kwargs): """Return events belonging to the project.""" context = super(ProjectEventView, self).get_context_data(**kwargs) project = get_object_or_404(Project, id=self.kwargs['pk']) events = project.event_set.all() reporting_ct = project.event_set.filter(event_type="Reporting").count() hosting_ct = project.event_set.filter(event_type="Hosting").count() administrative_ct = project.event_set.filter(event_type="Administrative").count() other_ct = project.event_set.filter(event_type="Other").count() context['project'] = project context['events'] = events context['reporting_ct'] = reporting_ct context['hosting_ct'] = hosting_ct context['administrative_ct'] = administrative_ct context['other_ct'] = other_ct return context class ProjectEventSchedule(View): """Return JSON of project event schedule. displayed at /project/pk/events/ """ def get(self, request, *args, **kwargs): project_id = self.kwargs['pk'] project = Project.objects.get(id=project_id) project_event_cal = project.get_project_event_schedule() return HttpResponse(json.dumps(project_event_cal), content_type='application/json') # ACCESS: Any org user should be able to view/create an event associated a story owned # by their organization # A user from an organization that is in collaborate_with on a story # should be able to view/create an event for a story they have access to. class StoryEventView(LoginRequiredMixin, CreateView): """Display all the events associated with a story.""" context_object_name = 'events' template_name = 'editorial/events/event_list.html' form_class = EventForm def get_form_kwargs(self): """Pass organization to form.""" kw = super(StoryEventView, self).get_form_kwargs() kw.update({'organization': self.request.user.organization}) return kw def get_context_data(self, **kwargs): """Return events belonging to the project.""" context = super(StoryEventView, self).get_context_data(**kwargs) story = get_object_or_404(Story, id=self.kwargs['pk']) events = story.event_set.all() reporting_ct = story.event_set.filter(event_type="Reporting").count() hosting_ct = story.event_set.filter(event_type="Hosting").count() administrative_ct = story.event_set.filter(event_type="Administrative").count() other_ct = story.event_set.filter(event_type="Other").count() context['story'] = story context['events'] = events context['reporting_ct'] = reporting_ct context['hosting_ct'] = hosting_ct context['administrative_ct'] = administrative_ct context['other_ct'] = other_ct return context class StoryEventSchedule(View): """Return JSON of story event schedule. displayed at /story/pk/events/ """ def get(self, request, *args, **kwargs): story_id = self.kwargs['pk'] story = Story.objects.get(id=story_id) story_event_cal = story.get_story_event_schedule() return HttpResponse(json.dumps(story_event_cal), content_type='application/json')
{ "content_hash": "12804af2eed47ba7f44cff47aee41cfc", "timestamp": "", "source": "github", "line_count": 339, "max_line_length": 97, "avg_line_length": 36.51327433628319, "alnum_prop": 0.6572144126676361, "repo_name": "ProjectFacet/facet", "id": "6120a4f308a0759a91db29726469fe5be4d040dc", "size": "12378", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "project/editorial/views/events.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "4350483" }, { "name": "HTML", "bytes": "1677386" }, { "name": "JavaScript", "bytes": "1120019" }, { "name": "Python", "bytes": "804022" }, { "name": "Ruby", "bytes": "225" }, { "name": "Shell", "bytes": "889" } ], "symlink_target": "" }
"""Test the DuckDNS component.""" import asyncio from datetime import timedelta import pytest from homeassistant.setup import async_setup_component from homeassistant.components import duckdns from homeassistant.util.dt import utcnow from tests.common import async_fire_time_changed DOMAIN = 'bla' TOKEN = 'abcdefgh' @pytest.fixture def setup_duckdns(hass, aioclient_mock): """Fixture that sets up DuckDNS.""" aioclient_mock.get(duckdns.UPDATE_URL, params={ 'domains': DOMAIN, 'token': TOKEN }, text='OK') hass.loop.run_until_complete(async_setup_component( hass, duckdns.DOMAIN, { 'duckdns': { 'domain': DOMAIN, 'access_token': TOKEN } })) @asyncio.coroutine def test_setup(hass, aioclient_mock): """Test setup works if update passes.""" aioclient_mock.get(duckdns.UPDATE_URL, params={ 'domains': DOMAIN, 'token': TOKEN }, text='OK') result = yield from async_setup_component(hass, duckdns.DOMAIN, { 'duckdns': { 'domain': DOMAIN, 'access_token': TOKEN } }) assert result assert aioclient_mock.call_count == 1 async_fire_time_changed(hass, utcnow() + timedelta(minutes=5)) yield from hass.async_block_till_done() assert aioclient_mock.call_count == 2 @asyncio.coroutine def test_setup_fails_if_update_fails(hass, aioclient_mock): """Test setup fails if first update fails.""" aioclient_mock.get(duckdns.UPDATE_URL, params={ 'domains': DOMAIN, 'token': TOKEN }, text='KO') result = yield from async_setup_component(hass, duckdns.DOMAIN, { 'duckdns': { 'domain': DOMAIN, 'access_token': TOKEN } }) assert not result assert aioclient_mock.call_count == 1 @asyncio.coroutine def test_service_set_txt(hass, aioclient_mock, setup_duckdns): """Test set txt service call.""" # Empty the fixture mock requests aioclient_mock.clear_requests() aioclient_mock.get(duckdns.UPDATE_URL, params={ 'domains': DOMAIN, 'token': TOKEN, 'txt': 'some-txt', }, text='OK') assert aioclient_mock.call_count == 0 yield from hass.components.duckdns.async_set_txt('some-txt') assert aioclient_mock.call_count == 1 @asyncio.coroutine def test_service_clear_txt(hass, aioclient_mock, setup_duckdns): """Test clear txt service call.""" # Empty the fixture mock requests aioclient_mock.clear_requests() aioclient_mock.get(duckdns.UPDATE_URL, params={ 'domains': DOMAIN, 'token': TOKEN, 'txt': '', 'clear': 'true', }, text='OK') assert aioclient_mock.call_count == 0 yield from hass.components.duckdns.async_set_txt(None) assert aioclient_mock.call_count == 1
{ "content_hash": "f2c3caaa8358df6252b071fe8b002388", "timestamp": "", "source": "github", "line_count": 106, "max_line_length": 69, "avg_line_length": 26.92452830188679, "alnum_prop": 0.6320953048353188, "repo_name": "stefan-jonasson/home-assistant", "id": "d64ffbca81f0da2024edd1ddffb6230d32a858a6", "size": "2854", "binary": false, "copies": "10", "ref": "refs/heads/dev", "path": "tests/components/test_duckdns.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "4056" }, { "name": "Python", "bytes": "8360711" }, { "name": "Ruby", "bytes": "517" }, { "name": "Shell", "bytes": "12658" } ], "symlink_target": "" }
from __future__ import print_function import argparse, datetime, json, multiprocessing, os, platform, shutil, subprocess, sys, traceback, tempfile # Find physical core count of the machine. if platform.system() == 'Linux': lines = subprocess.check_output(['lscpu', '--parse=core']) physical_cores = len(set(line for line in lines.strip().split('\n') if not line.startswith('#'))) elif platform.system() == 'Darwin': physical_cores = int( subprocess.check_output(['sysctl', '-n', 'hw.physicalcpu'])) else: raise Exception('Unknown platform: %s' % platform.system()) # Choose a reasonable number of application cores given the # available physical cores. app_cores = max(physical_cores - 2, 1) legion_cxx_tests = [ # Tutorial ['tutorial/00_hello_world/hello_world', []], ['tutorial/01_tasks_and_futures/tasks_and_futures', []], ['tutorial/02_index_tasks/index_tasks', []], ['tutorial/03_global_vars/global_vars', []], ['tutorial/04_logical_regions/logical_regions', []], ['tutorial/05_physical_regions/physical_regions', []], ['tutorial/06_privileges/privileges', []], ['tutorial/07_partitioning/partitioning', []], ['tutorial/08_multiple_partitions/multiple_partitions', []], ['tutorial/09_custom_mapper/custom_mapper', []], # Examples ['examples/circuit/circuit', []], ['examples/dynamic_registration/dynamic_registration', []], ['examples/ghost/ghost', ['-ll:cpu', '4']], ['examples/ghost_pull/ghost_pull', ['-ll:cpu', '4']], ['examples/realm_saxpy/realm_saxpy', []], ['examples/spmd_cgsolver/spmd_cgsolver', ['-ll:cpu', '4', '-perproc']], # Tests ['test/attach_file_mini/attach_file_mini', []], #['test/garbage_collection_mini/garbage_collection_mini', []], # FIXME: Broken: https://github.com/StanfordLegion/legion/issues/220 #['test/matrix_multiply/matrix_multiply', []], # FIXME: Broken: https://github.com/StanfordLegion/legion/issues/222 #['test/predspec/predspec', []], # FIXME: Broken: https://github.com/StanfordLegion/legion/issues/223 #['test/read_write/read_write', []], # FIXME: Broken: https://github.com/StanfordLegion/legion/issues/224 #['test/rendering/rendering', []], # FIXME: Broken: https://github.com/StanfordLegion/legion/issues/225 ] legion_hdf_cxx_tests = [ # Examples ['examples/attach_file/attach_file', []], # Tests #['test/hdf_attach/hdf_attach', []], # FIXME: Broken: https://github.com/StanfordLegion/legion/issues/221 ] legion_cxx_perf_tests = [ # Circuit: Heavy Compute ['examples/circuit/circuit', ['-l', '10', '-p', str(app_cores), '-npp', '2500', '-wpp', '10000', '-ll:cpu', str(app_cores)]], # Circuit: Light Compute ['examples/circuit/circuit', ['-l', '10', '-p', '100', '-npp', '2', '-wpp', '4', '-ll:cpu', '2']], ] regent_perf_tests = [ # Circuit: Heavy Compute ['language/examples/circuit_sparse.rg', ['-l', '10', '-p', str(app_cores), '-npp', '2500', '-wpp', '10000', '-ll:cpu', str(app_cores), '-fflow-spmd-shardsize', str(app_cores)]], # Circuit: Light Compute ['language/examples/circuit_sparse.rg', ['-l', '10', '-p', '100', '-npp', '2', '-wpp', '4', '-ll:cpu', '2', '-fflow-spmd-shardsize', '2']], # PENNANT: Heavy Compute ['language/examples/pennant_fast.rg', ['pennant.tests/sedovbig3x30/sedovbig.pnt', '-seq_init', '0', '-par_init', '1', '-print_ts', '1', '-prune', '5', '-npieces', str(app_cores), '-numpcx', '1', '-numpcy', str(app_cores), '-ll:csize', '8192', '-ll:cpu', str(app_cores), '-fflow-spmd-shardsize', str(app_cores)]], ] def cmd(command, env=None, cwd=None): print(' '.join(command)) return subprocess.check_call(command, env=env, cwd=cwd) def run_test_regent(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): cmd([os.path.join(root_dir, 'language/travis.py')], env=env) def run_cxx(tests, flags, launcher, root_dir, bin_dir, env, thread_count): for test_file, test_flags in tests: test_dir = os.path.dirname(os.path.join(root_dir, test_file)) if bin_dir: test_path = os.path.join(bin_dir, os.path.basename(test_file)) else: test_path = os.path.join(root_dir, test_file) cmd(['make', '-C', test_dir, '-j', str(thread_count)], env=env) cmd(launcher + [test_path] + flags + test_flags, env=env, cwd=test_dir) def run_regent(tests, flags, launcher, root_dir, env, thread_count): for test_file, test_flags in tests: test_dir = os.path.dirname(os.path.join(root_dir, test_file)) test_path = os.path.join(root_dir, test_file) cmd(launcher + [test_path] + flags + test_flags, env=env, cwd=test_dir) def run_test_legion_cxx(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): flags = ['-logfile', 'out_%.log'] run_cxx(legion_cxx_tests, flags, launcher, root_dir, bin_dir, env, thread_count) def run_test_legion_hdf_cxx(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): flags = ['-logfile', 'out_%.log'] run_cxx(legion_hdf_cxx_tests, flags, launcher, root_dir, bin_dir, env, thread_count) def run_test_fuzzer(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): env = dict(list(env.items()) + [('WARN_AS_ERROR', '0')]) fuzz_dir = os.path.join(tmp_dir, 'fuzz-tester') cmd(['git', 'clone', 'https://github.com/StanfordLegion/fuzz-tester', fuzz_dir]) cmd(['python', 'main.py'], env=env, cwd=fuzz_dir) def run_test_realm(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): test_dir = os.path.join(root_dir, 'test/realm') cmd(['make', '-C', test_dir, 'DEBUG=0', 'SHARED_LOWLEVEL=0', 'USE_CUDA=0', 'USE_GASNET=0', 'clean'], env=env) cmd(['make', '-C', test_dir, 'DEBUG=0', 'SHARED_LOWLEVEL=0', 'USE_CUDA=0', 'USE_GASNET=0', 'run_all'], env=env) perf_dir = os.path.join(root_dir, 'test/performance/realm') cmd(['make', '-C', perf_dir, 'DEBUG=0', 'SHARED_LOWLEVEL=0', 'clean_all'], env=env) cmd(['make', '-C', perf_dir, 'DEBUG=0', 'SHARED_LOWLEVEL=0', 'run_all'], env=env) def run_test_external(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): flags = ['-logfile', 'out_%.log'] # Fast Direct Solver # Contact: Chao Chen <cchen10@stanford.edu> solver_dir = os.path.join(tmp_dir, 'fastSolver2') cmd(['git', 'clone', 'https://github.com/Charles-Chao-Chen/fastSolver2.git', solver_dir]) solver = [[os.path.join(solver_dir, 'spmd_benchMark/solver'), ['-machine', '1', '-core', '8', '-mtxlvl', '6', '-ll:cpu', '8']]] run_cxx(solver, flags, launcher, root_dir, None, env, thread_count) # Parallel Research Kernels: Stencil # Contact: Wonchan Lee <wonchan@cs.stanford.edu> prk_dir = os.path.join(tmp_dir, 'prk') cmd(['git', 'clone', 'https://github.com/magnatelee/PRK.git', prk_dir]) # This uses a custom Makefile that requires additional # configuration. Rather than go to that trouble it's easier to # just use a copy of the standard Makefile template. stencil_dir = os.path.join(prk_dir, 'LEGION', 'Stencil') stencil_env = dict(list(env.items()) + [ ('OUTFILE', 'stencil'), ('GEN_SRC', 'stencil.cc'), ('CC_FLAGS', (env['CC_FLAGS'] if 'CC_FLAGS' in env else '') + ' -DRADIUS=2 -DRESTRICT_KEYWORD -DDISABLE_BARRIER_MIGRATION'), ]) makefile = os.path.join(root_dir, 'apps/Makefile.template') cmd(['make', '-f', makefile, '-C', stencil_dir, '-j', str(thread_count)], env=stencil_env) stencil = os.path.join(stencil_dir, 'stencil') cmd([stencil, '4', '10', '1000']) # SNAP # Contact: Mike Bauer <mbauer@nvidia.com> snap_dir = os.path.join(tmp_dir, 'snap') cmd(['git', 'clone', 'https://github.com/StanfordLegion/Legion-SNAP.git', snap_dir]) # This can't handle flags before application arguments, so place # them after. snap = [[os.path.join(snap_dir, 'src/snap'), [os.path.join(snap_dir, 'input/mms.in')] + flags]] run_cxx(snap, [], launcher, root_dir, None, env, thread_count) def run_test_private(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): flags = ['-logfile', 'out_%.log'] # MiniAero # Contact: Wonchan Lee <wonchan@cs.stanford.edu> miniaero_dir = os.path.join(tmp_dir, 'miniaero-spmd') cmd(['git', 'clone', '-b', 'spmd_flattened_superblocks', 'git@github.com:magnatelee/miniaero-spmd.git', miniaero_dir]) cmd(['make', '-C', miniaero_dir, '-j', str(thread_count)], env=env, cwd=miniaero_dir) for test in ['3D_Sod', '3D_Sod_2nd_Order' # These tests take a long time so skip them by default. # , 'FlatPlate', 'Ramp' ]: test_dir = os.path.join(miniaero_dir, 'tests', test) cmd([os.path.join(test_dir, 'test.sh')], env=env, cwd=test_dir) def hostname(): return subprocess.check_output(['hostname']).strip() def git_commit_id(repo_dir): return subprocess.check_output( ['git', 'rev-parse', 'HEAD'], cwd=repo_dir).strip() def git_branch_name(repo_dir): proc = subprocess.Popen( ['git', 'symbolic-ref', '--short', 'HEAD'], cwd=repo_dir, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, errors = proc.communicate() if proc.returncode == 0: return output.strip() return None def run_test_perf(launcher, root_dir, tmp_dir, bin_dir, env, thread_count): flags = ['-logfile', 'out_%.log'] # Performance test configuration: metadata = { 'host': (os.environ['CI_RUNNER_DESCRIPTION'] if 'CI_RUNNER_DESCRIPTION' in os.environ else hostname()), 'commit': (os.environ['CI_BUILD_REF'] if 'CI_BUILD_REF' in os.environ else git_commit_id(root_dir)), 'branch': (os.environ['CI_BUILD_REF_NAME'] if 'CI_BUILD_REF_NAME' in os.environ else git_branch_name(root_dir)), } cxx_measurements = { # Hack: Use the command name as the benchmark name. 'benchmark': { 'type': 'argv', 'index': 0, 'filter': 'basename', }, # Capture command line arguments following flags. 'argv': { 'type': 'argv', 'start': 1 + len(flags), }, # Record running time in seconds. 'time_seconds': { 'type': 'regex', 'pattern': r'^ELAPSED TIME\s*=\s*(.*) s$', 'multiline': True, } } regent_measurements = { # Hack: Use the command name as the benchmark name. 'benchmark': { 'type': 'argv', 'index': 1, 'filter': 'basename', }, # Capture command line arguments following flags. 'argv': { 'type': 'argv', 'start': 2,# + len(flags), # FIXME: Skipping flags, see below. }, # Record running time in seconds. 'time_seconds': { 'type': 'command', 'args': [ os.path.join(root_dir, 'language/scripts/summarize.py'), '--machine-readable', '-', ], } } env = dict(list(env.items()) + [ ('PERF_OWNER', 'StanfordLegion'), ('PERF_REPOSITORY', 'perf-data'), ('PERF_METADATA', json.dumps(metadata)), ]) cxx_env = dict(list(env.items()) + [ ('PERF_MEASUREMENTS', json.dumps(cxx_measurements)), # Launch through perf.py ('PERF_LAUNCHER', ' '.join(launcher)), ('LAUNCHER', ''), ]) regent_env = dict(list(env.items()) + [ ('PERF_MEASUREMENTS', json.dumps(regent_measurements)), # Launch through regent.py ('PERF_LAUNCHER', ''), ('LAUNCHER', ' '.join(launcher)), ]) # Build Regent first to avoid recompiling later. cmd([os.path.join(root_dir, 'language/travis.py'), '--install-only'], env=env) # Run Legion C++ performance tests. runner = os.path.join(root_dir, 'perf.py') launcher = [runner] # Note: LAUNCHER is still passed via the environment run_cxx(legion_cxx_perf_tests, flags, launcher, root_dir, bin_dir, cxx_env, thread_count) # Run Regent performance tests. regent_path = os.path.join(root_dir, 'language/regent.py') # FIXME: PENNANT can't handle the -logfile flag coming first, so just skip it. run_regent(regent_perf_tests, [], [runner, regent_path], root_dir, regent_env, thread_count) # Render the final charts. subprocess.check_call( [os.path.join(root_dir, 'tools', 'perf_chart.py'), 'https://github.com/StanfordLegion/perf-data.git'], env=env) def build_cmake(root_dir, tmp_dir, env, thread_count, test_legion_cxx, test_perf): build_dir = os.path.join(tmp_dir, 'build') install_dir = os.path.join(tmp_dir, 'install') os.mkdir(build_dir) os.mkdir(install_dir) cmd(['cmake', '-DCMAKE_INSTALL_PREFIX=%s' % install_dir] + (['-DLegion_BUILD_TUTORIAL=ON', '-DLegion_BUILD_EXAMPLES=ON', '-DLegion_BUILD_TESTS=ON', ] if test_legion_cxx or test_perf else []) + [root_dir], env=env, cwd=build_dir) cmd(['make', '-C', build_dir, '-j', str(thread_count)], env=env) cmd(['make', '-C', build_dir, 'install'], env=env) return os.path.join(build_dir, 'bin') def clean_cxx(tests, root_dir, env, thread_count): for test_file, test_flags in tests: test_dir = os.path.dirname(os.path.join(root_dir, test_file)) cmd(['make', '-C', test_dir, 'clean'], env=env) def build_make_clean(root_dir, env, thread_count, test_legion_cxx, test_perf, test_external, test_private): # External and private also require cleaning, even though they get # built separately. if test_legion_cxx or test_perf or test_external or test_private: clean_cxx(legion_cxx_tests, root_dir, env, thread_count) def option_enabled(option, options, var_prefix='', default=True): if options is not None: return option in options option_var = '%s%s' % (var_prefix, option.upper()) if option_var in os.environ: return os.environ[option_var] == '1' return default class Stage(object): __slots__ = ['name', 'begin_time'] def __init__(self, name): self.name = name def __enter__(self): self.begin_time = datetime.datetime.now() print() print('#'*60) print('### Entering Stage: %s' % self.name) print('#'*60) print() sys.stdout.flush() def __exit__(self, exc_type, exc_val, exc_tb): end_time = datetime.datetime.now() print() print('#'*60) print('### Exiting Stage: %s' % self.name) print('### * Exception Type: %s' % exc_type) print('### * Elapsed Time: %s' % (end_time - self.begin_time)) print('#'*60) print() sys.stdout.flush() def report_mode(test_regent, test_legion_cxx, test_fuzzer, test_realm, test_external, test_private, test_perf, use_gasnet, use_cuda, use_llvm, use_hdf, use_spy, use_cmake, use_rdir): print() print('#'*60) print('### Test Suite Configuration') print('###') print('### Running Tests:') print('### * Regent: %s' % test_regent) print('### * Legion C++: %s' % test_legion_cxx) print('### * Fuzzer: %s' % test_fuzzer) print('### * Realm: %s' % test_realm) print('### * External: %s' % test_external) print('### * Private: %s' % test_private) print('### * Perf: %s' % test_perf) print('###') print('### Build Flags:') print('### * GASNet: %s' % use_gasnet) print('### * CUDA: %s' % use_cuda) print('### * LLVM: %s' % use_llvm) print('### * HDF5: %s' % use_hdf) print('### * SPY: %s' % use_spy) print('### * CMake: %s' % use_cmake) print('### * RDIR: %s' % use_rdir) print('#'*60) print() sys.stdout.flush() def run_tests(test_modules=None, debug=True, use_features=None, launcher=None, thread_count=None, root_dir=None, keep_tmp_dir=False, verbose=False): if thread_count is None: thread_count = multiprocessing.cpu_count() if root_dir is None: root_dir = os.path.dirname(os.path.realpath(__file__)) # Determine which test modules to run. def module_enabled(module, default=True): return option_enabled(module, test_modules, 'TEST_', default) test_regent = module_enabled('regent') test_legion_cxx = module_enabled('legion_cxx') test_fuzzer = module_enabled('fuzzer', debug) test_realm = module_enabled('realm', not debug) test_external = module_enabled('external', False) test_private = module_enabled('private', False) test_perf = module_enabled('perf', False) # Determine which features to build with. def feature_enabled(feature, default=True): return option_enabled(feature, use_features, 'USE_', default) use_gasnet = feature_enabled('gasnet', False) use_cuda = feature_enabled('cuda', False) use_llvm = feature_enabled('llvm', False) use_hdf = feature_enabled('hdf', False) use_spy = feature_enabled('spy', False) use_cmake = feature_enabled('cmake', False) use_rdir = feature_enabled('rdir', True) if test_perf and debug: raise Exception('Performance tests requested but DEBUG is enabled') if use_gasnet and launcher is None: raise Exception('GASNet is enabled but launcher is not set (use --launcher or LAUNCHER)') launcher = launcher.split() if launcher is not None else [] # Normalize the test environment. env = dict(list(os.environ.items()) + [ ('DEBUG', '1' if debug else '0'), ('LAUNCHER', ' '.join(launcher)), ('USE_GASNET', '1' if use_gasnet else '0'), ('USE_CUDA', '1' if use_cuda else '0'), ('USE_LLVM', '1' if use_llvm else '0'), ('USE_HDF', '1' if use_hdf else '0'), ('TEST_HDF', '1' if use_hdf else '0'), ('USE_SPY', '1' if use_spy else '0'), ('TEST_SPY', '1' if use_spy else '0'), ('USE_RDIR', '1' if use_rdir else '0'), ('LG_RT_DIR', os.path.join(root_dir, 'runtime')), ]) report_mode(test_regent, test_legion_cxx, test_fuzzer, test_realm, test_external, test_private, test_perf, use_gasnet, use_cuda, use_llvm, use_hdf, use_spy, use_cmake, use_rdir) tmp_dir = tempfile.mkdtemp(dir=root_dir) if verbose: print('Using build directory: %s' % tmp_dir) print() try: # Build tests. with Stage('build'): if use_cmake: bin_dir = build_cmake( root_dir, tmp_dir, env, thread_count, test_legion_cxx, test_perf) else: # With GNU Make, builds happen inline. But clean here. build_make_clean( root_dir, env, thread_count, test_legion_cxx, test_perf, # These configurations also need to be cleaned first. test_external, test_private) bin_dir = None # Run tests. if test_regent: with Stage('regent'): run_test_regent(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) if test_legion_cxx: with Stage('legion_cxx'): run_test_legion_cxx(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) if use_hdf: run_test_legion_hdf_cxx(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) if test_fuzzer: with Stage('fuzzer'): run_test_fuzzer(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) if test_realm: with Stage('realm'): run_test_realm(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) if test_external: with Stage('external'): run_test_external(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) if test_private: with Stage('private'): run_test_private(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) if test_perf: with Stage('perf'): run_test_perf(launcher, root_dir, tmp_dir, bin_dir, env, thread_count) finally: if keep_tmp_dir: print('Leaving build directory:') print(' %s' % tmp_dir) else: if verbose: print('Removing build directory:') print(' %s' % tmp_dir) shutil.rmtree(tmp_dir) report_mode(test_regent, test_legion_cxx, test_fuzzer, test_realm, test_external, test_private, test_perf, use_gasnet, use_cuda, use_llvm, use_hdf, use_spy, use_cmake, use_rdir) def driver(): parser = argparse.ArgumentParser( description = 'Legion test suite') # What tests to run: parser.add_argument( '--test', dest='test_modules', action='append', choices=['regent', 'legion_cxx', 'fuzzer', 'realm', 'external', 'private', 'perf'], default=None, help='Test modules to run (also via TEST_*).') # Build options: parser.add_argument( '--debug', dest='debug', action='store_true', default=os.environ['DEBUG'] == '1' if 'DEBUG' in os.environ else True, help='Build Legion in debug mode (also via DEBUG).') parser.add_argument( '--use', dest='use_features', action='append', choices=['gasnet', 'cuda', 'llvm', 'hdf', 'spy', 'cmake', 'rdir'], default=None, help='Build Legion with features (also via USE_*).') parser.add_argument( '--launcher', dest='launcher', action='store', default=os.environ['LAUNCHER'] if 'LAUNCHER' in os.environ else None, help='Launcher for Legion tests (also via LAUNCHER).') parser.add_argument( '-C', '--directory', dest='root_dir', metavar='DIR', action='store', required=False, help='Legion root directory.') parser.add_argument( '-j', dest='thread_count', nargs='?', type=int, help='Number threads used to compile.') parser.add_argument( '--keep', dest='keep_tmp_dir', action='store_true', help='Keep temporary directory.') parser.add_argument( '-v', '--verbose', dest='verbose', action='store_true', help='Print more debugging information.') args = parser.parse_args() run_tests(**vars(args)) if __name__ == '__main__': driver()
{ "content_hash": "1f869b3b2e7c1f964eb44e1b578ea74b", "timestamp": "", "source": "github", "line_count": 544, "max_line_length": 135, "avg_line_length": 41.76654411764706, "alnum_prop": 0.5844373046960961, "repo_name": "sdalton1/legion", "id": "548e72f852729c5b8e8405899c258764bdd9ae1c", "size": "23330", "binary": false, "copies": "1", "ref": "refs/heads/stable", "path": "test.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "162932" }, { "name": "C++", "bytes": "9794902" }, { "name": "CMake", "bytes": "134317" }, { "name": "Cuda", "bytes": "9992" }, { "name": "Lua", "bytes": "93790" }, { "name": "Makefile", "bytes": "60540" }, { "name": "Objective-C", "bytes": "5007" }, { "name": "Perl", "bytes": "235404" }, { "name": "Perl6", "bytes": "55956" }, { "name": "Python", "bytes": "336322" }, { "name": "Rouge", "bytes": "1400496" }, { "name": "Shell", "bytes": "161" }, { "name": "Terra", "bytes": "1139181" } ], "symlink_target": "" }
from django.contrib import admin from shipping.models import Country class CountryAdmin(admin.ModelAdmin): list_display = ('__str__', 'full_name', 'code', 'code_a2', 'code_a3') search_fields = ['name', 'full_name', 'code', 'code_a2', 'code_a3'] admin.site.register(Country)
{ "content_hash": "444c5be43efde268f49ea0f83ff6569a", "timestamp": "", "source": "github", "line_count": 9, "max_line_length": 73, "avg_line_length": 31.555555555555557, "alnum_prop": 0.6795774647887324, "repo_name": "juntatalor/qexx", "id": "560c7dd910f7dcc2db3b0ad54c5fbaf78862fe51", "size": "284", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "shipping/admin.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "6277" }, { "name": "HTML", "bytes": "54211" }, { "name": "JavaScript", "bytes": "8331" }, { "name": "Python", "bytes": "219660" } ], "symlink_target": "" }
import os import platform import sys from distutils import sysconfig from distutils.command import build from distutils.command.build_ext import build_ext from distutils.spawn import spawn from setuptools import Extension, find_packages, setup import versioneer _version_module = None try: from packaging import version as _version_module except ImportError: try: from setuptools._vendor.packaging import version as _version_module except ImportError: pass min_python_version = "3.7" max_python_version = "3.11" # exclusive min_numpy_build_version = "1.11" min_numpy_run_version = "1.18" min_llvmlite_version = "0.40.0dev0" max_llvmlite_version = "0.41" if sys.platform.startswith('linux'): # Patch for #2555 to make wheels without libpython sysconfig.get_config_vars()['Py_ENABLE_SHARED'] = 0 def _guard_py_ver(): if _version_module is None: return parse = _version_module.parse min_py = parse(min_python_version) max_py = parse(max_python_version) cur_py = parse('.'.join(map(str, sys.version_info[:3]))) if not min_py <= cur_py < max_py: msg = ('Cannot install on Python version {}; only versions >={},<{} ' 'are supported.') raise RuntimeError(msg.format(cur_py, min_py, max_py)) _guard_py_ver() class build_doc(build.build): description = "build documentation" def run(self): spawn(['make', '-C', 'docs', 'html']) versioneer.VCS = 'git' versioneer.versionfile_source = 'numba/_version.py' versioneer.versionfile_build = 'numba/_version.py' versioneer.tag_prefix = '' versioneer.parentdir_prefix = 'numba-' cmdclass = versioneer.get_cmdclass() cmdclass['build_doc'] = build_doc extra_link_args = [] install_name_tool_fixer = [] if sys.platform == 'darwin': install_name_tool_fixer += ['-headerpad_max_install_names'] if platform.machine() == 'ppc64le': extra_link_args += ['-pthread'] build_ext = cmdclass.get('build_ext', build_ext) numba_be_user_options = [ ('werror', None, 'Build extensions with -Werror'), ('wall', None, 'Build extensions with -Wall'), ('noopt', None, 'Build extensions without optimization'), ] class NumbaBuildExt(build_ext): user_options = build_ext.user_options + numba_be_user_options boolean_options = build_ext.boolean_options + ['werror', 'wall', 'noopt'] def initialize_options(self): super().initialize_options() self.werror = 0 self.wall = 0 self.noopt = 0 def run(self): extra_compile_args = [] if self.noopt: if sys.platform == 'win32': extra_compile_args.append('/Od') else: extra_compile_args.append('-O0') if self.werror: extra_compile_args.append('-Werror') if self.wall: extra_compile_args.append('-Wall') for ext in self.extensions: ext.extra_compile_args.extend(extra_compile_args) super().run() cmdclass['build_ext'] = NumbaBuildExt def is_building(): """ Parse the setup.py command and return whether a build is requested. If False is returned, only an informational command is run. If True is returned, information about C extensions will have to be passed to the setup() function. """ if len(sys.argv) < 2: # User forgot to give an argument probably, let setuptools handle that. return True build_commands = ['build', 'build_py', 'build_ext', 'build_clib' 'build_scripts', 'install', 'install_lib', 'install_headers', 'install_scripts', 'install_data', 'sdist', 'bdist', 'bdist_dumb', 'bdist_rpm', 'bdist_wininst', 'check', 'build_doc', 'bdist_wheel', 'bdist_egg', 'develop', 'easy_install', 'test'] return any(bc in sys.argv[1:] for bc in build_commands) def get_ext_modules(): """ Return a list of Extension instances for the setup() call. """ # Note we don't import Numpy at the toplevel, since setup.py # should be able to run without Numpy for pip to discover the # build dependencies import numpy.distutils.misc_util as np_misc # Inject required options for extensions compiled against the Numpy # C API (include dirs, library dirs etc.) np_compile_args = np_misc.get_info('npymath') ext_devicearray = Extension(name='numba._devicearray', sources=['numba/_devicearray.cpp'], depends=['numba/_pymodule.h', 'numba/_devicearray.h'], include_dirs=['numba'], extra_compile_args=['-std=c++11'], ) ext_dynfunc = Extension(name='numba._dynfunc', sources=['numba/_dynfuncmod.c'], depends=['numba/_pymodule.h', 'numba/_dynfunc.c']) ext_dispatcher = Extension(name="numba._dispatcher", sources=['numba/_dispatcher.cpp', 'numba/_typeof.cpp', 'numba/_hashtable.cpp', 'numba/core/typeconv/typeconv.cpp'], depends=["numba/_pymodule.h", "numba/_typeof.h", "numba/_hashtable.h"], extra_compile_args=['-std=c++11'], **np_compile_args) ext_helperlib = Extension(name="numba._helperlib", sources=["numba/_helpermod.c", "numba/cext/utils.c", "numba/cext/dictobject.c", "numba/cext/listobject.c", ], # numba/_random.c needs pthreads extra_link_args=install_name_tool_fixer + extra_link_args, depends=["numba/_pymodule.h", "numba/_helperlib.c", "numba/_lapack.c", "numba/_npymath_exports.c", "numba/_random.c", "numba/mathnames.inc", ], **np_compile_args) ext_typeconv = Extension(name="numba.core.typeconv._typeconv", sources=["numba/core/typeconv/typeconv.cpp", "numba/core/typeconv/_typeconv.cpp"], depends=["numba/_pymodule.h"], extra_compile_args=['-std=c++11'], ) ext_np_ufunc = Extension(name="numba.np.ufunc._internal", sources=["numba/np/ufunc/_internal.c"], depends=["numba/np/ufunc/_ufunc.c", "numba/np/ufunc/_internal.h", "numba/_pymodule.h"], **np_compile_args) ext_npyufunc_num_threads = Extension(name="numba.np.ufunc._num_threads", sources=[ "numba/np/ufunc/_num_threads.c"], depends=["numba/_pymodule.h"], ) ext_np_ufunc_backends = [] def check_file_at_path(path2file): """ Takes a list as a path, a single glob (*) is permitted as an entry which indicates that expansion at this location is required (i.e. version might not be known). """ found = None path2check = [os.path.split(os.path.split(sys.executable)[0])[0]] path2check += [os.getenv(n, '') for n in ['CONDA_PREFIX', 'PREFIX']] if sys.platform.startswith('win'): path2check += [os.path.join(p, 'Library') for p in path2check] for p in path2check: if p: if '*' in path2file: globloc = path2file.index('*') searchroot = os.path.join(*path2file[:globloc]) try: potential_locs = os.listdir(os.path.join(p, searchroot)) except BaseException: continue searchfor = path2file[globloc + 1:] for x in potential_locs: potpath = os.path.join(p, searchroot, x, *searchfor) if os.path.isfile(potpath): found = p # the latest is used elif os.path.isfile(os.path.join(p, *path2file)): found = p # the latest is used return found # Set various flags for use in TBB and openmp. On OSX, also find OpenMP! have_openmp = True if sys.platform.startswith('win'): if 'MSC' in sys.version: cpp11flags = [] ompcompileflags = ['-openmp'] omplinkflags = [] else: # For non-MSVC toolchain e.g. gcc and clang with mingw cpp11flags = ['-std=c++11'] ompcompileflags = ['-fopenmp'] omplinkflags = ['-fopenmp'] elif sys.platform.startswith('darwin'): cpp11flags = ['-std=c++11'] # This is a bit unusual but necessary... # llvm (clang) OpenMP is used for headers etc at compile time # Intel OpenMP (libiomp5) provides the link library. # They are binary compatible and may not safely coexist in a process, as # libiomp5 is more prevalent and often linked in for NumPy it is used # here! ompcompileflags = ['-fopenmp'] omplinkflags = ['-fopenmp=libiomp5'] omppath = ['lib', 'clang', '*', 'include', 'omp.h'] have_openmp = check_file_at_path(omppath) else: cpp11flags = ['-std=c++11'] ompcompileflags = ['-fopenmp'] if platform.machine() == 'ppc64le': omplinkflags = ['-fopenmp'] else: omplinkflags = ['-fopenmp'] # Disable tbb if forced by user with NUMBA_DISABLE_TBB=1 if os.getenv("NUMBA_DISABLE_TBB"): print("TBB disabled") else: # Search for Intel TBB, first check env var TBBROOT then conda locations tbb_root = os.getenv('TBBROOT') if not tbb_root: tbb_root = check_file_at_path(['include', 'tbb', 'tbb.h']) if tbb_root: print("Using Intel TBB from:", tbb_root) ext_np_ufunc_tbb_backend = Extension( name='numba.np.ufunc.tbbpool', sources=[ 'numba/np/ufunc/tbbpool.cpp', 'numba/np/ufunc/gufunc_scheduler.cpp', ], depends=['numba/np/ufunc/workqueue.h'], include_dirs=[os.path.join(tbb_root, 'include')], extra_compile_args=cpp11flags, extra_link_args=extra_link_args, libraries=['tbb'], # TODO: if --debug or -g, use 'tbb_debug' library_dirs=[ # for Linux os.path.join(tbb_root, 'lib', 'intel64', 'gcc4.4'), # for MacOS os.path.join(tbb_root, 'lib'), # for Windows os.path.join(tbb_root, 'lib', 'intel64', 'vc_mt'), ], ) ext_np_ufunc_backends.append(ext_np_ufunc_tbb_backend) else: print("TBB not found") # Disable OpenMP if forced by user with NUMBA_DISABLE_OPENMP=1 if os.getenv('NUMBA_DISABLE_OPENMP'): print("OpenMP disabled") elif have_openmp: print("Using OpenMP from:", have_openmp) # OpenMP backed work queue ext_np_ufunc_omppool_backend = Extension( name='numba.np.ufunc.omppool', sources=[ 'numba/np/ufunc/omppool.cpp', 'numba/np/ufunc/gufunc_scheduler.cpp', ], depends=['numba/np/ufunc/workqueue.h'], extra_compile_args=ompcompileflags + cpp11flags, extra_link_args=omplinkflags, ) ext_np_ufunc_backends.append(ext_np_ufunc_omppool_backend) else: print("OpenMP not found") # Build the Numba workqueue implementation irrespective of whether the TBB # version is built. Users can select a backend via env vars. ext_np_ufunc_workqueue_backend = Extension( name='numba.np.ufunc.workqueue', sources=['numba/np/ufunc/workqueue.c', 'numba/np/ufunc/gufunc_scheduler.cpp'], depends=['numba/np/ufunc/workqueue.h'], extra_link_args=extra_link_args) ext_np_ufunc_backends.append(ext_np_ufunc_workqueue_backend) ext_mviewbuf = Extension(name='numba.mviewbuf', extra_link_args=install_name_tool_fixer, sources=['numba/mviewbuf.c']) ext_nrt_python = Extension(name='numba.core.runtime._nrt_python', sources=['numba/core/runtime/_nrt_pythonmod.c', 'numba/core/runtime/nrt.cpp'], depends=['numba/core/runtime/nrt.h', 'numba/_pymodule.h', 'numba/core/runtime/_nrt_python.c'], **np_compile_args) ext_jitclass_box = Extension(name='numba.experimental.jitclass._box', sources=['numba/experimental/jitclass/_box.c'], depends=['numba/experimental/_pymodule.h'], ) ext_cuda_extras = Extension(name='numba.cuda.cudadrv._extras', sources=['numba/cuda/cudadrv/_extras.c'], depends=['numba/_pymodule.h'], include_dirs=["numba"]) ext_modules = [ext_dynfunc, ext_dispatcher, ext_helperlib, ext_typeconv, ext_np_ufunc, ext_npyufunc_num_threads, ext_mviewbuf, ext_nrt_python, ext_jitclass_box, ext_cuda_extras, ext_devicearray] ext_modules += ext_np_ufunc_backends return ext_modules packages = find_packages(include=["numba", "numba.*"]) build_requires = ['numpy >={}'.format(min_numpy_build_version)] install_requires = [ 'llvmlite >={},<{}'.format(min_llvmlite_version, max_llvmlite_version), 'numpy >={}'.format(min_numpy_run_version), 'setuptools <60', 'importlib_metadata; python_version < "3.9"', ] metadata = dict( name='numba', description="compiling Python code using LLVM", version=versioneer.get_version(), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Software Development :: Compilers", ], package_data={ # HTML templates for type annotations "numba.core.annotations": ["*.html"], # Various test data "numba.cuda.tests.cudadrv.data": ["*.ptx", "*.cu"], "numba.cuda.tests.doc_examples.ffi": ["*.cu"], "numba.tests": ["pycc_distutils_usecase/*.py"], # Some C files are needed by pycc "numba": ["*.c", "*.h"], "numba.pycc": ["*.c", "*.h"], "numba.core.runtime": ["*.cpp", "*.c", "*.h"], "numba.cext": ["*.c", "*.h"], # numba gdb hook init command language file "numba.misc": ["cmdlang.gdb"], "numba.typed": ["py.typed"], }, scripts=["bin/numba"], url="https://numba.pydata.org", packages=packages, setup_requires=build_requires, install_requires=install_requires, python_requires=">={}".format(min_python_version), license="BSD", cmdclass=cmdclass, ) with open('README.rst') as f: metadata['long_description'] = f.read() if is_building(): metadata['ext_modules'] = get_ext_modules() setup(**metadata)
{ "content_hash": "50f31465ccbe60cfbedcd909ab9a8ba4", "timestamp": "", "source": "github", "line_count": 431, "max_line_length": 80, "avg_line_length": 38.832946635730856, "alnum_prop": 0.525840951185995, "repo_name": "cpcloud/numba", "id": "298b3695f6b49575fd3d30a7fa88914ecc64bb8e", "size": "16737", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "setup.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Batchfile", "bytes": "3699" }, { "name": "C", "bytes": "573767" }, { "name": "C++", "bytes": "166526" }, { "name": "Cuda", "bytes": "1110" }, { "name": "GDB", "bytes": "101" }, { "name": "HTML", "bytes": "3464" }, { "name": "Python", "bytes": "9320077" }, { "name": "Shell", "bytes": "13454" } ], "symlink_target": "" }
""" Module morphdemo -- Demonstrations ------------------------------------------------------------------- morphdemo is a set of Demonstrations for pymorph package ------------------------------------------------------------------- airport() -- Detecting runways in satellite airport imagery. area() -- Remove objects with small areas in binary images. asp() -- Detect the missing aspirin tablets in a card of aspirin tablets. beef() -- Detect the lean meat region in a beef steak image. blob() -- Demonstrate blob measurements and display. brain() -- Extract the lateral ventricle from an MRI image of the brain. calc() -- Extract the keys of a calculator. cells() -- Extract blood cells and separate them. chickparts() -- Classify chicken parts in breast, legs+tights and wings concrete() -- Aggregate and anhydrous phase extraction from a concrete section observed by a SEM image. cookies() -- Detect broken rounded biscuits. cornea() -- Cornea cells marking. fabric() -- Detection of vertical weave in fabrics. fila() -- Detect Filarial Worms. flatzone() -- Flat-zone image simplification by connected filtering. flow() -- Detect water in a static image of an oil-water flow experiment. gear() -- Detect the teeth of a gear holecenter() -- Hole center misalignment in PCB. labeltext() -- Segmenting letters, words and paragraphs. leaf() -- Segment a leaf from the background lith() -- Detect defects in a microelectronic circuit. pcb() -- Decompose a printed circuit board in its main parts. pieces() -- Classify two dimensional pieces. potatoes() -- Grade potato quality by shape and skin spots. robotop() -- Detect marks on a robot. ruler() -- Detect defects in a ruler. soil() -- Detect fractures in soil. """ from pymorph import * import numpy print '''\ *********************** WARNING ****************************** The demo is not as well maintained as the rest of the package. *********************** WARNING ****************************** The demo has not been updated to the newer interfaces. ''' def readgray(imgname): import pylab return pylab.imread('pymorph/data/' + imgname) def show(f, f1=None, f2=None, f3=None, f4=None, f5=None, f6=None): import pylab pylab.ion() pylab.imshow(overlay(f,f1,f2,f3,f4,f5,f6)) pylab.draw() # ========================================================================= # # airport - Detecting runways in satellite airport imagery. # # ========================================================================= def airport(): print print '''Detecting runways in satellite airport imagery.''' print # print '=========================================================================' print ''' The satellite image of the airport is read. ''' print '=========================================================================' #0 print ''' f = readgray('galeao.jpg') show(f)''' f = readgray('galeao.jpg') show(f) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The disk of radius 5 (diameter 11) is chosen to detect features smaller than this size. For visualization, the top-hat image is brightened by 150 gray-levels. ''' print '=========================================================================' #0 print ''' th=openth(f,sedisk(5)) show(addm(th, 150))''' th=openth(f,sedisk(5)) show(addm(th, 150)) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' A thresholding is applied to detect the features enhanced by the top-hat. This is a standard top-hat sequence. ''' print '=========================================================================' #0 print ''' bin=threshad(th,30) show(f,bin)''' bin=threshad(th,30) show(f,bin) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The thinning (red) and pruning (green) detect closed structures which characterized the runways structure. The area open (blue) selects only very long features, with more than 1000 pixels. ''' print '=========================================================================' #0 print ''' m1=thin(bin) m2=thin(m1,endpoints()) m=areaopen(m2,1000,sebox()) show(f,m1,m2,m)''' m1=thin(bin) m2=thin(m1,endpoints()) m=areaopen(m2,1000,sebox()) show(f,m1,m2,m) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The previous result is a sample of the runway pixels. It is used as a marker for gray-scale morphological reconstruction. The runways are enhanced in the reconstructed image. ''' print '=========================================================================' #0 print ''' g=infrec(gray(m), th) show(g)''' g=infrec(gray(m), th) show(g) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' A thresholding is applied to the reconstructed image, detecting the airport runways. ''' print '=========================================================================' #0 print ''' final=threshad(g, 20) show(f, final)''' final=threshad(g, 20) show(f, final) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # area - Remove objects with small areas in binary images. # # ========================================================================= def area(): print print '''Remove objects with small areas in binary images.''' print # print '=========================================================================' print ''' The binary image to be processed is read. ''' print '=========================================================================' #0 print ''' a = readgray('circuit_bw.tif') show(a)''' a = readgray('circuit_bw.tif') show(a) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The procedure areaopen removes the objects with area less than the specified parameter (i.e., 200). ''' print '=========================================================================' #0 print ''' b = areaopen(a,200) show(b)''' b = areaopen(a,200) show(b) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' For displaying purposes the filtered image is superposed over the original image. ''' print '=========================================================================' #0 print ''' show(a,b)''' show(a,b) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # asp - Detect the missing aspirin tablets in a card of aspirin tablets. # # ========================================================================= def asp(): print print '''Detect the missing aspirin tablets in a card of aspirin tablets.''' print # print '=========================================================================' print ''' The aspirin tablet binary image is read. ''' print '=========================================================================' #0 print ''' a = readgray('astablet.tif') show(a)''' a = readgray('astablet.tif') show(a) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The image can be model as a topographical surface where white regions corresponds to high altitude and dark regions to lower altitute. The regional maxima of the image is normally very noisy as can be seen below. ''' print '=========================================================================' #0 print ''' b = surf(a) show(b) c = regmax(a,sebox()) show(b,c)''' b = surf(a) show(b) c = regmax(a,sebox()) show(b,c) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Opening the original image by a disk a little smaller than the tablets removes all the noisy regional maxima. The only regional maxima in the opened image are the aspirin tablets as they are the only regionally brighter regions of shape larger than the disk of radius 20 pixels. ''' print '=========================================================================' #0 print ''' d = open(a, sedisk(20)) e = surf(d) show(e) f = regmax(d,sebox()) show(e,f)''' d = open(a, sedisk(20)) e = surf(d) show(e) f = regmax(d,sebox()) show(e,f) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Here it is shown the input and output result. Note that the binary image of the aspirin tablets was obtained using just one parameter: the radius of the circular structuring element. The problem was solved as treating the image formed by circular bright regions. ''' print '=========================================================================' #0 print ''' show(a) show(f)''' show(a) show(f) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # labeltext - Segmenting letters, words and paragraphs. # # ========================================================================= def labeltext(): print print '''Segmenting letters, words and paragraphs.''' print # print '=========================================================================' print ''' The text image is read. ''' print '=========================================================================' #0 print ''' f = readgray('stext.tif') show(f)''' f = readgray('stext.tif') show(f) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The letters are the main connected components in the image. So we use the classical 8-connectivity criteria for identify each letter. ''' print '=========================================================================' #0 print ''' fl=label(f,sebox()) lblshow(fl)''' fl=label(f,sebox()) lblshow(fl) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The words are made of closed letters. In this case we use a connectivity specified by a rectangle structuring element of 7 pixels high and 11 pixels width, so any two pixels that can be hit by this rectangle, belong to the same connected component. The values 7 and 11 were chosen experimentally and depend on the font size. ''' print '=========================================================================' #0 print ''' from numpy.oldnumeric import ones sew = img2se(binary(ones((7,11)))) seshow(sew) fw=label(f,sew) lblshow(fw)''' from numpy.oldnumeric import ones sew = img2se(binary(ones((7,11)))) seshow(sew) fw=label(f,sew) lblshow(fw) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Similarly, paragraphs are closed words. In this case the connectivity is given by a rectangle of 35 by 20 pixels. ''' print '=========================================================================' #0 print ''' sep = img2se(binary(ones((20,35)))) fp=label(f,sep) lblshow(fp)''' sep = img2se(binary(ones((20,35)))) fp=label(f,sep) lblshow(fp) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # beef - Detect the lean meat region in a beef steak image. # # ========================================================================= def beef(): print print '''Detect the lean meat region in a beef steak image.''' print # print '=========================================================================' print ''' The gray-scale image of the beef steak is read. ''' print '=========================================================================' #0 print ''' a = readgray('beef.tif'); show(a);''' a = readgray('beef.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The input image is simplified by the application of a a small closing. The dark area (inner lean part) is closed from the fat white area. ''' print '=========================================================================' #0 print ''' b=close(a,sedisk(2)); show(b);''' b=close(a,sedisk(2)); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The external marker is built from the detection of the complete beef region and the extraction of its internal edge. As the beef is dark, it is detected by a low value threshold. After this threshold, small residual regions are eliminated by the binary areaclose operator. ''' print '=========================================================================' #0 print ''' c = threshad(a,uint8(10)); d = areaclose(c,200); show(d);''' c = threshad(a,uint8(10)); d = areaclose(c,200); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The internal edge generated is 13 points thick. It is created by the residues of an erosion by a large structuring element. ''' print '=========================================================================' #0 print ''' e = gradm(d,secross(1),sebox(13)); show(e);''' e = gradm(d,secross(1),sebox(13)); show(e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The internal marker is a severe erosion of the steak. Both markers are combined by union and displayed as overlay on the gradient image ''' print '=========================================================================' #0 print ''' f= erode(d,secross(80)); g = union(e,f); h = gradm(b); show(h,g);''' f= erode(d,secross(80)); g = union(e,f); h = gradm(b); show(h,g); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Constrained watershed of the gradient of the smoothed image, restricted to the internal and external markers ''' print '=========================================================================' #0 print ''' i=cwatershed(h,g); show(i);''' i=cwatershed(h,g); show(i); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Superposition of the dilated detected contour on the original image. ''' print '=========================================================================' #0 print ''' show(a,dilate(i));''' show(a,dilate(i)); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # blob - Demonstrate blob measurements and display. # # ========================================================================= def blob(): print print '''Demonstrate blob measurements and display.''' print # print '=========================================================================' print ''' The binary image is read and then labeled. The number of blobs is measured as the maximum label value. Both images are displayed. ''' print '=========================================================================' #0 print ''' f = readgray('blob3.tif') fr = label(f) show(f) lblshow(fr,'border') nblobs=stats(fr,'max') print nblobs''' f = readgray('blob3.tif') fr = label(f) show(f) lblshow(fr,'border') nblobs=stats(fr,'max') print nblobs print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The centroids are computed from the labeled image. After, the centroid image is labeled, so that each centroid point has a label value varying from 1 to the maximum number of blobs. For display illustration, the centroids are overlayed on the original blob image on the left and the labeled centroids are enlarged and displayed on the right. ''' print '=========================================================================' #0 print ''' c = blob(fr,'centroid') cr = label(c) show(f,c) lblshow(dilate(cr))''' c = blob(fr,'centroid') cr = label(c) show(f,c) lblshow(dilate(cr)) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' To place a particular number on a particular blob, a number image is generated using the function and converted to a structuring element. A particular centroid is selected by comparing the image with the labeled number. This output image is a binary image with a single point at that centroid. Dilating this image by the structuring element will "stamp" the structuring element on the centroid. ''' print '=========================================================================' #0 print ''' fbin = cmp(cr,'==',uint16(5)) f5 = text('5') print f5 b5 = img2se(f5) fb5 = dilate(fbin,b5) show(dilate(fbin)) show(f,fb5)''' fbin = cmp(cr,'==',uint16(5)) f5 = text('5') print f5 b5 = img2se(f5) fb5 = dilate(fbin,b5) show(dilate(fbin)) show(f,fb5) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' To automate the process just described, a loop scans every label value and "stamp" its number in a final image. The stamps are accumulated with the function. The area is computed and plotted against each label blob number. ''' print '=========================================================================' #0 print ''' facc=subm(f,f) for i in range(1,nblobs+1): fbin = cmp(cr,'==',uint16(i)) fi = text(str(i)) bi = img2se(fi) fbi = dilate(fbin,bi) facc = union(facc,fbi) show(f,facc) darea = blob(fr,'area','data') plot([[darea]], [['style','impulses']])''' facc=subm(f,f) for i in range(1,nblobs+1): fbin = cmp(cr,'==',uint16(i)) fi = text(str(i)) bi = img2se(fi) fbi = dilate(fbin,bi) facc = union(facc,fbi) show(f,facc) darea = blob(fr,'area','data') plot([[darea]], [['style','impulses']]) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # brain - Extract the lateral ventricle from an MRI image of the brain. # # ========================================================================= def brain(): print print '''Extract the lateral ventricle from an MRI image of the brain.''' print # print '=========================================================================' print ''' The MRI image of a brain slice is read. ''' print '=========================================================================' #0 print ''' a = readgray('mribrain.tif'); show(a);''' a = readgray('mribrain.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The ventricle is enhanced using an opening with a disk of radius 10 followed by a reconstruction. ''' print '=========================================================================' #0 print ''' b = open(a,sedisk(10)); c = infrec(b,a); show(b); show(c);''' b = open(a,sedisk(10)); c = infrec(b,a); show(b); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The result of the open by reconstruction is subtracted from the original image. Note that the three operations: open, reconstruction and the subtraction could be done at once using the (open by reconstruction top-hat) function. On the right, the enhanced ventricle is thresholded. ''' print '=========================================================================' #0 print ''' d = subm(a,c); show(d); e = cmp(d,'>=',uint8(50)); show(e);''' d = subm(a,c); show(d); e = cmp(d,'>=',uint8(50)); show(e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Finally, the ventricle is selected as the connected object with area larger than 70 pixels. For visualization purposes, the result of the segmentation is overlayed on the original brain image. ''' print '=========================================================================' #0 print ''' f= areaopen(e,70); show(f); show(a,f);''' f= areaopen(e,70); show(f); show(a,f); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # calc - Extract the keys of a calculator. # # ========================================================================= def calc(): print print '''Extract the keys of a calculator.''' print # print '=========================================================================' print ''' The gray-scale image of the calculator is read. ''' print '=========================================================================' #0 print ''' a = readgray('keyb.tif'); show(a);''' a = readgray('keyb.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The image edges are enhanced by the gradient operator. ''' print '=========================================================================' #0 print ''' b = gradm(a, sebox()); show(b);''' b = gradm(a, sebox()); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The opening top-hat procedure enhances the small objects relatively to its background. In the calculator image, the digits are enhanced. ''' print '=========================================================================' #0 print ''' c = openth(a,sebox(5)); show(c);''' c = openth(a,sebox(5)); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The threshold operator is used to separated the enhanced objects. This procedure is quite robust, since the background was reduced to very low levels with the opening top-hat. ''' print '=========================================================================' #0 print ''' d = threshad(c, uint8(150)); show(d);''' d = threshad(c, uint8(150)); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' In order to have just one object (i.e., connected component) inside each key, a dilation is applied. ''' print '=========================================================================' #0 print ''' e = dilate(d, sebox(3)); show(e);''' e = dilate(d, sebox(3)); show(e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The outside markers are built by taking the watershed (skiz) of the complement of internal markers image. ''' print '=========================================================================' #0 print ''' f = watershed(neg(e)); show(f);''' f = watershed(neg(e)); show(f); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The markers used are the union of the internal and external markers detected. They are displayed as overlay on the gradient image. ''' print '=========================================================================' #0 print ''' g = union(e,f); show(b,g);''' g = union(e,f); show(b,g); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The calculator keys are extracted by applying the watershed operator on the gradient image, constrained by the markers detected. ''' print '=========================================================================' #0 print ''' h = cwatershed(b,g,sebox()); show(h);''' h = cwatershed(b,g,sebox()); show(h); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Superposition of the detected contours on the input image. ''' print '=========================================================================' #0 print ''' show(a,h);''' show(a,h); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # cells - Extract blood cells and separate them. # # ========================================================================= def cells(): print print '''Extract blood cells and separate them.''' print # print '=========================================================================' print ''' First, the blood cells image is read. Then, the gray-scale area open operator is applied for removing small white pores over the cells. ''' print '=========================================================================' #0 print ''' a = readgray('bloodcells.tif'); show(a); b = areaopen(a, 200); show(b);''' a = readgray('bloodcells.tif'); show(a); b = areaopen(a, 200); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The threshold of dark areas produces the segmented image (i.e., the region where there are cells). Then the opening by a small disk performs smoothing of the cells borders. ''' print '=========================================================================' #0 print ''' c = cmp( uint8(0), '<=', b, '<=', uint8(140)); show(c); d = open(c,sedisk(2,'2D','OCTAGON')); show(d);''' c = cmp( uint8(0), '<=', b, '<=', uint8(140)); show(c); d = open(c,sedisk(2,'2D','OCTAGON')); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' A marker for each cell is obtained by dilating the regional maximum of the distance transform. For visualization illustration, the distance transform is viewed as a topographic surface shading on the left and the dilated regional maximum is displayed in read overlayed on the surface view. ''' print '=========================================================================' #0 print ''' e1 = dist(d, sebox(),'EUCLIDEAN'); e2 = surf(e1); show( e2); e3 = regmax(e1); e = dilate(e3); show( e2, e);''' e1 = dist(d, sebox(),'EUCLIDEAN'); e2 = surf(e1); show( e2); e3 = regmax(e1); e = dilate(e3); show( e2, e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The watershed, constrained by the makers image, is applied to the negation of the distance function. The result of this procedure is also called geodesic SKIZ. For visualization, on the left the negate distance function is displayed as a topographic surface, and on the right this surface is superposed by the markers and the detected watershed lines. ''' print '=========================================================================' #0 print ''' f = neg(e1); fs = surf(f); show(fs); g = cwatershed( f, e, sebox()); show(fs, g, e);''' f = neg(e1); fs = surf(f); show(fs); g = cwatershed( f, e, sebox()); show(fs, g, e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The geodesic SKIZ (i.e., watershed division lines) is subtracted from the segmented image, separating the cells. On the left the detected watershed lines is overlayed on the cells binary image, and on the right, the cells image separated using the watershed lines. ''' print '=========================================================================' #0 print ''' show(c,g); h = intersec(c,neg(g)); show(h);''' show(c,g); h = intersec(c,neg(g)); show(h); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The cells that touch the frame of the image are removed. ''' print '=========================================================================' #0 print ''' i = edgeoff(h); show(i);''' i = edgeoff(h); show(i); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Superposition of the contour of the detected cells on the original image. ''' print '=========================================================================' #0 print ''' j=gradm(i); show(a,j);''' j=gradm(i); show(a,j); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # chickparts - Classify chicken parts in breast, legs+tights and wings # # ========================================================================= def chickparts(): print print '''Classify chicken parts in breast, legs+tights and wings''' print # print '=========================================================================' print ''' The input image is read. ''' print '=========================================================================' #0 print ''' a = readgray('chickparts.tif'); show(a);''' a = readgray('chickparts.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Convert to binary objects by thresholding and then labeling the objects. ''' print '=========================================================================' #0 print ''' b = cmp(a,'>=', uint8(100)); show(b); c = label(b); lblshow(c,'border');''' b = cmp(a,'>=', uint8(100)); show(b); c = label(b); lblshow(c,'border'); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Measure the area o each object and put this value as the pixel object value. For displaying purpose, overlay the background as red in the right image below. ''' print '=========================================================================' #0 print ''' d = blob(c,'area'); show(d); show(d, cmp(d,'==',0));''' d = blob(c,'area'); show(d); show(d, cmp(d,'==',0)); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The wings are detected by finding objects with area 100 and 2500 pixels. The tights are selected as connected objects with area between 2500 and 5500 pixels. ''' print '=========================================================================' #0 print ''' wings = cmp( uint16(100),'<=',d, '<=', uint16(2500)); show(wings); tights = cmp( uint16(2500),'<',d, '<=', uint16(5500)); show(tights);''' wings = cmp( uint16(100),'<=',d, '<=', uint16(2500)); show(wings); tights = cmp( uint16(2500),'<',d, '<=', uint16(5500)); show(tights); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The legs+tights have area larger than 5500 and smaller than 8500 pixels and the breast is the largest connected object with area larger than 8500 pixels ''' print '=========================================================================' #0 print ''' legs = cmp( uint16(5500), '<', d, '<=', uint16(8500)); show(legs); breast = cmp( d,'>', uint16(8500)); show(breast);''' legs = cmp( uint16(5500), '<', d, '<=', uint16(8500)); show(legs); breast = cmp( d,'>', uint16(8500)); show(breast); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Overlay the contour of the detected parts over the original image ''' print '=========================================================================' #0 print ''' show(a, gradm(wings), gradm(tights), gradm(legs),gradm(breast));''' show(a, gradm(wings), gradm(tights), gradm(legs),gradm(breast)); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # concrete - Aggregate and anhydrous phase extraction from a concrete section observed by a SEM image. # # ========================================================================= def concrete(): print print '''Aggregate and anhydrous phase extraction from a concrete section observed by a SEM image.''' print # print '=========================================================================' print ''' The SEM image of a polished concrete section is read. The anhydrous phase are the white pores, while the aggregate are the medium-gray homogeneous pores. ''' print '=========================================================================' #0 print ''' f = readgray('csample.jpg') show(f)''' f = readgray('csample.jpg') show(f) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The histogram has a small peak in the white region related to the anhydrous phase. ''' print '=========================================================================' #0 print ''' h = histogram(f) plot([[h]])''' h = histogram(f) plot([[h]]) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The threshold value is extracted using the watershed technique. The aim is to detect the middle valley of the histogram. If the histogram is negated, we need to extract the middle peak of the 1D signal. This is accomplished by find proper markers on the valleys. These markers are extracted by detecting the regional minima of the filtered signal (alternating sequential filtering, closing followed by opening of length 5 pixels). To discard the detection of peaks near the limits of the histogram, an intersection is done using the function. For illustrative purpose, a plot of all the signals involved is displayed. ''' print '=========================================================================' #0 print ''' hf = asf(neg(h),'co',seline(5)) ws = watershed(hf) wsf = intersec(neg(frame(ws,20)),ws) t = nonzero(wsf) print t ax = stats(h,'max') hf_plot = neg(hf) ws_plot = gray(ws, 'uint16', ax) wsf_plot = gray(wsf, 'uint16', ax) plot([[hf_plot],[ws_plot],[wsf_plot]])''' hf = asf(neg(h),'co',seline(5)) ws = watershed(hf) wsf = intersec(neg(frame(ws,20)),ws) t = nonzero(wsf) print t ax = stats(h,'max') hf_plot = neg(hf) ws_plot = gray(ws, 'uint16', ax) wsf_plot = gray(wsf, 'uint16', ax) plot([[hf_plot],[ws_plot],[wsf_plot]]) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The threshold value found in the previous step is applied. After, a filter to remove blobs smaller then 20 pixels is applied. For illustrative, the contour of the anhydrous grains are displayed as an overlay on the original image. ''' print '=========================================================================' #0 print ''' aux = threshad( f, t, 255) anidro = areaopen(aux, 20) show( f, gradm(anidro))''' aux = threshad( f, t, 255) anidro = areaopen(aux, 20) show( f, gradm(anidro)) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The watershed applied on the gradient using the markers from filtered regional minima of the gradient is a standard watershed based technique. In this case the filter was chosen to be a contrast . ''' print '=========================================================================' #0 print ''' g=gradm(f) m=regmin(hmin(g,10)) ws=cwatershed(g,m) show(ws)''' g=gradm(f) m=regmin(hmin(g,10)) ws=cwatershed(g,m) show(ws) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The result of the watershed in the previous step is the detection of a large number of regions. The larger ones are the aggregate and the anhydrous. So first the regions are filtered out using an area criterion of 300 pixels. Small holes (area <= 50) are closed. The aggregate is obtained by removing the anhydrous phase. ''' print '=========================================================================' #0 print ''' aux1=areaopen(neg(ws),300) aux2=areaclose(aux1,50) aggr=subm(aux2,anidro) show(f, gradm(aggr))''' aux1=areaopen(neg(ws),300) aux2=areaclose(aux1,50) aggr=subm(aux2,anidro) show(f, gradm(aggr)) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Finally each phase is measured and an illustrative display is constructed. The grains contoured by red are the aggregate and those contoured by green, the anhydrous. ''' print '=========================================================================' #0 print ''' n = product(shape(f)) anidro_phase = stats(anidro,'sum')/n print 'anidro=',anidro_phase aggr_phase = stats(aggr,'sum')/n; print 'aggr=',aggr_phase show( f, gradm(aggr), gradm(anidro))''' n = product(shape(f)) anidro_phase = stats(anidro,'sum')/n print 'anidro=',anidro_phase aggr_phase = stats(aggr,'sum')/n; print 'aggr=',aggr_phase show( f, gradm(aggr), gradm(anidro)) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # cookies - Detect broken rounded biscuits. # # ========================================================================= def cookies(): print print '''Detect broken rounded biscuits.''' print # print '=========================================================================' print ''' The input image is read. ''' print '=========================================================================' #0 print ''' a = readgray('cookies.tif'); show(a);''' a = readgray('cookies.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Convert to binary objects by thresholding ''' print '=========================================================================' #0 print ''' b = threshad(a, uint8(100)); show(b);''' b = threshad(a, uint8(100)); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The tophat of the binary image by an octagon disk with a radius fits the good biscuit but does not fit in the broken biscuit can detect the broken one. ''' print '=========================================================================' #0 print ''' c = openth(b,sedisk(55,'2D','OCTAGON')); show(c);''' c = openth(b,sedisk(55,'2D','OCTAGON')); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Clean the residues from the octagon disk and the rounded shaped biscuits by eliminating small connected regions ''' print '=========================================================================' #0 print ''' d = areaopen(c,400); show(d);''' d = areaopen(c,400); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Display the detected broken biscuit ''' print '=========================================================================' #0 print ''' show(a,d);''' show(a,d); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # cornea - Cornea cells marking. # # ========================================================================= def cornea(): print print '''Cornea cells marking.''' print # print '=========================================================================' print ''' The gray-scale image of the cornea is read and displayed. A topographic model is also displayed. We can notice that the cells are formed by small hills in the topographic model. We can also notice that the image is very noisy. ''' print '=========================================================================' #0 print ''' a = readgray('corneacells.tif'); show(a); b = surf(a); show(b);''' a = readgray('corneacells.tif'); show(a); b = surf(a); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The image is filtered by an alternating sequential filtering with size 2. This filter is composed by openings and closings, removing small peaks and valleys. Next, the regional maxima are detected. For illustrative purpose, they are displayed overlayed on the topographic image view. These regional maxima are the markers for each cell. If anything goes wrong in this step, the error will be propagated throughout the process. ''' print '=========================================================================' #0 print ''' c = asf(a,'oc',secross(),2); d = regmax( c); show(surf(c)); show(surf(c), d);''' c = asf(a,'oc',secross(),2); d = regmax( c); show(surf(c)); show(surf(c), d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Following the paradigm of segmentation by watershed, the background marker is detected by applying the constrained watershed on the negation of the cells image using the markers detected in the last step. These watershed lines partition the image in regions of influence of each cell. For illustrative display, the negative of the cell image is displayed overlayed by the markers on the left, and also overlayed by the watershed lines on the right. ''' print '=========================================================================' #0 print ''' e = neg(a); f = cwatershed(e, d, sebox()); show(e,d); show(e,f,d);''' e = neg(a); f = cwatershed(e, d, sebox()); show(e,d); show(e,f,d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' As the internal and external markers can be touching, we combine the external marker with value 1 with the labeling of the internal markers added by 1. The labeled marker image is shown on the left. The final watershed will be applied on the gradient of the original image, which is shown on the right. ''' print '=========================================================================' #0 print ''' g = gray(f, 'uint16', 1); h1 = addm(label(d), uint16(1)); h = intersec(gray(d,'uint16'), h1); i = union( g, h); lblshow(i); j = gradm( a); show(j);''' g = gray(f, 'uint16', 1); h1 = addm(label(d), uint16(1)); h = intersec(gray(d,'uint16'), h1); i = union( g, h); lblshow(i); j = gradm( a); show(j); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Apply the constrained watershed on the gradient from the labeled internal and external markers. Show the watershed lines on the left and the results overlayed on the original image, on the right. ''' print '=========================================================================' #0 print ''' k = cwatershed(j, i); show( k); show(a, k, k);''' k = cwatershed(j, i); show( k); show(a, k, k); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # fabric - Detection of vertical weave in fabrics. # # ========================================================================= def fabric(): print print '''Detection of vertical weave in fabrics.''' print # print '=========================================================================' print ''' The image to be processed is read. ''' print '=========================================================================' #0 print ''' a = readgray('fabric.tif'); show(a);''' a = readgray('fabric.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' A sequence of dilations (by a disk and two line segments) is applied to enhance the white stripes ''' print '=========================================================================' #0 print ''' b = dilate(a,sedisk(4)); c = dilate(b,seline(25,90)); d = dilate(c,seline(25,-90)); show(d);''' b = dilate(a,sedisk(4)); c = dilate(b,seline(25,90)); d = dilate(c,seline(25,-90)); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The markers are the regional minima with contrast 25. ''' print '=========================================================================' #0 print ''' e = hmin(d,25); f = regmin(e); show(f);''' e = hmin(d,25); f = regmin(e); show(f); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Watershed of the original image from the dark stripes markers just created. Show the result overlayed on the original image. ''' print '=========================================================================' #0 print ''' g = cwatershed(a,f); show(a,dilate(g));''' g = cwatershed(a,f); show(a,dilate(g)); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Create a new marker by taking the union of the dark markers and the watershed lines just created. The gradient of the original image is computed. ''' print '=========================================================================' #0 print ''' h = union(g,f); i = gradm(a); show(h); show(i);''' h = union(g,f); i = gradm(a); show(h); show(i); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The watershed of the gradient of the original image, taking the marker just created, gives the extend of the white regions. ''' print '=========================================================================' #0 print ''' j = cwatershed(i,h,sebox()); show(a,j);''' j = cwatershed(i,h,sebox()); show(a,j); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The watershed regions area computed. The area of each watershed regions is measured and displayed. ''' print '=========================================================================' #0 print ''' k = cwatershed(i,h,sebox(),'REGIONS'); lblshow(k,'border'); l = blob(k,'area'); show(l);''' k = cwatershed(i,h,sebox(),'REGIONS'); lblshow(k,'border'); l = blob(k,'area'); show(l); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' To select only the fabric spacing, select the regions with small area (less than 2000). Label the narrow regions. ''' print '=========================================================================' #0 print ''' m = cmp(l,'<=',2000); show(m); n = label(m,sebox()); lblshow(n,'border');''' m = cmp(l,'<=',2000); show(m); n = label(m,sebox()); lblshow(n,'border'); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Compute the area of each region and plot them. Also display the original image for illustration. From the plot, we can notice that the two rightmost weave spacing are significantly larger than the others. ''' print '=========================================================================' #0 print ''' show(a); o = blob(n,'area','data'); plot([[o]],[['style','impulses']])''' show(a); o = blob(n,'area','data'); plot([[o]],[['style','impulses']]) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # fila - Detect Filarial Worms. # # ========================================================================= def fila(): print print '''Detect Filarial Worms.''' print # print '=========================================================================' print ''' A microscopic gray-scale image, with two filarial worms, is read. ''' print '=========================================================================' #0 print ''' a = readgray('danaus.tif'); show(a);''' a = readgray('danaus.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The Close by Reconstruction Top-Hat operator is applied to regularize the image background. ''' print '=========================================================================' #0 print ''' b = closerecth(a,sebox(5)); show(b);''' b = closerecth(a,sebox(5)); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The gray-scale opening by the elementary cross is applied to remove narrow objects. ''' print '=========================================================================' #0 print ''' c = open(b); show(c);''' c = open(b); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The gray-scale area open operator is applied to remove small objects. ''' print '=========================================================================' #0 print ''' d = areaopen(c,200); show(d);''' d = areaopen(c,200); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The threshold operator is applied to extract a reduced set of structures that include the two worms present in the image. ''' print '=========================================================================' #0 print ''' e = threshad(d,50); show(e);''' e = threshad(d,50); show(e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The objective of the sequence of transformations, that begin with the homotopic skeleton, is to eliminateg the structures that are not worms. The information used for the filtering is that the worms are longer than any other structure found. ''' print '=========================================================================' #0 print ''' f = thin(e); show(f);''' f = thin(e); show(f); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The first 12 points of the skeleton branches, counting from their extremities, are eliminated. The structures that were not eliminated will be the markers for extracting the two worms. ''' print '=========================================================================' #0 print ''' g = thin(f,endpoints(), 12); show(g);''' g = thin(f,endpoints(), 12); show(g); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The binary reconstruction operator is applied to reconstruct the binary image produced by the threshold from the marker image. ''' print '=========================================================================' #0 print ''' h = infrec(g,e); show(h);''' h = infrec(g,e); show(h); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The structures extracted are overlaid to the input gray-scale image. ''' print '=========================================================================' #0 print ''' show(a,h);''' show(a,h); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # flatzone - Flat-zone image simplification by connected filtering. # # ========================================================================= def flatzone(): print print '''Flat-zone image simplification by connected filtering.''' print # print '=========================================================================' print ''' The input image is read. ''' print '=========================================================================' #0 print ''' a = readgray('cameraman.tif') show(a)''' a = readgray('cameraman.tif') show(a) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Obtain the flat zones (8-connectivity) and compute its number. The number of flat zones is determined by the maximum labeling value ( starting from flat zone one). ''' print '=========================================================================' #0 print ''' b = labelflat(a,sebox()) nfz=stats(b,'max') print nfz show(a) lblshow(b)''' b = labelflat(a,sebox()) nfz=stats(b,'max') print nfz show(a) lblshow(b) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Apply the alternating sequential filter by reconstruction with increasing sizes. They constitute a connected pyramid. ''' print '=========================================================================' #0 print ''' c=asfrec(a,'CO',sebox(),sebox(),2) d=asfrec(a,'CO',sebox(),sebox(),4) e=asfrec(a,'CO',sebox(),sebox(),16) show(c) show(d) show(e)''' c=asfrec(a,'CO',sebox(),sebox(),2) d=asfrec(a,'CO',sebox(),sebox(),4) e=asfrec(a,'CO',sebox(),sebox(),16) show(c) show(d) show(e) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' These figures show the image simplification in a connected pyramid. Notice how the shapes are well preserved along the scale space. The number of flat zones at each level of the pyramid are computed to illustrate the flat zone number reduction. ''' print '=========================================================================' #0 print ''' c_lab=labelflat(c,sebox()) d_lab=labelflat(d,sebox()) e_lab=labelflat(e,sebox()) print stats(c_lab,'max') print stats(d_lab,'max') print stats(e_lab,'max') lblshow(c_lab) lblshow(d_lab) lblshow(e_lab)''' c_lab=labelflat(c,sebox()) d_lab=labelflat(d,sebox()) e_lab=labelflat(e,sebox()) print stats(c_lab,'max') print stats(d_lab,'max') print stats(e_lab,'max') lblshow(c_lab) lblshow(d_lab) lblshow(e_lab) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' In this experiment we select a particular flat zone, the flat zone to which the pixel (90,60) belongs, and display it at each level of the connected pyramid. Notice the flat zone inclusion property. ''' print '=========================================================================' #0 print ''' c_v=c_lab[89,59] c_flat=cmp(c_lab,'==',c_v) d_v=d_lab[89,59] d_flat=cmp(d_lab,'==',d_v) e_v=e_lab[89,59] e_flat=cmp(e_lab,'==',e_v) show(a,e_flat,d_flat,c_flat)''' c_v=c_lab[89,59] c_flat=cmp(c_lab,'==',c_v) d_v=d_lab[89,59] d_flat=cmp(d_lab,'==',d_v) e_v=e_lab[89,59] e_flat=cmp(e_lab,'==',e_v) show(a,e_flat,d_flat,c_flat) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # flow - Detect water in a static image of an oil-water flow experiment. # # ========================================================================= def flow(): print print '''Detect water in a static image of an oil-water flow experiment.''' print # print '=========================================================================' print ''' The gray-scale image of the water-oil flow experiment is read. ''' print '=========================================================================' #0 print ''' a = readgray('flow.tif') show(a)''' a = readgray('flow.tif') show(a) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The dark region of the image is enhanced by the close top-hat operator. ''' print '=========================================================================' #0 print ''' b=closeth(a,seline(50,90)) show(b)''' b=closeth(a,seline(50,90)) show(b) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' A connected filtering is applied to remove small artifacts present in the image. ''' print '=========================================================================' #0 print ''' c=closerec(b,sebox(5)) show(c)''' c=closerec(b,sebox(5)) show(c) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' An alternated sequential filtering is used for shape smoothing. ''' print '=========================================================================' #0 print ''' d=asf(c,'co',secross()) show(d)''' d=asf(c,'co',secross()) show(d) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The original and thresholded image overlayed on the original are presented successively. ''' print '=========================================================================' #0 print ''' e=threshad(d,100) show(a) show(a,e)''' e=threshad(d,100) show(a) show(a,e) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # gear - Detect the teeth of a gear # # ========================================================================= def gear(): print print '''Detect the teeth of a gear''' print # print '=========================================================================' print ''' The binary image of a gear is read. ''' print '=========================================================================' #0 print ''' a = readgray('gear.tif'); show(a);''' a = readgray('gear.