text
stringlengths
4
1.02M
meta
dict
def make_model(model_name: str, new_display_name: str) -> google.cloud.aiplatform_v1beta1.types.model.Model: model = model model = { 'name': model_name, 'display_name': new_display_name } return model def make_update_mask() -> google.protobuf.field_mask_pb2.FieldMask: update_mask = { 'paths': [ 'display_name' ] } return update_mask
{ "content_hash": "379765120f0d718cf867c7cba80872b8", "timestamp": "", "source": "github", "line_count": 19, "max_line_length": 108, "avg_line_length": 21.63157894736842, "alnum_prop": 0.5888077858880778, "repo_name": "sasha-gitg/python-aiplatform", "id": "fff76e2ac5b9558a7949991d72b8bda0df2d8dde", "size": "988", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": ".sample_configs/param_handlers/update_model_sample.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "1700" }, { "name": "Python", "bytes": "11216304" }, { "name": "Shell", "bytes": "30838" } ], "symlink_target": "" }
from django.utils.translation import ugettext_lazy as _ from desktop.lib.conf import Config, coerce_bool MAX_SNAPPY_DECOMPRESSION_SIZE = Config( key="max_snappy_decompression_size", help=_("Max snappy decompression size in bytes."), private=True, default=1024*1024*25, type=int) ARCHIVE_UPLOAD_TEMPDIR = Config( key="archive_upload_tempdir", help=_("Location on local filesystem where the uploaded archives are temporary stored."), default=None, type=str) SHOW_DOWNLOAD_BUTTON = Config( key="show_download_button", help=_("whether to show the download button in hdfs file browser."), type=coerce_bool, default=True) SHOW_UPLOAD_BUTTON = Config( key="show_upload_button", help=_("whether to show the upload button in hdfs file browser."), type=coerce_bool, default=True) ENABLE_EXTRACT_UPLOADED_ARCHIVE = Config( key="enable_extract_uploaded_archive", help=_("Flag to enable the extraction of a uploaded archive in HDFS."), type=bool, default=False )
{ "content_hash": "44093f8639ec0ed530ab23dfe036ca49", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 91, "avg_line_length": 27.027027027027028, "alnum_prop": 0.731, "repo_name": "xq262144/hue", "id": "0a23fdbec9e1f0ae18c2884feaf2c844b1c72aa3", "size": "1792", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "apps/filebrowser/src/filebrowser/conf.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "3096" }, { "name": "Batchfile", "bytes": "41710" }, { "name": "C", "bytes": "2692409" }, { "name": "C++", "bytes": "199897" }, { "name": "CSS", "bytes": "521820" }, { "name": "Emacs Lisp", "bytes": "11704" }, { "name": "Genshi", "bytes": "946" }, { "name": "Go", "bytes": "6671" }, { "name": "Groff", "bytes": "16669" }, { "name": "HTML", "bytes": "24188238" }, { "name": "Java", "bytes": "575404" }, { "name": "JavaScript", "bytes": "4987047" }, { "name": "M4", "bytes": "1377" }, { "name": "Makefile", "bytes": "144341" }, { "name": "Mako", "bytes": "3052598" }, { "name": "Myghty", "bytes": "936" }, { "name": "PLSQL", "bytes": "13774" }, { "name": "PLpgSQL", "bytes": "3646" }, { "name": "Perl", "bytes": "3499" }, { "name": "PigLatin", "bytes": "328" }, { "name": "Python", "bytes": "44291483" }, { "name": "Shell", "bytes": "44147" }, { "name": "Smarty", "bytes": "130" }, { "name": "Thrift", "bytes": "278712" }, { "name": "Visual Basic", "bytes": "2884" }, { "name": "XSLT", "bytes": "518588" } ], "symlink_target": "" }
from pandas import read_csv from numpy import array from sys import argv from sys import exit from numpy import random trainFile = argv[1] testFile = argv[2] classOptions = argv[3].split(",") algorithm = argv[4] def readData(inFilePath): return read_csv(inFilePath, sep='\t', index_col=0) def predict(algorithm, train_X, train_y, test_X): if algorithm == 'lda': from sklearn.discriminant_analysis import LinearDiscriminantAnalysis clf = LinearDiscriminantAnalysis() elif algorithm == 'qda': from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis clf = QuadraticDiscriminantAnalysis() elif algorithm == 'random_forest': from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_estimators=100, random_state=R_SEED) elif algorithm == 'bagging': from sklearn.ensemble import BaggingClassifier clf = BaggingClassifier(n_estimators=100, random_state=R_SEED) elif algorithm == 'extra_trees': from sklearn.ensemble import ExtraTreesClassifier clf = ExtraTreesClassifier(n_estimators=100, random_state=R_SEED) elif algorithm == 'logistic_regression': from sklearn.linear_model import LogisticRegression clf = LogisticRegression(random_state=R_SEED) # elif algorithm == 'passive_aggressive': # from sklearn.linear_model import PassiveAggressiveClassifier # clf = PassiveAggressiveClassifier(random_state=R_SEED) # elif algorithm == 'elastic_net': # from sklearn.linear_model import ElasticNet # clf = ElasticNet(random_state=R_SEED) # elif algorithm == 'ridge': # from sklearn.linear_model import RidgeClassifier # clf = RidgeClassifier(random_state=R_SEED) elif algorithm == 'sgd': from sklearn.linear_model import SGDClassifier clf = SGDClassifier(random_state=R_SEED, loss="modified_huber") elif algorithm == 'knn': from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier() # elif algorithm == 'radius_neighbors': # from sklearn.neighbors import RadiusNeighborsClassifier # clf = RadiusNeighborsClassifier() #elif algorithm == 'nearest_centroid': # from sklearn.neighbors.nearest_centroid import NearestCentroid # clf = NearestCentroid() #elif algorithm == 'bernoulli_rbm': # from sklearn.neural_network import BernoulliRBM # clf = BernoulliRBM(random_state=R_SEED) elif algorithm == 'svm_linear': from sklearn.svm import SVC clf = SVC(probability=True, random_state=R_SEED, kernel='linear') elif algorithm == 'svm_rbf': from sklearn.svm import SVC clf = SVC(probability=True, random_state=R_SEED, kernel='rbf') elif algorithm == 'svm_poly': from sklearn.svm import SVC clf = SVC(probability=True, random_state=R_SEED, kernel='poly') elif algorithm == 'svm_sigmoid': from sklearn.svm import SVC clf = SVC(probability=True, random_state=R_SEED, kernel='sigmoid') elif algorithm == 'svm_nurbf': from sklearn.svm import NuSVC clf = NuSVC(probability=True, random_state=R_SEED) elif algorithm == 'decision_tree': from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier(random_state=R_SEED) else: print "Invalid algorithm: %s" % algorithm exit(1) clf.fit(train_X, train_y) return clf.predict_proba(test_X) R_SEED = 0 random.seed(R_SEED) train_df = readData(trainFile) train_X = train_df.ix[:,:-1].values train_y = array([classOptions.index(str(y[0])) for y in train_df.loc[:,["Class"]].values.tolist()]) test_X = readData(testFile).values probs = predict(algorithm, train_X, train_y, test_X) for i in range(len(probs)): iProbs = list(probs[i]) maxProb = max(iProbs) indicesMatchingMax = [i for i in range(len(iProbs)) if iProbs[i]==maxProb] random.shuffle(indicesMatchingMax) prediction = classOptions[indicesMatchingMax[0]] print "%s\t%s" % (prediction, "\t".join(["%.9f" % iProb for iProb in iProbs]))
{ "content_hash": "fe95e998fd353eeac2bf9dcdb5b8351b", "timestamp": "", "source": "github", "line_count": 103, "max_line_length": 99, "avg_line_length": 40.09708737864078, "alnum_prop": 0.6852300242130751, "repo_name": "srp33/ShinyLearner", "id": "890dbb66ab2251e4bb5cc5ff7c85cc9590e22824", "size": "4130", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Archive/Classification/tsv/Helper/sklearn_c_generic.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "91" }, { "name": "Java", "bytes": "78213" }, { "name": "Python", "bytes": "126214" }, { "name": "R", "bytes": "89706" }, { "name": "Shell", "bytes": "1250579" } ], "symlink_target": "" }
from qutebrowser.config.configfiles import ConfigAPI config: ConfigAPI = config class Colors: black = "#282a36" light_black = "#686868" red = "#ff5c57" green = "#5af78e" yellow = "#f3f99d" blue = "#57c7ff" magenta = "#ff6ac1" cyan = "#9aedfe" white = "#eff0eb" class Fonts: sans = "Cantarell" fixed = "OperatorMonoLig Nerd Font" medium = 12 large = 14 web = 17 config.load_autoconfig(False) # Key bindings config.unbind("cd") config.unbind("d") config.unbind("J") config.unbind("K") config.bind("dc", "download-clear") config.bind("do", "download-open") config.bind(";r", "hint all right-click") config.bind("<Shift+Escape>", ":fake-key <Escape>") config.bind("<Shift+j>", "scroll-px 0 50") config.bind("<Shift+k>", "scroll-px 0 -50") config.bind("g[", "tab-prev") config.bind("g]", "tab-next") config.bind("gc", "tab-close") config.set("auto_save.session", True) config.set("completion.shrink", True) config.set("confirm_quit", ["multiple-tabs", "downloads"]) config.set("content.blocking.method", "both") config.set("content.blocking.whitelist", ["click.redditmail.com"]) config.set("content.notifications.enabled", True, "https://web.whatsapp.com/") config.set( "content.headers.user_agent", "Mozilla/5.0 (X11; Linux x86_64; rv:97.0) Gecko/20100101 Firefox/97.0", ) config.set( "content.tls.certificate_errors", "load-insecurely", "https://127.0.0.1:8384/" ) config.set("downloads.open_dispatcher", "xdg-open") config.set("editor.command", ["foot", "-e", "nvim", "{file}"]) config.set( "url.searchengines", { "DEFAULT": "https://duckduckgo.com/?q={}", "aur": "https://aur.archlinux.org/packages?K={}", "dict": "https://dictionary.cambridge.org/search/direct/?datasetsearch=english&q={}", "github": "https://github.com/search?q={}", "google": "https://www.google.com/search?q={}", "pac": "https://archlinux.org/packages/?q={}", "warch": "https://wiki.archlinux.org/?search={}", "youtube": "https://www.youtube.com/results?search_query={}", }, ) # Fonts fonts = Fonts() config.set("fonts.default_family", fonts.fixed) config.set("fonts.default_size", f"{fonts.medium}pt") config.set("fonts.tabs.selected", f"{fonts.large}pt {fonts.sans}") config.set("fonts.tabs.unselected", f"{fonts.large}pt {fonts.sans}") config.set("fonts.web.family.fixed", fonts.fixed) config.set("fonts.web.family.sans_serif", fonts.sans) config.set("fonts.web.family.serif", fonts.sans) config.set("fonts.web.family.standard", fonts.sans) config.set("fonts.web.size.default", fonts.web) config.set("fonts.web.size.default_fixed", fonts.medium) # Colors colors = Colors() config.set("colors.completion.fg", colors.white) config.set("colors.completion.odd.bg", colors.black) config.set("colors.completion.even.bg", colors.black) config.set("colors.completion.category.fg", colors.magenta) config.set("colors.completion.category.bg", colors.black) config.set("colors.completion.category.border.top", colors.black) config.set("colors.completion.category.border.bottom", colors.black) config.set("colors.completion.item.selected.fg", colors.black) config.set("colors.completion.item.selected.bg", colors.yellow) config.set("colors.completion.item.selected.border.top", colors.yellow) config.set("colors.completion.item.selected.border.bottom", colors.yellow) config.set("colors.completion.item.selected.match.fg", colors.magenta) config.set("colors.completion.match.fg", colors.magenta) config.set("colors.completion.scrollbar.fg", colors.magenta) config.set("colors.completion.scrollbar.bg", colors.black) config.set("colors.contextmenu.disabled.fg", colors.light_black) config.set("colors.contextmenu.disabled.bg", colors.black) config.set("colors.contextmenu.menu.fg", colors.white) config.set("colors.contextmenu.menu.bg", colors.black) config.set("colors.contextmenu.selected.fg", colors.black) config.set("colors.contextmenu.selected.bg", colors.blue) config.set("colors.downloads.bar.bg", colors.black) config.set("colors.downloads.start.fg", colors.black) config.set("colors.downloads.start.bg", colors.magenta) config.set("colors.downloads.stop.fg", colors.black) config.set("colors.downloads.stop.bg", colors.blue) config.set("colors.downloads.error.fg", colors.black) config.set("hints.border", f"1px solid {colors.yellow}") config.set("colors.hints.fg", colors.black) config.set("colors.hints.bg", colors.yellow) config.set("colors.hints.match.fg", colors.red) config.set("colors.keyhint.suffix.fg", colors.magenta) config.set("colors.keyhint.fg", colors.magenta) config.set("colors.keyhint.bg", colors.black) config.set("colors.messages.error.fg", colors.black) config.set("colors.messages.error.bg", colors.red) config.set("colors.messages.error.border", colors.red) config.set("colors.messages.warning.fg", colors.black) config.set("colors.messages.warning.bg", colors.yellow) config.set("colors.messages.warning.border", colors.yellow) config.set("colors.messages.info.fg", colors.magenta) config.set("colors.messages.info.bg", colors.black) config.set("colors.messages.info.border", colors.black) config.set("colors.prompts.fg", colors.white) config.set("colors.prompts.bg", colors.black) config.set("colors.prompts.border", colors.black) config.set("colors.prompts.selected.fg", colors.magenta) config.set("colors.prompts.selected.bg", colors.green) config.set("colors.statusbar.normal.fg", colors.magenta) config.set("colors.statusbar.normal.bg", colors.black) config.set("colors.statusbar.insert.fg", colors.blue) config.set("colors.statusbar.insert.bg", colors.black) config.set("colors.statusbar.passthrough.fg", colors.green) config.set("colors.statusbar.passthrough.bg", colors.black) config.set("colors.statusbar.private.fg", colors.cyan) config.set("colors.statusbar.private.bg", colors.black) config.set("colors.statusbar.command.fg", colors.white) config.set("colors.statusbar.command.bg", colors.black) config.set("colors.statusbar.command.private.fg", colors.cyan) config.set("colors.statusbar.command.private.bg", colors.red) config.set("colors.statusbar.caret.fg", colors.magenta) config.set("colors.statusbar.caret.bg", colors.black) config.set("colors.statusbar.caret.selection.fg", colors.magenta) config.set("colors.statusbar.caret.selection.bg", colors.black) config.set("colors.statusbar.progress.bg", colors.magenta) config.set("colors.statusbar.url.fg", colors.magenta) config.set("colors.statusbar.url.hover.fg", colors.green) config.set("colors.statusbar.url.success.http.fg", colors.yellow) config.set("colors.statusbar.url.success.https.fg", colors.white) config.set("colors.statusbar.url.warn.fg", colors.yellow) config.set("colors.statusbar.url.error.fg", colors.red) config.set("colors.tabs.bar.bg", colors.black) config.set("colors.tabs.indicator.start", colors.magenta) config.set("colors.tabs.indicator.stop", colors.blue) config.set("colors.tabs.indicator.error", colors.red) config.set("colors.tabs.odd.fg", colors.white) config.set("colors.tabs.odd.bg", colors.black) config.set("colors.tabs.even.fg", colors.white) config.set("colors.tabs.even.bg", colors.black) config.set("colors.tabs.pinned.even.fg", colors.white) config.set("colors.tabs.pinned.even.bg", colors.black) config.set("colors.tabs.pinned.odd.fg", colors.white) config.set("colors.tabs.pinned.odd.bg", colors.black) config.set("colors.tabs.pinned.selected.even.fg", colors.black) config.set("colors.tabs.pinned.selected.even.bg", colors.blue) config.set("colors.tabs.pinned.selected.odd.fg", colors.black) config.set("colors.tabs.pinned.selected.odd.bg", colors.blue) config.set("colors.tabs.selected.odd.fg", colors.black) config.set("colors.tabs.selected.odd.bg", colors.blue) config.set("colors.tabs.selected.even.fg", colors.black) config.set("colors.tabs.selected.even.bg", colors.blue) config.set("colors.webpage.bg", colors.white)
{ "content_hash": "5d3aaf139b62a718ef5a30321dc376dd", "timestamp": "", "source": "github", "line_count": 203, "max_line_length": 93, "avg_line_length": 38.95073891625616, "alnum_prop": 0.7361831288731504, "repo_name": "ethan605/dotfiles", "id": "816dd6beedcd5ec37c9c446a697d9175d7df8ee6", "size": "7907", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "dot_config/qutebrowser/config.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "586" }, { "name": "Lua", "bytes": "26477" }, { "name": "Python", "bytes": "7907" }, { "name": "Shell", "bytes": "18513" }, { "name": "Vim Script", "bytes": "11852" } ], "symlink_target": "" }
from rdmo.core.plugins import get_plugins, get_plugin def get_widgets(): widgets = get_plugins('QUESTIONS_WIDGETS') return widgets.values() def get_widget_types(): widgets = get_plugins('QUESTIONS_WIDGETS') return [widget.key for widget in widgets.values()] def get_widget_type_choices(): widgets = get_plugins('QUESTIONS_WIDGETS') return [(widget.key, widget.label) for widget in widgets.values()] def get_widget_class(key): widget = get_plugin('QUESTIONS_WIDGETS', key) return widget.widget_class
{ "content_hash": "90ba7366c097536c25ccd7e9019ca02a", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 70, "avg_line_length": 25.666666666666668, "alnum_prop": 0.7068645640074211, "repo_name": "rdmorganiser/rdmo", "id": "95f793d88498e201e2fec530f89b9f9dc8bdfd4b", "size": "539", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "rdmo/questions/utils.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "426256" }, { "name": "JavaScript", "bytes": "110821" }, { "name": "Python", "bytes": "1265092" }, { "name": "SCSS", "bytes": "20373" } ], "symlink_target": "" }
from dppy.beta_ensembles import GinibreEnsemble ginibre = GinibreEnsemble() # beta must be 2 (default) ginibre.sample_full_model(size_N=40) ginibre.plot(normalization=True) ginibre.sample_full_model(size_N=1000) ginibre.hist(normalization=True)
{ "content_hash": "1be8bb44671b571a6614f0bf1f4a1a66", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 55, "avg_line_length": 25, "alnum_prop": 0.792, "repo_name": "guilgautier/DPPy", "id": "cfc3c046d3b404411dc2100adca1dbc533963982", "size": "250", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "docs/plots/ex_plot_ginibre_full_matrix_model.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "408222" }, { "name": "Python", "bytes": "441355" }, { "name": "Shell", "bytes": "1694" } ], "symlink_target": "" }
"""Manages watermarks of PCollections and AppliedPTransforms.""" from __future__ import absolute_import import threading from apache_beam import pipeline from apache_beam import pvalue from apache_beam.utils.timestamp import MAX_TIMESTAMP from apache_beam.utils.timestamp import MIN_TIMESTAMP class WatermarkManager(object): """For internal use only; no backwards-compatibility guarantees. Tracks and updates watermarks for all AppliedPTransforms.""" WATERMARK_POS_INF = MAX_TIMESTAMP WATERMARK_NEG_INF = MIN_TIMESTAMP def __init__(self, clock, root_transforms, value_to_consumers): self._clock = clock # processing time clock self._value_to_consumers = value_to_consumers self._root_transforms = root_transforms # AppliedPTransform -> TransformWatermarks self._transform_to_watermarks = {} for root_transform in root_transforms: self._transform_to_watermarks[root_transform] = _TransformWatermarks( self._clock) for consumers in value_to_consumers.values(): for consumer in consumers: self._transform_to_watermarks[consumer] = _TransformWatermarks( self._clock) for consumers in value_to_consumers.values(): for consumer in consumers: self._update_input_transform_watermarks(consumer) def _update_input_transform_watermarks(self, applied_ptransform): assert isinstance(applied_ptransform, pipeline.AppliedPTransform) input_transform_watermarks = [] for input_pvalue in applied_ptransform.inputs: assert input_pvalue.producer or isinstance(input_pvalue, pvalue.PBegin) if input_pvalue.producer: input_transform_watermarks.append( self.get_watermarks(input_pvalue.producer)) self._transform_to_watermarks[ applied_ptransform].update_input_transform_watermarks( input_transform_watermarks) def get_watermarks(self, applied_ptransform): """Gets the input and output watermarks for an AppliedPTransform. If the applied_ptransform has not processed any elements, return a watermark with minimum value. Args: applied_ptransform: AppliedPTransform to get the watermarks for. Returns: A snapshot (TransformWatermarks) of the input watermark and output watermark for the provided transform. """ # TODO(altay): Composite transforms should have a composite watermark. Until # then they are represented by their last transform. while applied_ptransform.parts: applied_ptransform = applied_ptransform.parts[-1] return self._transform_to_watermarks[applied_ptransform] def update_watermarks(self, completed_committed_bundle, applied_ptransform, timer_update, outputs, earliest_hold): assert isinstance(applied_ptransform, pipeline.AppliedPTransform) self._update_pending( completed_committed_bundle, applied_ptransform, timer_update, outputs) tw = self.get_watermarks(applied_ptransform) tw.hold(earliest_hold) self._refresh_watermarks(applied_ptransform) def _update_pending(self, input_committed_bundle, applied_ptransform, timer_update, output_committed_bundles): """Updated list of pending bundles for the given AppliedPTransform.""" # Update pending elements. Filter out empty bundles. They do not impact # watermarks and should not trigger downstream execution. for output in output_committed_bundles: if output.has_elements(): if output.pcollection in self._value_to_consumers: consumers = self._value_to_consumers[output.pcollection] for consumer in consumers: consumer_tw = self._transform_to_watermarks[consumer] consumer_tw.add_pending(output) completed_tw = self._transform_to_watermarks[applied_ptransform] completed_tw.update_timers(timer_update) assert input_committed_bundle or applied_ptransform in self._root_transforms if input_committed_bundle and input_committed_bundle.has_elements(): completed_tw.remove_pending(input_committed_bundle) def _refresh_watermarks(self, applied_ptransform): assert isinstance(applied_ptransform, pipeline.AppliedPTransform) tw = self.get_watermarks(applied_ptransform) if tw.refresh(): for pval in applied_ptransform.outputs.values(): if isinstance(pval, pvalue.DoOutputsTuple): pvals = (v for v in pval) else: pvals = (pval,) for v in pvals: if v in self._value_to_consumers: # If there are downstream consumers consumers = self._value_to_consumers[v] for consumer in consumers: self._refresh_watermarks(consumer) def extract_fired_timers(self): all_timers = [] for applied_ptransform, tw in self._transform_to_watermarks.iteritems(): if tw.extract_fired_timers(): all_timers.append(applied_ptransform) return all_timers class _TransformWatermarks(object): """Tracks input and output watermarks for aan AppliedPTransform.""" def __init__(self, clock): self._clock = clock self._input_transform_watermarks = [] self._input_watermark = WatermarkManager.WATERMARK_NEG_INF self._output_watermark = WatermarkManager.WATERMARK_NEG_INF self._earliest_hold = WatermarkManager.WATERMARK_POS_INF self._pending = set() # Scheduled bundles targeted for this transform. self._fired_timers = False self._lock = threading.Lock() def update_input_transform_watermarks(self, input_transform_watermarks): with self._lock: self._input_transform_watermarks = input_transform_watermarks def update_timers(self, timer_update): with self._lock: if timer_update: assert self._fired_timers self._fired_timers = False @property def input_watermark(self): with self._lock: return self._input_watermark @property def output_watermark(self): with self._lock: return self._output_watermark def hold(self, value): with self._lock: if value is None: value = WatermarkManager.WATERMARK_POS_INF self._earliest_hold = value def add_pending(self, pending): with self._lock: self._pending.add(pending) def remove_pending(self, completed): with self._lock: # Ignore repeated removes. This will happen if a transform has a repeated # input. if completed in self._pending: self._pending.remove(completed) def refresh(self): with self._lock: pending_holder = (WatermarkManager.WATERMARK_NEG_INF if self._pending else WatermarkManager.WATERMARK_POS_INF) input_watermarks = [ tw.output_watermark for tw in self._input_transform_watermarks] input_watermarks.append(WatermarkManager.WATERMARK_POS_INF) producer_watermark = min(input_watermarks) self._input_watermark = max(self._input_watermark, min(pending_holder, producer_watermark)) new_output_watermark = min(self._input_watermark, self._earliest_hold) advanced = new_output_watermark > self._output_watermark self._output_watermark = new_output_watermark return advanced @property def synchronized_processing_output_time(self): return self._clock.time() def extract_fired_timers(self): with self._lock: if self._fired_timers: return False should_fire = ( self._earliest_hold < WatermarkManager.WATERMARK_POS_INF and self._input_watermark == WatermarkManager.WATERMARK_POS_INF) self._fired_timers = should_fire return should_fire
{ "content_hash": "df9c8f154152acd3e652889f979bbc2d", "timestamp": "", "source": "github", "line_count": 209, "max_line_length": 80, "avg_line_length": 36.66985645933014, "alnum_prop": 0.6970250521920668, "repo_name": "dhalperi/beam", "id": "3a135397e12f0a2c7b1a1733b3602ad6840c89f6", "size": "8449", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "sdks/python/apache_beam/runners/direct/watermark_manager.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Groovy", "bytes": "42943" }, { "name": "Java", "bytes": "11325979" }, { "name": "Protocol Buffer", "bytes": "50080" }, { "name": "Python", "bytes": "3022774" }, { "name": "Shell", "bytes": "45521" } ], "symlink_target": "" }
import urllib2 from google.appengine.api.images import Image def downloadFile(url): data = urllib2.urlopen(url).read() return data def getImageDimensions(file): img = Image(file) return img.width, img.height def refreshImageDimensions(obj): # obj can be either Author or Quote if obj.img_url: obj.img_width, obj.img_height = getImageDimensions(downloadFile(obj.img_url)) obj.put() return True
{ "content_hash": "93ff5dc15551cdd62371bdd448988301", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 85, "avg_line_length": 26.11764705882353, "alnum_prop": 0.6959459459459459, "repo_name": "pmylund/haveabit", "id": "f1b109dbd3c3d889edc513fb3b688c12ccd561b7", "size": "444", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "JavaScript", "bytes": "14893" }, { "name": "Python", "bytes": "1226550" }, { "name": "Shell", "bytes": "61" } ], "symlink_target": "" }
"""Home of the Sequential model, and the `save_model`/`load_model` functions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import json import os import numpy as np from tensorflow.python.framework import ops from tensorflow.python.keras._impl.keras import backend as K from tensorflow.python.keras._impl.keras import layers as layer_module from tensorflow.python.keras._impl.keras import optimizers from tensorflow.python.keras._impl.keras.engine import topology from tensorflow.python.keras._impl.keras.engine.topology import Input from tensorflow.python.keras._impl.keras.engine.topology import Layer from tensorflow.python.keras._impl.keras.engine.topology import TFBaseLayer from tensorflow.python.keras._impl.keras.engine.training import Model from tensorflow.python.keras._impl.keras.utils.generic_utils import has_arg from tensorflow.python.keras._impl.keras.utils.io_utils import ask_to_proceed_with_overwrite from tensorflow.python.platform import tf_logging as logging # pylint: disable=g-import-not-at-top try: import h5py except ImportError: h5py = None try: import yaml except ImportError: yaml = None # pylint: enable=g-import-not-at-top def save_model(model, filepath, overwrite=True, include_optimizer=True): """Save a model to a HDF5 file. The saved model contains: - the model's configuration (topology) - the model's weights - the model's optimizer's state (if any) Thus the saved model can be reinstantiated in the exact same state, without any of the code used for model definition or training. Arguments: model: Keras model instance to be saved. filepath: String, path where to save the model. overwrite: Whether we should overwrite any existing model at the target location, or instead ask the user with a manual prompt. include_optimizer: If True, save optimizer's state together. Raises: ImportError: if h5py is not available. """ if h5py is None: raise ImportError('`save_model` requires h5py.') def get_json_type(obj): """Serialize any object to a JSON-serializable structure. Arguments: obj: the object to serialize Returns: JSON-serializable structure representing `obj`. Raises: TypeError: if `obj` cannot be serialized. """ # if obj is a serializable Keras class instance # e.g. optimizer, layer if hasattr(obj, 'get_config'): return {'class_name': obj.__class__.__name__, 'config': obj.get_config()} # if obj is any numpy type if type(obj).__module__ == np.__name__: if isinstance(obj, np.ndarray): return {'type': type(obj), 'value': obj.tolist()} else: return obj.item() # misc functions (e.g. loss function) if callable(obj): return obj.__name__ # if obj is a python 'type' if type(obj).__name__ == type.__name__: return obj.__name__ raise TypeError('Not JSON Serializable:', obj) from tensorflow.python.keras._impl.keras import __version__ as keras_version # pylint: disable=g-import-not-at-top # If file exists and should not be overwritten. if not overwrite and os.path.isfile(filepath): proceed = ask_to_proceed_with_overwrite(filepath) if not proceed: return with h5py.File(filepath, mode='w') as f: f.attrs['keras_version'] = str(keras_version).encode('utf8') f.attrs['backend'] = K.backend().encode('utf8') f.attrs['model_config'] = json.dumps( { 'class_name': model.__class__.__name__, 'config': model.get_config() }, default=get_json_type).encode('utf8') model_weights_group = f.create_group('model_weights') model_layers = model.layers topology.save_weights_to_hdf5_group(model_weights_group, model_layers) if include_optimizer and hasattr(model, 'optimizer'): if isinstance(model.optimizer, optimizers.TFOptimizer): logging.warning( 'TensorFlow optimizers do not ' 'make it possible to access ' 'optimizer attributes or optimizer state ' 'after instantiation. ' 'As a result, we cannot save the optimizer ' 'as part of the model save file.' 'You will have to compile your model again after loading it. ' 'Prefer using a Keras optimizer instead ' '(see keras.io/optimizers).') else: f.attrs['training_config'] = json.dumps( { 'optimizer_config': { 'class_name': model.optimizer.__class__.__name__, 'config': model.optimizer.get_config() }, 'loss': model.loss, 'metrics': model.metrics, 'sample_weight_mode': model.sample_weight_mode, 'loss_weights': model.loss_weights, }, default=get_json_type).encode('utf8') # Save optimizer weights. symbolic_weights = getattr(model.optimizer, 'weights') if symbolic_weights: optimizer_weights_group = f.create_group('optimizer_weights') weight_values = K.batch_get_value(symbolic_weights) weight_names = [] for w, val in zip(symbolic_weights, weight_values): name = str(w.name) weight_names.append(name.encode('utf8')) optimizer_weights_group.attrs['weight_names'] = weight_names for name, val in zip(weight_names, weight_values): param_dset = optimizer_weights_group.create_dataset( name, val.shape, dtype=val.dtype) if not val.shape: # scalar param_dset[()] = val else: param_dset[:] = val f.flush() def load_model(filepath, custom_objects=None, compile=True): # pylint: disable=redefined-builtin """Loads a model saved via `save_model`. Arguments: filepath: String, path to the saved model. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. compile: Boolean, whether to compile the model after loading. Returns: A Keras model instance. If an optimizer was found as part of the saved model, the model is already compiled. Otherwise, the model is uncompiled and a warning will be displayed. When `compile` is set to False, the compilation is omitted without any warning. Raises: ImportError: if h5py is not available. ValueError: In case of an invalid savefile. """ if h5py is None: raise ImportError('`load_model` requires h5py.') if not custom_objects: custom_objects = {} def convert_custom_objects(obj): """Handles custom object lookup. Arguments: obj: object, dict, or list. Returns: The same structure, where occurrences of a custom object name have been replaced with the custom object. """ if isinstance(obj, list): deserialized = [] for value in obj: deserialized.append(convert_custom_objects(value)) return deserialized if isinstance(obj, dict): deserialized = {} for key, value in obj.items(): deserialized[key] = convert_custom_objects(value) return deserialized if obj in custom_objects: return custom_objects[obj] return obj with h5py.File(filepath, mode='r') as f: # instantiate model model_config = f.attrs.get('model_config') if model_config is None: raise ValueError('No model found in config file.') model_config = json.loads(model_config.decode('utf-8')) model = model_from_config(model_config, custom_objects=custom_objects) # set weights topology.load_weights_from_hdf5_group(f['model_weights'], model.layers) # Early return if compilation is not required. if not compile: return model # instantiate optimizer training_config = f.attrs.get('training_config') if training_config is None: logging.warning('No training configuration found in save file: ' 'the model was *not* compiled. Compile it manually.') return model training_config = json.loads(training_config.decode('utf-8')) optimizer_config = training_config['optimizer_config'] optimizer = optimizers.deserialize( optimizer_config, custom_objects=custom_objects) # Recover loss functions and metrics. loss = convert_custom_objects(training_config['loss']) metrics = convert_custom_objects(training_config['metrics']) sample_weight_mode = training_config['sample_weight_mode'] loss_weights = training_config['loss_weights'] # Compile model. model.compile( optimizer=optimizer, loss=loss, metrics=metrics, loss_weights=loss_weights, sample_weight_mode=sample_weight_mode) # Set optimizer weights. if 'optimizer_weights' in f: # Build train function (to get weight updates). if isinstance(model, Sequential): model.model._make_train_function() else: model._make_train_function() optimizer_weights_group = f['optimizer_weights'] optimizer_weight_names = [ n.decode('utf8') for n in optimizer_weights_group.attrs['weight_names'] ] optimizer_weight_values = [ optimizer_weights_group[n] for n in optimizer_weight_names ] try: model.optimizer.set_weights(optimizer_weight_values) except ValueError: logging.warning('Error in loading the saved optimizer ' 'state. As a result, your model is ' 'starting with a freshly initialized ' 'optimizer.') return model def model_from_config(config, custom_objects=None): """Instantiates a Keras model from its config. Arguments: config: Configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). Raises: TypeError: if `config` is not a dictionary. """ if isinstance(config, list): raise TypeError('`model_from_config` expects a dictionary, not a list. ' 'Maybe you meant to use ' '`Sequential.from_config(config)`?') return layer_module.deserialize(config, custom_objects=custom_objects) def model_from_yaml(yaml_string, custom_objects=None): """Parses a yaml model configuration file and returns a model instance. Arguments: yaml_string: YAML string encoding a model configuration. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). Raises: ImportError: if yaml module is not found. """ if yaml is None: raise ImportError('Requires yaml module installed.') config = yaml.load(yaml_string) return layer_module.deserialize(config, custom_objects=custom_objects) def model_from_json(json_string, custom_objects=None): """Parses a JSON model configuration file and returns a model instance. Arguments: json_string: JSON string encoding a model configuration. custom_objects: Optional dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. Returns: A Keras model instance (uncompiled). """ config = json.loads(json_string) return layer_module.deserialize(config, custom_objects=custom_objects) class Sequential(Model): """Linear stack of layers. Arguments: layers: list of layers to add to the model. # Note The first layer passed to a Sequential model should have a defined input shape. What that means is that it should have received an `input_shape` or `batch_input_shape` argument, or for some type of layers (recurrent, Dense...) an `input_dim` argument. Example: ```python model = Sequential() # first layer must have a defined input shape model.add(Dense(32, input_dim=500)) # afterwards, Keras does automatic shape inference model.add(Dense(32)) # also possible (equivalent to the above): model = Sequential() model.add(Dense(32, input_shape=(500,))) model.add(Dense(32)) # also possible (equivalent to the above): model = Sequential() # here the batch dimension is None, # which means any batch size will be accepted by the model. model.add(Dense(32, batch_input_shape=(None, 500))) model.add(Dense(32)) ``` """ def __init__(self, layers=None, name=None): self.layers = [] # Stack of layers. self.model = None # Internal Model instance. self.inputs = [] # List of input tensors self.outputs = [] # List of length 1: the output tensor (unique). self._trainable = True self._initial_weights = None self._input_layers = [] # Model attributes. self.inbound_nodes = [] self.outbound_nodes = [] self.built = False # Set model name. if not name: prefix = 'sequential_' name = prefix + str(K.get_uid(prefix)) self.name = name # Used by Layer base class. self._dtype = None # The following properties are not actually used by Keras; # they exist for compatibility with TF's variable scoping mechanism. self._updates = [] self._losses = [] self._scope = None self._reuse = None self._base_name = name self._graph = ops.get_default_graph() # Add to the model any layers passed to the constructor. if layers: for layer in layers: self.add(layer) def add(self, layer): """Adds a layer instance on top of the layer stack. Arguments: layer: layer instance. Raises: TypeError: If `layer` is not a layer instance. ValueError: In case the `layer` argument does not know its input shape. ValueError: In case the `layer` argument has multiple output tensors, or is already connected somewhere else (forbidden in `Sequential` models). """ if not isinstance(layer, (Layer, TFBaseLayer)): raise TypeError('The added layer must be ' 'an instance of class Layer. ' 'Found: ' + str(layer)) if not self.outputs: # first layer in model: check that it is an input layer if not layer.inbound_nodes: # create an input layer if not hasattr(layer, 'batch_input_shape'): raise ValueError('The first layer in a ' 'Sequential model must ' 'get an `input_shape` or ' '`batch_input_shape` argument.') # Instantiate the input layer. x = Input( batch_shape=layer.batch_input_shape, dtype=layer.dtype, name=layer.name + '_input') # This will build the current layer # and create the node connecting the current layer # to the input layer we just created. layer(x) if len(layer.inbound_nodes) != 1: raise ValueError('A layer added to a Sequential model must ' 'not already be connected somewhere else. ' 'Model received layer ' + layer.name + ' which has ' + str(len(layer.inbound_nodes)) + ' pre-existing inbound connections.') if len(layer.inbound_nodes[0].output_tensors) != 1: raise ValueError('All layers in a Sequential model ' 'should have a single output tensor. ' 'For multi-output layers, ' 'use the functional API.') self.outputs = [layer.inbound_nodes[0].output_tensors[0]] self.inputs = topology.get_source_inputs(self.outputs[0]) # We create an input node, which we will keep updated # as we add more layers topology.Node( outbound_layer=self, inbound_layers=[], node_indices=[], tensor_indices=[], input_tensors=self.inputs, output_tensors=self.outputs) else: output_tensor = layer(self.outputs[0]) if isinstance(output_tensor, list): raise TypeError('All layers in a Sequential model ' 'should have a single output tensor. ' 'For multi-output layers, ' 'use the functional API.') self.outputs = [output_tensor] # update self.inbound_nodes self.inbound_nodes[0].output_tensors = self.outputs self.inbound_nodes[0].output_shapes = [K.int_shape(self.outputs[0])] self.layers.append(layer) self.built = False def pop(self): """Removes the last layer in the model. Raises: TypeError: if there are no layers in the model. """ if not self.layers: raise TypeError('There are no layers in the model.') self.layers.pop() if not self.layers: self.outputs = [] self.inbound_nodes = [] self.outbound_nodes = [] else: self.layers[-1].outbound_nodes = [] self.outputs = [self.layers[-1].output] # update self.inbound_nodes self.inbound_nodes[0].output_tensors = self.outputs self.inbound_nodes[0].output_shapes = [K.int_shape(self.outputs[0])] self.built = False def get_layer(self, name=None, index=None): """Retrieve a layer that is part of the model. Returns a layer based on either its name (unique) or its index in the graph. Indices are based on order of horizontal graph traversal (bottom-up). Arguments: name: string, name of layer. index: integer, index of layer. Returns: A layer instance. """ if not self.built: self.build() return self.model.get_layer(name, index) def call(self, inputs, mask=None): if not self.built: self.build() return self.model.call(inputs, mask) def build(self, input_shape=None): if not self.inputs or not self.outputs: raise TypeError('Sequential model cannot be built: model is empty.' ' Add some layers first.') # actually create the model self.model = Model(self.inputs, self.outputs[0], name=self.name + '_model') self.model.trainable = self.trainable # mirror model attributes self.supports_masking = self.model.supports_masking self._output_mask_cache = self.model._output_mask_cache self._output_tensor_cache = self.model._output_tensor_cache self._output_shape_cache = self.model._output_shape_cache self._input_layers = self.model._input_layers self._output_layers = self.model._output_layers self._input_coordinates = self.model._input_coordinates self._output_coordinates = self.model._output_coordinates self._nodes_by_depth = self.model._nodes_by_depth self._network_nodes = self.model._network_nodes self.output_names = self.model.output_names self.input_names = self.model.input_names self._feed_input_names = self.model._feed_input_names self._feed_inputs = self.model._feed_inputs # Make sure child model callbacks # will call the parent Sequential model. self.model.callback_model = self self.built = True @property def uses_learning_phase(self): if not self.built: self.build() return self.model.uses_learning_phase def _gather_list_attr(self, attr): all_attrs = [] for layer in self.layers: all_attrs += getattr(layer, attr, []) return all_attrs @property def trainable(self): return self._trainable @trainable.setter def trainable(self, value): if self.model: self.model.trainable = value self._trainable = value @property def trainable_weights(self): if not self.trainable: return [] return self._gather_list_attr('trainable_weights') @property def non_trainable_weights(self): weights = self._gather_list_attr('non_trainable_weights') if not self.trainable: trainable_weights = self._gather_list_attr('trainable_weights') return trainable_weights + weights return weights @property def updates(self): if not self.built: self.build() return self.model.updates @property def state_updates(self): if not self.built: self.build() return self.model.state_updates def get_updates_for(self, inputs): if not self.built: self.build() return self.model.get_updates_for(inputs) @property def losses(self): if not self.built: self.build() return self.model.losses def get_losses_for(self, inputs): if not self.built: self.build() return self.model.get_losses_for(inputs) @property def regularizers(self): if not self.built: self.build() return self.model.regularizers def get_weights(self): """Retrieves the weights of the model. Returns: A flat list of Numpy arrays (one array per model weight). """ if not self.built: self.build() return self.model.get_weights() def set_weights(self, weights): """Sets the weights of the model. Arguments: weights: Should be a list of Numpy arrays with shapes and types matching the output of `model.get_weights()`. """ if not self.built: self.build() self.model.set_weights(weights) def load_weights(self, filepath, by_name=False): if h5py is None: raise ImportError('`load_weights` requires h5py.') f = h5py.File(filepath, mode='r') if 'layer_names' not in f.attrs and 'model_weights' in f: f = f['model_weights'] layers = self.layers if by_name: topology.load_weights_from_hdf5_group_by_name(f, layers) else: topology.load_weights_from_hdf5_group(f, layers) if hasattr(f, 'close'): f.close() def save_weights(self, filepath, overwrite=True): if h5py is None: raise ImportError('`save_weights` requires h5py.') # If file exists and should not be overwritten: if not overwrite and os.path.isfile(filepath): proceed = ask_to_proceed_with_overwrite(filepath) if not proceed: return layers = self.layers f = h5py.File(filepath, 'w') topology.save_weights_to_hdf5_group(f, layers) f.flush() f.close() def compile(self, optimizer, loss, metrics=None, sample_weight_mode=None, weighted_metrics=None, **kwargs): """Configures the learning process. Arguments: optimizer: str (name of optimizer) or optimizer object. See [optimizers](/optimizers). loss: str (name of objective function) or objective function. See [losses](/losses). metrics: list of metrics to be evaluated by the model during training and testing. Typically you will use `metrics=['accuracy']`. See [metrics](/metrics). sample_weight_mode: if you need to do timestep-wise sample weighting (2D weights), set this to "temporal". "None" defaults to sample-wise weights (1D). weighted_metrics: list of metrics to be evaluated and weighted by `sample_weight` or `class_weight` during training and testing. **kwargs: These are passed into `tf.Session.run`. Example: ```python model = Sequential() model.add(Dense(32, input_shape=(500,))) model.add(Dense(10, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) ``` """ # create the underlying model self.build() # call compile method of Model class self.model.compile( optimizer, loss, metrics=metrics, sample_weight_mode=sample_weight_mode, weighted_metrics=weighted_metrics, **kwargs) self.optimizer = self.model.optimizer self.loss = self.model.loss self.total_loss = self.model.total_loss self.loss_weights = self.model.loss_weights self.metrics = self.model.metrics self.weighted_metrics = self.model.weighted_metrics self.metrics_tensors = self.model.metrics_tensors self.metrics_names = self.model.metrics_names self.sample_weight_mode = self.model.sample_weight_mode self.sample_weights = self.model.sample_weights self.targets = self.model.targets def fit(self, x, y, batch_size=32, epochs=10, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0): """Trains the model for a fixed number of epochs. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). y: labels, as a Numpy array. batch_size: integer. Number of samples per gradient update. epochs: integer, the number of epochs to train the model. verbose: 0 for no logging to stdout, 1 for progress bar logging, 2 for one log line per epoch. callbacks: list of `keras.callbacks.Callback` instances. List of callbacks to apply during training. See [callbacks](/callbacks). validation_split: float (0. < x < 1). Fraction of the data to use as held-out validation data. validation_data: tuple (x_val, y_val) or tuple (x_val, y_val, val_sample_weights) to be used as held-out validation data. Will override validation_split. shuffle: boolean or str (for 'batch'). Whether to shuffle the samples at each epoch. 'batch' is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-sized chunks. class_weight: dictionary mapping classes to a weight value, used for scaling the loss function (during training only). sample_weight: Numpy array of weights for the training samples, used for scaling the loss function (during training only). You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). initial_epoch: epoch at which to start training (useful for resuming a previous training run) Returns: A `History` object. Its `History.history` attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable). Raises: RuntimeError: if the model was never compiled. """ if not self.built: raise RuntimeError('The model needs to be compiled ' 'before being used.') return self.model.fit( x, y, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_split=validation_split, validation_data=validation_data, shuffle=shuffle, class_weight=class_weight, sample_weight=sample_weight, initial_epoch=initial_epoch) def evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None): """Computes the loss on some input data, batch by batch. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). y: labels, as a Numpy array. batch_size: integer. Number of samples per gradient update. verbose: verbosity mode, 0 or 1. sample_weight: sample weights, as a Numpy array. Returns: Scalar test loss (if the model has no metrics) or list of scalars (if the model computes other metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: RuntimeError: if the model was never compiled. """ if not self.built: raise RuntimeError('The model needs to be compiled ' 'before being used.') return self.model.evaluate( x, y, batch_size=batch_size, verbose=verbose, sample_weight=sample_weight) def predict(self, x, batch_size=32, verbose=0): """Generates output predictions for the input samples. The input samples are processed batch by batch. Arguments: x: the input data, as a Numpy array. batch_size: integer. verbose: verbosity mode, 0 or 1. Returns: A Numpy array of predictions. """ if not self.built: self.build() return self.model.predict(x, batch_size=batch_size, verbose=verbose) def predict_on_batch(self, x): """Returns predictions for a single batch of samples. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). Returns: A Numpy array of predictions. """ if not self.built: self.build() return self.model.predict_on_batch(x) def train_on_batch(self, x, y, class_weight=None, sample_weight=None): """Single gradient update over one batch of samples. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). y: labels, as a Numpy array. class_weight: dictionary mapping classes to a weight value, used for scaling the loss function (during training only). sample_weight: sample weights, as a Numpy array. Returns: Scalar training loss (if the model has no metrics) or list of scalars (if the model computes other metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: RuntimeError: if the model was never compiled. """ if not self.built: raise RuntimeError('The model needs to be compiled ' 'before being used.') return self.model.train_on_batch( x, y, sample_weight=sample_weight, class_weight=class_weight) def test_on_batch(self, x, y, sample_weight=None): """Evaluates the model over a single batch of samples. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). y: labels, as a Numpy array. sample_weight: sample weights, as a Numpy array. Returns: Scalar test loss (if the model has no metrics) or list of scalars (if the model computes other metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: RuntimeError: if the model was never compiled. """ if not self.built: raise RuntimeError('The model needs to be compiled ' 'before being used.') return self.model.test_on_batch(x, y, sample_weight=sample_weight) def predict_proba(self, x, batch_size=32, verbose=1): """Generates class probability predictions for the input samples. The input samples are processed batch by batch. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). batch_size: integer. verbose: verbosity mode, 0 or 1. Returns: A Numpy array of probability predictions. """ preds = self.predict(x, batch_size, verbose) if preds.min() < 0. or preds.max() > 1.: logging.warning('Network returning invalid probability values. ' 'The last layer might not normalize predictions ' 'into probabilities ' '(like softmax or sigmoid would).') return preds def predict_classes(self, x, batch_size=32, verbose=1): """Generate class predictions for the input samples. The input samples are processed batch by batch. Arguments: x: input data, as a Numpy array or list of Numpy arrays (if the model has multiple inputs). batch_size: integer. verbose: verbosity mode, 0 or 1. Returns: A numpy array of class predictions. """ proba = self.predict(x, batch_size=batch_size, verbose=verbose) if proba.shape[-1] > 1: return proba.argmax(axis=-1) else: return (proba > 0.5).astype('int32') def fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, initial_epoch=0, **kwargs): """Fits the model on data generated batch-by-batch by a Python generator. The generator is run in parallel to the model, for efficiency. For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU. Arguments: generator: A generator. The output of the generator must be either - a tuple (inputs, targets) - a tuple (inputs, targets, sample_weights). All arrays should contain the same number of samples. The generator is expected to loop over its data indefinitely. An epoch finishes when `steps_per_epoch` batches have been seen by the model. steps_per_epoch: Total number of steps (batches of samples) to yield from `generator` before declaring one epoch finished and starting the next epoch. It should typically be equal to the number of unique samples of your dataset divided by the batch size. epochs: Integer, total number of iterations on the data. verbose: Verbosity mode, 0, 1, or 2. callbacks: List of callbacks to be called during training. validation_data: This can be either - A generator for the validation data - A tuple (inputs, targets) - A tuple (inputs, targets, sample_weights). validation_steps: Only relevant if `validation_data` is a generator. Number of steps to yield from validation generator at the end of every epoch. It should typically be equal to the number of unique samples of your validation dataset divided by the batch size. class_weight: Dictionary mapping class indices to a weight for the class. max_queue_size: Maximum size for the generator queue workers: Maximum number of processes to spin up use_multiprocessing: If True, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) **kwargs: support for legacy arguments. Returns: A `History` object. Raises: RuntimeError: if the model was never compiled. ValueError: In case the generator yields data in an invalid format. Example: ```python def generate_arrays_from_file(path): while 1: f = open(path) for line in f: # create Numpy arrays of input data # and labels, from each line in the file x, y = process_line(line) yield (x, y) f.close() model.fit_generator(generate_arrays_from_file('/my_file.txt'), steps_per_epoch=1000, epochs=10) ``` """ # Legacy support if 'max_q_size' in kwargs: max_queue_size = kwargs.pop('max_q_size') logging.warning('The argument `max_q_size` has been renamed ' '`max_queue_size`. Update your method calls accordingly.') if 'pickle_safe' in kwargs: use_multiprocessing = kwargs.pop('pickle_safe') logging.warning('The argument `pickle_safe` has been renamed ' '`use_multiprocessing`. ' 'Update your method calls accordingly.') if kwargs: raise ValueError('Unrecognized keyword arguments: ' + str(kwargs)) if not self.built: raise RuntimeError('The model needs to be compiled ' 'before being used.') return self.model.fit_generator( generator, steps_per_epoch, epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, initial_epoch=initial_epoch) def evaluate_generator(self, generator, steps, max_queue_size=10, workers=1, use_multiprocessing=False, **kwargs): """Evaluates the model on a data generator. The generator should return the same kind of data as accepted by `test_on_batch`. Arguments: generator: Generator yielding tuples (inputs, targets) or (inputs, targets, sample_weights) steps: Total number of steps (batches of samples) to yield from `generator` before stopping. max_queue_size: maximum size for the generator queue workers: maximum number of processes to spin up use_multiprocessing: if True, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. **kwargs: support for legacy arguments. Returns: Scalar test loss (if the model has no metrics) or list of scalars (if the model computes other metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: RuntimeError: if the model was never compiled. ValueError: In case the generator yields data in an invalid format. """ # Legacy support if 'max_q_size' in kwargs: max_queue_size = kwargs.pop('max_q_size') logging.warning('The argument `max_q_size` has been renamed ' '`max_queue_size`. Update your method calls accordingly.') if 'pickle_safe' in kwargs: use_multiprocessing = kwargs.pop('pickle_safe') logging.warning('The argument `pickle_safe` has been renamed ' '`use_multiprocessing`. ' 'Update your method calls accordingly.') if kwargs: raise ValueError('Unrecognized keyword arguments: ' + str(kwargs)) if not self.built: raise RuntimeError('The model needs to be compiled ' 'before being used.') return self.model.evaluate_generator( generator, steps, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) def predict_generator(self, generator, steps, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0, **kwargs): """Generates predictions for the input samples from a data generator. The generator should return the same kind of data as accepted by `predict_on_batch`. Arguments: generator: generator yielding batches of input samples. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. max_queue_size: maximum size for the generator queue workers: maximum number of processes to spin up use_multiprocessing: if True, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. **kwargs: support for legacy arguments. Returns: A Numpy array of predictions. Raises: ValueError: In case the generator yields data in an invalid format. """ # Legacy support if 'max_q_size' in kwargs: max_queue_size = kwargs.pop('max_q_size') logging.warning('The argument `max_q_size` has been renamed ' '`max_queue_size`. Update your method calls accordingly.') if 'pickle_safe' in kwargs: use_multiprocessing = kwargs.pop('pickle_safe') logging.warning('The argument `pickle_safe` has been renamed ' '`use_multiprocessing`. ' 'Update your method calls accordingly.') if kwargs: raise ValueError('Unrecognized keyword arguments: ' + str(kwargs)) if not self.built: self.build() return self.model.predict_generator( generator, steps, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose) def get_config(self): config = [] for layer in self.layers: config.append({ 'class_name': layer.__class__.__name__, 'config': layer.get_config() }) return copy.deepcopy(config) @classmethod def from_config(cls, config, custom_objects=None): model = cls() for conf in config: layer = layer_module.deserialize(conf, custom_objects=custom_objects) model.add(layer) return model def _clone_functional_model(model, input_tensors=None): """Clone a functional `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. Arguments: model: Instance of `Model`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. Returns: An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. Raises: ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Model): raise ValueError('Expected `model` argument ' 'to be a `Model` instance, got ', model) if isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a functional `Model` instance, ' 'got a `Sequential` instance instead:', model) layer_map = {} # Cache for created layers. tensor_map = {} # Map {reference_tensor: (corresponding_tensor, mask)} if input_tensors is None: # Create placeholders to build the model on top of. input_layers = [] input_tensors = [] for layer in model._input_layers: input_tensor = Input( batch_shape=layer.batch_input_shape, dtype=layer.dtype, sparse=layer.sparse, name=layer.name) input_tensors.append(input_tensor) # Cache newly created input layer. newly_created_input_layer = input_tensor._keras_history[0] layer_map[layer] = newly_created_input_layer for original_input_layer, cloned_input_layer in zip(model._input_layers, input_layers): layer_map[original_input_layer] = cloned_input_layer else: # Make sure that all input tensors come from a Keras layer. # If tensor comes from an input layer: cache the input layer. input_tensors = topology._to_list(input_tensors) input_tensors_ = [] for i, x in enumerate(input_tensors): if not K.is_keras_tensor(x): name = model._input_layers[i].name input_tensor = Input(tensor=x, name='input_wrapper_for_' + name) input_tensors_.append(input_tensor) # Cache newly created input layer. original_input_layer = x._keras_history[0] newly_created_input_layer = input_tensor._keras_history[0] layer_map[original_input_layer] = newly_created_input_layer else: input_tensors_.append(x) input_tensors = input_tensors_ for x, y in zip(model.inputs, input_tensors): tensor_map[x] = (y, None) # tensor, mask # Iterated over every node in the reference model, in depth order. depth_keys = list(model._nodes_by_depth.keys()) depth_keys.sort(reverse=True) for depth in depth_keys: nodes = model._nodes_by_depth[depth] for node in nodes: # Recover the corresponding layer. layer = node.outbound_layer # Get or create layer. if layer not in layer_map: # Clone layer. new_layer = layer.__class__.from_config(layer.get_config()) layer_map[layer] = new_layer layer = new_layer else: # Reuse previously cloned layer. layer = layer_map[layer] # Don't call InputLayer multiple times. if isinstance(layer, topology.InputLayer): continue # Gather inputs to call the new layer. referenceinput_tensors_ = node.input_tensors reference_output_tensors = node.output_tensors # If all previous input tensors are available in tensor_map, # then call node.inbound_layer on them. computed_data = [] # List of tuples (input, mask). for x in referenceinput_tensors_: if x in tensor_map: computed_data.append(tensor_map[x]) if len(computed_data) == len(referenceinput_tensors_): # Call layer. if node.arguments: kwargs = node.arguments else: kwargs = {} if len(computed_data) == 1: computed_tensor, computed_mask = computed_data[0] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_mask output_tensors = topology._to_list(layer(computed_tensor, **kwargs)) output_masks = topology._to_list( layer.compute_mask(computed_tensor, computed_mask)) computed_tensors = [computed_tensor] computed_masks = [computed_mask] else: computed_tensors = [x[0] for x in computed_data] computed_masks = [x[1] for x in computed_data] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_masks output_tensors = topology._to_list(layer(computed_tensors, **kwargs)) output_masks = topology._to_list( layer.compute_mask(computed_tensors, computed_masks)) # Update tensor_map. for x, y, mask in zip(reference_output_tensors, output_tensors, output_masks): tensor_map[x] = (y, mask) # Check that we did compute the model outputs, # then instantiate a new model from inputs and outputs. output_tensors = [] for x in model.outputs: assert x in tensor_map, 'Could not compute output ' + str(x) tensor, _ = tensor_map[x] output_tensors.append(tensor) return Model(input_tensors, output_tensors, name=model.name) def _clone_sequential_model(model, input_tensors=None): """Clone a `Sequential` model instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. Arguments: model: Instance of `Sequential`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. Returns: An instance of `Sequential` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. Raises: ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a `Sequential` model instance, ' 'but got:', model) def clone(layer): return layer.__class__.from_config(layer.get_config()) layers = [clone(layer) for layer in model.layers] if input_tensors is None: return Sequential(layers=layers, name=model.name) else: if len(topology._to_list(input_tensors)) != 1: raise ValueError('To clone a `Sequential` model, we expect ' ' at most one tensor ' 'as part of `input_tensors`.') x = topology._to_list(input_tensors)[0] if K.is_keras_tensor(x): origin_layer = x._keras_history[0] if isinstance(origin_layer, topology.InputLayer): return Sequential(layers=[origin_layer] + layers, name=model.name) else: raise ValueError('Cannot clone a `Sequential` model on top ' 'of a tensor that comes from a Keras layer ' 'other than an `InputLayer`. ' 'Use the functional API instead.') input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name)) input_layer = input_tensor._keras_history[0] return Sequential(layers=[input_layer] + layers, name=model.name) def clone_model(model, input_tensors=None): """Clone any `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. Arguments: model: Instance of `Model` (could be a functional model or a Sequential model). input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. Returns: An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. Raises: ValueError: in case of invalid `model` argument value. """ if isinstance(model, Sequential): return _clone_sequential_model(model, input_tensors=input_tensors) else: return _clone_functional_model(model, input_tensors=input_tensors)
{ "content_hash": "ceb9a8980d3b2155b5fa3f880f058936", "timestamp": "", "source": "github", "line_count": 1445, "max_line_length": 117, "avg_line_length": 35.80968858131488, "alnum_prop": 0.6270557541791477, "repo_name": "tornadozou/tensorflow", "id": "fce86dd565b463e080fed32d496a1169ce2afd49", "size": "52469", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tensorflow/python/keras/_impl/keras/models.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "8458" }, { "name": "C", "bytes": "201402" }, { "name": "C++", "bytes": "29734773" }, { "name": "CMake", "bytes": "647266" }, { "name": "Go", "bytes": "976912" }, { "name": "Java", "bytes": "412117" }, { "name": "Jupyter Notebook", "bytes": "1833675" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "38128" }, { "name": "Objective-C", "bytes": "7056" }, { "name": "Objective-C++", "bytes": "63210" }, { "name": "Perl", "bytes": "6715" }, { "name": "Protocol Buffer", "bytes": "276756" }, { "name": "PureBasic", "bytes": "24932" }, { "name": "Python", "bytes": "26531000" }, { "name": "Ruby", "bytes": "327" }, { "name": "Shell", "bytes": "373122" } ], "symlink_target": "" }
import os import sys import sysconfig import copy import ctypes import ctypes.util import warnings from functools import wraps import numpy from numpy.ctypeslib import ndpointer from scipy import interpolate from galpy.util import multi, galpyWarning from galpy.potential_src.Potential import Potential _DEBUG= False #Find and load the library _lib= None outerr= None PY3= sys.version > '3' if PY3: #pragma: no cover _ext_suffix= sysconfig.get_config_var('EXT_SUFFIX') else: _ext_suffix= '.so' for path in sys.path: try: _lib = ctypes.CDLL(os.path.join(path,'galpy_interppotential_c%s' % _ext_suffix)) except OSError as e: if os.path.exists(os.path.join(path,'galpy_interppotential_c%s' % _ext_suffix)): #pragma: no cover outerr= e _lib = None else: break if _lib is None: #pragma: no cover if not outerr is None: warnings.warn("interppotential_c extension module not loaded, because of error '%s' " % outerr, galpyWarning) else: warnings.warn("interppotential_c extension module not loaded, because galpy_actionAngle_c%s image was not found" % _ext_suffix, galpyWarning) ext_loaded= False else: ext_loaded= True def scalarVectorDecorator(func): """Decorator to return scalar outputs as a set""" @wraps(func) def scalar_wrapper(*args,**kwargs): if numpy.array(args[1]).shape == () \ and numpy.array(args[2]).shape == (): #only if both R and z are scalars scalarOut= True args= (args[0],numpy.array([args[1]]),numpy.array([args[2]])) elif numpy.array(args[1]).shape == () \ and not numpy.array(args[2]).shape == (): #R scalar, z vector scalarOut= False args= (args[0],args[1]*numpy.ones_like(args[2]),args[2]) elif not numpy.array(args[1]).shape == () \ and numpy.array(args[2]).shape == (): #R vector, z scalar scalarOut= False args= (args[0],args[1],args[2]*numpy.ones_like(args[1])) else: scalarOut= False result= func(*args,**kwargs) if scalarOut: return result[0] else: return result return scalar_wrapper def zsymDecorator(odd): """Decorator to deal with zsym=True input; set odd=True if the function is an odd function of z (like zforce)""" def wrapper(func): @wraps(func) def zsym_wrapper(*args,**kwargs): if args[0]._zsym: out= func(args[0],args[1],numpy.fabs(args[2]),**kwargs) else: out= func(*args,**kwargs) if odd and args[0]._zsym: return sign(args[2])*out else: return out return zsym_wrapper return wrapper def scalarDecorator(func): """Decorator to return scalar output for 1D functions (vcirc,etc.)""" @wraps(func) def scalar_wrapper(*args,**kwargs): if numpy.array(args[1]).shape == (): scalarOut= True args= (args[0],numpy.array([args[1]])) else: scalarOut= False result= func(*args,**kwargs) if scalarOut: return result[0] else: return result return scalar_wrapper class interpRZPotential(Potential): """Class that interpolates a given potential on a grid for fast orbit integration""" def __init__(self, RZPot=None,rgrid=(numpy.log(0.01),numpy.log(20.),101), zgrid=(0.,1.,101),logR=True, interpPot=False,interpRforce=False,interpzforce=False, interpDens=False, interpvcirc=False, interpdvcircdr=False, interpepifreq=False,interpverticalfreq=False, use_c=False,enable_c=False,zsym=True, numcores=None): """ NAME: __init__ PURPOSE: Initialize an interpRZPotential instance INPUT: RZPot - RZPotential to be interpolated rgrid - R grid to be given to linspace as in rs= linspace(*rgrid) zgrid - z grid to be given to linspace as in zs= linspace(*zgrid) logR - if True, rgrid is in the log of R so logrs= linspace(*rgrid) interpPot, interpRforce, interpzforce, interpDens,interpvcirc, interpepifreq, interpverticalfreq, interpdvcircdr= if True, interpolate these functions use_c= use C to speed up the calculation of the grid enable_c= enable use of C for interpolations zsym= if True (default), the potential is assumed to be symmetric around z=0 (so you can use, e.g., zgrid=(0.,1.,101)). numcores= if set to an integer, use this many cores (only used for vcirc, dvcircdR, epifreq, and verticalfreq; NOT NECESSARILY FASTER, TIME TO MAKE SURE) OUTPUT: instance HISTORY: 2010-07-21 - Written - Bovy (NYU) 2013-01-24 - Started with new implementation - Bovy (IAS) """ if isinstance(RZPot,interpRZPotential): from galpy.potential import PotentialError raise PotentialError('Cannot setup interpRZPotential with another interpRZPotential') Potential.__init__(self,amp=1.) self._origPot= RZPot self._rgrid= numpy.linspace(*rgrid) self._logR= logR if self._logR: self._rgrid= numpy.exp(self._rgrid) self._logrgrid= numpy.log(self._rgrid) self._zgrid= numpy.linspace(*zgrid) self._interpPot= interpPot self._interpRforce= interpRforce self._interpzforce= interpzforce self._interpDens= interpDens self._interpvcirc= interpvcirc self._interpdvcircdr= interpdvcircdr self._interpepifreq= interpepifreq self._interpverticalfreq= interpverticalfreq self._enable_c= enable_c*ext_loaded self.hasC= self._enable_c self._zsym= zsym if interpPot: if use_c*ext_loaded: self._potGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid) else: from galpy.potential import evaluatePotentials potGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): potGrid[ii,jj]= evaluatePotentials(self._rgrid[ii],self._zgrid[jj],self._origPot) self._potGrid= potGrid if self._logR: self._potInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._potGrid, kx=3,ky=3,s=0.) else: self._potInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._potGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._potGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._potGrid) if interpRforce: if use_c*ext_loaded: self._rforceGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid,rforce=True) else: from galpy.potential import evaluateRforces rforceGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): rforceGrid[ii,jj]= evaluateRforces(self._rgrid[ii],self._zgrid[jj],self._origPot) self._rforceGrid= rforceGrid if self._logR: self._rforceInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._rforceGrid, kx=3,ky=3,s=0.) else: self._rforceInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._rforceGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._rforceGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._rforceGrid) if interpzforce: if use_c*ext_loaded: self._zforceGrid, err= calc_potential_c(self._origPot,self._rgrid,self._zgrid,zforce=True) else: from galpy.potential import evaluatezforces zforceGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): zforceGrid[ii,jj]= evaluatezforces(self._rgrid[ii],self._zgrid[jj],self._origPot) self._zforceGrid= zforceGrid if self._logR: self._zforceInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, self._zforceGrid, kx=3,ky=3,s=0.) else: self._zforceInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, self._zforceGrid, kx=3,ky=3,s=0.) if enable_c*ext_loaded: self._zforceGrid_splinecoeffs= calc_2dsplinecoeffs_c(self._zforceGrid) if interpDens: from galpy.potential import evaluateDensities densGrid= numpy.zeros((len(self._rgrid),len(self._zgrid))) for ii in range(len(self._rgrid)): for jj in range(len(self._zgrid)): densGrid[ii,jj]= evaluateDensities(self._rgrid[ii],self._zgrid[jj],self._origPot) self._densGrid= densGrid if self._logR: self._densInterp= interpolate.RectBivariateSpline(self._logrgrid, self._zgrid, numpy.log(self._densGrid+10.**-10.), kx=3,ky=3,s=0.) else: self._densInterp= interpolate.RectBivariateSpline(self._rgrid, self._zgrid, numpy.log(self._densGrid+10.**-10.), kx=3,ky=3,s=0.) if interpvcirc: from galpy.potential import vcirc if not numcores is None: self._vcircGrid= multi.parallel_map((lambda x: vcirc(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores) else: self._vcircGrid= numpy.array([vcirc(self._origPot,r) for r in self._rgrid]) if self._logR: self._vcircInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._vcircGrid,k=3) else: self._vcircInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._vcircGrid,k=3) if interpdvcircdr: from galpy.potential import dvcircdR if not numcores is None: self._dvcircdrGrid= multi.parallel_map((lambda x: dvcircdR(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores) else: self._dvcircdrGrid= numpy.array([dvcircdR(self._origPot,r) for r in self._rgrid]) if self._logR: self._dvcircdrInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._dvcircdrGrid,k=3) else: self._dvcircdrInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._dvcircdrGrid,k=3) if interpepifreq: from galpy.potential import epifreq if not numcores is None: self._epifreqGrid= numpy.array(multi.parallel_map((lambda x: epifreq(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores)) else: self._epifreqGrid= numpy.array([epifreq(self._origPot,r) for r in self._rgrid]) indx= True-numpy.isnan(self._epifreqGrid) if numpy.sum(indx) < 4: if self._logR: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid[indx],self._epifreqGrid[indx],k=1) else: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid[indx],self._epifreqGrid[indx],k=1) else: if self._logR: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid[indx],self._epifreqGrid[indx],k=3) else: self._epifreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid[indx],self._epifreqGrid[indx],k=3) if interpverticalfreq: from galpy.potential import verticalfreq if not numcores is None: self._verticalfreqGrid= multi.parallel_map((lambda x: verticalfreq(self._origPot,self._rgrid[x])), list(range(len(self._rgrid))),numcores=numcores) else: self._verticalfreqGrid= numpy.array([verticalfreq(self._origPot,r) for r in self._rgrid]) if self._logR: self._verticalfreqInterp= interpolate.InterpolatedUnivariateSpline(self._logrgrid,self._verticalfreqGrid,k=3) else: self._verticalfreqInterp= interpolate.InterpolatedUnivariateSpline(self._rgrid,self._verticalfreqGrid,k=3) return None @scalarVectorDecorator @zsymDecorator(False) def _evaluate(self,R,z,phi=0.,t=0.): from galpy.potential import evaluatePotentials if self._interpPot: out= numpy.empty_like(R) indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1])\ *(z <= self._zgrid[-1])*(z >= self._zgrid[0]) if numpy.sum(indx) > 0: if self._enable_c: out[indx]= eval_potential_c(self,R[indx],z[indx])[0]/self._amp else: if self._logR: out[indx]= self._potInterp.ev(numpy.log(R[indx]),z[indx]) else: out[indx]= self._potInterp.ev(R[indx],z[indx]) if numpy.sum(True-indx) > 0: out[True-indx]= evaluatePotentials(R[True-indx], z[True-indx], self._origPot) return out else: return evaluatePotentials(R,z,self._origPot) @scalarVectorDecorator @zsymDecorator(False) def _Rforce(self,R,z,phi=0.,t=0.): from galpy.potential import evaluateRforces if self._interpRforce: out= numpy.empty_like(R) indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1])\ *(z <= self._zgrid[-1])*(z >= self._zgrid[0]) if numpy.sum(indx) > 0: if self._enable_c: out[indx]= eval_force_c(self,R[indx],z[indx])[0]/self._amp else: if self._logR: out[indx]= self._rforceInterp.ev(numpy.log(R[indx]),z[indx]) else: out[indx]= self._rforceInterp.ev(R[indx],z[indx]) if numpy.sum(True-indx) > 0: out[True-indx]= evaluateRforces(R[True-indx], z[True-indx], self._origPot) return out else: return evaluateRforces(R,z,self._origPot) @scalarVectorDecorator @zsymDecorator(True) def _zforce(self,R,z,phi=0.,t=0.): from galpy.potential import evaluatezforces if self._interpzforce: out= numpy.empty_like(R) indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1])\ *(z <= self._zgrid[-1])*(z >= self._zgrid[0]) if numpy.sum(indx) > 0: if self._enable_c: out[indx]= eval_force_c(self,R[indx],z[indx], zforce=True)[0]/self._amp else: if self._logR: out[indx]= self._zforceInterp.ev(numpy.log(R[indx]), z[indx]) else: out[indx]= self._zforceInterp.ev(R[indx],z[indx]) if numpy.sum(True-indx) > 0: out[True-indx]= evaluatezforces(R[True-indx], z[True-indx], self._origPot) return out else: return evaluatezforces(R,z,self._origPot) def _Rzderiv(self,R,z,phi=0.,t=0.): from galpy.potential import evaluateRzderivs return evaluateRzderivs(R,z,self._origPot) @scalarVectorDecorator @zsymDecorator(False) def _dens(self,R,z,phi=0.,t=0.): from galpy.potential import evaluateDensities if self._interpDens: out= numpy.empty_like(R) indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1])\ *(z <= self._zgrid[-1])*(z >= self._zgrid[0]) if numpy.sum(indx) > 0: if self._logR: out[indx]= numpy.exp(self._densInterp.ev(numpy.log(R[indx]),z[indx]))-10.**-10. else: out[indx]= numpy.exp(self._densInterp.ev(R[indx],z[indx]))-10.