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Opening of the input image by an Euclidean disk of radius 20. The sequence opening-subtraction is called opening top-hat. The opening top-hat could be executed in a single coand: c = (a,(20)); ''' print '=========================================================================' #0 print ''' b = open(a,sedisk(20)); show(b); c = subm(a,b); show(c);''' b = open(a,sedisk(20)); show(b); c = subm(a,b); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The teeth detected are labeled. The maximum pixel value in the labeled image gives the number of connected objects (n. of teeth). ''' print '=========================================================================' #0 print ''' d = label(c); nteeth=stats(d,'max') lblshow(d,'border');''' d = label(c); nteeth=stats(d,'max') lblshow(d,'border'); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # holecenter - Hole center misalignment in PCB. # # ========================================================================= def holecenter(): print print '''Hole center misalignment in PCB.''' print # print '=========================================================================' print ''' The image of the PCB is read. ''' print '=========================================================================' #0 print ''' a = readgray('pcbholes.tif') show(a)''' a = readgray('pcbholes.tif') show(a) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Use the close hole function to remove the holes. Note that one hole is open. This is not considered in this experiment. The regional maxima of the distance transform gives the radius of the largest disk inside the pad. We are interested only in radius larger than 20 pixels. ''' print '=========================================================================' #0 print ''' b = clohole(a) show(b) d = dist(b,secross(),'EUCLIDEAN') e = regmax(d,sebox()) f = threshad(d, uint16([20])) # radius larger than 20 pixels g = intersec(e,f) h = blob(label(g,sebox()),'CENTROID'); # pad center show(b,dilate(h))''' b = clohole(a) show(b) d = dist(b,secross(),'EUCLIDEAN') e = regmax(d,sebox()) f = threshad(d, uint16([20])) # radius larger than 20 pixels g = intersec(e,f) h = blob(label(g,sebox()),'CENTROID'); # pad center show(b,dilate(h)) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The holes are given by the difference of the pad image from the original image. Repeat the same procedure to find the center of the pads to find now the center of the holes. ''' print '=========================================================================' #0 print ''' i = subm(b,a) show(i) j = dist(i,secross(),'EUCLIDEAN') k = regmax(j,sebox()) l = blob(label(k,sebox()),'CENTROID') # hole center show(i,dilate(l))''' i = subm(b,a) show(i) j = dist(i,secross(),'EUCLIDEAN') k = regmax(j,sebox()) l = blob(label(k,sebox()),'CENTROID') # hole center show(i,dilate(l)) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' First both centers (pads and holes) are displayed together. Then the actual misalignment is computed using the distance from one point to the other. ''' print '=========================================================================' #0 print ''' from numpy.oldnumeric import nonzero show(a,h,l) m = dist(neg(l),secross(),'EUCLIDEAN') n = intersec(gray(h),uint8(m)) show(n,a) i = nonzero(n.ravel()) x = i / n.shape[1] y = i % n.shape[1] for k in range(len(i)): print 'displacement of %d at (%d,%d)\n' %(n[x[k],y[k]],x[k],y[k])''' from numpy.oldnumeric import nonzero show(a,h,l) m = dist(neg(l),secross(),'EUCLIDEAN') n = intersec(gray(h),uint8(m)) show(n,a) i = nonzero(n.ravel()) x = i / n.shape[1] y = i % n.shape[1] for k in range(len(i)): print 'displacement of %d at (%d,%d)\n' %(n[x[k],y[k]],x[k],y[k]) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' First, the thinning to compute the skeleton of the PCB image, then remove iteratively all the end points of the skeleton so just the skeleton loop around the holes remains. Find the minimum distance of these loops to the border and display their location. ''' print '=========================================================================' #0 print ''' o=thin(a) p=thin(o,endpoints()) show(a,p) q = dist(a,secross(),'EUCLIDEAN') r = grain(label(p,sebox()),q,'min') # minimum s = grain(label(p,sebox()),q,'min','data') # minimum from numpy.oldnumeric import ravel for k in ravel(s): print 'Minimum distance: %d pixels' %(2*k+1) t = intersec(cmp(r,'==',q),a) show(a,dilate(t))''' o=thin(a) p=thin(o,endpoints()) show(a,p) q = dist(a,secross(),'EUCLIDEAN') r = grain(label(p,sebox()),q,'min') # minimum s = grain(label(p,sebox()),q,'min','data') # minimum from numpy.oldnumeric import ravel for k in ravel(s): print 'Minimum distance: %d pixels' %(2*k+1) t = intersec(cmp(r,'==',q),a) show(a,dilate(t)) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # leaf - Segment a leaf from the background # # ========================================================================= def leaf(): print print '''Segment a leaf from the background''' print # print '=========================================================================' print ''' The gray scale image to be processed is read. ''' print '=========================================================================' #0 print ''' f = readgray('leaf.tif') show(f)''' f = readgray('leaf.tif') show(f) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Although the leaf was pictured on a light background, it is not possible to fully segment the leaf using a simple thresholding ''' print '=========================================================================' #0 print ''' f_low=threshad(f,100) f_med=threshad(f,128) f_high=threshad(f,160) show(f_low) show(f_med) show(f_high)''' f_low=threshad(f,100) f_med=threshad(f,128) f_high=threshad(f,160) show(f_low) show(f_med) show(f_high) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The toggle is a non-linear image enhancement that changes the pixel value to the maximum or the minimum in the neighborhood given by the structure element, depending which one is the nearest value. The result of the toggle is that near the edges, the image is better defined. ''' print '=========================================================================' #0 print ''' f1=toggle(f,erode(f,sedisk(7)),dilate(f,sedisk(7))) show(f1)''' f1=toggle(f,erode(f,sedisk(7)),dilate(f,sedisk(7))) show(f1) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The thresholding can now be applied resulting a good definition of the leaf boarder. Small white spots can be removed by the area open filter. ''' print '=========================================================================' #0 print ''' f2=threshad(f1,100) f3=areaopen(f2,80) show(f2) show(f3)''' f2=threshad(f1,100) f3=areaopen(f2,80) show(f2) show(f3) print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' For illustration, the contour of the segmented leaf is overlayed in red in the original image ''' print '=========================================================================' #0 print ''' f4=gradm(f3) show(f,f4)''' f4=gradm(f3) show(f,f4) print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # lith - Detect defects in a microelectronic circuit. # # ========================================================================= def lith(): print print '''Detect defects in a microelectronic circuit.''' print # print '=========================================================================' print ''' The input image is read. The image is also displayed as a surface model. ''' print '=========================================================================' #0 print ''' a = readgray('r4x2_256.tif'); show(a); show(surf(a));''' a = readgray('r4x2_256.tif'); show(a); show(surf(a)); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Closing of the image by a vertical line of length 25 pixels. Then subtract it from the original. The sequence closing-subtraction is called closing top-hat. (This could be executed in a single coand: c=(a,(25,90));). ''' print '=========================================================================' #0 print ''' b = close(a,seline(25,90)); show(b); show(surf(b));''' b = close(a,seline(25,90)); show(b); show(surf(b)); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Subtraction of the closing from the original is called closing top-hat. It shows the discrepancies of the image where the structuring element cannot fit the surface. In this case, it highlights vertical depression with length longer than 25 pixels. ''' print '=========================================================================' #0 print ''' c = subm(b,a); show(c); show(surf(c));''' c = subm(b,a); show(c); show(surf(c)); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Threshold on the residues image. Elimination of the small objects by area open. ''' print '=========================================================================' #0 print ''' d = cmp(c,'>=',50); e = areaopen(d,5); show(d); show(e);''' d = cmp(c,'>=',50); e = areaopen(d,5); show(d); show(e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Overlay the detected defects over the original image, and over the surface display. ''' print '=========================================================================' #0 print ''' show(a,e); show(surf(a),e);''' show(a,e); show(surf(a),e); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # pcb - Decompose a printed circuit board in its main parts. # # ========================================================================= def pcb(): print print '''Decompose a printed circuit board in its main parts.''' print # print '=========================================================================' print ''' The binary image of a printed circuit board is read. ''' print '=========================================================================' #0 print ''' a = readgray('pcb1bin.tif'); show(a);''' a = readgray('pcb1bin.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' A new image is created by filling the holes. The input image is subtracted from this new image with holes. The resulting residues are the holes. ''' print '=========================================================================' #0 print ''' b = clohole(a); holes = subm(b,a); show(b); show(a, holes);''' b = clohole(a); holes = subm(b,a); show(b); show(a, holes); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The square islands are detected using an opening by a square of size 17x17. ''' print '=========================================================================' #0 print ''' c = open(b,sebox(8)); square = cdil(c, a); show(b, c); show(holes, square);''' c = open(b,sebox(8)); square = cdil(c, a); show(b, c); show(holes, square); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The circle islands are detected using an opening by an Euclidean disk on a residues image. ''' print '=========================================================================' #0 print ''' f = subm(b, c); g = open(f, sedisk(8)); circle = cdil(g,a); show(f, g); show(holes, square, circle);''' f = subm(b, c); g = open(f, sedisk(8)); circle = cdil(g,a); show(f, g); show(holes, square, circle); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The rectangular islands are detected using an opening by a rectangle of size 25 x 8 on a residues image. The rectangle structuring element is built from the composition of vertical and horizontal lines. ''' print '=========================================================================' #0 print ''' i = subm(f, g); m = open(i,sedil(seline(8,90), seline(25))); rect = cdil(m,a); show(i, m); show(holes, square, circle, rect);''' i = subm(f, g); m = open(i,sedil(seline(8,90), seline(25))); rect = cdil(m,a); show(i, m); show(holes, square, circle, rect); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The thick connections are detected using an opening by a square on a residues image. ''' print '=========================================================================' #0 print ''' o = subm(i,m); p = open(o, sebox(2)); thin = cdil(p,a); show(o, p); show(holes, square, circle, rect, thin);''' o = subm(i,m); p = open(o, sebox(2)); thin = cdil(p,a); show(o, p); show(holes, square, circle, rect, thin); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The thin connections are detected using an opening by a square on a residues image. ''' print '=========================================================================' #0 print ''' r = subm(o,p); s = open(r, sebox()); thick = cdil(s,a); show(r, s); show(holes, square, circle, rect, thin, thick);''' r = subm(o,p); s = open(r, sebox()); thick = cdil(s,a); show(r, s); show(holes, square, circle, rect, thin, thick); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The main components of the circuit are overlayed and presented in a single image. ''' print '=========================================================================' #0 print ''' show(holes, square, circle, rect, thin, thick);''' show(holes, square, circle, rect, thin, thick); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # pieces - Classify two dimensional pieces. # # ========================================================================= def pieces(): print print '''Classify two dimensional pieces.''' print # print '=========================================================================' print ''' The binary image of the pieces is read. ''' print '=========================================================================' #0 print ''' a = readgray('pieces_bw.tif'); show(a);''' a = readgray('pieces_bw.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' An homotopic thickening is applied to reduce contour noise. ''' print '=========================================================================' #0 print ''' seA = img2se(binary([[0,1,0],[1,0,1],[0,0,0]])) seB = img2se(binary([[0,0,0],[0,1,0],[0,0,0]])) iAB = se2hmt(seA,seB); print intershow(iAB) b = thick(a, iAB); show(b);''' seA = img2se(binary([[0,1,0],[1,0,1],[0,0,0]])) seB = img2se(binary([[0,0,0],[0,1,0],[0,0,0]])) iAB = se2hmt(seA,seB); print intershow(iAB) b = thick(a, iAB); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The homotopic skeleton by thinning is created. ''' print '=========================================================================' #0 print ''' c = thin(b); show(c);''' c = thin(b); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The open lines of the skeleton are pruned by the end point thinning. The remaining skeleton components will be loops, identifying the rings. ''' print '=========================================================================' #0 print ''' d = thin(c,endpoints()); show(c,d);''' d = thin(c,endpoints()); show(c,d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Extraction of the rings by reconstruction of the thicked image from the filtered skeleton. ''' print '=========================================================================' #0 print ''' e = infrec(d,b); show(e);''' e = infrec(d,b); show(e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Restriction of the objects detected to the input-image. ''' print '=========================================================================' #0 print ''' f = intersec(a,e); show(f);''' f = intersec(a,e); show(f); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It eliminates the skeleton of the rings. ''' print '=========================================================================' #0 print ''' g = subm(c,e); show(g);''' g = subm(c,e); show(g); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It removes sucessively 4 end-points to let T junctions just on T-pins. ''' print '=========================================================================' #0 print ''' h = thin(g, endpoints(), 4); show(h);''' h = thin(g, endpoints(), 4); show(h); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It detects triple points, applying the union of matchings with two templates. These points will identify (mark) the T-pins. ''' print '=========================================================================' #0 print ''' seA1 = img2se(binary([[0,1,0],[0,1,0],[1,0,1]])) seB1 = img2se(binary([[0,0,0],[1,0,1],[0,1,0]])) seA2 = img2se(binary([[0,1,0],[1,1,1],[0,0,0]])) seB2 = img2se(binary([[1,0,1],[0,0,0],[0,1,0]])) i1 = supcanon(h, se2hmt(seA1,seB1)); i2 = supcanon(h, se2hmt(seA2,seB2)); i = union(i1,i2); show(h,dilate(i,sedisk(2)));''' seA1 = img2se(binary([[0,1,0],[0,1,0],[1,0,1]])) seB1 = img2se(binary([[0,0,0],[1,0,1],[0,1,0]])) seA2 = img2se(binary([[0,1,0],[1,1,1],[0,0,0]])) seB2 = img2se(binary([[1,0,1],[0,0,0],[0,1,0]])) i1 = supcanon(h, se2hmt(seA1,seB1)); i2 = supcanon(h, se2hmt(seA2,seB2)); i = union(i1,i2); show(h,dilate(i,sedisk(2))); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Detection of the T-pins by reconstruction of the ticked image from the T-pin markers. ''' print '=========================================================================' #0 print ''' j = infrec(i,b,sebox()); show(j);''' j = infrec(i,b,sebox()); show(j); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Restriction of the objects detect to the input image ''' print '=========================================================================' #0 print ''' k = intersec(a,j); show(k);''' k = intersec(a,j); show(k); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The nails are imediatly detected by the subtration of the images of the rings and T-pints from the input image. ''' print '=========================================================================' #0 print ''' l = subm(subm(a,f),k); show(l);''' l = subm(subm(a,f),k); show(l); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The result of the classification is presented in a pseudo color image. ''' print '=========================================================================' #0 print ''' m = gray(f,'uint8',1); n = gray(k,'uint8',2); o = gray(l,'uint8',3); p = union(m,n,o); lblshow(p);''' m = gray(f,'uint8',1); n = gray(k,'uint8',2); o = gray(l,'uint8',3); p = union(m,n,o); lblshow(p); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # potatoes - Grade potato quality by shape and skin spots. # # ========================================================================= def potatoes(): print print '''Grade potato quality by shape and skin spots.''' print # print '=========================================================================' print ''' The input image is read. ''' print '=========================================================================' #0 print ''' a = readgray('potatoes.tif'); show(a);''' a = readgray('potatoes.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Convert to binary objects by thresholding ''' print '=========================================================================' #0 print ''' b = threshad(a,90); show(b);''' b = threshad(a,90); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The binary image is thinned and the result overlayed on the original image ''' print '=========================================================================' #0 print ''' c = thin(b); show(a,c);''' c = thin(b); show(a,c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' To detect the skin spots, a closing tophat can enhance the dark areas of the image ''' print '=========================================================================' #0 print ''' d = closeth(a,sedisk(5)); show(d);''' d = closeth(a,sedisk(5)); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The tophat is thresholded and the result is masked with the binary image of the potatoes as we are interested only on the spots inside them ''' print '=========================================================================' #0 print ''' e = threshad(d,20); f = intersec(e,b); show(f);''' e = threshad(d,20); f = intersec(e,b); show(f); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Show both results: skeleton and skin spots overlayed on the original image ''' print '=========================================================================' #0 print ''' show(a); show(a,f,c);''' show(a); show(a,f,c); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # robotop - Detect marks on a robot. # # ========================================================================= def robotop(): print print '''Detect marks on a robot.''' print # print '=========================================================================' print ''' The gray-scale image of the robot top view is read. ''' print '=========================================================================' #0 print ''' a = readgray('robotop.tif'); show(a);''' a = readgray('robotop.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It detects white regions smaller than a square of radius 4. ''' print '=========================================================================' #0 print ''' b = openth(a,sebox(4)); show(b);''' b = openth(a,sebox(4)); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It removes white objects smaller than a square of radius 1. ''' print '=========================================================================' #0 print ''' c = open(b,sebox()); show(c);''' c = open(b,sebox()); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It detects the robot markers. This is a very robust thresholding (i.e., the result is not sensible to small changes in the value of the threshold parameter). The original image is overlayed by the detected robot markers. ''' print '=========================================================================' #0 print ''' d = threshad(c,100); show(a,d);''' d = threshad(c,100); show(a,d); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # ruler - Detect defects in a ruler. # # ========================================================================= def ruler(): print print '''Detect defects in a ruler.''' print # print '=========================================================================' print ''' The gray-scale image of the ruler is read. ''' print '=========================================================================' #0 print ''' a = readgray('3.tif'); show(a);''' a = readgray('3.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The close top-hat operator followed by a thresholding is applied. ''' print '=========================================================================' #0 print ''' b = threshad( closeth(a,sebox(5)),40); show(b);''' b = threshad( closeth(a,sebox(5)),40); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The vertical lines longer than 50 pixels are detected. ''' print '=========================================================================' #0 print ''' c = open(b,seline(50,90)); show(c);''' c = open(b,seline(50,90)); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It closes ruler tick marks gaps. ''' print '=========================================================================' #0 print ''' d =close(c,seline(15)); show(d);''' d =close(c,seline(15)); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It detects all objects connected to the ruler tick markers. ''' print '=========================================================================' #0 print ''' e = infrec(d,b); show(e);''' e = infrec(d,b); show(e); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It detects all objects vertically connected to the ruler tick mark. Note that the 3x1 rectangle is used as structuring element in the vertical reconstruction. ''' print '=========================================================================' #0 print ''' f = infrec(d,b,seline(3,90)); show(f);''' f = infrec(d,b,seline(3,90)); show(f); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The residues obtained from the previous image. ''' print '=========================================================================' #0 print ''' g = subm(e,f); show(g);''' g = subm(e,f); show(g); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It uses an opening by an elementary cross structuring element to eliminate the artifacts. ''' print '=========================================================================' #0 print ''' h = open(g); show(h);''' h = open(g); show(h); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' It detects the objects connected to ruler tick marks. A reconstruction from the ruler marks detected is applied. ''' print '=========================================================================' #0 print ''' i = infrec(h, b); show(i);''' i = infrec(h, b); show(i); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Overlay the detected defect over the original image ''' print '=========================================================================' #0 print ''' show(a,i);''' show(a,i); print raw_input(4*' '+'Please press return to continue...') print print # return # ========================================================================= # # soil - Detect fractures in soil. # # ========================================================================= def soil(): print print '''Detect fractures in soil.''' print # print '=========================================================================' print ''' The image of fractures in soil is read. ''' print '=========================================================================' #0 print ''' a = readgray('soil.tif'); show(a);''' a = readgray('soil.tif'); show(a); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The fracture lines are enhanced by the close top-hat operator. ''' print '=========================================================================' #0 print ''' b = closeth(a,sebox(2)); show(b);''' b = closeth(a,sebox(2)); show(b); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Small connected bright regions are removed by the gray-scale area open operator. Note the connectivity used (: 8-connected). ''' print '=========================================================================' #0 print ''' c= areaopen(b,80,sebox()); show(c);''' c= areaopen(b,80,sebox()); show(c); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' The fracture lines are detected. This threshold is very robust. ''' print '=========================================================================' #0 print ''' d = threshad(c,15); show(d);''' d = threshad(c,15); show(d); print raw_input(4*' '+'Please press return to continue...') print print ## print '=========================================================================' print ''' Overlay of the fracture lines over the original image. ''' print '=========================================================================' #0 print ''' show(a,d);''' show(a,d); print raw_input(4*' '+'Please press return to continue...') print print # return # ===================================================================== # # script execution # # ===================================================================== #all demonstrations - initialization _alldemos = [ 'airport', 'area', 'asp', 'labeltext', 'beef', 'blob', 'brain', 'calc', 'cells', 'chickparts', 'concrete', 'cookies', 'cornea', 'fabric', 'fila', 'flatzone', 'flow', 'gear', 'holecenter', 'leaf', 'lith', 'pcb', 'pieces', 'potatoes', 'robotop', 'ruler', 'soil', ] def main(): import sys print '\npymorph Demonstrations -- SDC Morphology Toolbox\n' print 'Available Demonstrations: \n' + str(_alldemos) + '\n' if len(sys.argv) > 1: for demo in sys.argv[1:]: if demo in _alldemos: eval(demo + '()') else: print "Demonstration " + demo + " is not in this package. Please use help for details\n" else: print "\nUsage: python %s <demo_name>\n\n" % sys.argv[0] if __name__ == '__main__': main()
{ "content_hash": "3922bc5d95bfa2cec96714674f8d87a3", "timestamp": "", "source": "github", "line_count": 3628, "max_line_length": 104, "avg_line_length": 30.318632855567806, "alnum_prop": 0.41563329575620933, "repo_name": "luispedro/pymorph", "id": "c33028f4db3911ef30c892a5f05172a36cea711c", "size": "109996", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "morphdemo.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "360042" } ], "symlink_target": "" }
""" Created on Wed May 01 11:44:49 2013 @author: Martin Siggel <martin.siggel@dlr.de> """ import sys, os, shutil, glob filepath = os.path.dirname(os.path.realpath(__file__)) tixipath = filepath + '/../..' sys.path.append(tixipath + '/bindings') import bindings_generator.matlab_generator as MG import bindings_generator.cheader_parser as CP blacklist = ['tixiGetRawInterface', 'tixiAddDoubleListWithAttributes', 'tixiSetPrintMsgFunc'] if __name__ == '__main__': # parse the file #ann = CP.Annotation('#annotate out: 3, 4A(3)') # copy handwritten *.m files into current directory for mfile in glob.glob(filepath + r'/*.m'): shutil.copy(mfile, '.') parser = CP.CHeaderFileParser() # set the handle string that the parser can identify the handles parser.handle_str = 'TixiDocumentHandle' parser.returncode_str ='ReturnCode' parser.typedefs = {'TixiPrintMsgFnc': 'void'} parser.parse_header_file(tixipath + '/src/tixi.h') # create the wrapper generator = MG.MatlabGenerator(parser, 'tixi3', 'tixi.h') generator.blacklist = blacklist generator.create_wrapper()
{ "content_hash": "bc8c65ba9d65c9c4793be0e4d600ab12", "timestamp": "", "source": "github", "line_count": 41, "max_line_length": 93, "avg_line_length": 28.414634146341463, "alnum_prop": 0.6686695278969957, "repo_name": "melven/tixi", "id": "298b32ff16587b34a14d9b1c3630115825c9d810", "size": "1190", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bindings/matlab/make_tixi_matlab.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "312276" }, { "name": "C++", "bytes": "347700" }, { "name": "CMake", "bytes": "54000" }, { "name": "Fortran", "bytes": "22477" }, { "name": "M", "bytes": "1003" }, { "name": "MATLAB", "bytes": "1019" }, { "name": "Makefile", "bytes": "1517" }, { "name": "Python", "bytes": "133917" }, { "name": "Shell", "bytes": "465" }, { "name": "XSLT", "bytes": "1713" } ], "symlink_target": "" }
import os import socket import sys import ssl from mock import Mock, patch import requests_mock from libcloud.test import unittest from libcloud.common.base import Connection, CertificateConnection from libcloud.http import LibcloudBaseConnection from libcloud.http import LibcloudConnection from libcloud.http import SignedHTTPSAdapter from libcloud.utils.misc import retry class BaseConnectionClassTestCase(unittest.TestCase): def test_parse_proxy_url(self): conn = LibcloudBaseConnection() proxy_url = 'http://127.0.0.1:3128' result = conn._parse_proxy_url(proxy_url=proxy_url) self.assertEqual(result[0], 'http') self.assertEqual(result[1], '127.0.0.1') self.assertEqual(result[2], 3128) self.assertEqual(result[3], None) self.assertEqual(result[4], None) proxy_url = 'http://user1:pass1@127.0.0.1:3128' result = conn._parse_proxy_url(proxy_url=proxy_url) self.assertEqual(result[0], 'http') self.assertEqual(result[1], '127.0.0.1') self.assertEqual(result[2], 3128) self.assertEqual(result[3], 'user1') self.assertEqual(result[4], 'pass1') proxy_url = 'https://127.0.0.1:3128' expected_msg = 'Only http proxies are supported' self.assertRaisesRegexp(ValueError, expected_msg, conn._parse_proxy_url, proxy_url=proxy_url) proxy_url = 'http://127.0.0.1' expected_msg = 'proxy_url must be in the following format' self.assertRaisesRegexp(ValueError, expected_msg, conn._parse_proxy_url, proxy_url=proxy_url) proxy_url = 'http://@127.0.0.1:3128' expected_msg = 'URL is in an invalid format' self.assertRaisesRegexp(ValueError, expected_msg, conn._parse_proxy_url, proxy_url=proxy_url) proxy_url = 'http://user@127.0.0.1:3128' expected_msg = 'URL is in an invalid format' self.assertRaisesRegexp(ValueError, expected_msg, conn._parse_proxy_url, proxy_url=proxy_url) def test_constructor(self): conn = LibcloudConnection(host='localhost', port=80) self.assertEqual(conn.proxy_scheme, None) self.assertEqual(conn.proxy_host, None) self.assertEqual(conn.proxy_port, None) proxy_url = 'http://127.0.0.3:3128' conn.set_http_proxy(proxy_url=proxy_url) self.assertEqual(conn.proxy_scheme, 'http') self.assertEqual(conn.proxy_host, '127.0.0.3') self.assertEqual(conn.proxy_port, 3128) proxy_url = 'http://127.0.0.4:3128' conn = LibcloudConnection(host='localhost', port=80, proxy_url=proxy_url) self.assertEqual(conn.proxy_scheme, 'http') self.assertEqual(conn.proxy_host, '127.0.0.4') self.assertEqual(conn.proxy_port, 3128) os.environ['http_proxy'] = proxy_url proxy_url = 'http://127.0.0.5:3128' conn = LibcloudConnection(host='localhost', port=80, proxy_url=proxy_url) self.assertEqual(conn.proxy_scheme, 'http') self.assertEqual(conn.proxy_host, '127.0.0.5') self.assertEqual(conn.proxy_port, 3128) def test_connection_to_unusual_port(self): conn = LibcloudConnection(host='localhost', port=8080) self.assertEqual(conn.proxy_scheme, None) self.assertEqual(conn.proxy_host, None) self.assertEqual(conn.proxy_port, None) self.assertEqual(conn.host, 'http://localhost:8080') conn = LibcloudConnection(host='localhost', port=80) self.assertEqual(conn.host, 'http://localhost') def test_connection_url_merging(self): """ Test that the connection class will parse URLs correctly """ conn = Connection(url='http://test.com/') conn.connect() self.assertEqual(conn.connection.host, 'http://test.com') with requests_mock.mock() as m: m.get('http://test.com/test', text='data') response = conn.request('/test') self.assertEqual(response.body, 'data') def test_morph_action_hook(self): conn = Connection(url="http://test.com") conn.request_path = '' self.assertEqual(conn.morph_action_hook('/test'), '/test') self.assertEqual(conn.morph_action_hook('test'), '/test') conn.request_path = '/v1' self.assertEqual(conn.morph_action_hook('/test'), '/v1/test') self.assertEqual(conn.morph_action_hook('test'), '/v1/test') conn.request_path = '/v1' self.assertEqual(conn.morph_action_hook('/test'), '/v1/test') self.assertEqual(conn.morph_action_hook('test'), '/v1/test') conn.request_path = 'v1' self.assertEqual(conn.morph_action_hook('/test'), '/v1/test') self.assertEqual(conn.morph_action_hook('test'), '/v1/test') conn.request_path = 'v1/' self.assertEqual(conn.morph_action_hook('/test'), '/v1/test') self.assertEqual(conn.morph_action_hook('test'), '/v1/test') def test_connect_with_prefix(self): """ Test that a connection with a base path (e.g. /v1/) will add the base path to requests """ conn = Connection(url='http://test.com/') conn.connect() conn.request_path = '/v1' self.assertEqual(conn.connection.host, 'http://test.com') with requests_mock.mock() as m: m.get('http://test.com/v1/test', text='data') response = conn.request('/test') self.assertEqual(response.body, 'data') def test_secure_connection_unusual_port(self): """ Test that the connection class will default to secure (https) even when the port is an unusual (non 443, 80) number """ conn = Connection(secure=True, host='localhost', port=8081) conn.connect() self.assertEqual(conn.connection.host, 'https://localhost:8081') conn2 = Connection(url='https://localhost:8081') conn2.connect() self.assertEqual(conn2.connection.host, 'https://localhost:8081') def test_secure_by_default(self): """ Test that the connection class will default to secure (https) """ conn = Connection(host='localhost', port=8081) conn.connect() self.assertEqual(conn.connection.host, 'https://localhost:8081') def test_implicit_port(self): """ Test that the port is not included in the URL if the protocol implies the port, e.g. http implies 80 """ conn = Connection(secure=True, host='localhost', port=443) conn.connect() self.assertEqual(conn.connection.host, 'https://localhost') conn2 = Connection(secure=False, host='localhost', port=80) conn2.connect() self.assertEqual(conn2.connection.host, 'http://localhost') def test_insecure_connection_unusual_port(self): """ Test that the connection will allow unusual ports and insecure schemes """ conn = Connection(secure=False, host='localhost', port=8081) conn.connect() self.assertEqual(conn.connection.host, 'http://localhost:8081') conn2 = Connection(url='http://localhost:8081') conn2.connect() self.assertEqual(conn2.connection.host, 'http://localhost:8081') class ConnectionClassTestCase(unittest.TestCase): def setUp(self): self.originalConnect = Connection.connect self.originalResponseCls = Connection.responseCls Connection.connect = Mock() Connection.responseCls = Mock() Connection.allow_insecure = True def tearDown(self): Connection.connect = self.originalConnect Connection.responseCls = Connection.responseCls Connection.allow_insecure = True def test_dont_allow_insecure(self): Connection.allow_insecure = True Connection(secure=False) Connection.allow_insecure = False expected_msg = (r'Non https connections are not allowed \(use ' 'secure=True\)') self.assertRaisesRegexp(ValueError, expected_msg, Connection, secure=False) def test_cache_busting(self): params1 = {'foo1': 'bar1', 'foo2': 'bar2'} params2 = [('foo1', 'bar1'), ('foo2', 'bar2')] con = Connection() con.connection = Mock() con.pre_connect_hook = Mock() con.pre_connect_hook.return_value = {}, {} con.cache_busting = False con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params1) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params2) con.cache_busting = True con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0]) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0][len(params2)]) def test_context_is_reset_after_request_has_finished(self): context = {'foo': 'bar'} def responseCls(connection, response): connection.called = True self.assertEqual(connection.context, context) con = Connection() con.called = False con.connection = Mock() con.responseCls = responseCls con.set_context(context) self.assertEqual(con.context, context) con.request('/') # Context should have been reset self.assertTrue(con.called) self.assertEqual(con.context, {}) # Context should also be reset if a method inside request throws con = Connection(timeout=1, retry_delay=0.1) con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.connection.request = Mock(side_effect=ssl.SSLError()) try: con.request('/') except ssl.SSLError: pass self.assertEqual(con.context, {}) con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.responseCls = Mock(side_effect=ValueError()) try: con.request('/') except ValueError: pass self.assertEqual(con.context, {}) def _raise_socket_error(self): raise socket.gaierror('') def test_retry_with_sleep(self): con = Connection() con.connection = Mock() connect_method = 'libcloud.common.base.Connection.request' with patch(connect_method) as mock_connect: mock_connect.__name__ = 'mock_connect' with self.assertRaises(socket.gaierror): mock_connect.side_effect = socket.gaierror('') retry_request = retry(timeout=1, retry_delay=.1, backoff=1) retry_request(con.request)(action='/') self.assertGreater(mock_connect.call_count, 1, 'Retry logic failed') def test_retry_with_timeout(self): con = Connection() con.connection = Mock() connect_method = 'libcloud.common.base.Connection.request' with patch(connect_method) as mock_connect: mock_connect.__name__ = 'mock_connect' with self.assertRaises(socket.gaierror): mock_connect.side_effect = socket.gaierror('') retry_request = retry(timeout=2, retry_delay=.1, backoff=1) retry_request(con.request)(action='/') self.assertGreater(mock_connect.call_count, 1, 'Retry logic failed') def test_retry_with_backoff(self): con = Connection() con.connection = Mock() connect_method = 'libcloud.common.base.Connection.request' with patch(connect_method) as mock_connect: mock_connect.__name__ = 'mock_connect' with self.assertRaises(socket.gaierror): mock_connect.side_effect = socket.gaierror('') retry_request = retry(timeout=2, retry_delay=.1, backoff=1) retry_request(con.request)(action='/') self.assertGreater(mock_connect.call_count, 1, 'Retry logic failed') class CertificateConnectionClassTestCase(unittest.TestCase): def setUp(self): self.connection = CertificateConnection(cert_file='test.pem', url='https://test.com/test') self.connection.connect() def test_adapter_internals(self): adapter = self.connection.connection.session.adapters['https://'] self.assertTrue(isinstance(adapter, SignedHTTPSAdapter)) self.assertEqual(adapter.cert_file, 'test.pem') if __name__ == '__main__': sys.exit(unittest.main())
{ "content_hash": "01f0d746bd486e64a5657ad5c74d6f3d", "timestamp": "", "source": "github", "line_count": 364, "max_line_length": 77, "avg_line_length": 37.08791208791209, "alnum_prop": 0.5980740740740741, "repo_name": "pquentin/libcloud", "id": "147f5b4ad07bfac3c0ddb988d32cafcc2cf38548", "size": "14308", "binary": false, "copies": "9", "ref": "refs/heads/trunk", "path": "libcloud/test/test_connection.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "2545" }, { "name": "PowerShell", "bytes": "410" }, { "name": "Python", "bytes": "6369895" }, { "name": "Shell", "bytes": "5936" } ], "symlink_target": "" }
import codecs import csv from datetime import date from django.db import models from django.utils.http import urlquote from election.models import ElectionManager from electoral_district.controllers import electoral_district_import_from_xml_data from exception.models import handle_exception from import_export_ctcl.controllers import create_candidate_selection_rows, retrieve_candidate_from_candidate_selection import json import magic from organization.models import ORGANIZATION_TYPE_CHOICES, UNKNOWN, alphanumeric from party.controllers import retrieve_all_party_names_and_ids_api, party_import_from_xml_data from politician.models import GENDER_CHOICES, UNKNOWN import urllib from urllib.request import Request, urlopen from voter_guide.models import ORGANIZATION_WORD import wevote_functions.admin from wevote_functions.functions import positive_value_exists, LANGUAGE_CODE_ENGLISH, LANGUAGE_CODE_SPANISH import xml.etree.ElementTree as ElementTree POSITION = 'POSITION' ANY_STANCE = 'ANY_STANCE' # This is a way to indicate when we want to return any stance (support, oppose, no_stance) SUPPORT = 'SUPPORT' STILL_DECIDING = 'STILL_DECIDING' NO_STANCE = 'NO_STANCE' # DALE 2016-8-29 We will want to deprecate NO_STANCE and replace with INFORMATION_ONLY INFORMATION_ONLY = 'INFO_ONLY' OPPOSE = 'OPPOSE' PERCENT_RATING = 'PERCENT_RATING' POSITION_CHOICES = ( # ('SUPPORT_STRONG', 'Strong Supports'), # I do not believe we will be offering 'SUPPORT_STRONG' as an option (SUPPORT, 'Supports'), (STILL_DECIDING, 'Still deciding'), # Still undecided (NO_STANCE, 'No stance'), # We don't know the stance (INFORMATION_ONLY, 'Information only'), # This entry is meant as food-for-thought and is not advocating (OPPOSE, 'Opposes'), (PERCENT_RATING, 'Percentage point rating'), # ('OPPOSE_STRONG', 'Strongly Opposes'), # I do not believe we will be offering 'OPPOSE_STRONG' as an option ) NO_STANCE = 'NO_STANCE' CANDIDATE = 'CANDIDATE' CONTEST_OFFICE = 'CONTEST_OFFICE' ELECTED_OFFICE = 'ELECTED_OFFICE' IMPORT_BALLOT_ITEM = 'IMPORT_BALLOT_ITEM' IMPORT_VOTER = 'IMPORT_VOTER' MEASURE = 'MEASURE' POLITICIAN = 'POLITICIAN' KIND_OF_BATCH_CHOICES = ( (MEASURE, 'Measure'), (ELECTED_OFFICE, 'ElectedOffice'), (CONTEST_OFFICE, 'ContestOffice'), (CANDIDATE, 'Candidate'), (ORGANIZATION_WORD, 'Organization'), (POSITION, 'Position'), (POLITICIAN, 'Politician'), (IMPORT_BALLOT_ITEM, 'Ballot Returned'), ) IMPORT_TO_BE_DETERMINED = 'IMPORT_TO_BE_DETERMINED' DO_NOT_PROCESS = 'DO_NOT_PROCESS' CLEAN_DATA_MANUALLY = 'CLEAN_DATA_MANUALLY' IMPORT_CREATE = 'IMPORT_CREATE' IMPORT_ADD_TO_EXISTING = 'IMPORT_ADD_TO_EXISTING' IMPORT_DATA_ALREADY_MATCHING = 'IMPORT_DATA_ALREADY_MATCHING' IMPORT_QUERY_ERROR = 'IMPORT_QUERY_ERROR' KIND_OF_ACTION_CHOICES = ( (IMPORT_TO_BE_DETERMINED, 'To Be Determined'), (DO_NOT_PROCESS, 'Do not process'), (IMPORT_CREATE, 'Create'), (IMPORT_ADD_TO_EXISTING, 'Add to Existing'), ) BATCH_SET_SOURCE_CTCL = 'CTCL' BATCH_SET_SOURCE_IMPORT_EXPORT_ENDORSEMENTS = 'IMPORT_EXPORT_ENDORSEMENTS' BATCH_SET_SOURCE_IMPORT_BALLOTPEDIA_BALLOT_ITEMS = 'IMPORT_BALLOTPEDIA_BALLOT_ITEMS' BATCH_IMPORT_KEYS_ACCEPTED_FOR_CANDIDATES = { 'ballotpedia_candidate_id': 'ballotpedia_candidate_id', 'ballotpedia_candidate_name': 'ballotpedia_candidate_name', 'ballotpedia_candidate_summary': 'ballotpedia_candidate_summary', 'ballotpedia_candidate_url': 'ballotpedia_candidate_url', 'ballotpedia_election_id': 'ballotpedia_election_id', 'ballotpedia_image_id': 'ballotpedia_image_id', 'ballotpedia_office_id': 'ballotpedia_office_id * (elected_office)', # For matching only 'ballotpedia_person_id': 'ballotpedia_person_id', 'ballotpedia_race_id': 'ballotpedia_race_id * (contest_office)', # For matching only 'birth_day_text': 'birth_day_text', 'candidate_batch_id': 'candidate_batch_id', 'candidate_ctcl_uuid': 'candidate_ctcl_uuid', 'candidate_ctcl_person_id': 'candidate_ctcl_person_id', 'candidate_email': 'candidate_email', 'candidate_gender': 'candidate_gender', 'candidate_is_top_ticket': 'candidate_is_top_ticket', 'candidate_is_incumbent': 'candidate_is_incumbent', 'candidate_name': 'candidate_name', 'candidate_participation_status': 'candidate_participation_status', 'candidate_party_name': 'candidate_party_name', 'candidate_profile_image_url': 'candidate_profile_image_url', 'candidate_twitter_handle': 'candidate_twitter_handle', 'candidate_url': 'candidate_url (website)', 'candidate_contact_form_url': 'candidate_contact_form_url', 'contest_office_name': 'contest_office_name *', # For matching only 'contest_office_we_vote_id': 'contest_office_we_vote_id *', # For matching only 'crowdpac_candidate_id': 'crowdpac_candidate_id', 'election_day': 'election_day', 'facebook_url': 'facebook_url', 'google_civic_election_id': 'google_civic_election_id', 'state_code': 'state_code', } # We Vote contest office key on the left, and Ballotpedia field name on right # This gives us the option of putting the same field from a remote source into two We Vote fields BATCH_HEADER_MAP_CANDIDATES_TO_BALLOTPEDIA_CANDIDATES = { 'ballotpedia_candidate_id': 'ballotpedia_candidate_id', 'ballotpedia_candidate_name': 'ballotpedia_candidate_name', 'ballotpedia_candidate_summary': 'ballotpedia_candidate_summary', 'ballotpedia_candidate_url': 'ballotpedia_candidate_url', 'ballotpedia_election_id': 'ballotpedia_election_id', 'ballotpedia_image_id': 'ballotpedia_image_id', 'ballotpedia_office_id': 'ballotpedia_office_id', 'ballotpedia_person_id': 'ballotpedia_person_id', 'ballotpedia_race_id': 'ballotpedia_race_id', 'birth_day_text': 'birth_day_text', 'candidate_email': 'candidate_email', 'candidate_gender': 'candidate_gender', 'candidate_is_incumbent': 'is_incumbent', 'candidate_participation_status': 'candidate_participation_status', 'candidate_party_name': 'candidate_party_name', 'candidate_twitter_handle': 'candidate_twitter_handle', 'candidate_url': 'candidate_url', 'candidate_contact_form_url': 'candidate_contact_form_url', 'crowdpac_candidate_id': 'crowdpac_candidate_id', 'facebook_url': 'facebook_url', 'state_code': 'state_code', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_CONTEST_OFFICES = { 'ballotpedia_candidate_id': 'ballotpedia_candidate_id *', # For matching only 'ballotpedia_district_id': 'ballotpedia_district_id', 'ballotpedia_election_id': 'ballotpedia_election_id', 'ballotpedia_office_id': 'ballotpedia_office_id', 'ballotpedia_office_name': 'ballotpedia_office_name', 'ballotpedia_office_url': 'ballotpedia_office_url', 'ballotpedia_person_id': 'ballotpedia_person_id *', # For matching only 'ballotpedia_race_id': 'ballotpedia_race_id', 'ballotpedia_race_office_level': 'ballotpedia_race_office_level', 'candidate_name': 'candidate_name *', # For matching only 'candidate_selection_id1': 'candidate_selection_id1 *', # For matching only 'candidate_selection_id2': 'candidate_selection_id2 *', # For matching only 'candidate_selection_id3': 'candidate_selection_id3 *', # For matching only 'candidate_selection_id4': 'candidate_selection_id4 *', # For matching only 'candidate_selection_id5': 'candidate_selection_id5 *', # For matching only 'candidate_selection_id6': 'candidate_selection_id6 *', # For matching only 'candidate_selection_id7': 'candidate_selection_id7 *', # For matching only 'candidate_selection_id8': 'candidate_selection_id8 *', # For matching only 'candidate_selection_id9': 'candidate_selection_id9 *', # For matching only 'candidate_selection_id10': 'candidate_selection_id10 *', # For matching only 'contest_office_name': 'contest_office_name', 'contest_office_batch_id': 'contest_office_batch_id', 'contest_office_ctcl_uuid': 'contest_office_ctcl_uuid', 'contest_office_votes_allowed': 'contest_office_votes_allowed', 'contest_office_number_elected': 'contest_office_number_elected', 'contest_office_district_name': 'contest_office_district_name', 'elected_office_id': 'elected_office_id', 'election_day': 'election_day', 'electoral_district_id': 'electoral_district_id', 'google_civic_election_id': 'google_civic_election_id', 'is_ballotpedia_general_election': 'is_ballotpedia_general_election', 'is_ballotpedia_general_runoff_election': 'is_ballotpedia_general_runoff_election', 'is_ballotpedia_primary_election': 'is_ballotpedia_primary_election', 'is_ballotpedia_primary_runoff_election': 'is_ballotpedia_primary_runoff_election', 'state_code': 'state_code', } # We Vote contest office key on the left, and Ballotpedia field name on right # This gives us the option of putting the same field from a remote source into two We Vote fields BATCH_HEADER_MAP_CONTEST_OFFICES_TO_BALLOTPEDIA_RACES = { 'ballotpedia_district_id': 'ballotpedia_district_id', 'ballotpedia_election_id': 'ballotpedia_election_id', 'ballotpedia_office_id': 'ballotpedia_office_id', 'ballotpedia_office_name': 'office_name', 'ballotpedia_race_id': 'ballotpedia_race_id', 'ballotpedia_race_office_level': 'office_level', 'ballotpedia_office_url': 'url', 'contest_office_number_elected': 'number_of_seats', 'contest_office_district_name': 'office_district_name', 'election_day': 'election_date', 'is_ballotpedia_general_election': 'is_ballotpedia_general_election', 'is_ballotpedia_general_runoff_election': 'is_ballotpedia_general_runoff_election', 'is_ballotpedia_primary_election': 'is_ballotpedia_primary_election', 'is_ballotpedia_primary_runoff_election': 'is_ballotpedia_primary_runoff_election', 'state_code': 'office_district_state', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_ELECTED_OFFICES = { 'elected_office_name': 'elected_office_name', 'electoral_district_id': 'electoral_district_id', 'state_code': 'state_code', 'elected_office_ctcl_uuid': 'elected_office_ctcl_uuid', 'elected_office_description': 'elected_office_description', 'elected_office_is_partisan': 'elected_office_is_partisan', 'elected_office_name_es': 'elected_office_name_es', 'elected_office_description_es': 'elected_office_description_es', 'elected_office_batch_id': 'elected_office_batch_id', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_MEASURES = { 'ballotpedia_district_id': 'ballotpedia_district_id', 'ballotpedia_election_id': 'ballotpedia_election_id', 'ballotpedia_measure_id': 'ballotpedia_measure_id', 'ballotpedia_measure_name': 'ballotpedia_measure_name', 'ballotpedia_measure_status': 'ballotpedia_measure_status', 'ballotpedia_measure_summary': 'ballotpedia_measure_summary', 'ballotpedia_measure_text': 'ballotpedia_measure_text', 'ballotpedia_measure_url': 'ballotpedia_measure_url', 'ballotpedia_yes_vote_description': 'ballotpedia_yes_vote_description', 'ballotpedia_no_vote_description': 'ballotpedia_no_vote_description', 'ctcl_uuid': 'ctcl_uuid', 'election_day_text': 'election_day_text', 'electoral_district_id': 'electoral_district_id', 'measure_title': 'measure_title', 'measure_name': 'measure_name', 'measure_text': 'measure_text', 'measure_subtitle': 'measure_subtitle', 'state_code': 'state_code', } # We Vote contest office key on the left, and Ballotpedia field name on right # This gives us the option of putting the same field from a remote source into two We Vote fields BATCH_HEADER_MAP_MEASURES_TO_BALLOTPEDIA_MEASURES = { 'ballotpedia_district_id': 'ballotpedia_district_id', 'ballotpedia_election_id': 'ballotpedia_election_id', 'ballotpedia_measure_id': 'ballotpedia_measure_id', 'ballotpedia_measure_name': 'name', 'ballotpedia_measure_status': 'status', 'ballotpedia_measure_summary': 'summary', 'ballotpedia_measure_text': 'text', 'ballotpedia_measure_url': 'ballotpedia_measure_url', 'ballotpedia_yes_vote_description': 'ballotpedia_yes_vote_description', 'ballotpedia_no_vote_description': 'ballotpedia_no_vote_description', 'election_day_text': 'election_day_text', 'state_code': 'state_code', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_ORGANIZATIONS = { 'organization_address': 'organization_address', 'organization_city': 'organization_city', 'organization_contact_name': 'organization_contact_name', 'organization_facebook': 'organization_facebook', 'organization_instagram': 'organization_instagram', 'organization_name': 'organization_name', 'organization_phone1': 'organization_phone1', 'organization_phone2': 'organization_phone2', 'organization_state': 'organization_state', 'organization_twitter_handle': 'organization_twitter_handle', 'organization_website': 'organization_website', 'organization_we_vote_id': 'organization_we_vote_id', 'organization_zip': 'organization_zip', 'organization_type': 'organization_type', 'state_served_code': 'state_served_code', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_POLITICIANS = { 'politician_full_name': 'politician_full_name', 'politician_ctcl_uuid': 'politician_ctcl_uuid', 'politician_twitter_url': 'politician_twitter_url', 'politician_facebook_id': 'politician_facebook_id', 'politician_party_name': 'politician_party_name', 'politician_first_name': 'politician_first_name', 'politician_middle_name': 'politician_middle_name', 'politician_last_name': 'politician_last_name', 'politician_website_url': 'politician_website_url', 'politician_email_address': 'politician_email_address', 'politician_youtube_id': 'politician_youtube_id', 'politician_googleplus_id': 'politician_googleplus_id', 'politician_phone_number': 'politician_phone_number', 'politician_batch_id': 'politician_batch_id', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_POSITIONS = { 'position_we_vote_id': 'position_we_vote_id', 'candidate_name': 'candidate_name', 'candidate_twitter_handle': 'candidate_twitter_handle', 'candidate_we_vote_id': 'candidate_we_vote_id', 'contest_office_name': 'contest_office_name', 'contest_measure_title': 'contest_measure_title', 'election_day': 'election_day', 'grade_rating': 'grade_rating', 'google_civic_election_id': 'google_civic_election_id', 'more_info_url': 'more_info_url', 'stance': 'stance (SUPPORT or OPPOSE)', 'support': 'support (TRUE or FALSE)', 'oppose': 'oppose (TRUE or FALSE)', 'percent_rating': 'percent_rating', 'statement_text': 'statement_text', 'state_code': 'state_code', 'organization_name': 'organization_name', 'organization_we_vote_id': 'organization_we_vote_id', 'organization_twitter_handle': 'organization_twitter_handle (position owner)', } BATCH_HEADER_MAP_FOR_POSITIONS = { 'position_we_vote_id': 'position_we_vote_id', 'candidate_name': 'candidate_name', 'candidate_twitter_handle': 'candidate_twitter_handle', 'candidate_we_vote_id': 'candidate_we_vote_id', 'contest_office_name': 'contest_office_name', 'contest_measure_title': 'contest_measure_title', 'election_day': 'election_day', 'grade_rating': 'grade_rating', 'google_civic_election_id': 'google_civic_election_id', 'measure_title': 'measure_title', 'measure_we_vote_id': 'measure_we_vote_id', 'more_info_url': 'more_info_url', 'stance': 'stance', 'support': 'support', 'oppose': 'oppose', 'percent_rating': 'percent_rating', 'statement_text': 'statement_text', 'state_code': 'state_code', 'organization_name': 'organization_name', 'organization_we_vote_id': 'organization_we_vote_id', 'organization_twitter_handle': 'organization_twitter_handle', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_BALLOT_ITEMS = { 'contest_office_we_vote_id': 'contest_office_we_vote_id', 'contest_office_id': 'contest_office_id', 'contest_office_name': 'contest_office_name', 'candidate_name': 'candidate_name', 'candidate_twitter_handle': 'candidate_twitter_handle', 'contest_measure_we_vote_id': 'contest_measure_we_vote_id', 'contest_measure_id': 'contest_measure_id', 'contest_measure_name': 'contest_measure_name', 'contest_measure_text': 'contest_measure_text', 'contest_measure_url': 'contest_measure_url', 'election_day_text': 'election_day_text', 'local_ballot_order': 'local_ballot_order', 'no_vote_description': 'no_vote_description', 'yes_vote_description': 'yes_vote_description', 'polling_location_we_vote_id': 'polling_location_we_vote_id', 'state_code': 'state_code', } # We Vote contest office key on the left, and Ballotpedia field name on right # This gives us the option of putting the same field from a remote source into two We Vote fields BATCH_HEADER_MAP_BALLOT_ITEMS_TO_BALLOTPEDIA_VOTER_DISTRICTS = { 'ballotpedia_district_id': 'ballotpedia_district_id', 'ballotpedia_district_name': 'ballotpedia_district_name', 'contest_measure_id': 'contest_measure_id', 'contest_measure_we_vote_id': 'contest_measure_we_vote_id', 'contest_office_we_vote_id': 'contest_office_we_vote_id', 'contest_office_id': 'contest_office_id', 'election_day_text': 'election_day_text', 'local_ballot_order': 'local_ballot_order', 'polling_location_we_vote_id': 'polling_location_we_vote_id', 'state_code': 'state_code', } BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS = { 'first_name': 'first_name', 'middle_name': 'middle_name', 'last_name': 'last_name', 'email': 'email', 'we_vote_id': 'we_vote_id', 'twitter_screen_name': 'twitter_screen_name', } logger = wevote_functions.admin.get_logger(__name__) def get_value_if_index_in_list(incoming_list, index): try: return incoming_list[index] except IndexError: return "" def get_value_from_dict(structured_json, field_name): try: return structured_json[field_name] except KeyError: return "" except IndexError: return "" def get_header_map_value_if_index_in_list(incoming_list, index, kind_of_batch=""): try: # The header_value is a value like "Organization Name" or "Street Address" original_header_value = incoming_list[index] original_header_value_str = str(original_header_value) original_header_value_str = original_header_value_str.lower() # We want to check to see if there is a suggested We Vote header for this value batch_manager = BatchManager() header_value_recognized_by_we_vote = batch_manager.fetch_batch_header_translation_suggestion( kind_of_batch, original_header_value_str) if positive_value_exists(header_value_recognized_by_we_vote): return header_value_recognized_by_we_vote else: return original_header_value_str except IndexError: return "" class BatchManager(models.Model): def __unicode__(self): return "BatchManager" pass def create_batch_from_uri(self, batch_uri, kind_of_batch, google_civic_election_id, organization_we_vote_id): # Retrieve the CSV response = urllib.request.urlopen(batch_uri) csv_data = csv.reader(codecs.iterdecode(response, 'utf-8')) batch_file_name = "" return self.create_batch_from_csv_data( batch_file_name, csv_data, kind_of_batch, google_civic_election_id, organization_we_vote_id) def create_batch_from_local_file_upload( self, batch_file, kind_of_batch, google_civic_election_id, organization_we_vote_id, polling_location_we_vote_id=""): if (batch_file.content_type == 'text/csv') or (batch_file.content_type == 'application/vnd.ms-excel'): csv_data = csv.reader(codecs.iterdecode(batch_file, 'utf-8'), delimiter=',') batch_file_name = batch_file.name return self.create_batch_from_csv_data( batch_file_name, csv_data, kind_of_batch, google_civic_election_id, organization_we_vote_id, polling_location_we_vote_id) status = "CREATE_BATCH_FILETYPE_NOT_RECOGNIZED" results = { 'success': False, 'status': status, 'batch_header_id': 0, 'batch_saved': False, 'number_of_batch_rows': 0, } return results def create_batch_from_voter_object_list(self, objects_list): """ Creates a batch from a list of voter objects :param objects_list: list of voter objects :return: """ status = '' success = False number_of_voters = 0 google_civic_election_id = 0 if not objects_list: results = { 'success': False, 'status': "IMPORT_VOTERS_FAILED", 'number_of_voters': 0, } return results first_line = True batch_header_id = 0 batch_header_map_id = 0 for one_entry in objects_list: first_name = one_entry.first_name middle_name = one_entry.middle_name last_name = one_entry.last_name email = one_entry.email we_vote_id = one_entry.we_vote_id twitter_screen_name = one_entry.twitter_screen_name if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000=BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS['first_name'], batch_header_column_001=BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS['middle_name'], batch_header_column_002=BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS['last_name'], batch_header_column_003=BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS['email'], batch_header_column_004=BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS['we_vote_id'], batch_header_column_005=BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS['twitter_screen_name'], ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='first_name', batch_header_map_001='middle_name', batch_header_map_002='last_name', batch_header_map_003='email', batch_header_map_004='we_vote_id', batch_header_map_005='twitter_screen_name', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "IMPORT_VOTERS " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch=IMPORT_VOTER, organization_we_vote_id=organization_we_vote_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=first_name, batch_row_001=middle_name, batch_row_002=last_name, batch_row_003=email, batch_row_004=we_vote_id, batch_row_005=twitter_screen_name, ) number_of_voters += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_voters': number_of_voters, 'google_civic_election_id': google_civic_election_id, } return results def create_batch_from_csv_data(self, file_name, csv_data, kind_of_batch, google_civic_election_id=0, organization_we_vote_id="", polling_location_we_vote_id=""): first_line = True success = False status = "" number_of_batch_rows = 0 # limit_for_testing = 5 # Retrieve from JSON # request = Request(batch_uri, headers={'User-Agent': 'Mozilla/5.0'}) # url_processor = urlopen(request) # data = url_processor.read() # incoming_data = data.decode('utf-8') # structured_json = json.loads(incoming_data) # for one_entry in structured_json: batch_header_id = 0 batch_header_map_id = 0 for line in csv_data: if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000=get_value_if_index_in_list(line, 0), batch_header_column_001=get_value_if_index_in_list(line, 1), batch_header_column_002=get_value_if_index_in_list(line, 2), batch_header_column_003=get_value_if_index_in_list(line, 3), batch_header_column_004=get_value_if_index_in_list(line, 4), batch_header_column_005=get_value_if_index_in_list(line, 5), batch_header_column_006=get_value_if_index_in_list(line, 6), batch_header_column_007=get_value_if_index_in_list(line, 7), batch_header_column_008=get_value_if_index_in_list(line, 8), batch_header_column_009=get_value_if_index_in_list(line, 9), batch_header_column_010=get_value_if_index_in_list(line, 10), batch_header_column_011=get_value_if_index_in_list(line, 11), batch_header_column_012=get_value_if_index_in_list(line, 12), batch_header_column_013=get_value_if_index_in_list(line, 13), batch_header_column_014=get_value_if_index_in_list(line, 14), batch_header_column_015=get_value_if_index_in_list(line, 15), batch_header_column_016=get_value_if_index_in_list(line, 16), batch_header_column_017=get_value_if_index_in_list(line, 17), batch_header_column_018=get_value_if_index_in_list(line, 18), batch_header_column_019=get_value_if_index_in_list(line, 19), batch_header_column_020=get_value_if_index_in_list(line, 20), batch_header_column_021=get_value_if_index_in_list(line, 21), batch_header_column_022=get_value_if_index_in_list(line, 22), batch_header_column_023=get_value_if_index_in_list(line, 23), batch_header_column_024=get_value_if_index_in_list(line, 24), batch_header_column_025=get_value_if_index_in_list(line, 25), batch_header_column_026=get_value_if_index_in_list(line, 26), batch_header_column_027=get_value_if_index_in_list(line, 27), batch_header_column_028=get_value_if_index_in_list(line, 28), batch_header_column_029=get_value_if_index_in_list(line, 29), batch_header_column_030=get_value_if_index_in_list(line, 30), batch_header_column_031=get_value_if_index_in_list(line, 31), batch_header_column_032=get_value_if_index_in_list(line, 32), batch_header_column_033=get_value_if_index_in_list(line, 33), batch_header_column_034=get_value_if_index_in_list(line, 34), batch_header_column_035=get_value_if_index_in_list(line, 35), batch_header_column_036=get_value_if_index_in_list(line, 36), batch_header_column_037=get_value_if_index_in_list(line, 37), batch_header_column_038=get_value_if_index_in_list(line, 38), batch_header_column_039=get_value_if_index_in_list(line, 39), batch_header_column_040=get_value_if_index_in_list(line, 40), batch_header_column_041=get_value_if_index_in_list(line, 41), batch_header_column_042=get_value_if_index_in_list(line, 42), batch_header_column_043=get_value_if_index_in_list(line, 43), batch_header_column_044=get_value_if_index_in_list(line, 44), batch_header_column_045=get_value_if_index_in_list(line, 45), batch_header_column_046=get_value_if_index_in_list(line, 46), batch_header_column_047=get_value_if_index_in_list(line, 47), batch_header_column_048=get_value_if_index_in_list(line, 48), batch_header_column_049=get_value_if_index_in_list(line, 49), batch_header_column_050=get_value_if_index_in_list(line, 50), ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap # For each line, check for translation suggestions batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000=get_header_map_value_if_index_in_list(line, 0, kind_of_batch), batch_header_map_001=get_header_map_value_if_index_in_list(line, 1, kind_of_batch), batch_header_map_002=get_header_map_value_if_index_in_list(line, 2, kind_of_batch), batch_header_map_003=get_header_map_value_if_index_in_list(line, 3, kind_of_batch), batch_header_map_004=get_header_map_value_if_index_in_list(line, 4, kind_of_batch), batch_header_map_005=get_header_map_value_if_index_in_list(line, 5, kind_of_batch), batch_header_map_006=get_header_map_value_if_index_in_list(line, 6, kind_of_batch), batch_header_map_007=get_header_map_value_if_index_in_list(line, 7, kind_of_batch), batch_header_map_008=get_header_map_value_if_index_in_list(line, 8, kind_of_batch), batch_header_map_009=get_header_map_value_if_index_in_list(line, 9, kind_of_batch), batch_header_map_010=get_header_map_value_if_index_in_list(line, 10, kind_of_batch), batch_header_map_011=get_header_map_value_if_index_in_list(line, 11, kind_of_batch), batch_header_map_012=get_header_map_value_if_index_in_list(line, 12, kind_of_batch), batch_header_map_013=get_header_map_value_if_index_in_list(line, 13, kind_of_batch), batch_header_map_014=get_header_map_value_if_index_in_list(line, 14, kind_of_batch), batch_header_map_015=get_header_map_value_if_index_in_list(line, 15, kind_of_batch), batch_header_map_016=get_header_map_value_if_index_in_list(line, 16, kind_of_batch), batch_header_map_017=get_header_map_value_if_index_in_list(line, 17, kind_of_batch), batch_header_map_018=get_header_map_value_if_index_in_list(line, 18, kind_of_batch), batch_header_map_019=get_header_map_value_if_index_in_list(line, 19, kind_of_batch), batch_header_map_020=get_header_map_value_if_index_in_list(line, 20, kind_of_batch), batch_header_map_021=get_header_map_value_if_index_in_list(line, 21, kind_of_batch), batch_header_map_022=get_header_map_value_if_index_in_list(line, 22, kind_of_batch), batch_header_map_023=get_header_map_value_if_index_in_list(line, 23, kind_of_batch), batch_header_map_024=get_header_map_value_if_index_in_list(line, 24, kind_of_batch), batch_header_map_025=get_header_map_value_if_index_in_list(line, 25, kind_of_batch), batch_header_map_026=get_header_map_value_if_index_in_list(line, 26, kind_of_batch), batch_header_map_027=get_header_map_value_if_index_in_list(line, 27, kind_of_batch), batch_header_map_028=get_header_map_value_if_index_in_list(line, 28, kind_of_batch), batch_header_map_029=get_header_map_value_if_index_in_list(line, 29, kind_of_batch), batch_header_map_030=get_header_map_value_if_index_in_list(line, 30, kind_of_batch), batch_header_map_031=get_header_map_value_if_index_in_list(line, 31, kind_of_batch), batch_header_map_032=get_header_map_value_if_index_in_list(line, 32, kind_of_batch), batch_header_map_033=get_header_map_value_if_index_in_list(line, 33, kind_of_batch), batch_header_map_034=get_header_map_value_if_index_in_list(line, 34, kind_of_batch), batch_header_map_035=get_header_map_value_if_index_in_list(line, 35, kind_of_batch), batch_header_map_036=get_header_map_value_if_index_in_list(line, 36, kind_of_batch), batch_header_map_037=get_header_map_value_if_index_in_list(line, 37, kind_of_batch), batch_header_map_038=get_header_map_value_if_index_in_list(line, 38, kind_of_batch), batch_header_map_039=get_header_map_value_if_index_in_list(line, 39, kind_of_batch), batch_header_map_040=get_header_map_value_if_index_in_list(line, 40, kind_of_batch), batch_header_map_041=get_header_map_value_if_index_in_list(line, 41, kind_of_batch), batch_header_map_042=get_header_map_value_if_index_in_list(line, 42, kind_of_batch), batch_header_map_043=get_header_map_value_if_index_in_list(line, 43, kind_of_batch), batch_header_map_044=get_header_map_value_if_index_in_list(line, 44, kind_of_batch), batch_header_map_045=get_header_map_value_if_index_in_list(line, 45, kind_of_batch), batch_header_map_046=get_header_map_value_if_index_in_list(line, 46, kind_of_batch), batch_header_map_047=get_header_map_value_if_index_in_list(line, 47, kind_of_batch), batch_header_map_048=get_header_map_value_if_index_in_list(line, 48, kind_of_batch), batch_header_map_049=get_header_map_value_if_index_in_list(line, 49, kind_of_batch), batch_header_map_050=get_header_map_value_if_index_in_list(line, 50, kind_of_batch), ) batch_header_map_id = batch_header_map.id status += "BATCH_HEADER_MAP_SAVED " if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription if positive_value_exists(file_name): batch_name = str(batch_header_id) + ": " + file_name if not positive_value_exists(batch_name): batch_name = str(batch_header_id) + ": " + kind_of_batch batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch=kind_of_batch, organization_we_vote_id=organization_we_vote_id, polling_location_we_vote_id=polling_location_we_vote_id, # source_uri=batch_uri, ) status += "BATCH_DESCRIPTION_SAVED " success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += "EXCEPTION_BATCH_HEADER " handle_exception(e, logger=logger, exception_message=status) break else: # if number_of_batch_rows >= limit_for_testing: # break if positive_value_exists(batch_header_id): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=get_value_if_index_in_list(line, 0), batch_row_001=get_value_if_index_in_list(line, 1), batch_row_002=get_value_if_index_in_list(line, 2), batch_row_003=get_value_if_index_in_list(line, 3), batch_row_004=get_value_if_index_in_list(line, 4), batch_row_005=get_value_if_index_in_list(line, 5), batch_row_006=get_value_if_index_in_list(line, 6), batch_row_007=get_value_if_index_in_list(line, 7), batch_row_008=get_value_if_index_in_list(line, 8), batch_row_009=get_value_if_index_in_list(line, 9), batch_row_010=get_value_if_index_in_list(line, 10), batch_row_011=get_value_if_index_in_list(line, 11), batch_row_012=get_value_if_index_in_list(line, 12), batch_row_013=get_value_if_index_in_list(line, 13), batch_row_014=get_value_if_index_in_list(line, 14), batch_row_015=get_value_if_index_in_list(line, 15), batch_row_016=get_value_if_index_in_list(line, 16), batch_row_017=get_value_if_index_in_list(line, 17), batch_row_018=get_value_if_index_in_list(line, 18), batch_row_019=get_value_if_index_in_list(line, 19), batch_row_020=get_value_if_index_in_list(line, 20), batch_row_021=get_value_if_index_in_list(line, 21), batch_row_022=get_value_if_index_in_list(line, 22), batch_row_023=get_value_if_index_in_list(line, 23), batch_row_024=get_value_if_index_in_list(line, 24), batch_row_025=get_value_if_index_in_list(line, 25), batch_row_026=get_value_if_index_in_list(line, 26), batch_row_027=get_value_if_index_in_list(line, 27), batch_row_028=get_value_if_index_in_list(line, 28), batch_row_029=get_value_if_index_in_list(line, 29), batch_row_030=get_value_if_index_in_list(line, 30), batch_row_031=get_value_if_index_in_list(line, 31), batch_row_032=get_value_if_index_in_list(line, 32), batch_row_033=get_value_if_index_in_list(line, 33), batch_row_034=get_value_if_index_in_list(line, 34), batch_row_035=get_value_if_index_in_list(line, 35), batch_row_036=get_value_if_index_in_list(line, 36), batch_row_037=get_value_if_index_in_list(line, 37), batch_row_038=get_value_if_index_in_list(line, 38), batch_row_039=get_value_if_index_in_list(line, 39), batch_row_040=get_value_if_index_in_list(line, 40), batch_row_041=get_value_if_index_in_list(line, 41), batch_row_042=get_value_if_index_in_list(line, 42), batch_row_043=get_value_if_index_in_list(line, 43), batch_row_044=get_value_if_index_in_list(line, 44), batch_row_045=get_value_if_index_in_list(line, 45), batch_row_046=get_value_if_index_in_list(line, 46), batch_row_047=get_value_if_index_in_list(line, 47), batch_row_048=get_value_if_index_in_list(line, 48), batch_row_049=get_value_if_index_in_list(line, 49), batch_row_050=get_value_if_index_in_list(line, 50), ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += "EXCEPTION_BATCH_ROW " break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def create_batch_from_json(self, file_name, structured_json_list, mapping_dict, kind_of_batch, google_civic_election_id=0, organization_we_vote_id="", polling_location_we_vote_id="", batch_set_id=0, state_code=""): success = False status = "" number_of_batch_rows = 0 # limit_for_testing = 5 batch_header_id = 0 batch_header_map_id = 0 batch_name = "" if not len(structured_json_list): # If there aren't any values, don't create a batch results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results # We want an array with integers 0 - n as the keys, and the field names as the values we_vote_keys = list(mapping_dict.keys()) remote_source_keys = list(mapping_dict.values()) try: batch_header = BatchHeader.objects.create( batch_header_column_000=get_value_if_index_in_list(remote_source_keys, 0), batch_header_column_001=get_value_if_index_in_list(remote_source_keys, 1), batch_header_column_002=get_value_if_index_in_list(remote_source_keys, 2), batch_header_column_003=get_value_if_index_in_list(remote_source_keys, 3), batch_header_column_004=get_value_if_index_in_list(remote_source_keys, 4), batch_header_column_005=get_value_if_index_in_list(remote_source_keys, 5), batch_header_column_006=get_value_if_index_in_list(remote_source_keys, 6), batch_header_column_007=get_value_if_index_in_list(remote_source_keys, 7), batch_header_column_008=get_value_if_index_in_list(remote_source_keys, 8), batch_header_column_009=get_value_if_index_in_list(remote_source_keys, 9), batch_header_column_010=get_value_if_index_in_list(remote_source_keys, 10), batch_header_column_011=get_value_if_index_in_list(remote_source_keys, 11), batch_header_column_012=get_value_if_index_in_list(remote_source_keys, 12), batch_header_column_013=get_value_if_index_in_list(remote_source_keys, 13), batch_header_column_014=get_value_if_index_in_list(remote_source_keys, 14), batch_header_column_015=get_value_if_index_in_list(remote_source_keys, 15), batch_header_column_016=get_value_if_index_in_list(remote_source_keys, 16), batch_header_column_017=get_value_if_index_in_list(remote_source_keys, 17), batch_header_column_018=get_value_if_index_in_list(remote_source_keys, 18), batch_header_column_019=get_value_if_index_in_list(remote_source_keys, 19), batch_header_column_020=get_value_if_index_in_list(remote_source_keys, 20), batch_header_column_021=get_value_if_index_in_list(remote_source_keys, 21), batch_header_column_022=get_value_if_index_in_list(remote_source_keys, 22), batch_header_column_023=get_value_if_index_in_list(remote_source_keys, 23), batch_header_column_024=get_value_if_index_in_list(remote_source_keys, 24), batch_header_column_025=get_value_if_index_in_list(remote_source_keys, 25), batch_header_column_026=get_value_if_index_in_list(remote_source_keys, 26), batch_header_column_027=get_value_if_index_in_list(remote_source_keys, 27), batch_header_column_028=get_value_if_index_in_list(remote_source_keys, 28), batch_header_column_029=get_value_if_index_in_list(remote_source_keys, 29), batch_header_column_030=get_value_if_index_in_list(remote_source_keys, 30), batch_header_column_031=get_value_if_index_in_list(remote_source_keys, 31), batch_header_column_032=get_value_if_index_in_list(remote_source_keys, 32), batch_header_column_033=get_value_if_index_in_list(remote_source_keys, 33), batch_header_column_034=get_value_if_index_in_list(remote_source_keys, 34), batch_header_column_035=get_value_if_index_in_list(remote_source_keys, 35), batch_header_column_036=get_value_if_index_in_list(remote_source_keys, 36), batch_header_column_037=get_value_if_index_in_list(remote_source_keys, 37), batch_header_column_038=get_value_if_index_in_list(remote_source_keys, 38), batch_header_column_039=get_value_if_index_in_list(remote_source_keys, 39), batch_header_column_040=get_value_if_index_in_list(remote_source_keys, 40), batch_header_column_041=get_value_if_index_in_list(remote_source_keys, 41), batch_header_column_042=get_value_if_index_in_list(remote_source_keys, 42), batch_header_column_043=get_value_if_index_in_list(remote_source_keys, 43), batch_header_column_044=get_value_if_index_in_list(remote_source_keys, 44), batch_header_column_045=get_value_if_index_in_list(remote_source_keys, 45), batch_header_column_046=get_value_if_index_in_list(remote_source_keys, 46), batch_header_column_047=get_value_if_index_in_list(remote_source_keys, 47), batch_header_column_048=get_value_if_index_in_list(remote_source_keys, 48), batch_header_column_049=get_value_if_index_in_list(remote_source_keys, 49), batch_header_column_050=get_value_if_index_in_list(remote_source_keys, 50), ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap # For each line, check for translation suggestions batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000=get_value_if_index_in_list(we_vote_keys, 0), batch_header_map_001=get_value_if_index_in_list(we_vote_keys, 1), batch_header_map_002=get_value_if_index_in_list(we_vote_keys, 2), batch_header_map_003=get_value_if_index_in_list(we_vote_keys, 3), batch_header_map_004=get_value_if_index_in_list(we_vote_keys, 4), batch_header_map_005=get_value_if_index_in_list(we_vote_keys, 5), batch_header_map_006=get_value_if_index_in_list(we_vote_keys, 6), batch_header_map_007=get_value_if_index_in_list(we_vote_keys, 7), batch_header_map_008=get_value_if_index_in_list(we_vote_keys, 8), batch_header_map_009=get_value_if_index_in_list(we_vote_keys, 9), batch_header_map_010=get_value_if_index_in_list(we_vote_keys, 10), batch_header_map_011=get_value_if_index_in_list(we_vote_keys, 11), batch_header_map_012=get_value_if_index_in_list(we_vote_keys, 12), batch_header_map_013=get_value_if_index_in_list(we_vote_keys, 13), batch_header_map_014=get_value_if_index_in_list(we_vote_keys, 14), batch_header_map_015=get_value_if_index_in_list(we_vote_keys, 15), batch_header_map_016=get_value_if_index_in_list(we_vote_keys, 16), batch_header_map_017=get_value_if_index_in_list(we_vote_keys, 17), batch_header_map_018=get_value_if_index_in_list(we_vote_keys, 18), batch_header_map_019=get_value_if_index_in_list(we_vote_keys, 19), batch_header_map_020=get_value_if_index_in_list(we_vote_keys, 20), batch_header_map_021=get_value_if_index_in_list(we_vote_keys, 21), batch_header_map_022=get_value_if_index_in_list(we_vote_keys, 22), batch_header_map_023=get_value_if_index_in_list(we_vote_keys, 23), batch_header_map_024=get_value_if_index_in_list(we_vote_keys, 24), batch_header_map_025=get_value_if_index_in_list(we_vote_keys, 25), batch_header_map_026=get_value_if_index_in_list(we_vote_keys, 26), batch_header_map_027=get_value_if_index_in_list(we_vote_keys, 27), batch_header_map_028=get_value_if_index_in_list(we_vote_keys, 28), batch_header_map_029=get_value_if_index_in_list(we_vote_keys, 29), batch_header_map_030=get_value_if_index_in_list(we_vote_keys, 30), batch_header_map_031=get_value_if_index_in_list(we_vote_keys, 31), batch_header_map_032=get_value_if_index_in_list(we_vote_keys, 32), batch_header_map_033=get_value_if_index_in_list(we_vote_keys, 33), batch_header_map_034=get_value_if_index_in_list(we_vote_keys, 34), batch_header_map_035=get_value_if_index_in_list(we_vote_keys, 35), batch_header_map_036=get_value_if_index_in_list(we_vote_keys, 36), batch_header_map_037=get_value_if_index_in_list(we_vote_keys, 37), batch_header_map_038=get_value_if_index_in_list(we_vote_keys, 38), batch_header_map_039=get_value_if_index_in_list(we_vote_keys, 39), batch_header_map_040=get_value_if_index_in_list(we_vote_keys, 40), batch_header_map_041=get_value_if_index_in_list(we_vote_keys, 41), batch_header_map_042=get_value_if_index_in_list(we_vote_keys, 42), batch_header_map_043=get_value_if_index_in_list(we_vote_keys, 43), batch_header_map_044=get_value_if_index_in_list(we_vote_keys, 44), batch_header_map_045=get_value_if_index_in_list(we_vote_keys, 45), batch_header_map_046=get_value_if_index_in_list(we_vote_keys, 46), batch_header_map_047=get_value_if_index_in_list(we_vote_keys, 47), batch_header_map_048=get_value_if_index_in_list(we_vote_keys, 48), batch_header_map_049=get_value_if_index_in_list(we_vote_keys, 49), batch_header_map_050=get_value_if_index_in_list(we_vote_keys, 50), ) batch_header_map_id = batch_header_map.id status += "BATCH_HEADER_MAP_SAVED_FOR_JSON " if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription if positive_value_exists(file_name): batch_name = str(batch_header_id) + ": " + file_name if not positive_value_exists(batch_name): batch_name = str(batch_header_id) + ": " + kind_of_batch batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, batch_set_id=batch_set_id, google_civic_election_id=google_civic_election_id, kind_of_batch=kind_of_batch, organization_we_vote_id=organization_we_vote_id, polling_location_we_vote_id=polling_location_we_vote_id, # source_uri=batch_uri, ) status += "BATCH_DESCRIPTION_SAVED_FOR_JSON " success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += "EXCEPTION_BATCH_HEADER_FOR_JSON " handle_exception(e, logger=logger, exception_message=status) if positive_value_exists(batch_header_id): for one_dict in structured_json_list: # if number_of_batch_rows >= limit_for_testing: # break try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 0)), batch_row_001=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 1)), batch_row_002=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 2)), batch_row_003=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 3)), batch_row_004=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 4)), batch_row_005=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 5)), batch_row_006=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 6)), batch_row_007=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 7)), batch_row_008=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 8)), batch_row_009=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 9)), batch_row_010=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 10)), batch_row_011=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 11)), batch_row_012=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 12)), batch_row_013=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 13)), batch_row_014=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 14)), batch_row_015=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 15)), batch_row_016=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 16)), batch_row_017=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 17)), batch_row_018=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 18)), batch_row_019=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 19)), batch_row_020=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 20)), batch_row_021=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 21)), batch_row_022=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 22)), batch_row_023=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 23)), batch_row_024=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 24)), batch_row_025=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 25)), batch_row_026=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 26)), batch_row_027=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 27)), batch_row_028=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 28)), batch_row_029=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 29)), batch_row_030=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 30)), batch_row_031=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 31)), batch_row_032=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 32)), batch_row_033=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 33)), batch_row_034=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 34)), batch_row_035=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 35)), batch_row_036=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 36)), batch_row_037=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 37)), batch_row_038=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 38)), batch_row_039=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 39)), batch_row_040=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 40)), batch_row_041=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 41)), batch_row_042=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 42)), batch_row_043=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 43)), batch_row_044=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 44)), batch_row_045=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 45)), batch_row_046=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 46)), batch_row_047=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 47)), batch_row_048=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 48)), batch_row_049=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 49)), batch_row_050=get_value_from_dict(one_dict, get_value_if_index_in_list(remote_source_keys, 50)), ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += "EXCEPTION_BATCH_ROW_FOR_JSON " break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results # I don't believe this is currently in use. There is also a function of this same name in controllers.py def create_batch_header_translation_suggestion( self, kind_of_batch, header_value_recognized_by_we_vote, incoming_alternate_header_value): """ :param kind_of_batch: :param header_value_recognized_by_we_vote: :param incoming_alternate_header_value: :return: """ success = False status = "" suggestion_created = False suggestion_updated = False header_value_recognized_by_we_vote = header_value_recognized_by_we_vote.lower() incoming_alternate_header_value = incoming_alternate_header_value.lower() if not positive_value_exists(kind_of_batch) or not positive_value_exists(header_value_recognized_by_we_vote) \ or not positive_value_exists(incoming_alternate_header_value): status += "CREATE_BATCH_HEADER_TRANSLATION_SUGGESTION-MISSING_REQUIRED_VARIABLE " results = { 'success': success, 'status': status, 'suggestion_created': suggestion_created, 'suggestion_updated': suggestion_updated, } return results if kind_of_batch == CANDIDATE: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_CANDIDATES elif kind_of_batch == CONTEST_OFFICE: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_CONTEST_OFFICES elif kind_of_batch == ELECTED_OFFICE: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_ELECTED_OFFICES elif kind_of_batch == MEASURE: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_MEASURES elif kind_of_batch == ORGANIZATION_WORD: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_ORGANIZATIONS elif kind_of_batch == POLITICIAN: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_POLITICIANS elif kind_of_batch == POSITION: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_POSITIONS elif kind_of_batch == IMPORT_BALLOT_ITEM: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_BALLOT_ITEMS elif kind_of_batch == IMPORT_VOTER: batch_import_keys_accepted = BATCH_IMPORT_KEYS_ACCEPTED_FOR_VOTERS else: batch_import_keys_accepted = {} if incoming_alternate_header_value in batch_import_keys_accepted: success = True status += "SUGGESTION_IS_BATCH_IMPORT_KEY " results = { 'success': success, 'status': status, 'suggestion_created': suggestion_created, 'suggestion_updated': suggestion_updated, } return results try: batch_header_translation_suggestion, suggestion_created = \ BatchHeaderTranslationSuggestion.objects.update_or_create( kind_of_batch=kind_of_batch, header_value_recognized_by_we_vote=header_value_recognized_by_we_vote, incoming_alternate_header_value=incoming_alternate_header_value) success = True status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVED " except Exception as e: success = False status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVE_FAILED " results = { 'success': success, 'status': status, 'suggestion_created': suggestion_created, 'suggestion_updated': suggestion_updated, } return results def fetch_batch_row_count(self, batch_header_id): """ :param batch_header_id: :return: """ try: batch_row_query = BatchRow.objects.filter(batch_header_id=batch_header_id) batch_row_count = batch_row_query.count() except BatchRow.DoesNotExist: batch_row_count = 0 except Exception as e: batch_row_count = 0 return batch_row_count def fetch_batch_row_action_count(self, batch_header_id, kind_of_batch, kind_of_action=''): """ :param batch_header_id: :param kind_of_batch: :param kind_of_action: :return: """ batch_row_action_count = 0 try: if kind_of_batch == CANDIDATE: batch_row_action_query = BatchRowActionCandidate.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == CONTEST_OFFICE: batch_row_action_query = BatchRowActionContestOffice.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == ELECTED_OFFICE: batch_row_action_query = BatchRowActionElectedOffice.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == IMPORT_BALLOT_ITEM: batch_row_action_query = BatchRowActionBallotItem.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == MEASURE: batch_row_action_query = BatchRowActionMeasure.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == ORGANIZATION_WORD: batch_row_action_query = BatchRowActionOrganization.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == POLITICIAN: batch_row_action_query = BatchRowActionPolitician.