**-10. if numpy.sum(True-indx) > 0: out[True-indx]= evaluateDensities(R[True-indx], z[True-indx], self._origPot) return out else: return evaluateDensities(R,z,self._origPot) @scalarDecorator def vcirc(self,R): from galpy.potential import vcirc if self._interpvcirc: indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1]) out= numpy.empty_like(R) if numpy.sum(indx) > 0: if self._logR: out[indx]= self._vcircInterp(numpy.log(R[indx])) else: out[indx]= self._vcircInterp(R[indx]) if numpy.sum(True-indx) > 0: out[True-indx]= vcirc(self._origPot,R[True-indx]) return out else: return vcirc(self._origPot,R) @scalarDecorator def dvcircdR(self,R): from galpy.potential import dvcircdR if self._interpdvcircdr: indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1]) out= numpy.empty_like(R) if numpy.sum(indx) > 0: if self._logR: out[indx]= self._dvcircdrInterp(numpy.log(R[indx])) else: out[indx]= self._dvcircdrInterp(R[indx]) if numpy.sum(True-indx) > 0: out[True-indx]= dvcircdR(self._origPot,R[True-indx]) return out else: return dvcircdR(self._origPot,R) @scalarDecorator def epifreq(self,R): from galpy.potential import epifreq if self._interpepifreq: indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1]) out= numpy.empty_like(R) if numpy.sum(indx) > 0: if self._logR: out[indx]= self._epifreqInterp(numpy.log(R[indx])) else: out[indx]= self._epifreqInterp(R[indx]) if numpy.sum(True-indx) > 0: out[True-indx]= epifreq(self._origPot,R[True-indx]) return out else: return epifreq(self._origPot,R) @scalarDecorator def verticalfreq(self,R): from galpy.potential import verticalfreq if self._interpverticalfreq: indx= (R >= self._rgrid[0])*(R <= self._rgrid[-1]) out= numpy.empty_like(R) if numpy.sum(indx) > 0: if self._logR: out[indx]= self._verticalfreqInterp(numpy.log(R[indx])) else: out[indx]= self._verticalfreqInterp(R[indx]) if numpy.sum(True-indx) > 0: out[True-indx]= verticalfreq(self._origPot,R[True-indx]) return out else: return verticalfreq(self._origPot,R) def calc_potential_c(pot,R,z,rforce=False,zforce=False): """ NAME: calc_potential_c PURPOSE: Use C to calculate the potential on a grid INPUT: pot - Potential or list of such instances R - grid in R z - grid in z rforce=, zforce= if either of these is True, calculate the radial or vertical force instead OUTPUT: potential on the grid (2D array) HISTORY: 2013-01-24 - Written - Bovy (IAS) 2013-01-29 - Added forces - Bovy (IAS) """ from galpy.orbit_src.integrateFullOrbit import _parse_pot #here bc otherwise there is an infinite loop #Parse the potential npot, pot_type, pot_args= _parse_pot(pot) #Set up result arrays out= numpy.empty((len(R),len(z))) err= ctypes.c_int(0) #Set up the C code ndarrayFlags= ('C_CONTIGUOUS','WRITEABLE') if rforce: interppotential_calc_potentialFunc= _lib.calc_rforce elif zforce: interppotential_calc_potentialFunc= _lib.calc_zforce else: interppotential_calc_potentialFunc= _lib.calc_potential interppotential_calc_potentialFunc.argtypes= [ctypes.c_int, ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.c_int, ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.c_int, ndpointer(dtype=numpy.int32,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.POINTER(ctypes.c_int)] #Array requirements, first store old order f_cont= [R.flags['F_CONTIGUOUS'], z.flags['F_CONTIGUOUS']] R= numpy.require(R,dtype=numpy.float64,requirements=['C','W']) z= numpy.require(z,dtype=numpy.float64,requirements=['C','W']) out= numpy.require(out,dtype=numpy.float64,requirements=['C','W']) #Run the C code interppotential_calc_potentialFunc(len(R), R, len(z), z, ctypes.c_int(npot), pot_type, pot_args, out, ctypes.byref(err)) #Reset input arrays if f_cont[0]: R= numpy.asfortranarray(R) if f_cont[1]: z= numpy.asfortranarray(z) return (out,err.value) def calc_2dsplinecoeffs_c(array2d): """ NAME: calc_2dsplinecoeffs_c PURPOSE: Use C to calculate spline coefficients for a 2D array INPUT: array2d OUTPUT: new array with spline coeffs HISTORY: 2013-01-24 - Written - Bovy (IAS) """ #Set up result arrays out= copy.copy(array2d) out= numpy.require(out,dtype=numpy.float64,requirements=['C','W']) #Set up the C code ndarrayFlags= ('C_CONTIGUOUS','WRITEABLE') interppotential_calc_2dsplinecoeffs= _lib.samples_to_coefficients interppotential_calc_2dsplinecoeffs.argtypes= [ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.c_int, ctypes.c_int] #Run the C code interppotential_calc_2dsplinecoeffs(out,out.shape[1],out.shape[0]) return out def eval_potential_c(pot,R,z): """ NAME: eval_potential_c PURPOSE: Use C to evaluate the interpolated potential INPUT: pot - Potential or list of such instances R - array z - array OUTPUT: potential evaluated R and z HISTORY: 2013-01-24 - Written - Bovy (IAS) """ from galpy.orbit_src.integrateFullOrbit import _parse_pot #here bc otherwise there is an infinite loop #Parse the potential npot, pot_type, pot_args= _parse_pot(pot,potforactions=True) #Set up result arrays out= numpy.empty((len(R))) err= ctypes.c_int(0) #Set up the C code ndarrayFlags= ('C_CONTIGUOUS','WRITEABLE') interppotential_calc_potentialFunc= _lib.eval_potential interppotential_calc_potentialFunc.argtypes= [ctypes.c_int, ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.c_int, ndpointer(dtype=numpy.int32,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.POINTER(ctypes.c_int)] #Array requirements, first store old order f_cont= [R.flags['F_CONTIGUOUS'], z.flags['F_CONTIGUOUS']] R= numpy.require(R,dtype=numpy.float64,requirements=['C','W']) z= numpy.require(z,dtype=numpy.float64,requirements=['C','W']) out= numpy.require(out,dtype=numpy.float64,requirements=['C','W']) #Run the C code interppotential_calc_potentialFunc(len(R), R, z, ctypes.c_int(npot), pot_type, pot_args, out, ctypes.byref(err)) #Reset input arrays if f_cont[0]: R= numpy.asfortranarray(R) if f_cont[1]: z= numpy.asfortranarray(z) return (out,err.value) def eval_force_c(pot,R,z,zforce=False): """ NAME: eval_force_c PURPOSE: Use C to evaluate the interpolated potential's forces INPUT: pot - Potential or list of such instances R - array z - array zforce= if True, return the vertical force, otherwise return the radial force OUTPUT: force evaluated R and z HISTORY: 2013-01-29 - Written - Bovy (IAS) """ from galpy.orbit_src.integrateFullOrbit import _parse_pot #here bc otherwise there is an infinite loop #Parse the potential npot, pot_type, pot_args= _parse_pot(pot) #Set up result arrays out= numpy.empty((len(R))) err= ctypes.c_int(0) #Set up the C code ndarrayFlags= ('C_CONTIGUOUS','WRITEABLE') if zforce: interppotential_calc_forceFunc= _lib.eval_zforce else: interppotential_calc_forceFunc= _lib.eval_rforce interppotential_calc_forceFunc.argtypes= [ctypes.c_int, ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.c_int, ndpointer(dtype=numpy.int32,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ndpointer(dtype=numpy.float64,flags=ndarrayFlags), ctypes.POINTER(ctypes.c_int)] #Array requirements, first store old order f_cont= [R.flags['F_CONTIGUOUS'], z.flags['F_CONTIGUOUS']] R= numpy.require(R,dtype=numpy.float64,requirements=['C','W']) z= numpy.require(z,dtype=numpy.float64,requirements=['C','W']) out= numpy.require(out,dtype=numpy.float64,requirements=['C','W']) #Run the C code interppotential_calc_forceFunc(len(R), R, z, ctypes.c_int(npot), pot_type, pot_args, out, ctypes.byref(err)) #Reset input arrays if f_cont[0]: R= numpy.asfortranarray(R) if f_cont[1]: z= numpy.asfortranarray(z) return (out,err.value) def sign(x): out= numpy.ones_like(x) out[(x < 0.)]= -1. return out
{ "content_hash": "6820516f3c0fb9a2ecca6451aa380ddf", "timestamp": "", "source": "github", "line_count": 696, "max_line_length": 164, "avg_line_length": 43.52729885057471, "alnum_prop": 0.5090278923914837, "repo_name": "followthesheep/galpy", "id": "6075ba15629d8bf6fc9a3e31bc9e844a50424f22", "size": "30295", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "galpy/potential_src/interpRZPotential.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "264645" }, { "name": "C++", "bytes": "5290" }, { "name": "Makefile", "bytes": "423" }, { "name": "Python", "bytes": "2160181" }, { "name": "Shell", "bytes": "524" } ], "symlink_target": "" }
from pyboleto.data import BoletoData, CustomProperty class BoletoBanrisul(BoletoData): conta_cedente = CustomProperty('conta_cedente', 6) nosso_numero = CustomProperty('nosso_numero', 8) def __init__(self): BoletoData.__init__(self) self.codigo_banco = "041" self.logo_image = "logo_banrisul.jpg" @property def campo_livre(self): content = '21%04d%07d%08d40' % (int(self.agencia_cedente), int(self.conta_cedente), int(self.nosso_numero)) return '%s%s' % (content, self._dv_campo_livre(content)) # From http://jrimum.org/bopepo/browser/trunk/src/br/com/nordestefomento/ # jrimum/bopepo/campolivre/AbstractCLBanrisul.java def _dv_campo_livre(self, campo_livre): dv = self.modulo10(campo_livre) while True: restoMod11 = self.modulo11(campo_livre + str(dv), 7, 1) if restoMod11 != 1: break dv += 1 dv %= 10 return str(dv) + str(11 - restoMod11)
{ "content_hash": "9aea34154e379bd772256b0c3027a022", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 77, "avg_line_length": 35.064516129032256, "alnum_prop": 0.5712971481140754, "repo_name": "eduardocereto/pyboleto", "id": "9f82573494658440432d3bc80e9ac20afcbc53f5", "size": "1111", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pyboleto/bank/banrisul.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "8439" }, { "name": "Python", "bytes": "125169" } ], "symlink_target": "" }
from __future__ import absolute_import, division, print_function from collections import defaultdict, MutableMapping from operator import getitem, add from datetime import datetime from time import time from ..core import istask, ishashable class Store(MutableMapping): """ Store - A storage of data and computation Examples -------- Store data like a dictionary >>> import dask.store as ds >>> s = ds.Store() >>> s['x'] = 10 >>> s['x'] 10 Also store computation on that data >>> s['y'] = (add, 'x', 5) Accessing these keys results in computations. Results may be cached for reuse. >>> s['y'] 15 Design ------ A Store maintains the following state dsk: dict A dask to define all computation cache: dict-like Stores both ground data and cached intermediate values data: set The keys in the cache that can not be removed for correctness. compute_time: dict:: {key: float} dict mapping the time it took to compute each key access_times: dict:: {key: [datetimes]} The times at which a key was accessed """ def __init__(self, cache=None): self.dsk = dict() if cache is None: cache = dict() self.cache = cache self.data = set() self.compute_time = dict() self.access_times = defaultdict(list) def __setitem__(self, key, value): if key in self.dsk: if (self.dsk[key] == value or self.dsk[key] == (getitem, self.cache, key) and self.cache[key] == value): return else: raise KeyError("Can not overwrite data") if istask(value): self.dsk[key] = value else: self.cache[key] = value self.dsk[key] = (getitem, self.cache, key) self.data.add(key) def __getitem__(self, key): if isinstance(key, list): return (self[item] for item in key) if not ishashable(key): return key if key not in self.dsk: return key self.access_times[key].append(datetime.now()) if key in self.cache: return self.cache[key] task = self.dsk[key] func, args = task[0], task[1:] if func == getitem and args[0] is self.cache: return self.cache[args[1]] args = [self[arg] for arg in args] start = time() result = func(*args) end = time() self.cache[key] = result self.compute_time[key] = end - start return result def __len__(self): return len(self.dsk) def __iter__(self): return iter(self.dsk) def __delitem__(self, key): raise ValueError("Dask Store does not support deletion")
{ "content_hash": "3e460b61f473eb4dcb43ecf7c4a5490b", "timestamp": "", "source": "github", "line_count": 113, "max_line_length": 76, "avg_line_length": 25.212389380530972, "alnum_prop": 0.5605475605475605, "repo_name": "pombredanne/dask", "id": "4a7efe85ea65370483f5177710bb4633c681c9d9", "size": "2849", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "dask/store/core.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "51" }, { "name": "Python", "bytes": "895298" }, { "name": "Shell", "bytes": "36" } ], "symlink_target": "" }
from .component_classes import Health, Velocity def test_reset(game, entity, entity2): game.add_component_to_entity(Health(), entity) game.add_component_to_entity(Velocity(), entity) game.add_component_to_entity(Health(), entity2) game.reset() assert game.uid == 0 assert len(game.entities) == 0 assert len(game.components) == 0
{ "content_hash": "7550d6853c80c09722d9932520b3d2e0", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 52, "avg_line_length": 27.76923076923077, "alnum_prop": 0.6897506925207756, "repo_name": "Remolten/galena", "id": "f8733bb964bed7d2b4438421341005c459b06969", "size": "361", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_galena.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "23867" } ], "symlink_target": "" }
from __future__ import unicode_literals import logging from django.utils.translation import ugettext as _ from djblets.markdown import iter_markdown_lines from pygments.lexers import TextLexer from reviewboard.reviews.chunk_generators import MarkdownDiffChunkGenerator from reviewboard.reviews.ui.text import TextBasedReviewUI from reviewboard.reviews.markdown_utils import render_markdown logger = logging.getLogger(__name__) class MarkdownReviewUI(TextBasedReviewUI): """A Review UI for markdown files. This renders the markdown to HTML, and allows users to comment on each top-level block (header, paragraph, list, code block, etc). """ supported_mimetypes = ['text/x-markdown'] object_key = 'markdown' can_render_text = True rendered_chunk_generator_cls = MarkdownDiffChunkGenerator extra_css_classes = ['markdown-review-ui'] js_view_class = 'RB.MarkdownReviewableView' def generate_render(self): with self.obj.file as f: f.open() rendered = render_markdown(f.read()) try: for line in iter_markdown_lines(rendered): yield line except Exception as e: logger.error('Failed to parse resulting Markdown XHTML for ' 'file attachment %d: %s', self.obj.pk, e, exc_info=True) yield _('Error while rendering Markdown content: %s') % e def get_source_lexer(self, filename, data): return TextLexer()
{ "content_hash": "fb09e40abd37c19e80f1d5802c291766", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 75, "avg_line_length": 32.020833333333336, "alnum_prop": 0.6623292127521145, "repo_name": "chipx86/reviewboard", "id": "c3767e1aef4f10b2af7bed69bec00f9231d8ade8", "size": "1537", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "reviewboard/reviews/ui/markdownui.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "434719" }, { "name": "HTML", "bytes": "224310" }, { "name": "JavaScript", "bytes": "3830753" }, { "name": "Python", "bytes": "7333453" }, { "name": "Shell", "bytes": "777" } ], "symlink_target": "" }
from random import randint, uniform, gauss from numpy import asarray from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import cross_val_score num_chairs = num_tables = 5000 data = [[randint(0, 5), # Possible colors for chairs uniform(2, 5), # Possible leg lengths for chairs gauss(2, 0.25)] # Possible top surface areas for chairs for i in range(num_chairs)] + \ [[randint(0, 5), # Possible colors for tables uniform(4, 10), # Possible leg lengths for tables gauss(5, 1)] # Possible top surface areas for tables for i in range(num_tables)] labels = asarray(['chair']*num_chairs + ['table']*num_tables) rfc = RandomForestClassifier(n_estimators=100) # rfc.fit(data, labels) scores = cross_val_score(rfc, data, labels, cv=10) print('Accuracy: %0.2f +/- %0.2f' % (scores.mean(), scores.std()*2))
{ "content_hash": "2ea1a2d41a6355d247343ee11a91be5a", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 68, "avg_line_length": 38.91304347826087, "alnum_prop": 0.6737430167597765, "repo_name": "koverholt/random-forest-example", "id": "f38db5a5b10d6c5b8807a366eccfc8fc4c220fd8", "size": "1006", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/random_forest_chairs.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "1006" } ], "symlink_target": "" }
from __future__ import division, unicode_literals """ FIXME: Proper module docstring """ __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "shyuep@gmail.com" __date__ = "Nov 9, 2012" import unittest2 as unittest import os import json from monty.json import MontyDecoder from pymatgen.entries.entry_tools import group_entries_by_structure test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", 'test_files') class FuncTest(unittest.TestCase): def test_group_entries_by_structure(self): with open(os.path.join(test_dir, "TiO2_entries.json"), "r") as f: entries = json.load(f, cls=MontyDecoder) groups = group_entries_by_structure(entries) self.assertEqual(sorted([len(g) for g in groups]), [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4]) self.assertLess(len(groups), len(entries)) #Make sure no entries are left behind self.assertEqual(sum([len(g) for g in groups]), len(entries)) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
{ "content_hash": "57a0ea9f9f5cc5316e33e7e25c573bf5", "timestamp": "", "source": "github", "line_count": 40, "max_line_length": 73, "avg_line_length": 30.025, "alnum_prop": 0.6161532056619484, "repo_name": "aykol/pymatgen", "id": "8736604106598cf23b1175b32af87d31523ccee1", "size": "1311", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "pymatgen/entries/tests/test_entry_tools.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "838" }, { "name": "Common Lisp", "bytes": "3029065" }, { "name": "Perl", "bytes": "229104" }, { "name": "Propeller Spin", "bytes": "4026362" }, { "name": "Python", "bytes": "5203893" }, { "name": "Roff", "bytes": "868" } ], "symlink_target": "" }
""" flask_oauthlib.provider.oauth2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Implemnts OAuth2 provider support for Flask. :copyright: (c) 2013 - 2014 by Hsiaoming Yang. """ import os import logging import datetime from functools import wraps from flask import request, url_for from flask import redirect, abort from werkzeug import cached_property from werkzeug.utils import import_string from oauthlib import oauth2 from oauthlib.oauth2 import RequestValidator, Server from oauthlib.common import to_unicode, add_params_to_uri from ..utils import extract_params, decode_base64, create_response __all__ = ('OAuth2Provider', 'OAuth2RequestValidator') log = logging.getLogger('flask_oauthlib') class OAuth2Provider(object): """Provide secure services using OAuth2. The server should provide an authorize handler and a token hander, But before the handlers are implemented, the server should provide some getters for the validation. Like many other Flask extensions, there are two usage modes. One is binding the Flask app instance:: app = Flask(__name__) oauth = OAuth2Provider(app) The second possibility is to bind the Flask app later:: oauth = OAuth2Provider() def create_app(): app = Flask(__name__) oauth.init_app(app) return app Configure :meth:`tokengetter` and :meth:`tokensetter` to get and set tokens. Configure :meth:`grantgetter` and :meth:`grantsetter` to get and set grant tokens. Configure :meth:`clientgetter` to get the client. Configure :meth:`usergetter` if you need password credential authorization. With everything ready, implement the authorization workflow: * :meth:`authorize_handler` for consumer to confirm the grant * :meth:`token_handler` for client to exchange access token And now you can protect the resource with scopes:: @app.route('/api/user') @oauth.require_oauth('email', 'username') def user(): return jsonify(request.oauth.user) """ def __init__(self, app=None): self._before_request_funcs = [] self._after_request_funcs = [] self._invalid_response = None if app: self.init_app(app) def init_app(self, app): """ This callback can be used to initialize an application for the oauth provider instance. """ self.app = app app.extensions = getattr(app, 'extensions', {}) app.extensions['oauthlib.provider.oauth2'] = self @cached_property def error_uri(self): """The error page URI. When something turns error, it will redirect to this error page. You can configure the error page URI with Flask config:: OAUTH2_PROVIDER_ERROR_URI = '/error' You can also define the error page by a named endpoint:: OAUTH2_PROVIDER_ERROR_ENDPOINT = 'oauth.error' """ error_uri = self.app.config.get('OAUTH2_PROVIDER_ERROR_URI') if error_uri: return error_uri error_endpoint = self.app.config.get('OAUTH2_PROVIDER_ERROR_ENDPOINT') if error_endpoint: return url_for(error_endpoint) return '/oauth/errors' @cached_property def server(self): """ All in one endpoints. This property is created automaticly if you have implemented all the getters and setters. However, if you are not satisfied with the getter and setter, you can create a validator with :class:`OAuth2RequestValidator`:: class MyValidator(OAuth2RequestValidator): def validate_client_id(self, client_id): # do something return True And assign the validator for the provider:: oauth._validator = MyValidator() """ expires_in = self.app.config.get('OAUTH2_PROVIDER_TOKEN_EXPIRES_IN') token_generator = self.app.config.get( 'OAUTH2_PROVIDER_TOKEN_GENERATOR', None ) if token_generator and not callable(token_generator): token_generator = import_string(token_generator) if hasattr(self, '_validator'): return Server( self._validator, token_expires_in=expires_in, token_generator=token_generator, ) if hasattr(self, '_clientgetter') and \ hasattr(self, '_tokengetter') and \ hasattr(self, '_tokensetter') and \ hasattr(self, '_grantgetter') and \ hasattr(self, '_grantsetter'): usergetter = None if hasattr(self, '_usergetter'): usergetter = self._usergetter validator = OAuth2RequestValidator( clientgetter=self._clientgetter, tokengetter=self._tokengetter, grantgetter=self._grantgetter, usergetter=usergetter, tokensetter=self._tokensetter, grantsetter=self._grantsetter, ) self._validator = validator return Server( validator, token_expires_in=expires_in, token_generator=token_generator, ) raise RuntimeError('application not bound to required getters') def before_request(self, f): """Register functions to be invoked before accessing the resource. The function accepts nothing as parameters, but you can get information from `Flask.request` object. It is usually useful for setting limitation on the client request:: @oauth.before_request def limit_client_request(): client_id = request.values.get('client_id') if not client_id: return client = Client.get(client_id) if over_limit(client): return abort(403) track_request(client) """ self._before_request_funcs.append(f) return f def after_request(self, f): """Register functions to be invoked after accessing the resource. The function accepts ``valid`` and ``request`` as parameters, and it should return a tuple of them:: @oauth.after_request def valid_after_request(valid, oauth): if oauth.user in black_list: return False, oauth return valid, oauth """ self._after_request_funcs.append(f) return f def invalid_response(self, f): """Register a function for responsing with invalid request. When an invalid request proceeds to :meth:`require_oauth`, we can handle the request with the registered function. The function accepts one parameter, which is an oauthlib Request object:: @oauth.invalid_response def invalid_require_oauth(req): return jsonify(message=req.error_message), 401 If no function is registered, it will return with ``abort(401)``. """ self._invalid_response = f return f def clientgetter(self, f): """Register a function as the client getter. The function accepts one parameter `client_id`, and it returns a client object with at least these information: - client_id: A random string - client_secret: A random string - client_type: A string represents if it is `confidential` - redirect_uris: A list of redirect uris - default_redirect_uri: One of the redirect uris - default_scopes: Default scopes of the client The client may contain more information, which is suggested: - allowed_grant_types: A list of grant types - allowed_response_types: A list of response types - validate_scopes: A function to validate scopes Implement the client getter:: @oauth.clientgetter def get_client(client_id): client = get_client_model(client_id) # Client is an object return client """ self._clientgetter = f return f def usergetter(self, f): """Register a function as the user getter. This decorator is only required for **password credential** authorization:: @oauth.usergetter def get_user(username, password, client, request, *args, **kwargs): # client: current request client if not client.has_password_credential_permission: return None user = User.get_user_by_username(username) if not user.validate_password(password): return None # parameter `request` is an OAuthlib Request object. # maybe you will need it somewhere return user """ self._usergetter = f return f def tokengetter(self, f): """Register a function as the token getter. The function accepts an `access_token` or `refresh_token` parameters, and it returns a token object with at least these information: - access_token: A string token - refresh_token: A string token - client_id: ID of the client - scopes: A list of scopes - expires: A `datetime.datetime` object - user: The user object The implementation of tokengetter should accepts two parameters, one is access_token the other is refresh_token:: @oauth.tokengetter def bearer_token(access_token=None, refresh_token=None): if access_token: return get_token(access_token=access_token) if refresh_token: return get_token(refresh_token=refresh_token) return None """ self._tokengetter = f return f def tokensetter(self, f): """Register a function to save the bearer token. The setter accepts two parameters at least, one is token, the other is request:: @oauth.tokensetter def set_token(token, request, *args, **kwargs): save_token(token, request.client, request.user) The parameter token is a dict, that looks like:: { u'access_token': u'6JwgO77PApxsFCU8Quz0pnL9s23016', u'token_type': u'Bearer', u'expires_in': 3600, u'scope': u'email address' } The request is an object, that contains an user object and a client object. """ self._tokensetter = f return f def grantgetter(self, f): """Register a function as the grant getter. The function accepts `client_id`, `code` and more:: @oauth.grantgetter def grant(client_id, code): return get_grant(client_id, code) It returns a grant object with at least these information: - delete: A function to delete itself """ self._grantgetter = f return f def grantsetter(self, f): """Register a function to save the grant code. The function accepts `client_id`, `code`, `request` and more:: @oauth.grantsetter def set_grant(client_id, code, request, *args, **kwargs): save_grant(client_id, code, request.user, request.scopes) """ self._grantsetter = f return f def authorize_handler(self, f): """Authorization handler decorator. This decorator will sort the parameters and headers out, and pre validate everything:: @app.route('/oauth/authorize', methods=['GET', 'POST']) @oauth.authorize_handler def authorize(*args, **kwargs): if request.method == 'GET': # render a page for user to confirm the authorization return render_template('oauthorize.html') confirm = request.form.get('confirm', 'no') return confirm == 'yes' """ @wraps(f) def decorated(*args, **kwargs): # raise if server not implemented server = self.server uri, http_method, body, headers = extract_params() if request.method == 'GET': redirect_uri = request.args.get('redirect_uri', None) log.debug('Found redirect_uri %s.', redirect_uri) try: ret = server.validate_authorization_request( uri, http_method, body, headers ) scopes, credentials = ret kwargs['scopes'] = scopes kwargs.update(credentials) except oauth2.FatalClientError as e: log.debug('Fatal client error %r', e) return redirect(e.in_uri(self.error_uri)) except Exception as e: return redirect(add_params_to_uri( self.error_uri, {'error': e.message} )) else: redirect_uri = request.values.get('redirect_uri', None) try: rv = f(*args, **kwargs) except oauth2.FatalClientError as e: log.debug('Fatal client error %r', e) return redirect(e.in_uri(self.error_uri)) except Exception as e: return redirect(add_params_to_uri( self.error_uri, {'error': e.message} )) if not isinstance(rv, bool): # if is a response or redirect return rv if not rv: # denied by user e = oauth2.AccessDeniedError() return redirect(e.in_uri(redirect_uri)) return self.confirm_authorization_request() return decorated def confirm_authorization_request(self): """When consumer confirm the authrozation.""" server = self.server scope = request.values.get('scope') or '' scopes = scope.split() credentials = dict( client_id=request.values.get('client_id'), redirect_uri=request.values.get('redirect_uri', None), response_type=request.values.get('response_type', None), state=request.values.get('state', None) ) log.debug('Fetched credentials from request %r.', credentials) redirect_uri = credentials.get('redirect_uri') log.debug('Found redirect_uri %s.', redirect_uri) uri, http_method, body, headers = extract_params() try: ret = server.create_authorization_response( uri, http_method, body, headers, scopes, credentials) log.debug('Authorization successful.') return create_response(*ret) except oauth2.FatalClientError as e: return redirect(e.in_uri(self.error_uri)) except oauth2.OAuth2Error as e: return redirect(e.in_uri(redirect_uri)) except Exception as e: return redirect(add_params_to_uri( self.error_uri, {'error': e.message} )) def token_handler(self, f): """Access/refresh token handler decorator. The decorated function should return an dictionary or None as the extra credentials for creating the token response. You can control the access method with standard flask route mechanism. If you only allow the `POST` method:: @app.route('/oauth/token', methods=['POST']) @oauth.token_handler def access_token(): return None """ @wraps(f) def decorated(*args, **kwargs): server = self.server uri, http_method, body, headers = extract_params() credentials = f(*args, **kwargs) or {} log.debug('Fetched extra credentials, %r.', credentials) ret = server.create_token_response( uri, http_method, body, headers, credentials ) return create_response(*ret) return decorated def require_oauth(self, *scopes): """Protect resource with specified scopes.""" def wrapper(f): @wraps(f) def decorated(*args, **kwargs): for func in self._before_request_funcs: func() if hasattr(request, 'oauth') and request.oauth: return f(*args, **kwargs) server = self.server uri, http_method, body, headers = extract_params() valid, req = server.verify_request( uri, http_method, body, headers, scopes ) for func in self._after_request_funcs: valid, req = func(valid, req) if not valid: if self._invalid_response: return self._invalid_response(req) return abort(401) request.oauth = req return f(*args, **kwargs) return decorated return wrapper class OAuth2RequestValidator(RequestValidator): """Subclass of Request Validator. :param clientgetter: a function to get client object :param tokengetter: a function to get bearer token :param tokensetter: a function to save bearer token :param grantgetter: a function to get grant token :param grantsetter: a function to save grant token """ def __init__(self, clientgetter, tokengetter, grantgetter, usergetter=None, tokensetter=None, grantsetter=None): self._clientgetter = clientgetter self._tokengetter = tokengetter self._usergetter = usergetter self._tokensetter = tokensetter self._grantgetter = grantgetter self._grantsetter = grantsetter def client_authentication_required(self, request, *args, **kwargs): """Determine if client authentication is required for current request. According to the rfc6749, client authentication is required in the following cases: Resource Owner Password Credentials Grant: see `Section 4.3.2`_. Authorization Code Grant: see `Section 4.1.3`_. Refresh Token Grant: see `Section 6`_. .. _`Section 4.3.2`: http://tools.ietf.org/html/rfc6749#section-4.3.2 .. _`Section 4.1.3`: http://tools.ietf.org/html/rfc6749#section-4.1.3 .. _`Section 6`: http://tools.ietf.org/html/rfc6749#section-6 """ if request.grant_type == 'password': return True auth_required = ('authorization_code', 'refresh_token') return 'Authorization' in request.headers and\ request.grant_type in auth_required def authenticate_client(self, request, *args, **kwargs): """Authenticate itself in other means. Other means means is described in `Section 3.2.1`_. .. _`Section 3.2.1`: http://tools.ietf.org/html/rfc6749#section-3.2.1 """ auth = request.headers.get('Authorization', None) log.debug('Authenticate client %r', auth) if auth: try: _, s = auth.split(' ') client_id, client_secret = decode_base64(s).split(':') client_id = to_unicode(client_id, 'utf-8') client_secret = to_unicode(client_secret, 'utf-8') except Exception as e: log.debug('Authenticate client failed with exception: %r', e) return False else: client_id = request.client_id client_secret = request.client_secret client = self._clientgetter(client_id) if not client: log.debug('Authenticate client failed, client not found.') return False request.client = client if client.client_secret != client_secret: log.debug('Authenticate client failed, secret not match.') return False if client.client_type != 'confidential': log.debug('Authenticate client failed, not confidential.') return False log.debug('Authenticate client success.') return True def authenticate_client_id(self, client_id, request, *args, **kwargs): """Authenticate a non-confidential client. :param client_id: Client ID of the non-confidential client :param request: The Request object passed by oauthlib """ log.debug('Authenticate client %r.', client_id) client = request.client or self._clientgetter(client_id) if not client: log.debug('Authenticate failed, client not found.') return False if client.client_secret != request.client_secret: log.debug('Authenticate client failed, secret not match.') return False # attach client on request for convenience request.client = client return True def confirm_redirect_uri(self, client_id, code, redirect_uri, client, *args, **kwargs): """Ensure client is authorized to redirect to the redirect_uri. This method is used in the authorization code grant flow. It will compare redirect_uri and the one in grant token strictly, you can add a `validate_redirect_uri` function on grant for a customized validation. """ client = client or self._clientgetter(client_id) log.debug('Confirm redirect uri for client %r and code %r.', client.client_id, code) grant = self._grantgetter(client_id=client.client_id, code=code) if not grant: log.debug('Grant not found.') return False if hasattr(grant, 'validate_redirect_uri'): return grant.validate_redirect_uri(redirect_uri) log.debug('Compare redirect uri for grant %r and %r.', grant.redirect_uri, redirect_uri) testing = 'OAUTHLIB_INSECURE_TRANSPORT' in os.environ if testing and redirect_uri is None: # For testing return True return grant.redirect_uri == redirect_uri def get_original_scopes(self, refresh_token, request, *args, **kwargs): """Get the list of scopes associated with the refresh token. This method is used in the refresh token grant flow. We return the scope of the token to be refreshed so it can be applied to the new access token. """ log.debug('Obtaining scope of refreshed token.') tok = self._tokengetter(refresh_token=refresh_token) return tok.scopes def confirm_scopes(self, refresh_token, scopes, request, *args, **kwargs): """Ensures the requested scope matches the scope originally granted by the resource owner. If the scope is omitted it is treated as equal to the scope originally granted by the resource owner. DEPRECATION NOTE: This method will cease to be used in oauthlib>0.4.2, future versions of ``oauthlib`` use the validator method ``get_original_scopes`` to determine the scope of the refreshed token. """ if not scopes: log.debug('Scope omitted for refresh token %r', refresh_token) return True log.debug('Confirm scopes %r for refresh token %r', scopes, refresh_token) tok = self._tokengetter(refresh_token=refresh_token) return set(tok.scopes) == set(scopes) def get_default_redirect_uri(self, client_id, request, *args, **kwargs): """Default redirect_uri for the given client.""" request.client = request.client or self._clientgetter(client_id) redirect_uri = request.client.default_redirect_uri log.debug('Found default redirect uri %r', redirect_uri) return redirect_uri def get_default_scopes(self, client_id, request, *args, **kwargs): """Default scopes for the given client.""" request.client = request.client or self._clientgetter(client_id) scopes = request.client.default_scopes log.debug('Found default scopes %r', scopes) return scopes def invalidate_authorization_code(self, client_id, code, request, *args, **kwargs): """Invalidate an authorization code after use. We keep the temporary code in a grant, which has a `delete` function to destroy itself. """ log.debug('Destroy grant token for client %r, %r', client_id, code) grant = self._grantgetter(client_id=client_id, code=code) if grant: grant.delete() def save_authorization_code(self, client_id, code, request, *args, **kwargs): """Persist the authorization code.""" log.debug( 'Persist authorization code %r for client %r', code, client_id ) request.client = request.client or self._clientgetter(client_id) self._grantsetter(client_id, code, request, *args, **kwargs) return request.client.default_redirect_uri def save_bearer_token(self, token, request, *args, **kwargs): """Persist the Bearer token.""" log.debug('Save bearer token %r', token) self._tokensetter(token, request, *args, **kwargs) return request.client.default_redirect_uri def validate_bearer_token(self, token, scopes, request): """Validate access token. :param token: A string of random characters :param scopes: A list of scopes :param request: The Request object passed by oauthlib The validation validates: 1) if the token is available 2) if the token has expired 3) if the scopes are available """ log.debug('Validate bearer token %r', token) tok = self._tokengetter(access_token=token) if not tok: msg = 'Bearer token not found.' request.error_message = msg log.debug(msg) return False # validate expires if datetime.datetime.utcnow() > tok.expires: msg = 'Bearer token is expired.' request.error_message = msg log.debug(msg) return False # validate scopes if not set(tok.scopes).issuperset(set(scopes)): msg = 'Bearer token scope not valid.' request.error_message = msg log.debug(msg) return False request.access_token = tok request.user = tok.user request.scopes = scopes if hasattr(tok, 'client'): request.client = tok.client elif hasattr(tok, 'client_id'): request.client = self._clientgetter(tok.client_id) return True def validate_client_id(self, client_id, request, *args, **kwargs): """Ensure client_id belong to a valid and active client.""" log.debug('Validate client %r', client_id) client = request.client or self._clientgetter(client_id) if client: # attach client to request object request.client = client return True return False def validate_code(self, client_id, code, client, request, *args, **kwargs): """Ensure the grant code is valid.""" client = client or self._clientgetter(client_id) log.debug( 'Validate code for client %r and code %r', client.client_id, code ) grant = self._grantgetter(client_id=client.client_id, code=code) if not grant: log.debug('Grant not found.') return False if hasattr(grant, 'expires') and \ datetime.datetime.utcnow() > grant.expires: log.debug('Grant is expired.') return False request.state = kwargs.get('state') request.user = grant.user request.scopes = grant.scopes return True def validate_grant_type(self, client_id, grant_type, client, request, *args, **kwargs): """Ensure the client is authorized to use the grant type requested. It will allow any of the four grant types (`authorization_code`, `password`, `client_credentials`, `refresh_token`) by default. Implemented `allowed_grant_types` for client object to authorize the request. It is suggested that `allowed_grant_types` should contain at least `authorization_code` and `refresh_token`. """ if self._usergetter is None and grant_type == 'password': log.debug('Password credential authorization is disabled.') return False default_grant_types = ( 'authorization_code', 'password', 'client_credentials', 'refresh_token', ) if grant_type not in default_grant_types: return False if hasattr(client, 'allowed_grant_types') and \ grant_type not in client.allowed_grant_types: return False if grant_type == 'client_credentials': if not hasattr(client, 'user'): log.debug('Client should have a user property') return False request.user = client.user return True def validate_redirect_uri(self, client_id, redirect_uri, request, *args, **kwargs): """Ensure client is authorized to redirect to the redirect_uri. This method is used in the authorization code grant flow and also in implicit grant flow. It will detect if redirect_uri in client's redirect_uris strictly, you can add a `validate_redirect_uri` function on grant for a customized validation. """ request.client = request.client or self._clientgetter(client_id) client = request.client if hasattr(client, 'validate_redirect_uri'): return client.validate_redirect_uri(redirect_uri) return redirect_uri in client.redirect_uris def validate_refresh_token(self, refresh_token, client, request, *args, **kwargs): """Ensure the token is valid and belongs to the client This method is used by the authorization code grant indirectly by issuing refresh tokens, resource owner password credentials grant (also indirectly) and the refresh token grant. """ token = self._tokengetter(refresh_token=refresh_token) if token and token.client_id == client.client_id: # Make sure the request object contains user and client_id request.client_id = token.client_id request.user = token.user return True return False def validate_response_type(self, client_id, response_type, client, request, *args, **kwargs): """Ensure client is authorized to use the response type requested. It will allow any of the two (`code`, `token`) response types by default. Implemented `allowed_response_types` for client object to authorize the request. """ if response_type not in ('code', 'token'): return False if hasattr(client, 'allowed_response_types'): return response_type in client.allowed_response_types return True def validate_scopes(self, client_id, scopes, client, request, *args, **kwargs): """Ensure the client is authorized access to requested scopes.""" if hasattr(client, 'validate_scopes'): return client.validate_scopes(scopes) return set(client.default_scopes).issuperset(set(scopes)) def validate_user(self, username, password, client, request, *args, **kwargs): """Ensure the username and password is valid. Attach user object on request for later using. """ log.debug('Validating username %r and password %r', username, password) if self._usergetter is not None: user = self._usergetter( username, password, client, request, *args, **kwargs ) if user: request.user = user return True return False log.debug('Password credential authorization is disabled.') return False
{ "content_hash": "d609ba9fa866cda91c5019d02a1f8307", "timestamp": "", "source": "github", "line_count": 880, "max_line_length": 79, "avg_line_length": 37.3625, "alnum_prop": 0.5879740868031266, "repo_name": "RealGeeks/flask-oauthlib", "id": "d931ab4d684ece70e502ed710cb75ea3b3eb1f67", "size": "32895", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "flask_oauthlib/provider/oauth2.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "675" }, { "name": "HTML", "bytes": "2414" }, { "name": "Makefile", "bytes": "599" }, { "name": "Python", "bytes": "174069" } ], "symlink_target": "" }
""" Differ classes """ __author__ = "André Malo" __docformat__ = "epytext en" __all__ = ["InternalDiffer", "ExternalDiffer"] class InternalDiffer(object): """ Differ without an external program call (uses difflib) """ def __init__(self): """ Initialization """ pass def getStringDiff(self, string1, string2, label1, label2 = None, date1 = "", date2 = ""): """ creates a diff of two line based strings If a string is C{None}, it's treated as "" @param string1: First string @type string1: C{str} @param string2: Second string @type string2: C{str} @param label1: Label for first data @type label1: C{str} @param label2: Label for second data @type label2: C{str} @param date1: Date description for first data @type date1: C{str} @param date2: Date description for second data @type date2: C{str} @return: unified diff lines (maybe a generator) @rtype: iterable """ import difflib list1 = (string1 or "").splitlines(True) list2 = (string2 or "").splitlines(True) if not (list1 or list2): list1 = list2 = [""] return difflib.unified_diff( list1, list2, label1, label2 or label1, date1, date2, ) def getFileDiff(self, name1, name2, label1, label2 = None, date1 = "", date2 = ""): """ creates a diff of two line based files @param name1: First file name @type name1: C{str} @param name2: Second file name @type name2: C{str} @param label1: Label for first data @type label1: C{str} @param label2: Label for second data @type label2: C{str} @param date1: Date description for first data @type date1: C{str} @param date2: Date description for second data @type date2: C{str} @return: unified diff lines (maybe a generator) @rtype: iterable """ import difflib list1 = file(name1, "rb").readlines() list2 = file(name2, "rb").readlines() if not (list1 or list2): list1 = list2 = [""] return difflib.unified_diff( list1, list2, label1, label2 or label1, date1, date2, ) class ExternalDiffer(object): """ Differ which calls an external program (e.g. diff) @ivar _diff_command: The diff command line @type _diff_command: C{list} @ivar _tempdir: The tempdir to use for string diffs @type _tempdir: C{str} """ def __init__(self, diff_command, tempdir = None): """ Initialization @param diff_command: The diff command to call @type diff_command: C{list} @param tempdir: The tempdir to use for string diffs @type tempdir: C{str} """ self._diff_command = diff_command self._tempdir = tempdir def getStringDiff(self, string1, string2, label1, label2 = None, date1 = "", date2 = ""): """ creates a diff of two line based strings If a string is C{None}, it's treated as "" @param string1: First string @type string1: C{str} @param string2: Second string @type string2: C{str} @param label1: Label for first data @type label1: C{str} @param label2: Label for second data @type label2: C{str} @param date1: Date description for first data @type date1: C{str} @param date2: Date description for second data @type date2: C{str} @return: unified diff lines (maybe a generator) @rtype: iterable """ from svnmailer import util string1 = string1 or "" string2 = string2 or "" file1 = util.TempFile(self._tempdir) file1.fp.write(string1) file1.close() file2 = util.TempFile(self._tempdir) file2.fp.write(string2) file2.close() pipe = self._getPipe( file1.name, file2.name, label1, label2, date1, date2 ) # yield line by line line = pipe.fromchild.readline() while line: yield line line = pipe.fromchild.readline() pipe.fromchild.close() pipe.wait() def getFileDiff(self, name1, name2, label1, label2 = None, date1 = "", date2 = ""): """ creates a diff of two line based files @param name1: First file name @type name1: C{str} @param name2: Second file name @type name2: C{str} @param label1: Label for first data @type label1: C{str} @param label2: Label for second data @type label2: C{str} @param date1: Date description for first data @type date1: C{str} @param date2: Date description for second data @type date2: C{str} @return: unified diff lines (maybe a generator) @rtype: iterable """ pipe = self._getPipe(name1, name2, label1, label2, date1, date2) # yield line by line line = pipe.fromchild.readline() while line: yield line line = pipe.fromchild.readline() pipe.fromchild.close() pipe.wait() def _getPipe(self, name1, name2, label1, label2, date1, date2): """ Returns a pipe from the diff program @param name1: First file name @type name1: C{str} @param name2: Second file name @type name2: C{str} @param label1: Label for first data @type label1: C{str} @param label2: Label for second data @type label2: C{str} @param date1: Date description for first data @type date1: C{str} @param date2: Date description for second data @type date2: C{str} @return: The pipe object @rtype: see: C{util.getPipe4} """ from svnmailer import util params = { "label_from": "%s %s" % (label1, date1 or ""), "label_to" : "%s %s" % (label2 or label1, date2 or ""), "from" : name1, "to" : name2, } # check for sanity for key, value in params.items(): if isinstance(value, unicode): params[key] = value.encode("utf-8") cmd = list(self._diff_command) cmd[1:] = [(isinstance(arg, unicode) and [arg.encode("utf-8")] or [arg])[0] % params for arg in cmd[1:] ] pipe = util.getPipe4(cmd) pipe.tochild.close() return pipe
{ "content_hash": "dc3a222dca1525810238c0849f171b28", "timestamp": "", "source": "github", "line_count": 253, "max_line_length": 74, "avg_line_length": 27.76284584980237, "alnum_prop": 0.5269077448747153, "repo_name": "danielshahaf/svnmailer-debian", "id": "d712d83a470cb131101aa6d103765d987fe9c763", "size": "7663", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/lib/svnmailer/differ.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "299480" } ], "symlink_target": "" }
import ShareYourSystem as SYS #Define MyPredicter=SYS.PredicterClass( ).predict( #PredictingUnitsInt 10, #PredictingSensorsInt 1, #PredictingDecoderWeightFloat 10., #PredictingCostFloat 0., #PredictingNormalisationInt 0.5, #PredictingPerturbativeWeightFloat 0.1 ) #print print('MyPredicter is') SYS._print(MyPredicter)
{ "content_hash": "db21aba346e322d28e49d732592e809c", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 36, "avg_line_length": 15.772727272727273, "alnum_prop": 0.7579250720461095, "repo_name": "Ledoux/ShareYourSystem", "id": "5347249efa6051dab8108518d4e62fd14426f3f2", "size": "363", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "Pythonlogy/ShareYourSystem/Specials/Oldpredicters/Oldpredicter/draft/01_ExampleDoc copy.py", "mode": "33261", "license": "mit", "language": [ { "name": "ApacheConf", "bytes": "86" }, { "name": "C++", "bytes": "4244220" }, { "name": "CSS", "bytes": "142769" }, { "name": "CoffeeScript", "bytes": "37331" }, { "name": "HTML", "bytes": "36211676" }, { "name": "JavaScript", "bytes": "2147968" }, { "name": "Jupyter Notebook", "bytes": "7930602" }, { "name": "Makefile", "bytes": "6362" }, { "name": "PHP", "bytes": "11096341" }, { "name": "Python", "bytes": "5700092" }, { "name": "Ruby", "bytes": "60" }, { "name": "Scala", "bytes": "2412" }, { "name": "Shell", "bytes": "2525" }, { "name": "Swift", "bytes": "154" }, { "name": "TeX", "bytes": "2556" }, { "name": "XSLT", "bytes": "20993" } ], "symlink_target": "" }
from hippy.module.spl.funcs import * import hippy.module.spl.arrayiter import hippy.module.spl.iterator
{ "content_hash": "1378a63cef81cfdb6a8ea60ec0407cb9", "timestamp": "", "source": "github", "line_count": 3, "max_line_length": 36, "avg_line_length": 34.666666666666664, "alnum_prop": 0.8269230769230769, "repo_name": "hippyvm/hippyvm", "id": "1a46df242117ff51572a224941f3113d11c8642c", "size": "104", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "hippy/module/spl/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Assembly", "bytes": "1559" }, { "name": "C", "bytes": "2603732" }, { "name": "C++", "bytes": "196295" }, { "name": "HTML", "bytes": "415" }, { "name": "JavaScript", "bytes": "453641" }, { "name": "Makefile", "bytes": "4793" }, { "name": "PHP", "bytes": "15041037" }, { "name": "Python", "bytes": "2503956" }, { "name": "Shell", "bytes": "15527" } ], "symlink_target": "" }
from kivy.app import App from kivy.uix.screenmanager import ScreenManager, Screen from kivy.properties import ObjectProperty, NumericProperty, ReferenceListProperty, StringProperty, ListProperty, BooleanProperty from kivy.uix.popup import Popup from kivy.graphics import Color, Line from kivy.uix.widget import Widget from kivy.uix.button import Button from kivy.graphics import * from kivy.clock import Clock from kivy.uix.popup import Popup from kivy.uix.button import Button from kivy.uix.textinput import TextInput from kivy.uix.colorpicker import ColorPicker from kivy.core.window import Window from kivy.uix.boxlayout import BoxLayout import socket import pickle from threading import Thread class Game(Screen): def gotomenu(self): Color(*(0,0,0)) self.layout.remove_widget(self.s) ##deletes the current sheet self.manager.current = "menu" class Menuscreen(Screen): s = ObjectProperty() def on_touch_down(self, touch): if self.karo.collide_point(*touch.pos): self.create_caro_sheet() self.manager.get_screen('game').layout.menu.zoomer.value = 1 if self.line.collide_point(*touch.pos): self.create_line_sheet() self.manager.get_screen('game').layout.menu.zoomer.value = 1 if self.blank.collide_point(*touch.pos): Sheet.type = "blank" self.manager.get_screen('game').s = Sheet() self.manager.get_screen('game').layout.add_widget(self.manager.get_screen('game').s, index=2) self.manager.current = "game" self.manager.get_screen('game').layout.menu.zoomer.value = 1 if self.table.collide_point(*touch.pos): self.create_table_sheet() self.manager.get_screen('game').layout.menu.zoomer.value = 1 def create_caro_sheet(self): Sheet.type = "caro" self.manager.get_screen('game').s = Sheet() #init a new sheet: property of Game self.manager.get_screen('game').layout.add_widget(self.manager.get_screen('game').s, index=2)#add this sheet which is instance of Game self.manager.current = "game" with self.manager.get_screen('game').s.canvas: #drawing karo lines Color(*(0,0,0)) y=0 y2=0 for i in range(self.manager.get_screen('game').width): i+=20 y+=20 y2+=20 Line(points=[0, y,self.width , y2], width=0.5) x=0 x2=0 for t in range(self.manager.get_screen('game').height): t+=20 x+=20 x2+=20 Line(points=[x, 0, x2 , self.height], width=0.5) def create_line_sheet(self): Sheet.type = "line" self.manager.get_screen('game').s = Sheet() #init a new sheet: property of Game self.manager.get_screen('game').layout.add_widget(self.manager.get_screen('game').s, index=2) #add this sheet which is instance of Game self.manager.current = "game" with self.manager.get_screen('game').s.canvas: #drawing lines Color(*(0,0,0)) y=0 y2=0 for t in range(self.manager.get_screen('game').height): t+=20 y+=20 y2+=20 Line(points=[0, y, self.width ,y2 ], width=0.5) def create_table_sheet(self): Sheet.type = "table" self.manager.get_screen('game').s = Sheet() #init a new sheet: property of Game self.manager.get_screen('game').layout.add_widget(self.manager.get_screen('game').s, index=2) #add this sheet which is instance of Game self.manager.current = "game" with self.manager.get_screen('game').s.canvas: #drawing table Color(*(0,0,0)) y=0 y2=0 for i in range(self.manager.get_screen('game').width): i+=40 y+=40 y2+=40 Line(points=[0, y,self.width , y2], width=0.5) x=0 x2=0 for t in range(self.manager.get_screen('game').height): t+=100 x+=100 x2+=100 Line(points=[x, 0, x2 , self.height], width=0.5) class Sheet(Widget): color = (0,0,0) linewidth = 1 background = StringProperty("") type = "" zoom = 1 centerxy = [Window.width/2, Window.height/2] ###Mode for Server auth.### data = ["client"] def connect_to_server(self): content = BoxLayout() lbl = TextInput(text='', multiline=False, size_hint=(1,1)) btn = Button(text="Ok", on_release= lambda a: self.set_ip_address(lbl.text), size_hint_x=0.3) content.add_widget(lbl) content.add_widget(btn) popup = Popup(title="Enter IP adress", content=content, size_hint=(None, None), size=(Window.width*0.7, Window.height*0.2)) popup.open() btn.bind(on_press=popup.dismiss) def set_ip_address(self, ip): host = str(ip) touch = [] self.data.append(touch) self.data_string = pickle.dumps(self.data) self.s = socket.socket() self.s.connect((host, 8888)) self.s.sendto(self.data_string,(host, 8888)) t = Thread(target=self.recieve_data) t.start() def on_touch_down(self,touch): with self.scat.canvas: Color(*self.color) touch.ud['current_line'] = Line(points=((touch.x - self.scat.x)/self.zoom, (touch.y - self.scat.y)/self.zoom), width=self.linewidth) def on_touch_move(self, touch): if touch.is_double_tap: self.scat.x += touch.dx self.scat.y += touch.dy self.centerxy[0] += touch.dx self.centerxy[1] += touch.dy else: try: touch.ud['current_line'].points += ((touch.x - self.scat.x)/self.zoom, (touch.y - self.scat.y)/self.zoom) except KeyError: pass def recieve_data(self): """ Endless loop for retrieving Data. Should be threaded """ while True: self.touch = self.s.recv(1024) touch = pickle.loads(self.touch) if touch[4] == False: with self.scat.canvas: Color(*touch[3]) line = Line(points=[touch[0], touch[1]], width = touch[2]) elif touch[4] == True: line.points += [touch[0],touch[1]] class Menu(Widget): def change_pen(self, color, width): Sheet.color = color Sheet.linewidth = width def color(self): #opens color Picker picker = ColorPicker() picker.bind(color=self.setcolor) popup = Popup(title="Choose a Color", content=picker, size_hint=(None, None), size=(400,400)) popup.open() def setcolor(self, instance, value): # Sets color Sheet.color = list(value) def thickness(self, value): #sets linewidth from slider Sheet.linewidth = value def scale(self, value=1): self.parent.parent.s.scat.scale = value self.parent.parent.s.scat.center = Sheet.centerxy[0], Sheet.centerxy[1] Sheet.zoom = value def widgetshot(self): self.parent.parent.s.export_to_png('Saved Board.png') def clear(self): #clear screen and set up up correct if Sheet.type=="blank": self.parent.remove_widget(self.parent.parent.s) self.parent.parent.s = Sheet() self.parent.add_widget(self.parent.parent.s, index=2) elif Sheet.type=="caro": self.parent.remove_widget(self.parent.parent.s) self.parent.parent.s = Sheet() self.parent.add_widget(self.parent.parent.s, index=2) with self.parent.parent.s.canvas: #drawing karo lines Color(*(0,0,0)) y=0 y2=0 for i in range(self.parent.parent.width): i+=20 y+=20 y2+=20 Line(points=[0, y,self.parent.parent.width , y2], width=0.5) x=0 x2=0 for t in range(self.parent.parent.height): t+=20 x+=20 x2+=20 Line(points=[x, 0, x2 , self.parent.parent.height], width=0.5) elif Sheet.type=="line": self.parent.remove_widget(self.parent.parent.s) self.parent.parent.s = Sheet() self.parent.add_widget(self.parent.parent.s, index=2) with self.parent.parent.s.canvas: #drawing lines Color(*(0,0,0)) y=0 y2=0 for t in range(self.parent.parent.height): t+=20 y+=20 y2+=20 Line(points=[0, y, self.parent.parent.width ,y2 ], width=0.5) elif Sheet.type=="table": self.parent.remove_widget(self.parent.parent.s) self.parent.parent.s = Sheet() self.parent.add_widget(self.parent.parent.s, index=2) with self.parent.parent.s.canvas: #drawing table Color(*(0,0,0)) y=0 y2=0 for i in range(self.parent.parent.width): i+=40 y+=40 y2+=40 Line(points=[0, y, self.parent.parent.width , y2], width=0.5) x=0 x2=0 for t in range(self.parent.parent.height): t+=100 x+=100 x2+=100 Line(points=[x, 0, x2 ,self.parent.parent.height], width=0.5) def connect(self): self.parent.parent.s.connect_to_server() class Manager(ScreenManager): screen_one = ObjectProperty(None) screen_two = ObjectProperty(None) class ScreensApp(App): def build(self): return Manager() ScreensApp().run()
{ "content_hash": "c883f457c6d01aac4a265207982b6f91", "timestamp": "", "source": "github", "line_count": 323, "max_line_length": 144, "avg_line_length": 33.81733746130031, "alnum_prop": 0.5071866703286643, "repo_name": "georgk10/Whiteboard-Master", "id": "a30695080c27f1a50ddfab46706efd07df23a131", "size": "10923", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Client/main_client.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "23038" } ], "symlink_target": "" }
""" Understanding NiftiMasker and mask computation ================================================== In this example, the Nifti masker is used to automatically compute a mask. For data that has already been masked, the default strategy works out of the box. However, for raw EPI, as in resting-state time series, we need to use the 'epi' strategy of the NiftiMasker. In addition, we show here how to tweak the different parameters of the underlying mask extraction routine :func:`nilearn.masking.compute_epi_mask`. """ import matplotlib.pyplot as plt import numpy as np import nibabel from nilearn import datasets ############################################################################### # Simple visualization helper def display_mask(background, mask, title): plt.axis('off') plt.imshow(np.rot90(background), interpolation='nearest', cmap=plt.cm.gray) ma = np.ma.masked_equal(mask, False) plt.imshow(np.rot90(ma), interpolation='nearest', cmap=plt.cm.autumn, alpha=0.5) plt.title(title) ############################################################################### # From already masked data from nilearn.input_data import NiftiMasker # Load Miyawaki dataset miyawaki = datasets.fetch_miyawaki2008() miyawaki_img = nibabel.load(miyawaki.func[0]) miyawaki_func = miyawaki_img.get_data() background = np.mean(miyawaki_func, axis=-1)[..., 14] # This time, we can use the NiftiMasker without changing the default mask # strategy, as the data has already been masked, and thus lies on a # homogeneous background masker = NiftiMasker() masker.fit(miyawaki_img) default_mask = masker.mask_img_.get_data().astype(np.bool) plt.figure(figsize=(4, 4.5)) display_mask(background, default_mask[..., 14], 'Default background mask') plt.tight_layout() ############################################################################### # From raw EPI data # Load NYU resting-state dataset nyu = datasets.fetch_nyu_rest(n_subjects=1) nyu_img = nibabel.load(nyu.func[0]) # Restrict nyu to 100 frames to speed up computation nyu_func = nyu_img.get_data()[..., :100] # nyu_func is a 4D-array, we want to make a Niimg out of it: nyu_img = nibabel.Nifti1Image(nyu_func, nyu_img.get_affine()) # To display the background background = np.mean(nyu_func, axis=-1)[..., 21] # Simple mask extraction from EPI images from nilearn.input_data import NiftiMasker # We need to specify an 'epi' mask_strategy, as this is raw EPI data masker = NiftiMasker(mask_strategy='epi') masker.fit(nyu_img) default_mask = masker.mask_img_.get_data().astype(np.bool) plt.figure(figsize=(4, 4.5)) display_mask(background, default_mask[..., 21], 'EPI automatic mask') plt.tight_layout() # Generate mask with strong opening masker = NiftiMasker(mask_strategy='epi', mask_args=dict(opening=10)) masker.fit(nyu_img) opening_mask = masker.mask_img_.get_data().astype(np.bool) plt.figure(figsize=(4, 4.5)) display_mask(background, opening_mask[..., 21], 'EPI Mask with strong opening') plt.tight_layout() # Generate mask with a high lower cutoff masker = NiftiMasker(mask_strategy='epi', mask_args=dict(upper_cutoff=.9, lower_cutoff=.8, opening=False)) masker.fit(nyu_img) cutoff_mask = masker.mask_img_.get_data().astype(np.bool) plt.figure(figsize=(4, 4.5)) display_mask(background, cutoff_mask[..., 21], 'EPI Mask: high lower_cutoff') plt.tight_layout() ################################################################################ # Extract time series # trended vs detrended trended = NiftiMasker(mask_strategy='epi') detrended = NiftiMasker(mask_strategy='epi', detrend=True) trended_data = trended.fit_transform(nyu_img) detrended_data = detrended.fit_transform(nyu_img) print "Trended: mean %.2f, std %.2f" % \ (np.mean(trended_data), np.std(trended_data)) print "Detrended: mean %.2f, std %.2f" % \ (np.mean(detrended_data), np.std(detrended_data)) plt.show()
{ "content_hash": "8411a1d96874efbd471794e33b932a8a", "timestamp": "", "source": "github", "line_count": 121, "max_line_length": 80, "avg_line_length": 32.69421487603306, "alnum_prop": 0.6531850353892821, "repo_name": "ainafp/nilearn", "id": "643f5ce482810cbe8bbf40ea28306fc52ac661cd", "size": "3956", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "plot_mask_computation.py", "mode": "33188", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
import sys import tkinter as tk from datetime import datetime as dt from datetime import timedelta from math import floor from tkinter import filedialog as fd import matplotlib.pyplot as plt import numpy as np import pandas as pd import statsmodels.api as sm from scipy.interpolate import interp1d from atmPy.atmos import air from atmPy.aerosols.physics import aerosol class SMPS(object): """ Defines routines associated with an SMPS object Attributes ---------- dma: DMA object Defines the differential mobility analyzer specific to the SMPS dn_interp: numpy array of floats, 2D Charge and lag corrected dndlogDp distributions diam_interp: numpy array of floats, 1D Diameters over which the dndlogDp distributions are interpolated. This value is determined by the method buildGrid cn_raw: cn_smoothed: diam: air: air object Use this object to set the temperature and pressure and do calculations related to the gas files: list of file objects These are the files that will be processed scan_folder: String Location of scan data """ def __init__(self, dma): self.air = air() self.dma = dma self.files = [] self.diam_interp = 0 self.buildGrid() self.dn_interp = None self.date = [] self.cn_raw = None self.cn_smoothed = None self.diam = None self.lag = 10 # Smoothing parameter for the LOWESS smoothing self.alpha = 0.3 def openFiles(self, scan_folder=''): """ Launches a dialog to selct files for SMPS processing. Parameters ----------- scan_folder: string, optional Starting folder for searching for files to process. Default is empty. """ _gui = tk.Tk() # Prompt the user for a file or files to process self.files = fd.askopenfiles(initialdi=scan_folder) _gui.destroy() def __progress__(self): s = len(self.files) i = 0 while True: print('\r[{0}] {1}%'.format('#' * i, i / s * 100)) yield None i += 1 @staticmethod def __chargecorr__(diam, dn, gas, n=3, pos_neg=-1): """ Correct the input concentrations for multiple charges. When running in SMPS mode, we must keep in mind that each size of particles can carry multiple charges. Particles with more charges will appear to be SMALLER than those with less. So, we will index through the diameters backwards, get the number of the current selected size that would have charge n, and remove those from the lower bins to the upper bins. Parameters ---------- diam: array of float array of diameters in nm dn: array of integers Array of particle concentrations corresponding to diameter 'diam' gas: gas object Gas object that defines the properties of the gas n: int, optional Number of charges to consider. Default is 3. pos_neg: int, optional Positive or negative one indicating whether to consider positive or negative charges. Default is -1. Returns ------- None Notes ------ The charge correction loops from top to bottom in the size distribution. This assumes that there are no particles beyond the probed distribution. If there are, there will be noticeable steps in the charge corrected distribution. Regarding the algorithm, we can solve for each bin by using the charging efficiency ala Gunn or Wiedensohler. To solve, we use the following algorithm: 1. Assume that the current bin holds ONLY singly charged particles. 2. Calculate the fraction of particles that are expected to be singly charged at the current diameter, :math:'f_1\left(D_p\right)'. 3. For each charge beyond 1: a) Get the charging efficiency of the current particle size for :math:'i' charges :math:'f_i \left(D_p\right)' b) """ # Flip the incoming diamter array rdiam = np.copy(diam[::-1]) # We are working backwards, so we need to have the length to get this all right... l = len(dn) - 1 # Inline function for finding the value closest to diameter d in the array diam fmin = lambda nd: (np.abs(np.asarray(diam) - nd)).argmin() for i, d in enumerate(rdiam): # Get the fraction of particles that are singly charged f1 = aerosol.ndistr(d, pos_neg, gas.t) for j in reversed(range(2, n + 1)): # Loop through charges 2 and higher backwards ne = j * pos_neg fi = aerosol.ndistr(d, ne, gas.t) # Mobility of multiply charged particles z_mult = abs(ne * aerosol.z(d, gas, pos_neg)) # Diameter bin which contains the multiply charged particles d_mult = aerosol.z2d(z_mult, gas, 1) # Continue while the diameter specified is larger than the minimum diameter if d_mult >= diam[0]: # Find the index of the multiple charges k = fmin(d_mult) # Remove the particles in bin k that belong in the current bin, but don't remove more # particles than there are in the bin dn[k] -= min(dn[l - i] * fi / f1, dn[k]) # The total number of particlesi n the current bin is simply the number of singly charged # particles divided by the singly charged charging efficiency. dn[l - i] /= f1 return None def proc_files(self): """ Process the files that are contained by the SMPS class attribute 'files' """ e_count = 0 # TODO: Some of the processes here can be parallelized using the multiprocessing library # Reading of the data and determing the lag will require a proper sequence, but # we can parallelize: # 1) The processing of an individual file # 2) The processing of the up and down scans within a file # WARNING: Need to ensure that the different processes don't step on each other. # Likely we would need to make some of the instance variables local (air.t and air.p # come to mind). self.dn_interp = np.zeros((2 * len(self.files), len(self.diam_interp))) self.date = [None] * 2 * len(self.files) self.cn_raw = np.zeros((2 * len(self.files), len(self.diam_interp))) self.cn_smoothed = np.zeros((2 * len(self.files), len(self.diam_interp))) self.diam = np.zeros((2 * len(self.files), len(self.diam_interp))) for e, i in enumerate(self.files): try: print(i.name) # Get the data in the file header meta_data = self.__readmeta__(i.name) # Retrieve the scan and dwell times from the meta data. tscan = meta_data['Scan_Time'].values[0] tdwell = meta_data['Dwell_Time'].values[0] # This is the data in the scan file data = self.__readdata__(i.name) # Get the CPC data of interest and pad the end with zeros for the sake of # readability. cpc_data = np.pad(data.CPC_1_Cnt.values[self.lag:], (0, self.lag), mode="constant", constant_values=(0, 0)) # This is the CPC concentration cpc_data /= data.CPC_Flw.values # Remove NaNs and infs from the cpc data cpc_data[np.where(np.isnan(cpc_data))] = 0.0 cpc_data[np.where(np.isinf(cpc_data))] = 0.0 # In the following section, we will take the two variables, 'data' and # 'cpc_data' to produce the data that will be run through the core of # the processing code. The steps are as follows to prepare the data: # 1. If the data is the downward data, flip the arrays. # 2. Truncate the data to get the scanned data. # a. If the data is the up data, we simply want the first 'tscan' # elements. # b. If the data is the down data, we will account for the final # dwell time ('tdwell'), and take the portion of the arrays # from tdwell to tscan + tdwell. # 3. Get the mean values of all the data in the scan array from the # respective data array. We will use the mean values for inversion. # PRODUCE UP DATA FOR PROCESSING # # Extract the portion of the CPC data of interest for the upward scan cpc_up = cpc_data[:tscan] up_data = data.iloc[:tscan] smooth_up = sm.nonparametric.lowess(cpc_up, up_data.DMA_Diam.values, frac=self.alpha, it=1, missing='none', return_sorted=False) smooth_up[np.where(np.isnan(smooth_up))] = 0.0 smooth_up[np.where(np.isinf(smooth_up))] = 0.0 # Retrieve mean up data mup = up_data.mean(axis=0) self.air.t = mup.Aer_Temp_C self.air.p = mup.Aer_Pres_PSI # Calculate diameters from voltages dup = [self.dma.v2d(i, self.air, mup.Sh_Q_VLPM, mup.Sh_Q_VLPM) for i in up_data.DMA_Set_Volts.values] # UP DATA PRODUCTION COMPLETE # # BEGIN DOWN DATA PRODUCTION # # Flip the cpc data and extricate the portion of interest cpc_down = cpc_data[::-1] cpc_down = cpc_down[tdwell:tscan + tdwell] # Flip the down data and slice it down_data = data.iloc[::-1] down_data = down_data.iloc[int(tdwell):int(tscan + tdwell)] smooth_down = sm.nonparametric.lowess(cpc_down, down_data.DMA_Diam.values, frac=self.alpha, it=1, missing='none', return_sorted=False) smooth_down[np.where(np.isnan(smooth_up))] = 0.0 smooth_down[np.where(np.isinf(smooth_up))] = 0.0 # Retrieve mean down data mdown = down_data.mean(axis=0) self.air.t = mdown.Aer_Temp_C self.air.p = mdown.Aer_Pres_PSI # Calculate diameters from voltages ddown = [self.dma.v2d(i, self.air, mdown.Sh_Q_VLPM, mdown.Sh_Q_VLPM) for i in down_data.DMA_Set_Volts.values] up_interp_dn = self.__fwhm__(dup, smooth_up, mup) down_interp_dn = self.__fwhm__(ddown, smooth_down, mdown) up_interp_dn[np.where(up_interp_dn < 0)] = 0 down_interp_dn[np.where(down_interp_dn < 0)] = 0 except ValueError: print("Unexpected error:", sys.exc_info()[0]) print("Issue processing file " + str(i.name)) e_count += 1 continue except TypeError: print("Error processing file.") e_count += 1 continue else: n_e = e - e_count # Stuff the data for the attributes down here. If an error is thrown, we will not contaminate # member data. self.date[2 * n_e] = dt.strptime(str(meta_data.Date[0]) + ',' + str(meta_data.Time[0]), '%m/%d/%y,%H:%M:%S') self.date[2 * n_e + 1] = self.date[2 * n_e] + timedelta(0, tscan + tdwell) self.diam[2 * n_e, 0:np.asarray(dup).size] = np.asarray(dup) self.cn_raw[2 * n_e, 0:cpc_up.size] = cpc_up # Store raw data for the down scan self.cn_raw[2 * n_e + 1, 0:cpc_down.size] = cpc_down self.diam[2 * n_e + 1, 0:np.asarray(ddown).size] = np.asarray(ddown) self.cn_smoothed[2 * n_e, 0:smooth_up.size] = smooth_up self.cn_smoothed[2 * n_e + 1, 0:smooth_down.size] = smooth_down self.dn_interp[2 * n_e, :] = up_interp_dn self.dn_interp[2 * n_e + 1, :] = down_interp_dn @staticmethod def __readmeta__(file): """ Parameters ---------- file: file object File to retrieve meta data from Returns ------- pandas datafram containing meta data """ return pd.read_csv(file, header=0, lineterminator='\n', nrows=1) @staticmethod def __readdata__(file): """ Read the data from the file. Data starts in the third row. Parameters ----------- file: file object File containing SMPS data Returns -------- pandas data frame """ return pd.read_csv(file, parse_dates='Date_Time', index_col=0, header=2, lineterminator='\n') def getLag(self, index, delta=0, p=True): """ This function can be called to guide the user in how to set the lag attribute. Parameters ---------- index: int Index of file in attribute files to determine the lag delta: int, optional Fudge factor for aligning the two scans; default is 0 p: Boolean, optional Plot the output if True """ meta_data = self.__readmeta__(self.files[index].name) up_data = self.__readdata__(self.files[index].name) tscan = meta_data.Scan_Time.values[0] tdwell = meta_data.Dwell_Time.values[0] # CPC concentrations will be simply the 1 s buffer divided by the # CPC flow cpc_cnt = up_data.CPC_1_Cnt.values / up_data.CPC_Flw.values # Truncate the upward trajectory up = cpc_cnt[0:tscan] # Get the counts for the decreasing voltage and truncate them down = cpc_cnt[::-1] # Flip the variable cpc_cnt down = cpc_cnt[tdwell:(tscan + tdwell)] # Truncate the data down_data = up_data[::-1] # LAG CORRELATION # corr = np.correlate(up, down, mode="full") plt.plot(corr) corr = corr[corr.size / 2:] self.lag = floor(corr.argmax(axis=0) / 2 + delta) f = self.lag # GET CPC DATA FOR PLOTTING # # Shift the up data with the number of zeros padding on the end equal to the lag up = up_data['CPC_1_Cnt'].values[f:tscan + f] / up_data['CPC_Flw'].values[f:tscan + f] # Remove NaNs and infs up[np.where(np.isinf(up))] = 0.0 up[np.where(np.isnan(up))] = 0.0 up_data = up_data.iloc[:tscan] smooth_p = 0.3 smooth_up = sm.nonparametric.lowess(up, up_data.DMA_Diam.values, frac=smooth_p, it=1, missing='none') # Padding the down scan is trickier - if the parameter f (should be the lag in the correlation) # is larger than the dwell time, we will have a negative resize parameter - this is no good. # Pad the front with the number of zeros that goes beyond the end (front in the reveresed array). # This makes sense. I guess. if f > tdwell: f = tdwell down = np.pad(down_data['CPC_1_Cnt'].values[0:tscan] / down_data['CPC_Flw'].values[0:tscan], pad_width={tdwell - f, 0}, constant_values={0, 0}) else: down = (down_data['CPC_1_Cnt'].values[(tdwell - f):(tscan + tdwell - f)] / down_data['CPC_Flw'].values[(tdwell - f):(tscan + tdwell - f)]) down[np.where(np.isinf(down))] = 0.0 down[np.where(np.isnan(down))] = 0.0 down_data = down_data.iloc[:tscan] smooth_down = sm.nonparametric.lowess(down, down_data.DMA_Diam.values, frac=smooth_p, missing='none') if p: f2 = plt.figure(2) plt.plot(up, 'r.', down, 'b.', smooth_up[:, 1], 'r+', smooth_down[:, 1], 'b+') output = "Lag is estimated to be " + str(self.lag) + " with a delta of " + str(delta) + "." plt.title(output) plt.show() def buildGrid(self, logtype="ln", gmin=1, gmax=1000, n=300): """ Define a logarithmic grid over which to interpolate output values Parameters ---------- type: string, optional this value can be log10 or natural (e); default is log10 min: int, optional minimum value in the grid; default is 1 max: int, optional maximum value in the grid; default is 1000 n: int, optional number of bins over which to divide the grid; default is 300 """ if logtype == "log10": self.diam_interp = np.logspace(np.log10(gmin), np.log10(gmax), n, endpoint=True) else: self.diam_interp = np.logspace(np.log(gmin), np.log(gmax), n, base=np.exp(1), endpoint=True) return None def __fwhm__(self, diam, dn, mean_data): """ Retrieve the full width at half max and return an interpolated concentration dN/dlogdp array Parameters ----------- diam: NumPy array of floats Diameters calculated from the setpoint voltage of the scan. Units are nm dn: NumPy array of floats CPC concentration at each diameter. Units are cc^-1. mean_data: pandas DataFrame DataFrame containing mean data from the scan. :return: """ ls = len(dn) dlogd = np.zeros(ls) # calculate dlogd fwhm = np.zeros(ls) # hold width self.air.t = mean_data.Aer_Temp_C self.air.p = mean_data.Aer_Pres_PSI def xfer(dp, qa, qs): """ Return the full-width, half-max of the transfer function in diameter space. This implementation ignores diffusion broadening. Parameters ----------- dp: float particle size in nm qa: float aerosol flow rate in lpm qs: float aerosol flow rate in lpm Returns ------- Width of transfer function in nm. """ beta = float(qa) / float(qs) # Retrieve the center mobility zc = aerosol.z(dp, self.air, 1) # Upper bound of the mobility zm = (1 - beta / 2) * zc # Lower bound of the mobility zp = (1 + beta / 2) * zc return aerosol.z2d(zm, self.air, 1) - aerosol.z2d(zp, self.air, 1) for e, i in enumerate(diam): try: fwhm[e] = xfer(i, mean_data.Aer_Q_VLPM, mean_data.Sh_Q_VLPM) dlogd[e] = np.log10(i + fwhm[e] / 2) - np.log10(i - fwhm[e] / 2) except (ValueError, ZeroDivisionError): fwhm[e] = np.nan print('Handling divide by zero error') except: fwhm[e] = np.nan print('Handling unknown error: ' + str(sys.exc_info()[0])) # Correct for multiple charging. We will use the array dn by reference and stuff this # into another array self.__chargecorr__(diam, dn, self.air) output_sd = np.copy(dn) # Divide the concentration by dlogdp from the transfer function output_sd /= dlogd # Use the 1D interpolation scheme to project the current concentrations # onto the array defined by diam_interp f = interp1d(diam, output_sd, bounds_error=False, kind='linear') # Return the interpolated dNdlogDp distribution return f(self.diam_interp)
{ "content_hash": "c5c4837732e1b805ec5bff05bc93c11b", "timestamp": "", "source": "github", "line_count": 535, "max_line_length": 118, "avg_line_length": 39.609345794392524, "alnum_prop": 0.5259308196876032, "repo_name": "lo-co/atm-py", "id": "8838424fb03c982cc5a5d352d7cd06ec70857e9b", "size": "21191", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "build/lib/atmPy/aerosols/instrument/DMA/smps.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "805820" } ], "symlink_target": "" }