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == POSITION: batch_row_action_query = BatchRowActionPosition.objects.filter(batch_header_id=batch_header_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() except Exception as e: batch_row_action_count = 0 return batch_row_action_count def fetch_batch_row_action_count_in_batch_set(self, batch_set_id, kind_of_batch, kind_of_action=''): """ :param batch_set_id: :param kind_of_batch: :param kind_of_action: :return: """ batch_row_action_count = 0 try: if kind_of_batch == CANDIDATE: batch_row_action_query = BatchRowActionCandidate.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == CONTEST_OFFICE: batch_row_action_query = BatchRowActionContestOffice.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == ELECTED_OFFICE: batch_row_action_query = BatchRowActionElectedOffice.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == IMPORT_BALLOT_ITEM: batch_row_action_query = BatchRowActionBallotItem.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == MEASURE: batch_row_action_query = BatchRowActionMeasure.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == ORGANIZATION_WORD: batch_row_action_query = BatchRowActionOrganization.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == POLITICIAN: batch_row_action_query = BatchRowActionPolitician.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() elif kind_of_batch == POSITION: batch_row_action_query = BatchRowActionPosition.objects.filter(batch_set_id=batch_set_id) if positive_value_exists(kind_of_action): batch_row_action_query = batch_row_action_query.filter(kind_of_action__iexact=kind_of_action) batch_row_action_count = batch_row_action_query.count() except Exception as e: batch_row_action_count = 0 return batch_row_action_count def retrieve_unprocessed_batch_set_info_by_election_and_set_source( self, google_civic_election_id, batch_set_source): batch_set_query = BatchSet.objects.all() batch_set_query = batch_set_query.filter(google_civic_election_id=google_civic_election_id) batch_set_query = batch_set_query.filter(batch_set_source__iexact=batch_set_source) batch_set_query = batch_set_query.order_by('-id') batch_set_list = list(batch_set_query) batch_of_ballot_items_not_processed = 0 batch_set_id = 0 total_ballot_locations_count = 0 if positive_value_exists(len(batch_set_list)): one_batch_set = batch_set_list[0] batch_set_id = one_batch_set.id batch_description_query = BatchDescription.objects.all() batch_description_query = batch_description_query.filter(batch_set_id=one_batch_set.id) total_ballot_locations_count = batch_description_query.count() batch_description_list = list(batch_description_query) for one_batch_description in batch_description_list: # For each Batch Description, see if there are BatchRowActionBallotItem entries batch_row_action_ballot_item_query = BatchRowActionBallotItem.objects.all() batch_row_action_ballot_item_query = batch_row_action_ballot_item_query.filter( batch_header_id=one_batch_description.batch_header_id) batch_row_action_ballot_item_query = batch_row_action_ballot_item_query.filter( kind_of_action=IMPORT_ADD_TO_EXISTING) # If there aren't any "update" entries, count as unprocessed if not positive_value_exists(batch_row_action_ballot_item_query.count()): batch_of_ballot_items_not_processed += 1 results = { 'batches_not_processed': batch_of_ballot_items_not_processed, 'batch_set_id': batch_set_id, } return results def retrieve_batch_header_translation_suggestion(self, kind_of_batch, incoming_alternate_header_value): """ We are looking at one header value from a file imported by an admin or volunteer. We want to see if there are any suggestions for headers already recognized by We Vote. Ex/ "Organization" -> "organization_name" :param kind_of_batch: :param incoming_alternate_header_value: :return: """ success = False status = "" batch_header_translation_suggestion_found = False if not positive_value_exists(kind_of_batch) or not positive_value_exists(incoming_alternate_header_value): status += "RETRIEVE_BATCH_HEADER_TRANSLATION_SUGGESTION-MISSING_REQUIRED_VARIABLE " results = { 'success': success, 'status': status, 'batch_header_translation_suggestion': BatchHeaderTranslationSuggestion(), 'batch_header_translation_suggestion_found': batch_header_translation_suggestion_found, } return results try: # Note that we don't care about case sensitivity when we search for the alternate value batch_header_translation_suggestion = BatchHeaderTranslationSuggestion.objects.get( kind_of_batch=kind_of_batch, incoming_alternate_header_value__iexact=incoming_alternate_header_value) batch_header_translation_suggestion_found = True success = True status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVED " except Exception as e: batch_header_translation_suggestion = BatchHeaderTranslationSuggestion() success = False status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVE_FAILED " results = { 'success': success, 'status': status, 'batch_header_translation_suggestion': batch_header_translation_suggestion, 'batch_header_translation_suggestion_found': batch_header_translation_suggestion_found, } return results def create_batch_row_translation_map( # TODO This hasn't been built self, kind_of_batch, header_value_recognized_by_we_vote, incoming_alternate_header_value): success = False status = "" if not positive_value_exists(kind_of_batch) or not positive_value_exists(header_value_recognized_by_we_vote) \ or not positive_value_exists(incoming_alternate_header_value): status += "CREATE_BATCH_HEADER_TRANSLATION_SUGGESTION-MISSING_REQUIRED_VARIABLE " results = { 'success': success, 'status': status, } return results try: header_value_recognized_by_we_vote = header_value_recognized_by_we_vote.lower() incoming_alternate_header_value = incoming_alternate_header_value.lower() batch_header_translation_suggestion, created = BatchHeaderTranslationSuggestion.objects.update_or_create( kind_of_batch=kind_of_batch, header_value_recognized_by_we_vote=header_value_recognized_by_we_vote, incoming_alternate_header_value=incoming_alternate_header_value) success = True status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVED " except Exception as e: success = False status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVE_FAILED " results = { 'success': success, 'status': status, } return results def retrieve_batch_row_translation_map(self, kind_of_batch, incoming_alternate_header_value): # TODO This hasn't been built yet success = False status = "" batch_header_translation_suggestion_found = False if not positive_value_exists(kind_of_batch) or not positive_value_exists(incoming_alternate_header_value): status += "RETRIEVE_BATCH_HEADER_TRANSLATION_SUGGESTION-MISSING_REQUIRED_VARIABLE " results = { 'success': success, 'status': status, 'batch_header_translation_suggestion': BatchHeaderTranslationSuggestion(), 'batch_header_translation_suggestion_found': batch_header_translation_suggestion_found, } return results try: # Note that we don't care about case sensitivity when we search for the alternate value batch_header_translation_suggestion = BatchHeaderTranslationSuggestion.objects.get( kind_of_batch=kind_of_batch, incoming_alternate_header_value__iexact=incoming_alternate_header_value) batch_header_translation_suggestion_found = True success = True status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVED " except Exception as e: batch_header_translation_suggestion = BatchHeaderTranslationSuggestion() success = False status += "BATCH_HEADER_TRANSLATION_SUGGESTION_SAVE_FAILED " results = { 'success': success, 'status': status, 'batch_header_translation_suggestion': batch_header_translation_suggestion, 'batch_header_translation_suggestion_found': batch_header_translation_suggestion_found, } return results def retrieve_batch_row_action_organization(self, batch_header_id, batch_row_id): try: batch_row_action_organization = BatchRowActionOrganization.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_ORGANIZATION_RETRIEVED" except BatchRowActionOrganization.DoesNotExist: batch_row_action_organization = BatchRowActionOrganization() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_ORGANIZATION_NOT_FOUND" except Exception as e: batch_row_action_organization = BatchRowActionOrganization() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_ORGANIZATION_RETRIEVE_ERROR" results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_organization': batch_row_action_organization, } return results def retrieve_batch_row_action_measure(self, batch_header_id, batch_row_id): try: batch_row_action_measure = BatchRowActionMeasure.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_MEASURE_RETRIEVED " except BatchRowActionMeasure.DoesNotExist: batch_row_action_measure = BatchRowActionMeasure() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_MEASURE_NOT_FOUND " except Exception as e: batch_row_action_measure = BatchRowActionMeasure() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_MEASURE_RETRIEVE_ERROR " results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_measure': batch_row_action_measure, } return results def retrieve_batch_row_action_elected_office(self, batch_header_id, batch_row_id): """ Retrieves data from BatchRowActionElectedOffice table :param batch_header_id: :param batch_row_id: :return: """ try: batch_row_action_elected_office = BatchRowActionElectedOffice.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_ELECTED_OFFICE_RETRIEVED" except BatchRowActionElectedOffice.DoesNotExist: batch_row_action_elected_office = BatchRowActionElectedOffice() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_ELECTED_OFFICE_NOT_FOUND" except Exception as e: batch_row_action_elected_office = BatchRowActionElectedOffice() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_ELECTED_OFFICE_RETRIEVE_ERROR" results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_elected_office': batch_row_action_elected_office, } return results def retrieve_batch_row_action_contest_office(self, batch_header_id, batch_row_id): """ Retrieves data from BatchRowActionContestOffice table :param batch_header_id: :param batch_row_id: :return: """ try: batch_row_action_contest_office = BatchRowActionContestOffice.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_CONTEST_OFFICE_RETRIEVED" except BatchRowActionContestOffice.DoesNotExist: batch_row_action_contest_office = BatchRowActionContestOffice() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_CONTEST_OFFICE_NOT_FOUND" except Exception as e: batch_row_action_contest_office = BatchRowActionContestOffice() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_CONTEST_OFFICE_RETRIEVE_ERROR" results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_contest_office': batch_row_action_contest_office, } return results def retrieve_batch_row_action_politician(self, batch_header_id, batch_row_id): """ Retrieves data from BatchRowActionPolitician table :param batch_header_id: :param batch_row_id: :return: """ try: batch_row_action_politician = BatchRowActionPolitician.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_POLITICIAN_RETRIEVED" except BatchRowActionPolitician.DoesNotExist: batch_row_action_politician = BatchRowActionPolitician() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_POLITICIAN_NOT_FOUND" except Exception as e: batch_row_action_politician = BatchRowActionPolitician() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_POLITICIAN_RETRIEVE_ERROR" results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_politician': batch_row_action_politician, } return results def retrieve_batch_row_action_position(self, batch_header_id, batch_row_id): """ Retrieves data from BatchRowActionPosition table :param batch_header_id: :param batch_row_id: :return: """ try: batch_row_action_position = BatchRowActionPosition.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_POSITION_RETRIEVED" except BatchRowActionPosition.DoesNotExist: batch_row_action_position = BatchRowActionPosition() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_POSITION_NOT_FOUND" except Exception as e: batch_row_action_position = BatchRowActionPosition() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_POSITION_RETRIEVE_ERROR" results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_position': batch_row_action_position, } return results def retrieve_batch_row_action_ballot_item(self, batch_header_id, batch_row_id): """ Retrieves data from BatchRowActionBallotItem table :param batch_header_id: :param batch_row_id: :return: """ try: batch_row_action_ballot_item = BatchRowActionBallotItem.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_BALLOT_ITEM_RETRIEVED " except BatchRowActionBallotItem.DoesNotExist: batch_row_action_ballot_item = BatchRowActionBallotItem() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_BALLOT_ITEM_NOT_FOUND " except Exception as e: batch_row_action_ballot_item = BatchRowActionBallotItem() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_BALLOT_ITEM_RETRIEVE_ERROR " results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_ballot_item': batch_row_action_ballot_item, } return results def retrieve_batch_row_action_candidate(self, batch_header_id, batch_row_id): """ Retrieves data from BatchRowActionCandidate table :param batch_header_id: :param batch_row_id: :return: """ try: batch_row_action_candidate = BatchRowActionCandidate.objects.get(batch_header_id=batch_header_id, batch_row_id=batch_row_id) batch_row_action_found = True success = True status = "BATCH_ROW_ACTION_CANDIDATE_RETRIEVED" except BatchRowActionCandidate.DoesNotExist: batch_row_action_candidate = BatchRowActionCandidate() batch_row_action_found = False success = True status = "BATCH_ROW_ACTION_CANDIDATE_NOT_FOUND" except Exception as e: batch_row_action_candidate = BatchRowActionCandidate() batch_row_action_found = False success = False status = "BATCH_ROW_ACTION_CANDIDATE_RETRIEVE_ERROR" results = { 'success': success, 'status': status, 'batch_row_action_found': batch_row_action_found, 'batch_row_action_candidate': batch_row_action_candidate, } return results def retrieve_value_from_batch_row(self, batch_header_name_we_want, batch_header_map, one_batch_row): index_number = 0 batch_header_name_we_want = batch_header_name_we_want.lower().strip() number_of_columns = 50 while index_number < number_of_columns: index_number_string = "00" + str(index_number) index_number_string = index_number_string[-3:] batch_header_map_attribute_name = "batch_header_map_" + index_number_string # If this position in the batch_header_map matches the batch_header_name_we_want, then we know what column # to look in within one_batch_row for the value value_from_batch_header_map = getattr(batch_header_map, batch_header_map_attribute_name) if value_from_batch_header_map is None: # Break out when we stop getting batch_header_map values return "" if batch_header_name_we_want == value_from_batch_header_map.lower().strip(): one_batch_row_attribute_name = "batch_row_" + index_number_string value_from_batch_row = getattr(one_batch_row, one_batch_row_attribute_name) if isinstance(value_from_batch_row, str): return value_from_batch_row.strip() else: return value_from_batch_row index_number += 1 return "" def retrieve_column_name_from_batch_row(self, batch_header_name_we_want, batch_header_map): """ Given column name from batch_header_map, retrieve equivalent column name from batch row :param batch_header_name_we_want: :param batch_header_map: :return: """ index_number = 0 batch_header_name_we_want = batch_header_name_we_want.lower().strip() number_of_columns = 50 while index_number < number_of_columns: index_number_string = "00" + str(index_number) index_number_string = index_number_string[-3:] batch_header_map_attribute_name = "batch_header_map_" + index_number_string # If this position in the batch_header_map matches the batch_header_name_we_want, then we know what column # to look in within one_batch_row for the value, eg: batch_header_map_000 --> measure_batch_id value_from_batch_header_map = getattr(batch_header_map, batch_header_map_attribute_name) if value_from_batch_header_map is None: # Break out when we stop getting batch_header_map values return "" if batch_header_name_we_want == value_from_batch_header_map.lower().strip(): one_batch_row_attribute_name = "batch_row_" + index_number_string return one_batch_row_attribute_name index_number += 1 return "" def find_file_type(self, batch_uri): """ Determines the file type based on file extension. If no known extension, it gets the file type information from file magic. :param batch_uri: :return: filetype - XML, json, csv """ # check for file extension batch_uri = batch_uri.lower() file_extension = batch_uri.split('.') if 'xml' in file_extension: filetype = 'xml' elif 'json' in file_extension: filetype = 'json' elif 'csv' in file_extension: filetype = 'csv' else: # if the filetype is neither xml, json nor csv, get the file type info from magic file = urllib.request.urlopen(batch_uri) filetype = magic.from_buffer(file.read()) file.close() return filetype def find_possible_matches(self, kind_of_batch, batch_row_name, incoming_batch_row_value, google_civic_election_id, state_code): if kind_of_batch == CONTEST_OFFICE: # TODO DALE pass possible_matches = { 'New York City Mayor': 'New York City Mayor' } results = { 'possible_matches_found': True, 'possible_matches': possible_matches } return results def create_batch_vip_xml(self, batch_uri, kind_of_batch, google_civic_election_id, organization_we_vote_id): """ Retrieves CTCL data from an xml file - Measure, Office, Candidate, Politician :param batch_uri: :param kind_of_batch: :param google_civic_election_id: :param organization_we_vote_id: :return: """ # Retrieve from XML request = urllib.request.urlopen(batch_uri) # xml_data = request.read() # xml_data = xmltodict.parse(xml_data) # # xml_data_list_json = list(xml_data) # structured_json = json.dumps(xml_data) xml_tree = ElementTree.parse(request) request.close() xml_root = xml_tree.getroot() if xml_root: if kind_of_batch == MEASURE: return self.store_measure_xml(batch_uri, google_civic_election_id, organization_we_vote_id, xml_root) elif kind_of_batch == ELECTED_OFFICE: return self.store_elected_office_xml(batch_uri, google_civic_election_id, organization_we_vote_id, xml_root) elif kind_of_batch == CONTEST_OFFICE: return self.store_contest_office_xml(batch_uri, google_civic_election_id, organization_we_vote_id, xml_root) elif kind_of_batch == CANDIDATE: return self.store_candidate_xml(batch_uri, google_civic_election_id, organization_we_vote_id, xml_root) elif kind_of_batch == POLITICIAN: return self.store_politician_xml(batch_uri, google_civic_election_id, organization_we_vote_id, xml_root) else: results = { 'success': False, 'status': '', 'batch_header_id': 0, 'batch_saved': False, 'number_of_batch_rows': 0, } return results def store_measure_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves Measure data from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id: :return: """ # Process BallotMeasureContest data number_of_batch_rows = 0 first_line = True success = True status = '' limit_for_testing = 0 batch_header_id = 0 # Look for BallotMeasureContest and create the batch_header first. BallotMeasureContest is the direct child node # of VipObject ballot_measure_xml_node = xml_root.findall('BallotMeasureContest') # if ballot_measure_xml_node is not None: for one_ballot_measure in ballot_measure_xml_node: if positive_value_exists(limit_for_testing) and number_of_batch_rows >= limit_for_testing: break # look for relevant child nodes under BallotMeasureContest: id, BallotTitle, BallotSubTitle, # ElectoralDistrictId, other::ctcl-uid ballot_measure_id = one_ballot_measure.attrib['id'] ballot_measure_subtitle_node = one_ballot_measure.find('BallotSubTitle/Text') if ballot_measure_subtitle_node is not None: ballot_measure_subtitle = ballot_measure_subtitle_node.text else: ballot_measure_subtitle = '' ballot_measure_title_node = one_ballot_measure.find('BallotTitle') if ballot_measure_title_node is not None: ballot_measure_title = one_ballot_measure.find('BallotTitle/Text').text else: ballot_measure_title = '' electoral_district_id_node = one_ballot_measure.find('ElectoralDistrictId') if electoral_district_id_node is not None: electoral_district_id = electoral_district_id_node.text else: electoral_district_id = '' ctcl_uuid_node = one_ballot_measure.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']") if ctcl_uuid_node is not None: ctcl_uuid = one_ballot_measure.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']/Value").text else: ctcl_uuid = '' ballot_measure_name_node = one_ballot_measure.find('Name') if ballot_measure_name_node is not None: ballot_measure_name = ballot_measure_name_node.text else: ballot_measure_name = '' if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='BallotSubTitle', batch_header_column_002='BallotTitle', batch_header_column_003='ElectoralDistrictId', batch_header_column_004='other::ctcl-uuid', batch_header_column_005='Name', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='measure_batch_id', batch_header_map_001='measure_subtitle', batch_header_map_002='measure_title', batch_header_map_003='electoral_district_id', batch_header_map_004='measure_ctcl_uuid', batch_header_map_005='measure_name' ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "MEASURE " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='MEASURE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break # check for measure_id, title OR subtitle or name AND ctcl_uuid if (positive_value_exists(ballot_measure_id) and positive_value_exists(ctcl_uuid) and (positive_value_exists(ballot_measure_subtitle) or positive_value_exists(ballot_measure_title) or positive_value_exists(ballot_measure_name))): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=ballot_measure_id, batch_row_001=ballot_measure_subtitle, batch_row_002=ballot_measure_title, batch_row_003=electoral_district_id, batch_row_004=ctcl_uuid, batch_row_005=ballot_measure_name ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def store_elected_office_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves Office data from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id :return: """ # Process VIP Office data number_of_batch_rows = 0 first_line = True success = False status = '' limit_for_testing = 0 batch_header_id = 0 # Look for Office and create the batch_header first. Office is the direct child node # of VipObject elected_office_xml_node = xml_root.findall('Office') # if ballot_measure_xml_node is not None: for one_elected_office in elected_office_xml_node: if positive_value_exists(limit_for_testing) and number_of_batch_rows >= limit_for_testing: break # look for relevant child nodes under Office: id, Name, Description, ElectoralDistrictId, # IsPartisan, other::ctcl-uid elected_office_id = one_elected_office.attrib['id'] elected_office_name_node = one_elected_office.find("./Name/Text/[@language='"+LANGUAGE_CODE_ENGLISH+"']") if elected_office_name_node is not None: elected_office_name = elected_office_name_node.text else: elected_office_name = "" elected_office_name_es_node = one_elected_office.find("./Name/Text/[@language='"+LANGUAGE_CODE_SPANISH+"']") if elected_office_name_es_node is not None: elected_office_name_es = elected_office_name_es_node.text else: elected_office_name_es = "" elected_office_description_node = one_elected_office.find( "Description/Text/[@language='"+LANGUAGE_CODE_ENGLISH+"']") if elected_office_description_node is not None: elected_office_description = elected_office_description_node.text else: elected_office_description = "" elected_office_description_es_node = one_elected_office.find( "Description/Text/[@language='"+LANGUAGE_CODE_SPANISH+"']") if elected_office_description_es_node is not None: elected_office_description_es = elected_office_description_es_node.text else: elected_office_description_es = "" electoral_district_id_node = one_elected_office.find('ElectoralDistrictId') if electoral_district_id_node is not None: electoral_district_id = electoral_district_id_node.text else: electoral_district_id = "" elected_office_is_partisan_node = one_elected_office.find('IsPartisan') if elected_office_is_partisan_node is not None: elected_office_is_partisan = elected_office_is_partisan_node.text else: elected_office_is_partisan = "" ctcl_uuid = "" ctcl_uuid_node = one_elected_office.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']") if ctcl_uuid_node is not None: ctcl_uuid = one_elected_office.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']/Value").text if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='NameEnglish', batch_header_column_002='NameSpanish', batch_header_column_003='DescriptionEnglish', batch_header_column_004='DescriptionSpanish', batch_header_column_005='ElectoralDistrictId', batch_header_column_006='IsPartisan', batch_header_column_007='other::ctcl-uuid', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='elected_office_batch_id', batch_header_map_001='elected_office_name', batch_header_map_002='elected_office_name_es', batch_header_map_003='elected_office_description', batch_header_map_004='elected_office_description_es', batch_header_map_005='electoral_district_id', batch_header_map_006='elected_office_is_partisan', batch_header_map_007='elected_office_ctcl_uuid', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "ELECTED_OFFICE " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='ELECTED_OFFICE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break # check for office_batch_id or electoral_district or name AND ctcl_uuid if positive_value_exists(elected_office_id) and positive_value_exists(ctcl_uuid) and \ (positive_value_exists(electoral_district_id) or positive_value_exists(elected_office_name)) or \ positive_value_exists(elected_office_name_es): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=elected_office_id, batch_row_001=elected_office_name, batch_row_002=elected_office_name_es, batch_row_003=elected_office_description, batch_row_004=elected_office_description_es, batch_row_005=electoral_district_id, batch_row_006=elected_office_is_partisan, batch_row_007=ctcl_uuid ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def store_contest_office_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves ContestOffice data from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id :return: """ # Process VIP CandidateContest data number_of_batch_rows = 0 first_line = True success = True status = '' limit_for_testing = 0 batch_header_id = 0 candidate_selection_id_key_list = [ 'candidate_selection_id_1', 'candidate_selection_id_2', 'candidate_selection_id_3', 'candidate_selection_id_4', 'candidate_selection_id_5', 'candidate_selection_id_6', 'candidate_selection_id_7', 'candidate_selection_id_8', 'candidate_selection_id_9', 'candidate_selection_id_10'] # Look for CandidateContest and create the batch_header first. CandidateContest is the direct child node # of VipObject contest_office_xml_node = xml_root.findall('CandidateContest') # if contest_office_xml_node is not None: for one_contest_office in contest_office_xml_node: if positive_value_exists(limit_for_testing) and number_of_batch_rows >= limit_for_testing: break # look for relevant child nodes under CandidateContest: id, Name, OfficeId, ElectoralDistrictId, # other::ctcl-uid, VotesAllowed, NumberElected contest_office_id = one_contest_office.attrib['id'] contest_office_name_node = one_contest_office.find('Name') if contest_office_name_node is not None: contest_office_name = contest_office_name_node.text else: contest_office_name = "" contest_office_number_elected_node = one_contest_office.find('NumberElected') if contest_office_number_elected_node is not None: contest_office_number_elected = contest_office_number_elected_node.text else: contest_office_number_elected = "" electoral_district_id_node = one_contest_office.find('ElectoralDistrictId') if electoral_district_id_node is not None: electoral_district_id = electoral_district_id_node.text else: electoral_district_id = "" contest_office_votes_allowed_node = one_contest_office.find('VotesAllowed') if contest_office_votes_allowed_node is not None: contest_office_votes_allowed = contest_office_votes_allowed_node.text else: contest_office_votes_allowed = "" elected_office_id_node = one_contest_office.find('OfficeIds') if elected_office_id_node is not None: elected_office_id = elected_office_id_node.text else: elected_office_id = "" ctcl_uuid = "" ctcl_uuid_node = one_contest_office.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']") if ctcl_uuid_node is not None: ctcl_uuid = one_contest_office.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']/Value").text candidate_selection_ids_dict = {} ballot_selection_ids_node = one_contest_office.find('./BallotSelectionIds') if ballot_selection_ids_node is not None: ballot_selection_ids_str = ballot_selection_ids_node.text if ballot_selection_ids_str: ballot_selection_ids_value_list = ballot_selection_ids_str.split() # for len in ballot_selection_ids_list words, # Assuming that there are maximum 10 ballot selection ids for a given contest office ballot_selection_ids_dict = dict( zip(candidate_selection_id_key_list, ballot_selection_ids_value_list)) # move this to batchrowactionContestOffice create if we run into performance/load issue candidate_selection_list = [] for key, value in ballot_selection_ids_dict.items(): results = retrieve_candidate_from_candidate_selection(value, batch_set_id) if results['candidate_id_found']: candidate_selection_item = results['candidate_selection'] candidate_value = candidate_selection_item.contest_office_id candidate_selection_list.append(candidate_value) candidate_selection_ids_dict = dict(zip(candidate_selection_id_key_list, candidate_selection_list)) if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='Name', batch_header_column_002='OfficeIds', batch_header_column_003='ElectoralDistrictId', batch_header_column_004='VotesAllowed', batch_header_column_005='NumberElected', batch_header_column_006='other::ctcl-uuid', batch_header_column_007='CandidateSelectionId1', batch_header_column_008='CandidateSelectionId2', batch_header_column_009='CandidateSelectionId3', batch_header_column_010='CandidateSelectionId4', batch_header_column_011='CandidateSelectionId5', batch_header_column_012='CandidateSelectionId6', batch_header_column_013='CandidateSelectionId7', batch_header_column_014='CandidateSelectionId8', batch_header_column_015='CandidateSelectionId9', batch_header_column_016='CandidateSelectionId10', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='contest_office_batch_id', batch_header_map_001='contest_office_name', batch_header_map_002='elected_office_id', batch_header_map_003='electoral_district_id', batch_header_map_004='contest_office_votes_allowed', batch_header_map_005='contest_office_number_elected', batch_header_map_006='contest_office_ctcl_uuid', batch_header_map_007='candidate_selection_id1', batch_header_map_008='candidate_selection_id2', batch_header_map_009='candidate_selection_id3', batch_header_map_010='candidate_selection_id4', batch_header_map_011='candidate_selection_id5', batch_header_map_012='candidate_selection_id6', batch_header_map_013='candidate_selection_id7', batch_header_map_014='candidate_selection_id8', batch_header_map_015='candidate_selection_id9', batch_header_map_016='candidate_selection_id10', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "CONTEST_OFFICE " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='CONTEST_OFFICE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break # check for contest_office_batch_id or electoral_district or name AND ctcl_uuid if positive_value_exists(contest_office_id) and positive_value_exists(ctcl_uuid) and \ (positive_value_exists(electoral_district_id) or positive_value_exists(contest_office_name)): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=contest_office_id, batch_row_001=contest_office_name, batch_row_002=elected_office_id, batch_row_003=electoral_district_id, batch_row_004=contest_office_votes_allowed, batch_row_005=contest_office_number_elected, batch_row_006=ctcl_uuid, batch_row_007=candidate_selection_ids_dict.get('candidate_selection_id_1', ''), batch_row_008=candidate_selection_ids_dict.get('candidate_selection_id_2', ''), batch_row_009=candidate_selection_ids_dict.get('candidate_selection_id_3', ''), batch_row_010=candidate_selection_ids_dict.get('candidate_selection_id_4', ''), batch_row_011=candidate_selection_ids_dict.get('candidate_selection_id_5', ''), batch_row_012=candidate_selection_ids_dict.get('candidate_selection_id_6', ''), batch_row_013=candidate_selection_ids_dict.get('candidate_selection_id_7', ''), batch_row_014=candidate_selection_ids_dict.get('candidate_selection_id_8', ''), batch_row_015=candidate_selection_ids_dict.get('candidate_selection_id_9', ''), batch_row_016=candidate_selection_ids_dict.get('candidate_selection_id_10', ''), ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def store_politician_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves Politician data from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id :return: """ # Process VIP Person data number_of_batch_rows = 0 first_line = True success = True status = '' limit_for_testing = 0 batch_header_id = 0 # Get party names and their corresponding party ids party_details_list = retrieve_all_party_names_and_ids_api() # Look for Person and create the batch_header first. Person is the direct child node # of VipObject person_xml_node = xml_root.findall('Person') for one_person in person_xml_node: if positive_value_exists(limit_for_testing) and number_of_batch_rows >= limit_for_testing: break # look for relevant child nodes under Person: id, FullName, FirstName, LastName, MiddleName, PartyId, Email, # PhoneNumber, Website, Twitter, ctcl-uuid person_id = one_person.attrib['id'] person_full_name_node = one_person.find("./FullName/Text/[@language='"+LANGUAGE_CODE_ENGLISH+"']") if person_full_name_node is not None: person_full_name = person_full_name_node.text else: person_full_name = '' person_first_name_node = one_person.find('FirstName') if person_first_name_node is not None: person_first_name = person_first_name_node.text else: person_first_name = '' person_middle_name_node = one_person.find('MiddleName') if person_middle_name_node is not None: person_middle_name = person_middle_name_node.text else: person_middle_name = '' person_last_name_node = one_person.find('LastName') if person_last_name_node is not None: person_last_name = person_last_name_node.text else: person_last_name = '' person_party_name = '' person_party_id_node = one_person.find('PartyId') if person_party_id_node is not None: person_party_id = person_party_id_node.text # get party name from candidate_party_id if party_details_list is not None: # party_details_dict = [entry for entry in party_details_list] for one_party in party_details_list: # get the party name matching person_party_id try: party_id_temp = one_party.get('party_id_temp') if person_party_id == party_id_temp: person_party_name = one_party.get('party_name') break except Exception as e: pass person_email_id_node = one_person.find('./ContactInformation/Email') if person_email_id_node is not None: person_email_id = person_email_id_node.text else: person_email_id = '' person_phone_number_node = one_person.find('./ContactInformation/Phone') if person_phone_number_node is not None: person_phone_number = person_phone_number_node.text else: person_phone_number = '' person_website_url_node = one_person.find("./ContactInformation/Uri/[@annotation='website']") if person_website_url_node is not None: person_website_url = person_website_url_node.text else: person_website_url = '' person_facebook_id_node = one_person.find("./ContactInformation/Uri/[@annotation='facebook']") if person_facebook_id_node is not None: person_facebook_id = person_facebook_id_node.text else: person_facebook_id = '' person_twitter_id_node = one_person.find("./ContactInformation/Uri/[@annotation='twitter']") if person_twitter_id_node is not None: person_twitter_id = person_twitter_id_node.text else: person_twitter_id = '' person_youtube_id_node = one_person.find("./ContactInformation/Uri/[@annotation='youtube']") if person_youtube_id_node is not None: person_youtube_id = person_youtube_id_node.text else: person_youtube_id = '' person_googleplus_id_node = one_person.find("./ContactInformation/Uri/[@annotation='googleplus']") if person_googleplus_id_node is not None: person_googleplus_id = person_googleplus_id_node.text else: person_googleplus_id = '' ctcl_uuid = "" ctcl_uuid_node = one_person.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']") if ctcl_uuid_node is not None: ctcl_uuid = one_person.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']/Value").text if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='FullName', batch_header_column_002='FirstName', batch_header_column_003='MiddleName', batch_header_column_004='LastName', batch_header_column_005='PartyName', batch_header_column_006='Email', batch_header_column_007='Phone', batch_header_column_008='uri::website', batch_header_column_009='uri::facebook', batch_header_column_010='uri::twitter', batch_header_column_011='uri::youtube', batch_header_column_012='uri::googleplus', batch_header_column_013='other::ctcl-uuid', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='politician_batch_id', batch_header_map_001='politician_full_name', batch_header_map_002='politician_first_name', batch_header_map_003='politician_middle_name', batch_header_map_004='politician_last_name', batch_header_map_005='politician_party_name', batch_header_map_006='politician_email_address', batch_header_map_007='politician_phone_number', batch_header_map_008='politician_website_url', batch_header_map_009='politician_facebook_id', batch_header_map_010='politician_twitter_url', batch_header_map_011='politician_youtube_id', batch_header_map_012='politician_googleplus_id', batch_header_map_013='politician_ctcl_uuid', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "POLITICIAN " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='POLITICIAN', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break # check for office_batch_id or electoral_district or name AND ctcl_uuid # if positive_value_exists(person_id) and ctcl_uuid is not None or person_full_name is not None or \ # person_first_name is not None: if positive_value_exists(person_id) and positive_value_exists(ctcl_uuid) and \ (positive_value_exists(person_full_name) or positive_value_exists(person_first_name)): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=person_id, batch_row_001=person_full_name, batch_row_002=person_first_name, batch_row_003=person_middle_name, batch_row_004=person_last_name, batch_row_005=person_party_name, batch_row_006=person_email_id, batch_row_007=person_phone_number, batch_row_008=person_website_url, batch_row_009=person_facebook_id, batch_row_010=person_twitter_id, batch_row_011=person_youtube_id, batch_row_012=person_googleplus_id, batch_row_013=ctcl_uuid, ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def store_candidate_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves Candidate data from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id :return: """ # Process VIP Candidate data number_of_batch_rows = 0 first_line = True success = True status = '' limit_for_testing = 0 batch_header_id = 0 # Call party api to get corresponding party name from party id party_details_list = retrieve_all_party_names_and_ids_api() # Look for Candidate and create the batch_header first. Candidate is the direct child node # of VipObject candidate_xml_node = xml_root.findall('Candidate') for one_candidate in candidate_xml_node: if positive_value_exists(limit_for_testing) and number_of_batch_rows >= limit_for_testing: break candidate_name_english = None candidate_ctcl_person_id = "" candidate_party_name = "" ctcl_uuid = "" # look for relevant child nodes under Candidate: id, BallotName, personId, PartyId, isTopTicket, # other::ctcl-uid candidate_id = one_candidate.attrib['id'] candidate_selection_id = one_candidate.find("./BallotSelectionIds") candidate_name_node_english = one_candidate.find("./BallotName/Text/[@language='"+LANGUAGE_CODE_ENGLISH+"']") if candidate_name_node_english is not None: candidate_name_english = candidate_name_node_english.text candidate_ctcl_person_id_node = one_candidate.find('./PersonId') if candidate_ctcl_person_id_node is not None: candidate_ctcl_person_id = candidate_ctcl_person_id_node.text candidate_party_id_node = one_candidate.find('./PartyId') if candidate_party_id_node is not None: candidate_party_id = candidate_party_id_node.text # get party name from candidate_party_id if party_details_list is not None: # party_details_dict = [entry for entry in party_details_list] for one_party in party_details_list: # get the candidate party name matching candidate_party_id if candidate_party_id == one_party.get('party_id_temp'): candidate_party_name = one_party.get('party_name') break else: candidate_party_name = '' candidate_is_top_ticket_node = one_candidate.find('IsTopTicket') if candidate_is_top_ticket_node is not None: candidate_is_top_ticket = candidate_is_top_ticket_node.text else: candidate_is_top_ticket = '' ctcl_uuid_node = one_candidate.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']") if ctcl_uuid_node is not None: ctcl_uuid = one_candidate.find( "./ExternalIdentifiers/ExternalIdentifier/[OtherType='ctcl-uuid']/Value").text if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='PersonId', batch_header_column_002='Name', batch_header_column_003='PartyName', batch_header_column_004='IsTopTicket', batch_header_column_005='other::ctcl-uuid', batch_header_column_006='other::CandidateSelectionId', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='candidate_batch_id', batch_header_map_001='candidate_ctcl_person_id', batch_header_map_002='candidate_name', batch_header_map_003='candidate_party_name', batch_header_map_004='candidate_is_top_ticket', batch_header_map_005='candidate_ctcl_uuid', batch_header_map_006='candidate_selection_id', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "CANDIDATE " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='CANDIDATE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break # check for candidate_id or candidate_ctcl_person_id or name AND ctcl_uuid if positive_value_exists(candidate_id) and positive_value_exists(ctcl_uuid) and \ (positive_value_exists(candidate_ctcl_person_id) or positive_value_exists(candidate_name_english)): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=candidate_id, batch_row_001=candidate_ctcl_person_id, batch_row_002=candidate_name_english, batch_row_003=candidate_party_name, batch_row_004=candidate_is_top_ticket, batch_row_005=ctcl_uuid, batch_row_006=candidate_selection_id ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) success = False break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def store_state_data_from_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves state data from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id :return: """ # This state is not used right now. Parsing it for future reference # Process VIP State data number_of_batch_rows = 0 first_line = True success = True status = '' limit_for_testing = 0 batch_header_id = 0 # Look for State and create the batch_header first. State is the direct child node of VipObject # TODO Will this be a single node object or will there be multiple state nodes in a CTCL XML? state_xml_node = xml_root.findall('State') for one_state in state_xml_node: state_name = None if positive_value_exists(limit_for_testing) and number_of_batch_rows >= limit_for_testing: break # look for relevant child nodes under State: id, ocd-id, Name state_id = one_state.attrib['id'] state_name_node = one_state.find('./Name') if state_name_node is not None: state_name = state_name_node.text ocd_id_node = one_state.find("./ExternalIdentifiers/ExternalIdentifier/[Type='ocd-id']") if ocd_id_node is not None: ocd_id = one_state.find("./ExternalIdentifiers/ExternalIdentifier/[Type='ocd-id']/Value").text else: ocd_id = '' if first_line: first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='Name', batch_header_column_002='other::ocd-id', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='state_id', batch_header_map_001='state_name', batch_header_map_002='ocd_id', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "STATE " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='STATE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break # check for state_id or name AND ocd_id if positive_value_exists(state_id) and (positive_value_exists(state_name)): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=state_id, batch_row_001=state_name, batch_row_002=ocd_id, ) number_of_batch_rows += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) success = False break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def store_election_metadata_from_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves election metadata from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id :return: """ # This election metadata is not used right now. Parsing it for future reference # Process VIP Election metadata success = True status = '' batch_header_id = 0 # Look for Election and create the batch_header first. Election is the direct child node of VipObject election_xml_node = xml_root.find('Election') election_date_str = None # look for relevant child nodes under Election: id, Date, StateId if not election_xml_node: results = { 'success': success, 'status': "STORE_ELECTION_METADATA_FROM_XML-ELECTION_NODE_NOT_FOUND", 'batch_header_id': batch_header_id, 'batch_saved': success, } return results election_id = election_xml_node.attrib['id'] election_date_xml_node = election_xml_node.find('./Date') if election_date_xml_node is not None: election_date = election_date_xml_node.text state_id_node = election_xml_node.find("./StateId") if state_id_node is not None: state_id = state_id_node.text else: state_id = '' try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='Date', batch_header_column_002='StateId', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='election_id', batch_header_map_001='election_date', batch_header_map_002='state_id', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "ELECTION " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='ELECTION', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) # check for state_id or name AND ocd_id if positive_value_exists(election_id) and positive_value_exists(election_date) and \ positive_value_exists(state_id): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=election_id, batch_row_001=election_date, batch_row_002=state_id, ) except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) success = False results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, } return results def store_source_metadata_from_xml(self, batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id=0): """ Retrieves source metadata from CTCL xml file :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :param xml_root: :param batch_set_id :return: """ # This source data is not used for now. Parsing it for future reference # Process VIP Source metadata success = False status = '' batch_header_id = 0 # Look for Source and create the batch_header first. Election is the direct child node of VipObject source_xml_node = xml_root.find('Source') source_date_str = None if not source_xml_node: results = { 'success': success, 'status': "STORE_SOURCE_METADATA_FROM_XML-SOURCE_NODE_NOT_FOUND", 'batch_header_id': batch_header_id, 'batch_saved': success, } return results # look for relevant child nodes under Source: id, DateTime, Name, OrganizationUri, VipId source_id = source_xml_node.attrib['id'] source_datetime_xml_node = source_xml_node.find('./DateTime') if source_datetime_xml_node is not None: source_datetime = source_datetime_xml_node.text source_name_node = source_xml_node.find("./Name") if source_name_node is not None: source_name = source_xml_node.text else: source_name = '' organization_uri_node = source_xml_node.find("./OrganizationUri") if organization_uri_node is not None: organization_uri = source_xml_node.text vip_id_node = source_xml_node.find("./VipId") if vip_id_node is not None: vip_id = source_xml_node.text else: vip_id = '' try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='DateTime', batch_header_column_002='Name', batch_header_column_003='OrganizationUri', batch_header_column_004='VipId', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='source_id', batch_header_map_001='source_datetime', batch_header_map_002='source_name', batch_header_map_003='organization_uri', batch_header_map_004='vip_id' ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "SOURCE " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='SOURCE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) # check for state_id or name AND ocd_id if positive_value_exists(source_id) and positive_value_exists(source_datetime) and \ positive_value_exists(source_name) and positive_value_exists(organization_uri): try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=source_id, batch_row_001=source_datetime, batch_row_002=source_name, batch_row_003=organization_uri, batch_row_004=vip_id ) except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) success = False results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, } return results def create_batch_set_vip_xml(self, batch_file, batch_uri, google_civic_election_id, organization_we_vote_id): """ Retrieves CTCL Batch Set data from an xml file - Measure, Office, Candidate, Politician :param batch_file: :param batch_uri: :param google_civic_election_id: :param organization_we_vote_id: :return: """ import_date = date.today() # Retrieve from XML if batch_file: xml_tree = ElementTree.parse(batch_file) batch_set_name = batch_file.name + " - " + str(import_date) else: request = urllib.request.urlopen(batch_uri) # xml_data = request.read() # xml_data = xmltodict.parse(xml_data) # # xml_data_list_json = list(xml_data) # structured_json = json.dumps(xml_data) xml_tree = ElementTree.parse(request) request.close() # set batch_set_name as file_name batch_set_name_list = batch_uri.split('/') batch_set_name = batch_set_name_list[len(batch_set_name_list) - 1] + " - " + str(import_date) xml_root = xml_tree.getroot() status = '' success = False number_of_batch_rows = 0 batch_set_id = 0 continue_batch_set_processing = True # Set to False if we run into a problem that requires we stop processing if xml_root: # create batch_set object try: batch_set = BatchSet.objects.create(batch_set_description_text="", batch_set_name=batch_set_name, batch_set_source=BATCH_SET_SOURCE_CTCL, google_civic_election_id=google_civic_election_id, source_uri=batch_uri, import_date=import_date) batch_set_id = batch_set.id if positive_value_exists(batch_set_id): status += " BATCH_SET_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop continue_batch_set_processing = False batch_set_id = 0 status += " EXCEPTION_BATCH_SET " handle_exception(e, logger=logger, exception_message=status) # import Electoral District skip_electoral_district = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_electoral_district: electoral_district_list_found = False electoral_district_item_list = xml_root.findall('ElectoralDistrict') if not len(electoral_district_item_list): continue_batch_set_processing = False else: results = electoral_district_import_from_xml_data(electoral_district_item_list) if results['success']: status += "CREATE_BATCH_SET_ELECTORAL_DISTRICT_IMPORTED " number_of_batch_rows += results['saved'] # TODO check this whether it should be only saved or updated Electoral districts number_of_batch_rows += results['updated'] electoral_district_list_found = True else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET_ELECTORAL_DISTRICT_ERRORS " # import Party skip_party = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_party: party_list_found = False party_item_list = xml_root.findall('Party') if not len(party_item_list): continue_batch_set_processing = False status += " CREATE_BATCH_SET-PARTY_IMPORT_ERRORS-NO_party_item_list " else: results = party_import_from_xml_data(party_item_list) if results['success']: status += "CREATE_BATCH_SET_PARTY_IMPORTED" number_of_batch_rows += results['saved'] number_of_batch_rows += results['updated'] # TODO check this whether it should be only saved or updated Electoral districts party_list_found = True # A given data source may not always have electoral district and/or party data, # but the referenced electoral district id or party id might be already present # in the master database tables, hence commenting out below code # if not electoral_district_list_found or not party_list_found: # results = { # 'success': False, # 'status': status, # 'batch_header_id': 0, # 'batch_saved': False, # 'number_of_batch_rows': 0, # } # return results else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-PARTY_IMPORT_ERRORS " # look for different data sets in the XML - ElectedOffice, ContestOffice, Candidate, Politician, Measure # Elected Office skip_elected_office = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_elected_office: results = self.store_elected_office_xml(batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: # Elected Office data found status += 'CREATE_BATCH_SET_ELECTED_OFFICE_DATA_FOUND' number_of_batch_rows += results['number_of_batch_rows'] else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-PARTY_IMPORT_ERRORS " # Candidate-to-office-mappings skip_candidate_mapping = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_candidate_mapping: results = create_candidate_selection_rows(xml_root, batch_set_id) if results['success']: # Elected Office data found status += 'CREATE_BATCH_SET_CANDIDATE_SELECTION_DATA_FOUND' number_of_batch_rows += results['number_of_batch_rows'] else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-CANDIDATE_SELECTION_ERRORS " # ContestOffice entries skip_contest_office = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_contest_office: results = self.store_contest_office_xml( batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: # Contest Office data found status += 'CREATE_BATCH_SET_CONTEST_OFFICE_DATA_FOUND' number_of_batch_rows += results['number_of_batch_rows'] else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-CONTEST_OFFICE_ERRORS " # Politician entries skip_politician = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_politician: results = self.store_politician_xml( batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: status += 'CREATE_BATCH_SET_POLITICIAN_DATA_FOUND' number_of_batch_rows += results['number_of_batch_rows'] else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-POLITICIAN_ERRORS " # Candidate entries skip_candidate = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_candidate: results = self.store_candidate_xml( batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: status += 'CREATE_BATCH_SET_CANDIDATE_DATA_FOUND' number_of_batch_rows += results['number_of_batch_rows'] else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-CANDIDATE_ERRORS " # Measure entries skip_measure = False # We can set this to True during development to save time if continue_batch_set_processing and not skip_measure: results = self.store_measure_xml( batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: status += 'CREATE_BATCH_SET_MEASURE_DATA_FOUND' number_of_batch_rows += results['number_of_batch_rows'] success = True else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-MEASURE_ERRORS " # State data entries if continue_batch_set_processing: results = self.store_state_data_from_xml(batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: status += 'CREATE_BATCH_SET_STATE_DATA_FOUND' number_of_batch_rows += results['number_of_batch_rows'] success = True else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-STATE_DATA_ERRORS " # Election metadata entries if continue_batch_set_processing: results = self.store_election_metadata_from_xml( batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: status += ' CREATE_BATCH_SET_ELECTION_METADATA_FOUND ' number_of_batch_rows += 1 success = True else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-ELECTION_METADATA_ERRORS " # Source metadata entries if continue_batch_set_processing: results = self.store_source_metadata_from_xml( batch_uri, google_civic_election_id, organization_we_vote_id, xml_root, batch_set_id) if results['success']: status += ' CREATE_BATCH_SET_SOURCE_METADATA_FOUND ' number_of_batch_rows += 1 success = True else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-SOURCE_METADATA_ERRORS " results = { 'success': success, 'status': status, 'batch_set_id': batch_set_id, 'batch_saved': success, 'number_of_batch_rows': number_of_batch_rows, } return results def count_number_of_batch_action_rows(self, header_id, kind_of_batch): """ Return count of batch rows for a given header id :param header_id: :return: """ number_of_batch_action_rows = 0 if positive_value_exists(header_id): if kind_of_batch == MEASURE: number_of_batch_action_rows = BatchRowActionMeasure.objects.filter(batch_header_id=header_id).count() elif kind_of_batch == ELECTED_OFFICE: number_of_batch_action_rows = BatchRowActionElectedOffice.objects.filter(batch_header_id=header_id).\ count() elif kind_of_batch == CONTEST_OFFICE: number_of_batch_action_rows = BatchRowActionContestOffice.objects.filter(batch_header_id=header_id).\ count() elif kind_of_batch == CANDIDATE: number_of_batch_action_rows = BatchRowActionCandidate.objects.filter(batch_header_id=header_id).count() elif kind_of_batch == POLITICIAN: number_of_batch_action_rows = BatchRowActionPolitician.objects.filter(batch_header_id=header_id).count() else: number_of_batch_action_rows = 0 return number_of_batch_action_rows def fetch_batch_header_translation_suggestion(self, kind_of_batch, alternate_header_value): """ We are looking at one header value from a file imported by an admin or volunteer. We want to see if there are any suggestions for headers already recognized by We Vote. :param kind_of_batch: :param alternate_header_value: :return: """ results = self.retrieve_batch_header_translation_suggestion(kind_of_batch, alternate_header_value) if results['batch_header_translation_suggestion_found']: batch_header_translation_suggestion = results['batch_header_translation_suggestion'] return batch_header_translation_suggestion.header_value_recognized_by_we_vote return "" # TODO This hasn't been built def fetch_batch_row_translation_map(self, kind_of_batch, batch_row_name, incoming_alternate_row_value): results = self.retrieve_batch_row_translation_map(kind_of_batch, incoming_alternate_row_value) if results['batch_header_translation_suggestion_found']: batch_header_translation_suggestion = results['batch_header_translation_suggestion'] return batch_header_translation_suggestion.header_value_recognized_by_we_vote return "" def fetch_elected_office_name_from_elected_office_ctcl_id(self, elected_office_ctcl_id, batch_set_id): """ Take in elected_office_ctcl_id and batch_set_id, look up BatchRow and return elected_office_name :param elected_office_ctcl_id: :param batch_set_id: :return: """ elected_office_name = '' batch_header_id = 0 # From batch_description, get the header_id using batch_set_id # batch_header_id = get_batch_header_id_from_batch_description(batch_set_id, ELECTED_OFFICE) try: if positive_value_exists(batch_set_id): batch_description_on_stage = BatchDescription.objects.get(batch_set_id=batch_set_id, kind_of_batch=ELECTED_OFFICE) if batch_description_on_stage: batch_header_id = batch_description_on_stage.batch_header_id except BatchDescription.DoesNotExist: elected_office_name = '' pass # Lookup BatchRow with given header_id and elected_office_ctcl_id. But before doing that, we need to get batch # row column name that matches 'elected_office_batch_id' try: batch_manager = BatchManager() if positive_value_exists(batch_header_id) and elected_office_ctcl_id: batch_header_map = BatchHeaderMap.objects.get(batch_header_id=batch_header_id) # Get the column name in BatchRow that stores elected_office_batch_id - id taken from batch_header_map # eg: batch_row_000 -> elected_office_batch_id elected_office_id_column_name = batch_manager.retrieve_column_name_from_batch_row( "elected_office_batch_id", batch_header_map) # we found batch row column name corresponding to elected_office_batch_id, now look up batch_row table # with given batch_header_id and elected_office_batch_id (batch_row_00) batch_row_on_stage = BatchRow.objects.get(batch_header_id=batch_header_id, **{ elected_office_id_column_name: elected_office_ctcl_id}) # we know the batch row, next retrieve value for elected_office_name eg: off1 -> NC State Senator elected_office_name = batch_manager.retrieve_value_from_batch_row('elected_office_name', batch_header_map, batch_row_on_stage) except BatchRow.DoesNotExist: elected_office_name = '' return elected_office_name def fetch_state_code_from_person_id_in_candidate(self, person_id, batch_set_id): """ Take in person_id, batch_set_id, look up BatchRowActionCandidate and return state_code :param person_id: :param batch_set_id: :return: """ state_code = '' batch_header_id = 0 # From batch_description, get the header_id using batch_set_id # batch_header_id = get_batch_header_id_from_batch_description(batch_set_id, CANDIDATE) try: if positive_value_exists(batch_set_id): batch_description_on_stage = BatchDescription.objects.get(batch_set_id=batch_set_id, kind_of_batch=CANDIDATE) if batch_description_on_stage: batch_header_id = batch_description_on_stage.batch_header_id except BatchDescription.DoesNotExist: pass try: if positive_value_exists(batch_header_id) and person_id is not None: batchrowaction_candidate = BatchRowActionCandidate.objects.get(batch_header_id=batch_header_id, candidate_ctcl_person_id=person_id) if batchrowaction_candidate is not None: state_code = batchrowaction_candidate.state_code if state_code is None: return '' except BatchRowActionCandidate.DoesNotExist: state_code = '' return state_code def retrieve_election_details_from_election_day_or_state_code(self, election_day='', state_code=''): """ Retrieve election_name and google_civic_election_id from election_day and/or state_code :param election_day: :param state_code: :return: """ success = False election_name = '' google_civic_election_id = '' # election lookup using state & election day, and fetch google_civic_election_id election_manager = ElectionManager() election_results = election_manager.retrieve_elections_by_election_date(election_day) if election_results['success']: election_list = election_results['election_list'] if len(election_list) == 1: [election] = election_list election_name = election.election_name google_civic_election_id = election.google_civic_election_id success = True else: # use state_code & election_date for lookup. If multiple entries found, do not set # google_civic_election_id election_results = election_manager.retrieve_elections_by_state_and_election_date(state_code, election_day) if election_results['success']: election_list = election_results['election_list'] if len(election_list) == 1: [election] = election_list election_name = election.election_name google_civic_election_id = election.google_civic_election_id success = True results = { 'success': success, 'election_name': election_name, 'google_civic_election_id': google_civic_election_id, } return results def create_batch_set_organization_endorsements(self, organization): """ Create batch set for organization endorsements :param organization: :return: """ batch_set_id = 0 batch_saved = False status = '' success = False number_of_batch_rows = 0 batch_set_id = 0 election_name = '' structured_organization_endorsement_json = '' google_civic_election_id = 0 organization_endorsements_api_url = organization.organization_endorsements_api_url if not organization_endorsements_api_url: results = { 'success': False, 'status': "CREATE_BATCH_SET_ORGANIZATION_ENDORSEMENTS-INVALID_URL", 'batch_saved': batch_saved, 'number_of_batch_rows': 0, 'election_name': election_name, 'batch_set_id': batch_set_id, 'google_civic_election_id': google_civic_election_id, } import_date = date.today() try: endorsement_req = urllib.request.Request(organization_endorsements_api_url, headers={'User-Agent': 'Mozilla/5.0'}) endorsement_url = urlopen(endorsement_req) # endorsement_url.close() # structured_organization_endorsement_json = json.loads(endorsement_url) organization_endorsement_url = endorsement_url.read() organization_endorsement_json = organization_endorsement_url.decode('utf-8') structured_organization_endorsement_json = json.loads(organization_endorsement_json) batch_set_name_url = urlquote(organization_endorsements_api_url) except Exception as e: batch_set_id = 0 status += " EXCEPTION_BATCH_SET " handle_exception(e, logger=logger, exception_message=status) if not structured_organization_endorsement_json: results = { 'success': False, 'status': "CREATE_BATCH_SET_ORGANIZATION_ENDORSEMENT_FAILED", 'batch_saved': batch_saved, 'number_of_batch_rows': 0, 'election_name': election_name, 'batch_set_id': batch_set_id, 'google_civic_election_id': google_civic_election_id, } return results # set batch_set_name as file_name batch_set_name_list = batch_set_name_url.split('/') batch_set_name = organization.organization_name + " - " + batch_set_name_list[len(batch_set_name_list) - 1] + \ " - " + str(import_date) # create batch_set object try: batch_set = BatchSet.objects.create(batch_set_description_text="", batch_set_name=batch_set_name, batch_set_source=BATCH_SET_SOURCE_IMPORT_EXPORT_ENDORSEMENTS, source_uri=batch_set_name_url, import_date=import_date) batch_set_id = batch_set.id if positive_value_exists(batch_set_id): status += " BATCH_SET_SAVED" success = True except Exception as e: # Stop trying to save rows -- break out of the for loop batch_set_id = 0 status += " EXCEPTION_BATCH_SET " handle_exception(e, logger=logger, exception_message=status) # import metadata like organization name, url, endorsement url, twitter url, org image url, email # organization_name = structured_organization_endorsement_json['organization_name'] # organization_url = structured_organization_endorsement_json['organization_url'] # organization_endorsements_url = structured_organization_endorsement_json['organization_endorsements_url'] # organization_twitter_url = structured_organization_endorsement_json['organization_twitter_url'] # organization_image_url = structured_organization_endorsement_json['organization_image_url'] # organization_image_url_https = structured_organization_endorsement_json['organization_image_url_https'] # organization_email = structured_organization_endorsement_json['organization_email'] candidate_positions_list = structured_organization_endorsement_json['candidate_positions'] # measure_positions_list = structured_organization_endorsement_json['measure_positions'] organization_we_vote_id = organization.we_vote_id organization_twitter_handle = organization.organization_twitter_handle # import Offices from json results = self.import_offices_from_endorsement_json(batch_set_name_url, batch_set_id, organization_we_vote_id, candidate_positions_list) if results['success']: status += 'CREATE_BATCH_SET_OFFICE_DATA_IMPORTED' number_of_batch_rows += results['number_of_offices'] else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-OFFICE_ERRORS " # import Candidates from json results = self.import_candidates_from_endorsement_json(batch_set_name_url, batch_set_id, organization_we_vote_id, candidate_positions_list) if results['success']: status += 'CREATE_BATCH_SET_CANDIDATE_DATA_IMPORTED' number_of_batch_rows += results['number_of_candidates'] else: continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET-CANDIDATE_ERRORS " results = self.import_candidate_positions_from_endorsement_json(batch_set_name_url, batch_set_id, organization_we_vote_id, organization_twitter_handle, candidate_positions_list) if results['success']: success = True status += "CREATE_BATCH_SET_CANDIDATE_POSITIONS_IMPORTED " number_of_batch_rows += results['number_of_candidate_positions'] # TODO check this whether it should be only saved or updated Candidate positionss # number_of_batch_rows += results['updated'] batch_saved = True election_name = results['election_name'] google_civic_election_id = results['google_civic_election_id'] else: # continue_batch_set_processing = False status += results['status'] status += " CREATE_BATCH_SET_CANDIDATE_POSITIONS_ERRORS " results = { 'success': success, 'status': status, 'number_of_batch_rows': number_of_batch_rows, 'batch_saved': batch_saved, 'election_name': election_name, 'batch_set_id': batch_set_id, 'google_civic_election_id': google_civic_election_id, } return results def import_offices_from_endorsement_json(self, batch_uri='', batch_set_id='', organization_we_vote_id='', candidate_positions_list=''): """ Import Offices from organization endorsements json file :param batch_uri: :param batch_set_id: :param organization_we_vote_id: :param candidate_positions_list: :return: """ status = '' success = False number_of_offices = 0 first_line = True election_day = '' google_civic_election_id = 0 if not candidate_positions_list: results = { 'success': False, 'status': "IMPORT_OFFICES_FROM_ENDORSEMENT_JSON-INVALID_DATA", 'number_of_offices': 0, 'election_day': '', 'google_civic_election_id': google_civic_election_id, } return results # else: for one_entry in candidate_positions_list: # read office details for each candidate position office_name = one_entry['office_name'] state_code = one_entry['state_code'] candidate_name = one_entry['name'] election_day = one_entry['election_day'] google_civic_election_id = one_entry['google_civic_election_id'] party = one_entry['party'] office_ocd_division_id = one_entry['office_ocd_division_id'] if first_line: # create batch_header and batch_header_map for candidate_positions first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='office_name', batch_header_column_001='state_code', batch_header_column_002='candidate_name', batch_header_column_003='election_day', batch_header_column_004='google_civic_election_id', batch_header_column_005='party', batch_header_column_006='office_ocd_division_id', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='contest_office_name', batch_header_map_001='state_code', batch_header_map_002='candidate_name', batch_header_map_003='election_day', batch_header_map_004='google_civic_election_id', batch_header_map_005='party', batch_header_map_006='office_ocd_division_id', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "ENDORSEMENTS_JSON_OFFICES " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='CONTEST_OFFICE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=office_name, batch_row_001=state_code, batch_row_002=candidate_name, batch_row_003=election_day, batch_row_004=google_civic_election_id, batch_row_005=party, batch_row_006=office_ocd_division_id, ) number_of_offices += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_offices': number_of_offices, 'election_day': election_day, 'google_civic_election_id': google_civic_election_id, } return results def import_candidates_from_endorsement_json(self, batch_uri='', batch_set_id='', organization_we_vote_id='', candidate_positions_list=''): """ Import Candidates from organization endorsements json file :param batch_uri: :param batch_set_id: :param organization_we_vote_id: :param candidate_positions_list: :return: """ status = '' success = False number_of_candidates = 0 first_line = True election_day = '' google_civic_election_id = 0 if not candidate_positions_list: results = { 'success': False, 'status': "IMPORT_CANDIDATES_FROM_ENDORSEMENT_JSON-INVALID_DATA", 'number_of_candidates': 0, 'election_day': election_day, 'google_civic_election_id': google_civic_election_id, } return results # else: for one_entry in candidate_positions_list: # read position details for each candidate candidate_name = one_entry['name'] candidate_facebook_url = one_entry['facebook_url'] candidate_twitter_url = one_entry['twitter_url'] candidate_website_url = one_entry['website_url'] candidate_contact_form_url = one_entry['candidate_contact_form_url'] party = one_entry['party'] contest_office_name = one_entry['office_name'] candidate_profile_image_url_https = one_entry['profile_image_url_https'] state_code = one_entry['state_code'] election_day = one_entry['election_day'] google_civic_election_id = one_entry['google_civic_election_id'] candidate_ocd_division_id = one_entry['candidate_ocd_division_id'] if first_line: # create batch_header and batch_header_map for candidate_positions first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='name', batch_header_column_001='twitter_url', batch_header_column_002='facebook_url', batch_header_column_003='more_info_url', batch_header_column_004='state_code', batch_header_column_005='office_name', batch_header_column_006='profile_image_url_https', batch_header_column_007='party', batch_header_column_008='election_day', batch_header_column_009='google_civic_election_id', batch_header_column_010='candidate_ocd_division_id', batch_header_column_011='candidate_contact_form_url' ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='candidate_name', batch_header_map_001='candidate_twitter_handle', batch_header_map_002='facebook_url', batch_header_map_003='candidate_url', batch_header_map_004='state_code', batch_header_map_005='contest_office_name', batch_header_map_006='candidate_profile_image_url', batch_header_map_007='candidate_party_name', batch_header_map_008='election_day', batch_header_map_009='google_civic_election_id', batch_header_map_010='candidate_ocd_division_id', batch_header_map_011='candidate_contact_form_url' ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "ENDORSEMENTS_JSON_CANDIDATES " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='CANDIDATE', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=candidate_name, batch_row_001=candidate_twitter_url, batch_row_002=candidate_facebook_url, batch_row_003=candidate_website_url, batch_row_004=state_code, batch_row_005=contest_office_name, batch_row_006=candidate_profile_image_url_https, batch_row_007=party, batch_row_008=election_day, batch_row_009=google_civic_election_id, batch_row_010=candidate_ocd_division_id, ) number_of_candidates += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_candidates': number_of_candidates, 'election_day': election_day, 'google_civic_election_id': google_civic_election_id, } return results def import_candidate_positions_from_endorsement_json(self, batch_uri, batch_set_id, organization_we_vote_id, organization_twitter_handle, candidate_positions_list): """ Import candidate positions from organization endorsements json file :param batch_uri: :param batch_set_id: :param organization_we_vote_id: :param organization_twitter_handle: :param candidate_positions_list: :return: """ status = '' success = False number_of_candidate_positions = 0 first_line = True election_name = '' google_civic_election_id = 0 if not candidate_positions_list: results = { 'success': False, 'status': "IMPORT_CANDIDATE_POSITIONS_FROM_ENDORSEMENT_JSON-INVALID_DATA", 'candidate_positions_saved': False, 'number_of_candidate_positions': 0, 'election_name': election_name, 'google_civic_election_id': google_civic_election_id, } return results # else: for one_entry in candidate_positions_list: # read position details for each candidate candidate_name = one_entry['name'] stance = one_entry['stance'] percent_rating = one_entry['percent_rating'] grade_rating = one_entry['grade_rating'] candidate_twitter_url = one_entry['twitter_url'] candidate_website_url = one_entry['website_url'] candidate_contact_form_url = one_entry['candidate_contact_form_url'] candidate_position_description = one_entry['position_description'] office_name = one_entry['office_name'] state_code = one_entry['state_code'] election_day = one_entry['election_day'] google_civic_election_id = one_entry['google_civic_election_id'] organization_position_url = one_entry['organization_position_url'] if first_line: # create batch_header and batch_header_map for candidate_positions first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='name', batch_header_column_001='stance', batch_header_column_002='percent_rating', batch_header_column_003='grade_rating', batch_header_column_004='organization_twitter_handle', batch_header_column_005='twitter_url', batch_header_column_006='more_info_url', batch_header_column_007='position_description', batch_header_column_008='office_name', batch_header_column_009='state_code', batch_header_column_010='election_day', batch_header_column_011='google_civic_election_id', batch_header_column_012='organization_position_url', batch_header_column_013='candidate_contact_form_url', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='candidate_name', batch_header_map_001='stance', batch_header_map_002='percent_rating', batch_header_map_003='grade_rating', batch_header_map_004='organization_twitter_handle', batch_header_map_005='candidate_twitter_handle', batch_header_map_006='more_info_url', batch_header_map_007='statement_text', batch_header_map_008='contest_office_name', batch_header_map_009='state_code', batch_header_map_010='election_day', batch_header_map_011='google_civic_election_id', batch_header_map_012='organization_position_url', batch_header_map_013='candidate_contact_form_url', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "ENDORSEMENTS_JSON_CANDIDATE_POSITIONS " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, google_civic_election_id=google_civic_election_id, kind_of_batch='POSITION', organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=candidate_name, batch_row_001=stance, batch_row_002=percent_rating, batch_row_003=grade_rating, batch_row_004=organization_twitter_handle, batch_row_005=candidate_twitter_url, batch_row_006=candidate_website_url, batch_row_007=candidate_position_description, batch_row_008=office_name, batch_row_009=state_code, batch_row_010=election_day, batch_row_011=google_civic_election_id, batch_row_012=organization_position_url, batch_row_013=candidate_contact_form_url, ) number_of_candidate_positions += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_candidate_positions': number_of_candidate_positions, 'election_name': election_name, 'google_civic_election_id': google_civic_election_id, } return results def import_measure_positions_from_endorsement_json(self, batch_uri, batch_set_id, measure_positions_list): """ Import measure positions from organization endorsements json file :param batch_uri: :param batch_set_id: :param measure_positions_list: :return: """ status = '' success = False number_of_measure_positions = 0 first_line = True election_name = '' google_civic_election_id = 0 if not measure_positions_list: results = { 'success': False, 'status': "IMPORT_MEASURE_POSITIONS_FROM_ENDORSEMENT_JSON-INVALID_DATA", 'measure_positions_saved': False, 'number_of_measure_positions': 0, 'election_name': election_name, 'google_civic_election_id': google_civic_election_id, } return results # else: for one_entry in measure_positions_list: # read position details for each candidate measure_name = one_entry['name'] stance = one_entry['stance'] measure_ocd_division_id = one_entry['measure_ocd_division_id'] organization_position_url = one_entry['organization_position_url'] measure_id = one_entry['id'] twitter_url = one_entry['twitter_url'] facebook_url = one_entry['facebook_url'] website_url = one_entry['website_url'] image_url = one_entry['image_url'] image_url_https = one_entry['image_url_https'] measure_position_description = one_entry['position_description'] state_code = one_entry['state_code'] election_day = one_entry['election_day'] google_civic_election_id = one_entry['google_civic_election_id'] if first_line: # create batch_header and batch_header_map for candidate_positions first_line = False try: batch_header = BatchHeader.objects.create( batch_header_column_000='id', batch_header_column_001='name', batch_header_column_002='stance', batch_header_column_003='measure_ocd_division_id', batch_header_column_004='organization_position_url', batch_header_column_005='twitter_url', batch_header_column_006='facebook_url', batch_header_column_007='website_url', batch_header_column_008='image_url', batch_header_column_009='image_url_https', batch_header_column_010='position_description', batch_header_column_011='state_code', batch_header_column_012='election_day', batch_header_column_013='google_civic_election_id', batch_header_column_014='candidate_contact_form_url', ) batch_header_id = batch_header.id if positive_value_exists(batch_header_id): # Save an initial BatchHeaderMap batch_header_map = BatchHeaderMap.objects.create( batch_header_id=batch_header_id, batch_header_map_000='measure_id', batch_header_map_001='measure_title', batch_header_map_002='stance', batch_header_map_003='measure_ocd_division_id', batch_header_map_004='organization_position_url', batch_header_map_005='measure_twitter_handle', batch_header_map_006='facebook_url', batch_header_map_007='more_info_url', batch_header_map_008='image_url', batch_header_map_009='image_url_https', batch_header_map_010='statement_text', batch_header_map_011='state_code', batch_header_map_012='election_day', batch_header_map_013='google_civic_election_id', batch_header_map_014='candidate_contact_form_url', ) batch_header_map_id = batch_header_map.id status += " BATCH_HEADER_MAP_SAVED" if positive_value_exists(batch_header_id) and positive_value_exists(batch_header_map_id): # Now save the BatchDescription batch_name = "ENDORSEMENTS_JSON_MEASURES " + " batch_header_id: " + str(batch_header_id) batch_description_text = "" batch_description = BatchDescription.objects.create( batch_header_id=batch_header_id, batch_header_map_id=batch_header_map_id, batch_name=batch_name, batch_description_text=batch_description_text, # google_civic_election_id=google_civic_election_id, kind_of_batch='POSITION', # organization_we_vote_id=organization_we_vote_id, source_uri=batch_uri, batch_set_id=batch_set_id, ) status += " BATCH_DESCRIPTION_SAVED" success = True except Exception as e: batch_header_id = 0 status += " EXCEPTION_BATCH_HEADER" handle_exception(e, logger=logger, exception_message=status) break if not positive_value_exists(batch_header_id): break try: batch_row = BatchRow.objects.create( batch_header_id=batch_header_id, batch_row_000=measure_id, batch_row_001=measure_name, batch_row_002=stance, batch_row_003=measure_ocd_division_id, batch_row_004=organization_position_url, batch_row_005=twitter_url, batch_row_006=facebook_url, batch_row_007=website_url, batch_row_008=image_url, batch_row_009=image_url_https, batch_row_010=measure_position_description, batch_row_011=state_code, batch_row_012=election_day, batch_row_013=google_civic_election_id, batch_row_014=candidate_contact_form_url, ) number_of_measure_positions += 1 except Exception as e: # Stop trying to save rows -- break out of the for loop status += " EXCEPTION_BATCH_ROW" handle_exception(e, logger=logger, exception_message=status) break results = { 'success': success, 'status': status, 'batch_header_id': batch_header_id, 'batch_saved': success, 'number_of_measure_positions': number_of_measure_positions, 'election_name': election_name, 'google_civic_election_id': google_civic_election_id, } return results class BatchSet(models.Model): """ We call each imported CSV or JSON a “batch set”, and store basic information about it in this table. """ google_civic_election_id = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=True, blank=True) batch_set_name = models.CharField(max_length=255) batch_set_description_text = models.CharField(max_length=255) batch_set_source = models.CharField(max_length=255) source_uri = models.URLField(blank=True, null=True, verbose_name='uri where data is coming from') import_date = models.DateTimeField(verbose_name="date when batch set was imported", null=True, auto_now=True) class BatchDescription(models.Model): """ We call each imported CSV or JSON a “batch”, and store basic information about it in this table. """ batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=True, null=False) batch_set_id = models.PositiveIntegerField( verbose_name="unique id of batch set row", unique=False, null=True) batch_header_map_id = models.PositiveIntegerField( verbose_name="unique id of header map", unique=True, null=False) google_civic_election_id = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=True, blank=True) batch_name = models.CharField(max_length=255) kind_of_batch = models.CharField(max_length=32, choices=KIND_OF_BATCH_CHOICES, default=MEASURE) organization_we_vote_id = models.CharField( verbose_name="if for positions, the organization's we vote id", max_length=255, null=True, blank=True) polling_location_we_vote_id = models.CharField( verbose_name="if for ballot items, the polling location we vote id", max_length=255, null=True, blank=True) batch_description_text = models.CharField(max_length=255) # Have the batch rows under this description been analyzed? batch_description_analyzed = models.BooleanField(default=False) source_uri = models.URLField(blank=True, null=True, verbose_name='uri where data is coming from') date_created = models.DateTimeField(verbose_name='date first saved', null=True, auto_now=True) class BatchHeader(models.Model): """ When we get data, it will come with column headers. This table stores the headers from the import file. """ batch_header_column_000 = models.TextField(null=True, blank=True) batch_header_column_001 = models.TextField(null=True, blank=True) batch_header_column_002 = models.TextField(null=True, blank=True) batch_header_column_003 = models.TextField(null=True, blank=True) batch_header_column_004 = models.TextField(null=True, blank=True) batch_header_column_005 = models.TextField(null=True, blank=True) batch_header_column_006 = models.TextField(null=True, blank=True) batch_header_column_007 = models.TextField(null=True, blank=True) batch_header_column_008 = models.TextField(null=True, blank=True) batch_header_column_009 = models.TextField(null=True, blank=True) batch_header_column_010 = models.TextField(null=True, blank=True) batch_header_column_011 = models.TextField(null=True, blank=True) batch_header_column_012 = models.TextField(null=True, blank=True) batch_header_column_013 = models.TextField(null=True, blank=True) batch_header_column_014 = models.TextField(null=True, blank=True) batch_header_column_015 = models.TextField(null=True, blank=True) batch_header_column_016 = models.TextField(null=True, blank=True) batch_header_column_017 = models.TextField(null=True, blank=True) batch_header_column_018 = models.TextField(null=True, blank=True) batch_header_column_019 = models.TextField(null=True, blank=True) batch_header_column_020 = models.TextField(null=True, blank=True) batch_header_column_021 = models.TextField(null=True, blank=True) batch_header_column_022 = models.TextField(null=True, blank=True) batch_header_column_023 = models.TextField(null=True, blank=True) batch_header_column_024 = models.TextField(null=True, blank=True) batch_header_column_025 = models.TextField(null=True, blank=True) batch_header_column_026 = models.TextField(null=True, blank=True) batch_header_column_027 = models.TextField(null=True, blank=True) batch_header_column_028 = models.TextField(null=True, blank=True) batch_header_column_029 = models.TextField(null=True, blank=True) batch_header_column_030 = models.TextField(null=True, blank=True) batch_header_column_031 = models.TextField(null=True, blank=True) batch_header_column_032 = models.TextField(null=True, blank=True) batch_header_column_033 = models.TextField(null=True, blank=True) batch_header_column_034 = models.TextField(null=True, blank=True) batch_header_column_035 = models.TextField(null=True, blank=True) batch_header_column_036 = models.TextField(null=True, blank=True) batch_header_column_037 = models.TextField(null=True, blank=True) batch_header_column_038 = models.TextField(null=True, blank=True) batch_header_column_039 = models.TextField(null=True, blank=True) batch_header_column_040 = models.TextField(null=True, blank=True) batch_header_column_041 = models.TextField(null=True, blank=True) batch_header_column_042 = models.TextField(null=True, blank=True) batch_header_column_043 = models.TextField(null=True, blank=True) batch_header_column_044 = models.TextField(null=True, blank=True) batch_header_column_045 = models.TextField(null=True, blank=True) batch_header_column_046 = models.TextField(null=True, blank=True) batch_header_column_047 = models.TextField(null=True, blank=True) batch_header_column_048 = models.TextField(null=True, blank=True) batch_header_column_049 = models.TextField(null=True, blank=True) batch_header_column_050 = models.TextField(null=True, blank=True) class BatchHeaderMap(models.Model): """ When we get data, it will come with column headers. This table stores the replacement header that matches the We Vote internal field names. """ batch_header_id = models.PositiveIntegerField(verbose_name="unique id of header row", unique=True, null=False) batch_header_map_000 = models.TextField(null=True, blank=True) batch_header_map_001 = models.TextField(null=True, blank=True) batch_header_map_002 = models.TextField(null=True, blank=True) batch_header_map_003 = models.TextField(null=True, blank=True) batch_header_map_004 = models.TextField(null=True, blank=True) batch_header_map_005 = models.TextField(null=True, blank=True) batch_header_map_006 = models.TextField(null=True, blank=True) batch_header_map_007 = models.TextField(null=True, blank=True) batch_header_map_008 = models.TextField(null=True, blank=True) batch_header_map_009 = models.TextField(null=True, blank=True) batch_header_map_010 = models.TextField(null=True, blank=True) batch_header_map_011 = models.TextField(null=True, blank=True) batch_header_map_012 = models.TextField(null=True, blank=True) batch_header_map_013 = models.TextField(null=True, blank=True) batch_header_map_014 = models.TextField(null=True, blank=True) batch_header_map_015 = models.TextField(null=True, blank=True) batch_header_map_016 = models.TextField(null=True, blank=True) batch_header_map_017 = models.TextField(null=True, blank=True) batch_header_map_018 = models.TextField(null=True, blank=True) batch_header_map_019 = models.TextField(null=True, blank=True) batch_header_map_020 = models.TextField(null=True, blank=True) batch_header_map_021 = models.TextField(null=True, blank=True) batch_header_map_022 = models.TextField(null=True, blank=True) batch_header_map_023 = models.TextField(null=True, blank=True) batch_header_map_024 = models.TextField(null=True, blank=True) batch_header_map_025 = models.TextField(null=True, blank=True) batch_header_map_026 = models.TextField(null=True, blank=True) batch_header_map_027 = models.TextField(null=True, blank=True) batch_header_map_028 = models.TextField(null=True, blank=True) batch_header_map_029 = models.TextField(null=True, blank=True) batch_header_map_030 = models.TextField(null=True, blank=True) batch_header_map_031 = models.TextField(null=True, blank=True) batch_header_map_032 = models.TextField(null=True, blank=True) batch_header_map_033 = models.TextField(null=True, blank=True) batch_header_map_034 = models.TextField(null=True, blank=True) batch_header_map_035 = models.TextField(null=True, blank=True) batch_header_map_036 = models.TextField(null=True, blank=True) batch_header_map_037 = models.TextField(null=True, blank=True) batch_header_map_038 = models.TextField(null=True, blank=True) batch_header_map_039 = models.TextField(null=True, blank=True) batch_header_map_040 = models.TextField(null=True, blank=True) batch_header_map_041 = models.TextField(null=True, blank=True) batch_header_map_042 = models.TextField(null=True, blank=True) batch_header_map_043 = models.TextField(null=True, blank=True) batch_header_map_044 = models.TextField(null=True, blank=True) batch_header_map_045 = models.TextField(null=True, blank=True) batch_header_map_046 = models.TextField(null=True, blank=True) batch_header_map_047 = models.TextField(null=True, blank=True) batch_header_map_048 = models.TextField(null=True, blank=True) batch_header_map_049 = models.TextField(null=True, blank=True) batch_header_map_050 = models.TextField(null=True, blank=True) class BatchRow(models.Model): """ Individual data rows """ batch_header_id = models.PositiveIntegerField(verbose_name="unique id of header row", unique=False, null=False) # This is used when we have one batch_set that brings in election data for a variety of elections google_civic_election_id = models.PositiveIntegerField(verbose_name="election id", default=0, null=True, blank=True) # This is useful for filtering while we are processing batch_rows state_code = models.CharField(verbose_name="state code for this data", max_length=2, null=True, blank=True) batch_row_analyzed = models.BooleanField(default=False) batch_row_created = models.BooleanField(default=False) batch_row_000 = models.TextField(null=True, blank=True) batch_row_001 = models.TextField(null=True, blank=True) batch_row_002 = models.TextField(null=True, blank=True) batch_row_003 = models.TextField(null=True, blank=True) batch_row_004 = models.TextField(null=True, blank=True) batch_row_005 = models.TextField(null=True, blank=True) batch_row_006 = models.TextField(null=True, blank=True) batch_row_007 = models.TextField(null=True, blank=True) batch_row_008 = models.TextField(null=True, blank=True) batch_row_009 = models.TextField(null=True, blank=True) batch_row_010 = models.TextField(null=True, blank=True) batch_row_011 = models.TextField(null=True, blank=True) batch_row_012 = models.TextField(null=True, blank=True) batch_row_013 = models.TextField(null=True, blank=True) batch_row_014 = models.TextField(null=True, blank=True) batch_row_015 = models.TextField(null=True, blank=True) batch_row_016 = models.TextField(null=True, blank=True) batch_row_017 = models.TextField(null=True, blank=True) batch_row_018 = models.TextField(null=True, blank=True) batch_row_019 = models.TextField(null=True, blank=True) batch_row_020 = models.TextField(null=True, blank=True) batch_row_021 = models.TextField(null=True, blank=True) batch_row_022 = models.TextField(null=True, blank=True) batch_row_023 = models.TextField(null=True, blank=True) batch_row_024 = models.TextField(null=True, blank=True) batch_row_025 = models.TextField(null=True, blank=True) batch_row_026 = models.TextField(null=True, blank=True) batch_row_027 = models.TextField(null=True, blank=True) batch_row_028 = models.TextField(null=True, blank=True) batch_row_029 = models.TextField(null=True, blank=True) batch_row_030 = models.TextField(null=True, blank=True) batch_row_031 = models.TextField(null=True, blank=True) batch_row_032 = models.TextField(null=True, blank=True) batch_row_033 = models.TextField(null=True, blank=True) batch_row_034 = models.TextField(null=True, blank=True) batch_row_035 = models.TextField(null=True, blank=True) batch_row_036 = models.TextField(null=True, blank=True) batch_row_037 = models.TextField(null=True, blank=True) batch_row_038 = models.TextField(null=True, blank=True) batch_row_039 = models.TextField(null=True, blank=True) batch_row_040 = models.TextField(null=True, blank=True) batch_row_041 = models.TextField(null=True, blank=True) batch_row_042 = models.TextField(null=True, blank=True) batch_row_043 = models.TextField(null=True, blank=True) batch_row_044 = models.TextField(null=True, blank=True) batch_row_045 = models.TextField(null=True, blank=True) batch_row_046 = models.TextField(null=True, blank=True) batch_row_047 = models.TextField(null=True, blank=True) batch_row_048 = models.TextField(null=True, blank=True) batch_row_049 = models.TextField(null=True, blank=True) batch_row_050 = models.TextField(null=True, blank=True) class BatchHeaderTranslationSuggestion(models.Model): """ When we bring in batches of data, we want to try to map non-standard headers to the We Vote recognized headers. This table stores those mappings. """ kind_of_batch = models.CharField(max_length=32, choices=KIND_OF_BATCH_CHOICES, default=MEASURE) header_value_recognized_by_we_vote = models.TextField(null=True, blank=True) incoming_alternate_header_value = models.TextField(null=True, blank=True) class BatchRowTranslationMap(models.Model): """ When we bring in batches of data, we want to map different names (for measures, offices, candidates, or organizations) to the We Vote recognized names. This table stores those mappings. So for example if one batch uses "Prop A" we want to map it to "Proposition A". """ # Are we translating for a Measure, Office, Candidate, or Organization kind_of_batch = models.CharField(max_length=32, choices=KIND_OF_BATCH_CHOICES, default=MEASURE) # What is the name of the row? (ex/ contest_office_name) batch_row_name = models.CharField(verbose_name="name of the the row", max_length=255, null=True, blank=True) google_civic_election_id = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=True, blank=True) row_value_recognized_by_we_vote = models.TextField(null=True, blank=True) incoming_alternate_row_value = models.TextField(null=True, blank=True) class BatchRowActionMeasure(models.Model): """ The definition of the action for importing one Measure. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=True, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) # Fields from ContestMeasure measure_we_vote_id = models.CharField( verbose_name="we vote permanent id", max_length=255, default=None, null=True, blank=True) maplight_id = models.CharField(verbose_name="maplight unique identifier", max_length=255, null=True, blank=True, unique=False) vote_smart_id = models.CharField(verbose_name="votesmart unique identifier", max_length=200, null=True, blank=True, unique=False) # The title of the measure (e.g. 'Proposition 42'). measure_title = models.CharField(verbose_name="measure title", max_length=255, null=False, blank=False) # The measure's title as passed over by Google Civic. We save this so we can match to this measure even # if we edit the measure's name locally. google_civic_measure_title = models.CharField(verbose_name="measure name exactly as received from google civic", max_length=255, null=True, blank=True) # A brief description of the referendum. This field is only populated for contests of type 'Referendum'. measure_subtitle = models.TextField(verbose_name="google civic referendum subtitle", null=True, blank=True, default="") # The text of the measure. This field is only populated for contests of type 'Referendum'. measure_text = models.TextField(verbose_name="measure text", null=True, blank=False) # A link to the referendum. This field is only populated for contests of type 'Referendum'. measure_url = models.CharField(verbose_name="measure details url", max_length=255, null=True, blank=False) # The unique ID of the election containing this contest. (Provided by Google Civic) google_civic_election_id = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=False, blank=False, db_index=True) ocd_division_id = models.CharField(verbose_name="ocd division id", max_length=255, null=True, blank=True) # ballot_placement: We store ballot_placement in the BallotItem table instead because it is different for each voter # If this is a partisan election, the name of the party it is for. primary_party = models.CharField(verbose_name="primary party", max_length=255, null=True, blank=True) # The name of the district. district_name = models.CharField(verbose_name="district name", max_length=255, null=False, blank=False) # The geographic scope of this district. If unspecified the district's geography is not known. # One of: national, statewide, congressional, stateUpper, stateLower, countywide, judicial, schoolBoard, # cityWide, township, countyCouncil, cityCouncil, ward, special district_scope = models.CharField(verbose_name="district scope", max_length=255, null=False, blank=False) # An identifier for this district, relative to its scope. For example, the 34th State Senate district # would have id "34" and a scope of stateUpper. district_id = models.CharField(verbose_name="google civic district id", max_length=255, null=True, blank=True) # State code state_code = models.CharField(verbose_name="state this measure affects", max_length=2, null=True, blank=True) # Day of the election in YYYY-MM-DD format. election_day_text = models.CharField(verbose_name="election day", max_length=255, null=True, blank=True) wikipedia_page_id = models.BigIntegerField(verbose_name="pageid", null=True, blank=True) wikipedia_page_title = models.CharField( verbose_name="Page title on Wikipedia", max_length=255, null=True, blank=True) wikipedia_photo_url = models.URLField(verbose_name='url of wikipedia logo', blank=True, null=True) ballotpedia_district_id = models.PositiveIntegerField( verbose_name="ballotpedia district id", default=0, null=False, blank=False) ballotpedia_election_id = models.PositiveIntegerField( verbose_name="ballotpedia election id", default=0, null=False, blank=False) ballotpedia_measure_id = models.PositiveIntegerField( verbose_name="ballotpedia measure id", default=0, null=False, blank=False) ballotpedia_measure_name = models.CharField( verbose_name="ballotpedia measure name", max_length=255, null=True, blank=True) ballotpedia_measure_status = models.CharField( verbose_name="ballotpedia measure status", max_length=255, null=True, blank=True) ballotpedia_measure_summary = models.TextField( verbose_name="ballotpedia measure summary", null=True, blank=True, default="") ballotpedia_measure_text = models.TextField( verbose_name="ballotpedia measure text", null=True, blank=True, default="") ballotpedia_measure_url = models.URLField(verbose_name='ballotpedia url of measure', blank=True, null=True) ballotpedia_page_title = models.CharField( verbose_name="Page title on Ballotpedia", max_length=255, null=True, blank=True) ballotpedia_photo_url = models.URLField(verbose_name='url of ballotpedia logo', blank=True, null=True) ballotpedia_yes_vote_description = models.TextField( verbose_name="what a yes vote means", null=True, blank=True, default=None) ballotpedia_no_vote_description = models.TextField( verbose_name="what a no vote means", null=True, blank=True, default=None) ctcl_uuid = models.CharField(verbose_name="ctcl uuid", max_length=80, null=True, blank=True) status = models.TextField(verbose_name="batch row action measure status", null=True, blank=True, default="") class BatchRowActionContestOffice(models.Model): """ The definition of the action for importing one Office. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=False, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) # Fields from ContestOffice contest_office_we_vote_id = models.CharField( verbose_name="we vote permanent id for this contest office", max_length=255, default=None, null=True, blank=True) # The name of the office for this contest. contest_office_name = models.CharField(verbose_name="name of the contest office", max_length=255, null=False, blank=False) # TODO: Was the original contest_office_name replaced with a mapped value from BatchRowTranslationMap? # contest_office_name_mapped = models.BooleanField(verbose_name='office name was replaced', default=False) # The offices' name as passed over by Google Civic. We save this so we can match to this office even # if we edit the office's name locally. google_civic_office_name = models.CharField(verbose_name="office name exactly as received from google civic", max_length=255, null=True, blank=True) # The unique ID of the election containing this contest. (Provided by Google Civic) google_civic_election_id = models.CharField(verbose_name="google civic election id", max_length=255, null=False, blank=False, db_index=True) google_civic_election_id_new = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=False, blank=False) ocd_division_id = models.CharField(verbose_name="ocd division id", max_length=255, null=True, blank=True) maplight_id = models.CharField( verbose_name="maplight unique identifier", max_length=255, null=True, blank=True) # 2018-02-16 It is unclear if we want to keep this field ballotpedia_id = models.CharField( verbose_name="ballotpedia unique identifier", max_length=255, null=True, blank=True) ballotpedia_district_id = models.PositiveIntegerField( verbose_name="ballotpedia district id", null=True, blank=True) ballotpedia_election_id = models.PositiveIntegerField(verbose_name="ballotpedia election id", null=True, blank=True) is_ballotpedia_general_election = models.BooleanField(default=False) is_ballotpedia_general_runoff_election = models.BooleanField(default=False) is_ballotpedia_primary_election = models.BooleanField(default=False) is_ballotpedia_primary_runoff_election = models.BooleanField(default=False) # Equivalent of elected_office in We Vote ballotpedia_office_id = models.PositiveIntegerField( verbose_name="ballotpedia integer id", null=True, blank=True) # The office's name as passed over by Ballotpedia. This helps us do exact matches when id is missing ballotpedia_office_name = models.CharField(verbose_name="office name exactly as received from ballotpedia", max_length=255, null=True, blank=True) ballotpedia_office_url = models.URLField(verbose_name='url of office on ballotpedia', blank=True, null=True) # Equivalent of contest_office in We Vote ballotpedia_race_id = models.PositiveIntegerField(verbose_name="ballotpedia race integer id", null=True, blank=True) # Federal, State, Local, ballotpedia_race_office_level = models.CharField(verbose_name="race office level", max_length=255, null=True, blank=True) wikipedia_id = models.CharField(verbose_name="wikipedia unique identifier", max_length=255, null=True, blank=True) # vote_type (ranked choice, majority) # The number of candidates that a voter may vote for in this contest. number_voting_for = models.CharField(verbose_name="google civic number of candidates to vote for", max_length=255, null=True, blank=True) # The number of candidates that will be elected to office in this contest. number_elected = models.CharField(verbose_name="google civic number of candidates who will be elected", max_length=255, null=True, blank=True) # State code state_code = models.CharField(verbose_name="state this office serves", max_length=2, null=True, blank=True) # If this is a partisan election, the name of the party it is for. primary_party = models.CharField(verbose_name="google civic primary party", max_length=255, null=True, blank=True) # The name of the district. district_name = models.CharField(verbose_name="district name", max_length=255, null=True, blank=True) # The geographic scope of this district. If unspecified the district's geography is not known. # One of: national, statewide, congressional, stateUpper, stateLower, countywide, judicial, schoolBoard, # cityWide, township, countyCouncil, cityCouncil, ward, special district_scope = models.CharField(verbose_name="google civic district scope", max_length=255, null=True, blank=True) # An identifier for this district, relative to its scope. For example, the 34th State Senate district # would have id "34" and a scope of stateUpper. district_id = models.CharField(verbose_name="google civic district id", max_length=255, null=True, blank=True) # The levels of government of the office for this contest. There may be more than one in cases where a # jurisdiction effectively acts at two different levels of government; for example, the mayor of the # District of Columbia acts at "locality" level, but also effectively at both # "administrative-area-2" and "administrative-area-1". contest_level0 = models.CharField(verbose_name="google civic level, option 0", max_length=255, null=True, blank=True) contest_level1 = models.CharField(verbose_name="google civic level, option 1", max_length=255, null=True, blank=True) contest_level2 = models.CharField(verbose_name="google civic level, option 2", max_length=255, null=True, blank=True) # ballot_placement: We store ballot_placement in the BallotItem table instead because it is different for each voter # A description of any additional eligibility requirements for voting in this contest. electorate_specifications = models.CharField(verbose_name="google civic primary party", max_length=255, null=True, blank=True) # "Yes" or "No" depending on whether this a contest being held outside the normal election cycle. special = models.CharField(verbose_name="google civic primary party", max_length=255, null=True, blank=True) ctcl_uuid = models.CharField(verbose_name="ctcl uuid", max_length=80, null=True, blank=True) elected_office_name = models.CharField(verbose_name="name of the elected office", max_length=255, null=True, blank=True, default=None) candidate_selection_id1 = models.CharField(verbose_name="temporary id of candidate selection 1", max_length=255, null=True, blank=True, default=None) candidate_selection_id2 = models.CharField(verbose_name="temporary id of candidate selection 2", max_length=255, null=True, blank=True, default=None) candidate_selection_id3= models.CharField(verbose_name="temporary id of candidate selection 3", max_length=255, null=True, blank=True, default=None) candidate_selection_id4 = models.CharField(verbose_name="temporary id of candidate selection 4", max_length=255, null=True, blank=True, default=None) candidate_selection_id5 = models.CharField(verbose_name="temporary id of candidate selection 5", max_length=255, null=True, blank=True, default=None) candidate_selection_id6 = models.CharField(verbose_name="temporary id of candidate selection 6", max_length=255, null=True, blank=True, default=None) candidate_selection_id7 = models.CharField(verbose_name="temporary id of candidate selection 7", max_length=255, null=True, blank=True, default=None) candidate_selection_id8 = models.CharField(verbose_name="temporary id of candidate selection 8", max_length=255, null=True, blank=True, default=None) candidate_selection_id9 = models.CharField(verbose_name="temporary id of candidate selection 9", max_length=255, null=True, blank=True, default=None) candidate_selection_id10 = models.CharField(verbose_name="temporary id of candidate selection 10", max_length=255, null=True, blank=True, default=None) status = models.TextField(verbose_name="batch row action contest office status", null=True, blank=True, default="") class BatchRowActionElectedOffice(models.Model): """ The definition of the action for importing one Office. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=False, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) # Fields from ElectedOffice elected_office_we_vote_id = models.CharField( verbose_name="we vote permanent id for this elected office", max_length=255, default=None, null=True, blank=True) # The name of the office for this contest. elected_office_name = models.CharField(verbose_name="name of the elected office", max_length=255, null=False, blank=False) elected_office_name_es = models.CharField(verbose_name="name of the elected office in Spanish", max_length=255, null=True, blank=True, default=None) # The offices' name as passed over by Google Civic. We save this so we can match to this office even # if we edit the office's name locally. google_civic_office_name = models.CharField(verbose_name="office name exactly as received from google civic", max_length=255, null=True, blank=True) # The unique ID of the election containing this contest. (Provided by Google Civic) google_civic_election_id = models.CharField(verbose_name="google civic election id", max_length=255, null=False, blank=False, db_index=True) google_civic_election_id_new = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=False, blank=False) ocd_division_id = models.CharField(verbose_name="ocd division id", max_length=255, null=True, blank=True) maplight_id = models.CharField( verbose_name="maplight unique identifier", max_length=255, null=True, blank=True) ballotpedia_id = models.CharField( verbose_name="ballotpedia unique identifier", max_length=255, null=True, blank=True) wikipedia_id = models.CharField(verbose_name="wikipedia unique identifier", max_length=255, null=True, blank=True) # vote_type (ranked choice, majority) # The number of candidates that a voter may vote for in this contest. # TODO for now comment out number_voting_for for elected_office table # number_voting_for = models.CharField(verbose_name="google civic number of candidates to vote for", # max_length=255, null=True, blank=True) # The number of candidates that will be elected to office in this contest. number_elected = models.CharField(verbose_name="google civic number of candidates who will be elected", max_length=255, null=True, blank=True) # State code state_code = models.CharField(verbose_name="state this office serves", max_length=2, null=True, blank=True) # If this is a partisan election, the name of the party it is for. primary_party = models.CharField(verbose_name="google civic primary party", max_length=255, null=True, blank=True) # The name of the district. district_name = models.CharField(verbose_name="district name", max_length=255, null=True, blank=True) # The geographic scope of this district. If unspecified the district's geography is not known. # One of: national, statewide, congressional, stateUpper, stateLower, countywide, judicial, schoolBoard, # cityWide, township, countyCouncil, cityCouncil, ward, special district_scope = models.CharField(verbose_name="google civic district scope", max_length=255, null=True, blank=True) # An identifier for this district, relative to its scope. For example, the 34th State Senate district # would have id "34" and a scope of stateUpper. district_id = models.CharField(verbose_name="google civic district id", max_length=255, null=True, blank=True) # The levels of government of the office for this contest. There may be more than one in cases where a # jurisdiction effectively acts at two different levels of government; for example, the mayor of the # District of Columbia acts at "locality" level, but also effectively at both # "administrative-area-2" and "administrative-area-1". contest_level0 = models.CharField(verbose_name="google civic level, option 0", max_length=255, null=True, blank=True) contest_level1 = models.CharField(verbose_name="google civic level, option 1", max_length=255, null=True, blank=True) contest_level2 = models.CharField(verbose_name="google civic level, option 2", max_length=255, null=True, blank=True) # ballot_placement: We store ballot_placement in the BallotItem table instead because it is different for each voter # A description of any additional eligibility requirements for voting in this contest. electorate_specifications = models.CharField(verbose_name="google civic primary party", max_length=255, null=True, blank=True) # "Yes" or "No" depending on whether this a contest being held outside the normal election cycle. special = models.CharField(verbose_name="google civic primary party", max_length=255, null=True, blank=True) ctcl_uuid = models.CharField(verbose_name="ctcl uuid", max_length=80, null=True, blank=True) elected_office_description = models.CharField(verbose_name="office description", max_length=255, null=True, blank=True) elected_office_description_es = models.CharField(verbose_name="office description spanish", max_length=255, null=True, blank=True) elected_office_is_partisan = models.BooleanField(verbose_name='office is_partisan', default=False) elected_office_ctcl_id = models.CharField(verbose_name="we vote permanent id for this elected office", max_length=255, default=None, null=True, blank=True) status = models.TextField(verbose_name="batch row action elected office status", null=True, blank=True, default="") class BatchRowActionPolitician(models.Model): """ The definition of the action for importing one Politician. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=False, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) # Fields from Politician politician_we_vote_id = models.CharField(verbose_name="we vote permanent id of this politician", max_length=255, default=None, null=True, blank=True, unique=False) # See this url for properties: https://docs.python.org/2/library/functions.html#property first_name = models.CharField(verbose_name="first name", max_length=255, default=None, null=True, blank=True) middle_name = models.CharField(verbose_name="middle name", max_length=255, default=None, null=True, blank=True) last_name = models.CharField(verbose_name="last name", max_length=255, default=None, null=True, blank=True) politician_name = models.CharField(verbose_name="official full name", max_length=255, default=None, null=True, blank=True) # This is the politician's name from GoogleCivicCandidateCampaign google_civic_candidate_name = models.CharField(verbose_name="full name from google civic", max_length=255, default=None, null=True, blank=True) # This is the politician's name assembled from TheUnitedStatesIo first_name + last_name for quick search full_name_assembled = models.CharField(verbose_name="full name assembled from first_name + last_name", max_length=255, default=None, null=True, blank=True) gender = models.CharField("gender", max_length=1, choices=GENDER_CHOICES, default=UNKNOWN) birth_date = models.DateField("birth date", default=None, null=True, blank=True) # race = enum? # official_image_id = ?? bioguide_id = models.CharField(verbose_name="bioguide unique identifier", max_length=200, null=True, unique=False) thomas_id = models.CharField(verbose_name="thomas unique identifier", max_length=200, null=True, unique=False) lis_id = models.CharField(verbose_name="lis unique identifier", max_length=200, null=True, blank=True, unique=False) govtrack_id = models.CharField(verbose_name="govtrack unique identifier", max_length=200, null=True, unique=False) opensecrets_id = models.CharField(verbose_name="opensecrets unique identifier", max_length=200, null=True, unique=False) vote_smart_id = models.CharField(verbose_name="votesmart unique identifier", max_length=200, null=True, unique=False) fec_id = models.CharField(verbose_name="fec unique identifier", max_length=200, null=True, unique=False, blank=True) cspan_id = models.CharField(verbose_name="cspan unique identifier", max_length=200, null=True, blank=True, unique=False) wikipedia_id = models.CharField(verbose_name="wikipedia url", max_length=500, default=None, null=True, blank=True) ballotpedia_id = models.CharField(verbose_name="ballotpedia unique id", max_length=500, default=None, null=True, blank=True) house_history_id = models.CharField(verbose_name="house history unique identifier", max_length=200, null=True, blank=True) maplight_id = models.CharField(verbose_name="maplight unique identifier", max_length=200, null=True, unique=False, blank=True) washington_post_id = models.CharField(verbose_name="washington post unique identifier", max_length=200, null=True, unique=False) icpsr_id = models.CharField(verbose_name="icpsr unique identifier", max_length=200, null=True, unique=False) # The full name of the party the official belongs to. political_party = models.CharField(verbose_name="politician political party", max_length=255, null=True) state_code = models.CharField(verbose_name="politician home state", max_length=2, null=True) politician_url = models.URLField(verbose_name='latest website url of politician', blank=True, null=True) politician_twitter_handle = models.CharField(verbose_name='politician twitter screen_name', max_length=255, null=True, unique=False) we_vote_hosted_profile_image_url_large = models.URLField(verbose_name='we vote hosted large image url', blank=True, null=True) we_vote_hosted_profile_image_url_medium = models.URLField(verbose_name='we vote hosted medium image url', blank=True, null=True) we_vote_hosted_profile_image_url_tiny = models.URLField(verbose_name='we vote hosted tiny image url', blank=True, null=True) ctcl_uuid = models.CharField(verbose_name="ctcl uuid", max_length=80, null=True, blank=True) politician_facebook_id = models.CharField(verbose_name='politician facebook user name', max_length=255, null=True, unique=False) politician_phone_number = models.CharField(verbose_name='politician phone number', max_length=255, null=True, unique=False) politician_googleplus_id = models.CharField(verbose_name='politician googleplus profile name', max_length=255, null=True, unique=False) politician_youtube_id = models.CharField(verbose_name='politician youtube profile name', max_length=255, null=True, unique=False) politician_email_address = models.CharField(verbose_name='politician email address', max_length=80, null=True, unique=False) status = models.TextField(verbose_name="batch row action politician status", null=True, blank=True, default="") class BatchRowActionCandidate(models.Model): """ The definition of the action for importing one Candidate. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=False, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) # Fields from Candidate candidate_we_vote_id = models.CharField( verbose_name="we vote permanent id of this candidate campaign", max_length=255, default=None, null=True, blank=True) maplight_id = models.CharField( verbose_name="maplight candidate id", max_length=255, default=None, null=True, blank=True) vote_smart_id = models.CharField( verbose_name="vote smart candidate id", max_length=15, default=None, null=True, blank=True, unique=False) # The internal We Vote id for the ContestOffice that this candidate is competing for. During setup we need to allow # this to be null. contest_office_id = models.CharField( verbose_name="contest_office_id id", max_length=255, null=True, blank=True) # We want to link the candidate to the contest with permanent ids so we can export and import contest_office_we_vote_id = models.CharField( verbose_name="we vote permanent id for the office this candidate is running for", max_length=255, default=None, null=True, blank=True, unique=False) contest_office_name = models.CharField(verbose_name="name of the office", max_length=255, null=True, blank=True) # politician (internal) link to local We Vote Politician entry. During setup we need to allow this to be null. politician_id = models.BigIntegerField(verbose_name="politician unique identifier", null=True, blank=True) # The persistent We Vote unique ID of the Politician, so we can export and import into other databases. politician_we_vote_id = models.CharField( verbose_name="we vote politician id", max_length=255, null=True, blank=True) # The candidate's name. candidate_name = models.CharField(verbose_name="candidate name", max_length=255, null=False, blank=False) # The candidate's name as passed over by Google Civic. We save this so we can match to this candidate even # if we edit the candidate's name locally. google_civic_candidate_name = models.CharField(verbose_name="candidate name exactly as received from google civic", max_length=255, null=False, blank=False) candidate_gender = models.CharField(verbose_name="candidate gender", max_length=255, null=True, blank=True) # Birthday in YYYY-MM-DD format. birth_day_text = models.CharField(verbose_name="birth day", max_length=10, null=True, blank=True) # The full name of the party the candidate is a member of. party = models.CharField(verbose_name="party", max_length=255, null=True, blank=True) # A URL for a photo of the candidate. photo_url = models.CharField(verbose_name="photoUrl", max_length=255, null=True, blank=True) photo_url_from_maplight = models.URLField( verbose_name='candidate portrait url of candidate from maplight', blank=True, null=True) photo_url_from_vote_smart = models.URLField( verbose_name='candidate portrait url of candidate from vote smart', blank=True, null=True) # The order the candidate appears on the ballot relative to other candidates for this contest. order_on_ballot = models.CharField(verbose_name="order on ballot", max_length=255, null=True, blank=True) # The unique ID of the election containing this contest. (Provided by Google Civic) google_civic_election_id = models.CharField( verbose_name="google civic election id", max_length=255, null=True, blank=True, db_index=True) google_civic_election_id_new = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=True, blank=True) ocd_division_id = models.CharField(verbose_name="ocd division id", max_length=255, null=True, blank=True) # State code state_code = models.CharField(verbose_name="state this candidate serves", max_length=2, null=True, blank=True) # The URL for the candidate's campaign web site. candidate_url = models.URLField(verbose_name='website url of candidate campaign', blank=True, null=True) candidate_contact_form_url = models.URLField(verbose_name='website url of candidate contact form', blank=True, null=True) facebook_url = models.URLField(verbose_name='facebook url of candidate campaign', blank=True, null=True) twitter_url = models.URLField(verbose_name='twitter url of candidate campaign', blank=True, null=True) twitter_user_id = models.BigIntegerField(verbose_name="twitter id", null=True, blank=True) candidate_twitter_handle = models.CharField( verbose_name='candidate twitter screen_name', max_length=255, null=True, unique=False) twitter_name = models.CharField( verbose_name="org name from twitter", max_length=255, null=True, blank=True) twitter_location = models.CharField( verbose_name="org location from twitter", max_length=255, null=True, blank=True) twitter_followers_count = models.IntegerField(verbose_name="number of twitter followers", null=False, blank=True, default=0) twitter_profile_image_url_https = models.URLField(verbose_name='url of logo from twitter', blank=True, null=True) twitter_profile_background_image_url_https = models.URLField(verbose_name='tile-able background from twitter', blank=True, null=True) twitter_profile_banner_url_https = models.URLField(verbose_name='profile banner image from twitter', blank=True, null=True) twitter_description = models.CharField(verbose_name="Text description of this organization from twitter.", max_length=255, null=True, blank=True) google_plus_url = models.URLField(verbose_name='google plus url of candidate campaign', blank=True, null=True) youtube_url = models.URLField(verbose_name='youtube url of candidate campaign', blank=True, null=True) # The email address for the candidate's campaign. candidate_email = models.CharField(verbose_name="candidate campaign email", max_length=255, null=True, blank=True) # The voice phone number for the candidate's campaign office. candidate_phone = models.CharField(verbose_name="candidate campaign phone", max_length=255, null=True, blank=True) wikipedia_page_id = models.BigIntegerField(verbose_name="pageid", null=True, blank=True) wikipedia_page_title = models.CharField( verbose_name="Page title on Wikipedia", max_length=255, null=True, blank=True) wikipedia_photo_url = models.URLField(verbose_name='url of wikipedia logo', blank=True, null=True) ballotpedia_candidate_id = models.PositiveIntegerField( verbose_name="ballotpedia integer id", null=True, blank=True) # The candidate's name as passed over by Ballotpedia ballotpedia_candidate_name = models.CharField(verbose_name="candidate name exactly as received from ballotpedia", max_length=255, null=True, blank=True) ballotpedia_candidate_summary = models.TextField(verbose_name="candidate summary from ballotpedia", null=True, blank=True, default=None) ballotpedia_candidate_url = models.URLField(verbose_name='url of candidate on ballotpedia', blank=True, null=True) ballotpedia_election_id = models.PositiveIntegerField(verbose_name="ballotpedia election id", null=True, blank=True) # The id of the image for retrieval from Ballotpedia API ballotpedia_image_id = models.PositiveIntegerField(verbose_name="ballotpedia image id", null=True, blank=True) # Equivalent of elected_office in We Vote ballotpedia_office_id = models.PositiveIntegerField( verbose_name="ballotpedia elected office integer id", null=True, blank=True) # This is just the characters in the Ballotpedia URL ballotpedia_page_title = models.CharField( verbose_name="Page title on Ballotpedia", max_length=255, null=True, blank=True) # Equivalent of politician in We Vote ballotpedia_person_id = models.PositiveIntegerField( verbose_name="ballotpedia person integer id", null=True, blank=True) ballotpedia_photo_url = models.URLField(verbose_name='url of ballotpedia logo', blank=True, null=True) # Equivalent of contest_office in We Vote ballotpedia_race_id = models.PositiveIntegerField(verbose_name="ballotpedia race integer id", null=True, blank=True) # Official Statement from Candidate in Ballot Guide ballot_guide_official_statement = models.TextField(verbose_name="official candidate statement from ballot guide", null=True, blank=True, default="") batch_row_action_office_ctcl_uuid = models.CharField(verbose_name="ctcl uuid", max_length=80, null=True, blank=True) crowdpac_candidate_id = models.PositiveIntegerField(verbose_name="crowdpac integer id", null=True, blank=True) ctcl_uuid = models.CharField(verbose_name="ctcl uuid", max_length=80, null=True, blank=True) candidate_is_top_ticket = models.BooleanField(verbose_name="candidate is top ticket", default=False) candidate_is_incumbent = models.BooleanField(verbose_name="candidate is currently in the office", default=False) candidate_participation_status = models.CharField(verbose_name="candidate participation status", max_length=255, null=True, blank=True) # From VIP standard format candidate_ctcl_person_id = models.CharField(verbose_name="candidate person id", max_length=255, null=True, blank=True) status = models.TextField(verbose_name="batch row action candidate status", null=True, blank=True, default="") class BatchRowActionOrganization(models.Model): """ The definition of the action for importing one Organization. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=False, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) # Fields from Organization organization_we_vote_id = models.CharField( verbose_name="we vote permanent id", max_length=255, null=True, blank=True) organization_name = models.CharField( verbose_name="organization name", max_length=255, null=False, blank=False) organization_website = models.URLField(verbose_name='url of the endorsing organization', blank=True, null=True) organization_email = models.EmailField( verbose_name='organization contact email address', max_length=255, unique=False, null=True, blank=True) organization_contact_name = models.CharField(max_length=255, null=True, unique=False) organization_facebook = models.URLField(verbose_name='url of facebook page', blank=True, null=True) organization_image = models.CharField(verbose_name='organization image', max_length=255, null=True, unique=False) state_served_code = models.CharField(verbose_name="state this organization serves", max_length=2, null=True, blank=True) # The vote_smart special interest group sigId for this organization vote_smart_id = models.BigIntegerField( verbose_name="vote smart special interest group id", null=True, blank=True) organization_description = models.TextField( verbose_name="Text description of this organization.", null=True, blank=True) organization_address = models.CharField( verbose_name='organization street address', max_length=255, unique=False, null=True, blank=True) organization_city = models.CharField(max_length=255, null=True, blank=True) organization_state = models.CharField(max_length=2, null=True, blank=True) organization_zip = models.CharField(max_length=255, null=True, blank=True) organization_phone1 = models.CharField(max_length=255, null=True, blank=True) organization_phone2 = models.CharField(max_length=255, null=True, blank=True) organization_fax = models.CharField(max_length=255, null=True, blank=True) # Facebook session information facebook_id = models.BigIntegerField(verbose_name="facebook big integer id", null=True, blank=True) facebook_email = models.EmailField(verbose_name='facebook email address', max_length=255, unique=False, null=True, blank=True) fb_username = models.CharField(max_length=50, validators=[alphanumeric], null=True) facebook_profile_image_url_https = models.URLField(verbose_name='url of image from facebook', blank=True, null=True) # Twitter information twitter_user_id = models.BigIntegerField(verbose_name="twitter id", null=True, blank=True) organization_twitter_handle = models.CharField( verbose_name='organization twitter screen_name', max_length=255, null=True, unique=False) twitter_name = models.CharField( verbose_name="org name from twitter", max_length=255, null=True, blank=True) twitter_location = models.CharField( verbose_name="org location from twitter", max_length=255, null=True, blank=True) twitter_followers_count = models.IntegerField(verbose_name="number of twitter followers", null=False, blank=True, default=0) twitter_profile_image_url_https = models.URLField(verbose_name='url of user logo from twitter', blank=True, null=True) twitter_profile_background_image_url_https = models.URLField(verbose_name='tile-able background from twitter', blank=True, null=True) twitter_profile_banner_url_https = models.URLField(verbose_name='profile banner image from twitter', blank=True, null=True) twitter_description = models.CharField(verbose_name="Text description of this organization from twitter.", max_length=255, null=True, blank=True) # Instagram organization_instagram_handle = models.CharField( verbose_name='organization instagram screen_name', max_length=255, null=True, unique=False) wikipedia_page_id = models.BigIntegerField(verbose_name="pageid", null=True, blank=True) wikipedia_page_title = models.CharField( verbose_name="Page title on Wikipedia", max_length=255, null=True, blank=True) wikipedia_thumbnail_url = models.URLField(verbose_name='url of wikipedia logo thumbnail', blank=True, null=True) wikipedia_thumbnail_width = models.IntegerField(verbose_name="width of photo", null=True, blank=True) wikipedia_thumbnail_height = models.IntegerField(verbose_name="height of photo", null=True, blank=True) wikipedia_photo_url = models.URLField(verbose_name='url of wikipedia logo', blank=True, null=True) ballotpedia_page_title = models.CharField( verbose_name="Page title on Ballotpedia", max_length=255, null=True, blank=True) ballotpedia_photo_url = models.URLField(verbose_name='url of ballotpedia logo', blank=True, null=True) organization_type = models.CharField( verbose_name="type of org", max_length=1, choices=ORGANIZATION_TYPE_CHOICES, default=UNKNOWN) status = models.TextField(verbose_name="batch row action organization status", null=True, blank=True, default="") class BatchRowActionPosition(models.Model): """ The definition of the action for importing one Position. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=False, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) # Fields from Position position_we_vote_id = models.CharField( verbose_name="we vote permanent id", max_length=255, default=None, null=True, blank=True) # The id for the generated position that this PositionEntered entry influences ballot_item_display_name = models.CharField(verbose_name="text name for ballot item", max_length=255, null=True, blank=True) # We cache the url to an image for the candidate, measure or office for rapid display ballot_item_image_url_https = models.URLField(verbose_name='url of https image for candidate, measure or office', blank=True, null=True) ballot_item_twitter_handle = models.CharField(verbose_name='twitter screen_name for candidate, measure, or office', max_length=255, null=True, unique=False) # What is the organization name, voter name, or public figure name? We cache this here for rapid display speaker_display_name = models.CharField( verbose_name="name of the org or person with position", max_length=255, null=True, blank=True, unique=False) # We cache the url to an image for the org, voter, or public_figure for rapid display speaker_image_url_https = models.URLField(verbose_name='url of https image for org or person with position', blank=True, null=True) speaker_twitter_handle = models.CharField(verbose_name='twitter screen_name for org or person with position', max_length=255, null=True, unique=False) date_entered = models.DateTimeField(verbose_name='date entered', null=True, auto_now=True) # The date the this position last changed date_last_changed = models.DateTimeField(verbose_name='date last changed', null=True, auto_now=True) # The organization this position is for organization_id = models.BigIntegerField(null=True, blank=True) organization_we_vote_id = models.CharField( verbose_name="we vote permanent id for the organization", max_length=255, null=True, blank=True, unique=False) # The voter expressing the opinion # Note that for organizations who have friends, the voter_we_vote_id is what we use to link to the friends # (in the PositionForFriends table). # Public positions from an organization are shared via organization_we_vote_id (in PositionEntered table), while # friend's-only positions are shared via voter_we_vote_id. voter_id = models.BigIntegerField(null=True, blank=True) voter_we_vote_id = models.CharField( verbose_name="we vote permanent id for the voter expressing the opinion", max_length=255, null=True, blank=True, unique=False) # The unique id of the public figure expressing the opinion. May be null if position is from org or voter # instead of public figure. public_figure_we_vote_id = models.CharField( verbose_name="public figure we vote id", max_length=255, null=True, blank=True, unique=False) # The unique ID of the election containing this contest. (Provided by Google Civic) google_civic_election_id = models.CharField(verbose_name="google civic election id", max_length=255, null=True, blank=False, default=0, db_index=True) google_civic_election_id_new = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=True, blank=True) # State code state_code = models.CharField(verbose_name="us state of the ballot item position is for", max_length=2, null=True, blank=True) # ### Values from Vote Smart ### vote_smart_rating_id = models.BigIntegerField(null=True, blank=True, unique=False) # Usually in one of these two formats 2015, 2014-2015 vote_smart_time_span = models.CharField( verbose_name="the period in which the organization stated this position", max_length=255, null=True, blank=True, unique=False) vote_smart_rating = models.CharField( verbose_name="vote smart value between 0-100", max_length=255, null=True, blank=True, unique=False) vote_smart_rating_name = models.CharField(max_length=255, null=True, blank=True, unique=False) # The unique We Vote id of the tweet that is the source of the position tweet_source_id = models.BigIntegerField(null=True, blank=True) # This is the office that the position refers to. # Either contest_measure is filled, contest_office OR candidate_campaign, but not all three contest_office_id = models.BigIntegerField(verbose_name='id of contest_office', null=True, blank=True) contest_office_we_vote_id = models.CharField( verbose_name="we vote permanent id for the contest_office", max_length=255, null=True, blank=True, unique=False) contest_office_name = models.CharField(verbose_name="name of the office", max_length=255, null=True, blank=True) # This is the candidate/politician that the position refers to. # Either candidate_campaign is filled, contest_office OR contest_measure, but not all three candidate_campaign_id = models.BigIntegerField(verbose_name='id of candidate_campaign', null=True, blank=True) candidate_campaign_we_vote_id = models.CharField( verbose_name="we vote permanent id for the candidate_campaign", max_length=255, null=True, blank=True, unique=False) # The candidate's name as passed over by Google Civic. We save this so we can match to this candidate if an import # doesn't include a we_vote_id we recognize. google_civic_candidate_name = models.CharField(verbose_name="candidate name exactly as received from google civic", max_length=255, null=True, blank=True) # The measure's title as passed over by Google Civic. We save this so we can match to this measure if an import # doesn't include a we_vote_id we recognize. google_civic_measure_title = models.CharField(verbose_name="measure title exactly as received from google civic", max_length=255, null=True, blank=True) # Useful for queries based on Politicians -- not the main table we use for ballot display though politician_id = models.BigIntegerField(verbose_name='', null=True, blank=True) politician_we_vote_id = models.CharField( verbose_name="we vote permanent id for politician", max_length=255, null=True, blank=True, unique=False) political_party = models.CharField(verbose_name="political party", max_length=255, null=True) # This is the measure/initiative/proposition that the position refers to. # Either contest_measure is filled, contest_office OR candidate_campaign, but not all three contest_measure_id = models.BigIntegerField(verbose_name='id of contest_measure', null=True, blank=True) contest_measure_we_vote_id = models.CharField( verbose_name="we vote permanent id for the contest_measure", max_length=255, null=True, blank=True, unique=False) # Strategic denormalization - this is redundant but will make generating the voter guide easier. # geo = models.ForeignKey(Geo, null=True, related_name='pos_geo') # issue = models.ForeignKey(Issue, null=True, blank=True, related_name='') stance = models.CharField(max_length=15, choices=POSITION_CHOICES, default=NO_STANCE) # supporting/opposing statement_text = models.TextField(null=True, blank=True, ) statement_html = models.TextField(null=True, blank=True, ) # A link to any location with more information about this position more_info_url = models.URLField(blank=True, null=True, verbose_name='url with more info about this position') # Did this position come from a web scraper? from_scraper = models.BooleanField(default=False) # Was this position certified by an official with the organization? organization_certified = models.BooleanField(default=False) # Was this position certified by an official We Vote volunteer? volunteer_certified = models.BooleanField(default=False) status = models.TextField(verbose_name="batch row action position status", null=True, blank=True, default="") class BatchRowActionBallotItem(models.Model): """ The definition of the action for importing one ballot item. """ batch_set_id = models.PositiveIntegerField(verbose_name="unique id of batch set", unique=False, null=True) batch_header_id = models.PositiveIntegerField( verbose_name="unique id of header row", unique=False, null=False, db_index=True) batch_row_id = models.PositiveIntegerField( verbose_name="unique id of batch row", unique=True, null=False, db_index=True) kind_of_action = models.CharField( max_length=40, choices=KIND_OF_ACTION_CHOICES, default=IMPORT_TO_BE_DETERMINED, db_index=True) ballot_item_id = models.IntegerField(verbose_name="ballot item unique id", default=0, null=True, blank=True) # Fields from BallotItem # The unique id of the voter for which this ballot was retrieved voter_id = models.IntegerField(verbose_name="the voter unique id", default=0, null=False, blank=False) # The polling location for which this ballot was retrieved polling_location_we_vote_id = models.CharField( verbose_name="we vote permanent id of the polling location", max_length=255, default=None, null=True, blank=True, unique=False) # The unique ID of this election. (Provided by Google Civic) google_civic_election_id = models.CharField(verbose_name="google civic election id", max_length=20, null=False, db_index=True) google_civic_election_id_new = models.PositiveIntegerField( verbose_name="google civic election id", default=0, null=False) state_code = models.CharField(verbose_name="state the ballot item is related to", max_length=2, null=True) google_ballot_placement = models.BigIntegerField( verbose_name="the order this item should appear on the ballot", null=True, blank=True, unique=False) local_ballot_order = models.IntegerField( verbose_name="locally calculated order this item should appear on the ballot", null=True, blank=True) # The id for this contest office specific to this server. contest_office_id = models.PositiveIntegerField(verbose_name="local id for this contest office", default=0, null=True, blank=True) # The internal We Vote id for the ContestMeasure that this campaign taking a stance on contest_office_we_vote_id = models.CharField( verbose_name="we vote permanent id for this office", max_length=255, default=None, null=True, blank=True, unique=False) # The local database id for this measure, specific to this server. contest_measure_id = models.PositiveIntegerField( verbose_name="contest_measure unique id", default=0, null=True, blank=True) # The internal We Vote id for the ContestMeasure that this campaign taking a stance on contest_measure_we_vote_id = models.CharField( verbose_name="we vote permanent id for this measure", max_length=255, default=None, null=True, blank=True, unique=False) # This is a sortable name, either the candidate name or the measure name ballot_item_display_name = models.CharField(verbose_name="a label we can sort by", max_length=255, null=True, blank=True) measure_subtitle = models.TextField(verbose_name="google civic referendum subtitle", null=True, blank=True, default="") measure_text = models.TextField(verbose_name="measure text", null=True, blank=True, default="") measure_url = models.URLField(verbose_name='url of measure', blank=True, null=True) yes_vote_description = models.TextField(verbose_name="what a yes vote means", null=True, blank=True, default=None) no_vote_description = models.TextField(verbose_name="what a no vote means", null=True, blank=True, default=None) status = models.TextField(verbose_name="batch row action ballot item status", null=True, blank=True, default="") def create_batch_from_json(file_name, structured_json_list, mapping_dict, kind_of_batch, google_civic_election_id=0, organization_we_vote_id="", polling_location_we_vote_id="", batch_set_id=0, state_code=""): batch_manager = BatchManager() return batch_manager.create_batch_from_json( file_name, structured_json_list, mapping_dict, kind_of_batch, google_civic_election_id, organization_we_vote_id, polling_location_we_vote_id, batch_set_id, state_code)
{ "content_hash": "32862beb3aad803c01a80ec014ffeb84", "timestamp": "", "source": "github", "line_count": 5211, "max_line_length": 123, "avg_line_length": 56.09710228363078, "alnum_prop": 0.5920936501529136, "repo_name": "jainanisha90/WeVoteServer", "id": "54765af5d9169cd310f3971f8d2dd581dea7514b", "size": "292427", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "import_export_batches/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "3612" }, { "name": "HTML", "bytes": "1003027" }, { "name": "Python", "bytes": "7489854" }, { "name": "Shell", "bytes": "611" } ], "symlink_target": "" }
import Network from time import sleep from threading import Thread CALL_ROOMLIST = 0 CALL_WEAPLIST = 1 CALL_PLAYERLIST = 2 CALL_NEWPLAYER = 3 CALL_PLAYERLEFT = 4 CALL_CHAT = 5 CALL_PLAYERDAT = 6 CALL_ROOMSTAT = 7 CALL_LEAVEROOM = 8 CALL_SHOOT = 9 CALL_SCORE = 10 class GameClient(Network.Client): CONNECTING = 0 JOINING_ROOM = 1 LEAVING_ROOM = 2 rooms = [] players = [] weapList= [] scores = {} response = {} currRoomInfo = None main = None status = -1 charId = 0 roomState = -1 roomId = 0 roomName = "" stateDict = { "WAITING":0, "PLAYING":1, "DEAD":99 } invStateDict = { 0:"WAITING", 1:"PLAYING", 99:"DEAD" } winnerId = -1 def __init__(self, main): super(GameClient, self).__init__() self.main = main self.rooms = [] self.scores = {} self.players =[] self.weapList = [] self.response = {} def connect(self, name, addr, evt=False): #Blocks self.status = self.CONNECTING super(GameClient, self).connect(name, addr) if evt: self.onConnect(self.complete(self.CONNECTING)) else: return self.complete(self.CONNECTING) def connect_async(self, name, addr): #Doesn't block t = Thread(target=self.connect, args=[name, addr, True]) t.start() # NETWORK FUNCTIONS def complete(self, event, timeout = 2): waited = 0 while event == self.status and waited <= timeout: sleep(.1) waited += .1 if waited >= timeout: return False return self.response[event] def done(self, event, response): self.response[event] = response self.status = -1 def playerById(self, pId): low = 0 high = len(self.players) - 1 while low <= high: mid = (low + high) >> 1 midId = self.players[mid][0] if midId < pId: low = mid + 1 elif midId > pId: high = mid - 1 else: return mid return None def getPlayers(self): return self.players def getRooms(self): return self.rooms def clearScores(self): self.scores = {} # EVENT FUNCTIONS def onConnect(self, result): self.main.onConnect(result) def onRoomList(self, data): self.rooms = data self.main.handleNetworkCall(CALL_ROOMLIST, (self.rooms,)) def onWeapList(self, data): self.weapList = data self.main.handleNetworkCall(CALL_WEAPLIST, (self.weapList,)) def onPlayerList(self, playerList, roomId, roomState, yourId): self.players = playerList self.playerId = yourId self.players.sort() self.roomId = roomId self.roomState = roomState if self.status in [self.CONNECTING, self.JOINING_ROOM, self.LEAVING_ROOM]: self.done(self.status, True) self.main.handleNetworkCall(CALL_PLAYERLIST, (self.players,)) def onNewPlayer(self, player): #playername = player[0][:player[0].find('\00')] self.players.append(player) self.players.sort() self.main.handleNetworkCall(CALL_NEWPLAYER, (player,)) def onPlayerLeft(self, data): playerPos = self.playerById(data[0]) player = self.players[playerPos] del self.players[playerPos] if data[2] != -1: self.players[self.playerById(data[2])] = self.changeTuple(self.players[self.playerById(data[2])], 4, True) self.main.handleNetworkCall(CALL_PLAYERLEFT, (player,)) def changeTuple(self, tup, key, value): flist = list(tup) flist[key] = value return tuple(flist) def onChat(self, data): self.main.handleNetworkCall(CALL_CHAT, (data,)) def onPlayerData(self, data): self.main.handleNetworkCall(CALL_PLAYERDAT, (data,)) def onRoomStat(self, data): self.winnerId = data[1] self.main.handleNetworkCall(CALL_ROOMSTAT, (data,)) #if data[0] == 0: # self.main.endGame() #elif data[0] == 1: # print "starting game" # self.main.startGame() def onRoomSwitch(self, action, result): self.main.onRoomSwitch(action, result) return result def onLeaveRoom(self): if self.status in [self.JOINING_ROOM]: self.done(self.status, False) def onShoot(self, bulletdata): self.main.handleNetworkCall(CALL_SHOOT, (bulletdata,)) def onScore(self, score): self.scores[score[0]] = score[1], score[2] self.scores[score[3]] = score[4], score[5] self.main.handleNetworkCall(CALL_SCORE, (score,)) def onChangeChar(self, charId, playerId): playerPos = self.playerById(playerId) player = self.players[playerPos] self.players[playerPos] = self.changeTuple(self.players[playerPos], 3, charId) def onDisconnect(self): self.main.onDisconnect() ## SENDING FUNCTIONS def joinRoom(self, roomid, roomName, block=False): if block: self.status = self.JOINING_ROOM self.sendDataReliable(Network.Structs.joinRoom.dataType, Network.Structs.joinRoom.pack(roomid)).join() # This function blocks... return self.onRoomSwitch(self.JOINING_ROOM, self.complete(self.JOINING_ROOM)) else: self.winnerId = -1 self.roomName = roomName Thread(target=self.joinRoom, args=[roomid, roomName, True]).start() def makeRoom(self, roomName, block=False): if block: self.status = self.JOINING_ROOM self.sendDataReliable(Network.Structs.makeRoom.dataType, Network.Structs.makeRoom.pack(len(roomName))+roomName) return self.onRoomSwitch(self.JOINING_ROOM, self.complete(self.JOINING_ROOM)) else: self.winnerId = -1 self.roomName = roomName Thread(target=self.makeRoom, args=[roomName, True]).start() def leaveRoom(self, block=False): if block: self.status = self.LEAVING_ROOM self.sendDataReliable(Network.Structs.leaveRoom.dataType, Network.Structs.leaveRoom.pack()) return self.onRoomSwitch(self.LEAVING_ROOM, self.complete(self.LEAVING_ROOM)) else: self.winnerId = -1 Thread(target=self.leaveRoom, args=[True]).start() def startGame(self): self.sendDataReliable(Network.Structs.startGame.dataType, Network.Structs.startGame.pack(0)) def sendGameData(self, gameData): self.sendData(Network.Structs.playerDat.dataType, gameData) def sendShoot(self, bullet): self.sendDataReliable(Network.Structs.shoot.dataType, Network.Structs.shoot.pack(-1, bullet.x, bullet.y, bullet.angle, bullet.type)) def setCharacter(self, charId): self.sendDataReliable(Network.Structs.setCharacter.dataType, Network.Structs.setCharacter.pack(charId, 0)) self.charId = charId def sendDeath(self, killerid): self.sendDataReliable(Network.Structs.onDeath.dataType, Network.Structs.onDeath.pack(killerid)) def sendPicked(self, serverId): self.sendDataReliable(Network.Structs.takeWeap.dataType, Network.Structs.takeWeap.pack(serverId)) def sendChat(self, data): self.sendDataReliable(Network.Structs.preChat.dataType, Network.Structs.preChat.pack(len(data)) + data) def __del__(self): super(GameClient, self).__del__()
{ "content_hash": "3b2960327859e8f5f4c3e70a8d20564c", "timestamp": "", "source": "github", "line_count": 242, "max_line_length": 140, "avg_line_length": 31.458677685950413, "alnum_prop": 0.6105346118481545, "repo_name": "nemothekid/Colosseum--Year-3XXX", "id": "8ded432cc003bf959695cc37486f79259b3c92b0", "size": "7613", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "GameClient.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "231185" } ], "symlink_target": "" }
from corehq.apps.linked_domain.keywords import create_linked_keyword, update_keyword from corehq.apps.app_manager.models import Module from corehq.apps.linked_domain.tests.test_linked_apps import BaseLinkedAppsTest from corehq.apps.reminders.models import METHOD_SMS from corehq.apps.sms.models import Keyword, KeywordAction class TestLinkedKeywords(BaseLinkedAppsTest): def setUp(self): super(TestLinkedKeywords, self).setUp() module = self.master1.add_module(Module.new_module("M1", None)) master_form = module.new_form("f1", None, self.get_xml("very_simple_form").decode("utf-8")) self.keyword = Keyword( domain=self.domain_link.master_domain, keyword="ping", description="The description", override_open_sessions=True, ) self.keyword.save() self.keyword.keywordaction_set.create( recipient=KeywordAction.RECIPIENT_SENDER, action=METHOD_SMS, message_content="pong", app_id=self.master1.get_id, form_unique_id=master_form.unique_id, ) def tearDown(self): self.keyword.delete() super(TestLinkedKeywords, self).tearDown() def test_create_keyword_link(self): new_keyword_id = create_linked_keyword(self.domain_link, self.keyword.id) new_keyword = Keyword.objects.get(id=new_keyword_id) self.assertEqual(new_keyword.keyword, self.keyword.keyword) new_keyword_action = new_keyword.keywordaction_set.first() self.assertEqual( new_keyword_action.message_content, self.keyword.keywordaction_set.first().message_content, ) self.assertEqual(new_keyword_action.app_id, self.linked_app.get_id) def test_update_keyword_link(self): new_keyword_id = create_linked_keyword(self.domain_link, self.keyword.id) self.keyword.keyword = "foo" self.keyword.save() keyword_action = self.keyword.keywordaction_set.first() keyword_action.message_content = "bar" keyword_action.save() update_keyword(self.domain_link, new_keyword_id) linked_keyword = Keyword.objects.get(id=new_keyword_id) self.assertEqual(linked_keyword.keyword, "foo") self.assertEqual(linked_keyword.keywordaction_set.first().message_content, "bar")
{ "content_hash": "f1f1cdb2e7193f4a26b730575d36d7ab", "timestamp": "", "source": "github", "line_count": 58, "max_line_length": 99, "avg_line_length": 40.8448275862069, "alnum_prop": 0.6699029126213593, "repo_name": "dimagi/commcare-hq", "id": "3ad1af7b15607a62235237d6e36ad6a84ec6a28f", "size": "2369", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "corehq/apps/linked_domain/tests/test_linked_keywords.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "82928" }, { "name": "Dockerfile", "bytes": "2341" }, { "name": "HTML", "bytes": "2589268" }, { "name": "JavaScript", "bytes": "5889543" }, { "name": "Jinja", "bytes": "3693" }, { "name": "Less", "bytes": "176180" }, { "name": "Makefile", "bytes": "1622" }, { "name": "PHP", "bytes": "2232" }, { "name": "PLpgSQL", "bytes": "66704" }, { "name": "Python", "bytes": "21779773" }, { "name": "Roff", "bytes": "150" }, { "name": "Shell", "bytes": "67473" } ], "symlink_target": "" }
from blueice.test_helpers import * from blueice.inference import * from blueice.likelihood import UnbinnedLogLikelihood as LogLikelihood def test_fit_minuit(): # Single rate parameter lf = LogLikelihood(test_conf()) lf.add_rate_parameter('s0') lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_minuit(lf) assert isinstance(fit_result, dict) assert 's0_rate_multiplier' in fit_result # Don't fit res, ll = bestfit_minuit(lf, s0_rate_multiplier=1) assert len(res) == 0 assert ll == lf(s0_rate_multiplier=1) # Single shape parameter lf = LogLikelihood(test_conf()) lf.add_shape_parameter('some_multiplier', (0.5, 1, 1.5, 2)) lf.prepare() lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_minuit(lf) assert 'some_multiplier' in fit_result # Shape and rate parameter lf = LogLikelihood(test_conf()) lf.add_rate_parameter('s0') lf.add_shape_parameter('some_multiplier', (0.5, 1, 1.5, 2)) lf.prepare() lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_minuit(lf) assert 'some_multiplier' in fit_result assert 's0_rate_multiplier' in fit_result # Non-numeric shape parameter lf = LogLikelihood(test_conf()) lf.add_shape_parameter('strlen_multiplier', {1: 'x', 2: 'hi', 3:'wha'}, base_value=1) lf.prepare() lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_minuit(lf) assert 'strlen_multiplier' in fit_result def test_fit_scipy(): # Single rate parameter lf = LogLikelihood(test_conf()) lf.add_rate_parameter('s0') lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_scipy(lf) assert isinstance(fit_result, dict) assert 's0_rate_multiplier' in fit_result # Don't fit res, ll = bestfit_scipy(lf, s0_rate_multiplier=1) assert len(res) == 0 assert ll == lf(s0_rate_multiplier=1) # Single shape parameter lf = LogLikelihood(test_conf()) lf.add_shape_parameter('some_multiplier', (0.5, 1, 1.5, 2)) lf.prepare() lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_scipy(lf) assert 'some_multiplier' in fit_result # Shape and rate parameter lf = LogLikelihood(test_conf()) lf.add_rate_parameter('s0') lf.add_shape_parameter('some_multiplier', (0.5, 1, 1.5, 2)) lf.prepare() lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_scipy(lf) assert 'some_multiplier' in fit_result assert 's0_rate_multiplier' in fit_result # Non-numeric shape parameter lf = LogLikelihood(test_conf()) lf.add_shape_parameter('strlen_multiplier', {1: 'x', 2: 'hi', 3:'wha'}, base_value=1) lf.prepare() lf.set_data(lf.base_model.simulate()) fit_result, ll = bestfit_scipy(lf) assert 'strlen_multiplier' in fit_result # def test_plot(): # """Tests the plot_likelihood_space code. # For now just test that it doesn't crash -- image comparison tests are tricky... # """ # import matplotlib.pyplot as plt # lf = LogLikelihood(test_conf()) # lf.add_rate_parameter('s0') # lf.add_shape_parameter('some_multiplier', (0.5, 1, 1.5, 2)) # lf.prepare() # lf.set_data(lf.base_model.simulate()) # # plot_likelihood_ratio(lf, ('s0_rate_multiplier', np.linspace(0.5, 2, 3))) # plt.close() # plot_likelihood_ratio(lf, # ('s0_rate_multiplier', np.linspace(0.5, 2, 3)), # ('some_multiplier', np.linspace(0.5, 2, 3))) # plt.close() def test_limit(): """Test the limit setting code For now just tests if it runs, does not test whether the results are correct... """ lf = LogLikelihood(test_conf(n_sources=2)) lf.add_rate_parameter('s0') lf.prepare() lf.set_data(lf.base_model.simulate()) # Test upper limits one_parameter_interval(lf, target='s0_rate_multiplier', kind='upper', bound=40) one_parameter_interval(lf, target='s0_rate_multiplier', kind='lower', bound=0.1) one_parameter_interval(lf, target='s0_rate_multiplier', kind='central', bound=(0.1, 20)) # Bit tricky to test multiple params, in these simple examples they can compensate completely for each other # so all values in a subspace seem equally likely once two of them are floating.
{ "content_hash": "4fa55a4608f8515114cf36567656352b", "timestamp": "", "source": "github", "line_count": 121, "max_line_length": 112, "avg_line_length": 35.67768595041322, "alnum_prop": 0.6492934908501274, "repo_name": "JelleAalbers/blueice", "id": "3859d8eb3bfc9d0a4c0a79c73e7a885ff62acdba", "size": "4362", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_inference.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "166166" }, { "name": "Python", "bytes": "122450" } ], "symlink_target": "" }
import pdb import math import numpy as np import time import chainer import chainer.functions as F import chainer.links as L from chainer import cuda from util import gaussian_kl_divergence_standard from util import gaussian_logp from util import gaussian_logp0 from util import bernoulli_logp class VAE(chainer.Chain): def __init__(self, dim_in, dim_hidden, dim_latent, num_layers, temperature, num_zsamples=1): super(VAE, self).__init__() # initialise first encoder and decoder hidden layer separately because # the input and output dims differ from the other hidden layers self.qlin0 = L.Linear(dim_in, dim_hidden) self.plin0 = L.Linear(dim_latent, dim_hidden) self._children.append('qlin0') self._children.append('plin0') for i in range(num_layers-1): # encoder layer_name = 'qlin' + str(i+1) setattr(self, layer_name, L.Linear(2*dim_hidden, dim_hidden)) self._children.append(layer_name) # decoder layer_name = 'plin' + str(i+1) setattr(self, layer_name, L.Linear(2*dim_hidden, dim_hidden)) self._children.append(layer_name) # initialise the encoder and decoder output layer separately because # the input and output dims differ from the other hidden layers self.qlin_mu = L.Linear(2*dim_hidden, dim_latent) self.qlin_ln_var = L.Linear(2*dim_hidden, dim_latent) self.plin_ber_prob = L.Linear(2*dim_hidden, dim_in) self._children.append('qlin_mu') self._children.append('qlin_ln_var') self._children.append('plin_ber_prob') self.num_layers = num_layers self.temperature = temperature self.num_zsamples = num_zsamples self.epochs_seen = 0 def encode(self, x): h = F.crelu(self.qlin0(x)) for i in range(self.num_layers-1): layer_name = 'qlin' + str(i+1) h = F.crelu(self[layer_name](h)) self.qmu = self.qlin_mu(h) self.qln_var = self.qlin_ln_var(h) def decode(self, z): h = F.crelu(self.plin0(z)) for i in range(self.num_layers-1): layer_name = 'plin' + str(i+1) h = F.crelu(self[layer_name](h)) self.p_ber_prob_logit = self.plin_ber_prob(h) def __call__(self, x): # Obtain parameters for q(z|x) encoding_time = time.time() self.encode(x) encoding_time = float(time.time() - encoding_time) decoding_time_average = 0. xp = cuda.cupy self.importance_weights = 0 self.w_holder = [] self.kl = 0 self.logp = 0 for j in xrange(self.num_zsamples): # Sample z ~ q(z|x) z = F.gaussian(self.qmu, self.qln_var) # Compute log q(z|x) encoder_log = gaussian_logp(z, self.qmu, self.qln_var) # Obtain parameters for p(x|z) decoding_time = time.time() self.decode(z) decoding_time = time.time() - decoding_time decoding_time_average += decoding_time # Compute log p(x|z) decoder_log = bernoulli_logp(x, self.p_ber_prob_logit) # Compute log p(z). prior_log = gaussian_logp0(z) # Store the latest log weight' current_temperature = min(self.temperature['value'],1.0) self.w_holder.append(decoder_log + current_temperature*(prior_log - encoder_log)) # Store the KL and Logp equivalents. They are not used for computation but for recording and reporting. self.kl += (encoder_log-prior_log) self.logp += (decoder_log) self.temperature['value'] += self.temperature['increment'] # Compute w' for this sample (batch) logps = F.stack(self.w_holder) self.obj_batch = F.logsumexp(logps, axis=0) - np.log(self.num_zsamples) self.kl /= self.num_zsamples self.logp /= self.num_zsamples decoding_time_average /= self.num_zsamples batch_size = self.obj_batch.shape[0] self.obj = -F.sum(self.obj_batch)/batch_size self.timing_info = np.array([encoding_time,decoding_time_average]) return self.obj
{ "content_hash": "15554a8d136f01b3213804d1114b3387", "timestamp": "", "source": "github", "line_count": 131, "max_line_length": 116, "avg_line_length": 33.534351145038165, "alnum_prop": 0.5788754837241066, "repo_name": "ashwindcruz/dgm", "id": "0432ccd00c24420aed177a8ff53def36ad36bca1", "size": "4393", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "iwae_mnist/model.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "143490" }, { "name": "Shell", "bytes": "1101" } ], "symlink_target": "" }
from __future__ import absolute_import from typing import Optional from typing import List from collections import OrderedDict from oslo_config import cfg import six from mongoengine import ValidationError from st2common import log as logging from st2common.constants.action import ( LIVEACTION_STATUSES, LIVEACTION_STATUS_CANCELED, LIVEACTION_STATUS_SUCCEEDED, ) from st2common.exceptions.db import StackStormDBObjectNotFoundError from st2common.persistence.action import Action from st2common.persistence.liveaction import LiveAction from st2common.persistence.runner import RunnerType from st2common.metrics.base import get_driver from st2common.util import output_schema from st2common.util.jsonify import json_encode LOG = logging.getLogger(__name__) __all__ = [ "get_action_parameters_specs", "get_runnertype_by_id", "get_runnertype_by_name", "get_action_by_id", "get_action_by_ref", "get_liveaction_by_id", "update_liveaction_status", "serialize_positional_argument", "get_args", ] def get_action_parameters_specs(action_ref): """ Retrieve parameters specifications schema for the provided action reference. Note: This function returns a union of action and action runner parameters. :param action_ref: Action reference. :type action_ref: ``str`` :rtype: ``dict`` """ action_db = get_action_by_ref(ref=action_ref) parameters = {} if not action_db: return parameters runner_type_name = action_db.runner_type["name"] runner_type_db = get_runnertype_by_name(runnertype_name=runner_type_name) # Runner type parameters should be added first before the action parameters. parameters.update(runner_type_db["runner_parameters"]) parameters.update(action_db.parameters) return parameters def get_runnertype_by_id(runnertype_id): """ Get RunnerType by id. On error, raise StackStormDBObjectNotFoundError """ try: runnertype = RunnerType.get_by_id(runnertype_id) except (ValueError, ValidationError) as e: LOG.warning( 'Database lookup for runnertype with id="%s" resulted in ' "exception: %s", runnertype_id, e, ) raise StackStormDBObjectNotFoundError( "Unable to find runnertype with " 'id="%s"' % runnertype_id ) return runnertype def get_runnertype_by_name(runnertype_name): """ Get an runnertype by name. On error, raise ST2ObjectNotFoundError. """ try: runnertypes = RunnerType.query(name=runnertype_name) except (ValueError, ValidationError) as e: LOG.error( 'Database lookup for name="%s" resulted in exception: %s', runnertype_name, e, ) raise StackStormDBObjectNotFoundError( 'Unable to find runnertype with name="%s"' % runnertype_name ) if not runnertypes: raise StackStormDBObjectNotFoundError( 'Unable to find RunnerType with name="%s"' % runnertype_name ) if len(runnertypes) > 1: LOG.warning( "More than one RunnerType returned from DB lookup by name. " "Result list is: %s", runnertypes, ) return runnertypes[0] def get_action_by_id(action_id): """ Get Action by id. On error, raise StackStormDBObjectNotFoundError """ action = None try: action = Action.get_by_id(action_id) except (ValueError, ValidationError) as e: LOG.warning( 'Database lookup for action with id="%s" resulted in ' "exception: %s", action_id, e, ) raise StackStormDBObjectNotFoundError( "Unable to find action with " 'id="%s"' % action_id ) return action def get_action_by_ref(ref, only_fields: Optional[List[str]] = None): """ Returns the action object from db given a string ref. :param ref: Reference to the trigger type db object. :type ref: ``str`` :param: only_field: Optional lists if fields to retrieve. If not specified, it defaults to all fields. :rtype action: ``object`` """ try: return Action.get_by_ref(ref, only_fields=only_fields) except ValueError as e: LOG.debug( 'Database lookup for ref="%s" resulted ' + "in exception : %s.", ref, e, exc_info=True, ) return None def get_liveaction_by_id(liveaction_id): """ Get LiveAction by id. On error, raise ST2DBObjectNotFoundError. """ liveaction = None try: liveaction = LiveAction.get_by_id(liveaction_id) except (ValidationError, ValueError) as e: LOG.error( 'Database lookup for LiveAction with id="%s" resulted in ' "exception: %s", liveaction_id, e, ) raise StackStormDBObjectNotFoundError( "Unable to find LiveAction with " 'id="%s"' % liveaction_id ) return liveaction def update_liveaction_status( status=None, result=None, context=None, end_timestamp=None, liveaction_id=None, runner_info=None, liveaction_db=None, publish=True, ): """ Update the status of the specified LiveAction to the value provided in new_status. The LiveAction may be specified using either liveaction_id, or as an liveaction_db instance. """ if (liveaction_id is None) and (liveaction_db is None): raise ValueError( "Must specify an liveaction_id or an liveaction_db when " "calling update_LiveAction_status" ) if liveaction_db is None: liveaction_db = get_liveaction_by_id(liveaction_id) if status not in LIVEACTION_STATUSES: raise ValueError( 'Attempting to set status for LiveAction "%s" ' 'to unknown status string. Unknown status is "%s"' % (liveaction_db, status) ) if ( result and cfg.CONF.system.validate_output_schema and status == LIVEACTION_STATUS_SUCCEEDED ): action_db = get_action_by_ref(liveaction_db.action) runner_db = get_runnertype_by_name(action_db.runner_type["name"]) result, status = output_schema.validate_output( runner_db.output_schema, action_db.output_schema, result, status, runner_db.output_key, ) # If liveaction_db status is set then we need to decrement the counter # because it is transitioning to a new state if liveaction_db.status: get_driver().dec_counter("action.executions.%s" % (liveaction_db.status)) # If status is provided then we need to increment the timer because the action # is transitioning into this new state if status: get_driver().inc_counter("action.executions.%s" % (status)) extra = {"liveaction_db": liveaction_db} LOG.debug( 'Updating ActionExection: "%s" with status="%s"', liveaction_db.id, status, extra=extra, ) # If liveaction is already canceled, then do not allow status to be updated. if ( liveaction_db.status == LIVEACTION_STATUS_CANCELED and status != LIVEACTION_STATUS_CANCELED ): LOG.info( 'Unable to update ActionExecution "%s" with status="%s". ' "ActionExecution is already canceled.", liveaction_db.id, status, extra=extra, ) return liveaction_db old_status = liveaction_db.status liveaction_db.status = status if result: liveaction_db.result = result if context: liveaction_db.context.update(context) if end_timestamp: liveaction_db.end_timestamp = end_timestamp if runner_info: liveaction_db.runner_info = runner_info # TODO: This is not efficient. Perform direct partial update and only update # manipulated fields liveaction_db = LiveAction.add_or_update(liveaction_db) LOG.debug("Updated status for LiveAction object.", extra=extra) if publish and status != old_status: LiveAction.publish_status(liveaction_db) LOG.debug("Published status for LiveAction object.", extra=extra) return liveaction_db def serialize_positional_argument(argument_type, argument_value): """ Serialize the provided positional argument. Note: Serialization is NOT performed recursively since it doesn't make much sense for shell script actions (only the outter / top level value is serialized). """ if argument_type in ["string", "number", "float"]: if argument_value is None: argument_value = six.text_type("") return argument_value if isinstance(argument_value, (int, float)): argument_value = str(argument_value) if not isinstance(argument_value, six.text_type): # cast string non-unicode values to unicode argument_value = argument_value.decode("utf-8") elif argument_type == "boolean": # Booleans are serialized as string "1" and "0" if argument_value is not None: argument_value = "1" if bool(argument_value) else "0" else: argument_value = "" elif argument_type in ["array", "list"]: # Lists are serialized a comma delimited string (foo,bar,baz) argument_value = ",".join(map(str, argument_value)) if argument_value else "" elif argument_type == "object": # Objects are serialized as JSON argument_value = json_encode(argument_value) if argument_value else "" elif argument_type == "null": # None / null is serialized as en empty string argument_value = "" else: # Other values are simply cast to unicode string argument_value = six.text_type(argument_value) if argument_value else "" return argument_value def get_args(action_parameters, action_db): """ Get and serialize positional and named arguments. :return: (positional_args, named_args) :rtype: (``str``, ``dict``) """ position_args_dict = _get_position_arg_dict(action_parameters, action_db) action_db_parameters = action_db.parameters or {} positional_args = [] positional_args_keys = set() for _, arg in six.iteritems(position_args_dict): arg_type = action_db_parameters.get(arg, {}).get("type", None) # Perform serialization for positional arguments arg_value = action_parameters.get(arg, None) arg_value = serialize_positional_argument( argument_type=arg_type, argument_value=arg_value ) positional_args.append(arg_value) positional_args_keys.add(arg) named_args = {} for param in action_parameters: if param not in positional_args_keys: named_args[param] = action_parameters.get(param) return positional_args, named_args def _get_position_arg_dict(action_parameters, action_db): action_db_params = action_db.parameters args_dict = {} for param in action_db_params: param_meta = action_db_params.get(param, None) if param_meta is not None: pos = param_meta.get("position") if pos is not None: args_dict[pos] = param args_dict = OrderedDict(sorted(args_dict.items())) return args_dict
{ "content_hash": "332503de584f0c9b0199c847d52d0cb7", "timestamp": "", "source": "github", "line_count": 386, "max_line_length": 98, "avg_line_length": 29.72279792746114, "alnum_prop": 0.6354920247537698, "repo_name": "nzlosh/st2", "id": "e6ae0fe4301977695aee78259a905f0691024aaa", "size": "12101", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "st2common/st2common/util/action_db.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "198" }, { "name": "JavaScript", "bytes": "444" }, { "name": "Jinja", "bytes": "174532" }, { "name": "Makefile", "bytes": "75242" }, { "name": "PowerShell", "bytes": "856" }, { "name": "Python", "bytes": "6453910" }, { "name": "Shell", "bytes": "93607" }, { "name": "Starlark", "bytes": "7236" } ], "symlink_target": "" }
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import imp import os import sys import types import gdb import pwndbg import pwndbg.commands import pwndbg.events import pwndbg.memoize try: from __builtins__ import reload as _reload except: from imp import reload as _reload def rreload(module, mdict=None): """Recursively reload modules.""" name = module.__name__ if mdict is None: mdict = [] for attribute_name in getattr(module, '__all__', []) or []: attribute = getattr(module, attribute_name, None) if isinstance(attribute, types.ModuleType) and attribute not in mdict: mdict.append(attribute) rreload(attribute, mdict) try: _reload(module) except Exception as e: pass @pwndbg.commands.Command def reload(*a): pwndbg.events.on_reload() rreload(pwndbg) pwndbg.events.after_reload() @pwndbg.commands.Command def reinit_pwndbg(): """ Makes pwndbg reinitialize all state. """ pwndbg.memoize.reset() pwndbg.events.after_reload()
{ "content_hash": "3b65169b74d6674d6f34c945dbcc56ce", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 78, "avg_line_length": 20.892857142857142, "alnum_prop": 0.67008547008547, "repo_name": "0xddaa/pwndbg", "id": "9d397b7ffbf7c21d5f48549411d6102b3c6cb624", "size": "1216", "binary": false, "copies": "4", "ref": "refs/heads/stable", "path": "pwndbg/commands/reload.py", "mode": "33188", "license": "mit", "language": [ { "name": "Assembly", "bytes": "584" }, { "name": "C", "bytes": "113" }, { "name": "Makefile", "bytes": "964" }, { "name": "Python", "bytes": "1920581" }, { "name": "Shell", "bytes": "5598" } ], "symlink_target": "" }