from azure.identity import DefaultAzureCredential from azure.mgmt.cdn import CdnManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-cdn # USAGE python origins_get.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = CdnManagementClient( credential=DefaultAzureCredential(), subscription_id="subid", ) response = client.origins.get( resource_group_name="RG", profile_name="profile1", endpoint_name="endpoint1", origin_name="www-someDomain-net", ) print(response) # x-ms-original-file: specification/cdn/resource-manager/Microsoft.Cdn/stable/2021-06-01/examples/Origins_Get.json if __name__ == "__main__": main()
{ "content_hash": "6b7e7814bf2eafc5dd69115756616c83", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 114, "avg_line_length": 30.685714285714287, "alnum_prop": 0.7057728119180633, "repo_name": "Azure/azure-sdk-for-python", "id": "4fd90004ad9f25d1ab856662002515d42e7e6d85", "size": "1542", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/cdn/azure-mgmt-cdn/generated_samples/origins_get.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
import os import ConfigParser # 3rd party import requests from fabric.api import * from fabric import colors import fabtools # local import exceptions def fabfile_root(): return os.path.dirname(os.path.abspath(__file__)) def fabfile_templates_root(): return os.path.join(fabfile_root(), "templates") def project_root(): return os.path.dirname(fabfile_root()) def remote_project_root(): return "/vagrant" def get_config_parser(): parser = ConfigParser.RawConfigParser() parser.read(os.path.join(project_root(), "config.ini")) return parser def set_hosts_from_config(): parser = get_config_parser() env.hosts = parser.get('servers', env.provider).split(",")
{ "content_hash": "89dcdc17dc8f9df513c3f940a8b4b7ca", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 62, "avg_line_length": 21.875, "alnum_prop": 0.7071428571428572, "repo_name": "bjlange/revenge", "id": "8ea542e9159dd9dc334b47c71544158c3dfa4fe6", "size": "719", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "fabfile/utils.py", "mode": "33188", "license": "mit", "language": [ { "name": "JavaScript", "bytes": "6329" }, { "name": "Python", "bytes": "13784" } ], "symlink_target": "" }
import markovify import nltk import re import numpy as np import urllib import oauth2 as oauth from settings import conn, db, auth, post_tags, blogName class POSifiedText(markovify.Text): def word_split(self, sentence): words = re.split(self.word_split_pattern, sentence) if words[0] != "": words = ["::".join(tag) for tag in nltk.pos_tag(words)] else: words = list("",) return words def word_join(self, words): sentence = " ".join(word.split("::")[0] for word in words) return sentence db.execute("SELECT body FROM fics ORDER BY date LIMIT 500") posts = db.fetchall() text = [post[0].strip() for post in posts] text = " ".join(text) text_model = POSifiedText(text, state_size=3) output = "" for i in range(abs(int(np.random.normal(9, 4, 1))) + 1): sentence = text_model.make_sentence() if sentence is not None: output += sentence.strip() + " " title = text_model.make_short_sentence(70) client = oauth.Client( oauth.Consumer(key=auth["consumer_key"], secret=auth["consumer_secret"]), oauth.Token(key=auth["oauth_token"], secret=auth["oauth_token_secret"]) ) resp, content = client.request( f"https://api.tumblr.com/v2/blog/{blogName}/post", method="POST", body=urllib.parse.urlencode({ "title": title, "body": output, "tags": ",".join(post_tags), "format": "markdown" }) )
{ "content_hash": "6883722ba3503dc91d361e6a68997c0b", "timestamp": "", "source": "github", "line_count": 55, "max_line_length": 77, "avg_line_length": 26.145454545454545, "alnum_prop": 0.6258692628650904, "repo_name": "veggiedefender/miraculousladybot", "id": "f55036f06d6f44bf01d1567b6498c49d083b7b80", "size": "1438", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "generate.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "2806" } ], "symlink_target": "" }
import os import shutil import glob import time import sys import subprocess import string from optparse import OptionParser, make_option SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) PKG_NAME = os.path.basename(SCRIPT_DIR) PARAMETERS = None #XW_ENV = "export DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/5000/dbus/user_bus_socket" SRC_DIR = "" PKG_SRC_DIR = "" def doCMD(cmd): # Do not need handle timeout in this short script, let tool do it print "-->> \"%s\"" % cmd output = [] cmd_return_code = 1 cmd_proc = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) while True: output_line = cmd_proc.stdout.readline().strip("\r\n") cmd_return_code = cmd_proc.poll() if output_line == '' and cmd_return_code is not None: break sys.stdout.write("%s\n" % output_line) sys.stdout.flush() output.append(output_line) return (cmd_return_code, output) def updateCMD(cmd=None): if "pkgcmd" in cmd: cmd = "su - %s -c '%s;%s'" % (PARAMETERS.user, XW_ENV, cmd) return cmd def getUSERID(): if PARAMETERS.mode == "SDB": cmd = "sdb -s %s shell id -u %s" % ( PARAMETERS.device, PARAMETERS.user) else: cmd = "ssh %s \"id -u %s\"" % ( PARAMETERS.device, PARAMETERS.user) return doCMD(cmd) def getPKGID(pkg_name=None): if PARAMETERS.mode == "SDB": cmd = "sdb -s %s shell %s" % ( PARAMETERS.device, updateCMD('pkgcmd -l')) else: cmd = "ssh %s \"%s\"" % ( PARAMETERS.device, updateCMD('pkgcmd -l')) (return_code, output) = doCMD(cmd) if return_code != 0: return None test_pkg_id = None for line in output: if line.find("[" + pkg_name + "]") != -1: pkgidIndex = line.split().index("pkgid") test_pkg_id = line.split()[pkgidIndex + 1].strip("[]") break return test_pkg_id def doRemoteCMD(cmd=None): if PARAMETERS.mode == "SDB": cmd = "sdb -s %s shell %s" % (PARAMETERS.device, updateCMD(cmd)) else: cmd = "ssh %s \"%s\"" % (PARAMETERS.device, updateCMD(cmd)) return doCMD(cmd) def doRemoteCopy(src=None, dest=None): if PARAMETERS.mode == "SDB": cmd_prefix = "sdb -s %s push" % PARAMETERS.device cmd = "%s %s %s" % (cmd_prefix, src, dest) else: cmd = "scp -r %s %s:/%s" % (src, PARAMETERS.device, dest) (return_code, output) = doCMD(cmd) doRemoteCMD("sync") if return_code != 0: return True else: return False def uninstPKGs(): action_status = True for root, dirs, files in os.walk(SCRIPT_DIR): for file in files: if file.endswith(".wgt"): pkg_id = getPKGID(os.path.basename(os.path.splitext(file)[0])) if not pkg_id: action_status = False continue (return_code, output) = doRemoteCMD( "pkgcmd -u -t wgt -q -n %s" % pkg_id) for line in output: if "Failure" in line: action_status = False break (return_code, output) = doRemoteCMD( "rm -rf %s" % PKG_SRC_DIR) if return_code != 0: action_status = False (return_code, output) = doRemoteCMD("rm -rf %s/Images" % SRC_DIR) if return_code != 0: action_status = False (return_code, output) = doRemoteCMD("rm -rf %s/Sounds" % SRC_DIR) if return_code != 0: action_status = False return action_status def instPKGs(): action_status = True (return_code, output) = doRemoteCMD( "mkdir -p %s" % PKG_SRC_DIR) if return_code != 0: action_status = False for root, dirs, files in os.walk(SCRIPT_DIR): for file in files: if file.endswith(".wgt"): if not doRemoteCopy( os.path.join(root, file), "%s/%s" % (SRC_DIR, file)): action_status = False (return_code, output) = doRemoteCMD( "pkgcmd -i -t wgt -q -p %s/%s" % (SRC_DIR, file)) doRemoteCMD("rm -rf %s/%s" % (SRC_DIR, file)) for line in output: if "Failure" in line: action_status = False break (return_code, output) = doRemoteCMD("mkdir -p %s/Images" % SRC_DIR) if return_code != 0: action_status = False if not doRemoteCopy("%s/*.jpg" % SCRIPT_DIR, "%s/Images" % SRC_DIR): action_status = False (return_code, output) = doRemoteCMD("mkdir -p %s/Sounds" % SRC_DIR) if return_code != 0: action_status = False if not doRemoteCopy("%s/*.mp3" % SCRIPT_DIR, "%s/Sounds" % SRC_DIR): action_status = False return action_status def main(): try: usage = "usage: inst.py -i" opts_parser = OptionParser(usage=usage) opts_parser.add_option( "-m", dest="mode", action="store", help="Specify mode") opts_parser.add_option( "-s", dest="device", action="store", help="Specify device") opts_parser.add_option( "-i", dest="binstpkg", action="store_true", help="Install package") opts_parser.add_option( "-u", dest="buninstpkg", action="store_true", help="Uninstall package") opts_parser.add_option( "-a", dest="user", action="store", help="User name") global PARAMETERS (PARAMETERS, args) = opts_parser.parse_args() except Exception as e: print "Got wrong option: %s, exit ..." % e sys.exit(1) if not PARAMETERS.user: PARAMETERS.user = "app" global SRC_DIR, PKG_SRC_DIR SRC_DIR = "/home/%s/content" % PARAMETERS.user PKG_SRC_DIR = "%s/tct/opt/%s" % (SRC_DIR, PKG_NAME) if not PARAMETERS.mode: PARAMETERS.mode = "SDB" if PARAMETERS.mode == "SDB": if not PARAMETERS.device: (return_code, output) = doCMD("sdb devices") for line in output: if str.find(line, "\tdevice") != -1: PARAMETERS.device = line.split("\t")[0] break else: PARAMETERS.mode = "SSH" if not PARAMETERS.device: print "No device provided" sys.exit(1) user_info = getUSERID() re_code = user_info[0] if re_code == 0: global XW_ENV userid = user_info[1][0] XW_ENV = "export DBUS_SESSION_BUS_ADDRESS=unix:path=/run/user/%s/dbus/user_bus_socket" % str( userid) else: print "[Error] cmd commands error : %s" % str(user_info[1]) sys.exit(1) if PARAMETERS.binstpkg and PARAMETERS.buninstpkg: print "-i and -u are conflict" sys.exit(1) if PARAMETERS.buninstpkg: if not uninstPKGs(): sys.exit(1) else: if not instPKGs(): sys.exit(1) if __name__ == "__main__": main() sys.exit(0)
{ "content_hash": "794bc430c0c23aff9d818b5e355cf9e0", "timestamp": "", "source": "github", "line_count": 237, "max_line_length": 101, "avg_line_length": 29.88607594936709, "alnum_prop": 0.5444020895100946, "repo_name": "JianfengXu/crosswalk-test-suite", "id": "5b1a0ea21e740d8fdf2cad0725e86a07440cb8a2", "size": "7106", "binary": false, "copies": "4", "ref": "refs/heads/master", "path": "webapi/tct-notification-tizen-tests/inst.wgt.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "1693" }, { "name": "C", "bytes": "28136" }, { "name": "CSS", "bytes": "401725" }, { "name": "CoffeeScript", "bytes": "18978" }, { "name": "Cucumber", "bytes": "106420" }, { "name": "GLSL", "bytes": "6990" }, { "name": "Groff", "bytes": "12" }, { "name": "HTML", "bytes": "40865855" }, { "name": "Java", "bytes": "879556" }, { "name": "JavaScript", "bytes": "4750576" }, { "name": "Logos", "bytes": "12" }, { "name": "Makefile", "bytes": "1044" }, { "name": "PHP", "bytes": "45437" }, { "name": "Python", "bytes": "4108034" }, { "name": "Shell", "bytes": "851074" } ], "symlink_target": "" }
""" Copyright (c) 2004-Present Pivotal Software, Inc. This program and the accompanying materials are made available under the terms of the under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import random import sys def main(total_rows, number_of_error_rows): error_count = 0 for i in xrange(number_of_error_rows): print "error_%s" %str(error_count) for i in xrange(total_rows - number_of_error_rows): print "%s|%s_number" %(i,i) if __name__ == '__main__': total_rows = 20 error_rows = 0 if len(sys.argv) > 1: total_rows = int(sys.argv[1]) error_rows = int(sys.argv[2]) main(total_rows, error_rows)
{ "content_hash": "77c381ab1f01aad41bb99ad82d070ce3", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 72, "avg_line_length": 32.8, "alnum_prop": 0.6933797909407665, "repo_name": "janebeckman/gpdb", "id": "b77d897f9106b772186185a8a7abe27044a42692", "size": "1148", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "src/test/tinc/tincrepo/mpp/gpdb/tests/queries/basic/exttab/errlog/sql/datagen_first_errors.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "Assembly", "bytes": "5665" }, { "name": "Batchfile", "bytes": "11492" }, { "name": "C", "bytes": "35420653" }, { "name": "C++", "bytes": "3779804" }, { "name": "CMake", "bytes": "17118" }, { "name": "CSS", "bytes": "7407" }, { "name": "Csound Score", "bytes": "179" }, { "name": "DTrace", "bytes": "1160" }, { "name": "Fortran", "bytes": "14777" }, { "name": "GDB", "bytes": "576" }, { "name": "Gherkin", "bytes": "737638" }, { "name": "HTML", "bytes": "191406" }, { "name": "Java", "bytes": "268244" }, { "name": "JavaScript", "bytes": "23969" }, { "name": "Lex", "bytes": "196216" }, { "name": "M4", "bytes": "104559" }, { "name": "Makefile", "bytes": "437850" }, { "name": "PLSQL", "bytes": "260471" }, { "name": "PLpgSQL", "bytes": "5511854" }, { "name": "Perl", "bytes": "3894341" }, { "name": "Perl 6", "bytes": "14377" }, { "name": "Python", "bytes": "8762921" }, { "name": "Roff", "bytes": "51338" }, { "name": "Ruby", "bytes": "26724" }, { "name": "SQLPL", "bytes": "3825811" }, { "name": "Shell", "bytes": "554328" }, { "name": "XS", "bytes": "8405" }, { "name": "XSLT", "bytes": "5779" }, { "name": "Yacc", "bytes": "490694" } ], "symlink_target": "" }
"""Android automated build script. This script may be used for builds of LiquidFun Paint. Optional environment variables: ANDROID_SDK_HOME = Path to the Android SDK. Required if it is not passed on the command line. NDK_HOME = Path to the Android NDK. Required if it is not passed on the command line. MAKE_FLAGS = String to override the default make flags with for ndk-build. ANT_PATH = Path to ant executable. Required if it is not in $PATH or passed on the command line. LIQUIDFUN_SRC_PATH = Path to LiquidFun source directory. Required if it is not passed on the command line. SWIG_BIN = Path to SWIG binary executable. Required if it is not passed on the command line. SWIG_LIB = Path to SWIG shared files directory. If it is not passed on the command line, we will rely on SWIG_BIN to get it. OUTPUT_ZIP = Path and name to the output archive of build artifacts """ import argparse import distutils.spawn import os import shutil import subprocess import sys import buildutils _ANT_FLAGS = 'ant_flags' _LIQUIDFUN_SRC_PATH_ENV_VAR = 'LIQUIDFUN_SRC_PATH' _LIQUIDFUN_SRC_PATH = 'liquidfun_src_path' _SWIG_LIB_ENV_VAR = 'SWIG_LIB' _SWIG_LIB = 'swig_lib' _SWIG_BIN_ENV_VAR = 'SWIG_BIN' _SWIG_BIN = 'swig_bin' _OUTPUT_ZIP = 'output_zip' _OUTPUT_APK_DIR = 'output_apk_dir' def AddArguments(parser): """Add module-specific command line arguments to an argparse parser. This will take an argument parser and add arguments appropriate for this module. It will also set appropriate default values. Args: parser: The argparse.ArgumentParser instance to use. """ buildutils.AddArguments(parser) defaults = {} defaults[_ANT_FLAGS] = 'release' defaults[_LIQUIDFUN_SRC_PATH] = (os.getenv(_LIQUIDFUN_SRC_PATH_ENV_VAR) or '../../libs/liquidfun/Box2D') defaults[_SWIG_BIN] = (os.getenv(_SWIG_BIN_ENV_VAR) or distutils.spawn.find_executable('swig')) defaults[_SWIG_LIB] = os.getenv(_SWIG_LIB_ENV_VAR) defaults[_OUTPUT_ZIP] = None defaults[_OUTPUT_APK_DIR] = None parser.add_argument('-A', '--' + _ANT_FLAGS, help='Flags to use to override ant flags', dest=_ANT_FLAGS, default=defaults[_ANT_FLAGS]) parser.add_argument('-l', '--' + _LIQUIDFUN_SRC_PATH, help='Path to LiquidFun/Box2D source directory', dest=_LIQUIDFUN_SRC_PATH, default=defaults[_LIQUIDFUN_SRC_PATH]) parser.add_argument('--' + _SWIG_BIN, help='Path to SWIG binary', dest=_SWIG_BIN, default=defaults[_SWIG_BIN]) parser.add_argument('--' + _SWIG_LIB, help='Path to SWIG shared libraries', dest=_SWIG_LIB, default=defaults[_SWIG_LIB]) parser.add_argument('-z', help='Path and name to the output archive', dest=_OUTPUT_ZIP, default=defaults[_OUTPUT_ZIP]) parser.add_argument('-o', '--' + _OUTPUT_APK_DIR, help='Path to copy output APKs to.', dest=_OUTPUT_APK_DIR, default=defaults[_OUTPUT_APK_DIR]) class BuildEnvironment(buildutils.BuildEnvironment): """Class representing the build environment we will be building in. This class is derived from buildutils.BuildEnvironment and adds specific attributes for this project. This class resolves and exposes various build parameters as properties, which can be customized by users before building. It also provides methods to accomplish common build tasks such as executing build tools and archiving the resulting build artifacts. Attributes: ant_flags: Flags to pass to ant, for ant builds. """ def __init__(self, arguments): """Constructs the BuildEnvironment with basic information needed to build. The build properties as set by argument parsing are also available to be modified by code using this object after construction. It is required to call this function with a valid arguments object, obtained either by calling argparse.ArgumentParser.parse_args() after adding this modules arguments via buildutils.AddArguments(), or by passing in an object returned from buildutils.BuildDefaults(). Args: arguments: The argument object returned from ArgumentParser.parse_args(). """ super(BuildEnvironment, self).__init__(arguments) if type(arguments) is dict: args = arguments else: args = vars(arguments) self.ant_flags = args[_ANT_FLAGS] os.environ[_LIQUIDFUN_SRC_PATH_ENV_VAR] = args[_LIQUIDFUN_SRC_PATH] os.environ[_SWIG_BIN_ENV_VAR] = args[_SWIG_BIN] os.environ[_SWIG_LIB_ENV_VAR] = (args[_SWIG_LIB] or self.CaptureSubprocessOutput( [args[_SWIG_BIN], '-swiglib'])) self.output_zip = args[_OUTPUT_ZIP] self.output_apk_dir = args[_OUTPUT_APK_DIR] def CaptureSubprocessOutput(self, argv): """Returns the output of a subprocess as run with the given argument list. Runs a process via popen(). Args: argv: A list of process arguments starting with the binary name, in the form returned by shlex. Returns: The commandline output from the subprocess, with the last newline stripped. """ try: if self.verbose: print 'Running subcommand as: %s' % str(argv) process = subprocess.Popen(argv, stdout=subprocess.PIPE) process.wait() return process.communicate()[0].rstrip() except OSError: return '' def CopyFilesWithExtension(self, dirlist, extension, output_path, flatten=False, exclude=None): """Copy files from the specified directory path to the output path. Copy any files of a certain extension, present in the directories specified in dirlist, to the specified output path. All dirlist paths are relative from the project top directory. Args: dirlist: A list of directories to search for files in. extension: The extension of the files we are searching for. output_path: Path to the output directory, relative to the value of the project_directory property. flatten: If true, copy all files to the same directory without preserving directory structure. exclude: Optional list of directory names to filter from dir trees in dirlist. Subdirectories with these names will be skipped when writing the archive. Raises: IOError: An error occurred writing or copying the archive. """ outputabs = os.path.join(self.project_directory, output_path) for d in dirlist: srcdir = os.path.join(self.project_directory, d) for root, dirs, files in os.walk(srcdir): if exclude: for ex in exclude: if ex in dirs: dirs.remove(ex) for f in files: if f.endswith(extension): outabspath = outputabs if not flatten: outrelpath = os.path.relpath(root, self.project_directory) outabspath = os.path.join(outputabs, outrelpath) if not os.path.exists(outabspath): os.makedirs(outabspath) copyf = os.path.join(root, f) if self.verbose: print 'Copying %s to: %s' % (copyf, outabspath) shutil.copy2(copyf, outabspath) def main(): parser = argparse.ArgumentParser() AddArguments(parser) args = parser.parse_args() retval = -1 env = BuildEnvironment(args) try: env.GitClean() env.BuildAndroidLibraries(['.']) env.RunSubprocess([env.ant_path, env.ant_flags]) if env.output_zip is not None: env.MakeArchive(['bin', 'libs', 'gen', 'obj'], env.output_zip) if env.output_apk_dir is not None: env.CopyFilesWithExtension(['bin'], '.apk', env.output_apk_dir, True, ['latest']) retval = 0 except buildutils.Error as e: print >> sys.stderr, 'Caught buildutils error: %s' % e.error_message retval = e.error_code except IOError as e: print >> sys.stderr, 'Caught IOError for file %s: %s' % (e.filename, e.strerror) retval = -1 return retval if __name__ == '__main__': sys.exit(main())
{ "content_hash": "cf20489aec67bdb741495cc5483fc96e", "timestamp": "", "source": "github", "line_count": 232, "max_line_length": 79, "avg_line_length": 36.0948275862069, "alnum_prop": 0.6472414616670648, "repo_name": "luiseduardohdbackup/LiquidFunPaint", "id": "39e72c1dc0a4f2c2d540f96a175a17409fec5919", "size": "8991", "binary": false, "copies": "3", "ref": "refs/heads/develop", "path": "AutoBuild/build_android.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "GLSL", "bytes": "10249" }, { "name": "Java", "bytes": "152168" }, { "name": "Makefile", "bytes": "1590" }, { "name": "Python", "bytes": "28746" } ], "symlink_target": "" }
import _plotly_utils.basevalidators class TicktextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="ticktextsrc", parent_name="layout.polar.angularaxis", **kwargs, ): super(TicktextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
{ "content_hash": "df4b4388a8298c569c1b8d12b12aa1ad", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 70, "avg_line_length": 28.875, "alnum_prop": 0.5865800865800865, "repo_name": "plotly/plotly.py", "id": "31a4de19d0ed1f94d12866206ee6a299b22e8125", "size": "462", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "packages/python/plotly/plotly/validators/layout/polar/angularaxis/_ticktextsrc.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "545" }, { "name": "JavaScript", "bytes": "2074" }, { "name": "PostScript", "bytes": "565328" }, { "name": "Python", "bytes": "31506317" }, { "name": "TypeScript", "bytes": "71337" } ], "symlink_target": "" }
"""MongoDB storage backend""" from oslo.config import cfg import pymongo from ceilometer.alarm.storage import pymongo_base from ceilometer.openstack.common import log from ceilometer import storage from ceilometer.storage.mongo import utils as pymongo_utils cfg.CONF.import_opt('time_to_live', 'ceilometer.storage', group="database") LOG = log.getLogger(__name__) class Connection(pymongo_base.Connection): """Put the alarm data into a MongoDB database.""" CONNECTION_POOL = pymongo_utils.ConnectionPool() def __init__(self, url): # NOTE(jd) Use our own connection pooling on top of the Pymongo one. # We need that otherwise we overflow the MongoDB instance with new # connection since we instanciate a Pymongo client each time someone # requires a new storage connection. self.conn = self.CONNECTION_POOL.connect(url) # Require MongoDB 2.4 to use $setOnInsert if self.conn.server_info()['versionArray'] < [2, 4]: raise storage.StorageBadVersion("Need at least MongoDB 2.4") connection_options = pymongo.uri_parser.parse_uri(url) self.db = getattr(self.conn, connection_options['database']) if connection_options.get('username'): self.db.authenticate(connection_options['username'], connection_options['password']) # NOTE(jd) Upgrading is just about creating index, so let's do this # on connection to be sure at least the TTL is correcly updated if # needed. self.upgrade() def clear(self): self.conn.drop_database(self.db) # Connection will be reopened automatically if needed self.conn.close()
{ "content_hash": "5657d84f91251dd9f900945cfc6b330c", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 76, "avg_line_length": 36.229166666666664, "alnum_prop": 0.6687751581368603, "repo_name": "froyobin/ceilometer", "id": "19fff006174b15d74af9757c7e3282f913ef7460", "size": "2543", "binary": false, "copies": "5", "ref": "refs/heads/out_branch", "path": "ceilometer/alarm/storage/impl_mongodb.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "6027" }, { "name": "Python", "bytes": "2682026" }, { "name": "Shell", "bytes": "3204" } ], "symlink_target": "" }
""" This file is part of the TheLMA (THe Laboratory Management Application) project. See LICENSE.txt for licensing, CONTRIBUTORS.txt for contributor information. Molecule design gene table. """ from sqlalchemy import Column from sqlalchemy import ForeignKey from sqlalchemy import Integer from sqlalchemy import Table __docformat__ = 'reStructuredText en' __all__ = ['create_table'] def create_table(metadata, molecule_design_tbl, gene_tbl): "Table factory." tbl = Table('molecule_design_gene', metadata, Column('molecule_design_id', Integer, ForeignKey(molecule_design_tbl.c.molecule_design_id, onupdate='CASCADE', ondelete='CASCADE'), primary_key=True, index=True), Column('gene_id', Integer, ForeignKey(gene_tbl.c.gene_id, onupdate='CASCADE', ondelete='CASCADE'), primary_key=True, index=True), ) return tbl
{ "content_hash": "1d3e54403c2e4e3bfadfa6441e0dd3d4", "timestamp": "", "source": "github", "line_count": 29, "max_line_length": 80, "avg_line_length": 33.241379310344826, "alnum_prop": 0.6493775933609959, "repo_name": "helixyte/TheLMA", "id": "229e5b1dc1bd8379b11677aa02853f64b2c56150", "size": "964", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "thelma/repositories/rdb/schema/tables/moleculedesigngene.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "3126" }, { "name": "Python", "bytes": "3329729" }, { "name": "Shell", "bytes": "3071" } ], "symlink_target": "" }
import threading import time class myThread(threading.Thread): def __init__(self, threadID, name, counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print('Starting ' + self.name) calculateMass(self.name, self.counter, 5) print('Exiting ' + self.name) calculations = {} threadLock = threading.Lock() def calculateMass(threadName, delay, counter): for i in range(counter): time.sleep(delay) print('{0}: on iteration {1}'.format(threadName, i+1)) # Mass has been calculated. Store final computation. # If there are 3 active threads, we know the density # hasn't been calculated yet, so wait. while threading.active_count() == 3: time.sleep(0.5) calculations['mass'] = calculations['density'] / 2 print('{} finished calculating mass...'.format(threadName)) def calculateDensity(threadName): print('{} starting to calculate the density...'.format(threadName)) total = 0 for i in range(6555): for j in range(9999): total += 1 calculations['density'] = total print('{} finished calculating density...'.format(threadName)) thread1 = myThread(1, 'Thread-1', 1) thread2 = threading.Thread(target=calculateDensity, name='Thread-2', args=['Thread-2']) # Start threads thread1.start() thread2.start() print('Exiting main thread...')
{ "content_hash": "9d1f88503590a0fa4b4cb4e1b1a8c3b3", "timestamp": "", "source": "github", "line_count": 53, "max_line_length": 87, "avg_line_length": 27.58490566037736, "alnum_prop": 0.6484268125854993, "repo_name": "UALR-ACM/Practice-Problems", "id": "f66d82c5509c01c1b9342b771ade39f9e9b97ac4", "size": "1482", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "2017-1-26/threading_example3_solution.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "1628" }, { "name": "Java", "bytes": "24280" }, { "name": "Python", "bytes": "29013" } ], "symlink_target": "" }
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas.io.data as web from math import sqrt import math ############################# # FINANCIAL HELPER ROUTINES # ############################# def compute_nyears(x) : return np.double((x.index[-1] - x.index[0]).days) / 365. def compute_cagr(equity) : return np.double((equity.ix[-1] / equity.ix[0]) ** (1. / compute_nyears(equity)) - 1) def compute_annual_factor(equity) : possible_values = [252,52,26,13,12,6,4,3,2,1] L = pd.Series(len(equity) / compute_nyears(equity) - possible_values) return possible_values[L.index[L == L.min()]] def compute_sharpe(equity) : rets = equity / equity.shift(1) - 1 temp = compute_annual_factor(rets) rets = pd.Series(rets) return sqrt(temp) * rets.mean()/rets.std() def compute_DVR(equity): return compute_sharpe(equity) * compute_R2(equity) def compute_drawdown(x) : return (x - pd.expanding_max(x))/pd.expanding_max(x) def compute_max_drawdown(x): return compute_drawdown(x).min() def compute_rolling_drawdown(equity) : rolling_dd = pd.rolling_apply(equity, 252, compute_max_drawdown, min_periods=0) df = pd.concat([equity, rolling_dd], axis=1) df.columns = ['x', 'rol_dd_10'] plt.plot(df) plt.grid() def compute_avg_drawdown(x) : drawdown = compute_drawdown(x).shift(-1) drawdown[-1]=0. dend = [drawdown.index[i] for i in range(len(drawdown)) if drawdown[i] == 0 and drawdown[i-1] != 0] dstart = [drawdown.index[i] for i in range(len(drawdown)-1) if drawdown[i] == 0 and drawdown[i+1] != 0] f = pd.DataFrame([dstart, dend], index=['dstart', 'dend']).transpose() f['drawdown'] = [drawdown[f['dstart'][i]:f['dend'][i]].min() for i in range(len(f))] return f.drawdown.mean() def compute_calmar(x) : return compute_cagr(x) / compute_max_drawdown(x) def compute_R2(equity) : x = pd.DataFrame(equity) x.columns=[0] x[1]=[equity.index[i].toordinal() for i in range(len(equity))] return x[0].corr(x[1]) ** 2 def compute_volatility(x) : temp = compute_annual_factor(x) return sqrt(temp) * x.std() def compute_var(x, probs=0.05) : return x.quantile(probs) def compute_cvar(x, probs=0.05) : return x[ x < x.quantile(probs) ].mean() def print_stats(equity) : print '**** STATISTICS ****' print '====================\n' print 'n_years : ', compute_nyears(equity) print 'cagr : ', compute_cagr(equity) * 100, '%' rets = equity / equity.shift(1) - 1 print 'annual_factor : ', compute_annual_factor(equity) print 'sharpe : ', compute_sharpe(equity) compute_drawdown(rets) print 'max_drawdown : ', compute_max_drawdown(equity) * 100, '%' print 'avg_drawdown : ', compute_avg_drawdown(equity) * 100, '%' print 'calmar : ', compute_calmar(equity) print 'R-squared : ', compute_R2(equity) print 'DVR : ', compute_DVR(equity) print 'volatility : ', compute_volatility(rets) #print 'exposure : ', compute_exposure(models$equal_weight) print 'VAR 5% : ', compute_var(equity) print 'CVAR 5% : ', compute_cvar(equity) from zipline.utils import tradingcalendar def endpoints(start, end, period='m') : dates = tradingcalendar.get_trading_days(start, end) if isinstance(period, int) : dates = [dates[i] for i in range(0, len(dates), period)] else : if period == 'm' : months = 1 elif period == 'q' : months = 3 elif period == 'b' : months = 6 elif period == 'y' : months = 12 e_dates = [dates[i - 1] for i in range(1,len(dates))\ if dates[i].month > dates[i-1].month\ or dates[i].year > dates[i-1].year ]+ list([dates[-1]]) dates = [e_dates[i] for i in range(0,len(e_dates),months)] return dates def add_portfolio(name, portfolios) : return dict(portfolios.items() + {name : {}}.items()) # topn def ntop(prices, n) : weights = pd.DataFrame(0., index=prices.index, columns=prices.columns) for i in range(len(prices)) : n_not_na = prices.ix[i].count() n_row = min(n, n_not_na) for s in prices.columns : if prices.ix[i][s] <= n : weights.ix[i][s] = 1. / n_row else : weights.ix[i][s] = 0. return weights def Monthly_Return_Table (monthly_returns) : # monthly_returns is a pandas Series of monthly returns indexed by date(Y-m) df = pd.DataFrame(monthly_returns.values, columns=['Data']) df['Month'] = monthly_returns.index.month df['Year']= monthly_returns.index.year table = df.pivot_table(rows='Year', cols='Month').fillna(0) table['Annual Return'] = table.apply(np.sum, axis=1) * 100 return table def generate_orders(transactions) : orders = pd.DataFrame() for i in range(len(transactions)): for j in range(len(transactions.columns)): t = transactions.ix[i] if transactions.ix[i][j] < 0 : orders = orders.append([[t.name.date().year, t.name.date().month, t.name.date().day, t.index[j], 'Sell', abs(t[j])]]) if transactions.ix[i][j] > 0 : orders = orders.append([[t.name.date().year, t.name.date().month, t.name.date().day, t.index[j], 'Buy', abs(t[j])]]) orders.columns = ['Year', 'Month', 'Day', 'Symbol', 'Action', 'Qty'] return orders def save_portfolio_metrics (portfolios, portfolio_name, period_ends, prices, \ p_value, p_weights, path=None) : rebalance_qtys = (p_weights.ix[period_ends] / prices.ix[period_ends]) * p_value.ix[period_ends] p_holdings = rebalance_qtys.align(prices)[0].shift(1).ffill().fillna(0) transactions = p_holdings - p_holdings.shift(1).fillna(0) p_returns = p_value.pct_change(periods=1) p_index = np.cumproduct(1 + p_returns) m_rets = (1 + p_returns).resample('M', how='prod', kind='period') - 1 portfolios[portfolio_name]['equity'] = p_value portfolios[portfolio_name]['ret'] = p_returns portfolios[portfolio_name]['cagr'] = compute_cagr(p_value) * 100 portfolios[portfolio_name]['sharpe'] = compute_sharpe(p_value) portfolios[portfolio_name]['weight'] = p_weights portfolios[portfolio_name]['transactions'] = transactions portfolios[portfolio_name]['period_return'] = 100 * (p_value.ix[-1] / p_value[0] - 1) portfolios[portfolio_name]['avg_monthly_return'] = p_index.resample('BM', how='last').pct_change().mean() * 100 portfolios[portfolio_name]['monthly_return_table'] = Monthly_Return_Table(m_rets) portfolios[portfolio_name]['drawdowns'] = compute_drawdown(p_value).dropna() portfolios[portfolio_name]['max_drawdown'] = compute_max_drawdown(p_value) * 100 portfolios[portfolio_name]['max_drawdown_date'] = p_value.index[compute_drawdown(p_value)==compute_max_drawdown(p_value)][0].date().isoformat() portfolios[portfolio_name]['avg_drawdown'] = compute_avg_drawdown(p_value) * 100 portfolios[portfolio_name]['calmar'] = compute_calmar(p_value) portfolios[portfolio_name]['R_squared'] = compute_calmar(p_value) portfolios[portfolio_name]['DVR'] = compute_DVR(p_value) portfolios[portfolio_name]['volatility'] = compute_volatility(p_returns) portfolios[portfolio_name]['VAR'] = compute_var(p_value) portfolios[portfolio_name]['CVAR'] = compute_cvar(p_value) portfolios[portfolio_name]['rolling_annual_returns'] = pd.rolling_apply(p_returns, 252, np.sum) portfolios[portfolio_name]['p_holdings'] = p_holdings portfolios[portfolio_name]['transactions'] = np.round(transactions[transactions.sum(1)!=0], 0) portfolios[portfolio_name]['share'] = p_holdings portfolios[portfolio_name]['orders'] = generate_orders(transactions) portfolios[portfolio_name]['best'] = max(p_returns) portfolios[portfolio_name]['worst'] = min(p_returns) if path != None : portfolios[portfolio_name].equity.to_csv(path + portfolio_name + '_equity.csv') portfolios[portfolio_name].weight.to_csv(path + portfolio_name + '_weight.csv') portfolios[portfolio_name].share.to_csv(path + portfolio_name + '_share.csv') portfolios[portfolio_name].transactions.to_csv(path + portfolio_name + '_transactions.csv') portfolios[portfolio_name].orders.to_csv(path + portfolio_name + '_orders.csv') return def backtest(prices, weights, period_ends, capital, offset=0., commission=0.) : p_holdings = (capital / prices * weights.align(prices)[0]).shift(offset).ffill().fillna(0) w = weights.align(prices)[0].shift(offset).fillna(0) trade_dates = w[w.sum(1) != 0].index p_cash = capital - (p_holdings * prices.shift(offset)).sum(1) totalcash = p_cash[trade_dates].align(prices[prices.columns[0]])[0].ffill().fillna(0) p_returns = (totalcash + (p_holdings * prices).sum(1) - \ (abs(p_holdings - p_holdings.shift(1)) * commission).sum(1)) / \ (totalcash + (p_holdings * prices.shift(1)).sum(1)) - 1 p_returns = p_returns.fillna(0) # p_weights = p_holdings * prices.shift(offset) / (totalcash + (p_holdings * prices.shift(offset)).sum(1)) p_weights = pd.DataFrame([(p_holdings * prices.shift(offset))[symbol] / \ (totalcash + (p_holdings * prices.shift(offset)).sum(1)) \ for symbol in prices.columns], index=prices.columns).T p_weights = p_weights.fillna(0) return np.cumproduct(1. + p_returns) * capital, p_holdings, p_returns, p_weights # note: hist_returns are CONTINUOUSLY COMPOUNDED RETURNS # ie R = e ** hist_returns def create_historical_ia(symbols, hist_returns, annual_factor=252) : ia = {} ia['n'] = len(symbols) ia['annual_factor'] = annual_factor ia['symbols'] = hist_returns.columns ia['symbol_names'] = hist_returns.columns ia['hist_returns'] = hist_returns[symbols] # ret = hist_returns[symbols].apply(lambda(x): (e ** x) -1.) ia['arithmetic_return'] = hist_returns[symbols].mean() ia['geometric_return'] = hist_returns[symbols].apply(lambda(x): np.prod(1. + x) ** (1. / len(x)) -1.) ia['std_deviation'] = hist_returns[symbols].std() ia['correlation'] = hist_returns[symbols].corr() ia['arithmetic_return'] = (1. + ia['arithmetic_return']) ** ia['annual_factor'] - 1. ia['geometric_return'] = (1. + ia['geometric_return']) ** ia['annual_factor'] - 1. ia['risk'] = sqrt(ia['annual_factor']) * ia['std_deviation'] for i in range(len(ia['risk'])): if ia['risk'][i].round(6) == 0.0 : ia['risk'][i] = 0.0000001 ia['cov'] = ia['correlation'] * (ia['risk'].dot(ia['risk'].T)) ia['expected_return'] = ia['arithmetic_return'] return(ia) #p_value, p_holdings, p_returns, p_weights = backtest(prices, weights, period_ends, capital, offset=1., commission=0.) iif = lambda a,b,c: (b,c)[not a] def ifna(x,y) : return(iif(math.isnan(x)(x) or math.isinf(x), y, x)) #!/usr/bin/env python # On 20130210, v0.2 # Critical Line Algorithm # by MLdP <lopezdeprado@lbl.gov> #--------------------------------------------------------------- #--------------------------------------------------------------- class CLA: def __init__(self,mean,covar,lB,uB): # Initialize the class self.mean=mean self.covar=covar self.lB=lB self.uB=uB self.w=[] # solution self.l=[] # lambdas self.g=[] # gammas self.f=[] # free weights #--------------------------------------------------------------- def solve(self): # Compute the turning points,free sets and weights f,w=self.initAlgo() self.w.append(np.copy(w)) # store solution self.l.append(None) self.g.append(None) self.f.append(f[:]) while True: #1) case a): Bound one free weight l_in=None if len(f)>1: covarF,covarFB,meanF,wB=self.getMatrices(f) covarF_inv=np.linalg.inv(covarF) j=0 for i in f: l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,j,[self.lB[i],self.uB[i]]) if l>l_in:l_in,i_in,bi_in=l,i,bi j+=1 #2) case b): Free one bounded weight l_out=None if len(f)<self.mean.shape[0]: b=self.getB(f) for i in b: covarF,covarFB,meanF,wB=self.getMatrices(f+[i]) covarF_inv=np.linalg.inv(covarF) l,bi=self.computeLambda(covarF_inv,covarFB,meanF,wB,meanF.shape[0]-1, \ self.w[-1][i]) if (self.l[-1]==None or l<self.l[-1]) and l>l_out:l_out,i_out=l,i if (l_in==None or l_in<0) and (l_out==None or l_out<0): #3) compute minimum variance solution self.l.append(0) covarF,covarFB,meanF,wB=self.getMatrices(f) covarF_inv=np.linalg.inv(covarF) meanF=np.zeros(meanF.shape) else: #4) decide lambda if l_in>l_out: self.l.append(l_in) f.remove(i_in) w[i_in]=bi_in # set value at the correct boundary else: self.l.append(l_out) f.append(i_out) covarF,covarFB,meanF,wB=self.getMatrices(f) covarF_inv=np.linalg.inv(covarF) #5) compute solution vector wF,g=self.computeW(covarF_inv,covarFB,meanF,wB) for i in range(len(f)):w[f[i]]=wF[i] self.w.append(np.copy(w)) # store solution self.g.append(g) self.f.append(f[:]) if self.l[-1]==0:break #6) Purge turning points self.purgeNumErr(10e-10) self.purgeExcess() #--------------------------------------------------------------- def initAlgo(self): # Initialize the algo #1) Form structured array a=np.zeros((self.mean.shape[0]),dtype=[('id',int),('mu',float)]) b=[self.mean[i][0] for i in range(self.mean.shape[0])] # dump array into list a[:]=zip(range(self.mean.shape[0]),b) # fill structured array #2) Sort structured array b=np.sort(a,order='mu') #3) First free weight i,w=b.shape[0],np.copy(self.lB) while np.sum(w)<1: i-=1 w[b[i][0]]=self.uB[b[i][0]] w[b[i][0]]+=1-np.sum(w) return [b[i][0]],w #--------------------------------------------------------------- def computeBi(self,c,bi): if c>0: bi=bi[1][0] if c<0: bi=bi[0][0] return bi #--------------------------------------------------------------- def computeW(self,covarF_inv,covarFB,meanF,wB): #1) compute gamma onesF=np.ones(meanF.shape) g1=np.dot(np.dot(onesF.T,covarF_inv),meanF) g2=np.dot(np.dot(onesF.T,covarF_inv),onesF) if wB==None: g,w1=float(-self.l[-1]*g1/g2+1/g2),0 else: onesB=np.ones(wB.shape) g3=np.dot(onesB.T,wB) g4=np.dot(covarF_inv,covarFB) w1=np.dot(g4,wB) g4=np.dot(onesF.T,w1) g=float(-self.l[-1]*g1/g2+(1-g3+g4)/g2) #2) compute weights w2=np.dot(covarF_inv,onesF) w3=np.dot(covarF_inv,meanF) return -w1+g*w2+self.l[-1]*w3,g #--------------------------------------------------------------- def computeLambda(self,covarF_inv,covarFB,meanF,wB,i,bi): #1) C onesF=np.ones(meanF.shape) c1=np.dot(np.dot(onesF.T,covarF_inv),onesF) c2=np.dot(covarF_inv,meanF) c3=np.dot(np.dot(onesF.T,covarF_inv),meanF) c4=np.dot(covarF_inv,onesF) c=-c1*c2[i]+c3*c4[i] if c==0:return None,None #2) bi if type(bi)==list:bi=self.computeBi(c,bi) #3) Lambda if wB==None: # All free assets return float((c4[i]-c1*bi)/c),bi else: onesB=np.ones(wB.shape) l1=np.dot(onesB.T,wB) l2=np.dot(covarF_inv,covarFB) l3=np.dot(l2,wB) l2=np.dot(onesF.T,l3) return float(((1-l1+l2)*c4[i]-c1*(bi+l3[i]))/c),bi #--------------------------------------------------------------- def getMatrices(self,f): # Slice covarF,covarFB,covarB,meanF,meanB,wF,wB covarF=self.reduceMatrix(self.covar,f,f) meanF=self.reduceMatrix(self.mean,f,[0]) b=self.getB(f) covarFB=self.reduceMatrix(self.covar,f,b) wB=self.reduceMatrix(self.w[-1],b,[0]) return covarF,covarFB,meanF,wB #--------------------------------------------------------------- def getB(self,f): return self.diffLists(range(self.mean.shape[0]),f) #--------------------------------------------------------------- def diffLists(self,list1,list2): return list(set(list1)-set(list2)) #--------------------------------------------------------------- def reduceMatrix(self,matrix,listX,listY): # Reduce a matrix to the provided list of rows and columns if len(listX)==0 or len(listY)==0:return matrix_=matrix[:,listY[0]:listY[0]+1] for i in listY[1:]: a=matrix[:,i:i+1] matrix_=np.append(matrix_,a,1) matrix__=matrix_[listX[0]:listX[0]+1,:] for i in listX[1:]: a=matrix_[i:i+1,:] matrix__=np.append(matrix__,a,0) return matrix__ #--------------------------------------------------------------- def purgeNumErr(self,tol): # Purge violations of inequality constraints (associated with ill-conditioned covar matrix) i=0 while True: flag=False if i==len(self.w):break if abs(np.sum(self.w[i])-1)>tol: flag=True else: for j in range(self.w[i].shape[0]): if self.w[i][j]-self.lB[j]<-tol or self.w[i][j]-self.uB[j]>tol: flag=True;break if flag==True: del self.w[i] del self.l[i] del self.g[i] del self.f[i] else: i+=1 return #--------------------------------------------------------------- def purgeExcess(self): # Remove violations of the convex hull i,repeat=0,False while True: if repeat==False:i+=1 if i==len(self.w)-1:break w=self.w[i] mu=np.dot(w.T,self.mean)[0,0] j,repeat=i+1,False while True: if j==len(self.w):break w=self.w[j] mu_=np.dot(w.T,self.mean)[0,0] if mu<mu_: del self.w[i] del self.l[i] del self.g[i] del self.f[i] repeat=True break else: j+=1 return #--------------------------------------------------------------- def getMinVar(self): # Get the minimum variance solution var=[] for w in self.w: a=np.dot(np.dot(w.T,self.covar),w) var.append(a) return min(var)**.5,self.w[var.index(min(var))] #--------------------------------------------------------------- def getMaxSR(self): # Get the max Sharpe ratio portfolio #1) Compute the local max SR portfolio between any two neighbor turning points w_sr,sr=[],[] for i in range(len(self.w)-1): w0=np.copy(self.w[i]) w1=np.copy(self.w[i+1]) kargs={'minimum':False,'args':(w0,w1)} a,b=self.goldenSection(self.evalSR,0,1,**kargs) w_sr.append(a*w0+(1-a)*w1) sr.append(b) return max(sr),w_sr[sr.index(max(sr))] #--------------------------------------------------------------- def evalSR(self,a,w0,w1): # Evaluate SR of the portfolio within the convex combination w=a*w0+(1-a)*w1 b=np.dot(w.T,self.mean)[0,0] c=np.dot(np.dot(w.T,self.covar),w)[0,0]**.5 return b/c #--------------------------------------------------------------- def goldenSection(self,obj,a,b,**kargs): # Golden section method. Maximum if kargs['minimum']==False is passed from math import log,ceil tol,sign,args=1.0e-9,1,None if 'minimum' in kargs and kargs['minimum']==False:sign=-1 if 'args' in kargs:args=kargs['args'] numIter=int(ceil(-2.078087*log(tol/abs(b-a)))) r=0.618033989 c=1.0-r # Initialize x1=r*a+c*b;x2=c*a+r*b f1=sign*obj(x1,*args);f2=sign*obj(x2,*args) # Loop for i in range(numIter): if f1>f2: a=x1 x1=x2;f1=f2 x2=c*a+r*b;f2=sign*obj(x2,*args) else: b=x2 x2=x1;f2=f1 x1=r*a+c*b;f1=sign*obj(x1,*args) if f1<f2:return x1,sign*f1 else:return x2,sign*f2 #--------------------------------------------------------------- def efFrontier(self,points): # Get the efficient frontier mu,sigma,weights=[],[],[] a=np.linspace(0,1,points/len(self.w))[:-1] # remove the 1, to avoid duplications b=range(len(self.w)-1) for i in b: w0,w1=self.w[i],self.w[i+1] if i==b[-1]:a=np.linspace(0,1,points/len(self.w)) # include the 1 in the last iteration for j in a: w=w1*j+(1-j)*w0 weights.append(np.copy(w)) mu.append(np.dot(w.T,self.mean)[0,0]) sigma.append(np.dot(np.dot(w.T,self.covar),w)[0,0]**.5) return mu,sigma,weights #--------------------------------------------------------------- #--------------------------------------------------------------- def get_history(symbols, start, end, data_path): """ to get Yahoo data from saved csv files. If the file does not exist for the symbol, data is read from Yahoo finance and the csv saved. symbols: symbol list start, end : datetime start/end dates data_path : datapath for csv files - use double \\ and terminate path with \\ """ symbols_ls = list(symbols) for ticker in symbols: print ticker, try: #see if csv data available data = pd.read_csv(data_path + ticker + '.csv', index_col='Date', parse_dates=True) except: #if no csv data, create an empty dataframe data = pd.DataFrame(data=None, index=[start]) #check if there is data for the start-end data range if start.toordinal() < data.index[0].toordinal() \ or end.toordinal() > data.index[-1].toordinal(): print 'Refresh data.. ', try: new_data = web.get_data_yahoo(ticker, start, end) if new_data.empty==False: if data.empty==False: try: ticker_data = data.append(new_data).groupby(level=0, by=['rownum']).last() except: print 'Merge failed.. ' else: ticker_data = new_data try: ticker_data.to_csv(data_path + ticker + '.csv') print ' UPDATED.. ' except: print 'Save failed.. ' else: print 'No new data.. ' except: print 'Download failed.. ' # remove symbol from list symbols_ls.remove(ticker) else: print 'OK.. ' pass pdata = pd.Panel(dict((symbols_ls[i], pd.read_csv(data_path + symbols_ls[i] + '.csv',\ index_col='Date', parse_dates=True).sort(ascending=True)) for i in range(len(symbols_ls))) ) return pdata.ix[:, start:end, :] def get_trading_dates(start, end, offset=0): ''' to create a list of trading dates (timestamps) for use with Zipline or Quantopian. offset = 0 -> 1st trading day of month, offset = -1 -> last trading day of month. start, end are datetime.dates''' trading_dates = list([]) trading_days= tradingcalendar.get_trading_days(start, end) month = trading_days[0].month for i in range(len(trading_days)) : if trading_days[i].month != month : try : trading_dates = trading_dates + list([trading_days[i + offset]]) except : raise month = trading_days[i].month return trading_dates
{ "content_hash": "dce86d44b9ea777c4d9d2d02168b46b2", "timestamp": "", "source": "github", "line_count": 612, "max_line_length": 147, "avg_line_length": 40.923202614379086, "alnum_prop": 0.5274905170692753, "repo_name": "scubamut/SIT-Python", "id": "fbe554e08f4cb6bb17534c35e3e8ef3b262a13cb", "size": "25045", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "finhelpers.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "34127" } ], "symlink_target": "" }
""" Autopsy Forensic Browser Copyright 2019-2020 Basis Technology Corp. Contact: carrier <at> sleuthkit <dot> org Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from java.io import File from java.lang import Class from java.lang import ClassNotFoundException from java.lang import Long from java.lang import String from java.sql import ResultSet from java.sql import SQLException from java.sql import Statement from java.util.logging import Level from java.util import ArrayList from org.apache.commons.codec.binary import Base64 from org.sleuthkit.autopsy.casemodule import Case from org.sleuthkit.autopsy.coreutils import Logger from org.sleuthkit.autopsy.coreutils import MessageNotifyUtil from org.sleuthkit.autopsy.coreutils import AppSQLiteDB from org.sleuthkit.autopsy.datamodel import ContentUtils from org.sleuthkit.autopsy.ingest import IngestJobContext from org.sleuthkit.datamodel import AbstractFile from org.sleuthkit.datamodel import BlackboardArtifact from org.sleuthkit.datamodel import BlackboardAttribute from org.sleuthkit.datamodel import Content from org.sleuthkit.datamodel import TskCoreException from org.sleuthkit.datamodel.Blackboard import BlackboardException from org.sleuthkit.autopsy.casemodule import NoCurrentCaseException from org.sleuthkit.datamodel import Account from org.sleuthkit.datamodel.blackboardutils import CommunicationArtifactsHelper from org.sleuthkit.datamodel.blackboardutils.CommunicationArtifactsHelper import MessageReadStatus from org.sleuthkit.datamodel.blackboardutils.CommunicationArtifactsHelper import CommunicationDirection from org.sleuthkit.datamodel.blackboardutils.attributes import MessageAttachments from org.sleuthkit.datamodel.blackboardutils.attributes.MessageAttachments import FileAttachment from TskMessagesParser import TskMessagesParser from TskContactsParser import TskContactsParser from TskCallLogsParser import TskCallLogsParser import traceback import general class SkypeAnalyzer(general.AndroidComponentAnalyzer): """ Parses the Skype App databases for TSK contacts, message and calllog artifacts. About version 8.15.0.428 (9/17/2019) Skype database: - There are 4 tables this parser uses: 1) person - this table appears to hold all contacts known to the user. 2) user - this table holds information about the user. 3) particiapnt - Yes, that is not a typo. This table maps group chat ids to skype ids (1 to many). 4) chatItem - This table contains all messages. It maps the group id or skype id (for 1 to 1 communication) to the message content and metadata. Either the group id or skype id is stored in a column named 'conversation_link'. More info and implementation details: - The person table does not include groups. To get all 1 to 1 communications, we could simply join the person and chatItem tables. This would mean we'd need to do a second pass to get all the group information as they would be excluded in the join. Since the chatItem table stores both the group id or skype_id in one column, an implementation decision was made to union the person and particiapnt table together so that all rows are matched in one join with chatItem. This result is consistently labeled contact_book_w_groups in the following queries. """ def __init__(self): self._logger = Logger.getLogger(self.__class__.__name__) self._SKYPE_PACKAGE_NAME = "com.skype.raider" self._PARSER_NAME = "Skype Parser" self._VERSION = "8.15.0.428" def get_user_account(self, skype_db): account_query_result = skype_db.runQuery( """ SELECT entry_id, CASE WHEN Ifnull(first_name, "") == "" AND Ifnull(last_name, "") == "" THEN entry_id WHEN first_name is NULL THEN replace(last_name, ",", "") WHEN last_name is NULL THEN replace(first_name, ",", "") ELSE replace(first_name, ",", "") || " " || replace(last_name, ",", "") END AS name FROM user """ ) if account_query_result is not None and account_query_result.next(): return account_query_result.getString("entry_id") return None def analyze(self, dataSource, fileManager, context): #Skype databases are of the form: live:XYZ.db, where #XYZ is the skype id of the user. The following search #does a generic substring match for 'live' in the skype #package. skype_dbs = AppSQLiteDB.findAppDatabases(dataSource, "live:", False, self._SKYPE_PACKAGE_NAME) try: for skype_db in skype_dbs: #Attempt to get the user account id from the database user_account_instance = None try: user_account_instance = self.get_user_account(skype_db) except SQLException as ex: self._logger.log(Level.WARNING, "Error querying for the user account in the Skype db.", ex) self._logger.log(Level.WARNING, traceback.format_exc()) current_case = Case.getCurrentCaseThrows() if user_account_instance is None: helper = CommunicationArtifactsHelper( current_case.getSleuthkitCase(), self._PARSER_NAME, skype_db.getDBFile(), Account.Type.SKYPE ) else: helper = CommunicationArtifactsHelper( current_case.getSleuthkitCase(), self._PARSER_NAME, skype_db.getDBFile(), Account.Type.SKYPE, Account.Type.SKYPE, user_account_instance ) self.parse_contacts(skype_db, helper) self.parse_calllogs(skype_db, helper) self.parse_messages(skype_db, helper, current_case) except NoCurrentCaseException as ex: self._logger.log(Level.WARNING, "No case currently open.", ex) self._logger.log(Level.WARNING, traceback.format_exc()) for skype_db in skype_dbs: skype_db.close() def parse_contacts(self, skype_db, helper): #Query for contacts and iterate row by row adding #each contact artifact try: contacts_parser = SkypeContactsParser(skype_db, self._PARSER_NAME) while contacts_parser.next(): helper.addContact( contacts_parser.get_contact_name(), contacts_parser.get_phone(), contacts_parser.get_home_phone(), contacts_parser.get_mobile_phone(), contacts_parser.get_email(), contacts_parser.get_other_attributes() ) contacts_parser.close() except SQLException as ex: #Error parsing Skype db self._logger.log(Level.WARNING, "Error parsing contact database for call logs artifacts.", ex) self._logger.log(Level.WARNING, traceback.format_exc()) except TskCoreException as ex: #Severe error trying to add to case database.. case is not complete. #These exceptions are thrown by the CommunicationArtifactsHelper. self._logger.log(Level.SEVERE, "Failed to add contact artifacts to the case database.", ex) self._logger.log(Level.SEVERE, traceback.format_exc()) except BlackboardException as ex: #Failed to post notification to blackboard self._logger.log(Level.WARNING, "Failed to post contact artifact to the blackboard", ex) self._logger.log(Level.WARNING, traceback.format_exc()) def parse_calllogs(self, skype_db, helper): #Query for call logs and iterate row by row adding #each call log artifact try: calllog_parser = SkypeCallLogsParser(skype_db) while calllog_parser.next(): helper.addCalllog( calllog_parser.get_call_direction(), calllog_parser.get_phone_number_from(), calllog_parser.get_phone_number_to(), calllog_parser.get_call_start_date_time(), calllog_parser.get_call_end_date_time(), calllog_parser.get_call_type() ) calllog_parser.close() except SQLException as ex: #Error parsing Skype db self._logger.log(Level.WARNING, "Error parsing Skype database for call logs artifacts.", ex) self._logger.log(Level.WARNING, traceback.format_exc()) except TskCoreException as ex: #Severe error trying to add to case database.. case is not complete. #These exceptions are thrown by the CommunicationArtifactsHelper. self._logger.log(Level.SEVERE, "Failed to add call log artifacts to the case database.", ex) self._logger.log(Level.SEVERE, traceback.format_exc()) except BlackboardException as ex: #Failed to post notification to blackboard self._logger.log(Level.WARNING, "Failed to post call log artifact to the blackboard", ex) self._logger.log(Level.WARNING, traceback.format_exc()) def parse_messages(self, skype_db, helper, current_case): #Query for messages and iterate row by row adding #each message artifact try: messages_parser = SkypeMessagesParser(skype_db) while messages_parser.next(): message_artifact = helper.addMessage( messages_parser.get_message_type(), messages_parser.get_message_direction(), messages_parser.get_phone_number_from(), messages_parser.get_phone_number_to(), messages_parser.get_message_date_time(), messages_parser.get_message_read_status(), messages_parser.get_message_subject(), messages_parser.get_message_text(), messages_parser.get_thread_id() ) if (messages_parser.get_file_attachment() is not None): file_attachments = ArrayList() file_attachments.add(FileAttachment(current_case.getSleuthkitCase(), skype_db.getDBFile().getDataSource(), messages_parser.get_file_attachment())) message_attachments = MessageAttachments(file_attachments, []) helper.addAttachments(message_artifact, message_attachments) messages_parser.close() except SQLException as ex: #Error parsing Skype db self._logger.log(Level.WARNING, "Error parsing Skype database for message artifacts.", ex) self._logger.log(Level.WARNING, traceback.format_exc()) except TskCoreException as ex: #Severe error trying to add to case database.. case is not complete. #These exceptions are thrown by the CommunicationArtifactsHelper. self._logger.log(Level.SEVERE, "Failed to add message artifacts to the case database.", ex) self._logger.log(Level.SEVERE, traceback.format_exc()) except BlackboardException as ex: #Failed to post notification to blackboard self._logger.log(Level.WARNING, "Failed to post message artifact to the blackboard", ex) self._logger.log(Level.WARNING, traceback.format_exc()) class SkypeCallLogsParser(TskCallLogsParser): """ Extracts TSK_CALLLOG information from the Skype database. TSK_CALLLOG fields that are not in the Skype database are given a default value inherited from the super class. """ def __init__(self, calllog_db): """ Implementation details: - message_type w/ value 3 appeared to be the call type, regardless of if it was audio or video. """ super(SkypeCallLogsParser, self).__init__(calllog_db.runQuery( """ SELECT contact_book_w_groups.conversation_id, contact_book_w_groups.participant_ids, messages.time, messages.duration, messages.is_sender_me, messages.person_id AS sender_id FROM (SELECT conversation_id, Group_concat(person_id) AS participant_ids FROM particiapnt GROUP BY conversation_id UNION SELECT entry_id AS conversation_id, NULL FROM person) AS contact_book_w_groups join chatitem AS messages ON messages.conversation_link = contact_book_w_groups.conversation_id WHERE message_type == 3 """ ) ) self._INCOMING_CALL_TYPE = 0 self._OUTGOING_CALL_TYPE = 1 def get_phone_number_from(self): if self.get_call_direction() == self.INCOMING_CALL: return self.result_set.getString("sender_id") def get_phone_number_to(self): if self.get_call_direction() == self.OUTGOING_CALL: group_ids = self.result_set.getString("participant_ids") if group_ids is not None: group_ids = group_ids.split(",") return group_ids return self.result_set.getString("conversation_id") return super(SkypeCallLogsParser, self).get_phone_number_to() def get_call_direction(self): direction = self.result_set.getInt("is_sender_me") if direction == self._INCOMING_CALL_TYPE: return self.INCOMING_CALL if direction == self._OUTGOING_CALL_TYPE: return self.OUTGOING_CALL return super(SkypeCallLogsParser, self).get_call_direction() def get_call_start_date_time(self): return self.result_set.getLong("time") / 1000 def get_call_end_date_time(self): start = self.get_call_start_date_time() duration = self.result_set.getInt("duration") / 1000 return start + duration class SkypeContactsParser(TskContactsParser): """ Extracts TSK_CONTACT information from the Skype database. TSK_CONTACT fields that are not in the Skype database are given a default value inherited from the super class. """ def __init__(self, contact_db, analyzer): super(SkypeContactsParser, self).__init__(contact_db.runQuery( """ SELECT entry_id, CASE WHEN Ifnull(first_name, "") == "" AND Ifnull(last_name, "") == "" THEN entry_id WHEN first_name is NULL THEN replace(last_name, ",", "") WHEN last_name is NULL THEN replace(first_name, ",", "") ELSE replace(first_name, ",", "") || " " || replace(last_name, ",", "") END AS name FROM person """ ) ) self._PARENT_ANALYZER = analyzer def get_contact_name(self): return self.result_set.getString("name") def get_other_attributes(self): return [BlackboardAttribute( BlackboardAttribute.ATTRIBUTE_TYPE.TSK_ID, self._PARENT_ANALYZER, self.result_set.getString("entry_id"))] class SkypeMessagesParser(TskMessagesParser): """ Extract TSK_MESSAGE information from the Skype database. TSK_CONTACT fields that are not in the Skype database are given a default value inherited from the super class. """ def __init__(self, message_db): """ This query is very similar to the call logs query, the only difference is it grabs more columns in the SELECT and excludes message_types which have the call type value (3). """ super(SkypeMessagesParser, self).__init__(message_db.runQuery( """ SELECT contact_book_w_groups.conversation_id, contact_book_w_groups.participant_ids, messages.time, messages.content, messages.device_gallery_path, messages.is_sender_me, messages.person_id as sender_id FROM (SELECT conversation_id, Group_concat(person_id) AS participant_ids FROM particiapnt GROUP BY conversation_id UNION SELECT entry_id as conversation_id, NULL FROM person) AS contact_book_w_groups JOIN chatitem AS messages ON messages.conversation_link = contact_book_w_groups.conversation_id WHERE message_type != 3 """ ) ) self._SKYPE_MESSAGE_TYPE = "Skype Message" self._OUTGOING_MESSAGE_TYPE = 1 self._INCOMING_MESSAGE_TYPE = 0 def get_message_type(self): return self._SKYPE_MESSAGE_TYPE def get_phone_number_from(self): if self.get_message_direction() == self.INCOMING: return self.result_set.getString("sender_id") return super(SkypeMessagesParser, self).get_phone_number_from() def get_message_direction(self): direction = self.result_set.getInt("is_sender_me") if direction == self._OUTGOING_MESSAGE_TYPE: return self.OUTGOING if direction == self._INCOMING_MESSAGE_TYPE: return self.INCOMING return super(SkypeMessagesParser, self).get_message_direction() def get_phone_number_to(self): if self.get_message_direction() == self.OUTGOING: group_ids = self.result_set.getString("participant_ids") if group_ids is not None: group_ids = group_ids.split(",") return group_ids return self.result_set.getString("conversation_id") return super(SkypeMessagesParser, self).get_phone_number_to() def get_message_date_time(self): date = self.result_set.getLong("time") return date / 1000 def get_message_text(self): content = self.result_set.getString("content") if content is not None: return content return super(SkypeMessagesParser, self).get_message_text() def get_thread_id(self): group_ids = self.result_set.getString("participant_ids") if group_ids is not None: return self.result_set.getString("conversation_id") return super(SkypeMessagesParser, self).get_thread_id() def get_file_attachment(self): if (self.result_set.getString("device_gallery_path") is None): return None else: return self.result_set.getString("device_gallery_path")
{ "content_hash": "54c18a0bc1c36f6b3c4ca15db6756fd4", "timestamp": "", "source": "github", "line_count": 453, "max_line_length": 166, "avg_line_length": 46.18984547461368, "alnum_prop": 0.5810074555534315, "repo_name": "wschaeferB/autopsy", "id": "908a7da451564a6cb9c0cb9b24db0ee9abc0f2d4", "size": "20924", "binary": false, "copies": "3", "ref": "refs/heads/develop", "path": "InternalPythonModules/android/skype.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "AutoIt", "bytes": "27605" }, { "name": "CSS", "bytes": "4467" }, { "name": "HTML", "bytes": "10721" }, { "name": "Java", "bytes": "14146746" }, { "name": "Perl", "bytes": "12052" }, { "name": "Python", "bytes": "518989" }, { "name": "Shell", "bytes": "10815" } ], "symlink_target": "" }
""" Copy of gi.py with recolor changed to fast recolor """ from basicgraphs import graph # , GraphError, vertex, edge import permgrputil from permv2 import permutation from basicpermutationgroup import Orbit # deprecated def color_gradient(bg_1, bg_2, colors): # types correct? if not (isinstance(bg_1, graph) and isinstance(bg_2, graph)): print("Not two graphs provided!") return False def count_nbs(edges): def inc_nbs(v): if hasattr(v, 'colornum'): v.colornum += 1 else: v.colornum = 1 for e in edges: inc_nbs(e.head()) inc_nbs(e.tail()) count_nbs(bg_1._E) # Instead of E() we use _E so we need not set unsafe to true. count_nbs(bg_2._E) # Instead of E() we use _E so we need not set unsafe to true. nbs_count_2_color_num = {} # basic colonisation based on degrees combined_v = bg_1._V + bg_2._V # Instead of the safe but slow V() we use here _V for v in combined_v: count = v.colornum if count not in nbs_count_2_color_num: nbs_count_2_color_num[count] = len(colors) colors[len(colors)] = [] c = nbs_count_2_color_num[count] v.colornum = c colors[c].append(v) def recolor(colors, queue): """ :param colors: Dictionary containing the coloring of two graphs which are colored together. :param queue: The colors that need to be considered for refining operations. :return: <False> iff unbalanced coloring is detected; otherwise when done returns <True>, coloring can still be unbalanced. """ queue = set(queue) # TODO: check if this is the best data structure while len(queue) > 0: c = queue.pop() if len(colors[c]) % 2 == 1: return False neighbours = {} # for all neighboring vertexes the number of neighbours they have in c nbs_colors = set() # all neighboring colors for v in colors[c]: for n in v.get_cached_nbs(): if n not in neighbours: nbs_colors.add(n.colornum) neighbours[n] = 1 else: neighbours[n] += 1 for nbs_c in nbs_colors: partitions = {} # partition nbs_c based on number of neighbours in c # partition_sizes = {} for n in colors[nbs_c]: nbs_count = neighbours.get(n, 0) partitions.setdefault(nbs_count, []).append(n) # partition_sizes[nbs_count] = partition_sizes.get(nbs_count, 0) + 1 if len(partitions) > 1: largest = -1 may_omit = len(partitions) > 2 or nbs_c not in queue if may_omit: smallest = min(partitions, key=lambda i: len(partitions[i])) largest = max(partitions, key=lambda i: len(partitions[i])) colors[nbs_c] = partitions.pop(smallest) else: colors[nbs_c] = partitions.popitem()[1] queue.add(nbs_c) while len(partitions) > 0: nbs_count, partition = partitions.popitem() new_color = len(colors) colors[new_color] = partition if nbs_count != largest: queue.add(new_color) for v in partition: v.colornum = new_color return True def create_color_dict(g, h): """ Creates the color dict based on the colornums of the vertices in graphs g and h. """ colors = {} for v in g._V: l = colors.get(v.colornum, []) l.append(v) colors[v.colornum] = l for v in h._V: l = colors.get(v.colornum, []) l.append(v) colors[v.colornum] = l return colors def set_colors(graph, l): """ Assigns a color to every vertex of the given graph, 0 if a vertex is not in l, or the index in l + 1 otherwise. """ for v in graph: v.colornum = 0 i = 1 for v in l: v.colornum = i i += 1 # see slides lecture 2 page 23 # g and h instance of graph def count_isomorphism(g, h, d=None, i=None, stop_early=False): """ Returns the number of isomorphisms between graphs g and h. If stop_early is specified, the algorithm terminates as soon as an isomorphism is found, returns 1 if an isomorphism is found, 0 if none. If you want #Aut of a graph, one should create a deep copy of the graph as the second argument before calling this function. """ if d is None: d = [] if i is None: i = [] set_colors(g, d) set_colors(h, i) colors = create_color_dict(g, h) if not recolor(colors, [len(colors) - 1]): # recolor can return if the coloring is unbalanced return 0 if defines_bijection(colors): return 1 if not is_balanced(colors): # recolor doesnt always know if the coloring is unbalanced return 0 # Choose a color class C with |C| ≥ 4 # note that c is the list of vertices, not an int representing the color c = None for color in colors.values(): if len(color) >= 4: c = color break x = None # vertex of g with color c for v in c: if v._graph is g: x = v break num = 0 for y in c: if y._graph is h: num += count_isomorphism(g, h, d + [x], i + [y], stop_early=stop_early) if stop_early: if num > 0: # found isomorphism, no need to continue if we dont care about the amount return num return num def is_balanced(colors): for vertices in colors.values(): if len(vertices) != 0: num0 = 0 # amount of vertices in graph0 num1 = 0 # amount of vertices in the other graph graph0 = vertices[0]._graph for vertex in vertices: if vertex._graph is graph0: num0 += 1 else: num1 += 1 if num0 != num1: return False return True def defines_bijection(colors): for vertices in colors.values(): if len(vertices) != 2: # found a color with #vertices != 2 return False if vertices[0]._graph is vertices[1]._graph: # both vertices belong to same graph, no bijection return False return True def generate_automorphisms(graph, gCopy, verticesD, verticesI, x, firstPruningRule = True, secondPruningRule = True, membershipTesting = False): """ Requires arguments gCopy to be a deepcopy of graph, parameters d, i and x should be [] return type is irrelevant for the working principle of this function, that is reserved for internal purposes only. """ # set original colors, only based on D and I set_colors(graph, verticesD) set_colors(gCopy, verticesI) colors = create_color_dict(graph, gCopy) if not recolor(colors, [len(colors) - 1]): # recolor can return if the coloring is unbalanced return False if not is_balanced(colors): # recolor doesnt always know if the coloring is unbalanced return False # unique automorphism if defines_bijection(colors): mapping = list(range(0, len(graph._V))) for i in range(0, len(colors)): if colors[i][0] in graph: mapping[colors[i][0]._label] = colors[i][1]._label else: mapping[colors[i][1]._label] = colors[i][0]._label # print(mapping) # add to generating set (assuming we return to trivial node, by pruning rule #1) perm = permutation(len(mapping), mapping=mapping) if mapping != list(range(0, len(mapping))): if not membershipTesting or not permgrputil.is_member(perm, x): # membership testing? x.append(perm) return True # return to last visited trivial ancestor (if firstpruningRule) # multiple automorphisms # Choose a color class C with |C| ≥ 4 col = None newEl = None instBreak = False for color in colors.values(): if len(color) >= 4: col = color for v1 in col: if v1._graph is graph: for v2 in col: if v2._graph is gCopy and v1._label == v2._label: newEl = v1 instBreak = True break if instBreak: break if instBreak: break # no trivial color has been found, thus no vertex with trivial option can be selected either if newEl is None: for v in col: if v._graph is graph: newEl = v break # build list of vertices of gCopy to check, while also looking for a similar node as newEl # this guarantees that it starts with the trivial node, if possible checklist = [] for v in col: if v._graph is gCopy: checklist.append(v) if v._label == newEl._label: checklist[0], checklist[len(checklist) - 1] = v, checklist[0] # returns the orbit of an generating set and a specific element, used for the second pruning rule def get_orbit(x, label): if len(x) == 0: return [label] return Orbit(x, label) # calculate whether D, I is trivial, used for second pruning rule trivial = True if secondPruningRule: for i in range(0, len(verticesD)): if verticesD[i]._label != verticesI[i]._label: trivial = False break for v in checklist: # this version of the second pruning rule only applies to branches of a trivial mapping, # otherwise it should not be applied checkes whether the automorphism created with mapping newEl # to (non trivial!) v is already produces by the generating set if (not trivial or not secondPruningRule) or (newEl._label == v._label) or (not v._label in get_orbit(x, newEl._label)): res = generate_automorphisms(graph, gCopy, verticesD + [newEl], verticesI + [v], x, firstPruningRule, secondPruningRule, membershipTesting) if firstPruningRule and res and not trivial: # return to last trivial ancestor return True # not trivial, return to last trivial ancestor # No automorphism found return False def count_automorphisms(graph, graphCopy): x = [] generate_automorphisms(graph, graphCopy, [], [], x) return permgrputil.order(x)
{ "content_hash": "35f5c2c07c2b1407fd35e6503139b91a", "timestamp": "", "source": "github", "line_count": 322, "max_line_length": 151, "avg_line_length": 33.45031055900621, "alnum_prop": 0.57023488998236, "repo_name": "Walnoot/graph-isomorphism", "id": "20f793895d94fcd688ecd15c84764b2e56cd702d", "size": "10775", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "fgi.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "56445" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('orders', '0007_usercheckout_braintree_id'), ] operations = [ migrations.AddField( model_name='order', name='order_id', field=models.CharField(max_length=20, null=True, blank=True), ), migrations.AlterField( model_name='order', name='status', field=models.CharField(default=b'created', max_length=120, choices=[(b'created', b'Created'), (b'paid', b'Paid'), (b'shipped', b'Shipped')]), ), ]
{ "content_hash": "502771d3e27fa90b98f901b1f9ddfb4e", "timestamp": "", "source": "github", "line_count": 23, "max_line_length": 153, "avg_line_length": 28.73913043478261, "alnum_prop": 0.5809379727685325, "repo_name": "DiptoDas8/Biponi", "id": "04ce1d9f135238c400a092db4ffa49f7b2bfad5c", "size": "685", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "src/orders/migrations/0008_auto_20150901_2226.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "136782" }, { "name": "HTML", "bytes": "159099" }, { "name": "JavaScript", "bytes": "330026" }, { "name": "Python", "bytes": "7657307" }, { "name": "Shell", "bytes": "3208" } ], "symlink_target": "" }
import json from jsonobject.exceptions import BadValueError from corehq.apps.reports_core.filters import DatespanFilter, ChoiceListFilter, Choice, DynamicChoiceListFilter, \ NumericFilter, PreFilter, QuarterFilter from corehq.apps.userreports.exceptions import BadSpecError from django.utils.translation import ugettext as _ from corehq.apps.userreports.reports.filters.choice_providers import DATA_SOURCE_COLUMN, \ LOCATION, DataSourceColumnChoiceProvider, LocationChoiceProvider, UserChoiceProvider, \ USER, OWNER, OwnerChoiceProvider from corehq.apps.userreports.reports.filters.values import( dynamic_choice_list_url, NONE_CHOICE, SHOW_ALL_CHOICE, ) from corehq.apps.userreports.reports.filters.specs import ( ChoiceListFilterSpec, DynamicChoiceListFilterSpec, NumericFilterSpec, DateFilterSpec, PreFilterSpec, QuarterFilterSpec) def _build_date_filter(spec, report): wrapped = DateFilterSpec.wrap(spec) return DatespanFilter( name=wrapped.slug, label=wrapped.get_display(), ) def _build_quarter_filter(spec, report): wrapped = QuarterFilterSpec.wrap(spec) return QuarterFilter( name=wrapped.slug, label=wrapped.get_display(), ) def _build_numeric_filter(spec, report): wrapped = NumericFilterSpec.wrap(spec) return NumericFilter( name=wrapped.slug, label=wrapped.get_display(), ) def _build_pre_filter(spec, report): wrapped = PreFilterSpec.wrap(spec) return PreFilter( name=wrapped.slug, datatype=wrapped.datatype, pre_value=wrapped.pre_value, pre_operator=wrapped.pre_operator, ) def _build_choice_list_filter(spec, report): wrapped = ChoiceListFilterSpec.wrap(spec) choices = [Choice( fc.value if fc.value is not None else NONE_CHOICE, fc.get_display() ) for fc in wrapped.choices] if wrapped.show_all: choices.insert(0, Choice(SHOW_ALL_CHOICE, _('Show all'))) return ChoiceListFilter( name=wrapped.slug, datatype=wrapped.datatype, label=wrapped.display, choices=choices, ) def _build_dynamic_choice_list_filter(spec, report): wrapped = DynamicChoiceListFilterSpec.wrap(spec) choice_provider_spec = wrapped.get_choice_provider_spec() choice_provider = FilterChoiceProviderFactory.from_spec(choice_provider_spec)(report, wrapped.slug) choice_provider.configure(choice_provider_spec) return DynamicChoiceListFilter( name=wrapped.slug, datatype=wrapped.datatype, field=wrapped.field, label=wrapped.display, show_all=wrapped.show_all, url_generator=dynamic_choice_list_url, choice_provider=choice_provider, ) class ReportFilterFactory(object): constructor_map = { 'date': _build_date_filter, 'quarter': _build_quarter_filter, 'pre': _build_pre_filter, 'choice_list': _build_choice_list_filter, 'dynamic_choice_list': _build_dynamic_choice_list_filter, 'numeric': _build_numeric_filter } @classmethod def from_spec(cls, spec, report=None): cls.validate_spec(spec) try: return cls.constructor_map[spec['type']](spec, report) except (AssertionError, BadValueError) as e: raise BadSpecError(_('Problem creating report filter from spec: {}, message is: {}').format( json.dumps(spec, indent=2), str(e), )) @classmethod def validate_spec(cls, spec): if spec.get('type') not in cls.constructor_map: raise BadSpecError( _('Illegal report filter type: {0}, must be one of the following choice: ({1})').format( spec.get('type', _('(missing from spec)')), ', '.join(cls.constructor_map.keys()) ) ) class FilterChoiceProviderFactory(object): constructor_map = { DATA_SOURCE_COLUMN: DataSourceColumnChoiceProvider, LOCATION: LocationChoiceProvider, USER: UserChoiceProvider, OWNER: OwnerChoiceProvider } @classmethod def from_spec(cls, choice_provider_spec): return cls.constructor_map.get(choice_provider_spec['type'], DataSourceColumnChoiceProvider)
{ "content_hash": "42eb7586edc81db9e476a676caef6a1d", "timestamp": "", "source": "github", "line_count": 128, "max_line_length": 113, "avg_line_length": 33.6328125, "alnum_prop": 0.6720092915214867, "repo_name": "qedsoftware/commcare-hq", "id": "6dacf26e7947437c9a37f0a2f9f58b37e9137a44", "size": "4305", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "corehq/apps/userreports/reports/filters/factory.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "ActionScript", "bytes": "15950" }, { "name": "CSS", "bytes": "508392" }, { "name": "HTML", "bytes": "2869325" }, { "name": "JavaScript", "bytes": "2395360" }, { "name": "PHP", "bytes": "2232" }, { "name": "PLpgSQL", "bytes": "125298" }, { "name": "Python", "bytes": "14670713" }, { "name": "Shell", "bytes": "37514" } ], "symlink_target": "" }
from django.contrib.postgres.fields import JSONField from django.db import models class Character(models.Model): name = models.CharField(max_length=200) data = JSONField() other_data = JSONField() def __str__(self): # __unicode__ on Python 2 return self.name
{ "content_hash": "90580d9d558b469715c94f9277f73264", "timestamp": "", "source": "github", "line_count": 11, "max_line_length": 52, "avg_line_length": 26.09090909090909, "alnum_prop": 0.686411149825784, "repo_name": "jmrivas86/django-json-widget", "id": "4b75cdad1619b31c55015d66dd619f13fcc4f502", "size": "287", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "example/characters/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "3731" }, { "name": "Makefile", "bytes": "1665" }, { "name": "Python", "bytes": "12366" } ], "symlink_target": "" }