from __future__ import print_function import os import argparse import sys import threading import shutil import glob import tempfile import platform # make sure scripts/internal is on the pythonpath. sys.path = [os.path.abspath(os.path.dirname(sys.argv[0])) + "/internal"] + sys.path # for ExitProgram and RunCommand from pocolm_common import ExitProgram from pocolm_common import RunCommand parser = argparse.ArgumentParser(description="Usage: " "get_counts.py [options] <source-int-dir> <ngram-order> <dest-count-dir>" "e.g.: get_counts.py data/int 3 data/counts_3" "This script computes data-counts of the specified n-gram order" "for each data-source in <source-int-dir>, and puts them all in" "<dest-counts-dir>.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--dump-counts-parallel", type=str, default='true', choices=['true', 'false'], help="If true, while obtaining the original counts, process multiple data-sources " "in parallel (configurable because 'sort' may use a fair amount of memory).") parser.add_argument("--verbose", type=str, default='false', choices=['true', 'false'], help="If true, print commands as we execute them.") parser.add_argument("--cleanup", type=str, default='true', choices=['true', 'false'], help="If true, remove intermediate files (only relevant if --min-counts option " "is supplied).") parser.add_argument("--min-counts", type=str, default='', help="This string allows you to specify minimum counts to be applied " "to the stats. You may in general specify min-counts per n-gram order " "and per data-source, but they applied 'jointly' in a smart way so " "that, for example, for some order if all data-sources have a min-count " "of 2, an n-gram will be pruned from all data-sources if the total count " "over all data-sources is 2. Min-counts may be specified for order 3 " "and above, in a comma-separated list, with values that must be " "non-decreasing. E.g. --min-counts=2,3. In case of mismatch with " "the actual n-gram order, excess min-counts will be truncated and " "an deficit will be remedied by repeating the last min-count. You " "may specify different min-counts for different data-sources, e.g. " "--min-counts='fisher=2,3 swbd1=1,1'. You may also set min-counts for " "some data-sources and use a default for others, as in " "--min-counts='fisher=2,3 default=1,1'. You may not set min-counts for " "the dev set.") parser.add_argument("--num-min-count-jobs", type=int, default=5, help="The number of parallel jobs used for applying min-counts (only " "relevant if --min-counts option is given") parser.add_argument("--num-count-jobs", type=int, default=4, help="The number of parallel processes per data source used for " "getting initial counts") parser.add_argument("--max-memory", type=str, default='', help="Memory limitation for sort.") parser.add_argument("--limit-unk-history", type=str, default='false', choices=['true', 'false'], help="Truncate the left n-gram of an <unk> in history.") parser.add_argument("source_int_dir", help="Specify <source_int_dir> the data-source") parser.add_argument("ngram_order", type=int, help="Specify the order of ngram") parser.add_argument("dest_count_dir", help="Specify <dest_count_dir> the destination to puts the counts") args = parser.parse_args() # this temporary directory will be used by "sort". os.environ['TMPDIR'] = args.dest_count_dir # this reads the 'names' file (which has lines like "1 switchboard", "2 fisher" # and so on), and returns a dictionary from integer id to name. def ReadNames(names_file): try: f = open(names_file, "r") except: sys.exit("get_counts.py: failed to open --names={0}" " for reading".format(names_file)) number_to_name = {} for line in f: try: [number, name] = line.split() number = int(number) except: sys.exit("get_counts.py: Bad line '{0}' in names file {1}".format( line[0:-1], names_file)) if number in number_to_name: sys.exit("get_counts.py: duplicate number {0} in names file {1}".format( number, names_file)) number_to_name[number] = name f.close() return number_to_name def GetNumTrainSets(source_int_dir): f = open(source_int_dir + '/num_train_sets') # the following should not fail, since we validated source_int_dir. num_train_sets = int(f.readline()) assert f.readline() == '' f.close() return num_train_sets # copy over some meta-info into the 'counts' directory. def CopyMetaInfo(source_int_dir, dest_count_dir): for f in ['num_train_sets', 'num_words', 'names', 'words.txt']: try: src = source_int_dir + os.path.sep + f dest = dest_count_dir + os.path.sep + f shutil.copy(src, dest) except: ExitProgram('error copying {0} to {1}'.format(src, dest)) def IsCygwin(): return platform.system()[0:3].lower() == 'win' or platform.system()[0:3].lower() == 'cyg' # This function, called from FormatMinCounts, takes an array of # min-counts like [2,3], and normalizes its length to ngram_order - 2 # by either removing elements from the end, or duplicating the last # element. If it makes any change, it prints a warning. def NormalizeMinCountsLength(min_counts, ngram_order): if len(min_counts) == 0: # this point in the code should not be reached, actually. sys.exit("get_counts.py: invalid --min-counts string or code error.") ans = min_counts # Check that the min-counts are non-decreasing and are >= 1. for i in range(len(min_counts) - 1): if min_counts[i] < 1: sys.exit("get_counts.py: invalid --min-counts string, min-counts must " "be >= 1.") if min_counts[i] > min_counts[i+1]: sys.exit("get_counts.py: invalid --min-counts string, min-counts must " "not decrease from one n-gram order to the next.") if len(ans) < ngram_order - 2: while len(ans) < ngram_order - 2: ans.append(ans[-1]) # duplicate the last element print("get_counts.py: extending min-counts from {0} to {1} since " "ngram order is {2}".format(','.join([str(x) for x in min_counts]), ','.join([str(x) for x in ans]), ngram_order)) if len(ans) > ngram_order - 2: ans = ans[0:ngram_order-2] print("get_counts.py: truncating min-counts from {0} to {1} since " "ngram order is {2}".format(','.join([str(x) for x in min_counts]), ','.join([str(x) for x in ans]), ngram_order)) return ans # This function converts from the format of --min-counts string accepted by this # program to the format that is accepted by int-counts-enforce-min-counts; it # returns a string (such as --min-counts="2,3" -> "2 3", which would be a valid # string for a 4-gram setup and arbitrary number of inputs; or, supposing # --min-counts="fisher=2,3 swbd=1,2" and the "names" file maps "fisher" -> 1 # and "swbd" -> 2, this function would return the string "2,1 3,2". # If the ngram-order is <3, this function will return the empty string, and # in that case you shouldn't try to apply min-counts. def FormatMinCounts(source_int_dir, num_train_sets, ngram_order, min_counts): if len(min_counts) == 0: sys.exit("get_counts.py: empty --min-counts string.") if ngram_order < 3: print("get_counts.py: ignoring --min-counts string since ngram " "order is {0} and min-counts are only supported for orders " "3 and greater.".format(ngram_order), file=sys.stderr) return '' pieces = min_counts.split() # 'pieces' is the whitespace-separated pieces of the string. if len(pieces) == 1 and len(pieces[0].split('=')) == 1: # the user has specified something like --min-counts=2,3, and we have # something like pieces = ['2,3']. So there is no attempt to have # different min-counts for different data sources. try: min_counts_per_order = [float(x) for x in pieces[0].split(',')] except: sys.exit("get_counts.py: --min-counts={0} has unexpected format".format( min_counts)) min_counts_per_order = NormalizeMinCountsLength(min_counts_per_order, ngram_order) ans = ' '.join([str(int(x)) if x == int(x) else str(x) for x in min_counts_per_order]) else: # we expect 'pieces' to be something like [ 'fisher=2,3' 'swbd=1,2' ]. # we'll set up a dictionary from name to min-count array, something # like name_to_mincounts = [ 'fisher':[2,3], 'swbd':[1,2] ] name_to_mincounts = dict() for piece in pieces: try: [name, comma_separated_list] = piece.split('=') this_mincounts = [float(x) for x in comma_separated_list.split(',')] this_mincounts = NormalizeMinCountsLength(this_mincounts, ngram_order) except: sys.exit("get_counts.py: could not parse --min-counts='{0}'.".format( min_counts)) if name in name_to_mincounts: sys.exit("get_counts.py: duplicate entry found in --min-counts='{0}'.".format( min_counts)) name_to_mincounts[name] = this_mincounts names_used = set() # the set of keys of 'name_to_mincounts' that have been used. # names is a map from integer to name, e.g. # names = [ 1:'fisher', 2:'swbd' ] names = ReadNames(source_int_dir + "/names") # min_counts_per_order will be an array (one per order from 2,...) # of arrays, one per training set, of the respective min-counts per # dataset, e.g. in our example it would be [ [ 2,1 ], [3,2] ] min_counts_per_order = [] for o in range(ngram_order - 2): min_counts_per_order.append([]) for n in range(1, num_train_sets + 1): # the next line shouldn't fail since the data-dir did validate correctly. name = names[n] if name in name_to_mincounts: this_mincounts = name_to_mincounts[name] names_used.add(name) elif 'default' in name_to_mincounts: this_mincounts = name_to_mincounts['default'] names_used.add('default') else: sys.exit("get_counts.py: invalid min-counts --min-counts='{0}' since there " "is no min-count specified for {1}.".format(min_counts, name)) for o in range(ngram_order - 2): min_counts_per_order[o].append(this_mincounts[o]) ans = ' '.join([','.join([str(int(x)) if x == int(x) else str(x) for x in array]) for array in min_counts_per_order]) for name in name_to_mincounts.keys(): if name not in names_used: sys.exit("get_counts.py: invalid min-counts --min-counts='{0}' since the key " "{1} is never used.".format(min_counts, name)) if args.verbose == 'true': print("get_counts.py: converted min-counts from --min-counts='{0}' to '{1}'".format( min_counts, ans)) # test whether ans is all ones, and warn if so. a = ans.replace(',', ' ').split() if a == ['1'] * len(a): print("get_counts.py: **warning: --min-counts={0} is equivalent to not applying any " "min-counts, it would be more efficient not to use the option at all, or " "to set it to the empty string.".format(min_counts)) return ans # save the n-gram order. def SaveNgramOrder(dest_count_dir, ngram_order): try: f = open('{0}/ngram_order'.format(dest_count_dir), 'w') except: ExitProgram('error opening file {0}/ngram_order for writing'.format(dest_count_dir)) assert ngram_order >= 2 print(ngram_order, file=f) f.close() # this function dumps the counts to disk. # if num_splits == 0 [relevant when we're not using min-counts], then it dumps # its output to {dest_count_dir}/int.{n}.{o} with n = 1..num_train_sets, # o=2..ngram_order. (note: n is supplied to this function). # # If num-splits >= 1 [relevant when we're using min-counts], then it dumps its output # {dest_count_dir}/int.{n}.split{j} with n = 1..num_train_sets, j=1..num_splits. def GetCountsSingleProcess(source_int_dir, dest_count_dir, ngram_order, n, max_mem, num_splits=0): if num_splits == 0: int_counts_output = "/dev/null " + " ".join(["{0}/int.{1}.{2}".format(dest_count_dir, n, o) for o in range(2, ngram_order + 1)]) else: assert num_splits >= 1 int_counts_output = '/dev/stdout | split-int-counts ' + \ ' '.join(["{0}/int.{1}.split{2}".format(dest_count_dir, n, j) for j in range(1, num_splits + 1)]) command = "bash -c 'set -o pipefail; export LC_ALL=C; gunzip -c {source_int_dir}/{n}.txt.gz | "\ "get-text-counts {limit_unk_history} {ngram_order} | sort {mem_opt}| uniq -c | "\ "get-int-counts {int_counts_output}'".format(source_int_dir=source_int_dir, n=n, ngram_order=ngram_order, limit_unk_history="--limit-unk-history" if args.limit_unk_history == 'true' else "", mem_opt="--buffer-size={0}".format(max_mem) if max_mem != '' else '', int_counts_output=int_counts_output) log_file = "{dest_count_dir}/log/get_counts.{n}.log".format( dest_count_dir=dest_count_dir, n=n) RunCommand(command, log_file, args.verbose == 'true') # This function uses multiple parallel processes to dumps the counts to files. # if num_splits == 0 [relevant when we're not using min-counts], then it dumps its output to # {dest_count_dir}/int.{n}.{o} with n = 1..num_train_sets, o=2..ngram_order. # (note: n is supplied to this function). # # If num-splits >= 1 [relevant when we're using min-counts], then it dumps its output # {dest_count_dir}/int.{n}.split{j} with n = 1..num_train_sets, j=1..num_splits. # This function uses multiple processes (num_proc) in parallel to run # 'get-text-counts' (this tends to be the bottleneck). # It will use just one process if the amount of data is quite small or if # the platform is Cygwin (where named pipes don't work) def GetCountsMultiProcess(source_int_dir, dest_count_dir, ngram_order, n, num_proc, max_mem, num_splits=0): try: file_size = os.path.getsize('{0}/{1}.txt.gz'.format(source_int_dir, n)) except: ExitProgram('get_counts.py: error getting file size of ' '{0}/{1}.txt.gz'.format(source_int_dir, n)) if IsCygwin() or num_proc <= 1 or file_size < 1000000: if num_proc > 1 and file_size >= 1000000: # it's only because of Cygwin that we're not using multiple # processes this merits a warning. print("get_counts.py: cygwin platform detected so named pipes won't work; " "using a single process (will be slower)") return GetCountsSingleProcess(source_int_dir, dest_count_dir, ngram_order, n, max_mem, num_splits) if num_splits == 0: int_counts_output = "/dev/null " + " ".join(["{0}/int.{1}.{2}".format(dest_count_dir, n, o) for o in range(2, ngram_order + 1)]) else: assert num_splits >= 1 int_counts_output = '/dev/stdout | split-int-counts ' + \ ' '.join(["{0}/int.{1}.split{2}".format(dest_count_dir, n, j) for j in range(1, num_splits + 1)]) try: # we want a temporary directory on a local file system # for tempdir = tempfile.mkdtemp() except Exception as e: ExitProgram("Error creating temporary directory: " + str(e)) # This has several pipes for the internal processing that write to and read # from other internal pipes; and we can't do this using '|' in the shell, we # need to use mkfifo. This does not work properly on cygwin. log_dir = "{dest_count_dir}/log".format(dest_count_dir=dest_count_dir) [os.remove(x) for x in glob.glob("{log_dir}/.{n}.*.error".format( log_dir=log_dir, n=n))] log_file = "{log_dir}/get_counts.{n}.log".format(log_dir=log_dir, n=n) test_command = "bash -c 'set -o pipefail; (echo a; echo b) | "\ "distribute-input-lines /dev/null /dev/null'" # We run the following command just to make sure distribute-input-lines is # on the path and compiled, since we get hard-to-debug errors if it fails. RunCommand(test_command, log_file) if max_mem == '': mem_opt = '' else: mem_opt = "--buffer-size={0}".format(DivideMemory(max_mem, num_proc + 1)) # we use "bash -c '...'" to make sure it gets run in bash, since # for example 'set -o pipefail' would only work in bash. command = ("bash -c 'set -o pipefail; set -e; export LC_ALL=C; mkdir -p {0}; ".format(tempdir) + ''.join(['mkfifo {0}/{1}; '.format(tempdir, p) for p in range(num_proc)]) + 'trap "rm -r {0}" SIGINT SIGKILL SIGTERM EXIT; '.format(tempdir) + 'gunzip -c {0}/{1}.txt.gz | distribute-input-lines '.format(source_int_dir, n) + ' '.join(['{0}/{1}'.format(tempdir, p) for p in range(num_proc)]) + '& ' + 'sort -m {0} '.format(mem_opt) + ' '.join(['<(get-text-counts {4} {0} <{1}/{2} | sort {3} || touch {5}/.{6}.{2}.error)'.format(ngram_order, tempdir, p, mem_opt, "--limit-unk-history" if args.limit_unk_history == 'true' else "", log_dir, n) for p in range(num_proc)]) + '| uniq -c | get-int-counts {0}'.format(int_counts_output) + "'") # end the quote from the 'bash -c'. RunCommand(command, log_file, args.verbose == 'true') if len(glob.glob("{log_dir}/.{n}.*.error".format(log_dir=log_dir, n=n))) > 0: ExitProgram("Something went wrong for the get-text-counts or sort command for training set {n}.".format(n=n)) # This function applies the min-counts (it is only called if you supplied the # --min-counts option to this script). It reads in the data dumped by # GetCounts. It dumps the files into {dest_count_dir}/int.{n}.split{j}.{o} # for n = 1...num_train_sets j = 1..num_jobs, and o=2..ngram_order. [note: j is # supplied to this function]. def EnforceMinCounts(dest_count_dir, formatted_min_counts, ngram_order, num_train_sets, j): inputs = ' '.join(["{0}/int.{1}.split{2}".format(dest_count_dir, n, j) for n in range(1, num_train_sets + 1)]) outputs = ' '.join([' '.join(['{0}/int.{1}.split{2}.{3}'.format(dest_count_dir, n, j, o) for o in range(2, ngram_order + 1)]) for n in range(1, num_train_sets + 1)]) # e.g. suppose j is 2 and ngram_order is 4, outputs would be as follows # [assuming brace expansion].: # outputs = dir/int.1.split2.{2,3,4} dir/int.2.split2.{2,3,4} ... # dir/int.{num_train_sets}.split2.{2,3,4} command = "int-counts-enforce-min-counts {ngram_order} {formatted_min_counts} {inputs} "\ "{outputs}".format( ngram_order=ngram_order, formatted_min_counts=formatted_min_counts, inputs=inputs, outputs=outputs, j=j) log_file = '{0}/log/enforce_min_counts.{1}.log'.format(dest_count_dir, j) RunCommand(command, log_file, args.verbose == 'true') # This function merges counts from multiple jobs, that have been split up by # most recent history-word (it is only called if you supplied the --min-counts # option to this script). It reads in the data dumped by EnforceMinCounts. # it merges the files into {dest_count_dir}/int.{n}.{o}. def MergeCounts(dest_count_dir, num_jobs, n, o): if num_jobs > 1: command = ('merge-int-counts ' + ' '.join(['{0}/int.{1}.split{2}.{3}'.format(dest_count_dir, n, j, o) for j in range(1, num_jobs + 1)]) + '>{0}/int.{1}.{2}'.format(dest_count_dir, n, o)) log_file = '{0}/log/merge_counts.{1}.{2}.log'.format(dest_count_dir, n, o) RunCommand(command, log_file, args.verbose == 'true') else: assert num_jobs == 1 # we can just move the file if num-jobs == 1. try: os.remove('{0}/int.{1}.{2}'.format(dest_count_dir, n, o)) except: pass os.rename('{0}/int.{1}.split1.{2}'.format(dest_count_dir, n, o), '{0}/int.{1}.{2}'.format(dest_count_dir, n, o)) # we also want to merge the files $dir/int.dev.{2,3,...} into a single file # that contains all the dev-data's counts; this will be used in likelihood # evaluation. def MergeDevData(dest_count_dir, ngram_order): command = ("merge-int-counts " + ' '.join([dest_count_dir + "/int.dev." + str(n) for n in range(2, ngram_order + 1)]) + ">{0}/int.dev".format(dest_count_dir)) log_file = dest_count_dir + '/log/merge_dev_counts.log' RunCommand(command, log_file, args.verbose == 'true') # this function returns the value and unit of the max_memory # if max_memory is in format of "integer + letter/%", like "10G", it returns (10, 'G') # if max_memory contains no letter, like "10000", it returns (10000, '') # we assume the input string is not empty since when it is empty we never call this function def ParseMemoryString(s): if not s[-1].isdigit(): return (int(s[:-1]), s[-1]) else: return (int(s), '') def DivideMemory(total, n): (value, unit) = ParseMemoryString(total) sub_memory = value / n if sub_memory != float(value) / n: if unit in ['K', 'k', '']: sub_memory = value * 1024 / n unit = 'b' elif unit in ['M', 'm']: sub_memory = value * 1024 / n unit = 'K' elif unit in ['G', 'g']: sub_memory = value * 1024 / n unit = 'M' elif (unit in ['B', 'b', '%']) and (sub_memory == 0): ExitProgram("max_memory for each of the {0} train sets is {1}{2}." "Please reset a larger max_memory value".format( n, float(value)/n, unit)) else: ExitProgram("Invalid format for max_memory. " "Please 'man sort' to see how to set buffer size.") return str(int(sub_memory)) + unit # make sure 'scripts' and 'src' directory are on the path os.environ['PATH'] = (os.environ['PATH'] + os.pathsep + os.path.abspath(os.path.dirname(sys.argv[0])) + os.pathsep + os.path.abspath(os.path.dirname(sys.argv[0])) + "/../src") if os.system("validate_int_dir.py " + args.source_int_dir) != 0: ExitProgram("command validate_int_dir.py {0} failed".format(args.source_int_dir)) if args.ngram_order < 2: ExitProgram("ngram-order is {0}; it must be at least 2. If you " "want a unigram LM, do it by hand".format(args.ngram_order)) # read the variable 'num_train_sets' # from the corresponding file in source_int_dir This shouldn't fail # because we just called validate_int-dir.py.. f = open(args.source_int_dir + "/num_train_sets") num_train_sets = int(f.readline()) f.close() if not os.path.isdir(args.dest_count_dir): try: os.makedirs(args.dest_count_dir+'/log') except: ExitProgram("error creating directory " + args.dest_count_dir) CopyMetaInfo(args.source_int_dir, args.dest_count_dir) SaveNgramOrder(args.dest_count_dir, args.ngram_order) if args.min_counts == '': # no min-counts specified: use normal pipeline. print("get_counts.py: dumping counts", file=sys.stderr) threads = [] if args.max_memory != '': if args.dump_counts_parallel == 'true': max_mem = DivideMemory(args.max_memory, num_train_sets + 1) else: max_mem = args.max_memory else: max_mem = '' for n in ["dev"] + list(range(1, num_train_sets + 1)): threads.append(threading.Thread(target=GetCountsMultiProcess, args=[args.source_int_dir, args.dest_count_dir, args.ngram_order, str(n), args.num_count_jobs, max_mem])) threads[-1].start() if args.dump_counts_parallel == 'false': threads[-1].join() if args.dump_counts_parallel == 'true': for t in threads: t.join() MergeDevData(args.dest_count_dir, args.ngram_order) print("get_counts.py: done", file=sys.stderr) else: # First process the dev data, the min-counts aren't relevant here. GetCountsSingleProcess(args.source_int_dir, args.dest_count_dir, args.ngram_order, 'dev', args.max_memory) MergeDevData(args.dest_count_dir, args.ngram_order) num_mc_jobs = args.num_min_count_jobs if num_mc_jobs < 1: ExitProgram("bad option --num-min-count-jobs={0}".format(num_mc_jobs)) formatted_min_counts = FormatMinCounts(args.source_int_dir, num_train_sets, args.ngram_order, args.min_counts) if not num_mc_jobs >= 1: sys.exit("get_counts.py: invalid option --num-jobs={0}".format(num_mc_jobs)) # First, dump the counts split up by most-recent-history instead of ngram-order. print("get_counts.py: dumping counts", file=sys.stderr) if args.max_memory != '': if args.dump_counts_parallel == 'true': max_mem = DivideMemory(args.max_memory, num_train_sets) else: max_mem = args.max_memory else: max_mem = '' threads = [] for n in range(1, num_train_sets + 1): threads.append(threading.Thread(target=GetCountsMultiProcess, args=[args.source_int_dir, args.dest_count_dir, args.ngram_order, str(n), args.num_count_jobs, max_mem, num_mc_jobs])) threads[-1].start() if args.dump_counts_parallel == 'false': threads[-1].join() if args.dump_counts_parallel == 'true': for t in threads: t.join() # Next, apply the min-counts. print("get_counts.py: applying min-counts", file=sys.stderr) threads = [] for j in range(1, num_mc_jobs + 1): threads.append(threading.Thread(target=EnforceMinCounts, args=[args.dest_count_dir, formatted_min_counts, args.ngram_order, num_train_sets, j])) threads[-1].start() for t in threads: t.join() if args.cleanup == 'true': for n in range(1, num_train_sets + 1): for j in range(1, num_mc_jobs + 1): os.remove("{0}/int.{1}.split{2}".format( args.dest_count_dir, n, j)) print("get_counts.py: merging counts", file=sys.stderr) threads = [] for n in range(1, num_train_sets + 1): for o in range(2, args.ngram_order + 1): threads.append(threading.Thread(target=MergeCounts, args=[args.dest_count_dir, num_mc_jobs, n, o])) threads[-1].start() for t in threads: t.join() if args.cleanup == 'true': for n in range(1, num_train_sets + 1): for j in range(1, args.num_min_count_jobs + 1): for o in range(2, args.ngram_order + 1): try: os.remove("{0}/int.{1}.split{2}.{3}".format( args.dest_count_dir, n, j, o)) except: pass print("get_counts.py: finished.", file=sys.stderr) if os.system("validate_count_dir.py " + args.dest_count_dir) != 0: ExitProgram("command validate_count_dir.py {0} failed".format(args.dest_count_dir))
{ "content_hash": "0af42049ca04f139dcedca8be8a454e7", "timestamp": "", "source": "github", "line_count": 616, "max_line_length": 143, "avg_line_length": 48.19805194805195, "alnum_prop": 0.5660828561805321, "repo_name": "wantee/pocolm", "id": "ac0fe0aee7eee6b3eda4a89d4cff7fa1210e211a", "size": "29785", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scripts/get_counts.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "356912" }, { "name": "Makefile", "bytes": "1294" }, { "name": "Perl", "bytes": "4912" }, { "name": "Python", "bytes": "274790" }, { "name": "Shell", "bytes": "83576" } ], "symlink_target": "" }
"""Copy number detection with CNVkit with specific support for targeted sequencing. http://cnvkit.readthedocs.org """ import copy import os import sys import tempfile import pybedtools import numpy as np import toolz as tz from bcbio import install, utils from bcbio.bam import ref from bcbio.distributed.multi import run_multicore, zeromq_aware_logging from bcbio.distributed.transaction import file_transaction from bcbio.heterogeneity import chromhacks from bcbio.pipeline import datadict as dd from bcbio.pipeline import config_utils from bcbio.variation import bedutils, effects, vcfutils from bcbio.provenance import do from bcbio.structural import annotate, shared, regions, plot def run(items, background=None): """Detect copy number variations from batched set of samples using CNVkit. """ if not background: background = [] return _cnvkit_by_type(items, background) def _sv_workdir(data): return utils.safe_makedir(os.path.join(data["dirs"]["work"], "structural", dd.get_sample_name(data), "cnvkit")) def _cnvkit_by_type(items, background): """Dispatch to specific CNVkit functionality based on input type. """ if len(items + background) == 1: return _run_cnvkit_single(items[0]) elif vcfutils.get_paired_phenotype(items[0]): return _run_cnvkit_cancer(items, background) else: return _run_cnvkit_population(items, background) def _associate_cnvkit_out(ckouts, items): """Associate cnvkit output with individual items. """ assert len(ckouts) == len(items) out = [] for ckout, data in zip(ckouts, items): ckout = copy.deepcopy(ckout) ckout["variantcaller"] = "cnvkit" ckout = _add_seg_to_output(ckout, data) ckout = _add_gainloss_to_output(ckout, data) ckout = _add_segmetrics_to_output(ckout, data) ckout = _add_variantcalls_to_output(ckout, data) # ckout = _add_coverage_bedgraph_to_output(ckout, data) ckout = _add_cnr_bedgraph_and_bed_to_output(ckout, data) if "svplots" in dd.get_tools_on(data): ckout = _add_plots_to_output(ckout, data) if "sv" not in data: data["sv"] = [] data["sv"].append(ckout) out.append(data) return out def _run_cnvkit_single(data, background=None): """Process a single input file with BAM or uniform background. """ work_dir = _sv_workdir(data) test_bams = [data["align_bam"]] if background: background_bams = [x["align_bam"] for x in background] background_name = os.path.splitext(os.path.basename(background_bams[0]))[0] else: background_bams = [] background_name = None ckouts = _run_cnvkit_shared([data], test_bams, background_bams, work_dir, background_name=background_name) if not ckouts: return [data] else: assert len(ckouts) == 1 return _associate_cnvkit_out(ckouts, [data]) def _run_cnvkit_cancer(items, background): """Run CNVkit on a tumor/normal pair. """ paired = vcfutils.get_paired_bams([x["align_bam"] for x in items], items) work_dir = _sv_workdir(paired.tumor_data) ckouts = _run_cnvkit_shared([paired.tumor_data], [paired.tumor_bam], [paired.normal_bam], work_dir, background_name=paired.normal_name) if not ckouts: return items assert len(ckouts) == 1 tumor_data = _associate_cnvkit_out(ckouts, [paired.tumor_data]) normal_data = [x for x in items if dd.get_sample_name(x) != paired.tumor_name] return tumor_data + normal_data def _run_cnvkit_population(items, background): """Run CNVkit on a population of samples. Tries to calculate background based on case/controls, otherwise uses a flat background for each sample and calls independently. """ assert not background inputs, background = shared.find_case_control(items) work_dir = _sv_workdir(inputs[0]) ckouts = _run_cnvkit_shared(inputs, [x["align_bam"] for x in inputs], [x["align_bam"] for x in background], work_dir, background_name=dd.get_sample_name(background[0]) if len(background) > 0 else None) return _associate_cnvkit_out(ckouts, inputs) + background def _get_cmd(): return os.path.join(os.path.dirname(sys.executable), "cnvkit.py") def _bam_to_outbase(bam_file, work_dir): """Convert an input BAM file into CNVkit expected output. """ out_base = os.path.splitext(os.path.basename(bam_file))[0].split(".")[0] return os.path.join(work_dir, out_base) def _run_cnvkit_shared(items, test_bams, background_bams, work_dir, background_name=None): """Shared functionality to run CNVkit, parallelizing over multiple BAM files. """ raw_work_dir = utils.safe_makedir(os.path.join(work_dir, "raw")) background_cnn = os.path.join(raw_work_dir, "%s_background.cnn" % (background_name if background_name else "flat")) ckouts = [] for test_bam in test_bams: out_base = _bam_to_outbase(test_bam, raw_work_dir) ckouts.append({"cnr": "%s.cns" % out_base, "cns": "%s.cns" % out_base, "back_cnn": background_cnn}) if not utils.file_exists(ckouts[0]["cnr"]): data = items[0] cov_interval = dd.get_coverage_interval(data) raw_target_bed, access_bed = _get_target_access_files(cov_interval, data, work_dir) # bail out if we ended up with no regions if not utils.file_exists(raw_target_bed): return {} raw_target_bed = annotate.add_genes(raw_target_bed, data) parallel = {"type": "local", "cores": dd.get_cores(data), "progs": ["cnvkit"]} target_bed, antitarget_bed = _cnvkit_targets(raw_target_bed, access_bed, cov_interval, raw_work_dir, data) def _bam_to_itype(bam): return "background" if bam in background_bams else "evaluate" split_cnns = run_multicore(_cnvkit_coverage, [(bam, bed, _bam_to_itype(bam), raw_work_dir, data) for bam in test_bams + background_bams for bed in _split_bed(target_bed, data) + _split_bed(antitarget_bed, data)], data["config"], parallel) coverage_cnns = _merge_coverage(split_cnns, data) background_cnn = _cnvkit_background([x["file"] for x in coverage_cnns if x["itype"] == "background"], background_cnn, target_bed, antitarget_bed, data) fixed_cnrs = run_multicore(_cnvkit_fix, [(cnns, background_cnn, data) for cnns in tz.groupby("bam", [x for x in coverage_cnns if x["itype"] == "evaluate"]).values()], data["config"], parallel) called_segs = run_multicore(_cnvkit_segment, [(cnr, cov_interval, data) for cnr in fixed_cnrs], data["config"], parallel) return ckouts @utils.map_wrap @zeromq_aware_logging def _cnvkit_segment(cnr_file, cov_interval, data): """Perform segmentation and copy number calling on normalized inputs """ out_file = "%s.cns" % os.path.splitext(cnr_file)[0] if not utils.file_uptodate(out_file, cnr_file): with file_transaction(data, out_file) as tx_out_file: local_sitelib = os.path.join(install.get_defaults().get("tooldir", "/usr/local"), "lib", "R", "site-library") cmd = [_get_cmd(), "segment", "-o", tx_out_file, "--rlibpath", local_sitelib, cnr_file] if cov_interval == "genome": cmd += ["--threshold", "0.00001"] # preferentially use conda installed Rscript export_cmd = "unset R_HOME && export PATH=%s:$PATH && " % os.path.dirname(utils.Rscript_cmd()) do.run(export_cmd + " ".join(cmd), "CNVkit segment") return out_file @utils.map_wrap @zeromq_aware_logging def _cnvkit_fix(cnns, background_cnn, data): """Normalize samples, correcting sources of bias. """ assert len(cnns) == 2, "Expected target and antitarget CNNs: %s" % cnns target_cnn = [x["file"] for x in cnns if x["cnntype"] == "target"][0] antitarget_cnn = [x["file"] for x in cnns if x["cnntype"] == "antitarget"][0] out_file = "%scnr" % os.path.commonprefix([target_cnn, antitarget_cnn]) if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [_get_cmd(), "fix", "-o", tx_out_file, target_cnn, antitarget_cnn, background_cnn] do.run(cmd, "CNVkit fix") return [out_file] def _cnvkit_background(background_cnns, out_file, target_bed, antitarget_bed, data): """Calculate background reference, handling flat case with no normal sample. """ if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [_get_cmd(), "reference", "-f", dd.get_ref_file(data), "-o", tx_out_file] if len(background_cnns) == 0: cmd += ["-t", target_bed, "-a", antitarget_bed] else: cmd += background_cnns do.run(cmd, "CNVkit background") return out_file def _split_bed(bed_input, data): """Split BED file into sections for processing, allowing better multicore usage. """ split_lines = 100000 split_info = [] base, ext = os.path.splitext(bed_input) base, ext2 = os.path.splitext(base) ext = ext2 + ext with open(bed_input) as in_handle: for cur_index, line_group in enumerate(tz.partition_all(split_lines, in_handle)): cur_file = "%s-%s%s" % (base, cur_index, ext) if not utils.file_uptodate(cur_file, bed_input): with file_transaction(data, cur_file) as tx_out_file: with open(tx_out_file, "w") as out_handle: for line in line_group: out_handle.write(line) split_info.append({"i": cur_index, "orig": bed_input, "file": cur_file}) if not split_info: # empty input file split_info.append({"file": bed_input, "orig": bed_input}) return split_info def _merge_coverage(cnns, data): """Merge split CNN outputs into final consolidated output. """ out = [] for (out_file, _), members in tz.groupby(lambda x: (x["final_out"], x["bed_orig"]), cnns).items(): if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: with open(tx_out_file, "w") as out_handle: for i, in_file in enumerate([x["file"] for x in sorted(members, key=lambda x: x["bed_i"])]): with open(in_file) as in_handle: header = in_handle.readline() if i == 0: out_handle.write(header) for line in in_handle: out_handle.write(line) base = copy.deepcopy(members[0]) base = tz.dissoc(base, "final_out", "bed_i", "bed_orig") base["file"] = out_file out.append(base) return out @utils.map_wrap @zeromq_aware_logging def _cnvkit_coverage(bam_file, bed_info, input_type, work_dir, data): """Calculate coverage in a BED file for CNVkit. """ bed_file = bed_info["file"] exts = {".target.bed": ("target", "targetcoverage.cnn"), ".antitarget.bed": ("antitarget", "antitargetcoverage.cnn")} assert bed_file.endswith(tuple(exts.keys())), "Unexpected BED file extension for coverage %s" % bed_file for orig, (cnntype, ext) in exts.items(): if bed_file.endswith(orig): break base = _bam_to_outbase(bam_file, work_dir) merged_out_file = "%s.%s" % (base, ext) out_file = "%s-%s.%s" % (base, bed_info["i"], ext) if "i" in bed_info else merged_out_file if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [_get_cmd(), "coverage", bam_file, bed_file, "-o", tx_out_file] do.run(cmd, "CNVkit coverage") return [{"itype": input_type, "file": out_file, "bam": bam_file, "cnntype": cnntype, "final_out": merged_out_file, "bed_i": bed_info.get("i"), "bed_orig": bed_info["orig"]}] def _cnvkit_targets(raw_target_bed, access_bed, cov_interval, work_dir, data): """Create target and antitarget regions from target and access files. """ target_bed = os.path.join(work_dir, "%s.target.bed" % os.path.splitext(os.path.basename(raw_target_bed))[0]) if not utils.file_uptodate(target_bed, raw_target_bed): with file_transaction(data, target_bed) as tx_out_file: cmd = [_get_cmd(), "target", raw_target_bed, "--split", "-o", tx_out_file] if cov_interval == "genome": cmd += ["--avg-size", "500"] do.run(cmd, "CNVkit target") antitarget_bed = os.path.join(work_dir, "%s.antitarget.bed" % os.path.splitext(os.path.basename(raw_target_bed))[0]) if not os.path.exists(antitarget_bed): with file_transaction(data, antitarget_bed) as tx_out_file: cmd = [_get_cmd(), "antitarget", "-g", access_bed, target_bed, "-o", tx_out_file] do.run(cmd, "CNVkit antitarget") return target_bed, antitarget_bed def _get_target_access_files(cov_interval, data, work_dir): """Retrieve target and access files based on the type of data to process. pick targets, anti-targets and access files based on analysis type http://cnvkit.readthedocs.org/en/latest/nonhybrid.html """ base_regions = regions.get_sv_bed(data) # if we don't have a configured BED or regions to use for SV caling if not base_regions: # For genome calls, subset to regions within 10kb of genes if cov_interval == "genome": base_regions = regions.get_sv_bed(data, "transcripts1e4", work_dir) if base_regions: base_regions = shared.remove_exclude_regions(base_regions, base_regions, [data]) # Finally, default to the defined variant regions if not base_regions: base_regions = dd.get_variant_regions(data) target_bed = bedutils.merge_overlaps(base_regions, data, out_dir=work_dir) if cov_interval == "amplicon": return target_bed, target_bed elif cov_interval == "genome": return target_bed, target_bed else: access_file = _create_access_file(dd.get_ref_file(data), _sv_workdir(data), data) return target_bed, access_file def _add_seg_to_output(out, data): """Export outputs to 'seg' format compatible with IGV and GenePattern. """ out_file = "%s.seg" % os.path.splitext(out["cns"])[0] if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [os.path.join(os.path.dirname(sys.executable), "cnvkit.py"), "export", "seg", "-o", tx_out_file, out["cns"]] do.run(cmd, "CNVkit export seg") out["seg"] = out_file return out def _add_cnr_bedgraph_and_bed_to_output(out, data): cnr_file = out["cnr"] bedgraph_file = cnr_file + ".bedgraph" if not utils.file_exists(bedgraph_file): with file_transaction(data, bedgraph_file) as tx_out_file: cmd = "sed 1d {cnr_file} | cut -f1,2,3,5 > {tx_out_file}" do.run(cmd.format(**locals()), "Converting cnr to bedgraph format") out["cnr_bedgraph"] = bedgraph_file bed_file = cnr_file + ".bed" if not utils.file_exists(bed_file): with file_transaction(data, bed_file) as tx_out_file: cmd = "sed 1d {cnr_file} | cut -f1,2,3,4,5 > {tx_out_file}" do.run(cmd.format(**locals()), "Converting cnr to bed format") out["cnr_bed"] = bed_file return out def _add_variantcalls_to_output(out, data): """Call ploidy and convert into VCF and BED representations. """ call_file = "%s-call%s" % os.path.splitext(out["cns"]) gender = dd.get_gender(data) if not utils.file_exists(call_file): with file_transaction(data, call_file) as tx_call_file: cmd = [os.path.join(os.path.dirname(sys.executable), "cnvkit.py"), "call", "--ploidy", str(dd.get_ploidy(data)), "-o", tx_call_file, out["cns"]] if gender: cmd += ["--gender", gender] if gender.lower() == "male": cmd += ["--male-reference"] do.run(cmd, "CNVkit call ploidy") calls = {} for outformat in ["bed", "vcf"]: out_file = "%s.%s" % (os.path.splitext(call_file)[0], outformat) calls[outformat] = out_file if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [os.path.join(os.path.dirname(sys.executable), "cnvkit.py"), "export", outformat, "--sample-id", dd.get_sample_name(data), "--ploidy", str(dd.get_ploidy(data)), "-o", tx_out_file, call_file] if gender and gender.lower() == "male": cmd += ["--male-reference"] do.run(cmd, "CNVkit export %s" % outformat) out["call_file"] = call_file out["vrn_bed"] = annotate.add_genes(calls["bed"], data) effects_vcf, _ = effects.add_to_vcf(calls["vcf"], data, "snpeff") out["vrn_file"] = effects_vcf or calls["vcf"] return out def _add_segmetrics_to_output(out, data): """Add metrics for measuring reliability of CNV estimates. """ out_file = "%s-segmetrics.txt" % os.path.splitext(out["cns"])[0] if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [os.path.join(os.path.dirname(sys.executable), "cnvkit.py"), "segmetrics", "--iqr", "--ci", "--pi", "-s", out["cns"], "-o", tx_out_file, out["cnr"]] do.run(cmd, "CNVkit segmetrics") out["segmetrics"] = out_file return out def _add_gainloss_to_output(out, data): """Add gainloss based on genes, helpful for identifying changes in smaller genes. """ out_file = "%s-gainloss.txt" % os.path.splitext(out["cns"])[0] if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [os.path.join(os.path.dirname(sys.executable), "cnvkit.py"), "gainloss", "-s", out["cns"], "-o", tx_out_file, out["cnr"]] do.run(cmd, "CNVkit gainloss") out["gainloss"] = out_file return out def _add_coverage_bedgraph_to_output(out, data): """Add BedGraph representation of coverage to the output """ out_file = "%s.coverage.bedgraph" % os.path.splitext(out["cns"])[0] if utils.file_exists(out_file): out["bedgraph"] = out_file return out bam_file = dd.get_align_bam(data) bedtools = config_utils.get_program("bedtools", data["config"]) samtools = config_utils.get_program("samtools", data["config"]) cns_file = out["cns"] bed_file = tempfile.NamedTemporaryFile(suffix=".bed", delete=False).name with file_transaction(data, out_file) as tx_out_file: cmd = ("sed 1d {cns_file} | cut -f1,2,3 > {bed_file}; " "{samtools} view -b -L {bed_file} {bam_file} | " "{bedtools} genomecov -bg -ibam - -g {bed_file} >" "{tx_out_file}").format(**locals()) do.run(cmd, "CNVkit bedGraph conversion") os.remove(bed_file) out["bedgraph"] = out_file return out def _add_plots_to_output(out, data): """Add CNVkit plots summarizing called copy number values. """ out["plot"] = {} diagram_plot = _add_diagram_plot(out, data) if diagram_plot: out["plot"]["diagram"] = diagram_plot loh_plot = _add_loh_plot(out, data) if loh_plot: out["plot"]["loh"] = loh_plot scatter_plot = _add_scatter_plot(out, data) if scatter_plot: out["plot"]["scatter"] = scatter_plot return out def _get_larger_chroms(ref_file): """Retrieve larger chromosomes, avoiding the smaller ones for plotting. """ from scipy.cluster.vq import kmeans, vq all_sizes = [] for c in ref.file_contigs(ref_file): all_sizes.append(float(c.size)) all_sizes.sort() # separate out smaller chromosomes and haplotypes with kmeans centroids, _ = kmeans(np.array(all_sizes), 2) idx, _ = vq(np.array(all_sizes), centroids) little_sizes = tz.first(tz.partitionby(lambda xs: xs[0], zip(idx, all_sizes))) little_sizes = [x[1] for x in little_sizes] # create one more cluster with the smaller, removing the haplotypes centroids2, _ = kmeans(np.array(little_sizes), 2) idx2, _ = vq(np.array(little_sizes), centroids2) little_sizes2 = tz.first(tz.partitionby(lambda xs: xs[0], zip(idx2, little_sizes))) little_sizes2 = [x[1] for x in little_sizes2] # get any chromosomes not in haplotype/random bin thresh = max(little_sizes2) larger_chroms = [] for c in ref.file_contigs(ref_file): if c.size > thresh: larger_chroms.append(c.name) return larger_chroms def _remove_haplotype_chroms(in_file, data): """Remove shorter haplotype chromosomes from cns/cnr files for plotting. """ larger_chroms = set(_get_larger_chroms(dd.get_ref_file(data))) out_file = "%s-chromfilter%s" % utils.splitext_plus(in_file) if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: with open(in_file) as in_handle: with open(tx_out_file, "w") as out_handle: for line in in_handle: if line.startswith("chromosome") or line.split()[0] in larger_chroms: out_handle.write(line) return out_file def _add_scatter_plot(out, data): out_file = "%s-scatter.pdf" % os.path.splitext(out["cnr"])[0] priority_regions = dd.get_priority_regions(data) if not priority_regions: return None priority_bed = plot._prioritize_plot_regions(pybedtools.BedTool(priority_regions), data) if utils.file_exists(out_file): return out_file cnr = _remove_haplotype_chroms(out["cnr"], data) cns = _remove_haplotype_chroms(out["cns"], data) with file_transaction(data, out_file) as tx_out_file: cmd = [_get_cmd(), "scatter", "-s", cns, "-o", tx_out_file, "-l", priority_bed, cnr] do.run(cmd, "CNVkit scatter plot") return out_file def _cnx_is_empty(in_file): """Check if cnr or cns files are empty (only have a header) """ with open(in_file) as in_handle: for i, line in enumerate(in_handle): if i > 0: return False return True def _add_diagram_plot(out, data): out_file = "%s-diagram.pdf" % os.path.splitext(out["cnr"])[0] cnr = _remove_haplotype_chroms(out["cnr"], data) cns = _remove_haplotype_chroms(out["cns"], data) if _cnx_is_empty(cnr) or _cnx_is_empty(cns): return None if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [_get_cmd(), "diagram", "-s", cns, "-o", tx_out_file, cnr] gender = dd.get_gender(data) if gender and gender.lower() == "male": cmd += ["--male-reference"] do.run(cmd, "CNVkit diagram plot") return out_file def _add_loh_plot(out, data): vrn_files = filter(lambda x: x is not None, [x.get("vrn_file") for x in data.get("variants", [])]) if len(vrn_files) > 0: out_file = "%s-loh.pdf" % os.path.splitext(out["cnr"])[0] cns = _remove_haplotype_chroms(out["cns"], data) if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [_get_cmd(), "loh", "-t", "-s", cns, "-o", tx_out_file, vrn_files[0]] do.run(cmd, "CNVkit diagram plot") return out_file def _create_access_file(ref_file, out_dir, data): """Create genome access file for CNVlib to define available genomic regions. XXX Can move to installation/upgrade process if too slow here. """ out_file = os.path.join(out_dir, "%s-access.bed" % os.path.splitext(os.path.basename(ref_file))[0]) if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [os.path.join(os.path.dirname(sys.executable), "genome2access.py"), ref_file, "-s", "10000", "-o", tx_out_file] do.run(cmd, "Create CNVkit access file") return out_file # ## Theta support def export_theta(ckout, data): """Provide updated set of data with export information for TheTA2 input. """ cns_file = chromhacks.bed_to_standardonly(ckout["cns"], data, headers="chromosome") cnr_file = chromhacks.bed_to_standardonly(ckout["cnr"], data, headers="chromosome") out_file = "%s-theta.input" % utils.splitext_plus(cns_file)[0] if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = [_get_cmd(), "export", "theta", cns_file, cnr_file, "-o", tx_out_file] do.run(cmd, "Export CNVkit calls as inputs for TheTA2") ckout["theta_input"] = out_file return ckout
{ "content_hash": "29db8ce56fd1e7caaf91445840f97c6a", "timestamp": "", "source": "github", "line_count": 564, "max_line_length": 120, "avg_line_length": 45.705673758865245, "alnum_prop": 0.5970983008767166, "repo_name": "guillermo-carrasco/bcbio-nextgen", "id": "85eac7d490279cb0b16ff4887d91b1999a331f62", "size": "25778", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bcbio/structural/cnvkit.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1482215" }, { "name": "Ruby", "bytes": "624" }, { "name": "Shell", "bytes": "13852" } ], "symlink_target": "" }
from django.template.loader import render_to_string from courant.core.mailer.models import MessageJob try: from apps.email_subscriptions.models import EmailSubscription except: pass from courant.core.profiles.models import UserProfile from models import * def send_email_update(subject, from_address, from_name, data, html_template=None, text_template=None): raw_subscriptions = EmailSubscription.objects.all().values_list('email', flat=True) subscribed_users = UserProfile.objects.filter(subscribed=True).values_list('user__email', flat=True) recipient_list = list(set(raw_subscriptions) | set(subscribed_users)) # union msg = MessageJob(from_address='%s <%s>' % (from_name, from_address), subject=subject, recipient_list=';'.join(recipient_list)) msg.message_body = render_to_string(text_template, {'data': data}) if html_template: msg.message_body_html = render_to_string(html_template, {'data': data}) msg.save() return len(recipient_list)
{ "content_hash": "e5236ed20744b1ce3d7d64b3a38e80c6", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 104, "avg_line_length": 42, "alnum_prop": 0.6721611721611722, "repo_name": "maxcutler/Courant-News", "id": "371afa6ef42005d2511a13bd9efa18988662504f", "size": "1092", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "courant/core/news/notifications.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "47452" }, { "name": "Python", "bytes": "487441" } ], "symlink_target": "" }
class Solution: def searchMatrix(self, matrix: List[List[int]], target: int) -> bool: if len(matrix) == 0 or len(matrix[0]) == 0: return False low = 0 high = len(matrix) * len(matrix[0]) while low < high: mid = (low + high) // 2 row = mid // len(matrix[0]) col = mid % len(matrix[0]) if matrix[row][col] < target: low = mid + 1 elif matrix[row][col] > target: high = mid else: return True return False
{ "content_hash": "19f85c7689233b13b394ba8b9a3163ad", "timestamp": "", "source": "github", "line_count": 19, "max_line_length": 73, "avg_line_length": 30.94736842105263, "alnum_prop": 0.44387755102040816, "repo_name": "jiadaizhao/LeetCode", "id": "dfb75259be7a56650be8978e3c09140dedc04875", "size": "588", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "0001-0100/0074-Search a 2D Matrix/0074-Search a 2D Matrix.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "1140864" }, { "name": "Java", "bytes": "34062" }, { "name": "Python", "bytes": "758800" }, { "name": "Shell", "bytes": "698" }, { "name": "TSQL", "bytes": "774" } ], "symlink_target": "" }
import black import isort def black_format_import_section( contents: str, extension: str, config: isort.settings.Config ) -> str: """Formats the given import section using black.""" if extension.lower() not in ("pyi", "py"): return contents try: return black.format_file_contents( contents, fast=True, mode=black.FileMode( is_pyi=extension.lower() == "pyi", line_length=config.line_length, ), ) except black.NothingChanged: return contents
{ "content_hash": "a5b2c641689a61a4c2911f7ffacd6196", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 64, "avg_line_length": 25.043478260869566, "alnum_prop": 0.5729166666666666, "repo_name": "PyCQA/isort", "id": "f63b817e8ddb2a56ad2d8afa3324430d25dfcb36", "size": "576", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "example_isort_formatting_plugin/example_isort_formatting_plugin.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "158" }, { "name": "Dockerfile", "bytes": "682" }, { "name": "Python", "bytes": "848358" }, { "name": "Shell", "bytes": "1260" } ], "symlink_target": "" }
default_app_config='voxel_globe.order.visualsfm.apps.VisualSfmConfig'
{ "content_hash": "be8f61791de252d3433b95b64ea70048", "timestamp": "", "source": "github", "line_count": 1, "max_line_length": 69, "avg_line_length": 69, "alnum_prop": 0.855072463768116, "repo_name": "andyneff/voxel-globe", "id": "52fc114c3306425c5e1a971e224a6e4895100228", "size": "69", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "voxel_globe/order/visualsfm/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "ApacheConf", "bytes": "21280" }, { "name": "Batchfile", "bytes": "35781" }, { "name": "CSS", "bytes": "1855" }, { "name": "HTML", "bytes": "90597" }, { "name": "JavaScript", "bytes": "131377" }, { "name": "Python", "bytes": "302839" }, { "name": "Shell", "bytes": "17009" } ], "symlink_target": "" }
from flask import Flask, request, g, url_for from flaskext.auth import Auth, AuthUser, logout, Permission, Role, \ permission_required app = Flask(__name__) auth = Auth(app, login_url_name='index') user_create = Permission('user', 'create') user_view = Permission('user', 'view') roles = { 'admin': Role('admin', [user_create, user_view]), 'userview': Role('userview', [user_view]), } def load_role(role_name): """ Function that has to be defined to be able to retrieve the actual role object from the user.role attribute. In this simple case, we could actually assign the role object directly to user.role, in which this function would simply be the identity function (lambda x: x). This extra step becomes needed however in case the role object is more complex and it can't be simply pickled anymore. """ return roles.get(role_name) auth.load_role = load_role @app.before_request def init_users(): """ Initializing users by hardcoding password. Another use case is to read usernames from an external file (like /etc/passwd). """ user = AuthUser(username='user') # Setting and encrypting the hardcoded password. user.set_and_encrypt_password('password', salt='123') # Setting role of the user. user.role = 'userview' # Doing the same for the admin admin = AuthUser(username='admin') admin.set_and_encrypt_password('admin') admin.role = 'admin' # Persisting users for this request. g.users = {'user': user, 'admin': admin, } @permission_required(resource='user', action='view') def user_view(): return 'Users are: {0}.'.format(g.users) @permission_required(resource='user', action='create') def user_create(): return 'I can create users!' def index(): if request.method == 'POST': username = request.form['username'] if username in g.users: # Authenticate and log in! if g.users[username].authenticate(request.form['password']): return ''' <a href="{0}">View users</a><br/> <a href="{1}">Create users</a><br/> <a href="{2}">Logout</a> '''.format(url_for('user_view'), url_for('user_create'), url_for('logout'),) return 'Failure :(' return ''' <form method="POST"> Username: <input type="text" name="username"/><br/> Password: <input type="password" name="password"/><br/> <input type="submit" value="Log in"/> </form> ''' def logout_view(): user_data = logout() if user_data is None: return 'No user to log out.' return 'Logged out user {0}.'.format(user_data['username']) # URLs app.add_url_rule('/', 'index', index, methods=['GET', 'POST']) app.add_url_rule('/users/view/', 'user_view', user_view) app.add_url_rule('/users/create/', 'user_create', user_create) app.add_url_rule('/logout/', 'logout', logout_view) # Secret key needed to use sessions. app.secret_key = 'N4BUdSXUzHxNoO8g' if __name__ == '__main__': app.run(debug=True)
{ "content_hash": "0da322d7f767571e5141fd4982b70da8", "timestamp": "", "source": "github", "line_count": 95, "max_line_length": 76, "avg_line_length": 33.863157894736844, "alnum_prop": 0.5999378302766553, "repo_name": "thedekel/flask-auth", "id": "6b0923db4e206ba7777a5baa103d3045f1e41d8d", "size": "3217", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "examples/permissions.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "34244" } ], "symlink_target": "" }
"""Encryption module for crypto-cookie package """ __author__ = "@philipkershaw" __date__ = "09/07/15" __copyright__ = "(C) 2015 Science and Technology Facilities Council" __license__ = "BSD - see LICENSE file in top-level directory" __contact__ = "Philip.Kershaw@stfc.ac.uk" __revision__ = '$Id$' import os from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend class Encryption(object): '''Class for handling encryption and decryption. It uses symmetric key method''' DEFAULT_MODE = modes.CBC DEFAULT_ALGORITHM = algorithms.AES DEFAULT_IV_LEN = 16 DEFAULT_PADDING_CHAR = ' ' DEFAULT_MSG_BLK_SIZE = 16 def __init__(self, algorithm=DEFAULT_ALGORITHM, mode=DEFAULT_MODE, iv_len=DEFAULT_IV_LEN, padding_char=DEFAULT_PADDING_CHAR, msg_blk_size=DEFAULT_MSG_BLK_SIZE): '''Set hash algorithm and encoding method''' self.algorithm = algorithm self.mode = mode self.iv_len = iv_len self.padding_char = padding_char self.msg_blk_size = msg_blk_size def encrypt(self, msg, key): """Encrypt the input message with the given key. Strings should be 8-bit and are cast this way by default. Unicode is not supported. """ # Ensure 8-bit string msg_ = str(msg) backend = default_backend() iv = os.urandom(self.iv_len) encryption_cipher = Cipher(self.algorithm(key), self.mode(iv), backend=backend) encryptor = encryption_cipher.encryptor() # Ensure length is an even multiple of block size (default 16) msg_len = len(msg) if msg_len % self.msg_blk_size: factor = msg_len // self.msg_blk_size n_padding_chars = self.msg_blk_size * (factor + 1) - len(msg) padded_msg = msg_ + self.padding_char * n_padding_chars else: padded_msg = msg_ cipher_text = encryptor.update(padded_msg) + encryptor.finalize() return cipher_text, iv def decrypt(self, cipher_text, key, iv): backend = default_backend() decryption_cipher = Cipher(self.algorithm(key), self.mode(iv), backend=backend) decryptor = decryption_cipher.decryptor() padded_decrypted_msg = decryptor.update(cipher_text) + \ decryptor.finalize() decrypted_msg = padded_decrypted_msg.rstrip(self.padding_char) return decrypted_msg
{ "content_hash": "8495c362e92996dc42b0d5eeee9cacab", "timestamp": "", "source": "github", "line_count": 75, "max_line_length": 76, "avg_line_length": 36.52, "alnum_prop": 0.5819642205184374, "repo_name": "philipkershaw/crypto-cookie", "id": "0d3fab6f1a0ae3ba20fafae1e042f23954fbda10", "size": "2739", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "crypto_cookie/encryption.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "15832" } ], "symlink_target": "" }
""" Neo4j GraphDB flask connector """ import socket import neo4j from neomodel import db, config from flask_ext import BaseExtension, get_logger from rapydo.utils.logs import re_obscure_pattern log = get_logger(__name__) class NeomodelClient(): def __init__(self, db): self.db = db def cypher(self, query): """ Execute normal neo4j queries """ from neomodel import db try: results, meta = db.cypher_query(query) except Exception as e: raise Exception( "Failed to execute Cypher Query: %s\n%s" % (query, str(e))) return False # log.debug("Graph query.\nResults: %s\nMeta: %s" % (results, meta)) return results class NeoModel(BaseExtension): def set_connection_exception(self): return ( socket.gaierror, neo4j.bolt.connection.ServiceUnavailable ) def custom_connection(self, **kwargs): if len(kwargs) > 0: variables = kwargs else: variables = self.variables self.uri = "bolt://%s:%s@%s:%s" % \ ( # User:Password variables.get('user', 'neo4j'), variables.get('password'), # Host:Port variables.get('host'), variables.get('port'), ) log.very_verbose("URI IS %s" % re_obscure_pattern(self.uri)) config.DATABASE_URL = self.uri # Ensure all DateTimes are provided with a timezone # before being serialised to UTC epoch config.FORCE_TIMEZONE = True # default False db.url = self.uri db.set_connection(self.uri) client = NeomodelClient(db) return client # return db
{ "content_hash": "ed63e535df05fa8a1d6e51422c11566f", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 76, "avg_line_length": 27.045454545454547, "alnum_prop": 0.5591036414565826, "repo_name": "EUDAT-B2STAGE/http-api-base", "id": "8b30d0dfd45dadcf5a3fd67d433191b86f458381", "size": "1810", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "flask_ext/flask_neo4j.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "539952" }, { "name": "HTML", "bytes": "2613" }, { "name": "Python", "bytes": "397468" }, { "name": "Shell", "bytes": "1872" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.apps import AppConfig class UserpermConfig(AppConfig): name = 'userperm'
{ "content_hash": "9e88c6807d196f0613672b2e27c17f80", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 39, "avg_line_length": 18.857142857142858, "alnum_prop": 0.7575757575757576, "repo_name": "wxmgcs/devops", "id": "453667e9f8ee63fadfa1d8842f1d639adbc6be65", "size": "132", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "userperm/apps.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "26631" }, { "name": "HTML", "bytes": "330429" }, { "name": "JavaScript", "bytes": "2154207" }, { "name": "Python", "bytes": "333032" }, { "name": "Shell", "bytes": "77" } ], "symlink_target": "" }
import robocup import constants import play import enum import behavior import main import skills.move import plays.testing.line_up import time # A simple binary clock in the form of a Soccer Play, # using robots to display the current minute in binary class BinaryClock(play.Play): # Setting up global class variables for location to put binaryclock. LeftPoint = -constants.Field.Width / 6 RobotDist = (abs(LeftPoint) / 2) # Perfect alignment LeftPoint -= RobotDist / 2 class State(enum.Enum): # We only need one state, and we'll transition to itself when we want to update. waiting = 0 dummy = 1 def __init__(self): super().__init__(continuous=True) # This is a local variable of this class # Refer to it with self.current_time self.current_time = self.get_time() # Register the states you defined using 'add_state'. # eg: self.add_state(WhichHalf.State.<???>, # behavior.Behavior.State.running) # ---------------------------------------------------- self.add_state(BinaryClock.State.waiting, behavior.Behavior.State.running) self.add_state(BinaryClock.State.dummy, behavior.Behavior.State.running) # Add your state transitions using 'add_transition'. # eg: self.add_transition(behavior.Behavior.State.start, # self.State.<???>, lambda: True, # 'immediately') # eg: self.add_transition(self.State.<???>, self.State.<???>, # lambda: <???>, # 'state change message') # ------------------------------------------------------------ # EXAMPLE TRANSITION, YOU MAY WANT TO REPLACE THIS self.add_transition(behavior.Behavior.State.start, self.State.waiting, lambda: True, 'immediately') self.add_transition( self.State.waiting, self.State.dummy, lambda: self.current_time != self.get_time(), 'Time in minutes changed') self.add_transition(self.State.dummy, self.State.waiting, lambda: True, 'immediately') # Define your own 'on_enter' and 'execute' functions here. # eg: def on_enter_<???>(self): # print('Something?') # eg: def execute_<???>(self): # print('Something?') # --------------------------------------------------------- def get_time(self): return time.localtime().tm_min # Demo of moving to a point. def on_enter_waiting(self): self.current_time = self.get_time() binary = format(self.current_time, '06b') move_point = robocup.Point(BinaryClock.LeftPoint, constants.Field.Length / 3) for i in range(6): if (binary[i] == '1'): self.add_subbehavior( skills.move.Move(move_point), 'Robot' + str(i)) move_point = robocup.Point(move_point.x + BinaryClock.RobotDist, move_point.y) # Swallow all unused robots self.add_subbehavior(plays.testing.line_up.LineUp(), 'line up') def on_exit_waiting(self): self.remove_all_subbehaviors()
{ "content_hash": "daaa737f37ab22b2fc10ccd5f12ab090", "timestamp": "", "source": "github", "line_count": 90, "max_line_length": 88, "avg_line_length": 37.56666666666667, "alnum_prop": 0.5371191955042887, "repo_name": "JNeiger/robocup-software", "id": "b39efad549457256be696f46fd05660f5ecd371e", "size": "3381", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "soccer/gameplay/plays/training/binary_clock.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "2990" }, { "name": "C++", "bytes": "1083792" }, { "name": "CMake", "bytes": "112437" }, { "name": "Dockerfile", "bytes": "2872" }, { "name": "MATLAB", "bytes": "31229" }, { "name": "Makefile", "bytes": "5816" }, { "name": "Python", "bytes": "735005" }, { "name": "Shell", "bytes": "21468" } ], "symlink_target": "" }
'''Generates Go source files from a mojom.Module.''' from itertools import chain import os import re from mojom.generate.template_expander import UseJinja import mojom.generate.generator as generator import mojom.generate.module as mojom import mojom.generate.pack as pack class KindInfo(object): def __init__(self, go_type, encode_suffix, decode_suffix, bit_size): self.go_type = go_type self.encode_suffix = encode_suffix self.decode_suffix = decode_suffix self.bit_size = bit_size _kind_infos = { mojom.BOOL: KindInfo('bool', 'Bool', 'Bool', 1), mojom.INT8: KindInfo('int8', 'Int8', 'Int8', 8), mojom.UINT8: KindInfo('uint8', 'Uint8', 'Uint8', 8), mojom.INT16: KindInfo('int16', 'Int16', 'Int16', 16), mojom.UINT16: KindInfo('uint16', 'Uint16', 'Uint16', 16), mojom.INT32: KindInfo('int32', 'Int32', 'Int32', 32), mojom.UINT32: KindInfo('uint32', 'Uint32', 'Uint32', 32), mojom.FLOAT: KindInfo('float32', 'Float32', 'Float32', 32), mojom.HANDLE: KindInfo( 'system.Handle', 'Handle', 'Handle', 32), mojom.DCPIPE: KindInfo( 'system.ConsumerHandle', 'Handle', 'ConsumerHandle', 32), mojom.DPPIPE: KindInfo( 'system.ProducerHandle', 'Handle', 'ProducerHandle', 32), mojom.MSGPIPE: KindInfo( 'system.MessagePipeHandle', 'Handle', 'MessagePipeHandle', 32), mojom.SHAREDBUFFER: KindInfo( 'system.SharedBufferHandle', 'Handle', 'SharedBufferHandle', 32), mojom.NULLABLE_HANDLE: KindInfo( 'system.Handle', 'Handle', 'Handle', 32), mojom.NULLABLE_DCPIPE: KindInfo( 'system.ConsumerHandle', 'Handle', 'ConsumerHandle', 32), mojom.NULLABLE_DPPIPE: KindInfo( 'system.ProducerHandle', 'Handle', 'ProducerHandle', 32), mojom.NULLABLE_MSGPIPE: KindInfo( 'system.MessagePipeHandle', 'Handle', 'MessagePipeHandle', 32), mojom.NULLABLE_SHAREDBUFFER: KindInfo( 'system.SharedBufferHandle', 'Handle', 'SharedBufferHandle', 32), mojom.INT64: KindInfo('int64', 'Int64', 'Int64', 64), mojom.UINT64: KindInfo('uint64', 'Uint64', 'Uint64', 64), mojom.DOUBLE: KindInfo('float64', 'Float64', 'Float64', 64), mojom.STRING: KindInfo('string', 'String', 'String', 64), mojom.NULLABLE_STRING: KindInfo('string', 'String', 'String', 64), } _imports = {} def GetBitSize(kind): if isinstance(kind, (mojom.Array, mojom.Map, mojom.Struct)): return 64 if isinstance(kind, (mojom.InterfaceRequest, mojom.Interface)): kind = mojom.MSGPIPE if isinstance(kind, mojom.Enum): kind = mojom.INT32 return _kind_infos[kind].bit_size # Returns go type corresponding to provided kind. If |nullable| is true # and kind is nullable adds an '*' to type (example: ?string -> *string). def GetGoType(kind, nullable = True): if nullable and mojom.IsNullableKind(kind): return '*%s' % GetNonNullableGoType(kind) return GetNonNullableGoType(kind) # Returns go type corresponding to provided kind. Ignores nullability of # top-level kind. def GetNonNullableGoType(kind): if mojom.IsStructKind(kind): return '%s' % GetFullName(kind) if mojom.IsArrayKind(kind): if kind.length: return '[%s]%s' % (kind.length, GetGoType(kind.kind)) return '[]%s' % GetGoType(kind.kind) if mojom.IsMapKind(kind): return 'map[%s]%s' % (GetGoType(kind.key_kind), GetGoType(kind.value_kind)) if mojom.IsInterfaceKind(kind): return '%sPointer' % GetFullName(kind) if mojom.IsInterfaceRequestKind(kind): return '%sRequest' % GetFullName(kind.kind) if mojom.IsEnumKind(kind): return GetNameForNestedElement(kind) return _kind_infos[kind].go_type # Splits name to lower-cased parts used for camel-casing # (example: HTTPEntry2FooBar -> ['http', 'entry2', 'foo', 'bar']). def NameToComponent(name): # insert '_' between anything and a Title name (e.g, HTTPEntry2FooBar -> # HTTP_Entry2_FooBar) name = re.sub('([^_])([A-Z][^A-Z_]+)', r'\1_\2', name) # insert '_' between non upper and start of upper blocks (e.g., # HTTP_Entry2_FooBar -> HTTP_Entry2_Foo_Bar) name = re.sub('([^A-Z_])([A-Z])', r'\1_\2', name) return [x.lower() for x in name.split('_')] def UpperCamelCase(name): return ''.join([x.capitalize() for x in NameToComponent(name)]) # Formats a name. If |exported| is true makes name camel-cased with first # letter capital, otherwise does no camel-casing and makes first letter # lower-cased (which is used for making internal names more readable). def FormatName(name, exported=True): if exported: return UpperCamelCase(name) # Leave '_' symbols for unexported names. return name[0].lower() + name[1:] # Returns full name of an imported element based on prebuilt dict |_imports|. # If the |element| is not imported returns formatted name of it. # |element| should have attr 'name'. |exported| argument is used to make # |FormatName()| calls only. def GetFullName(element, exported=True): if not hasattr(element, 'imported_from') or not element.imported_from: return FormatName(element.name, exported) path = 'gen/mojom' if element.imported_from['namespace']: path = '/'.join([path] + element.imported_from['namespace'].split('.')) if path in _imports: return '%s.%s' % (_imports[path], FormatName(element.name, exported)) return FormatName(element.name, exported) # Returns a name for nested elements like enum field or constant. # The returned name consists of camel-cased parts separated by '_'. def GetNameForNestedElement(element): if element.parent_kind: return "%s_%s" % (GetNameForElement(element.parent_kind), FormatName(element.name)) return GetFullName(element) def GetNameForElement(element, exported=True): if (mojom.IsInterfaceKind(element) or mojom.IsStructKind(element)): return GetFullName(element, exported) if isinstance(element, (mojom.EnumField, mojom.Field, mojom.Method, mojom.Parameter)): return FormatName(element.name, exported) if isinstance(element, (mojom.Enum, mojom.Constant, mojom.ConstantValue)): return GetNameForNestedElement(element) raise Exception('Unexpected element: %s' % element) def ExpressionToText(token): if isinstance(token, mojom.EnumValue): return "%s_%s" % (GetNameForNestedElement(token.enum), FormatName(token.name, True)) if isinstance(token, mojom.ConstantValue): return GetNameForNestedElement(token) if isinstance(token, mojom.Constant): return ExpressionToText(token.value) return token def DecodeSuffix(kind): if mojom.IsEnumKind(kind): return DecodeSuffix(mojom.INT32) if mojom.IsInterfaceKind(kind) or mojom.IsInterfaceRequestKind(kind): return DecodeSuffix(mojom.MSGPIPE) return _kind_infos[kind].decode_suffix def EncodeSuffix(kind): if mojom.IsEnumKind(kind): return EncodeSuffix(mojom.INT32) if mojom.IsInterfaceKind(kind) or mojom.IsInterfaceRequestKind(kind): return EncodeSuffix(mojom.MSGPIPE) return _kind_infos[kind].encode_suffix def GetPackage(namespace): if namespace: return namespace.split('.')[-1] return 'mojom' def GetPackagePath(namespace): path = 'mojom' for i in namespace.split('.'): path = os.path.join(path, i) return path def GetStructFromMethod(method): params_class = "%s_%s_Params" % (GetNameForElement(method.interface), GetNameForElement(method)) struct = mojom.Struct(params_class, module=method.interface.module) for param in method.parameters: struct.AddField("in%s" % GetNameForElement(param), param.kind, param.ordinal) struct.packed = pack.PackedStruct(struct) struct.bytes = pack.GetByteLayout(struct.packed) struct.versions = pack.GetVersionInfo(struct.packed) return struct def GetResponseStructFromMethod(method): params_class = "%s_%s_ResponseParams" % (GetNameForElement(method.interface), GetNameForElement(method)) struct = mojom.Struct(params_class, module=method.interface.module) for param in method.response_parameters: struct.AddField("out%s" % GetNameForElement(param), param.kind, param.ordinal) struct.packed = pack.PackedStruct(struct) struct.bytes = pack.GetByteLayout(struct.packed) struct.versions = pack.GetVersionInfo(struct.packed) return struct def GetAllConstants(module): data = [module] + module.structs + module.interfaces constants = [x.constants for x in data] return [i for i in chain.from_iterable(constants)] def GetAllEnums(module): data = [module] + module.structs + module.interfaces enums = [x.enums for x in data] return [i for i in chain.from_iterable(enums)] # Adds an import required to use the provided |element|. # The required import is stored at '_imports'. def AddImport(module, element): if (isinstance(element, mojom.Kind) and mojom.IsNonInterfaceHandleKind(element)): _imports['mojo/public/go/system'] = 'system' return if isinstance(element, mojom.Kind) and mojom.IsInterfaceRequestKind(element): AddImport(module, element.kind) return if not hasattr(element, 'imported_from') or not element.imported_from: return imported = element.imported_from if imported['namespace'] == module.namespace: return path = 'gen/mojom' name = 'mojom' if imported['namespace']: path = '/'.join([path] + imported['namespace'].split('.')) name = '_'.join([name] + imported['namespace'].split('.')) while (name in _imports.values() and _imports[path] != path): name += '_' _imports[path] = name # Scans |module| for elements that require imports and adds all found imports # to '_imports' dict. Returns a list of imports that should include the # generated go file. def GetImports(module): # Imports can only be used in structs, constants, enums, interfaces. all_structs = list(module.structs) for i in module.interfaces: for method in i.methods: all_structs.append(GetStructFromMethod(method)) if method.response_parameters: all_structs.append(GetResponseStructFromMethod(method)) if len(all_structs) > 0 or len(module.interfaces) > 0: _imports['mojo/public/go/bindings'] = 'bindings' for struct in all_structs: for field in struct.fields: AddImport(module, field.kind) # TODO(rogulenko): add these after generating constants and struct defaults. # if field.default: # AddImport(module, field.default) for enum in GetAllEnums(module): for field in enum.fields: if field.value: AddImport(module, field.value) # TODO(rogulenko): add these after generating constants and struct defaults. # for constant in GetAllConstants(module): # AddImport(module, constant.value) imports_list = [] for i in _imports: if i.split('/')[-1] == _imports[i]: imports_list.append('"%s"' % i) else: imports_list.append('%s "%s"' % (_imports[i], i)) return sorted(imports_list) class Generator(generator.Generator): go_filters = { 'array': lambda kind: mojom.Array(kind), 'bit_size': GetBitSize, 'decode_suffix': DecodeSuffix, 'encode_suffix': EncodeSuffix, 'go_type': GetGoType, 'expression_to_text': ExpressionToText, 'is_array': mojom.IsArrayKind, 'is_enum': mojom.IsEnumKind, 'is_handle': mojom.IsAnyHandleKind, 'is_handle_owner': lambda kind: mojom.IsInterfaceKind(kind) or mojom.IsInterfaceRequestKind(kind), 'is_map': mojom.IsMapKind, 'is_none_or_empty': lambda array: array == None or len(array) == 0, 'is_nullable': mojom.IsNullableKind, 'is_pointer': mojom.IsObjectKind, 'is_struct': mojom.IsStructKind, 'name': GetNameForElement, 'response_struct_from_method': GetResponseStructFromMethod, 'struct_from_method': GetStructFromMethod, 'tab_indent': lambda s, size = 1: ('\n' + '\t' * size).join(s.splitlines()) } def GetParameters(self): return { 'enums': GetAllEnums(self.module), 'imports': GetImports(self.module), 'interfaces': self.module.interfaces, 'package': GetPackage(self.module.namespace), 'structs': self.GetStructs(), } @UseJinja('go_templates/source.tmpl', filters=go_filters) def GenerateSource(self): return self.GetParameters() def GenerateFiles(self, args): self.Write(self.GenerateSource(), os.path.join("go", "src", "gen", GetPackagePath(self.module.namespace), '%s.go' % self.module.name)) def GetJinjaParameters(self): return { 'lstrip_blocks': True, 'trim_blocks': True, } def GetGlobals(self): return { 'namespace': self.module.namespace, 'module': self.module, }
{ "content_hash": "6f1514a484e887e85d3f603fbde8e73d", "timestamp": "", "source": "github", "line_count": 334, "max_line_length": 79, "avg_line_length": 38.550898203592816, "alnum_prop": 0.6777726001863933, "repo_name": "sgraham/nope", "id": "cb5a16e7f2a847be87d0cea2d6fd34dc6ccc54df", "size": "13039", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "third_party/mojo/src/mojo/public/tools/bindings/generators/mojom_go_generator.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "AppleScript", "bytes": "6973" }, { "name": "Arduino", "bytes": "464" }, { "name": "Assembly", "bytes": "39967" }, { "name": "C", "bytes": "4061434" }, { "name": "C++", "bytes": "279546186" }, { "name": "CMake", "bytes": "27212" }, { "name": "CSS", "bytes": "919339" }, { "name": "Emacs Lisp", "bytes": "988" }, { "name": "Go", "bytes": "13628" }, { "name": "Groff", "bytes": "5283" }, { "name": "HTML", "bytes": "15989749" }, { "name": "Java", "bytes": "7541683" }, { "name": "JavaScript", "bytes": "32372588" }, { "name": "Lua", "bytes": "16189" }, { "name": "Makefile", "bytes": "40513" }, { "name": "Objective-C", "bytes": "1584184" }, { "name": "Objective-C++", "bytes": "8249988" }, { "name": "PHP", "bytes": "97817" }, { "name": "PLpgSQL", "bytes": "169060" }, { "name": "Perl", "bytes": "63937" }, { "name": "Protocol Buffer", "bytes": "427339" }, { "name": "Python", "bytes": "8346306" }, { "name": "Scheme", "bytes": "10604" }, { "name": "Shell", "bytes": "844553" }, { "name": "Standard ML", "bytes": "4965" }, { "name": "VimL", "bytes": "4075" }, { "name": "XSLT", "bytes": "418" }, { "name": "nesC", "bytes": "18347" } ], "symlink_target": "" }
from twisted.internet.protocol import Factory from twisted.internet import reactor from twisted.protocols import basic from xcaplib.green import XCAPClient from eventlet.twistedutil import deferToGreenThread from eventlet.twistedutil import join_reactor class LineOnlyReceiver(basic.LineOnlyReceiver): def lineReceived(self, line): print 'received: %r' % line if not line: return app, context, node = (line + ' ').split(' ', 3) context = {'u' : 'users', 'g': 'global'}.get(context, context) d = deferToGreenThread(client._get, app, node, globaltree=context=='global') def callback(result): self.transport.write(str(result)) def errback(error): self.transport.write(error.getTraceback()) d.addCallback(callback) d.addErrback(errback) class MyFactory(Factory): protocol = LineOnlyReceiver client = XCAPClient('https://xcap.sipthor.net/xcap-root', 'alice@example.com', '123') reactor.listenTCP(8007, MyFactory()) reactor.run()
{ "content_hash": "03612d7d3084c60cb4e0504ab2e522f7", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 85, "avg_line_length": 33.774193548387096, "alnum_prop": 0.6838586437440306, "repo_name": "2013Commons/HUE-SHARK", "id": "77073d7f926e6fbb98e2094da04d6688f98db1b3", "size": "1047", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "desktop/core/ext-py/eventlet-0.9.14/examples/twisted/twisted_xcap_proxy.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "207947" }, { "name": "C", "bytes": "9992379" }, { "name": "C++", "bytes": "199612" }, { "name": "CSS", "bytes": "419753" }, { "name": "Emacs Lisp", "bytes": "3171" }, { "name": "Java", "bytes": "3683071" }, { "name": "JavaScript", "bytes": "1076553" }, { "name": "Perl", "bytes": "138710" }, { "name": "Python", "bytes": "40522057" }, { "name": "SQL", "bytes": "522" }, { "name": "Shell", "bytes": "27739" }, { "name": "TeX", "bytes": "126420" }, { "name": "XSLT", "bytes": "190688" } ], "symlink_target": "" }
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Quantization'] , ['LinearTrend'] , ['Seasonal_Minute'] , ['ARX'] );
{ "content_hash": "c2621daaee716ec790e8bee3431cbacf", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 90, "avg_line_length": 40.75, "alnum_prop": 0.7177914110429447, "repo_name": "antoinecarme/pyaf", "id": "388304d1df3f2e883082f9a2de3b32f0faffc8c2", "size": "163", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/model_control/detailed/transf_Quantization/model_control_one_enabled_Quantization_LinearTrend_Seasonal_Minute_ARX.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "6773299" }, { "name": "Procfile", "bytes": "24" }, { "name": "Python", "bytes": "54209093" }, { "name": "R", "bytes": "807" }, { "name": "Shell", "bytes": "3619" } ], "symlink_target": "" }
import paddle.trainer_config_helpers.networks as conf_nw import inspect from config_base import __convert_to_v2__ __all__ = [] def __initialize__(): for each_subnetwork in conf_nw.__all__: if each_subnetwork in ['inputs', 'outputs']: continue func = getattr(conf_nw, each_subnetwork) if hasattr(func, 'argspec'): argspec = func.argspec else: argspec = inspect.getargspec(func) if each_subnetwork == 'simple_attention': parents = ['encoded_sequence', 'encoded_proj', 'decoder_state'] else: parents = filter(lambda x: x.startswith('input'), argspec.args) assert len(parents) != 0, each_subnetwork v2_subnet = __convert_to_v2__( each_subnetwork, parent_names=parents, is_default_name='name' in argspec.args) globals()[each_subnetwork] = v2_subnet globals()[each_subnetwork].__name__ = each_subnetwork global __all__ __all__.append(each_subnetwork) __initialize__()
{ "content_hash": "3a6e9f97432f02dae6f055f51d38fac7", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 75, "avg_line_length": 33.21875, "alnum_prop": 0.587958607714017, "repo_name": "cxysteven/Paddle", "id": "9e6644196c8242cc3fed7a4fb1503697e5b59ffb", "size": "1673", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "python/paddle/v2/networks.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "226899" }, { "name": "C++", "bytes": "3159636" }, { "name": "CMake", "bytes": "123472" }, { "name": "CSS", "bytes": "21730" }, { "name": "Cuda", "bytes": "511529" }, { "name": "HTML", "bytes": "8941" }, { "name": "JavaScript", "bytes": "1025" }, { "name": "Perl", "bytes": "11452" }, { "name": "Protocol Buffer", "bytes": "43771" }, { "name": "Python", "bytes": "1022473" }, { "name": "Shell", "bytes": "109781" } ], "symlink_target": "" }
import copy from oslo_serialization import jsonutils import six import yaml from heat.common import exception from heat.common.i18n import _ from heat.engine import attributes from heat.engine import constraints from heat.engine import properties from heat.engine import resource from heat.engine.resources import signal_responder from heat.engine import support class Workflow(signal_responder.SignalResponder, resource.Resource): """A resource that implements Mistral workflow. Workflow represents a process that can be described in a various number of ways and that can do some job interesting to the end user. Each workflow consists of tasks (at least one) describing what exact steps should be made during workflow execution. For detailed description how to use Workflow, read Mistral documentation. """ support_status = support.SupportStatus(version='2015.1') default_client_name = 'mistral' entity = 'workflows' PROPERTIES = ( NAME, TYPE, DESCRIPTION, INPUT, OUTPUT, TASKS, PARAMS, TASK_DEFAULTS, USE_REQUEST_BODY_AS_INPUT ) = ( 'name', 'type', 'description', 'input', 'output', 'tasks', 'params', 'task_defaults', 'use_request_body_as_input' ) _TASKS_KEYS = ( TASK_NAME, TASK_DESCRIPTION, ON_ERROR, ON_COMPLETE, ON_SUCCESS, POLICIES, ACTION, WORKFLOW, PUBLISH, TASK_INPUT, REQUIRES, RETRY, WAIT_BEFORE, WAIT_AFTER, PAUSE_BEFORE, TIMEOUT, WITH_ITEMS, KEEP_RESULT, TARGET, JOIN ) = ( 'name', 'description', 'on_error', 'on_complete', 'on_success', 'policies', 'action', 'workflow', 'publish', 'input', 'requires', 'retry', 'wait_before', 'wait_after', 'pause_before', 'timeout', 'with_items', 'keep_result', 'target', 'join' ) _TASKS_TASK_DEFAULTS = [ ON_ERROR, ON_COMPLETE, ON_SUCCESS, REQUIRES, RETRY, WAIT_BEFORE, WAIT_AFTER, PAUSE_BEFORE, TIMEOUT ] _SIGNAL_DATA_KEYS = ( SIGNAL_DATA_INPUT, SIGNAL_DATA_PARAMS ) = ( 'input', 'params' ) ATTRIBUTES = ( WORKFLOW_DATA, ALARM_URL, EXECUTIONS ) = ( 'data', 'alarm_url', 'executions' ) properties_schema = { NAME: properties.Schema( properties.Schema.STRING, _('Workflow name.') ), TYPE: properties.Schema( properties.Schema.STRING, _('Workflow type.'), constraints=[ constraints.AllowedValues(['direct', 'reverse']) ], required=True, update_allowed=True ), USE_REQUEST_BODY_AS_INPUT: properties.Schema( properties.Schema.BOOLEAN, _('Defines the method in which the request body for signaling a ' 'workflow would be parsed. In case this property is set to ' 'True, the body would be parsed as a simple json where each ' 'key is a workflow input, in other cases body would be parsed ' 'expecting a specific json format with two keys: "input" and ' '"params".'), update_allowed=True, support_status=support.SupportStatus(version='6.0.0') ), DESCRIPTION: properties.Schema( properties.Schema.STRING, _('Workflow description.'), update_allowed=True ), INPUT: properties.Schema( properties.Schema.MAP, _('Dictionary which contains input for workflow.'), update_allowed=True ), OUTPUT: properties.Schema( properties.Schema.MAP, _('Any data structure arbitrarily containing YAQL ' 'expressions that defines workflow output. May be ' 'nested.'), update_allowed=True ), PARAMS: properties.Schema( properties.Schema.MAP, _("Workflow additional parameters. If Workflow is reverse typed, " "params requires 'task_name', which defines initial task."), update_allowed=True ), TASK_DEFAULTS: properties.Schema( properties.Schema.MAP, _("Default settings for some of task " "attributes defined " "at workflow level."), support_status=support.SupportStatus(version='5.0.0'), schema={ ON_SUCCESS: properties.Schema( properties.Schema.LIST, _('List of tasks which will run after ' 'the task has completed successfully.') ), ON_ERROR: properties.Schema( properties.Schema.LIST, _('List of tasks which will run after ' 'the task has completed with an error.') ), ON_COMPLETE: properties.Schema( properties.Schema.LIST, _('List of tasks which will run after ' 'the task has completed regardless of whether ' 'it is successful or not.') ), REQUIRES: properties.Schema( properties.Schema.LIST, _('List of tasks which should be executed before ' 'this task. Used only in reverse workflows.') ), RETRY: properties.Schema( properties.Schema.MAP, _('Defines a pattern how task should be repeated in ' 'case of an error.') ), WAIT_BEFORE: properties.Schema( properties.Schema.INTEGER, _('Defines a delay in seconds that Mistral Engine ' 'should wait before starting a task.') ), WAIT_AFTER: properties.Schema( properties.Schema.INTEGER, _('Defines a delay in seconds that Mistral Engine ' 'should wait after a task has completed before ' 'starting next tasks defined in ' 'on-success, on-error or on-complete.') ), PAUSE_BEFORE: properties.Schema( properties.Schema.BOOLEAN, _('Defines whether Mistral Engine should put the ' 'workflow on hold or not before starting a task.') ), TIMEOUT: properties.Schema( properties.Schema.INTEGER, _('Defines a period of time in seconds after which ' 'a task will be failed automatically ' 'by engine if hasn\'t completed.') ), }, update_allowed=True ), TASKS: properties.Schema( properties.Schema.LIST, _('Dictionary containing workflow tasks.'), schema=properties.Schema( properties.Schema.MAP, schema={ TASK_NAME: properties.Schema( properties.Schema.STRING, _('Task name.'), required=True ), TASK_DESCRIPTION: properties.Schema( properties.Schema.STRING, _('Task description.') ), TASK_INPUT: properties.Schema( properties.Schema.MAP, _('Actual input parameter values of the task.') ), ACTION: properties.Schema( properties.Schema.STRING, _('Name of the action associated with the task. ' 'Either action or workflow may be defined in the ' 'task.') ), WORKFLOW: properties.Schema( properties.Schema.STRING, _('Name of the workflow associated with the task. ' 'Can be defined by intrinsic function get_resource ' 'or by name of the referenced workflow, i.e. ' '{ workflow: wf_name } or ' '{ workflow: { get_resource: wf_name }}. Either ' 'action or workflow may be defined in the task.'), constraints=[ constraints.CustomConstraint('mistral.workflow') ] ), PUBLISH: properties.Schema( properties.Schema.MAP, _('Dictionary of variables to publish to ' 'the workflow context.') ), ON_SUCCESS: properties.Schema( properties.Schema.LIST, _('List of tasks which will run after ' 'the task has completed successfully.') ), ON_ERROR: properties.Schema( properties.Schema.LIST, _('List of tasks which will run after ' 'the task has completed with an error.') ), ON_COMPLETE: properties.Schema( properties.Schema.LIST, _('List of tasks which will run after ' 'the task has completed regardless of whether ' 'it is successful or not.') ), POLICIES: properties.Schema( properties.Schema.MAP, _('Dictionary-like section defining task policies ' 'that influence how Mistral Engine runs tasks. Must ' 'satisfy Mistral DSL v2.'), support_status=support.SupportStatus( status=support.DEPRECATED, version='5.0.0', message=_('Add needed policies directly to ' 'the task, Policy keyword is not ' 'needed'), previous_status=support.SupportStatus( version='2015.1')) ), REQUIRES: properties.Schema( properties.Schema.LIST, _('List of tasks which should be executed before ' 'this task. Used only in reverse workflows.') ), RETRY: properties.Schema( properties.Schema.MAP, _('Defines a pattern how task should be repeated in ' 'case of an error.'), support_status=support.SupportStatus(version='5.0.0') ), WAIT_BEFORE: properties.Schema( properties.Schema.INTEGER, _('Defines a delay in seconds that Mistral Engine ' 'should wait before starting a task.'), support_status=support.SupportStatus(version='5.0.0') ), WAIT_AFTER: properties.Schema( properties.Schema.INTEGER, _('Defines a delay in seconds that Mistral ' 'Engine should wait after ' 'a task has completed before starting next tasks ' 'defined in on-success, on-error or on-complete.'), support_status=support.SupportStatus(version='5.0.0') ), PAUSE_BEFORE: properties.Schema( properties.Schema.BOOLEAN, _('Defines whether Mistral Engine should ' 'put the workflow on hold ' 'or not before starting a task.'), support_status=support.SupportStatus(version='5.0.0') ), TIMEOUT: properties.Schema( properties.Schema.INTEGER, _('Defines a period of time in seconds after which a ' 'task will be failed automatically by engine ' 'if hasn\'t completed.'), support_status=support.SupportStatus(version='5.0.0') ), WITH_ITEMS: properties.Schema( properties.Schema.STRING, _('If configured, it allows to run action or workflow ' 'associated with a task multiple times ' 'on a provided list of items.'), support_status=support.SupportStatus(version='5.0.0') ), KEEP_RESULT: properties.Schema( properties.Schema.BOOLEAN, _('Allowing not to store action results ' 'after task completion.'), support_status=support.SupportStatus(version='5.0.0') ), TARGET: properties.Schema( properties.Schema.STRING, _('It defines an executor to which task action ' 'should be sent to.'), support_status=support.SupportStatus(version='5.0.0') ), JOIN: properties.Schema( properties.Schema.STRING, _('Allows to synchronize multiple parallel workflow ' 'branches and aggregate their data. ' 'Valid inputs: all - the task will run only if ' 'all upstream tasks are completed. ' 'Any numeric value - then the task will run once ' 'at least this number of upstream tasks are ' 'completed and corresponding conditions have ' 'triggered.'), support_status=support.SupportStatus(version='6.0.0') ), }, ), required=True, update_allowed=True, constraints=[constraints.Length(min=1)] ) } attributes_schema = { WORKFLOW_DATA: attributes.Schema( _('A dictionary which contains name and input of the workflow.'), type=attributes.Schema.MAP ), ALARM_URL: attributes.Schema( _("A signed url to create executions for workflows specified in " "Workflow resource."), type=attributes.Schema.STRING ), EXECUTIONS: attributes.Schema( _("List of workflows' executions, each of them is a dictionary " "with information about execution. Each dictionary returns " "values for next keys: id, workflow_name, created_at, " "updated_at, state for current execution state, input, output."), type=attributes.Schema.LIST ) } def get_reference_id(self): return self._workflow_name() def _get_inputs_and_params(self, data): inputs = None params = None if self.properties.get(self.USE_REQUEST_BODY_AS_INPUT): inputs = data else: if data is not None: inputs = data.get(self.SIGNAL_DATA_INPUT) params = data.get(self.SIGNAL_DATA_PARAMS) return inputs, params def _validate_signal_data(self, inputs, params): if inputs is not None: if not isinstance(inputs, dict): message = (_('Input in signal data must be a map, ' 'find a %s') % type(inputs)) raise exception.StackValidationFailed( error=_('Signal data error'), message=message) for key in inputs: if (self.properties.get(self.INPUT) is None or key not in self.properties.get(self.INPUT)): message = _('Unknown input %s') % key raise exception.StackValidationFailed( error=_('Signal data error'), message=message) if params is not None and not isinstance(params, dict): message = (_('Params must be a map, find a ' '%s') % type(params)) raise exception.StackValidationFailed( error=_('Signal data error'), message=message) def validate(self): super(Workflow, self).validate() if self.properties.get(self.TYPE) == 'reverse': params = self.properties.get(self.PARAMS) if params is None or not params.get('task_name'): raise exception.StackValidationFailed( error=_('Mistral resource validation error'), path=[self.name, ('properties' if self.stack.t.VERSION == 'heat_template_version' else 'Properties'), self.PARAMS], message=_("'task_name' is not assigned in 'params' " "in case of reverse type workflow.") ) for task in self.properties.get(self.TASKS): wf_value = task.get(self.WORKFLOW) action_value = task.get(self.ACTION) if wf_value and action_value: raise exception.ResourcePropertyConflict(self.WORKFLOW, self.ACTION) if not wf_value and not action_value: raise exception.PropertyUnspecifiedError(self.WORKFLOW, self.ACTION) if (task.get(self.REQUIRES) is not None and self.properties.get(self.TYPE)) == 'direct': msg = _("task %(task)s contains property 'requires' " "in case of direct workflow. Only reverse workflows " "can contain property 'requires'.") % { 'name': self.name, 'task': task.get(self.TASK_NAME) } raise exception.StackValidationFailed( error=_('Mistral resource validation error'), path=[self.name, ('properties' if self.stack.t.VERSION == 'heat_template_version' else 'Properties'), self.TASKS, task.get(self.TASK_NAME), self.REQUIRES], message=msg) if task.get(self.POLICIES) is not None: for task_item in task.get(self.POLICIES): if task.get(task_item) is not None: msg = _('Property %(policies)s and %(item)s cannot be ' 'used both at one time.') % { 'policies': self.POLICIES, 'item': task_item } raise exception.StackValidationFailed(message=msg) def _workflow_name(self): return self.properties.get(self.NAME) or self.physical_resource_name() def build_tasks(self, props): for task in props[self.TASKS]: current_task = {} wf_value = task.get(self.WORKFLOW) if wf_value is not None: if wf_value in [res.resource_id for res in six.itervalues(self.stack)]: current_task.update({self.WORKFLOW: wf_value}) else: msg = _("No such workflow %s") % wf_value raise ValueError(msg) # backward support for kilo. if task.get(self.POLICIES) is not None: task.update(task.get(self.POLICIES)) task_keys = [key for key in self._TASKS_KEYS if key not in [ self.WORKFLOW, self.TASK_NAME, self.POLICIES ]] for task_prop in task_keys: if task.get(task_prop) is not None: current_task.update( {task_prop.replace('_', '-'): task[task_prop]}) yield {task[self.TASK_NAME]: current_task} def prepare_properties(self, props): """Prepare correct YAML-formatted definition for Mistral.""" defn_name = self._workflow_name() definition = {'version': '2.0', defn_name: {self.TYPE: props.get(self.TYPE), self.DESCRIPTION: props.get( self.DESCRIPTION), self.OUTPUT: props.get(self.OUTPUT)}} for key in list(definition[defn_name].keys()): if definition[defn_name][key] is None: del definition[defn_name][key] if props.get(self.INPUT) is not None: definition[defn_name][self.INPUT] = list(props.get( self.INPUT).keys()) definition[defn_name][self.TASKS] = {} for task in self.build_tasks(props): definition.get(defn_name).get(self.TASKS).update(task) if props.get(self.TASK_DEFAULTS) is not None: definition[defn_name][self.TASK_DEFAULTS.replace('_', '-')] = { k.replace('_', '-'): v for k, v in six.iteritems(props.get(self.TASK_DEFAULTS)) if v} return yaml.dump(definition, Dumper=yaml.CSafeDumper if hasattr(yaml, 'CSafeDumper') else yaml.SafeDumper) def handle_create(self): super(Workflow, self).handle_create() props = self.prepare_properties(self.properties) try: workflow = self.client().workflows.create(props) except Exception as ex: raise exception.ResourceFailure(ex, self) # NOTE(prazumovsky): Mistral uses unique names for resource # identification. self.resource_id_set(workflow[0].name) def handle_signal(self, details=None): inputs, params = self._get_inputs_and_params(details) self._validate_signal_data(inputs, params) inputs_result = copy.deepcopy(self.properties[self.INPUT]) params_result = copy.deepcopy(self.properties[self.PARAMS]) or {} # NOTE(prazumovsky): Signal can contains some data, interesting # for workflow, e.g. inputs. So, if signal data contains input # we update override inputs, other leaved defined in template. if inputs: inputs_result.update(inputs) if params: params_result.update(params) try: execution = self.client().executions.create( self._workflow_name(), jsonutils.dumps(inputs_result), **params_result) except Exception as ex: raise exception.ResourceFailure(ex, self) executions = [execution.id] if self.EXECUTIONS in self.data(): executions.extend(self.data().get(self.EXECUTIONS).split(',')) self.data_set(self.EXECUTIONS, ','.join(executions)) def handle_update(self, json_snippet, tmpl_diff, prop_diff): update_allowed = [self.INPUT, self.PARAMS, self.DESCRIPTION] for prop in update_allowed: if prop in prop_diff: del prop_diff[prop] if len(prop_diff) > 0: props = json_snippet.properties(self.properties_schema, self.context) new_props = self.prepare_properties(props) try: workflow = self.client().workflows.update(new_props) except Exception as ex: raise exception.ResourceFailure(ex, self) self.data_set(self.NAME, workflow[0].name) self.resource_id_set(workflow[0].name) def _delete_executions(self): if self.data().get(self.EXECUTIONS): for id in self.data().get(self.EXECUTIONS).split(','): with self.client_plugin().ignore_not_found: self.client().executions.delete(id) self.data_delete('executions') def handle_delete(self): self._delete_executions() return super(Workflow, self).handle_delete() def _resolve_attribute(self, name): if name == self.EXECUTIONS: if self.EXECUTIONS not in self.data(): return [] def parse_execution_response(execution): return { 'id': execution.id, 'workflow_name': execution.workflow_name, 'created_at': execution.created_at, 'updated_at': execution.updated_at, 'state': execution.state, 'input': jsonutils.loads(six.text_type(execution.input)), 'output': jsonutils.loads(six.text_type(execution.output)) } return [parse_execution_response( self.client().executions.get(exec_id)) for exec_id in self.data().get(self.EXECUTIONS).split(',')] elif name == self.WORKFLOW_DATA: return {self.NAME: self.resource_id, self.INPUT: self.properties.get(self.INPUT)} elif name == self.ALARM_URL and self.resource_id is not None: return six.text_type(self._get_ec2_signed_url()) def resource_mapping(): return { 'OS::Mistral::Workflow': Workflow }