"""Unit tests.""" import mock import pytest from google.api import metric_pb2 as api_metric_pb2 from google.api import monitored_resource_pb2 from google.cloud import monitoring_v3 from google.cloud.monitoring_v3 import enums from google.cloud.monitoring_v3.proto import common_pb2 from google.cloud.monitoring_v3.proto import metric_pb2 as proto_metric_pb2 from google.cloud.monitoring_v3.proto import metric_service_pb2 from google.protobuf import empty_pb2 class MultiCallableStub(object): """Stub for the grpc.UnaryUnaryMultiCallable interface.""" def __init__(self, method, channel_stub): self.method = method self.channel_stub = channel_stub def __call__(self, request, timeout=None, metadata=None, credentials=None): self.channel_stub.requests.append((self.method, request)) response = None if self.channel_stub.responses: response = self.channel_stub.responses.pop() if isinstance(response, Exception): raise response if response: return response class ChannelStub(object): """Stub for the grpc.Channel interface.""" def __init__(self, responses=[]): self.responses = responses self.requests = [] def unary_unary(self, method, request_serializer=None, response_deserializer=None): return MultiCallableStub(method, self) class CustomException(Exception): pass class TestMetricServiceClient(object): def test_list_monitored_resource_descriptors(self): # Setup Expected Response next_page_token = "" resource_descriptors_element = {} resource_descriptors = [resource_descriptors_element] expected_response = { "next_page_token": next_page_token, "resource_descriptors": resource_descriptors, } expected_response = metric_service_pb2.ListMonitoredResourceDescriptorsResponse( **expected_response ) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.project_path("[PROJECT]") paged_list_response = client.list_monitored_resource_descriptors(name) resources = list(paged_list_response) assert len(resources) == 1 assert expected_response.resource_descriptors[0] == resources[0] assert len(channel.requests) == 1 expected_request = metric_service_pb2.ListMonitoredResourceDescriptorsRequest( name=name ) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_list_monitored_resource_descriptors_exception(self): channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.project_path("[PROJECT]") paged_list_response = client.list_monitored_resource_descriptors(name) with pytest.raises(CustomException): list(paged_list_response) def test_get_monitored_resource_descriptor(self): # Setup Expected Response name_2 = "name2-1052831874" type_ = "type3575610" display_name = "displayName1615086568" description = "description-1724546052" expected_response = { "name": name_2, "type": type_, "display_name": display_name, "description": description, } expected_response = monitored_resource_pb2.MonitoredResourceDescriptor( **expected_response ) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.monitored_resource_descriptor_path( "[PROJECT]", "[MONITORED_RESOURCE_DESCRIPTOR]" ) response = client.get_monitored_resource_descriptor(name) assert expected_response == response assert len(channel.requests) == 1 expected_request = metric_service_pb2.GetMonitoredResourceDescriptorRequest( name=name ) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_get_monitored_resource_descriptor_exception(self): # Mock the API response channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.monitored_resource_descriptor_path( "[PROJECT]", "[MONITORED_RESOURCE_DESCRIPTOR]" ) with pytest.raises(CustomException): client.get_monitored_resource_descriptor(name) def test_list_metric_descriptors(self): # Setup Expected Response next_page_token = "" metric_descriptors_element = {} metric_descriptors = [metric_descriptors_element] expected_response = { "next_page_token": next_page_token, "metric_descriptors": metric_descriptors, } expected_response = metric_service_pb2.ListMetricDescriptorsResponse( **expected_response ) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.project_path("[PROJECT]") paged_list_response = client.list_metric_descriptors(name) resources = list(paged_list_response) assert len(resources) == 1 assert expected_response.metric_descriptors[0] == resources[0] assert len(channel.requests) == 1 expected_request = metric_service_pb2.ListMetricDescriptorsRequest(name=name) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_list_metric_descriptors_exception(self): channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.project_path("[PROJECT]") paged_list_response = client.list_metric_descriptors(name) with pytest.raises(CustomException): list(paged_list_response) def test_get_metric_descriptor(self): # Setup Expected Response name_2 = "name2-1052831874" type_ = "type3575610" unit = "unit3594628" description = "description-1724546052" display_name = "displayName1615086568" expected_response = { "name": name_2, "type": type_, "unit": unit, "description": description, "display_name": display_name, } expected_response = api_metric_pb2.MetricDescriptor(**expected_response) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.metric_descriptor_path("[PROJECT]", "[METRIC_DESCRIPTOR]") response = client.get_metric_descriptor(name) assert expected_response == response assert len(channel.requests) == 1 expected_request = metric_service_pb2.GetMetricDescriptorRequest(name=name) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_get_metric_descriptor_exception(self): # Mock the API response channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.metric_descriptor_path("[PROJECT]", "[METRIC_DESCRIPTOR]") with pytest.raises(CustomException): client.get_metric_descriptor(name) def test_create_metric_descriptor(self): # Setup Expected Response name_2 = "name2-1052831874" type_ = "type3575610" unit = "unit3594628" description = "description-1724546052" display_name = "displayName1615086568" expected_response = { "name": name_2, "type": type_, "unit": unit, "description": description, "display_name": display_name, } expected_response = api_metric_pb2.MetricDescriptor(**expected_response) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.project_path("[PROJECT]") metric_descriptor = {} response = client.create_metric_descriptor(name, metric_descriptor) assert expected_response == response assert len(channel.requests) == 1 expected_request = metric_service_pb2.CreateMetricDescriptorRequest( name=name, metric_descriptor=metric_descriptor ) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_create_metric_descriptor_exception(self): # Mock the API response channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.project_path("[PROJECT]") metric_descriptor = {} with pytest.raises(CustomException): client.create_metric_descriptor(name, metric_descriptor) def test_delete_metric_descriptor(self): channel = ChannelStub() patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.metric_descriptor_path("[PROJECT]", "[METRIC_DESCRIPTOR]") client.delete_metric_descriptor(name) assert len(channel.requests) == 1 expected_request = metric_service_pb2.DeleteMetricDescriptorRequest(name=name) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_delete_metric_descriptor_exception(self): # Mock the API response channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.metric_descriptor_path("[PROJECT]", "[METRIC_DESCRIPTOR]") with pytest.raises(CustomException): client.delete_metric_descriptor(name) def test_list_time_series(self): # Setup Expected Response next_page_token = "" time_series_element = {} time_series = [time_series_element] expected_response = { "next_page_token": next_page_token, "time_series": time_series, } expected_response = metric_service_pb2.ListTimeSeriesResponse( **expected_response ) # Mock the API response channel = ChannelStub(responses=[expected_response]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.project_path("[PROJECT]") filter_ = "filter-1274492040" interval = {} view = enums.ListTimeSeriesRequest.TimeSeriesView.FULL paged_list_response = client.list_time_series(name, filter_, interval, view) resources = list(paged_list_response) assert len(resources) == 1 assert expected_response.time_series[0] == resources[0] assert len(channel.requests) == 1 expected_request = metric_service_pb2.ListTimeSeriesRequest( name=name, filter=filter_, interval=interval, view=view ) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_list_time_series_exception(self): channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.project_path("[PROJECT]") filter_ = "filter-1274492040" interval = {} view = enums.ListTimeSeriesRequest.TimeSeriesView.FULL paged_list_response = client.list_time_series(name, filter_, interval, view) with pytest.raises(CustomException): list(paged_list_response) def test_create_time_series(self): channel = ChannelStub() patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup Request name = client.project_path("[PROJECT]") time_series = [] client.create_time_series(name, time_series) assert len(channel.requests) == 1 expected_request = metric_service_pb2.CreateTimeSeriesRequest( name=name, time_series=time_series ) actual_request = channel.requests[0][1] assert expected_request == actual_request def test_create_time_series_exception(self): # Mock the API response channel = ChannelStub(responses=[CustomException()]) patch = mock.patch("google.api_core.grpc_helpers.create_channel") with patch as create_channel: create_channel.return_value = channel client = monitoring_v3.MetricServiceClient() # Setup request name = client.project_path("[PROJECT]") time_series = [] with pytest.raises(CustomException): client.create_time_series(name, time_series)
{ "content_hash": "98a3dacce681f3b7ca91ab95ec3e060e", "timestamp": "", "source": "github", "line_count": 425, "max_line_length": 88, "avg_line_length": 37.169411764705885, "alnum_prop": 0.6412609989238462, "repo_name": "tseaver/google-cloud-python", "id": "dd5e692eb4138269739077060f8b1d88bce5f90e", "size": "16399", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "monitoring/tests/unit/gapic/v3/test_metric_service_client_v3.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "1094" }, { "name": "Python", "bytes": "30519057" }, { "name": "Shell", "bytes": "9148" } ], "symlink_target": "" }
import os.path import shutil import sublime import sublime_plugin import subprocess SETTINGS_FILE = "BeautifyRust.sublime-settings" def which(program): def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: return shutil.which(program) class BeautifyRustOnSave(sublime_plugin.EventListener): def on_post_save(self, view): if sublime.load_settings(SETTINGS_FILE).get("run_on_save", False): return view.run_command("beautify_rust") return class BeautifyRustCommand(sublime_plugin.TextCommand): def run(self, edit): self.filename = self.view.file_name() self.fname = os.path.basename(self.filename) self.settings = sublime.load_settings(SETTINGS_FILE) if self.is_rust_file(): self.run_format(edit) def is_rust_file(self): return self.fname.endswith(".rs") def pipe(self, cmd): cwd = os.path.dirname(self.filename) startupinfo = None if os.name == 'nt': startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW beautifier = subprocess.Popen( cmd, cwd=cwd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, startupinfo=startupinfo) (_, err) = beautifier.communicate() return (beautifier.wait(), err.decode('utf8')) def run_format(self, edit): buffer_region = sublime.Region(0, self.view.size()) buffer_text = self.view.substr(buffer_region) if buffer_text == "": return rustfmt_bin = which(self.settings.get("rustfmt", "rustfmt")) if rustfmt_bin is None: return sublime.error_message( "Beautify rust: can not find {0} in path.".format(self.settings.get("rustfmt", "rustfmt"))) cmd_list = [rustfmt_bin, self.filename] + self.settings.get("args", []) self.save_viewport_state() (exit_code, err) = self.pipe(cmd_list) if exit_code != 0 or (err != "" and not err.startswith("Using rustfmt")): self.view.replace(edit, buffer_region, buffer_text) print("failed: exit_code: {0}\n{1}".format(exit_code, err)) if sublime.load_settings(SETTINGS_FILE).get("show_errors", True): sublime.error_message( "Beautify rust: rustfmt process call failed. See log (ctrl + `) for details.") self.view.window().run_command("reload_all_files") self.reset_viewport_state() def save_viewport_state(self): self.previous_selection = [(region.a, region.b) for region in self.view.sel()] self.previous_position = self.view.viewport_position() def reset_viewport_state(self): self.view.set_viewport_position((0, 0,), False) self.view.set_viewport_position(self.previous_position, False) self.view.sel().clear() for a, b in self.previous_selection: self.view.sel().add(sublime.Region(a, b))
{ "content_hash": "dcde20f8a99bf918f44840c4cb9b7d96", "timestamp": "", "source": "github", "line_count": 84, "max_line_length": 107, "avg_line_length": 37.964285714285715, "alnum_prop": 0.6180620884289746, "repo_name": "vincenting/BeautifyRust", "id": "e8121ce7c7a5e9d6601ebd6efc656e218793675d", "size": "3189", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "BeautifyRust.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "3189" } ], "symlink_target": "" }
__author__ = 'Stephen P. Henrie' import unittest from mock import Mock from pyon.util.unit_test import PyonTestCase from pyon.util.int_test import IonIntegrationTestCase from nose.plugins.attrib import attr from pyon.core.exception import BadRequest, NotFound from pyon.public import RT, IonObject from interface.services.coi.iobject_management_service import ObjectManagementServiceClient from ion.services.coi.object_management_service import ObjectManagementService @attr('UNIT', group='coi') class TestObjectManagementServiceUnit(PyonTestCase): def setUp(self): self.mock_clients = self._create_service_mock('object_management') self.oms = ObjectManagementService() self.oms.clients = self.mock_clients self.yaml_definition = ''' TimerSchedulerEntry2: !Extends_AbstractSchedulerEntry # String to put in origin of TimerEvent event_origin: "" # String to put in subtype field of TimerEvent event_subtype: "" ''' self.bad_yaml =''' TimerSchedulerEntry2: !Extends_AbstractSchedulerEntry # String to put in origin of TimerEvent event_origin "" # String to put in subtype field of TimerEvent event_subtype: "" ''' def rr_return_value(self): return ['123',1] def test_create_object(self): ot = Mock() ot.definition = self.bad_yaml ot.name = "name" with self.assertRaises(BadRequest): self.oms.create_object_type(ot) ot.name = "bad name" with self.assertRaises(BadRequest): self.oms.create_object_type(ot) ot.name = "name" ot.definition = self.yaml_definition self.oms.clients.resource_registry.create.return_value = self.rr_return_value() object_id = self.oms.create_object_type(ot) self.assertEqual(object_id, '123') self.oms.clients.resource_registry.create.assert_called_once_with(ot) def test_read_and_update_object(self): with self.assertRaises(BadRequest): self.oms.read_object_type(None) ot = Mock() ot.definition = self.yaml_definition ot.name = "name" ot.description = "This is just a test, don't panic" self.oms.clients.resource_registry.read.return_value = ot ot_return = self.oms.read_object_type("123") self.assertTrue(ot_return is ot) self.oms.clients.resource_registry.read.assert_called_once_with('123','') ot_return.name = "new name" with self.assertRaises(BadRequest): self.oms.update_object_type(ot_return) ot_return.name = "new_name" ot_return.definition = self.bad_yaml with self.assertRaises(BadRequest): self.oms.update_object_type(ot_return) ot.definition = self.yaml_definition self.oms.clients.resource_registry.update.return_value = ['123', 2] ot_id = self.oms.update_object_type(ot_return) self.assertEqual(ot_id, '123') self.oms.clients.resource_registry.update.assert_called_once_with(ot_return) def test_read_not_found(self): self.oms.clients.resource_registry.read.side_effect = NotFound with self.assertRaises(NotFound): self.oms.read_object_type("0xBADC0FFEE") self.oms.clients.resource_registry.read.assert_called_once_with('0xBADC0FFEE','') def test_delete_object(self): with self.assertRaises(BadRequest): self.oms.delete_object_type(None) self.oms.clients.resource_registry.delete.return_value = True status = self.oms.delete_object_type("123") self.assertEqual(status, True) self.oms.clients.resource_registry.delete.assert_called_once_with("123") def test_delete_not_found(self): self.oms.clients.resource_registry.delete.side_effect = NotFound with self.assertRaises(NotFound): self.oms.delete_object_type("0xBADC0FFEE") self.oms.clients.resource_registry.delete.assert_called_once_with('0xBADC0FFEE') @attr('INT', group='coi') class TestObjectManagementService(IonIntegrationTestCase): def setUp(self): self._start_container() self.container.start_rel_from_url('res/deploy/r2deploy.yml') self.oms = ObjectManagementServiceClient() def test_create_object(self): yaml_str = ''' TimerSchedulerEntry2: !Extends_AbstractSchedulerEntry # String to put in origin of TimerEvent event_origin: "" # String to put in subtype field of TimerEvent event_subtype: "" ''' ot = IonObject(RT.ObjectType, {"definition": yaml_str}) object_type_id = self.oms.create_object_type(ot) self.assertTrue(type(object_type_id) == str) self.oms.delete_object_type(object_type_id) def test_read_and_update_object(self): # Create object type # Read object type and validate # Update object type # Read back the object type and validate # Delete the object type object_definition = ''' TimerSchedulerEntry3: !Extends_AbstractSchedulerEntry # String to put in origin of TimerEvent event_origin: "" # String to put in subtype field of TimerEvent event_subtype: "" ''' ot = IonObject(RT.ObjectType, {"definition": object_definition}) object_type_id = self.oms.create_object_type(ot) object_type = self.oms.read_object_type(object_type_id) self.assertEqual(object_definition,object_type.definition) object_definition2 = ''' TimerSchedulerEntry3: !Extends_AbstractSchedulerEntry # String to put in origin of TimerEvent event_origin: "" # String to put in subtype field of TimerEvent event_subtype: "" ''' object_type.definition = object_definition2 self.oms.update_object_type(object_type) object_type = self.oms.read_object_type(object_type_id) self.assertEqual(object_definition2, object_type.definition) self.oms.delete_object_type(object_type_id) def test_read_object_not_found(self): object_type_id = "0xbadc0ffee" with self.assertRaises(NotFound): self.oms.read_object_type(object_type_id) def test_delete_object_not_found(self): object_type_id = "0xbadc0ffee" with self.assertRaises(NotFound): self.oms.delete_object_type(object_type_id)
{ "content_hash": "1b09312af1947b5d90bc476eba21f7f3", "timestamp": "", "source": "github", "line_count": 171, "max_line_length": 91, "avg_line_length": 36.83040935672515, "alnum_prop": 0.6770403302635757, "repo_name": "ooici/coi-services", "id": "5532c9e6978b0c0773cf06f1fff9f15c21da2976", "size": "6321", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ion/services/coi/test/test_object_management_service.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "403012" }, { "name": "C++", "bytes": "251803" }, { "name": "CSS", "bytes": "689" }, { "name": "Erlang", "bytes": "532" }, { "name": "JavaScript", "bytes": "11627" }, { "name": "Objective-C", "bytes": "8918" }, { "name": "Python", "bytes": "7964384" }, { "name": "Shell", "bytes": "9221" }, { "name": "nesC", "bytes": "57712131" } ], "symlink_target": "" }
import copy from unittest import TestCase import TestResults __author__ = 'zthomae' class TestArgumentParser(TestCase): def setUp(self): self.parser = TestResults.make_parser() def test_type_should_not_be_optional(self): try: TestResults.parse_args(self.parser, '--input foo --results bar'.split()) except ValueError: return self.fail('Parser does not fail when a test type is not present') def test_inputs_should_not_be_optional(self): try: TestResults.parse_args(self.parser, '--type foo --results bar'.split()) except ValueError: return self.fail('Parser does not fail when input files are not present') def test_results_should_not_be_optional(self): try: TestResults.parse_args(self.parser, '--type foo --input bar'.split()) except ValueError: return self.fail('Parser does not fail when results files are not present') def test_only_one_type_allowed(self): try: TestResults.parse_args(self.parser, '--type two words --input foo --results bar'.split()) except SystemExit: # TODO: Wrap argparse behavior return self.fail('Parser accepts more than one test type') def test_should_expect_at_least_one_input_file(self): try: TestResults.parse_args(self.parser, '--type foo --input --results bar'.split()) except SystemExit: return self.fail('Parser accepts zero input files') def test_should_expect_at_least_one_results_file(self): try: TestResults.parse_args(self.parser, '--type foo --input bar --results'.split()) except SystemExit: return self.fail('Parser accepts zero results files') def test_should_allow_more_than_one_input_file(self): try: TestResults.parse_args(self.parser, '--type foo --input these files --results bar'.split()) except SystemExit: self.fail("Parser doesn't accept multiple input files") def test_should_allow_more_than_one_results_file(self): try: TestResults.parse_args(self.parser, '--type foo --input file --results these files'.split()) except SystemExit: self.fail("Parser doesn't accept multiple results files") class TestInputFileParser(TestCase): def setUp(self): self.input_files = ['/foo/bar/Text1.txt', 'bar/baz/Text2.txt', 'Text3.txt', '../Text4.txt'] self.results = TestResults.parse_input_files(self.input_files) def test_should_use_basename(self): if sorted(self.results.keys()) != sorted(['Text1.txt', 'Text2.txt', 'Text3.txt', 'Text4.txt']): self.fail('parse_input_files should return a dictionary with input file basenames as keys') def test_should_return_fullpaths(self): if any(map(lambda x: 'fullpath' not in x, self.results.values())): self.fail('parse_input_files should return fullpaths to input files') class TestDocuscopeResultsParser(TestCase): def setUp(self): self.ds_results_file = ''.join([ '<AnnotatedText File="Text1.txt" Group="foo" />', '<AnnotatedText File="Text2.txt" Group="foo" />', '<AnnotatedText File="Text3.txt" Group="bar" />' ]) self.ds_results_file_2 = ''.join([ '<AnnotatedText File="Text4.txt" Group="foo" />', '<AnnotatedText File="Text5.txt" Group="bar" />' ]) self.ds_wrong_tag_results_file = ''.join([ '<Text File="Text1.txt" Group="foo" />', '<Text File="Text2.txt" Group="foo" />', '<AnnotatedText File="Text3.txt" Group="foo" />' ]) self.ds_wrong_attr_results_file = ''.join([ '<AnnotatedText Fil="Text1.txt" Group="foo" />', '<AnnotatedText File="Text2.txt" Group="foo" />', ]) def test_should_handle_one_file(self): results = TestResults.parse_docuscope_results([self.ds_results_file]) keys = results.keys() if any([ 'Text1.txt' not in keys, 'Text2.txt' not in keys, 'Text3.txt' not in keys ]): self.fail("parse_docuscope_results didn't add expected files for one input file") def test_should_handle_multiples_files(self): results = TestResults.parse_docuscope_results([self.ds_results_file, self.ds_results_file_2]) keys = results.keys() if any([ 'Text1.txt' not in keys, 'Text2.txt' not in keys, 'Text3.txt' not in keys, 'Text4.txt' not in keys, 'Text5.txt' not in keys ]): self.fail("parse_docuscope_results didn't add expected files for multiple input files") def test_should_not_add_files_in_wrong_element(self): results = TestResults.parse_docuscope_results([self.ds_wrong_tag_results_file]) if len(results.keys()) > 1: self.fail('parse_docuscope_results added files not in AnnotatedText elements') def test_should_do_nothing_if_missing_file_attribute(self): results = TestResults.parse_docuscope_results([self.ds_wrong_attr_results_file]) # TODO: Bad test if len(results.keys()) != 1: self.fail("parse_docuscope_results didn't add files correctly") def test_should_add_present_status(self): results = TestResults.parse_docuscope_results([self.ds_results_file]) if any(map(lambda x: 'present' not in x, results.values())): self.fail('parse_docuscope_results should add "present" key') def test_should_add_text(self): results = TestResults.parse_docuscope_results([self.ds_results_file]) # TODO: This test doesn't check as much as it should if any(map(lambda x: 'text' not in x, results.values())): self.fail('parse_docuscope_results should add "text" key') class TestMatchFiles(TestCase): def setUp(self): self.results_files = { 'Text1.txt': {'text': '', 'present': False}, 'Text2.txt': {'text': '', 'present': False}, 'Text3.txt': {'text': '', 'present': False} } def test_should_copy_results(self): if self.results_files != TestResults.match_files([], self.results_files): self.fail('match_files should return results_files if input_files empty') def test_should_set_file_true_if_in_inputs(self): files = TestResults.match_files(['Text1.txt'], self.results_files) if files['Text1.txt']['present'] is not True: self.fail('match_files should set entries to True if present in input_files') def test_should_keep_file_false_if_not_in_inputs(self): files = TestResults.match_files(['Text1.txt'], self.results_files) if any([ files['Text2.txt']['present'] is not False, files['Text3.txt']['present'] is not False ]): self.fail('match_files should keep entries set to False if not present in input_files') def test_should_not_change_input_files(self): input_files = ['Text1.txt'] old_input = copy.copy(input_files) TestResults.match_files(input_files, self.results_files) if old_input != input_files: self.fail('match_files should not change input_files') def test_should_not_change_results_files(self): old_results = copy.copy(self.results_files) TestResults.match_files(['Text1.txt'], self.results_files) if old_results != self.results_files: self.fail('match_files should not change results_files') class TestComputeTestPairs(TestCase): def setUp(self): self.job = { 'Text1.txt': {'text': 'first', 'present': True}, 'Text2.txt': {'text': 'second', 'present': False}, 'Text3.txt': {'text': 'third', 'present': True} } self.input_files = { 'Text1.txt': {'fullpath': '/Text1.txt', 'text': ''}, 'Text2.txt': {'fullpath': '/Text2.txt', 'text': ''}, 'Text3.txt': {'fullpath': '/Text3.txt', 'text': ''}, } self.results = TestResults.compute_test_pairs(self.job, self.input_files, self.format) @staticmethod def format(text): return text def test_should_throw_valueerror_if_too_few_input_files(self): input_files = copy.copy(self.input_files) del input_files['Text3.txt'] try: TestResults.compute_test_pairs(self.job, input_files, self.format) except ValueError: return self.fail('compute_test_pairs should throw ValueError if an input file is not in input_files') def test_should_not_include_not_present_job_files(self): if 'Text2.txt' in self.results: self.fail('compute_test_pairs should not include texts if they are not "present" in the job') def test_should_not_check_if_non_present_input_files_are_missing(self): input_files = copy.copy(self.input_files) del input_files['Text2.txt'] try: TestResults.compute_test_pairs(self.job, input_files, self.format) except ValueError: self.fail("compute_test_pairs shouldn't throw ValueError if non-present job file is not in input_files") def test_should_return_names(self): for v in self.results.values(): if 'name' not in v: self.fail('compute_test_pairs should return text names') def test_should_return_ground_truths(self): for text in self.results: if self.results[text]['ground_truth'] != self.job[text]['text']: self.fail('compute_test_pairs should return ground_truth text') def test_should_return_formatted_input_file(self): for v in self.results.values(): if 'test_input' not in v: self.fail('compute_test_pairs should return test_input') class TestCompareTestPairs(TestCase): def setUp(self): self.test_pairs = { 'Text1.txt': { 'name': 'Text1.txt', 'ground_truth': 'foo', 'test_input': 'foo' }, 'Text2.txt': { 'name': 'Text2.txt', 'ground_truth': 'foo', 'test_input': 'bar' } } self.results = TestResults.compare_test_pairs(self.test_pairs, self.compare) @staticmethod def compare(t1, t2): return {} def test_should_return_results_for_each_pair(self): if 'results' not in self.results['Text1.txt'] or 'results' not in self.results['Text2.txt']: self.fail('compare_test_pairs should return results for each of the test pairs') # TODO: Test more thoroughly
{ "content_hash": "bb90378a4f9551cd0d33aa7fe59c5fac", "timestamp": "", "source": "github", "line_count": 265, "max_line_length": 116, "avg_line_length": 40.86037735849057, "alnum_prop": 0.6048208348725527, "repo_name": "uwgraphics/Ubiqu-Ity", "id": "444a190a1b95aaf1953da26833ea09f6dfc98b31", "size": "10828", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "Ity/Tools/test_TestResults.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Batchfile", "bytes": "5090" }, { "name": "CSS", "bytes": "604180" }, { "name": "HTML", "bytes": "750751" }, { "name": "JavaScript", "bytes": "381542" }, { "name": "Makefile", "bytes": "10123" }, { "name": "Python", "bytes": "348678" }, { "name": "Ruby", "bytes": "1797" } ], "symlink_target": "" }
""" """ # This file is part of zasim. zasim is licensed under the BSD 3-clause license. # See LICENSE.txt for details. from .bases import CellLoop from .compatibility import one_dimension, two_dimensions, activity, random_generator from .utils import offset_pos from itertools import product, izip import numpy as np class OneDimCellLoop(CellLoop): """The OneDimCellLoop iterates over all cells in order from 0 to sizeX.""" requires_features = [one_dimension] def get_pos(self): return "loop_x", def visit(self): super(OneDimCellLoop, self).visit() self.code.add_weave_code("loop_begin", """for(int loop_x=0; loop_x < sizeX; loop_x++) {""") self.code.add_weave_code("loop_end", """}""") def get_iter(self): return iter(izip(xrange(0, self.code.acc.get_size_of(0)))) def build_name(self, parts): parts.insert(0, "1d") class TwoDimCellLoop(CellLoop): """The TwoDimCellLoop iterates over all cells from left to right, then from top to bottom.""" requires_features = [two_dimensions] def get_pos(self): return "loop_x", "loop_y" def visit(self): super(TwoDimCellLoop, self).visit() size_names = self.code.acc.size_names self.code.add_weave_code("loop_begin", """for(int loop_x=0; loop_x < %s; loop_x++) { for(int loop_y=0; loop_y < %s; loop_y++) {""" % (size_names)) self.code.add_weave_code("loop_end", """} }""") def get_iter(self): return iter(product(xrange(0, self.code.acc.get_size_of(0)), xrange(0, self.code.acc.get_size_of(1)))) def build_name(self, parts): parts.insert(0, "2d") class SparseCellLoop(CellLoop): """The SparseCellLoop offers common code for loops that only calculate those fields, where the neighbours have changed in the last step. This is based on a list of positions called `sparse_list` as well as a mask of booleans called `sparse_mask`, that only internally gets used to make sure, that no fields are enlisted more than once. The `sparse_list` is duplicated into the property `prev_sparse_list`, from which reads are performed. All entries in the sparse_list arrays are valid up to the first -1. For the pure-py version, a normal python set is used. It requires an ActivityRecord for the `was_active` flag.""" probab = None def set_target(self, target): """Adds the activity mask and position list to the target attributes.""" super(SparseCellLoop, self).set_target(target) size = self.calculate_size() target.sparse_mask = np.zeros(size, dtype=bool) target.sparse_list = np.zeros(size, dtype=int) target.sparse_set = set() def bind(self, code): super(SparseCellLoop, self).bind(code) if self.probab is not None: code.consts["NONDET_PROBAB"] = self.probab def get_pos(self): return self.position_names def calculate_size(self): """Calculate how big the mask and list have to be. The current strategy is to just allocate one field for each field of the configuration.""" return reduce(lambda a, b: a * b, self.target.size) def mark_cell_py(self, pos): positions = [offset_pos(pos, offs) for offs in self.code.neigh.affected_cells()] positions = [pos if self.code.border.is_position_valid(pos) else self.code.border.correct_position(pos) for pos in positions] self.target.sparse_set.update(positions) def new_config(self): size = self.calculate_size() self.target.sparse_mask = np.ones(size, dtype=bool) self.target.sparse_list = np.array(list(range(size)) + [-1] , dtype=int) self.target.prev_sparse_list = self.target.sparse_list.copy() self.target.sparse_set = set(product(*[range(siz) for siz in self.target.size])) def get_iter(self): # iterate over a copy of the set, so that it can be modified while running the_list = list(self.target.sparse_set) self.target.sparse_set.clear() if self.probab is not None: # get a list of entries to go through sublist = [] for pos in the_list: if self.code.random.random() >= self.probab: sublist.append(pos) else: self.target.sparse_set.update([pos]) return iter(sublist) else: return iter(the_list) def visit(self): super(SparseCellLoop, self).visit() self.code.attrs.append("sparse_mask") self.code.attrs.append("sparse_list") self.code.attrs.append("prev_sparse_list") self.code.add_py_code("loop_end", """if was_active: self.loop.mark_cell_py(pos)""") self.code.add_weave_code("localvars", """int sparse_cell_write_idx = 0;""") # copy all data over, because of the inactive cells. self.code.add_weave_code("localvars", """nconf = cconf.copy();""") self.code.add_weave_code("loop_begin", """for(int cell_idx=0; prev_sparse_list(cell_idx) != -1; cell_idx++) {""") if self.probab is not None: self.code.add_weave_code("loop_begin", """if(rand() >= RAND_MAX * NONDET_PROBAB) { if(!sparse_mask(cell_idx)) { sparse_list(sparse_cell_write_idx) = cell_idx; sparse_mask(cell_idx) = true; sparse_cell_write_idx++; } continue; }""") if len(self.position_names) == 1: self.code.add_weave_code("loop_begin", """ int %s = prev_sparse_list(cell_idx);""" % self.position_names) elif len(self.position_names) == 2: self.code.add_weave_code("loop_begin", """ int %(pos_a)s = prev_sparse_list(cell_idx) %% %(size_a)s; int %(pos_b)s = prev_sparse_list(cell_idx) / %(size_b)s;""" % dict(pos_a = self.position_names[0], pos_b = self.position_names[1], size_a = self.code.acc.size_names[0], size_b = self.code.acc.size_names[1])) # FIXME use proper position names here if len(self.position_names) == 1: self.code.add_weave_code("loop_end", """if(was_active) { %s }""" % ("\n".join([ """ {int idx = %(wrap_x)s; if(!sparse_mask(idx)) { sparse_list(sparse_cell_write_idx) = idx; sparse_mask(idx) = true; sparse_cell_write_idx++; }}""" % dict(offs_x=offs[0], wrap_x=self.code.border.correct_position_c(["loop_x + %s" % (offs[0])])[0]) for offs in self.code.neigh.offsets]))) elif len(self.position_names) == 2: self.code.add_weave_code("loop_end", """if(was_active) { %s }""" % ("\n".join([ """ {int px = loop_x + %(offs_x)s; int py = loop_y + %(offs_y)s; %(wrap)s; int idx = px * %(size_x)s + py; if(!sparse_mask(idx)) { sparse_list(sparse_cell_write_idx) = idx; sparse_mask(idx) = true; sparse_cell_write_idx++; }}""" % dict(offs_x=offs[0], offs_y=offs[1], size_x=self.code.acc.size_names[0], wrap="px = " + ("; py = ".join(self.code.border.correct_position_c( ("px", "py") )))) for offs in self.code.neigh.offsets]))) self.code.add_weave_code("loop_end", """ } // null the sparse mask sparse_mask = 0; sparse_list(sparse_cell_write_idx) = -1; """) class OneDimSparseCellLoop(SparseCellLoop): requires_features = [one_dimension, activity] def __init__(self): self.position_names = "loop_x", class TwoDimSparseCellLoop(SparseCellLoop): requires_features = [two_dimensions, activity] def __init__(self): self.position_names = "loop_x", "loop_y" class OneDimSparseNondetCellLoop(OneDimSparseCellLoop): requires_features = [one_dimension, activity, random_generator] def __init__(self, probab=0.5): super(OneDimSparseNondetCellLoop, self).__init__() self.probab = probab class TwoDimSparseNondetCellLoop(SparseCellLoop): requires_features = [two_dimensions, activity, random_generator] def __init__(self, probab=0.5): super(OneDimSparseNondetCellLoop, self).__init__() self.probab = probab
{ "content_hash": "623d06f6e1295bba58b0521646ff9257", "timestamp": "", "source": "github", "line_count": 239, "max_line_length": 115, "avg_line_length": 39.87866108786611, "alnum_prop": 0.5254432903158116, "repo_name": "timo/zasim", "id": "3d75f5cfd9008f83e1523ea0fc3f8f6083ea9df4", "size": "9531", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "zasim/cagen/loops.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "423165" }, { "name": "Shell", "bytes": "4509" } ], "symlink_target": "" }