{ "content_hash": "474c0bc94679e3ba7c6f57e96c4b97c8", "timestamp": "", "source": "github", "line_count": 593, "max_line_length": 79, "avg_line_length": 44.36424957841484, "alnum_prop": 0.5008742587805991, "repo_name": "cwolferh/heat-scratch", "id": "7821e6c50317266d25b85567f4bbed10d59a7b3c", "size": "26883", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "heat/engine/resources/openstack/mistral/workflow.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "8338769" }, { "name": "Shell", "bytes": "56516" } ], "symlink_target": "" }
""" ============================================================= Online Latent Dirichlet Allocation with variational inference ============================================================= This implementation is modified from Matthew D. Hoffman's onlineldavb code Link: http://www.cs.princeton.edu/~mdhoffma/code/onlineldavb.tar """ # Author: Chyi-Kwei Yau # Author: Matthew D. Hoffman (original onlineldavb implementation) import numpy as np import scipy.sparse as sp from scipy.special import gammaln from ..base import BaseEstimator, TransformerMixin from ..utils import (check_random_state, check_array, gen_batches, gen_even_slices, _get_n_jobs) from ..utils.validation import check_non_negative from ..utils.extmath import logsumexp from ..externals.joblib import Parallel, delayed from ..externals.six.moves import xrange from ..exceptions import NotFittedError from ._online_lda import (mean_change, _dirichlet_expectation_1d, _dirichlet_expectation_2d) EPS = np.finfo(np.float).eps def _update_doc_distribution(X, exp_topic_word_distr, doc_topic_prior, max_iters, mean_change_tol, cal_sstats, random_state): """E-step: update document-topic distribution. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. exp_topic_word_distr : dense matrix, shape=(n_topics, n_features) Exponential value of expection of log topic word distribution. In the literature, this is `exp(E[log(beta)])`. doc_topic_prior : float Prior of document topic distribution `theta`. max_iters : int Max number of iterations for updating document topic distribution in the E-step. mean_change_tol : float Stopping tolerance for updating document topic distribution in E-setp. cal_sstats : boolean Parameter that indicate to calculate sufficient statistics or not. Set `cal_sstats` to `True` when we need to run M-step. random_state : RandomState instance or None Parameter that indicate how to initialize document topic distribution. Set `random_state` to None will initialize document topic distribution to a constant number. Returns ------- (doc_topic_distr, suff_stats) : `doc_topic_distr` is unnormalized topic distribution for each document. In the literature, this is `gamma`. we can calculate `E[log(theta)]` from it. `suff_stats` is expected sufficient statistics for the M-step. When `cal_sstats == False`, this will be None. """ is_sparse_x = sp.issparse(X) n_samples, n_features = X.shape n_topics = exp_topic_word_distr.shape[0] if random_state: doc_topic_distr = random_state.gamma(100., 0.01, (n_samples, n_topics)) else: doc_topic_distr = np.ones((n_samples, n_topics)) # In the literature, this is `exp(E[log(theta)])` exp_doc_topic = np.exp(_dirichlet_expectation_2d(doc_topic_distr)) # diff on `component_` (only calculate it when `cal_diff` is True) suff_stats = np.zeros(exp_topic_word_distr.shape) if cal_sstats else None if is_sparse_x: X_data = X.data X_indices = X.indices X_indptr = X.indptr for idx_d in xrange(n_samples): if is_sparse_x: ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]] cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]] else: ids = np.nonzero(X[idx_d, :])[0] cnts = X[idx_d, ids] doc_topic_d = doc_topic_distr[idx_d, :] # The next one is a copy, since the inner loop overwrites it. exp_doc_topic_d = exp_doc_topic[idx_d, :].copy() exp_topic_word_d = exp_topic_word_distr[:, ids] # Iterate between `doc_topic_d` and `norm_phi` until convergence for _ in xrange(0, max_iters): last_d = doc_topic_d # The optimal phi_{dwk} is proportional to # exp(E[log(theta_{dk})]) * exp(E[log(beta_{dw})]). norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS doc_topic_d = (exp_doc_topic_d * np.dot(cnts / norm_phi, exp_topic_word_d.T)) # Note: adds doc_topic_prior to doc_topic_d, in-place. _dirichlet_expectation_1d(doc_topic_d, doc_topic_prior, exp_doc_topic_d) if mean_change(last_d, doc_topic_d) < mean_change_tol: break doc_topic_distr[idx_d, :] = doc_topic_d # Contribution of document d to the expected sufficient # statistics for the M step. if cal_sstats: norm_phi = np.dot(exp_doc_topic_d, exp_topic_word_d) + EPS suff_stats[:, ids] += np.outer(exp_doc_topic_d, cnts / norm_phi) return (doc_topic_distr, suff_stats) class LatentDirichletAllocation(BaseEstimator, TransformerMixin): """Latent Dirichlet Allocation with online variational Bayes algorithm .. versionadded:: 0.17 Read more in the :ref:`User Guide <LatentDirichletAllocation>`. Parameters ---------- n_topics : int, optional (default=10) Number of topics. doc_topic_prior : float, optional (default=None) Prior of document topic distribution `theta`. If the value is None, defaults to `1 / n_topics`. In the literature, this is called `alpha`. topic_word_prior : float, optional (default=None) Prior of topic word distribution `beta`. If the value is None, defaults to `1 / n_topics`. In the literature, this is called `eta`. learning_method : 'batch' | 'online', default='online' Method used to update `_component`. Only used in `fit` method. In general, if the data size is large, the online update will be much faster than the batch update. Valid options:: 'batch': Batch variational Bayes method. Use all training data in each EM update. Old `components_` will be overwritten in each iteration. 'online': Online variational Bayes method. In each EM update, use mini-batch of training data to update the ``components_`` variable incrementally. The learning rate is controlled by the ``learning_decay`` and the ``learning_offset`` parameters. learning_decay : float, optional (default=0.7) It is a parameter that control learning rate in the online learning method. The value should be set between (0.5, 1.0] to guarantee asymptotic convergence. When the value is 0.0 and batch_size is ``n_samples``, the update method is same as batch learning. In the literature, this is called kappa. learning_offset : float, optional (default=10.) A (positive) parameter that downweights early iterations in online learning. It should be greater than 1.0. In the literature, this is called tau_0. max_iter : integer, optional (default=10) The maximum number of iterations. total_samples : int, optional (default=1e6) Total number of documents. Only used in the `partial_fit` method. batch_size : int, optional (default=128) Number of documents to use in each EM iteration. Only used in online learning. evaluate_every : int optional (default=0) How often to evaluate perplexity. Only used in `fit` method. set it to 0 or and negative number to not evalute perplexity in training at all. Evaluating perplexity can help you check convergence in training process, but it will also increase total training time. Evaluating perplexity in every iteration might increase training time up to two-fold. perp_tol : float, optional (default=1e-1) Perplexity tolerance in batch learning. Only used when ``evaluate_every`` is greater than 0. mean_change_tol : float, optional (default=1e-3) Stopping tolerance for updating document topic distribution in E-step. max_doc_update_iter : int (default=100) Max number of iterations for updating document topic distribution in the E-step. n_jobs : int, optional (default=1) The number of jobs to use in the E-step. If -1, all CPUs are used. For ``n_jobs`` below -1, (n_cpus + 1 + n_jobs) are used. verbose : int, optional (default=0) Verbosity level. random_state : int or RandomState instance or None, optional (default=None) Pseudo-random number generator seed control. Attributes ---------- components_ : array, [n_topics, n_features] Topic word distribution. ``components_[i, j]`` represents word j in topic `i`. In the literature, this is called lambda. n_batch_iter_ : int Number of iterations of the EM step. n_iter_ : int Number of passes over the dataset. References ---------- [1] "Online Learning for Latent Dirichlet Allocation", Matthew D. Hoffman, David M. Blei, Francis Bach, 2010 [2] "Stochastic Variational Inference", Matthew D. Hoffman, David M. Blei, Chong Wang, John Paisley, 2013 [3] Matthew D. Hoffman's onlineldavb code. Link: http://www.cs.princeton.edu/~mdhoffma/code/onlineldavb.tar """ def __init__(self, n_topics=10, doc_topic_prior=None, topic_word_prior=None, learning_method='online', learning_decay=.7, learning_offset=10., max_iter=10, batch_size=128, evaluate_every=-1, total_samples=1e6, perp_tol=1e-1, mean_change_tol=1e-3, max_doc_update_iter=100, n_jobs=1, verbose=0, random_state=None): self.n_topics = n_topics self.doc_topic_prior = doc_topic_prior self.topic_word_prior = topic_word_prior self.learning_method = learning_method self.learning_decay = learning_decay self.learning_offset = learning_offset self.max_iter = max_iter self.batch_size = batch_size self.evaluate_every = evaluate_every self.total_samples = total_samples self.perp_tol = perp_tol self.mean_change_tol = mean_change_tol self.max_doc_update_iter = max_doc_update_iter self.n_jobs = n_jobs self.verbose = verbose self.random_state = random_state def _check_params(self): """Check model parameters.""" if self.n_topics <= 0: raise ValueError("Invalid 'n_topics' parameter: %r" % self.n_topics) if self.total_samples <= 0: raise ValueError("Invalid 'total_samples' parameter: %r" % self.total_samples) if self.learning_offset < 0: raise ValueError("Invalid 'learning_offset' parameter: %r" % self.learning_offset) if self.learning_method not in ("batch", "online"): raise ValueError("Invalid 'learning_method' parameter: %r" % self.learning_method) def _init_latent_vars(self, n_features): """Initialize latent variables.""" self.random_state_ = check_random_state(self.random_state) self.n_batch_iter_ = 1 self.n_iter_ = 0 if self.doc_topic_prior is None: self.doc_topic_prior_ = 1. / self.n_topics else: self.doc_topic_prior_ = self.doc_topic_prior if self.topic_word_prior is None: self.topic_word_prior_ = 1. / self.n_topics else: self.topic_word_prior_ = self.topic_word_prior init_gamma = 100. init_var = 1. / init_gamma # In the literature, this is called `lambda` self.components_ = self.random_state_.gamma( init_gamma, init_var, (self.n_topics, n_features)) # In the literature, this is `exp(E[log(beta)])` self.exp_dirichlet_component_ = np.exp( _dirichlet_expectation_2d(self.components_)) def _e_step(self, X, cal_sstats, random_init, parallel=None): """E-step in EM update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. cal_sstats : boolean Parameter that indicate whether to calculate sufficient statistics or not. Set ``cal_sstats`` to True when we need to run M-step. random_init : boolean Parameter that indicate whether to initialize document topic distribution randomly in the E-step. Set it to True in training steps. parallel : joblib.Parallel (optional) Pre-initialized instance of joblib.Parallel. Returns ------- (doc_topic_distr, suff_stats) : `doc_topic_distr` is unnormailzed topic distribution for each document. In the literature, this is called `gamma`. `suff_stats` is expected sufficient statistics for the M-step. When `cal_sstats == False`, it will be None. """ # Run e-step in parallel random_state = self.random_state_ if random_init else None # TODO: make Parallel._effective_n_jobs public instead? n_jobs = _get_n_jobs(self.n_jobs) if parallel is None: parallel = Parallel(n_jobs=n_jobs, verbose=self.verbose) results = parallel( delayed(_update_doc_distribution)(X[idx_slice, :], self.exp_dirichlet_component_, self.doc_topic_prior_, self.max_doc_update_iter, self.mean_change_tol, cal_sstats, random_state) for idx_slice in gen_even_slices(X.shape[0], n_jobs)) # merge result doc_topics, sstats_list = zip(*results) doc_topic_distr = np.vstack(doc_topics) if cal_sstats: # This step finishes computing the sufficient statistics for the # M-step. suff_stats = np.zeros(self.components_.shape) for sstats in sstats_list: suff_stats += sstats suff_stats *= self.exp_dirichlet_component_ else: suff_stats = None return (doc_topic_distr, suff_stats) def _em_step(self, X, total_samples, batch_update, parallel=None): """EM update for 1 iteration. update `_component` by batch VB or online VB. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. total_samples : integer Total umber of documents. It is only used when batch_update is `False`. batch_update : boolean Parameter that controls updating method. `True` for batch learning, `False` for online learning. parallel : joblib.Parallel Pre-initialized instance of joblib.Parallel Returns ------- doc_topic_distr : array, shape=(n_samples, n_topics) Unnormalized document topic distribution. """ # E-step _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True, parallel=parallel) # M-step if batch_update: self.components_ = self.topic_word_prior_ + suff_stats else: # online update # In the literature, the weight is `rho` weight = np.power(self.learning_offset + self.n_batch_iter_, -self.learning_decay) doc_ratio = float(total_samples) / X.shape[0] self.components_ *= (1 - weight) self.components_ += (weight * (self.topic_word_prior_ + doc_ratio * suff_stats)) # update `component_` related variables self.exp_dirichlet_component_ = np.exp( _dirichlet_expectation_2d(self.components_)) self.n_batch_iter_ += 1 return def _check_non_neg_array(self, X, whom): """check X format check X format and make sure no negative value in X. Parameters ---------- X : array-like or sparse matrix """ X = check_array(X, accept_sparse='csr') check_non_negative(X, whom) return X def partial_fit(self, X, y=None): """Online VB with Mini-Batch update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- self """ self._check_params() X = self._check_non_neg_array(X, "LatentDirichletAllocation.partial_fit") n_samples, n_features = X.shape batch_size = self.batch_size # initialize parameters or check if not hasattr(self, 'components_'): self._init_latent_vars(n_features) if n_features != self.components_.shape[1]: raise ValueError( "The provided data has %d dimensions while " "the model was trained with feature size %d." % (n_features, self.components_.shape[1])) n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=self.verbose) as parallel: for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=self.total_samples, batch_update=False, parallel=parallel) return self def fit(self, X, y=None): """Learn model for the data X with variational Bayes method. When `learning_method` is 'online', use mini-batch update. Otherwise, use batch update. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- self """ self._check_params() X = self._check_non_neg_array(X, "LatentDirichletAllocation.fit") n_samples, n_features = X.shape max_iter = self.max_iter evaluate_every = self.evaluate_every learning_method = self.learning_method batch_size = self.batch_size # initialize parameters self._init_latent_vars(n_features) # change to perplexity later last_bound = None n_jobs = _get_n_jobs(self.n_jobs) with Parallel(n_jobs=n_jobs, verbose=self.verbose) as parallel: for i in xrange(max_iter): if learning_method == 'online': for idx_slice in gen_batches(n_samples, batch_size): self._em_step(X[idx_slice, :], total_samples=n_samples, batch_update=False, parallel=parallel) else: # batch update self._em_step(X, total_samples=n_samples, batch_update=True, parallel=parallel) # check perplexity if evaluate_every > 0 and (i + 1) % evaluate_every == 0: doc_topics_distr, _ = self._e_step(X, cal_sstats=False, random_init=False) bound = self.perplexity(X, doc_topics_distr, sub_sampling=False) if self.verbose: print('iteration: %d, perplexity: %.4f' % (i + 1, bound)) if last_bound and abs(last_bound - bound) < self.perp_tol: break last_bound = bound self.n_iter_ += 1 return self def transform(self, X): """Transform data X according to the fitted model. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- doc_topic_distr : shape=(n_samples, n_topics) Document topic distribution for X. """ if not hasattr(self, 'components_'): raise NotFittedError("no 'components_' attribute in model." " Please fit model first.") # make sure feature size is the same in fitted model and in X X = self._check_non_neg_array(X, "LatentDirichletAllocation.transform") n_samples, n_features = X.shape if n_features != self.components_.shape[1]: raise ValueError( "The provided data has %d dimensions while " "the model was trained with feature size %d." % (n_features, self.components_.shape[1])) doc_topic_distr, _ = self._e_step(X, cal_sstats=False, random_init=False) return doc_topic_distr def _approx_bound(self, X, doc_topic_distr, sub_sampling): """Estimate the variational bound. Estimate the variational bound over "all documents" using only the documents passed in as X. Since log-likelihood of each word cannot be computed directly, we use this bound to estimate it. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. doc_topic_distr : array, shape=(n_samples, n_topics) Document topic distribution. In the literature, this is called gamma. sub_sampling : boolean, optional, (default=False) Compensate for subsampling of documents. It is used in calculate bound in online learning. Returns ------- score : float """ def _loglikelihood(prior, distr, dirichlet_distr, size): # calculate log-likelihood score = np.sum((prior - distr) * dirichlet_distr) score += np.sum(gammaln(distr) - gammaln(prior)) score += np.sum(gammaln(prior * size) - gammaln(np.sum(distr, 1))) return score is_sparse_x = sp.issparse(X) n_samples, n_topics = doc_topic_distr.shape n_features = self.components_.shape[1] score = 0 dirichlet_doc_topic = _dirichlet_expectation_2d(doc_topic_distr) dirichlet_component_ = _dirichlet_expectation_2d(self.components_) doc_topic_prior = self.doc_topic_prior_ topic_word_prior = self.topic_word_prior_ if is_sparse_x: X_data = X.data X_indices = X.indices X_indptr = X.indptr # E[log p(docs | theta, beta)] for idx_d in xrange(0, n_samples): if is_sparse_x: ids = X_indices[X_indptr[idx_d]:X_indptr[idx_d + 1]] cnts = X_data[X_indptr[idx_d]:X_indptr[idx_d + 1]] else: ids = np.nonzero(X[idx_d, :])[0] cnts = X[idx_d, ids] temp = (dirichlet_doc_topic[idx_d, :, np.newaxis] + dirichlet_component_[:, ids]) norm_phi = logsumexp(temp) score += np.dot(cnts, norm_phi) # compute E[log p(theta | alpha) - log q(theta | gamma)] score += _loglikelihood(doc_topic_prior, doc_topic_distr, dirichlet_doc_topic, self.n_topics) # Compensate for the subsampling of the population of documents if sub_sampling: doc_ratio = float(self.total_samples) / n_samples score *= doc_ratio # E[log p(beta | eta) - log q (beta | lambda)] score += _loglikelihood(topic_word_prior, self.components_, dirichlet_component_, n_features) return score def score(self, X, y=None): """Calculate approximate log-likelihood as score. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Document word matrix. Returns ------- score : float Use approximate bound as score. """ X = self._check_non_neg_array(X, "LatentDirichletAllocation.score") doc_topic_distr = self.transform(X) score = self._approx_bound(X, doc_topic_distr, sub_sampling=False) return score def perplexity(self, X, doc_topic_distr=None, sub_sampling=False): """Calculate approximate perplexity for data X. Perplexity is defined as exp(-1. * log-likelihood per word) Parameters ---------- X : array-like or sparse matrix, [n_samples, n_features] Document word matrix. doc_topic_distr : None or array, shape=(n_samples, n_topics) Document topic distribution. If it is None, it will be generated by applying transform on X. Returns ------- score : float Perplexity score. """ if not hasattr(self, 'components_'): raise NotFittedError("no 'components_' attribute in model." " Please fit model first.") X = self._check_non_neg_array(X, "LatentDirichletAllocation.perplexity") if doc_topic_distr is None: doc_topic_distr = self.transform(X) else: n_samples, n_topics = doc_topic_distr.shape if n_samples != X.shape[0]: raise ValueError("Number of samples in X and doc_topic_distr" " do not match.") if n_topics != self.n_topics: raise ValueError("Number of topics does not match.") current_samples = X.shape[0] bound = self._approx_bound(X, doc_topic_distr, sub_sampling) if sub_sampling: word_cnt = X.sum() * (float(self.total_samples) / current_samples) else: word_cnt = X.sum() perword_bound = bound / word_cnt return np.exp(-1.0 * perword_bound)
{ "content_hash": "b703977eb1d3deaeb6aceaa63ba677f1", "timestamp": "", "source": "github", "line_count": 709, "max_line_length": 79, "avg_line_length": 37.44005641748942, "alnum_prop": 0.571294029007346, "repo_name": "nmayorov/scikit-learn", "id": "42bef1968fd9023b1d3a95533f418e9e27c4651a", "size": "26545", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "sklearn/decomposition/online_lda.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "1786" }, { "name": "C", "bytes": "385829" }, { "name": "C++", "bytes": "139482" }, { "name": "Makefile", "bytes": "1388" }, { "name": "PowerShell", "bytes": "13427" }, { "name": "Python", "bytes": "5344495" }, { "name": "Shell", "bytes": "4031" } ], "symlink_target": "" }
"Memcached cache backend" import pickle import re import time from django.core.cache.backends.base import DEFAULT_TIMEOUT, BaseCache from django.utils.functional import cached_property class BaseMemcachedCache(BaseCache): def __init__(self, server, params, library, value_not_found_exception): super().__init__(params) if isinstance(server, str): self._servers = re.split('[;,]', server) else: self._servers = server # The exception type to catch from the underlying library for a key # that was not found. This is a ValueError for python-memcache, # pylibmc.NotFound for pylibmc, and cmemcache will return None without # raising an exception. self.LibraryValueNotFoundException = value_not_found_exception self._lib = library self._options = params.get('OPTIONS') or {} @property def _cache(self): """ Implement transparent thread-safe access to a memcached client. """ if getattr(self, '_client', None) is None: self._client = self._lib.Client(self._servers, **self._options) return self._client def get_backend_timeout(self, timeout=DEFAULT_TIMEOUT): """ Memcached deals with long (> 30 days) timeouts in a special way. Call this function to obtain a safe value for your timeout. """ if timeout == DEFAULT_TIMEOUT: timeout = self.default_timeout if timeout is None: # Using 0 in memcache sets a non-expiring timeout. return 0 elif int(timeout) == 0: # Other cache backends treat 0 as set-and-expire. To achieve this # in memcache backends, a negative timeout must be passed. timeout = -1 if timeout > 2592000: # 60*60*24*30, 30 days # See https://github.com/memcached/memcached/wiki/Programming#expiration # "Expiration times can be set from 0, meaning "never expire", to # 30 days. Any time higher than 30 days is interpreted as a Unix # timestamp date. If you want to expire an object on January 1st of # next year, this is how you do that." # # This means that we have to switch to absolute timestamps. timeout += int(time.time()) return int(timeout) def add(self, key, value, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_key(key, version=version) return self._cache.add(key, value, self.get_backend_timeout(timeout)) def get(self, key, default=None, version=None): key = self.make_key(key, version=version) return self._cache.get(key, default) def set(self, key, value, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_key(key, version=version) if not self._cache.set(key, value, self.get_backend_timeout(timeout)): # make sure the key doesn't keep its old value in case of failure to set (memcached's 1MB limit) self._cache.delete(key) def delete(self, key, version=None): key = self.make_key(key, version=version) return bool(self._cache.delete(key)) def get_many(self, keys, version=None): key_map = {self.make_key(key, version=version): key for key in keys} ret = self._cache.get_multi(key_map.keys()) return {key_map[k]: v for k, v in ret.items()} def close(self, **kwargs): # Many clients don't clean up connections properly. self._cache.disconnect_all() def incr(self, key, delta=1, version=None): key = self.make_key(key, version=version) # memcached doesn't support a negative delta if delta < 0: return self._cache.decr(key, -delta) try: val = self._cache.incr(key, delta) # python-memcache responds to incr on nonexistent keys by # raising a ValueError, pylibmc by raising a pylibmc.NotFound # and Cmemcache returns None. In all cases, # we should raise a ValueError though. except self.LibraryValueNotFoundException: val = None if val is None: raise ValueError("Key '%s' not found" % key) return val def decr(self, key, delta=1, version=None): key = self.make_key(key, version=version) # memcached doesn't support a negative delta if delta < 0: return self._cache.incr(key, -delta) try: val = self._cache.decr(key, delta) # python-memcache responds to incr on nonexistent keys by # raising a ValueError, pylibmc by raising a pylibmc.NotFound # and Cmemcache returns None. In all cases, # we should raise a ValueError though. except self.LibraryValueNotFoundException: val = None if val is None: raise ValueError("Key '%s' not found" % key) return val def set_many(self, data, timeout=DEFAULT_TIMEOUT, version=None): safe_data = {} original_keys = {} for key, value in data.items(): safe_key = self.make_key(key, version=version) safe_data[safe_key] = value original_keys[safe_key] = key failed_keys = self._cache.set_multi(safe_data, self.get_backend_timeout(timeout)) return [original_keys[k] for k in failed_keys] def delete_many(self, keys, version=None): self._cache.delete_multi(self.make_key(key, version=version) for key in keys) def clear(self): self._cache.flush_all() class MemcachedCache(BaseMemcachedCache): "An implementation of a cache binding using python-memcached" def __init__(self, server, params): import memcache super().__init__(server, params, library=memcache, value_not_found_exception=ValueError) @property def _cache(self): if getattr(self, '_client', None) is None: client_kwargs = {'pickleProtocol': pickle.HIGHEST_PROTOCOL} client_kwargs.update(self._options) self._client = self._lib.Client(self._servers, **client_kwargs) return self._client def touch(self, key, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_key(key, version=version) return self._cache.touch(key, self.get_backend_timeout(timeout)) != 0 def get(self, key, default=None, version=None): key = self.make_key(key, version=version) val = self._cache.get(key) # python-memcached doesn't support default values in get(). # https://github.com/linsomniac/python-memcached/issues/159 # Remove this method if that issue is fixed. if val is None: return default return val def delete(self, key, version=None): # python-memcached's delete() returns True when key doesn't exist. # https://github.com/linsomniac/python-memcached/issues/170 # Call _deletetouch() without the NOT_FOUND in expected results. key = self.make_key(key, version=version) return bool(self._cache._deletetouch([b'DELETED'], 'delete', key)) class PyLibMCCache(BaseMemcachedCache): "An implementation of a cache binding using pylibmc" def __init__(self, server, params): import pylibmc super().__init__(server, params, library=pylibmc, value_not_found_exception=pylibmc.NotFound) @cached_property def _cache(self): return self._lib.Client(self._servers, **self._options) def touch(self, key, timeout=DEFAULT_TIMEOUT, version=None): key = self.make_key(key, version=version) if timeout == 0: return self._cache.delete(key) return self._cache.touch(key, self.get_backend_timeout(timeout)) def close(self, **kwargs): # libmemcached manages its own connections. Don't call disconnect_all() # as it resets the failover state and creates unnecessary reconnects. pass
{ "content_hash": "1f8d0f56028e8682775b5353fcdc5764", "timestamp": "", "source": "github", "line_count": 200, "max_line_length": 108, "avg_line_length": 39.885, "alnum_prop": 0.629058543312022, "repo_name": "simonw/django", "id": "8202005045d359d3788fa86a443ff40d5e9b9f1f", "size": "7977", "binary": false, "copies": "13", "ref": "refs/heads/master", "path": "django/core/cache/backends/memcached.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "85351" }, { "name": "HTML", "bytes": "227641" }, { "name": "JavaScript", "bytes": "258434" }, { "name": "Makefile", "bytes": "125" }, { "name": "Python", "bytes": "13501540" }, { "name": "Shell", "bytes": "809" }, { "name": "Smarty", "bytes": "142" } ], "symlink_target": "" }
""" Sphinx plugins for Django documentation. """ import docutils.nodes import docutils.transforms import sphinx import sphinx.addnodes import sphinx.directives import sphinx.environment import sphinx.roles from docutils import nodes def setup(app): app.add_crossref_type( directivename="setting", rolename="setting", indextemplate="pair: %s; setting", ) app.add_crossref_type( directivename="templatetag", rolename="ttag", indextemplate="pair: %s; template tag", ) app.add_crossref_type( directivename="templatefilter", rolename="tfilter", indextemplate="pair: %s; template filter", ) app.add_crossref_type( directivename="fieldlookup", rolename="lookup", indextemplate="pair: %s, field lookup type", ) app.add_description_unit( directivename="django-admin", rolename="djadmin", indextemplate="pair: %s; django-admin command", parse_node=parse_django_admin_node, ) app.add_description_unit( directivename="django-admin-option", rolename="djadminopt", indextemplate="pair: %s; django-admin command-line option", parse_node=lambda env, sig, signode: \ sphinx.directives.parse_option_desc(signode, sig), ) app.add_config_value('django_next_version', '0.0', True) app.add_directive('versionadded', parse_version_directive, 1, (1, 1, 1)) app.add_directive('versionchanged', parse_version_directive, 1, (1, 1, 1)) app.add_transform(SuppressBlockquotes) def parse_version_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): env = state.document.settings.env is_nextversion = env.config.django_next_version == arguments[0] ret = [] node = sphinx.addnodes.versionmodified() ret.append(node) if not is_nextversion: if len(arguments) == 1: linktext = 'Please, see the release notes <releases-%s>' % ( arguments[0]) xrefs = sphinx.roles.xfileref_role('ref', linktext, linktext, lineno, state) node.extend(xrefs[0]) node['version'] = arguments[0] else: node['version'] = "Development version" node['type'] = name if len(arguments) == 2: inodes, messages = state.inline_text(arguments[1], lineno + 1) node.extend(inodes) if content: state.nested_parse(content, content_offset, node) ret = ret + messages env.note_versionchange(node['type'], node['version'], node, lineno) return ret class SuppressBlockquotes(docutils.transforms.Transform): """ Remove the default blockquotes that encase indented list, tables, etc. """ default_priority = 300 suppress_blockquote_child_nodes = ( docutils.nodes.bullet_list, docutils.nodes.enumerated_list, docutils.nodes.definition_list, docutils.nodes.literal_block, docutils.nodes.doctest_block, docutils.nodes.line_block, docutils.nodes.table, ) def apply(self): for node in self.document.traverse(docutils.nodes.block_quote): if len(node.children) == 1 and \ isinstance(node.children[0], self.suppress_blockquote_child_nodes): node.replace_self(node.children[0]) def parse_django_admin_node(env, sig, signode): command = sig.split(' ')[0] env._django_curr_admin_command = command title = "django-admin.py %s" % sig signode += sphinx.addnodes.desc_name(title, title) return sig
{ "content_hash": "ea3536fa78cce7113908ece2879db8d1", "timestamp": "", "source": "github", "line_count": 112, "max_line_length": 78, "avg_line_length": 33.3125, "alnum_prop": 0.6228893058161351, "repo_name": "chrisspen/django-feeds", "id": "b817a4f67793ccc95ef4d8c464c28f9eba8b4c96", "size": "3731", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "docs/_ext/djangodocs.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "HTML", "bytes": "725765" }, { "name": "Python", "bytes": "250798" } ], "symlink_target": "" }
import sys import numpy from numexpr import interpreter, expressions, use_vml, is_cpu_amd_intel from numexpr.utils import CacheDict # Declare a double type that does not exist in Python space double = numpy.double typecode_to_kind = {'b': 'bool', 'i': 'int', 'l': 'long', 'f': 'float', 'd': 'double', 'c': 'complex', 's': 'str', 'n' : 'none'} kind_to_typecode = {'bool': 'b', 'int': 'i', 'long': 'l', 'float': 'f', 'double': 'd', 'complex': 'c', 'str': 's', 'none' : 'n'} type_to_typecode = {bool: 'b', int: 'i', long:'l', float:'f', double: 'd', complex: 'c', str: 's'} type_to_kind = expressions.type_to_kind kind_to_type = expressions.kind_to_type default_type = kind_to_type[expressions.default_kind] class ASTNode(object): """Abstract Syntax Tree node. Members: astType -- type of node (op, constant, variable, raw, or alias) astKind -- the type of the result (bool, float, etc.) value -- value associated with this node. An opcode, numerical value, a variable name, etc. children -- the children below this node reg -- the register assigned to the result for this node. """ cmpnames = ['astType', 'astKind', 'value', 'children'] def __init__(self, astType='generic', astKind='unknown', value=None, children=()): object.__init__(self) self.astType = astType self.astKind = astKind self.value = value self.children = tuple(children) self.reg = None def __eq__(self, other): if self.astType == 'alias': self = self.value if other.astType == 'alias': other = other.value if not isinstance(other, ASTNode): return False for name in self.cmpnames: if getattr(self, name) != getattr(other, name): return False return True def __hash__(self): if self.astType == 'alias': self = self.value # Fast hash (see issue #43) return ( hash(self.astType) ^ hash(self.astKind) ^ hash(self.value) ^ hash(self.children) ) def __str__(self): return 'AST(%s, %s, %s, %s, %s)' % (self.astType, self.astKind, self.value, self.children, self.reg) def __repr__(self): return '<AST object at %s>' % id(self) def key(self): return (self.astType, self.astKind, self.value, self.children) def typecode(self): return kind_to_typecode[self.astKind] def postorderWalk(self): for c in self.children: for w in c.postorderWalk(): yield w yield self def allOf(self, *astTypes): astTypes = set(astTypes) for w in self.postorderWalk(): if w.astType in astTypes: yield w def expressionToAST(ex): """Take an expression tree made out of expressions.ExpressionNode, and convert to an AST tree. This is necessary as ExpressionNode overrides many methods to act like a number. """ this_ast = ASTNode(ex.astType, ex.astKind, ex.value, [expressionToAST(c) for c in ex.children]) return this_ast def sigPerms(s): """Generate all possible signatures derived by upcasting the given signature. """ codes = 'bilfdc' if not s: yield '' elif s[0] in codes: start = codes.index(s[0]) for x in codes[start:]: for y in sigPerms(s[1:]): yield x + y elif s[0] == 's': # numbers shall not be cast to strings for y in sigPerms(s[1:]): yield 's' + y else: yield s def typeCompileAst(ast): """Assign appropiate types to each node in the AST. Will convert opcodes and functions to appropiate upcast version, and add "cast" ops if needed. """ children = list(ast.children) if ast.astType == 'op': retsig = ast.typecode() basesig = ''.join(x.typecode() for x in list(ast.children)) # Find some operation that will work on an acceptable casting of args. for sig in sigPerms(basesig): value = ast.value + '_' + retsig + sig if value in interpreter.opcodes: break else: for sig in sigPerms(basesig): funcname = ast.value + '_' + retsig + sig if funcname in interpreter.funccodes: value = 'func_%sn' % (retsig+sig) children += [ASTNode('raw', 'none', interpreter.funccodes[funcname])] break else: raise NotImplementedError( "couldn't find matching opcode for '%s'" % (ast.value + '_' + retsig+basesig)) # First just cast constants, then cast variables if necessary: for i, (have, want) in enumerate(zip(basesig, sig)): if have != want: kind = typecode_to_kind[want] if children[i].astType == 'constant': children[i] = ASTNode('constant', kind, children[i].value) else: opname = "cast" children[i] = ASTNode('op', kind, opname, [children[i]]) else: value = ast.value children = ast.children new_ast = ASTNode(ast.astType, ast.astKind, value, [typeCompileAst(c) for c in children]) return new_ast class Register(object): """Abstraction for a register in the VM. Members: node -- the AST node this corresponds to temporary -- True if this isn't an input or output immediate -- not a register, but an immediate value n -- the physical register number. None if no number assigned yet. """ def __init__(self, astnode, temporary=False): self.node = astnode self.temporary = temporary self.immediate = False self.n = None def __str__(self): if self.temporary: name = 'Temporary' else: name = 'Register' return '%s(%s, %s, %s)' % (name, self.node.astType, self.node.astKind, self.n,) def __repr__(self): return self.__str__() class Immediate(Register): """Representation of an immediate (integer) operand, instead of a register. """ def __init__(self, astnode): Register.__init__(self, astnode) self.immediate = True def __str__(self): return 'Immediate(%d)' % (self.node.value,) def stringToExpression(s, types, context): """Given a string, convert it to a tree of ExpressionNode's. """ old_ctx = expressions._context.get_current_context() try: expressions._context.set_new_context(context) # first compile to a code object to determine the names c = compile(s, '<expr>', 'eval') # make VariableNode's for the names names = {} for name in c.co_names: if name == "None": names[name] = None elif name == "True": names[name] = True elif name == "False": names[name] = False else: t = types.get(name, default_type) names[name] = expressions.VariableNode(name, type_to_kind[t]) names.update(expressions.functions) # now build the expression ex = eval(c, names) if expressions.isConstant(ex): ex = expressions.ConstantNode(ex, expressions.getKind(ex)) elif not isinstance(ex, expressions.ExpressionNode): raise TypeError("unsupported expression type: %s" % type(ex)) finally: expressions._context.set_new_context(old_ctx) return ex def isReduction(ast): return ast.value.startswith('sum_') or ast.value.startswith('prod_') def getInputOrder(ast, input_order=None): """Derive the input order of the variables in an expression. """ variables = {} for a in ast.allOf('variable'): variables[a.value] = a variable_names = set(variables.keys()) if input_order: if variable_names != set(input_order): raise ValueError("input names don't match those found in expression") ordered_names = input_order else: ordered_names = list(variable_names) ordered_names.sort() ordered_variables = [variables[v] for v in ordered_names] return ordered_variables def convertConstantToKind(x, kind): # Exception for 'float' types that will return the NumPy float32 type if kind == 'float': return numpy.float32(x) return kind_to_type[kind](x) def getConstants(ast): const_map = {} for a in ast.allOf('constant'): const_map[(a.astKind, a.value)] = a ordered_constants = const_map.keys() ordered_constants.sort() constants_order = [const_map[v] for v in ordered_constants] constants = [convertConstantToKind(a.value, a.astKind) for a in constants_order] return constants_order, constants def sortNodesByOrder(nodes, order): order_map = {} for i, (_, v, _) in enumerate(order): order_map[v] = i dec_nodes = [(order_map[n.value], n) for n in nodes] dec_nodes.sort() return [a[1] for a in dec_nodes] def assignLeafRegisters(inodes, registerMaker): """Assign new registers to each of the leaf nodes. """ leafRegisters = {} for node in inodes: key = node.key() if key in leafRegisters: node.reg = leafRegisters[key] else: node.reg = leafRegisters[key] = registerMaker(node) def assignBranchRegisters(inodes, registerMaker): """Assign temporary registers to each of the branch nodes. """ for node in inodes: node.reg = registerMaker(node, temporary=True) def collapseDuplicateSubtrees(ast): """Common subexpression elimination. """ seen = {} aliases = [] for a in ast.allOf('op'): if a in seen: target = seen[a] a.astType = 'alias' a.value = target a.children = () aliases.append(a) else: seen[a] = a # Set values and registers so optimizeTemporariesAllocation # doesn't get confused for a in aliases: while a.value.astType == 'alias': a.value = a.value.value a.reg = a.value.reg def optimizeTemporariesAllocation(ast): """Attempt to minimize the number of temporaries needed, by reusing old ones. """ nodes = list(x for x in ast.postorderWalk() if x.reg.temporary) users_of = dict((n.reg, set()) for n in nodes) if nodes and nodes[-1] is not ast: for c in ast.children: if c.reg.temporary: users_of[c.reg].add(ast) for n in reversed(nodes): for c in n.children: if c.reg.temporary: users_of[c.reg].add(n) unused = {'bool' : set(), 'int' : set(), 'long': set(), 'float' : set(), 'double': set(), 'complex' : set(), 'str': set()} for n in nodes: for reg, users in users_of.iteritems(): if n in users: users.remove(n) if not users: unused[reg.node.astKind].add(reg) if unused[n.astKind]: reg = unused[n.astKind].pop() users_of[reg] = users_of[n.reg] n.reg = reg def setOrderedRegisterNumbers(order, start): """Given an order of nodes, assign register numbers. """ for i, node in enumerate(order): node.reg.n = start + i return start + len(order) def setRegisterNumbersForTemporaries(ast, start): """Assign register numbers for temporary registers, keeping track of aliases and handling immediate operands. """ seen = 0 signature = '' aliases = [] for node in ast.postorderWalk(): if node.astType == 'alias': aliases.append(node) node = node.value if node.reg.immediate: node.reg.n = node.value continue reg = node.reg if reg.n < 0: reg.n = start + seen seen += 1 signature += reg.node.typecode() for node in aliases: node.reg = node.value.reg return start + seen, signature def convertASTtoThreeAddrForm(ast): """Convert an AST to a three address form. Three address form is (op, reg1, reg2, reg3), where reg1 is the destination of the result of the instruction. I suppose this should be called three register form, but three address form is found in compiler theory. """ program = [] for node in ast.allOf('op'): children = node.children instr = (node.value, node.reg) \ + tuple([c.reg for c in children]) program.append(instr) return program def compileThreeAddrForm(program): """Given a three address form of the program, compile it a string that the VM understands. """ def nToChr(reg): if reg is None: return '\xff' elif reg.n < 0: raise ValueError("negative value for register number %s" % (reg.n,)) else: return chr(reg.n) def quadrupleToString(opcode, store, a1=None, a2=None): cop = chr(interpreter.opcodes[opcode]) cs = nToChr(store) ca1 = nToChr(a1) ca2 = nToChr(a2) return cop + cs + ca1 + ca2 def toString(*args): while len(args) < 4: args += (None,) opcode, store, a1, a2 = args[0:4] s = quadrupleToString(opcode, store, a1, a2) l = [s] args = args[4:] while args: s = quadrupleToString('noop', *args[:3]) l.append(s) args = args[3:] return ''.join(l) prog_str = ''.join([toString(*t) for t in program]) return prog_str context_info = [ ('optimization', ('none', 'moderate', 'aggressive'), 'aggressive'), ] def getContext(map): context = {} for name, allowed, default in context_info: value = map.pop(name, default) if value in allowed: context[name] = value else: raise ValueError("'%s' must be one of %s" % (name, allowed)) if map: raise ValueError("Unknown keyword argument '%s'" % map.popitem()[0]) return context def precompile(ex, signature=(), copy_args=(), **kwargs): """Compile the expression to an intermediate form. """ types = dict(signature) input_order = [name for (name, type_) in signature] context = getContext(kwargs) if isinstance(ex, str): ex = stringToExpression(ex, types, context) # the AST is like the expression, but the node objects don't have # any odd interpretations ast = expressionToAST(ex) # Add a copy for strided or unaligned unidimensional arrays for a in ast.postorderWalk(): if a.astType == "variable" and a.value in copy_args: newVar = ASTNode(*a.key()) a.astType, a.value, a.children = ('op', 'copy', (newVar,)) if ex.astType not in ('op'): ast = ASTNode('op', value='copy', astKind=ex.astKind, children=(ast,)) ast = typeCompileAst(ast) reg_num = [-1] def registerMaker(node, temporary=False): reg = Register(node, temporary=temporary) reg.n = reg_num[0] reg_num[0] -= 1 return reg assignLeafRegisters(ast.allOf('raw'), Immediate) assignLeafRegisters(ast.allOf('variable', 'constant'), registerMaker) assignBranchRegisters(ast.allOf('op'), registerMaker) collapseDuplicateSubtrees(ast) input_order = getInputOrder(ast, input_order) constants_order, constants = getConstants(ast) if isReduction(ast): ast.reg.temporary = False optimizeTemporariesAllocation(ast) ast.reg.temporary = False r_output = 0 ast.reg.n = 0 r_inputs = r_output + 1 r_constants = setOrderedRegisterNumbers(input_order, r_inputs) r_temps = setOrderedRegisterNumbers(constants_order, r_constants) r_end, tempsig = setRegisterNumbersForTemporaries(ast, r_temps) threeAddrProgram = convertASTtoThreeAddrForm(ast) input_names = tuple([a.value for a in input_order]) signature = ''.join(type_to_typecode[types.get(x, default_type)] for x in input_names) return threeAddrProgram, signature, tempsig, constants, input_names def NumExpr(ex, signature=(), copy_args=(), **kwargs): """ Compile an expression built using E.<variable> variables to a function. ex can also be specified as a string "2*a+3*b". The order of the input variables and their types can be specified using the signature parameter, which is a list of (name, type) pairs. Returns a `NumExpr` object containing the compiled function. """ threeAddrProgram, inputsig, tempsig, constants, input_names = \ precompile(ex, signature, copy_args, **kwargs) program = compileThreeAddrForm(threeAddrProgram) return interpreter.NumExpr(inputsig, tempsig, program, constants, input_names) def disassemble(nex): """ Given a NumExpr object, return a list which is the program disassembled. """ rev_opcodes = {} for op in interpreter.opcodes: rev_opcodes[interpreter.opcodes[op]] = op r_constants = 1 + len(nex.signature) r_temps = r_constants + len(nex.constants) def getArg(pc, offset): arg = ord(nex.program[pc+offset]) op = rev_opcodes.get(ord(nex.program[pc])) try: code = op.split('_')[1][offset-1] except IndexError: return None if arg == 255: return None if code != 'n': if arg == 0: return 'r0' elif arg < r_constants: return 'r%d[%s]' % (arg, nex.input_names[arg-1]) elif arg < r_temps: return 'c%d[%s]' % (arg, nex.constants[arg - r_constants]) else: return 't%d' % (arg,) else: return arg source = [] for pc in range(0, len(nex.program), 4): op = rev_opcodes.get(ord(nex.program[pc])) dest = getArg(pc, 1) arg1 = getArg(pc, 2) arg2 = getArg(pc, 3) source.append( (op, dest, arg1, arg2) ) return source def getType(a): kind = a.dtype.kind if kind == 'b': return bool if kind in 'iu': if a.dtype.itemsize > 4: return long # ``long`` is for integers of more than 32 bits if kind == 'u' and a.dtype.itemsize == 4: return long # use ``long`` here as an ``int`` is not enough return int if kind == 'f': if a.dtype.itemsize > 4: return double # ``double`` is for floats of more than 32 bits return float if kind == 'c': return complex if kind == 'S': return str raise ValueError("unkown type %s" % a.dtype.name) def getExprNames(text, context): ex = stringToExpression(text, {}, context) ast = expressionToAST(ex) input_order = getInputOrder(ast, None) #try to figure out if vml operations are used by expression if not use_vml: ex_uses_vml = False else: for node in ast.postorderWalk(): if node.astType == 'op' \ and node.value in ['sin', 'cos', 'exp', 'log', 'expm1', 'log1p', 'pow', 'div', 'sqrt', 'inv', 'sinh', 'cosh', 'tanh', 'arcsin', 'arccos', 'arctan', 'arccosh', 'arcsinh', 'arctanh', 'arctan2', 'abs']: ex_uses_vml = True break else: ex_uses_vml = False return [a.value for a in input_order], ex_uses_vml # Dictionaries for caching variable names and compiled expressions _names_cache = CacheDict(256) _numexpr_cache = CacheDict(256) def evaluate(ex, local_dict=None, global_dict=None, **kwargs): """Evaluate a simple array expression element-wise. ex is a string forming an expression, like "2*a+3*b". The values for "a" and "b" will by default be taken from the calling function's frame (through use of sys._getframe()). Alternatively, they can be specifed using the 'local_dict' or 'global_dict' arguments. """ if not isinstance(ex, str): raise ValueError("must specify expression as a string") # Get the names for this expression expr_key = (ex, tuple(sorted(kwargs.items()))) if expr_key not in _names_cache: context = getContext(kwargs) _names_cache[expr_key] = getExprNames(ex, context) names, ex_uses_vml = _names_cache[expr_key] # Get the arguments based on the names. call_frame = sys._getframe(1) if local_dict is None: local_dict = call_frame.f_locals if global_dict is None: global_dict = call_frame.f_globals arguments = [] copy_args = [] for name in names: try: a = local_dict[name] except KeyError: a = global_dict[name] b = numpy.asarray(a) # Byteswapped arrays are dealt with in the extension # All the opcodes can deal with strided arrays directly as # long as they are undimensional (strides in other # dimensions are dealt within the extension), so we don't # need a copy for the strided case. if not b.flags.aligned: # Only take actions if CPU is different from AMD and Intel # as they can deal with unaligned arrays very efficiently. # If using VML, do the copy as the VML functions works # much faster with aligned arrays. if not is_cpu_amd_intel or use_vml: # For the unaligned case, we have two cases: if b.ndim == 1: # For unidimensional arrays we can use the copy # opcode because it can deal with unaligned arrays # as long as they are unidimensionals with a # possible stride (very common case for # recarrays). This can be up to 2x faster than # doing a copy using NumPy. copy_args.append(name) else: # For multimensional unaligned arrays do a plain # copy. We could refine more this and do a plain # copy only in the case that strides doesn't exist # in dimensions other than the last one (whose # case is supported by the copy opcode). b = b.copy() elif use_vml and ex_uses_vml: #only make a copy of strided arrays if #vml is in use if not b.flags.contiguous: if b.ndim == 1: copy_args.append(name) else: b = b.copy() arguments.append(b) # Create a signature signature = [(name, getType(arg)) for (name, arg) in zip(names, arguments)] # Look up numexpr if possible. copy_args *must* be added to the key, # just in case a non-copy expression is already in cache. numexpr_key = expr_key + (tuple(signature),) + tuple(copy_args) try: compiled_ex = _numexpr_cache[numexpr_key] except KeyError: compiled_ex = _numexpr_cache[numexpr_key] = \ NumExpr(ex, signature, copy_args, **kwargs) return compiled_ex(*arguments)
{ "content_hash": "73e8c18578e7858ee2490da5ba561a2a", "timestamp": "", "source": "github", "line_count": 690, "max_line_length": 81, "avg_line_length": 34.7463768115942, "alnum_prop": 0.5675495307612096, "repo_name": "jsalvatier/numexpr", "id": "b077fcc9cdaa9b38c312b30f2445ac8cceda1820", "size": "23975", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "numexpr/necompiler.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "88197" }, { "name": "Python", "bytes": "116081" } ], "symlink_target": "" }
from conans import ConanFile, CMake import os channel = os.getenv("CONAN_CHANNEL", "testing") username = os.getenv("CONAN_USERNAME", "memsharded") class ZMQTestConan(ConanFile): settings = "os", "compiler", "build_type", "arch" requires = "libzmq/4.2.0@%s/%s" % (username, channel) generators = "cmake" def build(self): cmake = CMake(self.settings) self.run('cmake "%s" %s' % (self.conanfile_directory, cmake.command_line)) self.run("cmake --build . %s" % cmake.build_config) def imports(self): self.copy("*.dll", "bin", "bin") self.copy("*.dylib", "bin", "lib") def test(self): print ("Running test") os.chdir("bin") server = ".%sserver" % os.sep import subprocess pid = subprocess.Popen(server) print ("Lets launch client for ", server) self.run(".%sclient > null" % os.sep) pid.terminate()
{ "content_hash": "da9ff787215edb86272792a086f4ace0", "timestamp": "", "source": "github", "line_count": 29, "max_line_length": 82, "avg_line_length": 31.93103448275862, "alnum_prop": 0.5907127429805615, "repo_name": "memsharded/conan-zmq", "id": "7489e1ca1ab14ba3067ea6e8f3a9946266279dea", "size": "926", "binary": false, "copies": "1", "ref": "refs/heads/4.2.0", "path": "test_package/conanfile.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "1212" }, { "name": "CMake", "bytes": "2272" }, { "name": "Python", "bytes": "4304" }, { "name": "Shell", "bytes": "646" } ], "symlink_target": "" }
try: import json except ImportError: import sys sys.path.append('simplejson-2.3.3') import simplejson as json try: import urllib2 from urllib2 import URLError, HTTPError import httplib import urlparse import httplib2 from ConfigParser import ConfigParser except ImportError: pass # python 3 import random import base64 import os _CT = 'content-type' _AJ = 'application/json' _URL_SCHEME = frozenset(['http', 'https']) def _get_token(user_id, password, auth_svc='https://nexus.api.globusonline.org/goauth/token?' + 'grant_type=client_credentials'): # This is bandaid helper function until we get a full # KBase python auth client released h = httplib2.Http(disable_ssl_certificate_validation=True) auth = base64.encodestring(user_id + ':' + password) headers = {'Authorization': 'Basic ' + auth} h.add_credentials(user_id, password) h.follow_all_redirects = True url = auth_svc resp, content = h.request(url, 'GET', headers=headers) status = int(resp['status']) if status >= 200 and status <= 299: tok = json.loads(content) elif status == 403: raise Exception('Authentication failed: Bad user_id/password ' + 'combination %s:%s' % (user_id, password)) else: raise Exception(str(resp)) return tok['access_token'] def _read_rcfile(file=os.environ['HOME'] + '/.authrc'): # @ReservedAssignment # Another bandaid to read in the ~/.authrc file if one is present authdata = None if os.path.exists(file): try: with open(file) as authrc: rawdata = json.load(authrc) # strip down whatever we read to only what is legit authdata = {x: rawdata.get(x) for x in ( 'user_id', 'token', 'client_secret', 'keyfile', 'keyfile_passphrase', 'password')} except Exception as e: print("Error while reading authrc file %s: %s" % (file, e)) return authdata def _read_inifile(file=os.environ.get( # @ReservedAssignment 'KB_DEPLOYMENT_CONFIG', os.environ['HOME'] + '/.kbase_config')): # Another bandaid to read in the ~/.kbase_config file if one is present authdata = None if os.path.exists(file): try: config = ConfigParser() config.read(file) # strip down whatever we read to only what is legit authdata = {x: config.get('authentication', x) if config.has_option('authentication', x) else None for x in ('user_id', 'token', 'client_secret', 'keyfile', 'keyfile_passphrase', 'password')} except Exception as e: print("Error while reading INI file %s: %s" % (file, e)) return authdata class ServerError(Exception): def __init__(self, name, code, message, data=None, error=None): self.name = name self.code = code self.message = '' if message is None else message self.data = data or error or '' # data = JSON RPC 2.0, error = 1.1 def __str__(self): return self.name + ': ' + str(self.code) + '. ' + self.message + \ '\n' + self.data class JSONObjectEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, set): return list(obj) if isinstance(obj, frozenset): return list(obj) return json.JSONEncoder.default(self, obj) class AbstractHandle(object): def __init__(self, url=None, timeout=30 * 60, user_id=None, password=None, token=None, ignore_authrc=False): if url is None: url = 'http://localhost:7109' scheme, _, _, _, _, _ = urlparse.urlparse(url) if scheme not in _URL_SCHEME: raise ValueError(url + " isn't a valid http url") self.url = url self.timeout = int(timeout) self._headers = dict() # token overrides user_id and password if token is not None: self._headers['AUTHORIZATION'] = token elif user_id is not None and password is not None: self._headers['AUTHORIZATION'] = _get_token(user_id, password) elif 'KB_AUTH_TOKEN' in os.environ: self._headers['AUTHORIZATION'] = os.environ.get('KB_AUTH_TOKEN') elif not ignore_authrc: authdata = _read_inifile() if authdata is None: authdata = _read_rcfile() if authdata is not None: if authdata.get('token') is not None: self._headers['AUTHORIZATION'] = authdata['token'] elif(authdata.get('user_id') is not None and authdata.get('password') is not None): self._headers['AUTHORIZATION'] = _get_token( authdata['user_id'], authdata['password']) if self.timeout < 1: raise ValueError('Timeout value must be at least 1 second') def new_handle(self): arg_hash = {'method': 'AbstractHandle.new_handle', 'params': [], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def localize_handle(self, h1, service_name): arg_hash = {'method': 'AbstractHandle.localize_handle', 'params': [h1, service_name], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def initialize_handle(self, h1): arg_hash = {'method': 'AbstractHandle.initialize_handle', 'params': [h1], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def persist_handle(self, h): arg_hash = {'method': 'AbstractHandle.persist_handle', 'params': [h], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def upload(self, infile): arg_hash = {'method': 'AbstractHandle.upload', 'params': [infile], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def download(self, h, outfile): arg_hash = {'method': 'AbstractHandle.download', 'params': [h, outfile], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: pass # nothing to return else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def upload_metadata(self, h, infile): arg_hash = {'method': 'AbstractHandle.upload_metadata', 'params': [h, infile], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: pass # nothing to return else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def download_metadata(self, h, outfile): arg_hash = {'method': 'AbstractHandle.download_metadata', 'params': [h, outfile], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: pass # nothing to return else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def ids_to_handles(self, ids): arg_hash = {'method': 'AbstractHandle.ids_to_handles', 'params': [ids], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def hids_to_handles(self, hids): arg_hash = {'method': 'AbstractHandle.hids_to_handles', 'params': [hids], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def are_readable(self, arg_1): arg_hash = {'method': 'AbstractHandle.are_readable', 'params': [arg_1], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def is_readable(self, id): arg_hash = {'method': 'AbstractHandle.is_readable', 'params': [id], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def list_handles(self): arg_hash = {'method': 'AbstractHandle.list_handles', 'params': [], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def delete_handles(self, l): arg_hash = {'method': 'AbstractHandle.delete_handles', 'params': [l], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: pass # nothing to return else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def give(self, user, perm, h): arg_hash = {'method': 'AbstractHandle.give', 'params': [user, perm, h], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: pass # nothing to return else: raise ServerError('Unknown', 0, 'An unknown server error occurred') def ids_to_handles(self, ids): arg_hash = {'method': 'AbstractHandle.ids_to_handles', 'params': [ids], 'version': '1.1', 'id': str(random.random())[2:] } body = json.dumps(arg_hash, cls=JSONObjectEncoder) try: request = urllib2.Request(self.url, body, self._headers) ret = urllib2.urlopen(request, timeout=self.timeout) except HTTPError as h: if _CT in h.headers and h.headers[_CT] == _AJ: b = h.read() err = json.loads(b) if 'error' in err: raise ServerError(**err['error']) else: # this should never happen... but if it does se = ServerError('Unknown', 0, b) se.httpError = h # h.read() will return '' in the calling code. raise se else: raise h if ret.code != httplib.OK: raise URLError('Received bad response code from server:' + ret.code) resp = json.loads(ret.read()) if 'result' in resp: return resp['result'][0] else: raise ServerError('Unknown', 0, 'An unknown server error occurred')
{ "content_hash": "58f8b7bb01c7a59c5ddd240dc6949075", "timestamp": "", "source": "github", "line_count": 705, "max_line_length": 79, "avg_line_length": 37.91205673758865, "alnum_prop": 0.48443579766536965, "repo_name": "aitatanit/metatlas", "id": "0b9b3a7c1f32e2bb71c9802c5b1d4d22b87872a5", "size": "27122", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "metatlas/kbase/handle_service.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "19353738" }, { "name": "Makefile", "bytes": "1333" }, { "name": "Python", "bytes": "184467" }, { "name": "R", "bytes": "78" }, { "name": "Shell", "bytes": "2327" } ], "symlink_target": "" }
""" Defines classes related to date ranges. """ import datetime try: import pytz except ImportError: pytz = None from django.db import models from django.conf import settings from django.utils.translation import gettext_lazy as _ from django.utils.translation import pgettext_lazy as pgettext from django.core.exceptions import ValidationError from django.utils.timezone import is_aware from lino.utils import last_day_of_month from lino.api import dd from lino.core.model import Model from lino.utils.format_date import fdl, fds from lino.utils.ranges import isrange from lino.core.utils import ParameterPanel from lino.utils.quantities import Duration def rangefmt(r): return fds(r[0]) + '...' + fds(r[1]) class CombinedDateTime(dd.Model): """ Mixin for models which have at least one couple of date and time fields which form a kind of editable timestamp field. """ class Meta: abstract = True def get_time_zone(self): """ The time zone for the date and time fields in this model. Expected to always return an instance of :class:`lino.modlib.about.choicelists.TimeZone`. May get overridden to return the author's timezone. """ return settings.SITE.models.about.TimeZones.default # return settings.TIME_ZONE def set_datetime(self, name, value): """ Given a datetime `value`, update the two corresponding fields `FOO_date` and `FOO_time` (where FOO is specified in `name` which must be either "start" or "end"). """ if settings.USE_TZ and is_aware(value): # tz = pytz.timezone(self.get_time_zone()) # dd.logger.info("20151128 set_datetime(%r, %r)", value, tz) # value = value.astimezone(tz) # value = tz.localize(value) value = value.astimezone(self.get_time_zone().tzinfo) setattr(self, name + '_date', value.date()) t = value.time() if not t: t = None setattr(self, name + '_time', t) def get_datetime(self, name, altname=None): """ Return a `datetime` value from the two corresponding date and time fields. `name` can be 'start' or 'end'. The optional `altname` can be used e.g. in a single-day calendar event to support having `end_date` empty, meaning "same as `start_date`". In that case you should ask ``get_datetime("end", "start")``. """ d = getattr(self, name + '_date') t = getattr(self, name + '_time') if not d and altname is not None: d = getattr(self, altname + '_date') if not t and altname is not None: t = getattr(self, altname + '_time') if not d: return None if t: dt = datetime.datetime.combine(d, t) else: dt = datetime.datetime(d.year, d.month, d.day) if settings.USE_TZ: # tz = pytz.timezone(self.get_time_zone().tzinfo) # dd.logger.info("20151128 get_datetime() %r %r", dt, tz) # dt = tz.localize(dt) dt = self.get_time_zone().tzinfo.localize(dt) return dt class Started(CombinedDateTime): """ Adds two fields :attr:`start_date` and :attr:`start_time`. .. attribute:: start_date .. attribute:: start_time """ class Meta: abstract = True start_date = models.DateField( blank=True, null=True, verbose_name=_("Start date")) # iCal:DTSTART start_time = dd.TimeField( blank=True, null=True, verbose_name=_("Start time")) # iCal:DTSTART #~ start = dd.FieldSet(_("Start"),'start_date start_time') def save(self, *args, **kw): """ Fills default value "today" to start_date """ if not self.start_date: self.start_date = settings.SITE.today() super(Started, self).save(*args, **kw) class Ended(CombinedDateTime): """ Mixin for models with two fields :attr:`end_date` and :attr:`end_time`. .. attribute:: end_date .. attribute:: end_time """ class Meta: abstract = True end_date = models.DateField( blank=True, null=True, verbose_name=_("End Date")) end_time = dd.TimeField( blank=True, null=True, verbose_name=_("End Time")) def get_duration(self): """Return the duration in hours.""" if not self.start_date: return None if not self.start_time: return None if not self.end_time: return None ed = self.end_date or self.start_date st = datetime.datetime.combine(self.start_date, self.start_time) et = datetime.datetime.combine(ed, self.end_time) if et < st: return None # negative duration not supported # print 20151127, repr(et), repr(st) return Duration(et - st) @dd.virtualfield(dd.QuantityField(_("Duration"))) def duration(self, ar): return self.get_duration() class DateRangeObservable(Model): class Meta(object): abstract = True get_default_start_date = None get_default_end_date = None @classmethod def setup_parameters(cls, fields): fields.update( start_date=models.DateField( _("Period from"), blank=True, null=True, default=cls.get_default_start_date, help_text=_("Start date of observed period"))) fields.update( end_date=models.DateField( _("until"), blank=True, null=True, default=cls.get_default_end_date, help_text=_("End date of observed period"))) super(DateRangeObservable, cls).setup_parameters(fields) class DateRange(DateRangeObservable): """ Mixin for models which represent a period whose start and end are date fields. Designed for usage with :class:`lino.modlib.system.PeriodEvents`. """ class Meta(object): abstract = True empty_period_text = "" start_date = models.DateField(_("Start date"), blank=True, null=True) end_date = models.DateField(_("End date"), blank=True, null=True) def full_clean(self, *args, **kw): if not isrange(self.start_date, self.end_date): raise ValidationError(_("Date period ends before it started.")) super(DateRange, self).full_clean(*args, **kw) def get_period(self): return (self.start_date, self.end_date) def is_past(self): return (self.end_date and self.end_date <= dd.today()) def is_future(self): return (self.start_date and self.start_date > settings.SITE.today()) def get_period_text(self): if self.start_date and self.end_date: if self.start_date == self.end_date: # s = tostring(E.b(fdl(self.start_date))) s = fdl(self.start_date) return pgettext("date", "on %s") % s else: kw = dict() kw.update(a=fdl(self.start_date)) kw.update(b=fdl(self.end_date)) return pgettext("date range", "between %(a)s and %(b)s") % kw elif self.start_date: s = fdl(self.start_date) if self.is_future(): return pgettext("future date range", "from %s") % s else: return pgettext("date range", "from %s") % s elif self.end_date: s = fdl(self.end_date) return pgettext("date range", "until %s") % s return self.empty_period_text DateRange.set_widget_options('start_date', width=10) DateRange.set_widget_options('end_date', width=10) class ObservedDateRange(ParameterPanel): """:class:`lino.core.param_panel.ParameterPanel` with two fields `start_date` and `end_date` which default to empty. Note that you must define yourself a get_request_queryset method in order to actually use these two parameter fields. """ get_default_start_date = None get_default_end_date = None def __init__(self, verbose_name_start=_("Date from"), verbose_name_end=_("until"), **kwargs): kwargs.update( start_date=models.DateField( verbose_name_start, blank=True, null=True, default=self.get_default_start_date, help_text=_("Start of observed date range")), end_date=models.DateField( verbose_name_end, blank=True, null=True, default=self.get_default_end_date, help_text=_("End of observed date range")), ) super(ObservedDateRange, self).__init__(**kwargs) @classmethod def param_defaults(cls, ar, **kw): # Theoretically this would cause default values to also be set when # using Monthly or Yearly as the parameter panel of an action. Doesn't # work in extjs because action parameters don't use their default # values. kw = super(ObservedDateRange, cls).param_defaults(ar, **kw) kw.update(start_date=cls.get_default_start_date()) kw.update(end_date=cls.get_default_end_date()) return kw class Yearly(ObservedDateRange): """An :class:`ObservedDateRange` for which `start_date` defaults to Jan 1st and `end_date` to Dec 31 of the current year. """ def get_default_start_date(self): return dd.today().replace(month=1, day=1) # D = datetime.date # return D(D.today().year, 1, 1) def get_default_end_date(self): return dd.today().replace(month=12, day=31) # D = datetime.date # return D(D.today().year, 12, 31) class Monthly(ObservedDateRange): """An :class:`ObservedDateRange` which defaults to the current month. """ def get_default_start_date(self): return dd.today().replace(day=1) def get_default_end_date(self): return last_day_of_month(dd.today()) class Weekly(ObservedDateRange): """An :class:`ObservedDateRange` which defaults to the current week. """ def get_default_start_date(self): d = dd.today() return d - datetime.timedelta(days=d.weekday()) def get_default_end_date(self): d = dd.today() return d + datetime.timedelta(days=6-d.weekday()) class Today(ParameterPanel): """A :class:`ParameterPanel <lino.core.param_panel.ParameterPanel>` with a field `today` that defaults to today. """ def __init__(self, verbose_name=_("Situation on"), **kw): kw.update( today=models.DateField( verbose_name, blank=True, null=True, default=dd.today, help_text=_("Date of observation")), ) super(Today, self).__init__(**kw)
{ "content_hash": "57b826312998d9ad07256699345f9a6a", "timestamp": "", "source": "github", "line_count": 351, "max_line_length": 80, "avg_line_length": 31.113960113960115, "alnum_prop": 0.5925281567622013, "repo_name": "lino-framework/lino", "id": "26fbbbce868c4807144aa0e35a28e2b6f2c14106", "size": "11038", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "lino/mixins/periods.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Batchfile", "bytes": "704" }, { "name": "CSS", "bytes": "1281825" }, { "name": "Emacs Lisp", "bytes": "277895" }, { "name": "HTML", "bytes": "928037" }, { "name": "Hack", "bytes": "3416" }, { "name": "JavaScript", "bytes": "1128493" }, { "name": "PHP", "bytes": "53997" }, { "name": "Python", "bytes": "2601694" }, { "name": "Shell", "bytes": "4469" }, { "name": "TSQL", "bytes": "2427" } ], "symlink_target": "" }
from runner.koan import * class AboutDeletingObjects(Koan): def test_del_can_remove_slices(self): lottery_nums = [4, 8, 15, 16, 23, 42] del lottery_nums[1] del lottery_nums[2:4] self.assertEqual([4, 15, 42], lottery_nums) def test_del_can_remove_entire_lists(self): lottery_nums = [4, 8, 15, 16, 23, 42] del lottery_nums with self.assertRaises(NameError): win = lottery_nums # ==================================================================== class ClosingSale: def __init__(self): self.hamsters = 7 self.zebras = 84 def cameras(self): return 34 def toilet_brushes(self): return 48 def jellies(self): return 5 def test_del_can_remove_attributes(self): crazy_discounts = self.ClosingSale() del self.ClosingSale.toilet_brushes del crazy_discounts.hamsters try: still_available = crazy_discounts.toilet_brushes() except AttributeError as e: err_msg1 = e.args[0] try: still_available = crazy_discounts.hamsters except AttributeError as e: err_msg2 = e.args[0] self.assertRegexpMatches(err_msg1, 'no attribute') self.assertRegexpMatches(err_msg2, 'no attribute') # ==================================================================== class ClintEastwood: def __init__(self): self._name = None def get_name(self): try: return self._name except: return "The man with no name" def set_name(self, name): self._name = name def del_name(self): del self._name name = property(get_name, set_name, del_name, \ "Mr Eastwood's current alias") def test_del_works_with_properties(self): cowboy = self.ClintEastwood() cowboy.name = 'Senor Ninguno' self.assertEqual('Senor Ninguno', cowboy.name) del cowboy.name self.assertEqual("The man with no name", cowboy.name) # ==================================================================== class Prisoner: def __init__(self): self._name = None @property def name(self): return self._name @name.setter def name(self, name): self._name = name @name.deleter def name(self): self._name = 'Number Six' def test_another_way_to_make_a_deletable_property(self): citizen = self.Prisoner() citizen.name = "Patrick" self.assertEqual('Patrick', citizen.name) del citizen.name self.assertEqual('Number Six', citizen.name) # ==================================================================== class MoreOrganisedClosingSale(ClosingSale): def __init__(self): self.last_deletion = None super().__init__() def __delattr__(self, attr_name): self.last_deletion = attr_name def tests_del_can_be_overriden(self): sale = self.MoreOrganisedClosingSale() self.assertEqual(5, sale.jellies()) del sale.jellies self.assertEqual('jellies', sale.last_deletion)
{ "content_hash": "39b903da9980c5e11677bb31d1b6b83d", "timestamp": "", "source": "github", "line_count": 121, "max_line_length": 74, "avg_line_length": 27.537190082644628, "alnum_prop": 0.5120048019207684, "repo_name": "sourabhv/python-koans-solutions", "id": "c92a39a5a8868c64af52ab9764e68e33b22cbfae", "size": "3379", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python3/koans/about_deleting_objects.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "107742" } ], "symlink_target": "" }
from .compiler import COLLECT_CARTESIAN_PRODUCTS # noqa from .compiler import FROM_LINTING # noqa from .compiler import NO_LINTING # noqa from .compiler import WARN_LINTING # noqa from .expression import Alias # noqa from .expression import alias # noqa from .expression import all_ # noqa from .expression import and_ # noqa from .expression import any_ # noqa from .expression import asc # noqa from .expression import between # noqa from .expression import bindparam # noqa from .expression import case # noqa from .expression import cast # noqa from .expression import ClauseElement # noqa from .expression import collate # noqa from .expression import column # noqa from .expression import ColumnCollection # noqa from .expression import ColumnElement # noqa from .expression import CompoundSelect # noqa from .expression import cte # noqa from .expression import Delete # noqa from .expression import delete # noqa from .expression import desc # noqa from .expression import distinct # noqa from .expression import except_ # noqa from .expression import except_all # noqa from .expression import exists # noqa from .expression import extract # noqa from .expression import false # noqa from .expression import False_ # noqa from .expression import FromClause # noqa from .expression import func # noqa from .expression import funcfilter # noqa from .expression import Insert # noqa from .expression import insert # noqa from .expression import intersect # noqa from .expression import intersect_all # noqa from .expression import Join # noqa from .expression import join # noqa from .expression import label # noqa from .expression import lateral # noqa from .expression import literal # noqa from .expression import literal_column # noqa from .expression import modifier # noqa from .expression import not_ # noqa from .expression import null # noqa from .expression import nullsfirst # noqa from .expression import nullslast # noqa from .expression import or_ # noqa from .expression import outerjoin # noqa from .expression import outparam # noqa from .expression import over # noqa from .expression import quoted_name # noqa from .expression import Select # noqa from .expression import select # noqa from .expression import Selectable # noqa from .expression import Subquery # noqa from .expression import subquery # noqa from .expression import table # noqa from .expression import TableClause # noqa from .expression import TableSample # noqa from .expression import tablesample # noqa from .expression import text # noqa from .expression import true # noqa from .expression import True_ # noqa from .expression import tuple_ # noqa from .expression import type_coerce # noqa from .expression import union # noqa from .expression import union_all # noqa from .expression import Update # noqa from .expression import update # noqa from .expression import within_group # noqa from .visitors import ClauseVisitor # noqa def __go(lcls): global __all__ from .. import util as _sa_util import inspect as _inspect __all__ = sorted( name for name, obj in lcls.items() if not (name.startswith("_") or _inspect.ismodule(obj)) ) from .annotation import _prepare_annotations from .annotation import Annotated # noqa from .elements import AnnotatedColumnElement from .elements import ClauseList # noqa from .selectable import AnnotatedFromClause # noqa from . import base from . import coercions from . import elements from . import events # noqa from . import selectable from . import schema from . import sqltypes from . import type_api base.coercions = elements.coercions = coercions base.elements = elements base.type_api = type_api coercions.elements = elements coercions.schema = schema coercions.selectable = selectable coercions.sqltypes = sqltypes _prepare_annotations(ColumnElement, AnnotatedColumnElement) _prepare_annotations(FromClause, AnnotatedFromClause) _prepare_annotations(ClauseList, Annotated) _sa_util.dependencies.resolve_all("sqlalchemy.sql") from . import naming # noqa __go(locals())
{ "content_hash": "8af593e0783591d457837e60336b3c20", "timestamp": "", "source": "github", "line_count": 121, "max_line_length": 63, "avg_line_length": 35.082644628099175, "alnum_prop": 0.7451118963486455, "repo_name": "jam-py/jam-py", "id": "488717041dadb38b06317d41d6893b4785deac75", "size": "4481", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "jam/third_party/sqlalchemy/sql/__init__.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "37683" }, { "name": "HTML", "bytes": "67579" }, { "name": "JavaScript", "bytes": "2789171" }, { "name": "Python", "bytes": "432048" } ], "symlink_target": "" }
from twisted.internet import defer import tests.unittest import tests.utils USER_ID = "@user:example.com" class EventPushActionsStoreTestCase(tests.unittest.TestCase): @defer.inlineCallbacks def setUp(self): hs = yield tests.utils.setup_test_homeserver() self.store = hs.get_datastore() @defer.inlineCallbacks def test_get_unread_push_actions_for_user_in_range_for_http(self): yield self.store.get_unread_push_actions_for_user_in_range_for_http( USER_ID, 0, 1000, 20 ) @defer.inlineCallbacks def test_get_unread_push_actions_for_user_in_range_for_email(self): yield self.store.get_unread_push_actions_for_user_in_range_for_email( USER_ID, 0, 1000, 20 )
{ "content_hash": "853c567e60c7e98755468c418082b163", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 77, "avg_line_length": 29.076923076923077, "alnum_prop": 0.6785714285714286, "repo_name": "TribeMedia/synapse", "id": "e9044afa2e195d94eb40919586e972202e0fca89", "size": "1359", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tests/storage/test_event_push_actions.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "4376" }, { "name": "HTML", "bytes": "9046" }, { "name": "JavaScript", "bytes": "176441" }, { "name": "Perl", "bytes": "31852" }, { "name": "Python", "bytes": "2748398" }, { "name": "Shell", "bytes": "7827" } ], "symlink_target": "" }
from pg_requests.tokens import CommaValue class Function(object): """Basic function implementation. Use this for aggregation functions""" def __init__(self, name): self.name = name # NOTE: python 3 syntax only # def __call__(self, *args, alias=None): def __call__(self, *args, **kwargs): value = CommaValue(args) alias = kwargs.get('alias') if alias: fn_str = "{}({}) AS '{}'".format(self.name, value.eval(), alias) else: fn_str = "{}({})".format(self.name, value.eval()) return fn_str def __repr__(self): return "%s(name=%s(*args))" % (self.__class__.__name__, self.name) class FunctionFactory(object): """Neat and natural function factory Usage: fn.COUNT('*') --> 'COUNT(*)' fn.COUNT('*', alias='count_all') --> 'COUNT(*) AS count_all' """ _FUNCTIONS = ('COUNT', 'AVG', 'MIN', 'MAX', 'SUM') def __init__(self, rtype=Function): self.rtype = rtype def __getattr__(self, name): # NOTE: probably make sense to restrict function names # if name.upper() not in self.FUNCTIONS: # raise AttributeError("Wrong function name '%s'" % name) return self.rtype(name=name) fn = FunctionFactory(rtype=Function)
{ "content_hash": "c8667153a9a76b665171499848df30af", "timestamp": "", "source": "github", "line_count": 44, "max_line_length": 76, "avg_line_length": 29.477272727272727, "alnum_prop": 0.5643793369313801, "repo_name": "prawn-cake/pg_query", "id": "cc1af7aa33a2a32bdab31f714a0a4681ac61a356", "size": "1321", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pg_requests/functions.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "54770" } ], "symlink_target": "" }
"""setuptools.command.egg_info Create a distribution's .egg-info directory and contents""" # This module should be kept compatible with Python 2.3 import os, re, sys from setuptools import Command from distutils.errors import * from distutils import log from setuptools.command.sdist import sdist from setuptools.compat import basestring from setuptools import svn_utils from distutils.util import convert_path from distutils.filelist import FileList as _FileList from pkg_resources import parse_requirements, safe_name, parse_version, \ safe_version, yield_lines, EntryPoint, iter_entry_points, to_filename from setuptools.command.sdist import walk_revctrl class egg_info(Command): description = "create a distribution's .egg-info directory" user_options = [ ('egg-base=', 'e', "directory containing .egg-info directories" " (default: top of the source tree)"), ('tag-svn-revision', 'r', "Add subversion revision ID to version number"), ('tag-date', 'd', "Add date stamp (e.g. 20050528) to version number"), ('tag-build=', 'b', "Specify explicit tag to add to version number"), ('no-svn-revision', 'R', "Don't add subversion revision ID [default]"), ('no-date', 'D', "Don't include date stamp [default]"), ] boolean_options = ['tag-date', 'tag-svn-revision'] negative_opt = {'no-svn-revision': 'tag-svn-revision', 'no-date': 'tag-date'} def initialize_options(self): self.egg_name = None self.egg_version = None self.egg_base = None self.egg_info = None self.tag_build = None self.tag_svn_revision = 0 self.tag_date = 0 self.broken_egg_info = False self.vtags = None def save_version_info(self, filename): from setuptools.command.setopt import edit_config edit_config( filename, {'egg_info': {'tag_svn_revision':0, 'tag_date': 0, 'tag_build': self.tags()} } ) def finalize_options (self): self.egg_name = safe_name(self.distribution.get_name()) self.vtags = self.tags() self.egg_version = self.tagged_version() try: list( parse_requirements('%s==%s' % (self.egg_name,self.egg_version)) ) except ValueError: raise DistutilsOptionError( "Invalid distribution name or version syntax: %s-%s" % (self.egg_name,self.egg_version) ) if self.egg_base is None: dirs = self.distribution.package_dir self.egg_base = (dirs or {}).get('',os.curdir) self.ensure_dirname('egg_base') self.egg_info = to_filename(self.egg_name)+'.egg-info' if self.egg_base != os.curdir: self.egg_info = os.path.join(self.egg_base, self.egg_info) if '-' in self.egg_name: self.check_broken_egg_info() # Set package version for the benefit of dumber commands # (e.g. sdist, bdist_wininst, etc.) # self.distribution.metadata.version = self.egg_version # If we bootstrapped around the lack of a PKG-INFO, as might be the # case in a fresh checkout, make sure that any special tags get added # to the version info # pd = self.distribution._patched_dist if pd is not None and pd.key==self.egg_name.lower(): pd._version = self.egg_version pd._parsed_version = parse_version(self.egg_version) self.distribution._patched_dist = None def write_or_delete_file(self, what, filename, data, force=False): """Write `data` to `filename` or delete if empty If `data` is non-empty, this routine is the same as ``write_file()``. If `data` is empty but not ``None``, this is the same as calling ``delete_file(filename)`. If `data` is ``None``, then this is a no-op unless `filename` exists, in which case a warning is issued about the orphaned file (if `force` is false), or deleted (if `force` is true). """ if data: self.write_file(what, filename, data) elif os.path.exists(filename): if data is None and not force: log.warn( "%s not set in setup(), but %s exists", what, filename ) return else: self.delete_file(filename) def write_file(self, what, filename, data): """Write `data` to `filename` (if not a dry run) after announcing it `what` is used in a log message to identify what is being written to the file. """ log.info("writing %s to %s", what, filename) if sys.version_info >= (3,): data = data.encode("utf-8") if not self.dry_run: f = open(filename, 'wb') f.write(data) f.close() def delete_file(self, filename): """Delete `filename` (if not a dry run) after announcing it""" log.info("deleting %s", filename) if not self.dry_run: os.unlink(filename) def tagged_version(self): version = self.distribution.get_version() # egg_info may be called more than once for a distribution, # in which case the version string already contains all tags. if self.vtags and version.endswith(self.vtags): return safe_version(version) return safe_version(version + self.vtags) def run(self): self.mkpath(self.egg_info) installer = self.distribution.fetch_build_egg for ep in iter_entry_points('egg_info.writers'): writer = ep.load(installer=installer) writer(self, ep.name, os.path.join(self.egg_info,ep.name)) # Get rid of native_libs.txt if it was put there by older bdist_egg nl = os.path.join(self.egg_info, "native_libs.txt") if os.path.exists(nl): self.delete_file(nl) self.find_sources() def tags(self): version = '' if self.tag_build: version+=self.tag_build if self.tag_svn_revision and ( os.path.exists('.svn') or os.path.exists('PKG-INFO') ): version += '-r%s' % self.get_svn_revision() if self.tag_date: import time; version += time.strftime("-%Y%m%d") return version @staticmethod def get_svn_revision(): return str(svn_utils.SvnInfo.load(os.curdir).get_revision()) def find_sources(self): """Generate SOURCES.txt manifest file""" manifest_filename = os.path.join(self.egg_info,"SOURCES.txt") mm = manifest_maker(self.distribution) mm.manifest = manifest_filename mm.run() self.filelist = mm.filelist def check_broken_egg_info(self): bei = self.egg_name+'.egg-info' if self.egg_base != os.curdir: bei = os.path.join(self.egg_base, bei) if os.path.exists(bei): log.warn( "-"*78+'\n' "Note: Your current .egg-info directory has a '-' in its name;" '\nthis will not work correctly with "setup.py develop".\n\n' 'Please rename %s to %s to correct this problem.\n'+'-'*78, bei, self.egg_info ) self.broken_egg_info = self.egg_info self.egg_info = bei # make it work for now class FileList(_FileList): """File list that accepts only existing, platform-independent paths""" def append(self, item): if item.endswith('\r'): # Fix older sdists built on Windows item = item[:-1] path = convert_path(item) if sys.version_info >= (3,): try: if os.path.exists(path) or os.path.exists(path.encode('utf-8')): self.files.append(path) except UnicodeEncodeError: # Accept UTF-8 filenames even if LANG=C if os.path.exists(path.encode('utf-8')): self.files.append(path) else: log.warn("'%s' not %s encodable -- skipping", path, sys.getfilesystemencoding()) else: if os.path.exists(path): self.files.append(path) class manifest_maker(sdist): template = "MANIFEST.in" def initialize_options (self): self.use_defaults = 1 self.prune = 1 self.manifest_only = 1 self.force_manifest = 1 def finalize_options(self): pass def run(self): self.filelist = FileList() if not os.path.exists(self.manifest): self.write_manifest() # it must exist so it'll get in the list self.filelist.findall() self.add_defaults() if os.path.exists(self.template): self.read_template() self.prune_file_list() self.filelist.sort() self.filelist.remove_duplicates() self.write_manifest() def write_manifest (self): """Write the file list in 'self.filelist' (presumably as filled in by 'add_defaults()' and 'read_template()') to the manifest file named by 'self.manifest'. """ # The manifest must be UTF-8 encodable. See #303. if sys.version_info >= (3,): files = [] for file in self.filelist.files: try: file.encode("utf-8") except UnicodeEncodeError: log.warn("'%s' not UTF-8 encodable -- skipping" % file) else: files.append(file) self.filelist.files = files files = self.filelist.files if os.sep!='/': files = [f.replace(os.sep,'/') for f in files] self.execute(write_file, (self.manifest, files), "writing manifest file '%s'" % self.manifest) def warn(self, msg): # suppress missing-file warnings from sdist if not msg.startswith("standard file not found:"): sdist.warn(self, msg) def add_defaults(self): sdist.add_defaults(self) self.filelist.append(self.template) self.filelist.append(self.manifest) rcfiles = list(walk_revctrl()) if rcfiles: self.filelist.extend(rcfiles) elif os.path.exists(self.manifest): self.read_manifest() ei_cmd = self.get_finalized_command('egg_info') self.filelist.include_pattern("*", prefix=ei_cmd.egg_info) def prune_file_list (self): build = self.get_finalized_command('build') base_dir = self.distribution.get_fullname() self.filelist.exclude_pattern(None, prefix=build.build_base) self.filelist.exclude_pattern(None, prefix=base_dir) sep = re.escape(os.sep) self.filelist.exclude_pattern(sep+r'(RCS|CVS|\.svn)'+sep, is_regex=1) def write_file (filename, contents): """Create a file with the specified name and write 'contents' (a sequence of strings without line terminators) to it. """ contents = "\n".join(contents) if sys.version_info >= (3,): contents = contents.encode("utf-8") f = open(filename, "wb") # always write POSIX-style manifest f.write(contents) f.close() def write_pkg_info(cmd, basename, filename): log.info("writing %s", filename) if not cmd.dry_run: metadata = cmd.distribution.metadata metadata.version, oldver = cmd.egg_version, metadata.version metadata.name, oldname = cmd.egg_name, metadata.name try: # write unescaped data to PKG-INFO, so older pkg_resources # can still parse it metadata.write_pkg_info(cmd.egg_info) finally: metadata.name, metadata.version = oldname, oldver safe = getattr(cmd.distribution,'zip_safe',None) from setuptools.command import bdist_egg bdist_egg.write_safety_flag(cmd.egg_info, safe) def warn_depends_obsolete(cmd, basename, filename): if os.path.exists(filename): log.warn( "WARNING: 'depends.txt' is not used by setuptools 0.6!\n" "Use the install_requires/extras_require setup() args instead." ) def write_requirements(cmd, basename, filename): dist = cmd.distribution data = ['\n'.join(yield_lines(dist.install_requires or ()))] for extra,reqs in (dist.extras_require or {}).items(): data.append('\n\n[%s]\n%s' % (extra, '\n'.join(yield_lines(reqs)))) cmd.write_or_delete_file("requirements", filename, ''.join(data)) def write_toplevel_names(cmd, basename, filename): pkgs = dict.fromkeys( [k.split('.',1)[0] for k in cmd.distribution.iter_distribution_names() ] ) cmd.write_file("top-level names", filename, '\n'.join(pkgs)+'\n') def overwrite_arg(cmd, basename, filename): write_arg(cmd, basename, filename, True) def write_arg(cmd, basename, filename, force=False): argname = os.path.splitext(basename)[0] value = getattr(cmd.distribution, argname, None) if value is not None: value = '\n'.join(value)+'\n' cmd.write_or_delete_file(argname, filename, value, force) def write_entries(cmd, basename, filename): ep = cmd.distribution.entry_points if isinstance(ep,basestring) or ep is None: data = ep elif ep is not None: data = [] for section, contents in ep.items(): if not isinstance(contents,basestring): contents = EntryPoint.parse_group(section, contents) contents = '\n'.join(map(str,contents.values())) data.append('[%s]\n%s\n\n' % (section,contents)) data = ''.join(data) cmd.write_or_delete_file('entry points', filename, data, True) def get_pkg_info_revision(): # See if we can get a -r### off of PKG-INFO, in case this is an sdist of # a subversion revision # if os.path.exists('PKG-INFO'): f = open('PKG-INFO','rU') for line in f: match = re.match(r"Version:.*-r(\d+)\s*$", line) if match: return int(match.group(1)) f.close() return 0 #
{ "content_hash": "6ce1d5158bb66869f55ec4a64dc6effb", "timestamp": "", "source": "github", "line_count": 458, "max_line_length": 80, "avg_line_length": 31.366812227074234, "alnum_prop": 0.5821383822915216, "repo_name": "bobeirasa/virtualenvs", "id": "a0ba530590b5020bef9489c396a59f4d7d0754f7", "size": "14366", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "pyzabbixhue/lib/python2.7/site-packages/setuptools/command/egg_info.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "3541254" }, { "name": "Shell", "bytes": "7394" } ], "symlink_target": "" }
""" Axislines includes modified implementation of the Axes class. The biggest difference is that the artists responsible to draw axis line, ticks, ticklabel and axis labels are separated out from the mpl's Axis class, which are much more than artists in the original mpl. Originally, this change was motivated to support curvilinear grid. Here are a few reasons that I came up with new axes class. * "top" and "bottom" x-axis (or "left" and "right" y-axis) can have different ticks (tick locations and labels). This is not possible with the current mpl, although some twin axes trick can help. * Curvilinear grid. * angled ticks. In the new axes class, xaxis and yaxis is set to not visible by default, and new set of artist (AxisArtist) are defined to draw axis line, ticks, ticklabels and axis label. Axes.axis attribute serves as a dictionary of these artists, i.e., ax.axis["left"] is a AxisArtist instance responsible to draw left y-axis. The default Axes.axis contains "bottom", "left", "top" and "right". AxisArtist can be considered as a container artist and has following children artists which will draw ticks, labels, etc. * line * major_ticks, major_ticklabels * minor_ticks, minor_ticklabels * offsetText * label Note that these are separate artists from Axis class of the original mpl, thus most of tick-related command in the original mpl won't work, although some effort has made to work with. For example, color and markerwidth of the ax.axis["bottom"].major_ticks will follow those of Axes.xaxis unless explicitly specified. In addition to AxisArtist, the Axes will have *gridlines* attribute, which obviously draws grid lines. The gridlines needs to be separated from the axis as some gridlines can never pass any axis. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import matplotlib.axes as maxes import matplotlib.artist as martist import matplotlib.text as mtext import matplotlib.font_manager as font_manager from matplotlib.path import Path from matplotlib.transforms import Affine2D, ScaledTranslation, \ IdentityTransform, TransformedPath, Bbox from matplotlib.collections import LineCollection from matplotlib import rcParams from matplotlib.artist import allow_rasterization import warnings import numpy as np import matplotlib.lines as mlines from .axisline_style import AxislineStyle from .axis_artist import AxisArtist, GridlinesCollection class AxisArtistHelper(object): """ AxisArtistHelper should define following method with given APIs. Note that the first axes argument will be axes attribute of the caller artist. # LINE (spinal line?) def get_line(self, axes): # path : Path return path def get_line_transform(self, axes): # ... # trans : transform return trans # LABEL def get_label_pos(self, axes): # x, y : position return (x, y), trans def get_label_offset_transform(self, \ axes, pad_points, fontprops, renderer, bboxes, ): # va : vertical alignment # ha : horizontal alignment # a : angle return trans, va, ha, a # TICK def get_tick_transform(self, axes): return trans def get_tick_iterators(self, axes): # iter : iterable object that yields (c, angle, l) where # c, angle, l is position, tick angle, and label return iter_major, iter_minor """ class _Base(object): """ Base class for axis helper. """ def __init__(self): """ """ self.delta1, self.delta2 = 0.00001, 0.00001 def update_lim(self, axes): pass class Fixed(_Base): """ Helper class for a fixed (in the axes coordinate) axis. """ _default_passthru_pt = dict(left=(0, 0), right=(1, 0), bottom=(0, 0), top=(0, 1)) def __init__(self, loc, nth_coord=None, ): """ nth_coord = along which coordinate value varies in 2d, nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ self._loc = loc if loc not in ["left", "right", "bottom", "top"]: raise ValueError("%s" % loc) if nth_coord is None: if loc in ["left", "right"]: nth_coord = 1 elif loc in ["bottom", "top"]: nth_coord = 0 self.nth_coord = nth_coord super(AxisArtistHelper.Fixed, self).__init__() self.passthru_pt = self._default_passthru_pt[loc] _verts = np.array([[0., 0.], [1., 1.]]) fixed_coord = 1-nth_coord _verts[:,fixed_coord] = self.passthru_pt[fixed_coord] # axis line in transAxes self._path = Path(_verts) def get_nth_coord(self): return self.nth_coord # LINE def get_line(self, axes): return self._path def get_line_transform(self, axes): return axes.transAxes # LABEL def get_axislabel_transform(self, axes): return axes.transAxes def get_axislabel_pos_angle(self, axes): """ label reference position in transAxes. get_label_transform() returns a transform of (transAxes+offset) """ loc = self._loc pos, angle_tangent = dict(left=((0., 0.5), 90), right=((1., 0.5), 90), bottom=((0.5, 0.), 0), top=((0.5, 1.), 0))[loc] return pos, angle_tangent # TICK def get_tick_transform(self, axes): trans_tick = [axes.get_xaxis_transform(), axes.get_yaxis_transform()][self.nth_coord] return trans_tick class Floating(_Base): def __init__(self, nth_coord, value): self.nth_coord = nth_coord self._value = value super(AxisArtistHelper.Floating, self).__init__() def get_nth_coord(self): return self.nth_coord def get_line(self, axes): raise RuntimeError("get_line method should be defined by the derived class") class AxisArtistHelperRectlinear(object): class Fixed(AxisArtistHelper.Fixed): def __init__(self, axes, loc, nth_coord=None, ): """ nth_coord = along which coordinate value varies in 2d, nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(AxisArtistHelperRectlinear.Fixed, self).__init__( \ loc, nth_coord) self.axis = [axes.xaxis, axes.yaxis][self.nth_coord] # TICK def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label""" loc = self._loc if loc in ["bottom", "top"]: angle_normal, angle_tangent = 90, 0 else: angle_normal, angle_tangent = 0, 90 major = self.axis.major majorLocs = major.locator() major.formatter.set_locs(majorLocs) majorLabels = [major.formatter(val, i) for i, val in enumerate(majorLocs)] minor = self.axis.minor minorLocs = minor.locator() minor.formatter.set_locs(minorLocs) minorLabels = [minor.formatter(val, i) for i, val in enumerate(minorLocs)] trans_tick = self.get_tick_transform(axes) tr2ax = trans_tick + axes.transAxes.inverted() def _f(locs, labels): for x, l in zip(locs, labels): c = list(self.passthru_pt) # copy c[self.nth_coord] = x # check if the tick point is inside axes c2 = tr2ax.transform_point(c) #delta=0.00001 if 0. -self.delta1<= c2[self.nth_coord] <= 1.+self.delta2: yield c, angle_normal, angle_tangent, l return _f(majorLocs, majorLabels), _f(minorLocs, minorLabels) class Floating(AxisArtistHelper.Floating): def __init__(self, axes, nth_coord, passingthrough_point, axis_direction="bottom"): super(AxisArtistHelperRectlinear.Floating, self).__init__( \ nth_coord, passingthrough_point) self._axis_direction = axis_direction self.axis = [axes.xaxis, axes.yaxis][self.nth_coord] def get_line(self, axes): _verts = np.array([[0., 0.], [1., 1.]]) fixed_coord = 1-self.nth_coord trans_passingthrough_point = axes.transData + axes.transAxes.inverted() p = trans_passingthrough_point.transform_point([self._value, self._value]) _verts[:,fixed_coord] = p[fixed_coord] return Path(_verts) def get_line_transform(self, axes): return axes.transAxes def get_axislabel_transform(self, axes): return axes.transAxes def get_axislabel_pos_angle(self, axes): """ label reference position in transAxes. get_label_transform() returns a transform of (transAxes+offset) """ loc = self._axis_direction #angle = dict(left=0, # right=0, # bottom=.5*np.pi, # top=.5*np.pi)[loc] if self.nth_coord == 0: angle = 0 else: angle = 90 _verts = [0.5, 0.5] fixed_coord = 1-self.nth_coord trans_passingthrough_point = axes.transData + axes.transAxes.inverted() p = trans_passingthrough_point.transform_point([self._value, self._value]) _verts[fixed_coord] = p[fixed_coord] if not (0. <= _verts[fixed_coord] <= 1.): return None, None else: return _verts, angle def get_tick_transform(self, axes): return axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label""" loc = self._axis_direction if loc in ["bottom", "top"]: angle_normal, angle_tangent = 90, 0 else: angle_normal, angle_tangent = 0, 90 if self.nth_coord == 0: angle_normal, angle_tangent = 90, 0 else: angle_normal, angle_tangent = 0, 90 #angle = 90 - 90 * self.nth_coord major = self.axis.major majorLocs = major.locator() major.formatter.set_locs(majorLocs) majorLabels = [major.formatter(val, i) for i, val in enumerate(majorLocs)] minor = self.axis.minor minorLocs = minor.locator() minor.formatter.set_locs(minorLocs) minorLabels = [minor.formatter(val, i) for i, val in enumerate(minorLocs)] tr2ax = axes.transData + axes.transAxes.inverted() def _f(locs, labels): for x, l in zip(locs, labels): c = [self._value, self._value] c[self.nth_coord] = x c1, c2 = tr2ax.transform_point(c) if 0. <= c1 <= 1. and 0. <= c2 <= 1.: if 0. - self.delta1 <= [c1, c2][self.nth_coord] <= 1. + self.delta2: yield c, angle_normal, angle_tangent, l return _f(majorLocs, majorLabels), _f(minorLocs, minorLabels) class GridHelperBase(object): def __init__(self): self._force_update = True self._old_limits = None super(GridHelperBase, self).__init__() def update_lim(self, axes): x1, x2 = axes.get_xlim() y1, y2 = axes.get_ylim() if self._force_update or self._old_limits != (x1, x2, y1, y2): self._update(x1, x2, y1, y2) self._force_update = False self._old_limits = (x1, x2, y1, y2) def _update(self, x1, x2, y1, y2): pass def invalidate(self): self._force_update = True def valid(self): return not self._force_update def get_gridlines(self, which, axis): """ Return list of grid lines as a list of paths (list of points). *which* : "major" or "minor" *axis* : "both", "x" or "y" """ return [] def new_gridlines(self, ax): """ Create and return a new GridlineCollection instance. *which* : "major" or "minor" *axis* : "both", "x" or "y" """ gridlines = GridlinesCollection(None, transform=ax.transData, colors=rcParams['grid.color'], linestyles=rcParams['grid.linestyle'], linewidths=rcParams['grid.linewidth']) ax._set_artist_props(gridlines) gridlines.set_grid_helper(self) ax.axes._set_artist_props(gridlines) # gridlines.set_clip_path(self.axes.patch) # set_clip_path need to be deferred after Axes.cla is completed. # It is done inside the cla. return gridlines class GridHelperRectlinear(GridHelperBase): def __init__(self, axes): super(GridHelperRectlinear, self).__init__() self.axes = axes def new_fixed_axis(self, loc, nth_coord=None, axis_direction=None, offset=None, axes=None, ): if axes is None: warnings.warn("'new_fixed_axis' explicitly requires the axes keyword.") axes = self.axes _helper = AxisArtistHelperRectlinear.Fixed(axes, loc, nth_coord) if axis_direction is None: axis_direction = loc axisline = AxisArtist(axes, _helper, offset=offset, axis_direction=axis_direction, ) return axisline def new_floating_axis(self, nth_coord, value, axis_direction="bottom", axes=None, ): if axes is None: warnings.warn("'new_floating_axis' explicitly requires the axes keyword.") axes = self.axes passthrough_point = (value, value) transform = axes.transData _helper = AxisArtistHelperRectlinear.Floating( \ axes, nth_coord, value, axis_direction) axisline = AxisArtist(axes, _helper) axisline.line.set_clip_on(True) axisline.line.set_clip_box(axisline.axes.bbox) return axisline def get_gridlines(self, which="major", axis="both"): """ return list of gridline coordinates in data coordinates. *which* : "major" or "minor" *axis* : "both", "x" or "y" """ gridlines = [] if axis in ["both", "x"]: locs = [] y1, y2 = self.axes.get_ylim() #if self.axes.xaxis._gridOnMajor: if which in ["both", "major"]: locs.extend(self.axes.xaxis.major.locator()) #if self.axes.xaxis._gridOnMinor: if which in ["both", "minor"]: locs.extend(self.axes.xaxis.minor.locator()) for x in locs: gridlines.append([[x, x], [y1, y2]]) if axis in ["both", "y"]: x1, x2 = self.axes.get_xlim() locs = [] if self.axes.yaxis._gridOnMajor: #if which in ["both", "major"]: locs.extend(self.axes.yaxis.major.locator()) if self.axes.yaxis._gridOnMinor: #if which in ["both", "minor"]: locs.extend(self.axes.yaxis.minor.locator()) for y in locs: gridlines.append([[x1, x2], [y, y]]) return gridlines class SimpleChainedObjects(object): def __init__(self, objects): self._objects = objects def __getattr__(self, k): _a = SimpleChainedObjects([getattr(a, k) for a in self._objects]) return _a def __call__(self, *kl, **kwargs): for m in self._objects: m(*kl, **kwargs) class Axes(maxes.Axes): class AxisDict(dict): def __init__(self, axes): self.axes = axes super(Axes.AxisDict, self).__init__() def __getitem__(self, k): if isinstance(k, tuple): r = SimpleChainedObjects([dict.__getitem__(self, k1) for k1 in k]) return r elif isinstance(k, slice): if k.start == None and k.stop == None and k.step == None: r = SimpleChainedObjects(list(six.itervalues(self))) return r else: raise ValueError("Unsupported slice") else: return dict.__getitem__(self, k) def __call__(self, *v, **kwargs): return maxes.Axes.axis(self.axes, *v, **kwargs) def __init__(self, *kl, **kw): helper = kw.pop("grid_helper", None) self._axisline_on = True if helper: self._grid_helper = helper else: self._grid_helper = GridHelperRectlinear(self) super(Axes, self).__init__(*kl, **kw) self.toggle_axisline(True) def toggle_axisline(self, b=None): if b is None: b = not self._axisline_on if b: self._axisline_on = True for s in self.spines.values(): s.set_visible(False) self.xaxis.set_visible(False) self.yaxis.set_visible(False) else: self._axisline_on = False for s in self.spines.values(): s.set_visible(True) self.xaxis.set_visible(True) self.yaxis.set_visible(True) def _init_axis(self): super(Axes, self)._init_axis() def _init_axis_artists(self, axes=None): if axes is None: axes = self self._axislines = self.AxisDict(self) new_fixed_axis = self.get_grid_helper().new_fixed_axis for loc in ["bottom", "top", "left", "right"]: self._axislines[loc] = new_fixed_axis(loc=loc, axes=axes, axis_direction=loc) for axisline in [self._axislines["top"], self._axislines["right"]]: axisline.label.set_visible(False) axisline.major_ticklabels.set_visible(False) axisline.minor_ticklabels.set_visible(False) def _get_axislines(self): return self._axislines axis = property(_get_axislines) def new_gridlines(self, grid_helper=None): """ Create and return a new GridlineCollection instance. *which* : "major" or "minor" *axis* : "both", "x" or "y" """ if grid_helper is None: grid_helper = self.get_grid_helper() gridlines = grid_helper.new_gridlines(self) return gridlines def _init_gridlines(self, grid_helper=None): # It is done inside the cla. gridlines = self.new_gridlines(grid_helper) self.gridlines = gridlines def cla(self): # gridlines need to b created before cla() since cla calls grid() self._init_gridlines() super(Axes, self).cla() # the clip_path should be set after Axes.cla() since that's # when a patch is created. self.gridlines.set_clip_path(self.axes.patch) self._init_axis_artists() def get_grid_helper(self): return self._grid_helper def grid(self, b=None, which='major', axis="both", **kwargs): """ Toggle the gridlines, and optionally set the properties of the lines. """ # their are some discrepancy between the behavior of grid in # axes_grid and the original mpl's grid, because axes_grid # explicitly set the visibility of the gridlines. super(Axes, self).grid(b, which=which, axis=axis, **kwargs) if not self._axisline_on: return if b is None: if self.axes.xaxis._gridOnMinor or self.axes.xaxis._gridOnMajor or \ self.axes.yaxis._gridOnMinor or self.axes.yaxis._gridOnMajor: b=True else: b=False self.gridlines.set_which(which) self.gridlines.set_axis(axis) self.gridlines.set_visible(b) if len(kwargs): martist.setp(self.gridlines, **kwargs) def get_children(self): if self._axisline_on: children = list(six.itervalues(self._axislines)) + [self.gridlines] else: children = [] children.extend(super(Axes, self).get_children()) return children def invalidate_grid_helper(self): self._grid_helper.invalidate() def new_fixed_axis(self, loc, offset=None): gh = self.get_grid_helper() axis = gh.new_fixed_axis(loc, nth_coord=None, axis_direction=None, offset=offset, axes=self, ) return axis def new_floating_axis(self, nth_coord, value, axis_direction="bottom", ): gh = self.get_grid_helper() axis = gh.new_floating_axis(nth_coord, value, axis_direction=axis_direction, axes=self) return axis def draw(self, renderer, inframe=False): if not self._axisline_on: super(Axes, self).draw(renderer, inframe) return orig_artists = self.artists self.artists = self.artists + list(self._axislines.values()) + [self.gridlines] super(Axes, self).draw(renderer, inframe) self.artists = orig_artists def get_tightbbox(self, renderer, call_axes_locator=True): bb0 = super(Axes, self).get_tightbbox(renderer, call_axes_locator) if not self._axisline_on: return bb0 bb = [bb0] for axisline in list(six.itervalues(self._axislines)): if not axisline.get_visible(): continue bb.append(axisline.get_tightbbox(renderer)) # if axisline.label.get_visible(): # bb.append(axisline.label.get_window_extent(renderer)) # if axisline.major_ticklabels.get_visible(): # bb.extend(axisline.major_ticklabels.get_window_extents(renderer)) # if axisline.minor_ticklabels.get_visible(): # bb.extend(axisline.minor_ticklabels.get_window_extents(renderer)) # if axisline.major_ticklabels.get_visible() or \ # axisline.minor_ticklabels.get_visible(): # bb.append(axisline.offsetText.get_window_extent(renderer)) #bb.extend([c.get_window_extent(renderer) for c in artists \ # if c.get_visible()]) _bbox = Bbox.union([b for b in bb if b and (b.width!=0 or b.height!=0)]) return _bbox Subplot = maxes.subplot_class_factory(Axes) class AxesZero(Axes): def __init__(self, *kl, **kw): super(AxesZero, self).__init__(*kl, **kw) def _init_axis_artists(self): super(AxesZero, self)._init_axis_artists() new_floating_axis = self._grid_helper.new_floating_axis xaxis_zero = new_floating_axis(nth_coord=0, value=0., axis_direction="bottom", axes=self) xaxis_zero.line.set_clip_path(self.patch) xaxis_zero.set_visible(False) self._axislines["xzero"] = xaxis_zero yaxis_zero = new_floating_axis(nth_coord=1, value=0., axis_direction="left", axes=self) yaxis_zero.line.set_clip_path(self.patch) yaxis_zero.set_visible(False) self._axislines["yzero"] = yaxis_zero SubplotZero = maxes.subplot_class_factory(AxesZero) if 0: #if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1, (4,3)) ax = SubplotZero(fig, 1, 1, 1) fig.add_subplot(ax) ax.axis["xzero"].set_visible(True) ax.axis["xzero"].label.set_text("Axis Zero") for n in ["top", "right"]: ax.axis[n].set_visible(False) xx = np.arange(0, 2*np.pi, 0.01) ax.plot(xx, np.sin(xx)) ax.set_ylabel("Test") plt.draw() plt.show() if __name__ == "__main__": #if 1: import matplotlib.pyplot as plt fig = plt.figure(1, (4,3)) ax = Subplot(fig, 1, 1, 1) fig.add_subplot(ax) xx = np.arange(0, 2*np.pi, 0.01) ax.plot(xx, np.sin(xx)) ax.set_ylabel("Test") ax.axis["top"].major_ticks.set_tick_out(True) #set_tick_direction("out") ax.axis["bottom"].major_ticks.set_tick_out(True) #set_tick_direction("out") #ax.axis["bottom"].set_tick_direction("in") ax.axis["bottom"].set_label("Tk0") plt.draw() plt.show()
{ "content_hash": "a36e08ba6486f67d0841374acd5e499b", "timestamp": "", "source": "github", "line_count": 895, "max_line_length": 92, "avg_line_length": 29.214525139664804, "alnum_prop": 0.5340956897540827, "repo_name": "andyraib/data-storage", "id": "5b9ff70cd1bff27d47e241886c8c0e5063b9a7c1", "size": "26147", "binary": false, "copies": "10", "ref": "refs/heads/master", "path": "python_scripts/env/lib/python3.6/site-packages/mpl_toolkits/axisartist/axislines.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "12403" } ], "symlink_target": "" }
import sys import socket import serial import serial.threaded import time import datetime class SerialToNet(serial.threaded.Protocol): """serial->socket""" def __init__(self): self.socket = None def __call__(self): return self # callback function # this is called by the ReaderThread on receiving data from # the serial device def data_received(self, data): if self.socket is not None: # first send data over network self.socket.sendall(data) # optionally show it for debug if (self.debug): print("r"+datetime.datetime.now().isoformat()+":"+data) if __name__ == '__main__': # noqa import argparse parser = argparse.ArgumentParser( description='Simple Serial to Network (TCP/IP) redirector.', epilog="""\ NOTE: no security measures are implemented. Anyone can remotely connect to this service over the network. Only one connection at once is supported. When the connection is terminated it waits for the next connect. """) parser.add_argument( 'SERIALPORT', help="serial port name") parser.add_argument( 'BAUDRATE', type=int, nargs='?', help='set baud rate, default: %(default)s', default=9600) parser.add_argument( '-d', '--debug', action='store_true', help='debug', default=False) parser.add_argument( '-q', '--quiet', action='store_true', help='suppress non error messages', default=False) parser.add_argument( '--develop', action='store_true', help='Development mode, prints Python internals on errors', default=False) group = parser.add_argument_group('serial port') group.add_argument( "--parity", choices=['N', 'E', 'O', 'S', 'M'], type=lambda c: c.upper(), help="set parity, one of {N E O S M}, default: N", default='N') group.add_argument( '--rtscts', action='store_true', help='enable RTS/CTS flow control (default off)', default=False) group.add_argument( '--xonxoff', action='store_true', help='enable software flow control (default off)', default=False) group.add_argument( '--rts', type=int, help='set initial RTS line state (possible values: 0, 1)', default=None) group.add_argument( '--dtr', type=int, help='set initial DTR line state (possible values: 0, 1)', default=None) group = parser.add_argument_group('network settings') exclusive_group = group.add_mutually_exclusive_group() exclusive_group.add_argument( '-P', '--localport', type=int, help='local TCP port', default=7777) exclusive_group.add_argument( '-c', '--client', metavar='HOST:PORT', help='make the connection as a client, instead of running a server', default=False) args = parser.parse_args() # connect to serial port ser = serial.serial_for_url(args.SERIALPORT, do_not_open=True) ser.baudrate = args.BAUDRATE ser.parity = args.parity ser.rtscts = args.rtscts ser.xonxoff = args.xonxoff if args.rts is not None: ser.rts = args.rts if args.dtr is not None: ser.dtr = args.dtr if not args.quiet: sys.stderr.write( '--- TCP/IP to Serial redirect on {p.name} {p.baudrate},{p.bytesize},{p.parity},{p.stopbits} ---\n' '--- type Ctrl-C / BREAK to quit\n'.format(p=ser)) try: ser.open() except serial.SerialException as e: sys.stderr.write('Could not open serial port {}: {}\n'.format(ser.name, e)) sys.exit(1) ser_to_net = SerialToNet() ser_to_net.debug=args.debug serial_worker = serial.threaded.ReaderThread(ser, ser_to_net) serial_worker.start() if not args.client: # open the socket as a streaming socket srv = socket.socket(socket.AF_INET, socket.SOCK_STREAM) srv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) srv.bind(('', args.localport)) srv.listen(1) try: intentional_exit = False while True: if args.client: host, port = args.client.split(':') sys.stderr.write("Opening connection to {}:{}...\n".format(host, port)) client_socket = socket.socket() try: client_socket.connect((host, int(port))) except socket.error as msg: sys.stderr.write('WARNING: {}\n'.format(msg)) time.sleep(5) # intentional delay on reconnection as client continue sys.stderr.write('Connected\n') client_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) #~ client_socket.settimeout(5) else: sys.stderr.write('Waiting for connection on {}...\n'.format(args.localport)) client_socket, addr = srv.accept() sys.stderr.write('Connected by {}\n'.format(addr)) # More quickly detect bad clients who quit without closing the # connection: After 1 second of idle, start sending TCP keep-alive # packets every 1 second. If 3 consecutive keep-alive packets # fail, assume the client is gone and close the connection. try: client_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, 1) client_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPINTVL, 1) client_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPCNT, 3) client_socket.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) except AttributeError: pass # XXX not available on windows client_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) try: ser_to_net.socket = client_socket # enter network <-> serial loop while True: try: # read data from serial data = client_socket.recv(2048) if not data: break ser.write(data) # get a bunch of bytes and send them if (args.debug): print("s"+datetime.datetime.now().isoformat()+":"+data) except socket.error as msg: if args.develop: raise sys.stderr.write('ERROR: {}\n'.format(msg)) # probably got disconnected break except KeyboardInterrupt: intentional_exit = True raise except socket.error as msg: if args.develop: raise sys.stderr.write('ERROR: {}\n'.format(msg)) finally: ser_to_net.socket = None sys.stderr.write('Disconnected\n') client_socket.close() if args.client and not intentional_exit: time.sleep(5) # intentional delay on reconnection as client except KeyboardInterrupt: pass sys.stderr.write('\n--- exit ---\n') serial_worker.stop()
{ "content_hash": "d05de8f0fe8ba1db3bb7050ccfda5d18", "timestamp": "", "source": "github", "line_count": 224, "max_line_length": 112, "avg_line_length": 33.982142857142854, "alnum_prop": 0.5478192327903311, "repo_name": "BITPlan/can4eve", "id": "5e18f067a71f2d0ff9f93ca48617f7a8be5f9811", "size": "7807", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "scripts/tcp_serial_redirect.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "2687" }, { "name": "Java", "bytes": "725448" }, { "name": "Python", "bytes": "9863" }, { "name": "Shell", "bytes": "5369" } ], "symlink_target": "" }
import time import traceback import commands import threading import json import pdb from datetime import datetime from collections import defaultdict # Assumes that there are no empty dependencies # in the graph. E.g. Foo -> [] def dfs(graph, visit): nodes = graph.keys() edge_nodes = set() for n in nodes: edge_nodes|=set(graph[n]) sinks = list(edge_nodes - set(nodes)) sources = list(set(nodes) - edge_nodes) nodes.extend(sinks) visited = set(sources) stack = sources while stack: current = stack.pop() visit(current) for node in graph[current]: if node not in visited: stack.append(node) visited.add(node) return sources # Topological sort # Notes: # - Uses a stack instead of recursion # - Forfeits optimization involving tracking currently visited nodes def toposort(g, steps=None): # Get set of all nodes, including those without outgoing edges keys = set(g.keys()) values = set({}) for v in g.values(): values=values | set(v) all_nodes=list(keys|values) if (not steps): steps = all_nodes # Final order order = [] # DFS stack, not using recursion stack = [] # Unmarked set unmarked = all_nodes # visiting = [] - skip, don't expect 1000s of nodes, |E|/|V| is small while unmarked: stack.insert(0,unmarked[0]) # push first unmarked while (stack): n = stack[0] add = True try: for m in g[n]: if (m in unmarked): if (m not in stack): add = False stack.insert(0,m) else: # Should not happen, if so there's a loop print 'Loop at %s'%m except KeyError: pass if (add): if (n in steps): order.append(n) item = stack.pop(0) unmarked.remove(item) noorder = list(set(steps) - set(order)) return order + noorder def main(): graph_file=open('xos.deps').read() g = json.loads(graph_file) print toposort(g) if (__name__=='__main__'): main() #print toposort({'a':'b','b':'c','c':'d','d':'c'},['d','c','b','a'])
{ "content_hash": "4c0f569c0900935afbbd5f4caea756b2", "timestamp": "", "source": "github", "line_count": 97, "max_line_length": 70, "avg_line_length": 20.24742268041237, "alnum_prop": 0.6430753564154786, "repo_name": "xmaruto/mcord", "id": "c0ec779912d5a21476afcc4e322cf1449a0432f9", "size": "1987", "binary": false, "copies": "5", "ref": "refs/heads/master", "path": "xos/synchronizers/ec2/toposort.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "847306" }, { "name": "HTML", "bytes": "732024" }, { "name": "JavaScript", "bytes": "5293940" }, { "name": "Makefile", "bytes": "13901" }, { "name": "Python", "bytes": "1937152" }, { "name": "Shell", "bytes": "49250" } ], "symlink_target": "" }
import webapp2 import datetime import os from google.appengine.ext.webapp import template import alarm import gae_util class IndexPage(webapp2.RequestHandler): def get(self): utcnow = datetime.datetime.utcnow() jstTime = gae_util.Utility.convert_jst_time(utcnow) if jstTime.hour >= 7: jstTime = jstTime + datetime.timedelta(days=1) self.response.out.write(template.render('html/index.html',{'selectedYear': jstTime.year, 'selectedMonth': jstTime.month, 'selectedDate': jstTime.day, 'selectedHourOfDay': 7, 'selectedMinute': 0, 'years': self.get_years(), 'months': self.get_months(), 'dates': self.get_dates(), 'hours': self.get_hours(), 'minutes': self.get_minutes(), })) def post(self): email = self.request.get("email") nickname = self.request.get("nickname") year = self.request.get("year") month = self.request.get("month") date = self.request.get("date") hourOfDay = self.request.get("hourOfDay") minute = self.request.get("minute") # 入力チェック hasError = False emailError = False nicknameError = False wakeupDateError = False if email is None or email== '': emailError = True hasError = True if nickname is None or nickname == '': nicknameError = True hasError = True if not self.is_datetime(year, month, date): wakeupDateError = True hasError = True if hasError: # テンプレートの ifequal で正しく出力するには型を揃える必要があるため、int型へと変換しておく self.response.out.write(template.render('html/index.html',{'selectedYear': int(year), 'selectedMonth': int(month), 'selectedDate': int(date), 'selectedHourOfDay': int(hourOfDay), 'selectedMinute': int(minute), 'years': self.get_years(), 'months': self.get_months(), 'dates': self.get_dates(), 'hours': self.get_hours(), 'minutes': self.get_minutes(), 'email': email, 'emailError': emailError, 'nickname': nickname, 'nicknameError': nicknameError, 'wakeupDateError': wakeupDateError, })) return # データストアへの登録 wakeupDate = datetime.datetime(int(year), int(month), int(date), int(hourOfDay), int(minute)) #データストアの時刻は、タイムゾーンを考慮しないUTC時刻のため、タイムゾーンを加味して設定する jstWakeupDate = gae_util.Utility.convert_jst_time(wakeupDate) datastore = alarm.Alarm(key_name = email, email = email, nickname = nickname, wakeupDate = jstWakeupDate, count = 0) datastore.put() self.response.out.write(template.render('html/index_post.html',{'email': email, 'nickname': nickname, 'wakeupDate': wakeupDate, })) def get_years(self): #年は2年分 utcnow = datetime.datetime.utcnow() years = [] years.append(utcnow.year) years.append(utcnow.year + 1) return years def get_months(self): months = [] for month in range(1, 13): months.append(month) return months def get_dates(self): dates = [] for date in range(1, 32): dates.append(date) return dates def get_hours(self): hours = [] for hour in range(0, 24): hours.append(hour) return hours def get_minutes(self): minutes = [] for minute in range(0, 59, 5): minutes.append(minute) return minutes def is_datetime(self, year, month, date): try: datetime.date(int(year), int(month), int(date)) return True except ValueError: return False debug = os.environ.get('SERVER_SOFTWARE', '').startswith('Dev') app = webapp2.WSGIApplication([('/index.html', IndexPage), ('/', IndexPage)], debug=debug)
{ "content_hash": "8e1495aa86557a3577def78ce9cba1e9", "timestamp": "", "source": "github", "line_count": 162, "max_line_length": 107, "avg_line_length": 39.47530864197531, "alnum_prop": 0.3605942142298671, "repo_name": "thinkAmi/9784798123028_GAE", "id": "13ff9878364fb092d95bf5c7b9269318ae8c78ad", "size": "6626", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "chap4/index.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "JavaScript", "bytes": "13215" }, { "name": "Python", "bytes": "525558" } ], "symlink_target": "" }
import os import sys import shutil import os.path as osp import json import time import datetime import tempfile LOG_OUTPUT_FORMATS = ['stdout', 'log', 'json'] DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class OutputFormat(object): def writekvs(self, kvs): """ Write key-value pairs """ raise NotImplementedError def writeseq(self, args): """ Write a sequence of other data (e.g. a logging message) """ pass def close(self): return class HumanOutputFormat(OutputFormat): def __init__(self, file): self.file = file def writekvs(self, kvs): # Create strings for printing key2str = {} for (key, val) in sorted(kvs.items()): if isinstance(val, float): valstr = '%-8.3g' % (val,) else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) # Find max widths keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) # Write out the data dashes = '-' * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items()): lines.append('| %s%s | %s%s |' % ( key, ' ' * (keywidth - len(key)), val, ' ' * (valwidth - len(val)), )) lines.append(dashes) self.file.write('\n'.join(lines) + '\n') # Flush the output to the file self.file.flush() def _truncate(self, s): return s[:20] + '...' if len(s) > 23 else s def writeseq(self, args): for arg in args: self.file.write(arg) self.file.write('\n') self.file.flush() class JSONOutputFormat(OutputFormat): def __init__(self, file): self.file = file def writekvs(self, kvs): for k, v in sorted(kvs.items()): if hasattr(v, 'dtype'): v = v.tolist() kvs[k] = float(v) self.file.write(json.dumps(kvs) + '\n') self.file.flush() class TensorBoardOutputFormat(OutputFormat): """ Dumps key/value pairs into TensorBoard's numeric format. """ def __init__(self, dir): os.makedirs(dir, exist_ok=True) self.dir = dir self.step = 1 prefix = 'events' path = osp.join(osp.abspath(dir), prefix) import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.core.util import event_pb2 from tensorflow.python.util import compat self.tf = tf self.event_pb2 = event_pb2 self.pywrap_tensorflow = pywrap_tensorflow self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) def writekvs(self, kvs): def summary_val(k, v): kwargs = {'tag': k, 'simple_value': float(v)} return self.tf.Summary.Value(**kwargs) summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()]) event = self.event_pb2.Event(wall_time=time.time(), summary=summary) event.step = self.step # is there any reason why you'd want to specify the step? self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): if self.writer: self.writer.Close() self.writer = None def make_output_format(format, ev_dir): os.makedirs(ev_dir, exist_ok=True) if format == 'stdout': return HumanOutputFormat(sys.stdout) elif format == 'log': log_file = open(osp.join(ev_dir, 'log.txt'), 'wt') return HumanOutputFormat(log_file) elif format == 'json': json_file = open(osp.join(ev_dir, 'progress.json'), 'wt') return JSONOutputFormat(json_file) elif format == 'tensorboard': return TensorBoardOutputFormat(osp.join(ev_dir, 'tb')) else: raise ValueError('Unknown format specified: %s' % (format,)) # ================================================================ # API # ================================================================ def logkv(key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration """ Logger.CURRENT.logkv(key, val) def logkvs(d): """ Log a dictionary of key-value pairs """ for (k, v) in d.items(): logkv(k, v) def dumpkvs(): """ Write all of the diagnostics from the current iteration level: int. (see logger.py docs) If the global logger level is higher than the level argument here, don't print to stdout. """ Logger.CURRENT.dumpkvs() def getkvs(): return Logger.CURRENT.name2val def log(*args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). """ Logger.CURRENT.log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): """ Set logging threshold on current logger. """ Logger.CURRENT.set_level(level) def get_dir(): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) """ return Logger.CURRENT.get_dir() record_tabular = logkv dump_tabular = dumpkvs # ================================================================ # Backend # ================================================================ class Logger(object): DEFAULT = None # A logger with no output files. (See right below class definition) # So that you can still log to the terminal without setting up any output files CURRENT = None # Current logger being used by the free functions above def __init__(self, dir, output_formats): self.name2val = {} # values this iteration self.level = INFO self.dir = dir self.output_formats = output_formats # Logging API, forwarded # ---------------------------------------- def logkv(self, key, val): self.name2val[key] = val def dumpkvs(self): if self.level == DISABLED: return for fmt in self.output_formats: fmt.writekvs(self.name2val) self.name2val.clear() def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) # Configuration # ---------------------------------------- def set_level(self, level): self.level = level def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() # Misc # ---------------------------------------- def _do_log(self, args): for fmt in self.output_formats: fmt.writeseq(args) Logger.DEFAULT = Logger.CURRENT = Logger(dir=None, output_formats=[HumanOutputFormat(sys.stdout)]) def configure(dir=None, format_strs=None): assert Logger.CURRENT is Logger.DEFAULT,\ "Only call logger.configure() when it's in the default state. Try calling logger.reset() first." prevlogger = Logger.CURRENT if dir is None: dir = os.getenv('OPENAI_LOGDIR') if dir is None: dir = osp.join(tempfile.gettempdir(), datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f")) if format_strs is None: format_strs = LOG_OUTPUT_FORMATS output_formats = [make_output_format(f, dir) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats) log('Logging to %s'%dir) if os.getenv('OPENAI_LOGDIR'): # if OPENAI_LOGDIR is set, configure the logger on import # this kind of nasty (unexpected to user), but I don't know how else to inject the logger # to a script that's getting run in a subprocess configure(dir=os.getenv('OPENAI_LOGDIR')) def reset(): Logger.CURRENT = Logger.DEFAULT log('Reset logger') # ================================================================ def _demo(): info("hi") debug("shouldn't appear") set_level(DEBUG) debug("should appear") dir = "/tmp/testlogging" if os.path.exists(dir): shutil.rmtree(dir) with session(dir=dir): logkv("a", 3) logkv("b", 2.5) dumpkvs() logkv("b", -2.5) logkv("a", 5.5) dumpkvs() info("^^^ should see a = 5.5") logkv("b", -2.5) dumpkvs() logkv("a", "longasslongasslongasslongasslongasslongassvalue") dumpkvs() if __name__ == "__main__": _demo()
{ "content_hash": "355cea1de7f728ca8009a9c5a9bbb857", "timestamp": "", "source": "github", "line_count": 314, "max_line_length": 122, "avg_line_length": 27.996815286624205, "alnum_prop": 0.5573882379706518, "repo_name": "pcchenxi/baseline", "id": "981c4b2a0625534e76b90efaae5c836988f2dea1", "size": "8791", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "baselines/logger.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "2171" }, { "name": "C++", "bytes": "242720" }, { "name": "Lua", "bytes": "43847" }, { "name": "Python", "bytes": "544643" }, { "name": "Shell", "bytes": "2395" } ], "symlink_target": "" }
"""autoresizelist.py - list wrapper that automatically expands the list when indices outside its current range are accessed """ __author__ = 'caleb' __date__ = "2015-02-17" class AutoResizeList: def __init__(self, initial_data=None, fill=None): if initial_data is None: self._data = [] else: self._data = initial_data self.fill = fill def __setitem__(self, key, value): if key >= len(self._data): self._data += [self.fill] * (key - len(self._data) + 1) self._data[key] = value def __getitem__(self, key): #if key >= len(self._data): # self._data += [self.fill] * (key - len(self._data) + 1) return self._data[key] def __delitem__(self, key): del self._data[key] def __repr__(self): return str(self._data) def __eq__(self, other): return self._data == other._data def __len__(self): return len(self._data) def append(self, item): self._data.append(item) def prepend(self, item): self._data = [item] + self._data if __name__ == "__main__": import unittest testsuite = unittest.TestLoader().discover('test', pattern="*autoresizelist*") unittest.TextTestRunner(verbosity=1).run(testsuite)
{ "content_hash": "da69f7039fc21c6e33d5a15731053869", "timestamp": "", "source": "github", "line_count": 47, "max_line_length": 82, "avg_line_length": 27.574468085106382, "alnum_prop": 0.5632716049382716, "repo_name": "calebmadrigal/algorithms-in-python", "id": "3697957b39844926357a064af8d6f8d4a81fd067", "size": "1296", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "autoresizelist.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "47622" } ], "symlink_target": "" }
"""Script for migrating the contents of celery_taskmeta into etl_task.""" import traceback from sqlalchemy import create_engine from sqlalchemy.exc import IntegrityError, ProgrammingError from plenario.settings import DATABASE_CONN engine = create_engine(DATABASE_CONN) def main(): rp = engine.execute(""" select * from meta_shape as ms natural join celery_taskmeta as ct where ms.celery_task_id = ct.task_id """) for row in rp.fetchall(): try: engine.execute( """ insert into etl_task (dataset_name, date_done, status, error, type) values ('{}', '{}', '{}', '{}', '{}') """.format(row.dataset_name, row.date_done, row.status, row.traceback, 'shape') ) except (IntegrityError, ProgrammingError): traceback.print_exc() pass if __name__ == '__main__': main()
{ "content_hash": "650bbfdb2f58163ed188808271d0c6a8", "timestamp": "", "source": "github", "line_count": 34, "max_line_length": 95, "avg_line_length": 27.264705882352942, "alnum_prop": 0.5868392664509169, "repo_name": "UrbanCCD-UChicago/plenario", "id": "b1f0809fef4d5d144a1dbe8c435368a2dc141ef7", "size": "950", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "plenario/utils/migrate_celery_tasks.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "22088" }, { "name": "Dockerfile", "bytes": "514" }, { "name": "HTML", "bytes": "100643" }, { "name": "JavaScript", "bytes": "15770" }, { "name": "PLpgSQL", "bytes": "594" }, { "name": "Python", "bytes": "487024" } ], "symlink_target": "" }
from flask import Blueprint profile = Blueprint('profile', __name__) from . import views
{ "content_hash": "d12e4f5b071c29b18896c3edc888b867", "timestamp": "", "source": "github", "line_count": 5, "max_line_length": 40, "avg_line_length": 18.2, "alnum_prop": 0.7252747252747253, "repo_name": "ludolatin/ludolatin", "id": "a66f70a35397aae40607fb70a35a140c5d5c0d5a", "size": "91", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "app/profile/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "10085" }, { "name": "HTML", "bytes": "147541" }, { "name": "JavaScript", "bytes": "29045" }, { "name": "Python", "bytes": "72684" }, { "name": "Shell", "bytes": "155" } ], "symlink_target": "" }
import logging import numpy as np from packaging import version import ray.ray_constants as ray_constants class RayParams: """A class used to store the parameters used by Ray. Attributes: redis_address (str): The address of the Redis server to connect to. If this address is not provided, then this command will start Redis, a raylet, a plasma store, a plasma manager, and some workers. It will also kill these processes when Python exits. redis_port (int): The port that the primary Redis shard should listen to. If None, then a random port will be chosen. redis_shard_ports: A list of the ports to use for the non-primary Redis shards. num_cpus (int): Number of CPUs to configure the raylet with. num_gpus (int): Number of GPUs to configure the raylet with. resources: A dictionary mapping the name of a resource to the quantity of that resource available. memory: Total available memory for workers requesting memory. object_store_memory: The amount of memory (in bytes) to start the object store with. redis_max_memory: The max amount of memory (in bytes) to allow redis to use, or None for no limit. Once the limit is exceeded, redis will start LRU eviction of entries. This only applies to the sharded redis tables (task and object tables). object_manager_port int: The port to use for the object manager. node_manager_port: The port to use for the node manager. node_ip_address (str): The IP address of the node that we are on. object_id_seed (int): Used to seed the deterministic generation of object IDs. The same value can be used across multiple runs of the same job in order to generate the object IDs in a consistent manner. However, the same ID should not be used for different jobs. local_mode (bool): True if the code should be executed serially without Ray. This is useful for debugging. redirect_worker_output: True if the stdout and stderr of worker processes should be redirected to files. redirect_output (bool): True if stdout and stderr for non-worker processes should be redirected to files and false otherwise. num_redis_shards: The number of Redis shards to start in addition to the primary Redis shard. redis_max_clients: If provided, attempt to configure Redis with this maxclients number. redis_password (str): Prevents external clients without the password from connecting to Redis if provided. plasma_directory: A directory where the Plasma memory mapped files will be created. worker_path (str): The path of the source code that will be run by the worker. huge_pages: Boolean flag indicating whether to start the Object Store with hugetlbfs support. Requires plasma_directory. include_webui: Boolean flag indicating whether to start the web UI, which displays the status of the Ray cluster. If this value is None, then the UI will be started if the relevant dependencies are present. webui_host: The host to bind the web UI server to. Can either be localhost (127.0.0.1) or 0.0.0.0 (available from all interfaces). By default, this is set to localhost to prevent access from external machines. logging_level: Logging level, default will be logging.INFO. logging_format: Logging format, default contains a timestamp, filename, line number, and message. See ray_constants.py. plasma_store_socket_name (str): If provided, it will specify the socket name used by the plasma store. raylet_socket_name (str): If provided, it will specify the socket path used by the raylet process. temp_dir (str): If provided, it will specify the root temporary directory for the Ray process. include_log_monitor (bool): If True, then start a log monitor to monitor the log files for all processes on this node and push their contents to Redis. autoscaling_config: path to autoscaling config file. include_java (bool): If True, the raylet backend can also support Java worker. java_worker_options (str): The command options for Java worker. load_code_from_local: Whether load code from local file or from GCS. use_pickle: Whether data objects should be serialized with cloudpickle. _internal_config (str): JSON configuration for overriding RayConfig defaults. For testing purposes ONLY. """ def __init__(self, redis_address=None, num_cpus=None, num_gpus=None, resources=None, memory=None, object_store_memory=None, redis_max_memory=None, redis_port=None, redis_shard_ports=None, object_manager_port=None, node_manager_port=None, node_ip_address=None, object_id_seed=None, local_mode=False, driver_mode=None, redirect_worker_output=None, redirect_output=None, num_redis_shards=None, redis_max_clients=None, redis_password=ray_constants.REDIS_DEFAULT_PASSWORD, plasma_directory=None, worker_path=None, huge_pages=False, include_webui=None, webui_host="localhost", logging_level=logging.INFO, logging_format=ray_constants.LOGGER_FORMAT, plasma_store_socket_name=None, raylet_socket_name=None, temp_dir=None, include_log_monitor=None, autoscaling_config=None, include_java=False, java_worker_options=None, load_code_from_local=False, use_pickle=False, _internal_config=None): self.object_id_seed = object_id_seed self.redis_address = redis_address self.num_cpus = num_cpus self.num_gpus = num_gpus self.memory = memory self.object_store_memory = object_store_memory self.resources = resources self.redis_max_memory = redis_max_memory self.redis_port = redis_port self.redis_shard_ports = redis_shard_ports self.object_manager_port = object_manager_port self.node_manager_port = node_manager_port self.node_ip_address = node_ip_address self.local_mode = local_mode self.driver_mode = driver_mode self.redirect_worker_output = redirect_worker_output self.redirect_output = redirect_output self.num_redis_shards = num_redis_shards self.redis_max_clients = redis_max_clients self.redis_password = redis_password self.plasma_directory = plasma_directory self.worker_path = worker_path self.huge_pages = huge_pages self.include_webui = include_webui self.webui_host = webui_host self.plasma_store_socket_name = plasma_store_socket_name self.raylet_socket_name = raylet_socket_name self.temp_dir = temp_dir self.include_log_monitor = include_log_monitor self.autoscaling_config = autoscaling_config self.include_java = include_java self.java_worker_options = java_worker_options self.load_code_from_local = load_code_from_local self.use_pickle = use_pickle self._internal_config = _internal_config self._check_usage() def update(self, **kwargs): """Update the settings according to the keyword arguments. Args: kwargs: The keyword arguments to set corresponding fields. """ for arg in kwargs: if hasattr(self, arg): setattr(self, arg, kwargs[arg]) else: raise ValueError("Invalid RayParams parameter in" " update: %s" % arg) self._check_usage() def update_if_absent(self, **kwargs): """Update the settings when the target fields are None. Args: kwargs: The keyword arguments to set corresponding fields. """ for arg in kwargs: if hasattr(self, arg): if getattr(self, arg) is None: setattr(self, arg, kwargs[arg]) else: raise ValueError("Invalid RayParams parameter in" " update_if_absent: %s" % arg) self._check_usage() def _check_usage(self): if self.resources is not None: assert "CPU" not in self.resources, ( "'CPU' should not be included in the resource dictionary. Use " "num_cpus instead.") assert "GPU" not in self.resources, ( "'GPU' should not be included in the resource dictionary. Use " "num_gpus instead.") if self.redirect_worker_output is not None: raise DeprecationWarning( "The redirect_worker_output argument is deprecated. To " "control logging to the driver, use the 'log_to_driver' " "argument to 'ray.init()'") if self.redirect_output is not None: raise DeprecationWarning( "The redirect_output argument is deprecated.") if self.use_pickle: assert (version.parse( np.__version__) >= version.parse("1.16.0")), ( "numpy >= 1.16.0 required for use_pickle=True support. " "You can use ray.init(use_pickle=False) for older numpy " "versions, but this may be removed in future versions.")
{ "content_hash": "ee8dbe5a8eecf85846993a2c50ef058e", "timestamp": "", "source": "github", "line_count": 217, "max_line_length": 79, "avg_line_length": 46.93087557603687, "alnum_prop": 0.605164964650432, "repo_name": "stephanie-wang/ray", "id": "f4750e71dc2b3904bebc8f368af735040aaa54c8", "size": "10184", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/ray/parameter.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "29882" }, { "name": "C++", "bytes": "2149909" }, { "name": "CSS", "bytes": "8025" }, { "name": "Dockerfile", "bytes": "5499" }, { "name": "Go", "bytes": "28481" }, { "name": "HTML", "bytes": "30435" }, { "name": "Java", "bytes": "738348" }, { "name": "JavaScript", "bytes": "444" }, { "name": "Jupyter Notebook", "bytes": "1615" }, { "name": "Makefile", "bytes": "1965" }, { "name": "Python", "bytes": "4058862" }, { "name": "Shell", "bytes": "88736" }, { "name": "Starlark", "bytes": "121207" }, { "name": "TypeScript", "bytes": "64161" } ], "symlink_target": "" }
"""Support for SCSGate covers.""" import logging from scsgate.tasks import ( HaltRollerShutterTask, LowerRollerShutterTask, RaiseRollerShutterTask, ) import voluptuous as vol from homeassistant.components.cover import PLATFORM_SCHEMA, CoverEntity from homeassistant.const import CONF_DEVICES, CONF_NAME import homeassistant.helpers.config_validation as cv from . import CONF_SCS_ID, DOMAIN, SCSGATE_SCHEMA _LOGGER = logging.getLogger(__name__) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( {vol.Required(CONF_DEVICES): cv.schema_with_slug_keys(SCSGATE_SCHEMA)} ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the SCSGate cover.""" devices = config.get(CONF_DEVICES) covers = [] logger = logging.getLogger(__name__) scsgate = hass.data[DOMAIN] if devices: for _, entity_info in devices.items(): if entity_info[CONF_SCS_ID] in scsgate.devices: continue name = entity_info[CONF_NAME] scs_id = entity_info[CONF_SCS_ID] logger.info("Adding %s scsgate.cover", name) cover = SCSGateCover( name=name, scs_id=scs_id, logger=logger, scsgate=scsgate ) scsgate.add_device(cover) covers.append(cover) add_entities(covers) class SCSGateCover(CoverEntity): """Representation of SCSGate cover.""" def __init__(self, scs_id, name, logger, scsgate): """Initialize the cover.""" self._scs_id = scs_id self._name = name self._logger = logger self._scsgate = scsgate @property def scs_id(self): """Return the SCSGate ID.""" return self._scs_id @property def should_poll(self): """No polling needed.""" return False @property def name(self): """Return the name of the cover.""" return self._name @property def is_closed(self): """Return if the cover is closed.""" return None def open_cover(self, **kwargs): """Move the cover.""" self._scsgate.append_task(RaiseRollerShutterTask(target=self._scs_id)) def close_cover(self, **kwargs): """Move the cover down.""" self._scsgate.append_task(LowerRollerShutterTask(target=self._scs_id)) def stop_cover(self, **kwargs): """Stop the cover.""" self._scsgate.append_task(HaltRollerShutterTask(target=self._scs_id)) def process_event(self, message): """Handle a SCSGate message related with this cover.""" self._logger.debug("Cover %s, got message %s", self._scs_id, message.toggled)
{ "content_hash": "196084079b674deab96db872d8c8da73", "timestamp": "", "source": "github", "line_count": 94, "max_line_length": 85, "avg_line_length": 28.27659574468085, "alnum_prop": 0.627915726109857, "repo_name": "mKeRix/home-assistant", "id": "0c7d057316cad64c5d7af889752d004e7b8393f5", "size": "2658", "binary": false, "copies": "6", "ref": "refs/heads/dev", "path": "homeassistant/components/scsgate/cover.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1466026" }, { "name": "Python", "bytes": "4770710" }, { "name": "Ruby", "bytes": "379" }, { "name": "Shell", "bytes": "12407" } ], "symlink_target": "" }
""" Definitions for GraphStore abstract base class and type descriptors for labels and vertex/edge IDs. """ from typing import NewType, Hashable, Any, Optional, Iterator, NamedTuple, Union __all__ = [ 'GraphStore', 'VertexID', 'EdgeID', 'DirectedEdgeID', 'UndirectedEdgeID', 'Label', ] VertexID = NewType('VertexID', Union[int, str, bytes]) Label = NewType('Label', Hashable) class EdgeID: """ Common base class for DirectedEdgeID and UndirectedEdgeID. """ @property def vertices(self) -> Iterator[VertexID]: """An iterator, guaranteed to yield exactly 2 vertices, in the same order every time.""" raise NotImplementedError() @property def is_directed(self) -> bool: """Whether or not the edge is directed.""" raise NotImplementedError() def __iter__(self) -> Iterator[VertexID]: raise NotImplementedError() _DirectedEdgeID = NamedTuple('DirectedEdgeId', [('source', VertexID), ('sink', VertexID)]) class DirectedEdgeID(_DirectedEdgeID, EdgeID): """ Edge ID signifiers for directed edges. """ def __new__(cls, source: VertexID, sink: VertexID, *args, **kwargs): return _DirectedEdgeID.__new__(cls, source, sink, *args, **kwargs) @property def vertices(self) -> Iterator[VertexID]: """An iterator, guaranteed to yield exactly 2 vertices, in the same order every time.""" yield from self @property def is_directed(self) -> bool: """Whether or not the edge is directed.""" return True def __iter__(self) -> Iterator[VertexID]: return super().__iter__() class UndirectedEdgeID(frozenset, EdgeID): """ Edge ID signifiers for undirected edges. """ def __init__(self, vid1: VertexID, vid2: VertexID): super().__init__((vid1, vid2)) def __new__(cls, vid1: VertexID, vid2: VertexID, *args, **kwargs): return frozenset.__new__(cls, (vid1, vid2), *args, **kwargs) @property def is_directed(self) -> bool: """Whether or not the edge is directed.""" return False @property def vertices(self) -> Iterator[VertexID]: """An iterator, guaranteed to yield exactly 2 vertices, in the same order every time.""" if len(self) == 1: for v in self: yield v yield v else: try: yield from sorted(self) except TypeError: yield from sorted(self, key=repr) class GraphStore: """ The abstract interface for graph stores. All graph stores must support this interface in order to be accessed via the first-class object interface (the Graph, Vertex, and Edge classes). """ @property def is_open(self) -> bool: """A Boolean value indicating whether the graph store is open. When a graph store is closed, it cannot be accessed.""" return True # By default, always open def close(self) -> None: """Perform a proper shutdown of the graph store, ensuring that if the graph store is persistent, it will be in a consistent on-disk state.""" pass # By default, a no-op def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() return False def count_vertices(self) -> int: """Return the total number of vertices in the graph.""" raise NotImplementedError() def count_edges(self) -> int: """Return the total number of edges in the graph.""" raise NotImplementedError() def iter_vertices(self) -> Iterator[VertexID]: """Return an iterator over the IDs of every vertex in the graph.""" raise NotImplementedError() def iter_edges(self) -> Iterator[EdgeID]: """Return an iterator over the IDs of every edge in the graph.""" raise NotImplementedError() def has_inbound(self, sink: VertexID) -> bool: """Return a Boolean value indicating whether the given vertex has at least one inbound edge.""" raise NotImplementedError() def has_outbound(self, source: VertexID) -> bool: """Return a Boolean value indicating whether the given vertex has at least one outbound edge.""" raise NotImplementedError() def has_undirected(self, vid: VertexID) -> bool: """Return a Boolean value indicating whether the given vertex has at least one undirected edge.""" raise NotImplementedError() def iter_inbound(self, sink: VertexID) -> Iterator[DirectedEdgeID]: """Return an iterator over the IDs of every inbound directed edge to this vertex.""" raise NotImplementedError() def iter_outbound(self, source: VertexID) -> Iterator[DirectedEdgeID]: """Return an iterator over the IDs of every outbound directed edge from this vertex.""" raise NotImplementedError() def iter_undirected(self, vid: VertexID) -> Iterator[UndirectedEdgeID]: """Return an iterator over the IDs of every undirected edge connected to this vertex.""" raise NotImplementedError() def count_inbound(self, sink: VertexID) -> int: """Return the number of inbound directed edges to this vertex.""" raise NotImplementedError() def count_outbound(self, source: VertexID) -> int: """Return the number of outbound directed edges from this vertex.""" raise NotImplementedError() def count_undirected(self, vid: VertexID) -> int: """Return the number of undirected edges connected to this vertex.""" raise NotImplementedError() def has_vertex(self, vid: VertexID) -> bool: """Return whether the given ID has a vertex associated with it in the graph.""" raise NotImplementedError() def has_edge(self, eid: EdgeID) -> bool: """Return whether the given ID has an edge associated with it in the graph.""" raise NotImplementedError() def add_vertex(self, vid: VertexID) -> None: """ Add a vertex to the graph associated with this ID. If a vertex with the given ID already exists, do nothing. """ raise NotImplementedError() def add_edge(self, eid: EdgeID) -> None: """ Add an edge to the graph associated with this ID. If an edge with the given ID already exists, do nothing. If either the source or sink vertex of the edge does not exist, add it first. """ raise NotImplementedError() def discard_vertex(self, vid: VertexID) -> bool: """ Remove the vertex associated with this ID from the graph. If such a vertex does not exist, do nothing. Any incident edges to the vertex are also removed. Return a Boolean indicating whether the vertex was present to be removed. """ raise NotImplementedError() def discard_edge(self, eid: EdgeID, ignore: Optional[VertexID] = None) -> bool: """ Remove the edge associated with this ID from the graph. If such an edge does not exist, do nothing. The source and sink vertex are not removed. Return a Boolean indicating whether the edge was present to be removed. """ raise NotImplementedError() def add_vertex_label(self, vid: VertexID, label: Label) -> None: """Add a label to the vertex. If the vertex already has the label, do nothing.""" raise NotImplementedError() def has_vertex_label(self, vid: VertexID, label: Label) -> bool: """Return a Boolean indicating whether the vertex has the label.""" raise NotImplementedError() def discard_vertex_label(self, vid: VertexID, label: Label) -> bool: """ Remove the label from the vertex. If the vertex does not have the label, do nothing. Return a Boolean indicating whether or not a label was removed. """ raise NotImplementedError() def iter_vertex_labels(self, vid: VertexID) -> Iterator[Label]: """Return an iterator over the labels for the vertex.""" raise NotImplementedError() def count_vertex_labels(self, vid: VertexID) -> int: """Return the number of labels the vertex has.""" raise NotImplementedError() def add_edge_label(self, eid: EdgeID, label: Label) -> None: """Add a label to the edge. If the edge already has the label, do nothing.""" raise NotImplementedError() def has_edge_label(self, eid: EdgeID, label: Label) -> bool: """Return a Boolean indicating whether or not the edge has the label.""" raise NotImplementedError() def discard_edge_label(self, eid: EdgeID, label: Label) -> bool: """ Remove the label from the edge. If the edge does not have the label, do nothing. Return a Boolean indicating whether or not a label was removed. """ raise NotImplementedError() def iter_edge_labels(self, eid: EdgeID) -> Iterator[Label]: """Return an iterator over the labels for the edge.""" raise NotImplementedError() def count_edge_labels(self, eid: EdgeID) -> int: """Return the number of labels the edge has.""" raise NotImplementedError() def get_vertex_data(self, vid: VertexID, key: Hashable) -> Any: """Return the value stored in the vertex for this key.""" raise NotImplementedError() def set_vertex_data(self, vid: VertexID, key: Hashable, value: Any) -> None: """Store a value in the vertex for this key.""" raise NotImplementedError() def has_vertex_data(self, vid: VertexID, key: Hashable) -> bool: """Return a Boolean indicating whether a value is stored in the vertex for this key.""" raise NotImplementedError() def discard_vertex_data(self, vid: VertexID, key: Hashable) -> bool: """ Remove the value stored in the vertex under this key. If no value is stored for the key, do nothing. Return a Boolean indicating whether a key/value pair was removed from the vertex. """ raise NotImplementedError() def iter_vertex_data_keys(self, vid: VertexID) -> Iterator[Hashable]: """Return an iterator over the keys for which data is stored in the vertex.""" raise NotImplementedError() def count_vertex_data_keys(self, vid: VertexID) -> int: """Return the number of key/value pairs stored in the vertex.""" raise NotImplementedError() def get_edge_data(self, eid: EdgeID, key: Hashable) -> Any: """Return the value stored in the edge for this key.""" raise NotImplementedError() def set_edge_data(self, eid: EdgeID, key: Hashable, value: Any) -> None: """Store a value in the edge for this key.""" raise NotImplementedError() def has_edge_data(self, eid: EdgeID, key: Hashable) -> bool: """Return a Boolean indicating whether a value is stored in the edge for this key.""" raise NotImplementedError() def discard_edge_data(self, eid: EdgeID, key: Hashable) -> bool: """ Remove the value stored in the edge under this key. If no value is stored for the key, do nothing. Return a Boolean indicating whether a key/value pair was removed from the edge. """ raise NotImplementedError() def iter_edge_data_keys(self, eid: EdgeID) -> Iterator[Hashable]: """Return an iterator over the keys for which data is stored in the edge.""" raise NotImplementedError() def count_edge_data_keys(self, eid: EdgeID) -> int: """Return the number of key/value pairs stored in the edge.""" raise NotImplementedError()
{ "content_hash": "dc4539a3c5959a6c13d4bf9258d825ad", "timestamp": "", "source": "github", "line_count": 307, "max_line_length": 120, "avg_line_length": 38.08794788273616, "alnum_prop": 0.643376379030189, "repo_name": "hosford42/vert", "id": "c14c701bad3bb09619442b579caf67e239730ea1", "size": "11799", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vert/stores/base.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "107803" } ], "symlink_target": "" }
"""Main entry point for distributed next-gen sequencing pipelines. Handles running the full pipeline based on instructions """ import abc from collections import defaultdict import copy import os import sys import resource import tempfile import yaml from bcbio import log, heterogeneity, structural, utils from bcbio.distributed import prun from bcbio.distributed.transaction import tx_tmpdir from bcbio.log import logger from bcbio.ngsalign import alignprep from bcbio.pipeline import (archive, config_utils, disambiguate, region, run_info, qcsummary, rnaseq) from bcbio.provenance import profile, system from bcbio.variation import coverage, ensemble, genotype, population, validate, joint def run_main(workdir, config_file=None, fc_dir=None, run_info_yaml=None, parallel=None, workflow=None): """Run variant analysis, handling command line options. """ workdir = utils.safe_makedir(os.path.abspath(workdir)) os.chdir(workdir) config, config_file = config_utils.load_system_config(config_file, workdir) if config.get("log_dir", None) is None: config["log_dir"] = os.path.join(workdir, "log") if parallel["type"] in ["local", "clusterk"]: _setup_resources() _run_toplevel(config, config_file, workdir, parallel, fc_dir, run_info_yaml) elif parallel["type"] == "ipython": assert parallel["scheduler"] is not None, "IPython parallel requires a specified scheduler (-s)" if parallel["scheduler"] != "sge": assert parallel["queue"] is not None, "IPython parallel requires a specified queue (-q)" elif not parallel["queue"]: parallel["queue"] = "" _run_toplevel(config, config_file, workdir, parallel, fc_dir, run_info_yaml) else: raise ValueError("Unexpected type of parallel run: %s" % parallel["type"]) def _setup_resources(): """Attempt to increase resource limits up to hard limits. This allows us to avoid out of file handle limits where we can move beyond the soft limit up to the hard limit. """ target_procs = 10240 cur_proc, max_proc = resource.getrlimit(resource.RLIMIT_NPROC) target_proc = min(max_proc, target_procs) if max_proc > 0 else target_procs resource.setrlimit(resource.RLIMIT_NPROC, (max(cur_proc, target_proc), max_proc)) cur_hdls, max_hdls = resource.getrlimit(resource.RLIMIT_NOFILE) target_hdls = min(max_hdls, target_procs) if max_hdls > 0 else target_procs resource.setrlimit(resource.RLIMIT_NOFILE, (max(cur_hdls, target_hdls), max_hdls)) def _run_toplevel(config, config_file, work_dir, parallel, fc_dir=None, run_info_yaml=None): """ Run toplevel analysis, processing a set of input files. config_file -- Main YAML configuration file with system parameters fc_dir -- Directory of fastq files to process run_info_yaml -- YAML configuration file specifying inputs to process """ parallel = log.create_base_logger(config, parallel) log.setup_local_logging(config, parallel) dirs = run_info.setup_directories(work_dir, fc_dir, config, config_file) config_file = os.path.join(dirs["config"], os.path.basename(config_file)) pipelines, config = _pair_samples_with_pipelines(run_info_yaml, config) system.write_info(dirs, parallel, config) with tx_tmpdir(config) as tmpdir: tempfile.tempdir = tmpdir for pipeline, samples in pipelines.items(): for xs in pipeline.run(config, run_info_yaml, parallel, dirs, samples): pass # ## Generic pipeline framework def _wres(parallel, progs, fresources=None, ensure_mem=None): """Add resource information to the parallel environment on required programs and files. Enables spinning up required machines and operating in non-shared filesystem environments. progs -- Third party tools used in processing fresources -- Required file-based resources needed. These will be transferred on non-shared filesystems. ensure_mem -- Dictionary of required minimum memory for programs used. Ensures enough memory gets allocated on low-core machines. """ parallel = copy.deepcopy(parallel) parallel["progs"] = progs if fresources: parallel["fresources"] = fresources if ensure_mem: parallel["ensure_mem"] = ensure_mem return parallel class AbstractPipeline: """ Implement this class to participate in the Pipeline abstraction. name: the analysis name in the run_info.yaml file: design: - analysis: name run: the steps run to perform the analyses """ __metaclass__ = abc.ABCMeta @abc.abstractproperty def name(self): return @abc.abstractmethod def run(self, config, run_info_yaml, parallel, dirs, samples): return class Variant2Pipeline(AbstractPipeline): """Streamlined variant calling pipeline for large files. This is less generalized but faster in standard cases. The goal is to replace the base variant calling approach. """ name = "variant2" @classmethod def run(self, config, run_info_yaml, parallel, dirs, samples): ## Alignment and preparation requiring the entire input file (multicore cluster) with prun.start(_wres(parallel, ["aligner", "samtools", "sambamba"], (["reference", "fasta"], ["reference", "aligner"], ["files"])), samples, config, dirs, "multicore", multiplier=alignprep.parallel_multiplier(samples)) as run_parallel: with profile.report("organize samples", dirs): samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]) with profile.report("alignment preparation", dirs): samples = run_parallel("prep_align_inputs", samples) samples = run_parallel("disambiguate_split", [samples]) with profile.report("alignment", dirs): samples = run_parallel("process_alignment", samples) samples = disambiguate.resolve(samples, run_parallel) samples = alignprep.merge_split_alignments(samples, run_parallel) with profile.report("callable regions", dirs): samples = run_parallel("prep_samples", [samples]) samples = run_parallel("postprocess_alignment", samples) samples = run_parallel("combine_sample_regions", [samples]) samples = region.clean_sample_data(samples) with profile.report("coverage", dirs): samples = coverage.summarize_samples(samples, run_parallel) with profile.report("structural variation initial", dirs): samples = structural.run(samples, run_parallel, initial_only=True) ## Variant calling on sub-regions of the input file (full cluster) with prun.start(_wres(parallel, ["gatk", "picard", "variantcaller"]), samples, config, dirs, "full", multiplier=region.get_max_counts(samples), max_multicore=1) as run_parallel: with profile.report("alignment post-processing", dirs): samples = region.parallel_prep_region(samples, run_parallel) with profile.report("variant calling", dirs): samples = genotype.parallel_variantcall_region(samples, run_parallel) ## Finalize variants, BAMs and population databases (per-sample multicore cluster) with prun.start(_wres(parallel, ["gatk", "gatk-vqsr", "snpeff", "bcbio_variation", "gemini", "samtools", "fastqc", "bamtools", "bcbio-variation-recall", "qsignature"]), samples, config, dirs, "multicore2") as run_parallel: with profile.report("joint squaring off/backfilling", dirs): samples = joint.square_off(samples, run_parallel) with profile.report("variant post-processing", dirs): samples = run_parallel("postprocess_variants", samples) samples = run_parallel("split_variants_by_sample", samples) with profile.report("prepped BAM merging", dirs): samples = region.delayed_bamprep_merge(samples, run_parallel) with profile.report("validation", dirs): samples = run_parallel("compare_to_rm", samples) samples = genotype.combine_multiple_callers(samples) with profile.report("ensemble calling", dirs): samples = ensemble.combine_calls_parallel(samples, run_parallel) with profile.report("validation summary", dirs): samples = validate.summarize_grading(samples) with profile.report("structural variation final", dirs): samples = structural.run(samples, run_parallel) with profile.report("heterogeneity", dirs): samples = heterogeneity.run(samples, run_parallel) with profile.report("population database", dirs): samples = population.prep_db_parallel(samples, run_parallel) with profile.report("quality control", dirs): samples = qcsummary.generate_parallel(samples, run_parallel) with prun.start(_wres(parallel, ["gatk"], ensure_mem = {"gatk": 8}), samples, config, dirs, "coverage") as run_parallel: with profile.report("report", dirs): samples = qcsummary.report_summary(samples, run_parallel) with profile.report("archive", dirs): samples = archive.compress(samples, run_parallel) with profile.report("upload", dirs): samples = run_parallel("upload_samples", samples) for sample in samples: run_parallel("upload_samples_project", [sample]) logger.info("Timing: finished") return samples def _debug_samples(i, samples): print "---", i, len(samples) for sample in (x[0] for x in samples): print " ", sample["description"], sample.get("region"), \ utils.get_in(sample, ("config", "algorithm", "variantcaller")), \ utils.get_in(sample, ("config", "algorithm", "jointcaller")), \ utils.get_in(sample, ("metadata", "batch")), \ [x.get("variantcaller") for x in sample.get("variants", [])], \ sample.get("work_bam"), \ sample.get("vrn_file") class SNPCallingPipeline(Variant2Pipeline): """Back compatible: old name for variant analysis. """ name = "SNP calling" class VariantPipeline(Variant2Pipeline): """Back compatibility; old name """ name = "variant" class StandardPipeline(AbstractPipeline): """Minimal pipeline with alignment and QC. """ name = "Standard" @classmethod def run(self, config, run_info_yaml, parallel, dirs, samples): ## Alignment and preparation requiring the entire input file (multicore cluster) with prun.start(_wres(parallel, ["aligner", "samtools", "sambamba"]), samples, config, dirs, "multicore") as run_parallel: with profile.report("organize samples", dirs): samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]) with profile.report("alignment", dirs): samples = run_parallel("process_alignment", samples) with profile.report("callable regions", dirs): samples = run_parallel("prep_samples", [samples]) samples = run_parallel("postprocess_alignment", samples) samples = run_parallel("combine_sample_regions", [samples]) samples = region.clean_sample_data(samples) ## Quality control with prun.start(_wres(parallel, ["fastqc", "bamtools", "qsignature", "kraken", "gatk"], ensure_mem={"gatk" : 2}), samples, config, dirs, "multicore2") as run_parallel: with profile.report("quality control", dirs): samples = qcsummary.generate_parallel(samples, run_parallel) with profile.report("report", dirs): samples = qcsummary.report_summary(samples, run_parallel) with profile.report("upload", dirs): samples = run_parallel("upload_samples", samples) for sample in samples: run_parallel("upload_samples_project", [sample]) logger.info("Timing: finished") return samples class MinimalPipeline(StandardPipeline): name = "Minimal" class SailfishPipeline(AbstractPipeline): name = "sailfish" @classmethod def run(self, config, run_info_yaml, parallel, dirs, samples): with prun.start(_wres(parallel, ["picard", "cutadapt"]), samples, config, dirs, "trimming") as run_parallel: with profile.report("organize samples", dirs): samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]) with profile.report("adapter trimming", dirs): samples = run_parallel("prepare_sample", samples) samples = run_parallel("trim_sample", samples) with prun.start(_wres(parallel, ["sailfish"]), samples, config, dirs, "sailfish") as run_parallel: with profile.report("sailfish", dirs): samples = run_parallel("run_sailfish", samples) with profile.report("upload", dirs): samples = run_parallel("upload_samples", samples) for sample in samples: run_parallel("upload_samples_project", [sample]) return samples class RnaseqPipeline(AbstractPipeline): name = "RNA-seq" @classmethod def run(self, config, run_info_yaml, parallel, dirs, samples): with prun.start(_wres(parallel, ["picard", "cutadapt"]), samples, config, dirs, "trimming") as run_parallel: with profile.report("organize samples", dirs): samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]) with profile.report("adapter trimming", dirs): samples = run_parallel("prepare_sample", samples) samples = run_parallel("trim_sample", samples) with prun.start(_wres(parallel, ["aligner", "picard"], ensure_mem={"tophat": 8, "tophat2": 8, "star": 2}), samples, config, dirs, "alignment", multiplier=alignprep.parallel_multiplier(samples)) as run_parallel: with profile.report("alignment", dirs): samples = run_parallel("disambiguate_split", [samples]) samples = run_parallel("process_alignment", samples) with prun.start(_wres(parallel, ["samtools", "cufflinks"]), samples, config, dirs, "rnaseqcount") as run_parallel: with profile.report("disambiguation", dirs): samples = disambiguate.resolve(samples, run_parallel) with profile.report("transcript assembly", dirs): samples = rnaseq.assemble_transcripts(run_parallel, samples) with profile.report("estimate expression (threaded)", dirs): samples = rnaseq.quantitate_expression_parallel(samples, run_parallel) with prun.start(_wres(parallel, ["dexseq", "express"]), samples, config, dirs, "rnaseqcount-singlethread", max_multicore=1) as run_parallel: with profile.report("estimate expression (single threaded)", dirs): samples = rnaseq.quantitate_expression_noparallel(samples, run_parallel) samples = rnaseq.combine_files(samples) with prun.start(_wres(parallel, ["gatk"]), samples, config, dirs, "rnaseq-variation") as run_parallel: with profile.report("RNA-seq variant calling", dirs): samples = rnaseq.rnaseq_variant_calling(samples, run_parallel) with prun.start(_wres(parallel, ["picard", "fastqc", "qualimap", "kraken", "gatk"], ensure_mem={"qualimap": 4}), samples, config, dirs, "qc") as run_parallel: with profile.report("quality control", dirs): samples = qcsummary.generate_parallel(samples, run_parallel) with profile.report("upload", dirs): samples = run_parallel("upload_samples", samples) for sample in samples: run_parallel("upload_samples_project", [sample]) logger.info("Timing: finished") return samples class smallRnaseqPipeline(AbstractPipeline): name = "smallRNA-seq" @classmethod def run(self, config, run_info_yaml, parallel, dirs, samples): with prun.start(_wres(parallel, ["picard", "cutadapt", "miraligner"]), samples, config, dirs, "trimming") as run_parallel: with profile.report("organize samples", dirs): samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]) with profile.report("adapter trimming", dirs): samples = run_parallel("prepare_sample", samples) samples = run_parallel("trim_srna_sample", samples) samples = run_parallel("seqbuster", samples) with prun.start(_wres(parallel, ["aligner", "picard"], ensure_mem={"bowtie": 8, "bowtie2": 8, "star": 2}), [samples[0]], config, dirs, "alignment") as run_parallel: with profile.report("prepare", dirs): samples = run_parallel("seqcluster_prepare", [samples]) with profile.report("alignment", dirs): samples = run_parallel("srna_alignment", [samples]) with prun.start(_wres(parallel, ["seqcluster"], ensure_mem={"seqcluster": 8}), [samples[0]], config, dirs, "cluster") as run_parallel: with profile.report("cluster", dirs): samples = run_parallel("seqcluster_cluster", [samples]) with prun.start(_wres(parallel, ["picard", "fastqc"]), samples, config, dirs, "qc") as run_parallel: with profile.report("quality control", dirs): samples = qcsummary.generate_parallel(samples, run_parallel) with profile.report("upload", dirs): samples = run_parallel("upload_samples", samples) for sample in samples: run_parallel("upload_samples_project", [sample]) return samples class ChipseqPipeline(AbstractPipeline): name = "chip-seq" @classmethod def run(self, config, run_info_yaml, parallel, dirs, samples): with prun.start(_wres(parallel, ["aligner", "picard"]), samples, config, dirs, "multicore", multiplier=alignprep.parallel_multiplier(samples)) as run_parallel: with profile.report("organize samples", dirs): samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]) samples = run_parallel("prepare_sample", samples) samples = run_parallel("trim_sample", samples) samples = run_parallel("disambiguate_split", [samples]) samples = run_parallel("process_alignment", samples) with prun.start(_wres(parallel, ["picard", "fastqc"]), samples, config, dirs, "persample") as run_parallel: with profile.report("disambiguation", dirs): samples = disambiguate.resolve(samples, run_parallel) samples = run_parallel("clean_chipseq_alignment", samples) samples = qcsummary.generate_parallel(samples, run_parallel) with profile.report("upload", dirs): samples = run_parallel("upload_samples", samples) for sample in samples: run_parallel("upload_samples_project", [sample]) return samples def _get_pipeline(item): from bcbio.log import logger SUPPORTED_PIPELINES = {x.name.lower(): x for x in utils.itersubclasses(AbstractPipeline)} analysis_type = item.get("analysis", "").lower() if analysis_type not in SUPPORTED_PIPELINES: logger.error("Cannot determine which type of analysis to run, " "set in the run_info under details.") sys.exit(1) else: return SUPPORTED_PIPELINES[analysis_type] def _pair_samples_with_pipelines(run_info_yaml, config): """Map samples defined in input file to pipelines to run. """ with open(run_info_yaml) as in_handle: samples = yaml.safe_load(in_handle) if isinstance(samples, dict): resources = samples.pop("resources", {}) samples = samples["details"] else: resources = {} ready_samples = [] for sample in samples: if "files" in sample: del sample["files"] # add any resources to this item to recalculate global configuration usample = copy.deepcopy(sample) usample.pop("algorithm", None) if "resources" not in usample: usample["resources"] = {} for prog, pkvs in resources.iteritems(): if prog not in usample["resources"]: usample["resources"][prog] = {} for key, val in pkvs.iteritems(): usample["resources"][prog][key] = val config = config_utils.update_w_custom(config, usample) sample["resources"] = {} ready_samples.append(sample) paired = [(x, _get_pipeline(x)) for x in ready_samples] d = defaultdict(list) for x in paired: d[x[1]].append([x[0]]) return d, config
{ "content_hash": "020c81b01a50c5b38e6275cc09e97e62", "timestamp": "", "source": "github", "line_count": 448, "max_line_length": 121, "avg_line_length": 50.75, "alnum_prop": 0.6011171710063336, "repo_name": "fw1121/bcbio-nextgen", "id": "d17084d2c71ce30414bfd433371e1c5f322e97a6", "size": "22736", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bcbio/pipeline/main.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1452773" }, { "name": "Ruby", "bytes": "624" }, { "name": "Shell", "bytes": "11523" } ], "symlink_target": "" }
"""Tests for pix2pix.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import pix2pix class GeneratorTest(tf.test.TestCase): def _reduced_default_blocks(self): """Returns the default blocks, scaled down to make test run faster.""" return [pix2pix.Block(b.num_filters // 32, b.decoder_keep_prob) for b in pix2pix._default_generator_blocks()] def test_output_size_nn_upsample_conv(self): batch_size = 2 height, width = 256, 256 num_outputs = 4 images = tf.ones((batch_size, height, width, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, _ = pix2pix.pix2pix_generator( images, num_outputs, blocks=self._reduced_default_blocks(), upsample_method='nn_upsample_conv') with self.test_session() as session: session.run(tf.global_variables_initializer()) np_outputs = session.run(logits) self.assertListEqual([batch_size, height, width, num_outputs], list(np_outputs.shape)) def test_output_size_conv2d_transpose(self): batch_size = 2 height, width = 256, 256 num_outputs = 4 images = tf.ones((batch_size, height, width, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, _ = pix2pix.pix2pix_generator( images, num_outputs, blocks=self._reduced_default_blocks(), upsample_method='conv2d_transpose') with self.test_session() as session: session.run(tf.global_variables_initializer()) np_outputs = session.run(logits) self.assertListEqual([batch_size, height, width, num_outputs], list(np_outputs.shape)) def test_block_number_dictates_number_of_layers(self): batch_size = 2 height, width = 256, 256 num_outputs = 4 images = tf.ones((batch_size, height, width, 3)) blocks = [ pix2pix.Block(64, 0.5), pix2pix.Block(128, 0), ] with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): _, end_points = pix2pix.pix2pix_generator( images, num_outputs, blocks) num_encoder_layers = 0 num_decoder_layers = 0 for end_point in end_points: if end_point.startswith('encoder'): num_encoder_layers += 1 elif end_point.startswith('decoder'): num_decoder_layers += 1 self.assertEqual(num_encoder_layers, len(blocks)) self.assertEqual(num_decoder_layers, len(blocks)) class DiscriminatorTest(tf.test.TestCase): def _layer_output_size(self, input_size, kernel_size=4, stride=2, pad=2): return (input_size + pad * 2 - kernel_size) // stride + 1 def test_four_layers(self): batch_size = 2 input_size = 256 output_size = self._layer_output_size(input_size) output_size = self._layer_output_size(output_size) output_size = self._layer_output_size(output_size) output_size = self._layer_output_size(output_size, stride=1) output_size = self._layer_output_size(output_size, stride=1) images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, end_points = pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512]) self.assertListEqual([batch_size, output_size, output_size, 1], logits.shape.as_list()) self.assertListEqual([batch_size, output_size, output_size, 1], end_points['predictions'].shape.as_list()) def test_four_layers_no_padding(self): batch_size = 2 input_size = 256 output_size = self._layer_output_size(input_size, pad=0) output_size = self._layer_output_size(output_size, pad=0) output_size = self._layer_output_size(output_size, pad=0) output_size = self._layer_output_size(output_size, stride=1, pad=0) output_size = self._layer_output_size(output_size, stride=1, pad=0) images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, end_points = pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512], padding=0) self.assertListEqual([batch_size, output_size, output_size, 1], logits.shape.as_list()) self.assertListEqual([batch_size, output_size, output_size, 1], end_points['predictions'].shape.as_list()) def test_four_layers_wrog_paddig(self): batch_size = 2 input_size = 256 images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): with self.assertRaises(TypeError): pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512], padding=1.5) def test_four_layers_negative_padding(self): batch_size = 2 input_size = 256 images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): with self.assertRaises(ValueError): pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512], padding=-1) if __name__ == '__main__': tf.test.main()
{ "content_hash": "f2eb7abb1e4e28a303801f5d76e7dbab", "timestamp": "", "source": "github", "line_count": 142, "max_line_length": 75, "avg_line_length": 37.190140845070424, "alnum_prop": 0.6502556334027646, "repo_name": "cshallue/models", "id": "ab5acb5c1979d7b9ab21d5a164055e8ebfc3232b", "size": "5965", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "research/slim/nets/pix2pix_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C++", "bytes": "1523636" }, { "name": "Dockerfile", "bytes": "9821" }, { "name": "GLSL", "bytes": "976" }, { "name": "HTML", "bytes": "147010" }, { "name": "JavaScript", "bytes": "33208" }, { "name": "Jupyter Notebook", "bytes": "2829707" }, { "name": "Makefile", "bytes": "4933" }, { "name": "Python", "bytes": "13149300" }, { "name": "Shell", "bytes": "146035" } ], "symlink_target": "" }
""" Forms and validation code for user registration. Note that all of these forms assume Django's bundle default ``User`` model; since it's not possible for a form to anticipate in advance the needs of custom user models, you will need to write your own forms if you're using a custom model. """ try: from django.contrib.auth import get_user_model except ImportError: from django.contrib.auth.models import User def get_user_model(): return User from django import forms from django.utils.translation import ugettext_lazy as _ class RegistrationForm(forms.Form): """ Form for registering a new user account. Validates that the requested username is not already in use, and requires the password to be entered twice to catch typos. Subclasses should feel free to add any additional validation they need, but should avoid defining a ``save()`` method -- the actual saving of collected user data is delegated to the active registration backend. """ required_css_class = 'required' username = forms.RegexField(regex=r'^[\w.@+-]+$', max_length=30, label=_("Username"), error_messages={'invalid': _("This value may contain only letters, numbers and @/./+/-/_ characters.")}) email = forms.EmailField(label=_("E-mail")) password1 = forms.CharField(widget=forms.PasswordInput, label=_("Password")) password2 = forms.CharField(widget=forms.PasswordInput, label=_("Password (again)")) def clean_username(self): """ Validate that the username is alphanumeric and is not already in use. """ User = get_user_model() existing = User.objects.filter(username__iexact=self.cleaned_data['username']) if existing.exists(): raise forms.ValidationError(_("A user with that username already exists.")) else: return self.cleaned_data['username'] def clean(self): """ Verifiy that the values entered into the two password fields match. Note that an error here will end up in ``non_field_errors()`` because it doesn't apply to a single field. """ if 'password1' in self.cleaned_data and 'password2' in self.cleaned_data: if self.cleaned_data['password1'] != self.cleaned_data['password2']: raise forms.ValidationError(_("The two password fields didn't match.")) return self.cleaned_data class RegistrationFormTermsOfService(RegistrationForm): """ Subclass of ``RegistrationForm`` which adds a required checkbox for agreeing to a site's Terms of Service. """ tos = forms.BooleanField(widget=forms.CheckboxInput, label=_(u'I have read and agree to the Terms of Service'), error_messages={'required': _("You must agree to the terms to register")}) class RegistrationFormUniqueEmail(RegistrationForm): """ Subclass of ``RegistrationForm`` which enforces uniqueness of email addresses. """ def clean_email(self): """ Validate that the supplied email address is unique for the site. """ User = get_user_model() if User.objects.filter(email__iexact=self.cleaned_data['email']): raise forms.ValidationError(_("This email address is already in use. Please supply a different email address.")) return self.cleaned_data['email'] class RegistrationFormNoFreeEmail(RegistrationForm): """ Subclass of ``RegistrationForm`` which disallows registration with email addresses from popular free webmail services; moderately useful for preventing automated spam registrations. To change the list of banned domains, subclass this form and override the attribute ``bad_domains``. """ bad_domains = ['aim.com', 'aol.com', 'email.com', 'gmail.com', 'googlemail.com', 'hotmail.com', 'hushmail.com', 'msn.com', 'mail.ru', 'mailinator.com', 'live.com', 'yahoo.com'] def clean_email(self): """ Check the supplied email address against a list of known free webmail domains. """ email_domain = self.cleaned_data['email'].split('@')[1] if email_domain in self.bad_domains: raise forms.ValidationError(_("Registration using free email addresses is prohibited. Please supply a different email address.")) return self.cleaned_data['email']
{ "content_hash": "c68290325c168bd5ef66100cb4020438", "timestamp": "", "source": "github", "line_count": 129, "max_line_length": 141, "avg_line_length": 36.13178294573643, "alnum_prop": 0.6337695773439176, "repo_name": "gone/django-registration", "id": "72850268764bc1ea365a2e325f052c744ea5397b", "size": "4661", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "registration/forms.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "77025" }, { "name": "Shell", "bytes": "2985" } ], "symlink_target": "" }
""" Finetuning the library models for sequence classification on GLUE.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import json import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import tensorflow as tf from datasets import load_dataset import evaluate import transformers from transformers import ( AutoConfig, AutoTokenizer, DataCollatorWithPadding, DefaultDataCollator, HfArgumentParser, PretrainedConfig, PushToHubCallback, TFAutoModelForSequenceClassification, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.25.0.dev0") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__) # region Command-line arguments @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: str = field( metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, ) predict_file: str = field( metadata={"help": "A file containing user-supplied examples to make predictions for"}, default=None, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) def __post_init__(self): self.task_name = self.task_name.lower() if self.task_name not in task_to_keys.keys(): raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_glue", model_args, data_args, framework="tensorflow") if not (training_args.do_train or training_args.do_eval or training_args.do_predict): exit("Must specify at least one of --do_train, --do_eval or --do_predict!") # endregion # region Checkpoints checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: checkpoint = get_last_checkpoint(training_args.output_dir) if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # endregion # region Dataset and labels # Set seed before initializing model. set_seed(training_args.seed) # Downloading and loading a dataset from the hub. In distributed training, the load_dataset function guarantee # that only one local process can concurrently download the dataset. datasets = load_dataset( "glue", data_args.task_name, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 if data_args.predict_file is not None: logger.info("Preparing user-supplied file for predictions...") data_files = {"data": data_args.predict_file} for key in data_files.keys(): logger.info(f"Loading a local file for {key}: {data_files[key]}") if data_args.predict_file.endswith(".csv"): # Loading a dataset from local csv files user_dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files user_dataset = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) needed_keys = task_to_keys[data_args.task_name] for key in needed_keys: assert key in user_dataset["data"].features, f"Your supplied predict_file is missing the {key} key!" datasets["user_data"] = user_dataset["data"] # endregion # region Load model config and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # endregion # region Dataset preprocessing sentence1_key, sentence2_key = task_to_keys[data_args.task_name] # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if config.label2id != PretrainedConfig(num_labels=num_labels).label2id and not is_regression: # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in config.label2id.items()} if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." "\nIgnoring the model labels as a result.", ) label_to_id = {label: i for i, label in enumerate(label_list)} if label_to_id is not None: config.label2id = label_to_id config.id2label = {id: label for label, id in config.label2id.items()} elif data_args.task_name is not None and not is_regression: config.label2id = {l: i for i, l in enumerate(label_list)} config.id2label = {id: label for label, id in config.label2id.items()} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if data_args.pad_to_max_length: data_collator = DefaultDataCollator(return_tensors="tf") else: data_collator = DataCollatorWithPadding(tokenizer, return_tensors="tf") # endregion # region Metric function metric = evaluate.load("glue", data_args.task_name) def compute_metrics(preds, label_ids): preds = preds["logits"] preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) result = metric.compute(predictions=preds, references=label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result # endregion with training_args.strategy.scope(): # region Load pretrained model if checkpoint is None: model_path = model_args.model_name_or_path else: model_path = checkpoint model = TFAutoModelForSequenceClassification.from_pretrained( model_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # endregion # region Convert data to a tf.data.Dataset dataset_options = tf.data.Options() dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF num_replicas = training_args.strategy.num_replicas_in_sync tf_data = dict() max_samples = { "train": data_args.max_train_samples, "validation": data_args.max_eval_samples, "validation_matched": data_args.max_eval_samples, "validation_mismatched": data_args.max_eval_samples, "test": data_args.max_predict_samples, "test_matched": data_args.max_predict_samples, "test_mismatched": data_args.max_predict_samples, "user_data": None, } for key in datasets.keys(): if key == "train" or key.startswith("validation"): assert "label" in datasets[key].features, f"Missing labels from {key} data!" if key == "train": shuffle = True batch_size = training_args.per_device_train_batch_size * num_replicas else: shuffle = False batch_size = training_args.per_device_eval_batch_size * num_replicas samples_limit = max_samples[key] dataset = datasets[key] if samples_limit is not None: dataset = dataset.select(range(samples_limit)) # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names # yourself if you use this method, whereas they are automatically inferred from the model input names when # using model.prepare_tf_dataset() # For more info see the docs: # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset data = model.prepare_tf_dataset( dataset, shuffle=shuffle, batch_size=batch_size, collate_fn=data_collator, tokenizer=tokenizer, ) data = data.with_options(dataset_options) tf_data[key] = data # endregion # region Optimizer, loss and compilation if training_args.do_train: num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs if training_args.warmup_steps > 0: num_warmup_steps = training_args.warmup_steps elif training_args.warmup_ratio > 0: num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) else: num_warmup_steps = 0 optimizer, schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) else: optimizer = "adam" # Just write anything because we won't be using it if is_regression: metrics = [] else: metrics = ["accuracy"] model.compile(optimizer=optimizer, metrics=metrics, jit_compile=training_args.xla) # endregion # region Preparing push_to_hub and model card push_to_hub_model_id = training_args.push_to_hub_model_id model_name = model_args.model_name_or_path.split("/")[-1] if not push_to_hub_model_id: push_to_hub_model_id = f"{model_name}-finetuned-glue" model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} model_card_kwargs["task_name"] = data_args.task_name if training_args.push_to_hub: callbacks = [ PushToHubCallback( output_dir=training_args.output_dir, model_id=push_to_hub_model_id, organization=training_args.push_to_hub_organization, token=training_args.push_to_hub_token, tokenizer=tokenizer, **model_card_kwargs, ) ] else: callbacks = [] # endregion # region Training and validation if training_args.do_train: if training_args.do_eval and not data_args.task_name == "mnli": # Do both evaluation and training in the Keras fit loop, unless the task is MNLI # because MNLI has two validation sets validation_data = tf_data["validation"] else: validation_data = None model.fit( tf_data["train"], validation_data=validation_data, epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) # endregion # region Evaluation if training_args.do_eval: # We normally do validation as part of the Keras fit loop, but we run it independently # if there was no fit() step (because we didn't train the model) or if the task is MNLI, # because MNLI has a separate validation-mismatched validation set # In this example, we compute advanced metrics only at the end of training, and only compute # loss and accuracy on the validation set each epoch, but # if you'd like to compute metrics every epoch that are too complex to be written as # standard Keras metrics, you can use our KerasMetricCallback. See # https://huggingface.co/docs/transformers/main/en/main_classes/keras_callbacks logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) if data_args.task_name == "mnli": tasks = ["mnli", "mnli-mm"] tf_datasets = [tf_data["validation_matched"], tf_data["validation_mismatched"]] raw_datasets = [datasets["validation_matched"], datasets["validation_mismatched"]] else: tasks = [data_args.task_name] tf_datasets = [tf_data["validation"]] raw_datasets = [datasets["validation"]] for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): eval_predictions = model.predict(tf_dataset) eval_metrics = compute_metrics(eval_predictions, raw_dataset["label"]) print(f"Evaluation metrics ({task}):") print(eval_metrics) if training_args.output_dir is not None: output_eval_file = os.path.join(training_args.output_dir, "all_results.json") with open(output_eval_file, "w") as writer: writer.write(json.dumps(eval_metrics)) # endregion # region Prediction if training_args.do_predict or data_args.predict_file: logger.info("*** Predict ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [] tf_datasets = [] raw_datasets = [] if training_args.do_predict: if data_args.task_name == "mnli": tasks.extend(["mnli", "mnli-mm"]) tf_datasets.extend([tf_data["test_matched"], tf_data["test_mismatched"]]) raw_datasets.extend([datasets["test_matched"], datasets["test_mismatched"]]) else: tasks.append(data_args.task_name) tf_datasets.append(tf_data["test"]) raw_datasets.append(datasets["test"]) if data_args.predict_file: tasks.append("user_data") tf_datasets.append(tf_data["user_data"]) raw_datasets.append(datasets["user_data"]) for raw_dataset, tf_dataset, task in zip(raw_datasets, tf_datasets, tasks): test_predictions = model.predict(tf_dataset) if "label" in raw_dataset: test_metrics = compute_metrics(test_predictions, raw_dataset["label"]) print(f"Test metrics ({task}):") print(test_metrics) if is_regression: predictions_to_write = np.squeeze(test_predictions["logits"]) else: predictions_to_write = np.argmax(test_predictions["logits"], axis=1) output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") with open(output_predict_file, "w") as writer: logger.info(f"***** Writing prediction results for {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions_to_write): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = model.config.id2label[item] writer.write(f"{index}\t{item}\n") # endregion if training_args.output_dir is not None and not training_args.push_to_hub: # If we're not pushing to hub, at least save a local copy when we're done model.save_pretrained(training_args.output_dir) if __name__ == "__main__": main()
{ "content_hash": "300a112b2bd6f1ccb0f3aecdf9be97ba", "timestamp": "", "source": "github", "line_count": 571, "max_line_length": 131, "avg_line_length": 42.8353765323993, "alnum_prop": 0.6108589885113864, "repo_name": "huggingface/transformers", "id": "1a373ef364cda41e196ff63cc29d67249b807e0b", "size": "25107", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "examples/tensorflow/text-classification/run_glue.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "6021" }, { "name": "C++", "bytes": "12959" }, { "name": "Cuda", "bytes": "175419" }, { "name": "Dockerfile", "bytes": "18218" }, { "name": "Jsonnet", "bytes": "937" }, { "name": "Makefile", "bytes": "3430" }, { "name": "Python", "bytes": "35742012" }, { "name": "Shell", "bytes": "30374" } ], "symlink_target": "" }
import os import sys import time import fuse import errno import logging import argparse from relfs.sftp_utils import SFTPFileReader # ------------------------------------------------------------------------------ class RoSFuseItem(object): # -------------------------------------------------------------------------- def __init__(self): pass # -------------------------------------------------------------------------- def find_item(self, split_path): if not split_path or split_path == ["."]: return self # ------------------------------------------------------------------------------ class RoSFuseFile(object): # -------------------------------------------------------------------------- def __init__(self, file_reader, split_path): self._file_reader = file_reader self._path = os.path.join(*split_path) self._file_reader.open_file(self._path) # -------------------------------------------------------------------------- def __del__(self): try: self._file_reader.close_file(self._path) except AttributeError: pass # -------------------------------------------------------------------------- def mode(self): return 0o100440 # -------------------------------------------------------------------------- def size(self): return self._file_reader.file_size(self._path) # -------------------------------------------------------------------------- def read(self, length, offset): return self._file_reader.read_file(self._path, length, offset) # ------------------------------------------------------------------------------ class RoSFuseRoot(RoSFuseItem): # -------------------------------------------------------------------------- def __init__(self, options): RoSFuseItem.__init__(self) self._file_reader = SFTPFileReader(options) # -------------------------------------------------------------------------- def find_item(self, split_path): if not split_path or split_path == ["."]: return self try: return RoSFuseFile(self._file_reader, split_path) except IOError: pass # -------------------------------------------------------------------------- def mode(self): return 0o40440 # -------------------------------------------------------------------------- def size(self): return 0 # -------------------------------------------------------------------------- def read(self, length, offset): return str() # ------------------------------------------------------------------------------ class RoSFuse(fuse.Operations): # -------------------------------------------------------------------------- def __init__(self, options): self._options = options self._mount_time = time.time() self._root = RoSFuseRoot(options) self._open_files = dict() # -------------------------------------------------------------------------- def _update(self): pass # -------------------------------------------------------------------------- def find_entry(self, path): split_path = filter(bool, path.lstrip(os.sep).split(os.sep)) item = self._root.find_item(split_path) if item is not None: return item raise fuse.FuseOSError(errno.ENOENT) # -------------------------------------------------------------------------- def access(self, path, mode): self._update() if mode & os.R_OK: return 0 raise fuse.FuseOSError(errno.EACCES) # -------------------------------------------------------------------------- def chmod(self, path, mode): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def chown(self, path, uid, gid): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def getattr(self, path, fh=None): self._update() item = self.find_entry(path) return { "st_size": item.size(), "st_mode": item.mode(), "st_uid": os.getuid(), "st_gid": os.getgid(), "st_nlink": 1, "st_atime": time.time(), "st_mtime": time.time(), "st_ctime": self._mount_time } # -------------------------------------------------------------------------- def readdir(self, path, fh): self._update() yield "." yield ".." # -------------------------------------------------------------------------- def readlink(self, path): self._update() raise fuse.FuseOSError(errno.EINVAL) # -------------------------------------------------------------------------- def mknod(self, path, mode, dev): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def rmdir(self, path): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def mkdir(self, path, mode): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def statfs(self, path): self._update() return { 'f_bsize': 32, 'f_frsize': 32, 'f_bavail': 0, 'f_favail': 0, 'f_bfree': 0, 'f_ffree': 0, 'f_blocks': 0, 'f_files': 0, 'f_flag': 4096, 'f_namemax': 255} # -------------------------------------------------------------------------- def unlink(self, path): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def symlink(self, name, target): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def rename(self, old, new): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def link(self, target, name): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def utimens(self, path, times=None): self._update() return time.time() # -------------------------------------------------------------------------- def _get_free_fd(self): try: return max(self._open_files, key=self._open_files.get) except ValueError: return 3 # -------------------------------------------------------------------------- def open(self, path, flags): self._update() item = self.find_entry(path) fd = self._get_free_fd() self._open_files[fd] = item return fd # -------------------------------------------------------------------------- def create(self, path, mode, fi=None): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def read(self, path, length, offset, fh): self._update() try: return self._open_files[fh].read(length, offset) except KeyError: raise fuse.FuseOSError(errno.EBADF) # -------------------------------------------------------------------------- def write(self, path, buf, offset, fh): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def truncate(self, path, length, fh=None): self._update() raise fuse.FuseOSError(errno.EROFS) # -------------------------------------------------------------------------- def release(self, path, fh): self._update() del self._open_files[fh] # -------------------------------------------------------------------------- def flush(self, path, fh): self._update() # -------------------------------------------------------------------------- def fsync(self, path, fdatasync, fh): self._update() # ------------------------------------------------------------------------------ class RoSFuseArgParser(argparse.ArgumentParser): # -------------------------------------------------------------------------- @staticmethod def _mountable_directory(arg): if not os.path.isdir(arg): msg = "'%s' is not a directory path" % (arg) raise argparse.ArgumentTypeError(msg) return os.path.realpath(arg) # -------------------------------------------------------------------------- def __init__(self): argparse.ArgumentParser.__init__( self, prog="rosfusetp", description=""" Read-only FUSE file-system driver, allowing to read known files over SFTP """ ) self.add_argument( "--mount-point", "-m", dest="mount_point", type=self._mountable_directory, default=None, action="store", help="""Specifies the file-system mount-point path.""" ) self.add_argument( "--host", "-H", dest="hostname", type=str, default=None, action="store", help="""Specifies the remote host; can be SSH host config entry.""" ) self.add_argument( "--allow-agent", "-A", dest="allow_agent", default=False, action="store_true", help="""Use the SSH key agent.""" ) self.add_argument( "--password-only", "-P", dest="password_only", default=True, # TODO: False action="store_true", help="""Try only password authentication.""" ) self.add_argument( "--prefix", "-p", dest="remote_prefix", type=str, default=None, action="store", help="""The remote host directory prefix""" ) # ------------------------------------------------------------------------------ def main(): logging.basicConfig() options = RoSFuseArgParser().parse_args() fuse.FUSE( RoSFuse(options), options.mount_point, nothreads=True, foreground=True ) # ------------------------------------------------------------------------------ if __name__ == '__main__': main() # ------------------------------------------------------------------------------
{ "content_hash": "517f6b8b2d26cbc53fbb223e996be756", "timestamp": "", "source": "github", "line_count": 316, "max_line_length": 80, "avg_line_length": 35.06645569620253, "alnum_prop": 0.34238787113076435, "repo_name": "matus-chochlik/various", "id": "71856fb55d1e6c329f661aec1754d5ffe2dbc70e", "size": "11197", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "relfs/rosfuse.py", "mode": "33261", "license": "mit", "language": [ { "name": "C", "bytes": "44686" }, { "name": "C++", "bytes": "76296" }, { "name": "Makefile", "bytes": "8751" }, { "name": "Python", "bytes": "295676" }, { "name": "QML", "bytes": "19387" }, { "name": "QMake", "bytes": "3981" }, { "name": "Roff", "bytes": "13504" }, { "name": "Shell", "bytes": "88324" }, { "name": "TeX", "bytes": "199528" }, { "name": "Vim script", "bytes": "1417" }, { "name": "XSLT", "bytes": "2225" } ], "symlink_target": "" }
import asyncio import random import threading from time import sleep import warnings import dask from dask import delayed import pytest from distributed import ( worker_client, Client, as_completed, get_worker, wait, get_client, ) from distributed.metrics import time from distributed.utils_test import double, gen_cluster, inc from distributed.utils_test import client, cluster_fixture, loop # noqa: F401 @gen_cluster(client=True) async def test_submit_from_worker(c, s, a, b): def func(x): with worker_client() as c: x = c.submit(inc, x) y = c.submit(double, x) result = x.result() + y.result() return result x, y = c.map(func, [10, 20]) xx, yy = await c._gather([x, y]) assert xx == 10 + 1 + (10 + 1) * 2 assert yy == 20 + 1 + (20 + 1) * 2 assert len(s.transition_log) > 10 assert len([id for id in s.wants_what if id.lower().startswith("client")]) == 1 @gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 2) async def test_scatter_from_worker(c, s, a, b): def func(): with worker_client() as c: futures = c.scatter([1, 2, 3, 4, 5]) assert isinstance(futures, (list, tuple)) assert len(futures) == 5 x = dict(get_worker().data) y = {f.key: i for f, i in zip(futures, [1, 2, 3, 4, 5])} assert x == y total = c.submit(sum, futures) return total.result() future = c.submit(func) result = await future assert result == sum([1, 2, 3, 4, 5]) def func(): with worker_client() as c: correct = True for data in [[1, 2], (1, 2), {1, 2}]: futures = c.scatter(data) correct &= type(futures) == type(data) o = object() futures = c.scatter({"x": o}) correct &= get_worker().data["x"] is o return correct future = c.submit(func) result = await future assert result is True start = time() while not all(v == 1 for v in s.nthreads.values()): await asyncio.sleep(0.1) assert time() < start + 5 @gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 2) async def test_scatter_singleton(c, s, a, b): np = pytest.importorskip("numpy") def func(): with worker_client() as c: x = np.ones(5) future = c.scatter(x) assert future.type == np.ndarray await c.submit(func) @gen_cluster(client=True, nthreads=[("127.0.0.1", 1)] * 2) async def test_gather_multi_machine(c, s, a, b): a_address = a.address b_address = b.address assert a_address != b_address def func(): with worker_client() as ee: x = ee.submit(inc, 1, workers=a_address) y = ee.submit(inc, 2, workers=b_address) xx, yy = ee.gather([x, y]) return xx, yy future = c.submit(func) result = await future assert result == (2, 3) @gen_cluster(client=True) async def test_same_loop(c, s, a, b): def f(): with worker_client() as lc: return lc.loop is get_worker().loop future = c.submit(f) result = await future assert result def test_sync(client): def mysum(): result = 0 sub_tasks = [delayed(double)(i) for i in range(100)] with worker_client() as lc: futures = lc.compute(sub_tasks) for f in as_completed(futures): result += f.result() return result assert delayed(mysum)().compute() == 9900 @gen_cluster(client=True) async def test_async(c, s, a, b): def mysum(): result = 0 sub_tasks = [delayed(double)(i) for i in range(100)] with worker_client() as lc: futures = lc.compute(sub_tasks) for f in as_completed(futures): result += f.result() return result future = c.compute(delayed(mysum)()) await future start = time() while len(a.data) + len(b.data) > 1: await asyncio.sleep(0.1) assert time() < start + 3 @gen_cluster(client=True, nthreads=[("127.0.0.1", 3)]) async def test_separate_thread_false(c, s, a): a.count = 0 def f(i): with worker_client(separate_thread=False) as client: get_worker().count += 1 assert get_worker().count <= 3 sleep(random.random() / 40) assert get_worker().count <= 3 get_worker().count -= 1 return i futures = c.map(f, range(20)) results = await c._gather(futures) assert list(results) == list(range(20)) @gen_cluster(client=True) async def test_client_executor(c, s, a, b): def mysum(): with worker_client() as c: with c.get_executor() as e: return sum(e.map(double, range(30))) future = c.submit(mysum) result = await future assert result == 30 * 29 def test_dont_override_default_get(loop): import dask.bag as db def f(x): with worker_client() as c: return True b = db.from_sequence([1, 2]) b2 = b.map(f) with Client( loop=loop, processes=False, set_as_default=True, dashboard_address=None ) as c: assert dask.base.get_scheduler() == c.get for i in range(2): b2.compute() assert dask.base.get_scheduler() == c.get @gen_cluster(client=True) async def test_local_client_warning(c, s, a, b): from distributed import local_client def func(x): with warnings.catch_warnings(record=True) as record: with local_client() as c: x = c.submit(inc, x) result = x.result() assert any("worker_client" in str(r.message) for r in record) return result future = c.submit(func, 10) result = await future assert result == 11 @gen_cluster(client=True) async def test_closing_worker_doesnt_close_client(c, s, a, b): def func(x): get_client() return await wait(c.map(func, range(10))) await a.close() assert c.status == "running" def test_timeout(client): def func(): with worker_client(timeout=0) as wc: print("hello") future = client.submit(func) with pytest.raises(EnvironmentError): result = future.result() def test_secede_without_stealing_issue_1262(): """ Tests that seceding works with the Stealing extension disabled https://github.com/dask/distributed/issues/1262 """ # turn off all extensions extensions = [] # run the loop as an inner function so all workers are closed # and exceptions can be examined @gen_cluster(client=True, scheduler_kwargs={"extensions": extensions}) async def secede_test(c, s, a, b): def func(x): with worker_client() as wc: y = wc.submit(lambda: 1 + x) return wc.gather(y) f = await c.gather(c.submit(func, 1)) return c, s, a, b, f c, s, a, b, f = secede_test() assert f == 2 # ensure no workers had errors assert all([f.exception() is None for f in s._worker_coroutines]) @gen_cluster(client=True) async def test_compute_within_worker_client(c, s, a, b): @dask.delayed def f(): with worker_client(): return dask.delayed(lambda x: x)(1).compute() result = await c.compute(f()) assert result == 1 @gen_cluster(client=True) async def test_worker_client_rejoins(c, s, a, b): def f(): with worker_client(): pass return threading.current_thread() in get_worker().executor._threads result = await c.submit(f) assert result @gen_cluster() async def test_submit_different_names(s, a, b): # https://github.com/dask/distributed/issues/2058 da = pytest.importorskip("dask.array") c = await Client( "localhost:" + s.address.split(":")[-1], loop=s.loop, asynchronous=True ) try: X = c.persist(da.random.uniform(size=(100, 10), chunks=50)) await wait(X) fut = await c.submit(lambda x: x.sum().compute(), X) assert fut > 0 finally: await c.close()
{ "content_hash": "a58b276707d72608851e30658cddb614", "timestamp": "", "source": "github", "line_count": 317, "max_line_length": 83, "avg_line_length": 25.92429022082019, "alnum_prop": 0.5715502555366269, "repo_name": "blaze/distributed", "id": "09ae20e8f203153d5ac89210ca8857288813dce3", "size": "8218", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "distributed/tests/test_worker_client.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "236" }, { "name": "Python", "bytes": "511624" }, { "name": "Shell", "bytes": "1120" } ], "symlink_target": "" }
from Orange.widgets import widget, gui from Orange.widgets.settings import Setting class OWWidgetName(widget.OWWidget): name = "Widget Name" id = "orange.widgets.widget_category.widget_name" description = "" icon = "icons/Unknown.svg" priority = 10 category = "" keywords = ["list", "of", "keywords"] outputs = [("Name", type)] inputs = [("Name", type, "handler")] want_main_area = False foo = Setting(True) def __init__(self): super().__init__() # controls gui.rubber(self.controlArea) def handler(self, obj): pass
{ "content_hash": "7b58af77717a435c2a9b5d9776618f52", "timestamp": "", "source": "github", "line_count": 26, "max_line_length": 53, "avg_line_length": 23.307692307692307, "alnum_prop": 0.6006600660066007, "repo_name": "qPCR4vir/orange3", "id": "d035825951f00920018ba074ad6c46fc39a7ec03", "size": "606", "binary": false, "copies": "16", "ref": "refs/heads/master", "path": "Orange/widgets/widgetTemplate.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "20412" }, { "name": "C++", "bytes": "1992" }, { "name": "GLSL", "bytes": "75" }, { "name": "HTML", "bytes": "3503" }, { "name": "JavaScript", "bytes": "12007" }, { "name": "Jupyter Notebook", "bytes": "6662" }, { "name": "NSIS", "bytes": "20281" }, { "name": "Python", "bytes": "4205054" }, { "name": "Shell", "bytes": "48335" } ], "symlink_target": "" }
from .copy_source import CopySource class SapCloudForCustomerSource(CopySource): """A copy activity source for SAP Cloud for Customer source. :param additional_properties: Unmatched properties from the message are deserialized this collection :type additional_properties: dict[str, object] :param source_retry_count: Source retry count. Type: integer (or Expression with resultType integer). :type source_retry_count: object :param source_retry_wait: Source retry wait. Type: string (or Expression with resultType string), pattern: ((\\d+)\\.)?(\\d\\d):(60|([0-5][0-9])):(60|([0-5][0-9])). :type source_retry_wait: object :param type: Constant filled by server. :type type: str :param query: SAP Cloud for Customer OData query. For example, "$top=1". Type: string (or Expression with resultType string). :type query: object """ _validation = { 'type': {'required': True}, } _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'source_retry_count': {'key': 'sourceRetryCount', 'type': 'object'}, 'source_retry_wait': {'key': 'sourceRetryWait', 'type': 'object'}, 'type': {'key': 'type', 'type': 'str'}, 'query': {'key': 'query', 'type': 'object'}, } def __init__(self, additional_properties=None, source_retry_count=None, source_retry_wait=None, query=None): super(SapCloudForCustomerSource, self).__init__(additional_properties=additional_properties, source_retry_count=source_retry_count, source_retry_wait=source_retry_wait) self.query = query self.type = 'SapCloudForCustomerSource'
{ "content_hash": "e8249646c9da923dddb5ff036f2075b5", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 176, "avg_line_length": 43.12820512820513, "alnum_prop": 0.6504161712247325, "repo_name": "lmazuel/azure-sdk-for-python", "id": "771684a97c5669b5f57dcedaa1b231168ba6c0f6", "size": "2156", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "azure-mgmt-datafactory/azure/mgmt/datafactory/models/sap_cloud_for_customer_source.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "42572767" } ], "symlink_target": "" }
""" Fab commands for ffs """ from fabric.api import task, hosts, local, lcd, cd, run from fabric import operations deadpan = 'happenup@deadpansincerity.com' @task def test(): """ Run our unittests """ local('python -m pytest test') @task def make_docs(): """ Rebuild the documentation """ with lcd('doc/'): local('make html') @task @hosts(deadpan) def upload_docs(): """ Build, compress, upload and extract the latest docs """ with lcd('doc/build/html'): local('rm -rf letterdocs.tar.gz') local('tar zcvf letterdocs.tar.gz *') operations.put('letterdocs.tar.gz', '/home/happenup/webapps/letterdocs/letterdocs.tar.gz') with cd('/home/happenup/webapps/letterdocs/'): run('tar zxvf letterdocs.tar.gz')
{ "content_hash": "96d1291f461f75889482e0386248377e", "timestamp": "", "source": "github", "line_count": 36, "max_line_length": 98, "avg_line_length": 22.13888888888889, "alnum_prop": 0.6273525721455459, "repo_name": "davidmiller/letter", "id": "d4bfb0c2c2be2c35bc930fc2113c6753263323a2", "size": "797", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "fabfile.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "13" }, { "name": "Python", "bytes": "34047" }, { "name": "Ruby", "bytes": "916" } ], "symlink_target": "" }
from model import * from gym_torcs import TorcsEnv from ReplayBuffer import ReplayBuffer from utils import * from collections import deque import tensorflow as tf def discrete_reinforce(): # initialization tf.python.control_flow_ops = tf env = TorcsEnv(vision = True,throttle = False,gear_change = False) buff = ReplayBuffer(100000) history = deque() writer = tf.summary.FileWriter('tmp/discrete') # env. initialization ob = env.reset() esp = 1. lr = 0.0001 gamma = 0.99 tau = 0.01 batch_size = 32 max_epoch = 10000 max_steps = 10000 num_output = 5 # get model actor = low_guide_v1(lr,num_output) target_actor = low_guide_v1(lr,num_output) transfer_weights(actor,target_actor) # summary ops and phs reward_ph = tf.placeholder(tf.float32) loss_ph = tf.placeholder(tf.float32) q_ph = tf.placeholder(tf.float32) #target_q = tf.placeholder(tf.float32,[batch_size,num_output]) reward_summary = tf.summary.scalar('reward',reward_ph) loss_summary = tf.summary.scalar('loss',loss_ph) q_summary = tf.summary.scalar('estimated_q',q_ph) # gradient inspection grads = tf.gradients(actor.output,actor.trainable_weights) grad_summary = [tf.summary.histogram('bp_grad-%d' % i,g) for (i,g) in enumerate(grads)] grad_summary = tf.summary.merge(grad_summary) for epoch in range(max_epoch): history = deque() [history.append(get_low_states(ob)) for i in range(4)] total_reward = 0 total_loss = 0 for step in range(max_steps): st = get_states(ob,history,False) # interpret and prepare the states,*** st is a stacked states*** act = actor.predict(st.reshape((1,) + st.shape)) # ask for action estimated_max_q = np.max(act) # input processing and step act = get_inferred_steering(act,num_output) # convert the discrete decision to continuous act,is_org = discrete_esp_process(esp,act,num_output) esp -= 1./10000 ob,reward,done,_ = env.step([act]) # execute and observe # post step proessing total_reward += reward st1 = get_states(ob,history,False) # post observation buff.add(st,act,reward,st1,done,step) # add experience # training if step < batch_size: continue experiences = buff.getBatchMixed(batch_size) X,y,a_t = preprocess_batch(experiences,actor,gamma,batch_size,target_actor) y = prepare_label(X,a_t,y,actor,num_output) loss = actor.train_on_batch(X,y) total_loss += loss update_network(actor,target_actor,tau) # logging and stats print 'Epoch: %d, Step: %d, Act: %f, Loss: %f,AI: %s' % (epoch,step,act,loss,str(is_org)) writer.add_summary(K.get_session().run(loss_summary,feed_dict = {loss_ph:loss})) writer.add_summary(K.get_session().run(q_summary,feed_dict = {q_ph:estimated_max_q})) writer.add_summary(K.get_session().run(grad_summary,feed_dict = {actor.input: X})) # termination condition if done: ob = env.reset(epoch % 3 == 1) break print '************ Epoch %d : Reward %f ************' % (epoch,total_reward) # post epoch stuff if epoch % 10 == 0: actor.save_weights('low_guide_v1_weights.h5') # epoch summaries writer.add_summary(K.get_session().run(reward_summary,feed_dict = {reward_ph:total_reward})) if __name__ == '__main__': discrete_reinforce() ''
{ "content_hash": "3b6283f39479440b45869ace6f126a18", "timestamp": "", "source": "github", "line_count": 104, "max_line_length": 101, "avg_line_length": 31.048076923076923, "alnum_prop": 0.6847321152059461, "repo_name": "travistang/late_fyt", "id": "f3c80228673eded1f65527315dfcf5348d0c613d", "size": "3229", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "discrete.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "358950" }, { "name": "C", "bytes": "1088525" }, { "name": "C++", "bytes": "3701643" }, { "name": "CSS", "bytes": "2093" }, { "name": "HTML", "bytes": "727213" }, { "name": "Java", "bytes": "870718" }, { "name": "JavaScript", "bytes": "360" }, { "name": "M4", "bytes": "5404" }, { "name": "Makefile", "bytes": "360885" }, { "name": "NSIS", "bytes": "120996" }, { "name": "Objective-C", "bytes": "24134" }, { "name": "Python", "bytes": "110376" }, { "name": "Roff", "bytes": "6972" }, { "name": "Shell", "bytes": "110228" }, { "name": "TeX", "bytes": "156855" }, { "name": "XSLT", "bytes": "18454" } ], "symlink_target": "" }
""" This script is used to generate all the possible reactions involving a given set of reactants, including pressure-dependent effects if desired. This is effectively the first step in the RMG rate-based mechanism generation algorithm. The input file is a subset of that used with regular RMG jobs. """ import os.path import argparse import logging from rmgpy.rmg.main import initializeLog, RMG from rmgpy.chemkin import ChemkinWriter from rmgpy.rmg.output import OutputHTMLWriter def parseCommandLineArguments(): """ Parse the command-line arguments being passed to RMG Py. This uses the :mod:`argparse` module, which ensures that the command-line arguments are sensible, parses them, and returns them. """ parser = argparse.ArgumentParser(description= """ Reaction Mechanism Generator (RMG) is an automatic chemical reaction mechanism generator that constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. """) parser.add_argument('file', metavar='FILE', type=str, nargs=1, help='a file describing the job to execute') # Options for controlling the amount of information printed to the console # By default a moderate level of information is printed; you can either # ask for less (quiet), more (verbose), or much more (debug) group = parser.add_mutually_exclusive_group() group.add_argument('-q', '--quiet', action='store_true', help='only print warnings and errors') group.add_argument('-v', '--verbose', action='store_true', help='print more verbose output') group.add_argument('-d', '--debug', action='store_true', help='print debug information') # Add options for controlling what directories files are written to parser.add_argument('-o', '--output-directory', type=str, nargs=1, default='', metavar='DIR', help='use DIR as output directory') parser.add_argument('-s', '--scratch-directory', type=str, nargs=1, default='', metavar='DIR', help='use DIR as scratch directory') parser.add_argument('-l', '--library-directory', type=str, nargs=1, default='', metavar='DIR', help='use DIR as library directory') args = parser.parse_args() args.walltime = '0' args.restart = False return args def main(): """ Driver function that parses command line arguments and passes them to the execute function. """ # Parse the command-line arguments (requires the argparse module) args = parseCommandLineArguments() # For output and scratch directories, if they are empty strings, set them # to match the input file location inputFile = args.file[0] inputDirectory = os.path.abspath(os.path.dirname(inputFile)) if args.output_directory == '': args.output_directory = inputDirectory if args.scratch_directory == '': args.scratch_directory = inputDirectory # Initialize the logging system (resets the RMG.log file) level = logging.INFO if args.debug: level = 0 elif args.verbose: level = logging.DEBUG elif args.quiet: level = logging.WARNING kwargs = { 'scratch_directory': args.scratch_directory, 'restart': args.restart, 'walltime': args.walltime, 'log': level, } initializeLog(level, os.path.join(args.output_directory,'RMG.log')) rmg = RMG(inputFile=inputFile, outputDirectory=args.output_directory) # Add output listeners: rmg.attach(ChemkinWriter(args.output_directory)) rmg.attach(OutputHTMLWriter(args.output_directory)) execute(rmg, **kwargs) def execute(rmg, **kwargs): """ Generates all the possible reactions involving a given set of reactants, including pressure-dependent effects if desired. This is effectively the first step in the RMG rate-based mechanism generation algorithm. The input file is a subset of that used with regular RMG jobs. Returns an RMG object. """ import numpy rmg.initialize(**kwargs) rmg.reactionModel.enlarge(reactEdge=True, unimolecularReact=rmg.unimolecularReact, bimolecularReact=rmg.bimolecularReact) # Show all core and edge species and reactions in the output rmg.reactionModel.outputSpeciesList.extend(rmg.reactionModel.edge.species) rmg.reactionModel.outputReactionList.extend(rmg.reactionModel.edge.reactions) rmg.saveEverything() rmg.finish() return rmg
{ "content_hash": "58496598685486556dda476d762bf24e", "timestamp": "", "source": "github", "line_count": 123, "max_line_length": 99, "avg_line_length": 36.739837398373986, "alnum_prop": 0.6999336136313343, "repo_name": "nickvandewiele/RMG-Py", "id": "e9b703eb2fe6e38494e39bf03ae731be962e401d", "size": "5965", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "rmgpy/tools/generate_reactions.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "461" }, { "name": "Jupyter Notebook", "bytes": "23683" }, { "name": "Makefile", "bytes": "5832" }, { "name": "Python", "bytes": "3423274" }, { "name": "Shell", "bytes": "2733" } ], "symlink_target": "" }
from sympy import Symbol, Dummy, sympify, latex, diff, sqrt as sym_sqrt from sympy.utilities.lambdify import lambdify import numpy as np from importlib import import_module from errorpro.units import parse_unit, convert_to_unit from errorpro.dimensions.simplifiers import dim_simplify from errorpro.dimensions.solvers import subs_symbols from errorpro import pytex def parse_expr(term, data, evaluate=None): """ parses string to expression containing quantities Args: - term: string of mathematical term (can also be a sympy expression) - data: dict of defined quantities - evaluate: specifies if automatic simplifications should be done (passed on to sympify) """ try: term=sympify(term, locals=data, evaluate=evaluate) except(SyntaxError): raise SyntaxError("error parsing term '%s'" % term) for q in term.free_symbols: if not isinstance(q,Quantity): raise ValueError("Symbol '%s' is not defined." % q.name) return term def get_dimension(expr): """ finds out physical dimension of a term containing quantities Args: - expr: Expr object possibly containing Quantity objects Returns: Dimension object """ dim = expr for var in expr.free_symbols: if var.dim is None: raise RuntimeError ("quantity '%s' doesn't have a dimension, yet." % var.name) dim = subs_symbols(dim,{var.name:var.dim}) return dim_simplify(dim) def adjust_to_unit (quant, unit=None): """ calculates value and error of quantity according to specified unit Args: - quant: Quantity object to use - unit: Unit object to adjust values to. If not specified, prefer_unit of quantity will be used. If prefer_unit is None, Unit will be found automatically. Returns: tuple of adjusted value, error and unit """ if unit is None: unit = quant.prefer_unit factor, unit = convert_to_unit(quant.dim, unit) factor = np.float_(factor) value = None if quant.value is None else quant.value / factor error = None if quant.error is None else quant.error / factor return (value, error, unit) def get_value(expr): """ calculates number value of an expression possibly containing quantities """ calcFunction=lambdify(expr.free_symbols, expr, modules="numpy") depValues=[] for var in expr.free_symbols: if var.value is None: raise RuntimeError ("quantity '%s' doesn't have a value, yet." % var.name) depValues.append(var.value) return calcFunction(*depValues) def get_error(expr): """ calculates error of an expression possibly containing quantities Returns: tuple of error and error formula (as Expr object) """ integrand = 0 error_formula = 0 for varToDiff in expr.free_symbols: if varToDiff.error is not None: differential = diff(expr,varToDiff) error_formula += ( Symbol(varToDiff.name+"_err",positive=True) * differential )**2 diffFunction = lambdify(differential.free_symbols,differential, modules="numpy") diffValues = [] for var in differential.free_symbols: diffValues.append(var.value) integrand += ( varToDiff.error*diffFunction(*diffValues) )**2 if isinstance(integrand,np.ndarray): if (integrand==0).all(): return (None,None) elif integrand == 0: return (None,None) return (np.sqrt(integrand),sym_sqrt (error_formula)) class Quantity(Symbol): """ class for physical quantities storing name, value, error and physical dimension """ quantity_count = 0 dummy_count = 1 def __new__(cls, name=None, longname=None): if name is None or name == "": name = "NoName_"+str(Quantity.dummy_count) Quantity.dummy_count += 1 self = Dummy.__new__(cls, name) else: self = Symbol.__new__(cls, name) self.count = Quantity.quantity_count Quantity.quantity_count += 1 self.abbrev = name self.name = name self.longname = longname self.value = None self.value_formula = None self.error = None self.error_formula = None self.prefer_unit = None self.dim = None return self def _repr_html_(self): return qtable(self) # TODO implementing this method screws up dependent quantities #def __getitem__(self, sliced): # slicedValue = None # slicederror = None # if self.value is not None: # slicedValue = self.value[sliced] # if self.error is not None: # slicederror = self.error[sliced] # q = Quantity() # q.value = slicedValue # q.error = slicederror # q.prefer_unit = self.prefer_unit # q.dim = self.dim # return q def qtable(*quantities, html=True, maxcols=5): """ Represent quantites in a table. Args: quantities: List of quantity objects. html: If True, output will be formatted to be displayable html. Else, LaTeX and html code is returned in a tuple. maxcols: Maximum number of columns. Table will be split. Returns: String of html code (html=True) or tuple (LaTeX table, html table). """ if len(quantities) == 0: return 'No quantities selected.' cols = [] if html: if not maxcols: maxcols = len(quantities) def chunks(l): for i in range(0, len(quantities), maxcols): yield l[i:i+maxcols] html = [] ltx = [] for chunk in chunks(quantities): l, h = qtable(*chunk, html=False, maxcols=None) html.append(h) ltx.append(l) htmlb, htmlc = pytex.hide_div('Data', ''.join(html), hide = False) ltxb, ltxc = pytex.hide_div('LaTeX', ''.join(ltx)) res = 'Displaying: %s<div width=20px/>%s%s<hr/>%s<br>%s' % ( ', '.join('$%s$' % latex(q) for q in quantities), htmlb, ltxb, htmlc, ltxc) return res for quant in quantities: assert isinstance(quant, Quantity) value, error, unit = adjust_to_unit(quant) header = quant.longname + ' ' if quant.longname else '' header += '$%s \\; \\mathrm{\\left[%s\\right]}$' % ( latex(quant), latex(unit)) column = [header] if error is None: if isinstance(value, np.ndarray): column.extend(pytex.align_num_list(value)) else: column.append(pytex.align_num(value)) else: if isinstance(value, np.ndarray): column.extend(pytex.format_valerr_list(value,error)) else: column.append(pytex.format_valerr(value,error)) cols.append(column) return (pytex.table_latex(cols), pytex.table_html(cols))
{ "content_hash": "787974023370cc6981baaaef208b32ae", "timestamp": "", "source": "github", "line_count": 222, "max_line_length": 94, "avg_line_length": 31.373873873873872, "alnum_prop": 0.6113424264178033, "repo_name": "benti/Error-Pypagation", "id": "e3c3dcf8d3fe7d22c4b18ac2261f537021f8c311", "size": "6965", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "errorpro/quantities.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Jupyter Notebook", "bytes": "94811" }, { "name": "Python", "bytes": "143212" } ], "symlink_target": "" }
from __future__ import division import av from .common import MethodLogger, TestCase, fate_suite from .test_encode import assert_rgb_rotate, write_rgb_rotate try: from cStringIO import StringIO except ImportError: from io import BytesIO as StringIO class NonSeekableBuffer: def __init__(self, data): self.data = data def read(self, n): data = self.data[0:n] self.data = self.data[n:] return data class TestPythonIO(TestCase): def test_reading(self): with open(fate_suite('mpeg2/mpeg2_field_encoding.ts'), 'rb') as fh: wrapped = MethodLogger(fh) container = av.open(wrapped) self.assertEqual(container.format.name, 'mpegts') self.assertEqual(container.format.long_name, "MPEG-TS (MPEG-2 Transport Stream)") self.assertEqual(len(container.streams), 1) self.assertEqual(container.size, 800000) self.assertEqual(container.metadata, {}) # Make sure it did actually call "read". reads = wrapped._filter('read') self.assertTrue(reads) def test_reading_no_seek(self): with open(fate_suite('mpeg2/mpeg2_field_encoding.ts'), 'rb') as fh: data = fh.read() buf = NonSeekableBuffer(data) wrapped = MethodLogger(buf) container = av.open(wrapped) self.assertEqual(container.format.name, 'mpegts') self.assertEqual(container.format.long_name, "MPEG-TS (MPEG-2 Transport Stream)") self.assertEqual(len(container.streams), 1) self.assertEqual(container.metadata, {}) # Make sure it did actually call "read". reads = wrapped._filter('read') self.assertTrue(reads) def test_basic_errors(self): self.assertRaises(Exception, av.open, None) self.assertRaises(Exception, av.open, None, 'w') def test_writing(self): path = self.sandboxed('writing.mov') with open(path, 'wb') as fh: wrapped = MethodLogger(fh) output = av.open(wrapped, 'w', 'mov') write_rgb_rotate(output) output.close() fh.close() # Make sure it did actually write. writes = wrapped._filter('write') self.assertTrue(writes) # Standard assertions. assert_rgb_rotate(self, av.open(path)) def test_buffer_read_write(self): buffer_ = StringIO() wrapped = MethodLogger(buffer_) write_rgb_rotate(av.open(wrapped, 'w', 'mp4')) # Make sure it did actually write. writes = wrapped._filter('write') self.assertTrue(writes) self.assertTrue(buffer_.tell()) # Standard assertions. buffer_.seek(0) assert_rgb_rotate(self, av.open(buffer_))
{ "content_hash": "838fe20e94570c350508cfb058b8e23e", "timestamp": "", "source": "github", "line_count": 98, "max_line_length": 93, "avg_line_length": 28.836734693877553, "alnum_prop": 0.6047416843595188, "repo_name": "mikeboers/PyAV", "id": "f622bdb65f56ebbdfba3c4e96f4c4af73aa05c2e", "size": "2826", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "tests/test_python_io.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "1819" }, { "name": "Python", "bytes": "517404" }, { "name": "Shell", "bytes": "7128" } ], "symlink_target": "" }
"""Switch platform for Sensibo integration.""" from __future__ import annotations from collections.abc import Callable, Mapping from dataclasses import dataclass from typing import Any from pysensibo.model import SensiboDevice from homeassistant.components.switch import ( SwitchDeviceClass, SwitchEntity, SwitchEntityDescription, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers.entity_platform import AddEntitiesCallback from .const import DOMAIN from .coordinator import SensiboDataUpdateCoordinator from .entity import SensiboDeviceBaseEntity, async_handle_api_call PARALLEL_UPDATES = 0 @dataclass class DeviceBaseEntityDescriptionMixin: """Mixin for required Sensibo Device description keys.""" value_fn: Callable[[SensiboDevice], bool | None] extra_fn: Callable[[SensiboDevice], dict[str, str | bool | None]] | None command_on: str command_off: str data_key: str @dataclass class SensiboDeviceSwitchEntityDescription( SwitchEntityDescription, DeviceBaseEntityDescriptionMixin ): """Describes Sensibo Switch entity.""" DEVICE_SWITCH_TYPES: tuple[SensiboDeviceSwitchEntityDescription, ...] = ( SensiboDeviceSwitchEntityDescription( key="timer_on_switch", device_class=SwitchDeviceClass.SWITCH, name="Timer", icon="mdi:timer", value_fn=lambda data: data.timer_on, extra_fn=lambda data: {"id": data.timer_id, "turn_on": data.timer_state_on}, command_on="async_turn_on_timer", command_off="async_turn_off_timer", data_key="timer_on", ), SensiboDeviceSwitchEntityDescription( key="climate_react_switch", device_class=SwitchDeviceClass.SWITCH, name="Climate React", icon="mdi:wizard-hat", value_fn=lambda data: data.smart_on, extra_fn=lambda data: {"type": data.smart_type}, command_on="async_turn_on_off_smart", command_off="async_turn_on_off_smart", data_key="smart_on", ), ) PURE_SWITCH_TYPES: tuple[SensiboDeviceSwitchEntityDescription, ...] = ( SensiboDeviceSwitchEntityDescription( key="pure_boost_switch", device_class=SwitchDeviceClass.SWITCH, name="Pure Boost", value_fn=lambda data: data.pure_boost_enabled, extra_fn=None, command_on="async_turn_on_off_pure_boost", command_off="async_turn_on_off_pure_boost", data_key="pure_boost_enabled", ), ) DESCRIPTION_BY_MODELS = {"pure": PURE_SWITCH_TYPES} async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback ) -> None: """Set up Sensibo Switch platform.""" coordinator: SensiboDataUpdateCoordinator = hass.data[DOMAIN][entry.entry_id] async_add_entities( SensiboDeviceSwitch(coordinator, device_id, description) for device_id, device_data in coordinator.data.parsed.items() for description in DESCRIPTION_BY_MODELS.get( device_data.model, DEVICE_SWITCH_TYPES ) ) class SensiboDeviceSwitch(SensiboDeviceBaseEntity, SwitchEntity): """Representation of a Sensibo Device Switch.""" entity_description: SensiboDeviceSwitchEntityDescription def __init__( self, coordinator: SensiboDataUpdateCoordinator, device_id: str, entity_description: SensiboDeviceSwitchEntityDescription, ) -> None: """Initiate Sensibo Device Switch.""" super().__init__( coordinator, device_id, ) self.entity_description = entity_description self._attr_unique_id = f"{device_id}-{entity_description.key}" @property def is_on(self) -> bool | None: """Return True if entity is on.""" return self.entity_description.value_fn(self.device_data) async def async_turn_on(self, **kwargs: Any) -> None: """Turn the entity on.""" func = getattr(SensiboDeviceSwitch, self.entity_description.command_on) await func( self, key=self.entity_description.data_key, value=True, ) async def async_turn_off(self, **kwargs: Any) -> None: """Turn the entity off.""" func = getattr(SensiboDeviceSwitch, self.entity_description.command_off) await func( self, key=self.entity_description.data_key, value=True, ) @property def extra_state_attributes(self) -> Mapping[str, Any] | None: """Return additional attributes.""" if self.entity_description.extra_fn: return self.entity_description.extra_fn(self.device_data) return None @async_handle_api_call async def async_turn_on_timer(self, key: str, value: Any) -> bool: """Make service call to api for setting timer.""" new_state = bool(self.device_data.ac_states["on"] is False) data = { "minutesFromNow": 60, "acState": {**self.device_data.ac_states, "on": new_state}, } result = await self._client.async_set_timer(self._device_id, data) return bool(result.get("status") == "success") @async_handle_api_call async def async_turn_off_timer(self, key: str, value: Any) -> bool: """Make service call to api for deleting timer.""" result = await self._client.async_del_timer(self._device_id) return bool(result.get("status") == "success") @async_handle_api_call async def async_turn_on_off_pure_boost(self, key: str, value: Any) -> bool: """Make service call to api for setting Pure Boost.""" new_state = bool(self.device_data.pure_boost_enabled is False) data: dict[str, Any] = {"enabled": new_state} if self.device_data.pure_measure_integration is None: data["sensitivity"] = "N" data["measurementsIntegration"] = True data["acIntegration"] = False data["geoIntegration"] = False data["primeIntegration"] = False result = await self._client.async_set_pureboost(self._device_id, data) return bool(result.get("status") == "success") @async_handle_api_call async def async_turn_on_off_smart(self, key: str, value: Any) -> bool: """Make service call to api for setting Climate React.""" if self.device_data.smart_type is None: raise HomeAssistantError( "Use Sensibo Enable Climate React Service once to enable switch or the Sensibo app" ) new_state = bool(self.device_data.smart_on is False) data: dict[str, Any] = {"enabled": new_state} result = await self._client.async_enable_climate_react(self._device_id, data) return bool(result.get("status") == "success")
{ "content_hash": "b948b87705e16d40d5c321dd51fbb50c", "timestamp": "", "source": "github", "line_count": 192, "max_line_length": 99, "avg_line_length": 35.989583333333336, "alnum_prop": 0.6542691751085383, "repo_name": "w1ll1am23/home-assistant", "id": "f57d72e5fb356f5e692d364af21306da6aaf2b28", "size": "6910", "binary": false, "copies": "2", "ref": "refs/heads/dev", "path": "homeassistant/components/sensibo/switch.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "2963" }, { "name": "PLSQL", "bytes": "840" }, { "name": "Python", "bytes": "52277012" }, { "name": "Shell", "bytes": "6252" } ], "symlink_target": "" }
""" A secret, a symmetric cryptographic key. """ from abc import ABCMeta, abstractmethod class Secret(metaclass=ABCMeta): """ A secret, a symmetric cryptographic key. """ @property @abstractmethod def algorithm(self): # -> str """ Return the name of the algorithm, for example, "aes". """
{ "content_hash": "ecff503a7e99b89d105ef04f605fb630", "timestamp": "", "source": "github", "line_count": 12, "max_line_length": 69, "avg_line_length": 26.666666666666668, "alnum_prop": 0.65, "repo_name": "jddixon/xlattice_py", "id": "e22502102b3ca525b689dbdc4e990569f3aaa325", "size": "354", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/xlattice/secret.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "6648" }, { "name": "Python", "bytes": "42824" }, { "name": "Shell", "bytes": "4408" } ], "symlink_target": "" }
""" ASGI entrypoint file for default channel layer. Points to the channel layer configured as "default" so you can point ASGI applications at "multichat.asgi:channel_layer" as their channel layer. """ import os from channels.asgi import get_channel_layer os.environ.setdefault("DJANGO_SETTINGS_MODULE", "multichat.settings") channel_layer = get_channel_layer()
{ "content_hash": "9637fe0c4fcca9ab2ba28576080b6c0e", "timestamp": "", "source": "github", "line_count": 11, "max_line_length": 75, "avg_line_length": 33, "alnum_prop": 0.7851239669421488, "repo_name": "sarthak-srivastava/chat", "id": "5732f3090d2761471016b52e13aa07880da12949", "size": "363", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "chat_app/multichat/asgi.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "4793" }, { "name": "HTML", "bytes": "10644" }, { "name": "JavaScript", "bytes": "12317" }, { "name": "Python", "bytes": "19028" } ], "symlink_target": "" }
from rally.common import log as logging from rally import consts from rally.plugins.openstack.scenarios.sahara import utils from rally.task.scenarios import base from rally.task import validation LOG = logging.getLogger(__name__) class SaharaJob(utils.SaharaScenario): """Benchmark scenarios for Sahara jobs.""" @validation.required_services(consts.Service.SAHARA) @validation.required_contexts("users", "sahara_image", "sahara_edp", "sahara_cluster") @base.scenario(context={"cleanup": ["sahara"]}) def create_launch_job(self, job_type, configs, job_idx=0): """Create and execute a Sahara EDP Job. This scenario Creates a Job entity and launches an execution on a Cluster. :param job_type: type of the Data Processing Job :param configs: config dict that will be passed to a Job Execution :param job_idx: index of a job in a sequence. This index will be used to create different atomic actions for each job in a sequence """ mains = self.context["tenant"]["sahara_mains"] libs = self.context["tenant"]["sahara_libs"] name = self._generate_random_name(prefix="job_") job = self.clients("sahara").jobs.create(name=name, type=job_type, description="", mains=mains, libs=libs) cluster_id = self.context["tenant"]["sahara_cluster"] if job_type.lower() == "java": input_id = None output_id = None else: input_id = self.context["tenant"]["sahara_input"] output_id = self._create_output_ds().id self._run_job_execution(job_id=job.id, cluster_id=cluster_id, input_id=input_id, output_id=output_id, configs=configs, job_idx=job_idx) @validation.required_services(consts.Service.SAHARA) @validation.required_contexts("users", "sahara_image", "sahara_edp", "sahara_cluster") @base.scenario(context={"cleanup": ["sahara"]}) def create_launch_job_sequence(self, jobs): """Create and execute a sequence of the Sahara EDP Jobs. This scenario Creates a Job entity and launches an execution on a Cluster for every job object provided. :param jobs: list of jobs that should be executed in one context """ for idx, job in enumerate(jobs): LOG.debug("Launching Job. Sequence #%d" % idx) self.create_launch_job(job["job_type"], job["configs"], idx) @validation.required_services(consts.Service.SAHARA) @validation.required_contexts("users", "sahara_image", "sahara_edp", "sahara_cluster") @base.scenario(context={"cleanup": ["sahara"]}) def create_launch_job_sequence_with_scaling(self, jobs, deltas): """Create and execute Sahara EDP Jobs on a scaling Cluster. This scenario Creates a Job entity and launches an execution on a Cluster for every job object provided. The Cluster is scaled according to the deltas values and the sequence is launched again. :param jobs: list of jobs that should be executed in one context :param deltas: list of integers which will be used to add or remove worker nodes from the cluster """ cluster_id = self.context["tenant"]["sahara_cluster"] # Executing the sequence before the first scaling self.create_launch_job_sequence(jobs) for delta in deltas: # The Cluster is fetched every time so that its node groups have # correct 'count' values. cluster = self.clients("sahara").clusters.get(cluster_id) LOG.debug("Scaling cluster %s with delta %d" % (cluster.name, delta)) if delta == 0: # Zero scaling makes no sense. continue elif delta > 0: self._scale_cluster_up(cluster, delta) elif delta < 0: self._scale_cluster_down(cluster, delta) LOG.debug("Starting Job sequence") self.create_launch_job_sequence(jobs)
{ "content_hash": "d55b18b0e9a58af5918733053b13bd2e", "timestamp": "", "source": "github", "line_count": 110, "max_line_length": 78, "avg_line_length": 41.36363636363637, "alnum_prop": 0.5703296703296703, "repo_name": "shdowofdeath/rally", "id": "1840688555c9aef1034369849bd94f835d21c2e9", "size": "5180", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "rally/plugins/openstack/scenarios/sahara/jobs.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Mako", "bytes": "46737" }, { "name": "Python", "bytes": "2421750" }, { "name": "Shell", "bytes": "36795" } ], "symlink_target": "" }
import yaml import json import datetime from twisted.trial import unittest from twisted.internet import defer, reactor from rhumba import service, client from rhumba.backends import zk from .plugin import sleep test_config = { 'noexpire': True, 'backend': 'rhumba.backends.zk', 'queues': [{ 'id': 0, 'max_jobs': 1, 'name': 'testqueue', 'plugin': 'rhumba.tests.plugin' }], } class Test(unittest.TestCase): @defer.inlineCallbacks def setUp(self): self.service = service.RhumbaService(yaml.dump(test_config)) #backend = zookeeper.Backend(self.service.config) #self.service.client = backend yield self.service.startBackend() yield self.service.client.cleanNodes('/rhumba/q') yield self.service.client.cleanNodes('/rhumba/dq') yield self.service.client.cleanNodes('/rhumba/crons') yield self.service.client.cleanNodes('/rhumba/croner') yield self.service.client.setupPaths() self.service.setupQueues() @defer.inlineCallbacks def test_call(self): queue = self.service.queues['testqueue'] uuid1 = yield self.service.client.queue('testqueue', 'test', {'count': 1, 'delay': 2}) yield sleep(0.1) yield queue.queueRun() item = yield self.service.client.getResult('testqueue', uuid1) self.assertEquals(item['result'], None) @defer.inlineCallbacks def test_status(self): yield self.service.setStatus('test123') st = yield self.service.getStatus() self.assertEquals(st, 'test123') @defer.inlineCallbacks def test_fanout(self): queue = self.service.queues['testqueue'] suid = self.service.uuid uuid1 = yield self.service.client.queue('testqueue', 'test', {'count': 1, 'delay': 1}, uids=[suid, 'justsomefakeuuiddoesntmatter']) yield queue.queueFan() result = yield self.service.client.getResult('testqueue', uuid1, suid) self.assertEquals(result['result'], None) self.service.uuid = 'justsomefakeuuiddoesntmatter' yield queue.queueFan() result = yield self.service.client.getResult('testqueue', uuid1, self.service.uuid) self.assertEquals(result['result'], None) @defer.inlineCallbacks def _get_messages(self): try: nodes = yield self.service.client.client.get_children('/rhumba/q/testqueue') except: nodes = [] queue = [] for node in nodes: item = yield self.service.client.client.get('/rhumba/q/testqueue/%s' % node) queue.append(json.loads(item[0])['message']) defer.returnValue(queue) @defer.inlineCallbacks def test_cron(self): queue = self.service.queues['testqueue'] yield self.service.checkCrons(datetime.datetime(2015, 3, 3, 5, 3, 0)) item = yield self.service.client._get_key('/crons/testqueue/call_everysecond') self.assertEquals(type(float(item)), float) queue = yield self._get_messages() self.assertIn('everysecond', queue) @defer.inlineCallbacks def test_stats(self): queue = self.service.queues['testqueue'] yield self.service.heartbeat() yield queue.queueRun() stats = yield self.service.client.getQueueMessageStats('testqueue') servers = yield self.service.client.getClusterServers() self.assertIn(self.service.hostname, servers) s = yield self.service.client.clusterQueues() self.assertEquals(s['testqueue'][0]['host'], self.service.hostname) s = yield self.service.client.clusterStatus() self.assertIn('testqueue', s['queues'].keys()) self.assertIn(self.service.hostname, s['workers'].keys())
{ "content_hash": "fb5a19dd11281e089c3ca2ae0cd2bcf4", "timestamp": "", "source": "github", "line_count": 135, "max_line_length": 94, "avg_line_length": 28.288888888888888, "alnum_prop": 0.6394344069128044, "repo_name": "calston/rhumba", "id": "34afffe59fd149fe54aad1c774df005b2ec0bac0", "size": "3819", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rhumba/tests/test_zk.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "76197" } ], "symlink_target": "" }
from flask import Flask app = Flask(__name__) app.config.from_object(__name__)
{ "content_hash": "39a63200f3a9588cb741d8ac51b2c88c", "timestamp": "", "source": "github", "line_count": 4, "max_line_length": 32, "avg_line_length": 20, "alnum_prop": 0.6875, "repo_name": "wallarelvo/SmallCartography", "id": "3893c01fd3fda6bb83b28b06d50f248aa7add8b0", "size": "81", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "carto/reducer/config.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "6921" }, { "name": "Python", "bytes": "18482" }, { "name": "Shell", "bytes": "383" } ], "symlink_target": "" }
import operator if not hasattr(operator, "div"): operator.div = operator.truediv opnames = { operator.add : "+", operator.sub : "-", operator.mul : "*", operator.div : "/", operator.floordiv : "//", operator.mod : "%", operator.pow : "**", operator.xor : "^", operator.lshift : "<<", operator.rshift : ">>", operator.and_ : "and", operator.or_ : "or", operator.not_ : "not", operator.neg : "-", operator.pos : "+", operator.contains : "in", operator.gt : ">", operator.ge : ">=", operator.lt : "<", operator.le : "<=", operator.eq : "==", operator.ne : "!=", } class ExprMixin(object): __slots__ = () def __add__(self, other): return BinExpr(operator.add, self, other) def __sub__(self, other): return BinExpr(operator.sub, self, other) def __mul__(self, other): return BinExpr(operator.mul, self, other) def __floordiv__(self, other): return BinExpr(operator.floordiv, self, other) def __truediv__(self, other): return BinExpr(operator.div, self, other) __div__ = __floordiv__ def __mod__(self, other): return BinExpr(operator.mod, self, other) def __pow__(self, other): return BinExpr(operator.pow, self, other) def __xor__(self, other): return BinExpr(operator.xor, self, other) def __rshift__(self, other): return BinExpr(operator.rshift, self, other) def __lshift__(self, other): return BinExpr(operator.rshift, self, other) def __and__(self, other): return BinExpr(operator.and_, self, other) def __or__(self, other): return BinExpr(operator.or_, self, other) def __radd__(self, other): return BinExpr(operator.add, other, self) def __rsub__(self, other): return BinExpr(operator.sub, other, self) def __rmul__(self, other): return BinExpr(operator.mul, other, self) def __rfloordiv__(self, other): return BinExpr(operator.floordiv, other, self) def __rtruediv__(self, other): return BinExpr(operator.div, other, self) __rdiv__ = __rfloordiv__ def __rmod__(self, other): return BinExpr(operator.mod, other, self) def __rpow__(self, other): return BinExpr(operator.pow, other, self) def __rxor__(self, other): return BinExpr(operator.xor, other, self) def __rrshift__(self, other): return BinExpr(operator.rshift, other, self) def __rlshift__(self, other): return BinExpr(operator.rshift, other, self) def __rand__(self, other): return BinExpr(operator.and_, other, self) def __ror__(self, other): return BinExpr(operator.or_, other, self) def __neg__(self): return UniExpr(operator.neg, self) def __pos__(self): return UniExpr(operator.pos, self) def __invert__(self): return UniExpr(operator.not_, self) __inv__ = __invert__ def __contains__(self, other): return BinExpr(operator.contains, self, other) def __gt__(self, other): return BinExpr(operator.gt, self, other) def __ge__(self, other): return BinExpr(operator.ge, self, other) def __lt__(self, other): return BinExpr(operator.lt, self, other) def __le__(self, other): return BinExpr(operator.le, self, other) def __eq__(self, other): return BinExpr(operator.eq, self, other) def __ne__(self, other): return BinExpr(operator.ne, self, other) class UniExpr(ExprMixin): __slots__ = ["op", "operand"] def __init__(self, op, operand): self.op = op self.operand = operand def __repr__(self): return "%s %r" % (opnames[self.op], self.operand) def __call__(self, context): operand = self.operand(context) if callable(self.operand) else self.operand return self.op(operand) class BinExpr(ExprMixin): __slots__ = ["op", "lhs", "rhs"] def __init__(self, op, lhs, rhs): self.op = op self.lhs = lhs self.rhs = rhs def __repr__(self): return "(%r %s %r)" % (self.lhs, opnames[self.op], self.rhs) def __call__(self, context): lhs = self.lhs(context) if callable(self.lhs) else self.lhs rhs = self.rhs(context) if callable(self.rhs) else self.rhs return self.op(lhs, rhs) class Path(ExprMixin): __slots__ = ["__name", "__parent"] def __init__(self, name, parent = None): self.__name = name self.__parent = parent def __repr__(self): if self.__parent is None: return self.__name return "%r.%s" % (self.__parent, self.__name) def __call__(self, context): if self.__parent is None: return context context2 = self.__parent(context) return context2[self.__name] def __getattr__(self, name): return Path(name, self) # where is `this` being referenced from? this = Path("this")
{ "content_hash": "c98f61f52f38cf481b5a8b45146833d6", "timestamp": "", "source": "github", "line_count": 157, "max_line_length": 83, "avg_line_length": 31.828025477707005, "alnum_prop": 0.5717430458274965, "repo_name": "gkonstantyno/construct", "id": "b62efb964b063608675b6dafa3df0b47ae305d5b", "size": "4997", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "construct/lib/expr.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "337547" }, { "name": "Shell", "bytes": "239" } ], "symlink_target": "" }
from __future__ import absolute_import, unicode_literals import environ env = environ.Env(DEBUG=(bool, False),) # set default values and casting ROOT_DIR = environ.Path(__file__) - 3 # (/a/b/myfile.py - 3 = /) APPS_DIR = ROOT_DIR.path('housing_reviews') DEBUG = env('DEBUG') TEMPLATE_DEBUG = DEBUG # Raises ImproperlyConfigured exception if DATABASE_URL not in os.environ DATABASES = {"default": env.db()} MEDIA_ROOT = str(ROOT_DIR('uploads')) MEDIA_URL = '' STATIC_ROOT = str(ROOT_DIR('staticfiles')) STATIC_URL = '/static/' SECRET_KEY = env('SECRET_KEY') TEST_RUNNER = 'django.test.runner.DiscoverRunner' ADMINS = ( ('St Andrews Housing Reviews Team', 'hello@standrews-housing-reviews.com'), ) MANAGERS = ADMINS # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'Europe/London' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-uk' SITE_ID = 2 if DEBUG else 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = False # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. str(APPS_DIR.path('static')), ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'djangosecure.middleware.SecurityMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'housing_reviews.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'housing_reviews.wsgi.application' TEMPLATE_DIRS = ( ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.core.context_processors.debug', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', # allauth specific context processors # 'allauth.account.context_processors.account', # 'allauth.socialaccount.context_processors.socialaccount', ) DJANGO_APPS = ( 'admin_tools', 'admin_tools.theming', 'admin_tools.menu', 'admin_tools.dashboard', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'django.contrib.admindocs', ) THIRD_PARTY_APPS = ( 'gunicorn', 'django_extensions', 'model_utils', 'djangosecure', 'crispy_forms', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.facebook', # 'allauth.socialaccount.providers.google', 'djangoratings', 'django_activeurl', 'analytical', ) LOCAL_APPS = ( 'housing_reviews', 'agencies', 'reviews', ) INSTALLED_APPS = LOCAL_APPS + DJANGO_APPS + THIRD_PARTY_APPS # Heroku # # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # END Heroku # ALLOWED_HOSTS = '*' SECURE_FRAME_DENY = True SECURE_CONTENT_TYPE_NOSNIFF = True SECURE_BROWSER_XSS_FILTER = True SESSION_COOKIE_SECURE = False SESSION_COOKIE_HTTPONLY = True # Crispy forms # CRISPY_TEMPLATE_PACK = 'bootstrap' def include_config(filename): filename = str(ROOT_DIR('housing_reviews', 'settings', filename)) with open(filename) as f: code = compile(f.read(), filename, 'exec') exec code include_config('logging.py') include_config('email.py') include_config('auth.py') include_config('analytics.py') include_config('mailchimp.py')
{ "content_hash": "20b355476b07c70ff8e33639468fbea1", "timestamp": "", "source": "github", "line_count": 179, "max_line_length": 79, "avg_line_length": 28.692737430167597, "alnum_prop": 0.7202102803738317, "repo_name": "borfast/housing-reviews", "id": "78796b1d9456a6c84212579b49df3bf2f813ab87", "size": "5136", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "housing_reviews/settings/base.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "75698" }, { "name": "HTML", "bytes": "36333" }, { "name": "JavaScript", "bytes": "1" }, { "name": "Python", "bytes": "27775" } ], "symlink_target": "" }
""" Remove caveats to permissions Revision ID: 84262e097c26 Revises: f345394c444f Create Date: 2022-04-05 18:35:57.325801 """ from alembic import op revision = "84262e097c26" down_revision = "f345394c444f" def upgrade(): op.alter_column("macaroons", "caveats", new_column_name="permissions_caveat") def downgrade(): op.alter_column("macaroons", "permissions_caveat", new_column_name="caveats")
{ "content_hash": "00ad00790e9da70d232718365b223738", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 81, "avg_line_length": 20.45, "alnum_prop": 0.7334963325183375, "repo_name": "pypa/warehouse", "id": "9bee3f5df6fae8474a99c1948a8b996a9ad8b4a1", "size": "949", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "warehouse/migrations/versions/84262e097c26_rename_caveats_to_permissions.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "676" }, { "name": "Dockerfile", "bytes": "6745" }, { "name": "HCL", "bytes": "42" }, { "name": "HTML", "bytes": "663799" }, { "name": "JavaScript", "bytes": "128585" }, { "name": "Makefile", "bytes": "5068" }, { "name": "Mako", "bytes": "2040" }, { "name": "Procfile", "bytes": "527" }, { "name": "Python", "bytes": "3315335" }, { "name": "SCSS", "bytes": "205844" }, { "name": "Shell", "bytes": "9424" }, { "name": "YARA", "bytes": "9079" } ], "symlink_target": "" }
import unittest import sys # automake build dir sys.path.insert(0, '..') sys.path.insert(0, '../.libs') # cmake build dir sys.path.insert(0, '../../../build/bindings/python') from pywsman import * class TestSequenceFunctions(unittest.TestCase): def test_enum_release(self): # set_debug(1) # enable to print logging to stderr client = Client( "http://wsman:secret@localhost:5985/wsman" ) client.transport().set_auth_method(BASIC_AUTH_STR) # Windows winrm needs this options = ClientOptions() # uri = "http://schemas.microsoft.com/wbem/wsman/1/wmi/root/cimv2/Win32_OperatingSystem" uri = "http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_ComputerSystem" # options.set_dump_request() # enable to print SOAP request to stdout doc = client.enumerate( options, None, uri) root = doc.root() assert root is not None context = root.find(XML_NS_ENUMERATION, "EnumerationContext" ) doc = client.release( options, uri, context.__str__()) assert doc is not None root = doc.root() assert root is not None resp = root.find(XML_NS_ADDRESSING, "Action" ) self.assertEquals( resp.__str__(), XML_NS_ENUMERATION + '/' + WSENUM_RELEASE_RESP ) print "Action %s" % resp if __name__ == '__main__': unittest.main()
{ "content_hash": "7ae1ba92d95f51485c514a54d347afea", "timestamp": "", "source": "github", "line_count": 38, "max_line_length": 89, "avg_line_length": 32.68421052631579, "alnum_prop": 0.6940418679549114, "repo_name": "steakknife/openwsman", "id": "fee16051de987f44ad9b35654d38633d75fc6ece", "size": "1242", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "bindings/python/tests/release.py", "mode": "33188", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
""" WSGI config for sciweather project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.10/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "sciweather.settings") application = get_wsgi_application()
{ "content_hash": "fdb42d9a626ee614224129785003c9ed", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 78, "avg_line_length": 24.875, "alnum_prop": 0.7738693467336684, "repo_name": "wasit7/tutorials", "id": "91a24a5fe21cd3f3ae7dc70f8c35943cd64c1a52", "size": "398", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "arduino_python/04_sciweather/sciweather/sciweather/wsgi.py", "mode": "33188", "license": "mit", "language": [ { "name": "Arduino", "bytes": "161779" }, { "name": "Batchfile", "bytes": "1953" }, { "name": "C", "bytes": "580699" }, { "name": "C++", "bytes": "500977" }, { "name": "CMake", "bytes": "14548" }, { "name": "CSS", "bytes": "12348" }, { "name": "Cuda", "bytes": "16475" }, { "name": "Elixir", "bytes": "391" }, { "name": "HTML", "bytes": "81272" }, { "name": "JavaScript", "bytes": "389" }, { "name": "Jupyter Notebook", "bytes": "1175781" }, { "name": "Makefile", "bytes": "8294" }, { "name": "PowerShell", "bytes": "8175" }, { "name": "Processing", "bytes": "10267" }, { "name": "Python", "bytes": "193149" }, { "name": "Shell", "bytes": "559" }, { "name": "XSLT", "bytes": "2042" } ], "symlink_target": "" }
from vispy import scene, io from vispy.testing import (requires_application, TestingCanvas, run_tests_if_main) from vispy.testing.image_tester import assert_image_approved @requires_application() def test_perspective_render(): with TestingCanvas(size=(300, 200)) as canvas: grid = canvas.central_widget.add_grid() grid.padding = 20 imdata = io.load_crate().astype('float32') / 255 views = [] images = [] for i, imethod in enumerate(['impostor', 'subdivide']): for j, vmethod in enumerate(['fragment', 'viewport', 'fbo']): v = grid.add_view(row=i, col=j, border_color='white') v.camera = 'turntable' v.camera.fov = 50 v.camera.distance = 30 v.clip_method = vmethod views.append(v) image = scene.visuals.Image(imdata, method=imethod, grid=(4, 4)) image.transform = scene.STTransform(translate=(-12.8, -12.8), scale=(0.1, 0.1)) v.add(image) images.append(image) image = canvas.render() print("ViewBox shapes") for v in views: print(v.node_transform(canvas.canvas_cs).map(v.rect)) canvas.close() # Allow many pixels to differ by a small amount--texture sampling and # exact triangle position will differ across platforms. However a # change in perspective or in the widget borders should trigger a # failure. assert_image_approved(image, 'scene/cameras/perspective_test.png', 'perspective test 1: 6 identical views with ' 'correct perspective', px_threshold=20, px_count=60, max_px_diff=200) run_tests_if_main()
{ "content_hash": "6d0f9e6649107b03325fc99f95631871", "timestamp": "", "source": "github", "line_count": 52, "max_line_length": 77, "avg_line_length": 39.11538461538461, "alnum_prop": 0.5147492625368731, "repo_name": "hronoses/vispy", "id": "6fb47980507d6305fced2bf5f6201175995379ef", "size": "2359", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vispy/scene/cameras/tests/test_perspective.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "143081" }, { "name": "GLSL", "bytes": "171513" }, { "name": "JavaScript", "bytes": "5007" }, { "name": "Makefile", "bytes": "1593" }, { "name": "PowerShell", "bytes": "4151" }, { "name": "Python", "bytes": "2858273" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('ctdata', '0031_dataacademyabstractevent'), ] operations = [ migrations.CreateModel( name='DataAcademyLiveEvent', fields=[ ('dataacademyabstractevent_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='ctdata.DataAcademyAbstractEvent')), ], options={ 'abstract': False, }, bases=('ctdata.dataacademyabstractevent',), ), migrations.CreateModel( name='DataAcademyWebEvent', fields=[ ('dataacademyabstractevent_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='ctdata.DataAcademyAbstractEvent')), ], options={ 'abstract': False, }, bases=('ctdata.dataacademyabstractevent',), ), ]
{ "content_hash": "5220e6f53d697ea5b1acf740d33371c4", "timestamp": "", "source": "github", "line_count": 34, "max_line_length": 226, "avg_line_length": 35.64705882352941, "alnum_prop": 0.608085808580858, "repo_name": "CT-Data-Collaborative/ctdata-wagtail-cms", "id": "9288e601b6565a740051563770b9b39b36d4a02f", "size": "1284", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ctdata/migrations/0032_dataacademyliveevent_dataacademywebevent.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "60702" }, { "name": "HTML", "bytes": "103319" }, { "name": "JavaScript", "bytes": "673447" }, { "name": "Nginx", "bytes": "1201" }, { "name": "Python", "bytes": "423981" }, { "name": "Shell", "bytes": "8068" } ], "symlink_target": "" }