import os import sys import time import unittest import pytest from _pydev_bundle.pydev_stdin import StdIn from _pydev_bundle.pydev_localhost import get_localhost from _pydev_comm.pydev_rpc import make_rpc_client from _pydevd_bundle import pydevd_io from pydev_console.pydev_protocol import PythonConsoleFrontendService, PythonConsoleBackendService from pydevconsole import enable_thrift_logging, create_server_handler_factory try: xrange except: xrange = range def eq_(a, b): if a != b: raise AssertionError('%s != %s' % (a, b)) try: from IPython import core has_ipython = True except: has_ipython = False @pytest.mark.skipif(not has_ipython, reason='IPython not available') class TestBase(unittest.TestCase): def setUp(self): from _pydev_bundle.pydev_ipython_console_011 import get_pydev_ipython_frontend # PyDevFrontEnd depends on singleton in IPython, so you # can't make multiple versions. So we reuse self.front_end for # all the tests self.front_end = get_pydev_ipython_frontend(None) from pydev_ipython.inputhook import set_return_control_callback set_return_control_callback(lambda:True) self.front_end.clear_buffer() def tearDown(self): pass def add_exec(self, code, expected_more=False): more = self.front_end.add_exec(code) eq_(expected_more, more) def redirect_stdout(self): from IPython.utils import io self.original_stdout = sys.stdout sys.stdout = io.stdout = pydevd_io.IOBuf() def restore_stdout(self): from IPython.utils import io io.stdout = sys.stdout = self.original_stdout @pytest.mark.skipif(not has_ipython, reason='IPython not available') class TestPyDevFrontEnd(TestBase): def testAddExec_1(self): self.add_exec('if True:', True) def testAddExec_2(self): #Change: 'more' must now be controlled in the client side after the initial 'True' returned. self.add_exec('if True:\n testAddExec_a = 10\n', False) assert 'testAddExec_a' in self.front_end.get_namespace() def testAddExec_3(self): assert 'testAddExec_x' not in self.front_end.get_namespace() self.add_exec('if True:\n testAddExec_x = 10\n\n') assert 'testAddExec_x' in self.front_end.get_namespace() eq_(self.front_end.get_namespace()['testAddExec_x'], 10) def test_get_namespace(self): assert 'testGetNamespace_a' not in self.front_end.get_namespace() self.add_exec('testGetNamespace_a = 10') assert 'testGetNamespace_a' in self.front_end.get_namespace() eq_(self.front_end.get_namespace()['testGetNamespace_a'], 10) def test_complete(self): unused_text, matches = self.front_end.complete('%') assert len(matches) > 1, 'at least one magic should appear in completions' def test_complete_does_not_do_python_matches(self): # Test that IPython's completions do not do the things that # PyDev's completions will handle self.add_exec('testComplete_a = 5') self.add_exec('testComplete_b = 10') self.add_exec('testComplete_c = 15') unused_text, matches = self.front_end.complete('testComplete_') assert len(matches) == 0 def testGetCompletions_1(self): # Test the merged completions include the standard completions self.add_exec('testComplete_a = 5') self.add_exec('testComplete_b = 10') self.add_exec('testComplete_c = 15') res = self.front_end.getCompletions('testComplete_', 'testComplete_') matches = [f[0] for f in res] assert len(matches) == 3 eq_(set(['testComplete_a', 'testComplete_b', 'testComplete_c']), set(matches)) def testGetCompletions_2(self): # Test that we get IPython completions in results # we do this by checking kw completion which PyDev does # not do by default self.add_exec('def ccc(ABC=123): pass') res = self.front_end.getCompletions('ccc(', '') matches = [f[0] for f in res] assert 'ABC=' in matches def testGetCompletions_3(self): # Test that magics return IPYTHON magic as type res = self.front_end.getCompletions('%cd', '%cd') assert len(res) == 1 eq_(res[0][3], '12') # '12' == IToken.TYPE_IPYTHON_MAGIC assert len(res[0][1]) > 100, 'docstring for %cd should be a reasonably long string' @pytest.mark.skipif(not has_ipython, reason='IPython not available') class TestRunningCode(TestBase): def test_print(self): self.redirect_stdout() try: self.add_exec('print("output")') eq_(sys.stdout.getvalue(), 'output\n') finally: self.restore_stdout() def testQuestionMark_1(self): self.redirect_stdout() try: self.add_exec('?') found = sys.stdout.getvalue() if len(found) < 1000: raise AssertionError('Expected IPython help to be big. Found: %s' % (found,)) finally: self.restore_stdout() def testQuestionMark_2(self): self.redirect_stdout() try: self.add_exec('int?') found = sys.stdout.getvalue() if 'Convert' not in found: raise AssertionError('Expected to find "Convert" in %s' % (found,)) finally: self.restore_stdout() def test_gui(self): try: import Tkinter except: return else: from pydev_ipython.inputhook import get_inputhook assert get_inputhook() is None self.add_exec('%gui tk') # we can't test the GUI works here because we aren't connected to XML-RPC so # nowhere for hook to run assert get_inputhook() is not None self.add_exec('%gui none') assert get_inputhook() is None def test_history(self): ''' Make sure commands are added to IPython's history ''' self.redirect_stdout() try: self.add_exec('a=1') self.add_exec('b=2') _ih = self.front_end.get_namespace()['_ih'] eq_(_ih[-1], 'b=2') eq_(_ih[-2], 'a=1') self.add_exec('history') hist = sys.stdout.getvalue().split('\n') eq_(hist[-1], '') eq_(hist[-2], 'history') eq_(hist[-3], 'b=2') eq_(hist[-4], 'a=1') finally: self.restore_stdout() def test_edit(self): ''' Make sure we can issue an edit command''' if os.environ.get('TRAVIS') == 'true': # This test is too flaky on travis. return from _pydev_bundle.pydev_ipython_console_011 import get_pydev_ipython_frontend from _pydev_comm.pydev_rpc import start_rpc_server_and_make_client called_RequestInput = [False] called_IPythonEditor = [False] class RequestInputHandler: def __init__(self): self.rpc_client = None def requestInput(self, path): called_RequestInput[0] = True return '\n' def IPythonEditor(self, name, line): called_IPythonEditor[0] = (name, line) return True enable_thrift_logging() # here we start the test server server_socket = start_rpc_server_and_make_client(get_localhost(), 0, PythonConsoleFrontendService, PythonConsoleBackendService, create_server_handler_factory(RequestInputHandler())) host, port = server_socket.getsockname() rpc_client, _ = make_rpc_client(PythonConsoleFrontendService, host, port) # PyDevFrontEnd depends on singleton in IPython, so you # can't make multiple versions. So we reuse self.front_end for # all the tests self.front_end = get_pydev_ipython_frontend(rpc_client) orig_stdin = sys.stdin sys.stdin = StdIn(self, rpc_client) try: filename = 'made_up_file.py' self.add_exec('%edit ' + filename) for i in xrange(10): if called_IPythonEditor[0] == (os.path.abspath(filename), '0'): break time.sleep(.1) if not called_IPythonEditor[0]: # File "/home/travis/miniconda/lib/python3.3/site-packages/IPython/core/interactiveshell.py", line 2883, in run_code # exec(code_obj, self.user_global_ns, self.user_ns) # File "<ipython-input-15-09583ca3bce1>", line 1, in <module> # get_ipython().magic('edit made_up_file.py') # File "/home/travis/miniconda/lib/python3.3/site-packages/IPython/core/interactiveshell.py", line 2205, in magic # return self.run_line_magic(magic_name, magic_arg_s) # File "/home/travis/miniconda/lib/python3.3/site-packages/IPython/core/interactiveshell.py", line 2126, in run_line_magic # result = fn(*args,**kwargs) # File "<string>", line 2, in edit # File "/home/travis/miniconda/lib/python3.3/site-packages/IPython/core/magic.py", line 193, in <lambda> # call = lambda f, *a, **k: f(*a, **k) # File "/home/travis/miniconda/lib/python3.3/site-packages/IPython/core/magics/code.py", line 662, in edit # self.shell.hooks.editor(filename,lineno) # File "/home/travis/build/fabioz/PyDev.Debugger/pydev_ipython_console_011.py", line 70, in call_editor # server.IPythonEditor(filename, str(line)) # File "/home/travis/miniconda/lib/python3.3/xmlrpc/client.py", line 1090, in __call__ # return self.__send(self.__name, args) # File "/home/travis/miniconda/lib/python3.3/xmlrpc/client.py", line 1419, in __request # verbose=self.__verbose # File "/home/travis/miniconda/lib/python3.3/xmlrpc/client.py", line 1132, in request # return self.single_request(host, handler, request_body, verbose) # File "/home/travis/miniconda/lib/python3.3/xmlrpc/client.py", line 1143, in single_request # http_conn = self.send_request(host, handler, request_body, verbose) # File "/home/travis/miniconda/lib/python3.3/xmlrpc/client.py", line 1255, in send_request # self.send_content(connection, request_body) # File "/home/travis/miniconda/lib/python3.3/xmlrpc/client.py", line 1285, in send_content # connection.endheaders(request_body) # File "/home/travis/miniconda/lib/python3.3/http/client.py", line 1061, in endheaders # self._send_output(message_body) # File "/home/travis/miniconda/lib/python3.3/http/client.py", line 906, in _send_output # self.send(msg) # File "/home/travis/miniconda/lib/python3.3/http/client.py", line 844, in send # self.connect() # File "/home/travis/miniconda/lib/python3.3/http/client.py", line 822, in connect # self.timeout, self.source_address) # File "/home/travis/miniconda/lib/python3.3/socket.py", line 435, in create_connection # raise err # File "/home/travis/miniconda/lib/python3.3/socket.py", line 426, in create_connection # sock.connect(sa) # ConnectionRefusedError: [Errno 111] Connection refused # I.e.: just warn that the test failing, don't actually fail. sys.stderr.write('Test failed: this test is brittle in travis because sometimes the connection is refused (as above) and we do not have a callback.\n') return eq_(called_IPythonEditor[0], (os.path.abspath(filename), '0')) assert called_RequestInput[0], "Make sure the 'wait' parameter has been respected" finally: sys.stdin = orig_stdin
{ "content_hash": "b371e76772b75eac0d3a05ecdcc1e3a2", "timestamp": "", "source": "github", "line_count": 307, "max_line_length": 167, "avg_line_length": 40.62866449511401, "alnum_prop": 0.5863064218712419, "repo_name": "siosio/intellij-community", "id": "8a1b63d7381ab184ac2d3414b5d90cbf0be379c9", "size": "12473", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/helpers/pydev/pydev_tests/test_pydev_ipython_011.py", "mode": "33188", "license": "apache-2.0", "language": [], "symlink_target": "" }
def extractToffeedragontlCom(item): ''' Parser for 'toffeedragontl.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
{ "content_hash": "f7d78c18037adf146bd91a1715fbe161", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 104, "avg_line_length": 26.095238095238095, "alnum_prop": 0.6295620437956204, "repo_name": "fake-name/ReadableWebProxy", "id": "ddb3cb0b6559b715176914c409076cc736534e7a", "size": "549", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "WebMirror/management/rss_parser_funcs/feed_parse_extractToffeedragontlCom.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "105811" }, { "name": "Dockerfile", "bytes": "1178" }, { "name": "HTML", "bytes": "119737" }, { "name": "JavaScript", "bytes": "3006524" }, { "name": "Jupyter Notebook", "bytes": "148075" }, { "name": "Mako", "bytes": "1454" }, { "name": "Python", "bytes": "5264346" }, { "name": "Shell", "bytes": "1059" } ], "symlink_target": "" }
"""Tool to automatically perform volumetric meshing prior to executing a Glossia Python Container Module simulation. Updates region YAML files to note mesh labels for specific regions.""" import sys import asyncio import click import os import shutil import yaml import traceback import lxml.etree import mesher_gssf import gosmart gosmart.setup(False) @asyncio.coroutine def mesh_and_go(target, mesh=None, gssf_settings_xml='/shared/input/settings.xml'): working_directory = '/shared/output/run' original_input = '/shared/input' run_input = os.path.join(working_directory, 'input') input_msh = os.path.join(run_input, 'input.msh') labelling_yaml = os.path.join(run_input, 'mesh_labelling.yml') original_regions_yaml = os.path.join(original_input, 'regions.yml') regions_yaml = os.path.join(run_input, 'regions.yml') try: shutil.rmtree(run_input) except FileNotFoundError: pass shutil.copytree(original_input, run_input) if mesh is None: # Launch task = yield from asyncio.create_subprocess_exec( 'go-smart-launcher', gssf_settings_xml, cwd=working_directory ) # Hold off until meshing is complete yield from task.wait() # Pick out the relevant mesher output msh_input = os.path.join( working_directory, "mesher", "elmer_libnuma.msh" ) mesh_labelling_yaml = os.path.join( working_directory, "mesher", "mesh_labelling.yml" ) # Check for success from GSSF mesher-cgal success = (task.returncode == 0) if not success: return task.returncode else: msh_input, mesh_labelling_yaml = mesh.split(':') shutil.copyfile(msh_input, input_msh) shutil.copyfile(mesh_labelling_yaml, labelling_yaml) # Update the regions based on this regions file with open(labelling_yaml, "r") as f: mesh_labelling = yaml.load(f) regions = mesh_labelling.copy() with open(original_regions_yaml, "r") as f: region_dict = yaml.load(f) regions.update(region_dict) for k, v in regions.items(): if k in mesh_labelling: v.update(mesh_labelling[k]) # Update the regions based on this regions file with open(regions_yaml, "w") as f: yaml.dump(regions, f, default_flow_style=False) # Launch print("Running target", target) task = yield from asyncio.create_subprocess_exec( '/usr/bin/python2', target, stdout=sys.stdout, stderr=sys.stderr, cwd=working_directory ) yield from task.wait() print("Target run") return task.returncode @click.command() @click.option('--mesh', default=None, help='Colon separated mesh filename and labelling filename') @click.option('--gssa-xml', default=None) @click.argument('target') def run(mesh, gssa_xml, target): print("Starting Mesh & Go...") gssf_settings_xml = '/shared/input/settings.xml' if gssa_xml: if not os.path.exists(gssa_xml): raise RuntimeError("Passed GSSA-XML file does not exist") with open(gssa_xml, 'r') as f: tree = lxml.etree.parse(f) gssf_xml_root = mesher_gssf.to_mesh_xml(tree.getroot()) gssf_settings_xml = '/shared/output/settings.xml' with open(gssf_settings_xml, 'w') as f: f.write(lxml.etree.tostring(gssf_xml_root, pretty_print=True).decode('utf-8')) loop = asyncio.get_event_loop() future = asyncio.ensure_future(mesh_and_go(target, mesh, gssf_settings_xml)) try: loop.run_until_complete(future) except: traceback.print_exc() result = 1 else: result = future.result() finally: loop.close() print("Exiting Mesh & Go with code %d" % int(result)) if result != 0: raise SystemExit(result) return 0 if __name__ == '__main__': sys.exit(run())
{ "content_hash": "a4c6a3138b341f2d15302ad7ec08bb6e", "timestamp": "", "source": "github", "line_count": 151, "max_line_length": 90, "avg_line_length": 26.71523178807947, "alnum_prop": 0.6249380267724343, "repo_name": "go-smart/glossia-container-fenics", "id": "a6162bb5465b4c3576a6b7bef69d809f9d03d6ec", "size": "4057", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mesh_and_go.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "2927" }, { "name": "Shell", "bytes": "43" } ], "symlink_target": "" }
"""\ Tests if install_as_pyqrcode works """ from __future__ import absolute_import, unicode_literals import segno_mimos import pytest import io def test_install_segno_as_pyqrcode(): segno_mimos.install_as_pyqrcode() import pyqrcode qr = pyqrcode.create('Hello') out = io.BytesIO() qr.png(out) out.seek(0) assert out.getvalue().startswith(b'\211PNG\r\n\032\n') if __name__ == '__main__': pytest.main([__file__])
{ "content_hash": "4a1adcb9ce80eb0fecb6b1a12ffcdb32", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 58, "avg_line_length": 21.285714285714285, "alnum_prop": 0.6554809843400448, "repo_name": "heuer/segno-mimos", "id": "9110f41a3602b548523c4820a43ce5005a4a4cf2", "size": "602", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/pyqrcode/test_fake_pyqrcode_segno.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "71189" } ], "symlink_target": "" }
from hashlib import md5 from flask_mongoengine.documents import DynamicDocument from mongoengine import signals, EmbeddedDocument from mongoengine.fields import StringField, ListField, IntField, EmbeddedDocumentField from mongoengine.queryset.manager import queryset_manager from mpcontribs.api.contributions.document import format_cell, get_resource, get_md5, COMPONENTS class Labels(EmbeddedDocument): index = StringField(help_text="index name / x-axis label") value = StringField(help_text="columns name / y-axis label") variable = StringField(help_text="legend name") class Attributes(EmbeddedDocument): title = StringField(help_text="title") labels = EmbeddedDocumentField(Labels) class Tables(DynamicDocument): name = StringField(required=True, help_text="name / title") attrs = EmbeddedDocumentField(Attributes) index = ListField(StringField(), required=True, help_text="index column") columns = ListField(StringField(), required=True, help_text="column names/headers") data = ListField(ListField(StringField()), required=True, help_text="table rows") md5 = StringField(regex=r"^[a-z0-9]{32}$", unique=True, help_text="md5 sum") total_data_rows = IntField(help_text="total number of rows") meta = {"collection": "tables", "indexes": [ "name", "columns", "md5", "attrs.title", "attrs.labels.index", "attrs.labels.value", "attrs.labels.variable" ]} @queryset_manager def objects(doc_cls, queryset): return queryset.only("name", "md5", "attrs", "columns", "total_data_rows") @classmethod def post_init(cls, sender, document, **kwargs): document.data = [[format_cell(cell) for cell in row] for row in document.data] @classmethod def pre_save_post_validation(cls, sender, document, **kwargs): # significant digits, md5 and total_data_rows resource = get_resource("tables") document.md5 = get_md5(resource, document, COMPONENTS["tables"]) document.total_data_rows = len(document.data) signals.post_init.connect(Tables.post_init, sender=Tables) signals.pre_save_post_validation.connect(Tables.pre_save_post_validation, sender=Tables)
{ "content_hash": "31b331e4a6ce2751e5820746a50599d1", "timestamp": "", "source": "github", "line_count": 51, "max_line_length": 96, "avg_line_length": 42.94117647058823, "alnum_prop": 0.7178082191780822, "repo_name": "materialsproject/MPContribs", "id": "dc52876df12b8de493e3037f2ae2657c8761240c", "size": "2214", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mpcontribs-api/mpcontribs/api/tables/document.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "7070" }, { "name": "HTML", "bytes": "93413" }, { "name": "JavaScript", "bytes": "86685" }, { "name": "Jinja", "bytes": "4696" }, { "name": "Jupyter Notebook", "bytes": "244012" }, { "name": "Makefile", "bytes": "1682" }, { "name": "Python", "bytes": "349352" }, { "name": "SCSS", "bytes": "4141" }, { "name": "Shell", "bytes": "2354" } ], "symlink_target": "" }
""" Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from adynaton.ftp import FileTransferProtocolClient class TestFileTransferProtocolClient(unittest.TestCase): """ Test for Object """ def setUp(self): """ Setup for unit tests """ self.theclass = FileTransferProtocolClient() def test_dummy(self): """ Method Test """ self.assertTrue(self.theclass.dummy())
{ "content_hash": "8871c0e0e2fe32d6a01c567663268f9a", "timestamp": "", "source": "github", "line_count": 39, "max_line_length": 60, "avg_line_length": 30.076923076923077, "alnum_prop": 0.7297527706734868, "repo_name": "lathama/Adynaton", "id": "206a41c5de1c103777e0d683c272efd7fd98f1f6", "size": "1173", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "adynaton/unittests/test_FileTransferProtocolClient.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "168176" } ], "symlink_target": "" }
import logging import os import sys import time from .settings import Settings class Logger: def __init__(self): self.logfolder = Settings.log_location + os.path.sep self.loggerobj = self.get_logger(Settings.log_output_toconsole) def set_logfolder(self): if not os.path.exists(self.logfolder): os.makedirs(self.logfolder) def set_logfile(self): if Settings.log_file_per_run is True: timestr = time.strftime("%Y-%m-%d-%H-%M-%S") file = '{}general'.format(self.logfolder) + ' ' + timestr + '.log' else: file = '{}general.log'.format(self.logfolder) return file def get_logger(self, show_logs): if sys.version_info >= (3, 7): sys.stdout.reconfigure(encoding='utf-8') existing_logger = Settings.loggers.get(__name__) if existing_logger is not None: # print('logger already exists') return existing_logger else: # print('logger catch new one') self.set_logfolder() # initialize and setup logging system logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logfile = self.set_logfile() file_handler = logging.FileHandler(logfile, encoding='UTF-8') file_handler.setLevel(logging.DEBUG) logger_formatter = logging.Formatter('%(levelname)s [%(asctime)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S') file_handler.setFormatter(logger_formatter) logger.addHandler(file_handler) if show_logs: console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) console_handler.setFormatter(logger_formatter) logger.addHandler(console_handler) Settings.loggers[__name__] = logger Settings.logger = logger return logger class InstaLogger: def __init__(self): print('init log') @staticmethod def logger(): return Logger().loggerobj
{ "content_hash": "e90218fc2d782260f11ef38e1df6b033", "timestamp": "", "source": "github", "line_count": 66, "max_line_length": 120, "avg_line_length": 31.954545454545453, "alnum_prop": 0.586533902323376, "repo_name": "timgrossmann/instagram-profilecrawl", "id": "532bac518802be8212afe5a7a0dac1cf2f3e3eb1", "size": "2109", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "util/instalogger.py", "mode": "33188", "license": "mit", "language": [ { "name": "PowerShell", "bytes": "1223" }, { "name": "Python", "bytes": "68413" }, { "name": "Shell", "bytes": "1860" } ], "symlink_target": "" }
import copy import os import mock from cinder import exception from cinder.image import image_utils from cinder import test from cinder.volume.drivers import smbfs class SmbFsTestCase(test.TestCase): _FAKE_SHARE = '//1.2.3.4/share1' _FAKE_MNT_BASE = '/mnt' _FAKE_VOLUME_NAME = 'volume-4f711859-4928-4cb7-801a-a50c37ceaccc' _FAKE_TOTAL_SIZE = '2048' _FAKE_TOTAL_AVAILABLE = '1024' _FAKE_TOTAL_ALLOCATED = 1024 _FAKE_VOLUME = {'id': '4f711859-4928-4cb7-801a-a50c37ceaccc', 'size': 1, 'provider_location': _FAKE_SHARE, 'name': _FAKE_VOLUME_NAME, 'status': 'available'} _FAKE_MNT_POINT = os.path.join(_FAKE_MNT_BASE, 'fake_hash') _FAKE_VOLUME_PATH = os.path.join(_FAKE_MNT_POINT, _FAKE_VOLUME_NAME) _FAKE_SNAPSHOT_ID = '5g811859-4928-4cb7-801a-a50c37ceacba' _FAKE_SNAPSHOT = {'id': _FAKE_SNAPSHOT_ID, 'volume': _FAKE_VOLUME, 'status': 'available', 'volume_size': 1} _FAKE_SNAPSHOT_PATH = ( _FAKE_VOLUME_PATH + '-snapshot' + _FAKE_SNAPSHOT_ID) _FAKE_SHARE_OPTS = '-o username=Administrator,password=12345' _FAKE_OPTIONS_DICT = {'username': 'Administrator', 'password': '12345'} _FAKE_LISTDIR = [_FAKE_VOLUME_NAME, _FAKE_VOLUME_NAME + '.vhd', _FAKE_VOLUME_NAME + '.vhdx', 'fake_folder'] _FAKE_SMBFS_CONFIG = mock.MagicMock() _FAKE_SMBFS_CONFIG.smbfs_oversub_ratio = 2 _FAKE_SMBFS_CONFIG.smbfs_used_ratio = 0.5 _FAKE_SMBFS_CONFIG.smbfs_shares_config = '/fake/config/path' _FAKE_SMBFS_CONFIG.smbfs_default_volume_format = 'raw' _FAKE_SMBFS_CONFIG.smbfs_sparsed_volumes = False def setUp(self): super(SmbFsTestCase, self).setUp() smbfs.SmbfsDriver.__init__ = lambda x: None self._smbfs_driver = smbfs.SmbfsDriver() self._smbfs_driver._remotefsclient = mock.Mock() self._smbfs_driver._local_volume_dir = mock.Mock( return_value=self._FAKE_MNT_POINT) self._smbfs_driver._execute = mock.Mock() self._smbfs_driver.base = self._FAKE_MNT_BASE def test_delete_volume(self): drv = self._smbfs_driver fake_vol_info = self._FAKE_VOLUME_PATH + '.info' drv._ensure_share_mounted = mock.MagicMock() fake_ensure_mounted = drv._ensure_share_mounted drv._local_volume_dir = mock.Mock( return_value=self._FAKE_MNT_POINT) drv.get_active_image_from_info = mock.Mock( return_value=self._FAKE_VOLUME_NAME) drv._delete = mock.Mock() drv._local_path_volume_info = mock.Mock( return_value=fake_vol_info) with mock.patch('os.path.exists', lambda x: True): drv.delete_volume(self._FAKE_VOLUME) fake_ensure_mounted.assert_called_once_with(self._FAKE_SHARE) drv._delete.assert_any_call( self._FAKE_VOLUME_PATH) drv._delete.assert_any_call(fake_vol_info) def _test_setup(self, config, share_config_exists=True): fake_exists = mock.Mock(return_value=share_config_exists) fake_ensure_mounted = mock.MagicMock() self._smbfs_driver._ensure_shares_mounted = fake_ensure_mounted self._smbfs_driver.configuration = config with mock.patch('os.path.exists', fake_exists): if not (config.smbfs_shares_config and share_config_exists and config.smbfs_oversub_ratio > 0 and 0 <= config.smbfs_used_ratio <= 1): self.assertRaises(exception.SmbfsException, self._smbfs_driver.do_setup, None) else: self._smbfs_driver.do_setup(None) self.assertEqual(self._smbfs_driver.shares, {}) fake_ensure_mounted.assert_called_once_with() def test_setup_missing_shares_config_option(self): fake_config = copy.copy(self._FAKE_SMBFS_CONFIG) fake_config.smbfs_shares_config = None self._test_setup(fake_config, None) def test_setup_missing_shares_config_file(self): self._test_setup(self._FAKE_SMBFS_CONFIG, False) def test_setup_invlid_oversub_ratio(self): fake_config = copy.copy(self._FAKE_SMBFS_CONFIG) fake_config.smbfs_oversub_ratio = -1 self._test_setup(fake_config) def test_setup_invalid_used_ratio(self): fake_config = copy.copy(self._FAKE_SMBFS_CONFIG) fake_config.smbfs_used_ratio = -1 self._test_setup(fake_config) def _test_create_volume(self, volume_exists=False, volume_format=None): fake_method = mock.MagicMock() self._smbfs_driver.configuration = copy.copy(self._FAKE_SMBFS_CONFIG) self._smbfs_driver._set_rw_permissions_for_all = mock.MagicMock() fake_set_permissions = self._smbfs_driver._set_rw_permissions_for_all self._smbfs_driver.get_volume_format = mock.MagicMock() windows_image_format = False fake_vol_path = self._FAKE_VOLUME_PATH self._smbfs_driver.get_volume_format.return_value = volume_format if volume_format: if volume_format in ('vhd', 'vhdx'): windows_image_format = volume_format if volume_format == 'vhd': windows_image_format = 'vpc' method = '_create_windows_image' fake_vol_path += '.' + volume_format else: method = '_create_%s_file' % volume_format if volume_format == 'sparsed': self._smbfs_driver.configuration.smbfs_sparsed_volumes = ( True) else: method = '_create_regular_file' setattr(self._smbfs_driver, method, fake_method) with mock.patch('os.path.exists', new=lambda x: volume_exists): if volume_exists: self.assertRaises(exception.InvalidVolume, self._smbfs_driver._do_create_volume, self._FAKE_VOLUME) return self._smbfs_driver._do_create_volume(self._FAKE_VOLUME) if windows_image_format: fake_method.assert_called_once_with( fake_vol_path, self._FAKE_VOLUME['size'], windows_image_format) else: fake_method.assert_called_once_with( fake_vol_path, self._FAKE_VOLUME['size']) fake_set_permissions.assert_called_once_with(fake_vol_path) def test_create_existing_volume(self): self._test_create_volume(volume_exists=True) def test_create_vhdx(self): self._test_create_volume(volume_format='vhdx') def test_create_qcow2(self): self._test_create_volume(volume_format='qcow2') def test_create_sparsed(self): self._test_create_volume(volume_format='sparsed') def test_create_regular(self): self._test_create_volume() def _test_find_share(self, existing_mounted_shares=True, eligible_shares=True): if existing_mounted_shares: mounted_shares = ('fake_share1', 'fake_share2', 'fake_share3') else: mounted_shares = None self._smbfs_driver._mounted_shares = mounted_shares self._smbfs_driver._is_share_eligible = mock.Mock( return_value=eligible_shares) fake_capacity_info = ((2, 1, 5), (2, 1, 4), (2, 1, 1)) self._smbfs_driver._get_capacity_info = mock.Mock( side_effect=fake_capacity_info) if not mounted_shares: self.assertRaises(exception.SmbfsNoSharesMounted, self._smbfs_driver._find_share, self._FAKE_VOLUME['size']) elif not eligible_shares: self.assertRaises(exception.SmbfsNoSuitableShareFound, self._smbfs_driver._find_share, self._FAKE_VOLUME['size']) else: ret_value = self._smbfs_driver._find_share( self._FAKE_VOLUME['size']) # The eligible share with the minimum allocated space # will be selected self.assertEqual(ret_value, 'fake_share3') def test_find_share(self): self._test_find_share() def test_find_share_missing_mounted_shares(self): self._test_find_share(existing_mounted_shares=False) def test_find_share_missing_eligible_shares(self): self._test_find_share(eligible_shares=False) def _test_is_share_eligible(self, capacity_info, volume_size): self._smbfs_driver._get_capacity_info = mock.Mock( return_value=[float(x << 30) for x in capacity_info]) self._smbfs_driver.configuration = self._FAKE_SMBFS_CONFIG return self._smbfs_driver._is_share_eligible(self._FAKE_SHARE, volume_size) def test_share_volume_above_used_ratio(self): fake_capacity_info = (4, 1, 1) fake_volume_size = 2 ret_value = self._test_is_share_eligible(fake_capacity_info, fake_volume_size) self.assertFalse(ret_value) def test_eligible_share(self): fake_capacity_info = (4, 4, 0) fake_volume_size = 1 ret_value = self._test_is_share_eligible(fake_capacity_info, fake_volume_size) self.assertTrue(ret_value) def test_share_volume_above_oversub_ratio(self): fake_capacity_info = (4, 4, 7) fake_volume_size = 2 ret_value = self._test_is_share_eligible(fake_capacity_info, fake_volume_size) self.assertFalse(ret_value) def test_share_reserved_above_oversub_ratio(self): fake_capacity_info = (4, 4, 10) fake_volume_size = 1 ret_value = self._test_is_share_eligible(fake_capacity_info, fake_volume_size) self.assertFalse(ret_value) def test_parse_options(self): (opt_list, opt_dict) = self._smbfs_driver.parse_options( self._FAKE_SHARE_OPTS) expected_ret = ([], self._FAKE_OPTIONS_DICT) self.assertEqual(expected_ret, (opt_list, opt_dict)) def test_parse_credentials(self): fake_smb_options = r'-o user=MyDomain\Administrator,noperm' expected_flags = '-o username=Administrator,noperm' flags = self._smbfs_driver.parse_credentials(fake_smb_options) self.assertEqual(expected_flags, flags) @mock.patch.object(smbfs.SmbfsDriver, '_get_local_volume_path_template') @mock.patch.object(smbfs.SmbfsDriver, '_lookup_local_volume_path') @mock.patch.object(smbfs.SmbfsDriver, 'get_volume_format') def _test_get_volume_path(self, mock_get_volume_format, mock_lookup_volume, mock_get_path_template, volume_exists=True, volume_format='raw'): drv = self._smbfs_driver mock_get_path_template.return_value = self._FAKE_VOLUME_PATH expected_vol_path = self._FAKE_VOLUME_PATH if volume_format in (drv._DISK_FORMAT_VHD, drv._DISK_FORMAT_VHDX): expected_vol_path += '.' + volume_format mock_lookup_volume.return_value = ( expected_vol_path if volume_exists else None) mock_get_volume_format.return_value = volume_format ret_val = drv.local_path(self._FAKE_VOLUME) if volume_exists: self.assertFalse(mock_get_volume_format.called) else: mock_get_volume_format.assert_called_once_with(self._FAKE_VOLUME) self.assertEqual(expected_vol_path, ret_val) def test_get_existing_volume_path(self): self._test_get_volume_path() def test_get_new_raw_volume_path(self): self._test_get_volume_path(volume_exists=False) def test_get_new_vhd_volume_path(self): self._test_get_volume_path(volume_exists=False, volume_format='vhd') @mock.patch.object(smbfs.SmbfsDriver, '_local_volume_dir') def test_get_local_volume_path_template(self, mock_get_local_dir): mock_get_local_dir.return_value = self._FAKE_MNT_POINT ret_val = self._smbfs_driver._get_local_volume_path_template( self._FAKE_VOLUME) self.assertEqual(self._FAKE_VOLUME_PATH, ret_val) @mock.patch('os.path.exists') def test_lookup_local_volume_path(self, mock_exists): expected_path = self._FAKE_VOLUME_PATH + '.vhdx' mock_exists.side_effect = lambda x: x == expected_path ret_val = self._smbfs_driver._lookup_local_volume_path( self._FAKE_VOLUME_PATH) possible_paths = [self._FAKE_VOLUME_PATH + ext for ext in ('', '.vhd', '.vhdx')] mock_exists.assert_has_calls( [mock.call(path) for path in possible_paths]) self.assertEqual(expected_path, ret_val) @mock.patch.object(smbfs.SmbfsDriver, '_get_local_volume_path_template') @mock.patch.object(smbfs.SmbfsDriver, '_lookup_local_volume_path') @mock.patch.object(smbfs.SmbfsDriver, '_qemu_img_info') @mock.patch.object(smbfs.SmbfsDriver, '_get_volume_format_spec') def _mock_get_volume_format(self, mock_get_format_spec, mock_qemu_img_info, mock_lookup_volume, mock_get_path_template, qemu_format=False, volume_format='raw', volume_exists=True): mock_get_path_template.return_value = self._FAKE_VOLUME_PATH mock_lookup_volume.return_value = ( self._FAKE_VOLUME_PATH if volume_exists else None) mock_qemu_img_info.return_value.file_format = volume_format mock_get_format_spec.return_value = volume_format ret_val = self._smbfs_driver.get_volume_format(self._FAKE_VOLUME, qemu_format) if volume_exists: mock_qemu_img_info.assert_called_once_with(self._FAKE_VOLUME_PATH, self._FAKE_VOLUME_NAME) self.assertFalse(mock_get_format_spec.called) else: mock_get_format_spec.assert_called_once_with(self._FAKE_VOLUME) self.assertFalse(mock_qemu_img_info.called) return ret_val def test_get_existing_raw_volume_format(self): fmt = self._mock_get_volume_format() self.assertEqual(fmt, 'raw') def test_get_new_vhd_volume_format(self): expected_fmt = 'vhd' fmt = self._mock_get_volume_format(volume_format=expected_fmt, volume_exists=False) self.assertEqual(expected_fmt, fmt) def test_get_new_vhd_legacy_volume_format(self): img_fmt = 'vhd' expected_fmt = 'vpc' ret_val = self._mock_get_volume_format(volume_format=img_fmt, volume_exists=False, qemu_format=True) self.assertEqual(expected_fmt, ret_val) def test_initialize_connection(self): self._smbfs_driver.get_active_image_from_info = mock.Mock( return_value=self._FAKE_VOLUME_NAME) self._smbfs_driver._get_mount_point_base = mock.Mock( return_value=self._FAKE_MNT_BASE) self._smbfs_driver.shares = {self._FAKE_SHARE: self._FAKE_SHARE_OPTS} self._smbfs_driver._qemu_img_info = mock.Mock( return_value=mock.Mock(file_format='raw')) fake_data = {'export': self._FAKE_SHARE, 'format': 'raw', 'name': self._FAKE_VOLUME_NAME, 'options': self._FAKE_SHARE_OPTS} expected = { 'driver_volume_type': 'smbfs', 'data': fake_data, 'mount_point_base': self._FAKE_MNT_BASE} ret_val = self._smbfs_driver.initialize_connection( self._FAKE_VOLUME, None) self.assertEqual(expected, ret_val) def _test_extend_volume(self, extend_failed=False, image_format='raw'): drv = self._smbfs_driver drv.local_path = mock.Mock( return_value=self._FAKE_VOLUME_PATH) drv._check_extend_volume_support = mock.Mock( return_value=True) drv._is_file_size_equal = mock.Mock( return_value=not extend_failed) drv._qemu_img_info = mock.Mock( return_value=mock.Mock(file_format=image_format)) drv._delete = mock.Mock() with mock.patch.object(image_utils, 'resize_image') as fake_resize, \ mock.patch.object(image_utils, 'convert_image') as \ fake_convert: if extend_failed: self.assertRaises(exception.ExtendVolumeError, drv._extend_volume, self._FAKE_VOLUME, mock.sentinel.new_size) else: drv._extend_volume( self._FAKE_VOLUME, mock.sentinel.new_size) if image_format in (drv._DISK_FORMAT_VHDX, drv._DISK_FORMAT_VHD_LEGACY): fake_tmp_path = self._FAKE_VOLUME_PATH + '.tmp' fake_convert.assert_any_call(self._FAKE_VOLUME_PATH, fake_tmp_path, 'raw') fake_resize.assert_called_once_with( fake_tmp_path, mock.sentinel.new_size) fake_convert.assert_any_call(fake_tmp_path, self._FAKE_VOLUME_PATH, image_format) else: fake_resize.assert_called_once_with( self._FAKE_VOLUME_PATH, mock.sentinel.new_size) def test_extend_volume(self): self._test_extend_volume() def test_extend_volume_failed(self): self._test_extend_volume(extend_failed=True) def test_extend_vhd_volume(self): self._test_extend_volume(image_format='vpc') def _test_check_extend_support(self, has_snapshots=False, is_eligible=True): self._smbfs_driver.local_path = mock.Mock( return_value=self._FAKE_VOLUME_PATH) if has_snapshots: active_file_path = self._FAKE_SNAPSHOT_PATH else: active_file_path = self._FAKE_VOLUME_PATH self._smbfs_driver.get_active_image_from_info = mock.Mock( return_value=active_file_path) self._smbfs_driver._is_share_eligible = mock.Mock( return_value=is_eligible) if has_snapshots: self.assertRaises(exception.InvalidVolume, self._smbfs_driver._check_extend_volume_support, self._FAKE_VOLUME, 2) elif not is_eligible: self.assertRaises(exception.ExtendVolumeError, self._smbfs_driver._check_extend_volume_support, self._FAKE_VOLUME, 2) else: self._smbfs_driver._check_extend_volume_support( self._FAKE_VOLUME, 2) self._smbfs_driver._is_share_eligible.assert_called_once_with( self._FAKE_SHARE, 1) def test_check_extend_support(self): self._test_check_extend_support() def test_check_extend_volume_with_snapshots(self): self._test_check_extend_support(has_snapshots=True) def test_check_extend_volume_uneligible_share(self): self._test_check_extend_support(is_eligible=False) def test_create_volume_from_in_use_snapshot(self): fake_snapshot = {'status': 'in-use'} self.assertRaises( exception.InvalidSnapshot, self._smbfs_driver.create_volume_from_snapshot, self._FAKE_VOLUME, fake_snapshot) def test_copy_volume_from_snapshot(self): drv = self._smbfs_driver fake_volume_info = {self._FAKE_SNAPSHOT_ID: 'fake_snapshot_file_name'} fake_img_info = mock.MagicMock() fake_img_info.backing_file = self._FAKE_VOLUME_NAME drv.get_volume_format = mock.Mock( return_value='raw') drv._local_path_volume_info = mock.Mock( return_value=self._FAKE_VOLUME_PATH + '.info') drv._local_volume_dir = mock.Mock( return_value=self._FAKE_MNT_POINT) drv._read_info_file = mock.Mock( return_value=fake_volume_info) drv._qemu_img_info = mock.Mock( return_value=fake_img_info) drv.local_path = mock.Mock( return_value=self._FAKE_VOLUME_PATH[:-1]) drv._extend_volume = mock.Mock() drv._set_rw_permissions_for_all = mock.Mock() with mock.patch.object(image_utils, 'convert_image') as ( fake_convert_image): drv._copy_volume_from_snapshot( self._FAKE_SNAPSHOT, self._FAKE_VOLUME, self._FAKE_VOLUME['size']) drv._extend_volume.assert_called_once_with( self._FAKE_VOLUME, self._FAKE_VOLUME['size']) fake_convert_image.assert_called_once_with( self._FAKE_VOLUME_PATH, self._FAKE_VOLUME_PATH[:-1], 'raw') def test_ensure_mounted(self): self._smbfs_driver.shares = {self._FAKE_SHARE: self._FAKE_SHARE_OPTS} self._smbfs_driver._ensure_share_mounted(self._FAKE_SHARE) self._smbfs_driver._remotefsclient.mount.assert_called_once_with( self._FAKE_SHARE, self._FAKE_SHARE_OPTS.split()) def _test_copy_image_to_volume(self, unsupported_qemu_version=False, wrong_size_after_fetch=False): drv = self._smbfs_driver vol_size_bytes = self._FAKE_VOLUME['size'] << 30 fake_image_service = mock.MagicMock() fake_image_service.show.return_value = ( {'id': 'fake_image_id', 'disk_format': 'raw'}) fake_img_info = mock.MagicMock() if wrong_size_after_fetch: fake_img_info.virtual_size = 2 * vol_size_bytes else: fake_img_info.virtual_size = vol_size_bytes if unsupported_qemu_version: qemu_version = [1, 5] else: qemu_version = [1, 7] drv.get_volume_format = mock.Mock( return_value=drv._DISK_FORMAT_VHDX) drv.local_path = mock.Mock( return_value=self._FAKE_VOLUME_PATH) drv.get_qemu_version = mock.Mock( return_value=qemu_version) drv._do_extend_volume = mock.Mock() drv.configuration = mock.MagicMock() drv.configuration.volume_dd_blocksize = ( mock.sentinel.block_size) exc = None with mock.patch.object(image_utils, 'fetch_to_volume_format') as \ fake_fetch, mock.patch.object(image_utils, 'qemu_img_info') as \ fake_qemu_img_info: if wrong_size_after_fetch: exc = exception.ImageUnacceptable elif unsupported_qemu_version: exc = exception.InvalidVolume fake_qemu_img_info.return_value = fake_img_info if exc: self.assertRaises( exc, drv.copy_image_to_volume, mock.sentinel.context, self._FAKE_VOLUME, fake_image_service, mock.sentinel.image_id) else: drv.copy_image_to_volume( mock.sentinel.context, self._FAKE_VOLUME, fake_image_service, mock.sentinel.image_id) fake_fetch.assert_called_once_with( mock.sentinel.context, fake_image_service, mock.sentinel.image_id, self._FAKE_VOLUME_PATH, drv._DISK_FORMAT_VHDX, mock.sentinel.block_size) drv._do_extend_volume.assert_called_once_with( self._FAKE_VOLUME_PATH, self._FAKE_VOLUME['size'], self._FAKE_VOLUME['name']) def test_copy_image_to_volume(self): self._test_copy_image_to_volume() def test_copy_image_to_volume_wrong_size_after_fetch(self): self._test_copy_image_to_volume(wrong_size_after_fetch=True) def test_copy_image_to_volume_unsupported_qemu_version(self): self._test_copy_image_to_volume(unsupported_qemu_version=True) def test_get_capacity_info(self): fake_block_size = 4096.0 fake_total_blocks = 1024 fake_avail_blocks = 512 fake_total_allocated = fake_total_blocks * fake_block_size fake_df = ('%s %s %s' % (fake_block_size, fake_total_blocks, fake_avail_blocks), None) fake_du = (str(fake_total_allocated), None) self._smbfs_driver._get_mount_point_for_share = mock.Mock( return_value=self._FAKE_MNT_POINT) self._smbfs_driver._execute = mock.Mock( side_effect=(fake_df, fake_du)) ret_val = self._smbfs_driver._get_capacity_info(self._FAKE_SHARE) expected = (fake_block_size * fake_total_blocks, fake_block_size * fake_avail_blocks, fake_total_allocated) self.assertEqual(expected, ret_val)
{ "content_hash": "8bd816a85113ba5bceef8964a369f28e", "timestamp": "", "source": "github", "line_count": 610, "max_line_length": 80, "avg_line_length": 42.10819672131147, "alnum_prop": 0.5751382075838979, "repo_name": "tmenjo/cinder-2015.1.0", "id": "df04f9d3c8559f896378f799ddf02f3c57280ebf", "size": "26303", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "cinder/tests/test_smbfs.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "PLpgSQL", "bytes": "2511" }, { "name": "Python", "bytes": "10650346" }, { "name": "Shell", "bytes": "8111" } ], "symlink_target": "" }
"""Stop Entity.""" import mzgeohash import geom import util import errors from entity import Entity class Stop(Entity): """Transitland Stop Entity.""" onestop_type = 's' def init(self, **data): self.timezone = data.pop('timezone', None) def geohash(self): """Return 10 characters of geohash.""" return mzgeohash.encode(self.point()) # Work with other interfaces def point(self): return self.geometry()['coordinates'] def add_tags_gtfs(self, gtfs_entity): keys = [ 'wheelchair_boarding', 'stop_desc', 'stop_url', 'zone_id' ] data = gtfs_entity.data._asdict() self.timezone = data.pop('stop_timezone', None) for key in keys: if key in data: self.set_tag(key, data[key]) def get_timezone(self): if self.timezone: return self.timezone tz = set(i.timezone for i in self.operators()) if len(tz) > 1: raise ValueError, "Ambiguous timezone; stop used by multiple agencies with differing timezones" return tz.pop() # Load / dump def json(self): return { 'type': 'Feature', 'properties': {}, 'geometry': self.geometry(), 'onestopId': self.onestop(), 'name': self.name(), 'tags': self.tags(), 'timezone': self.get_timezone(), 'identifiers': sorted(self.identifiers()), 'servedBy': sorted(self.servedBy()), } # Graph def servedBy(self): """Return the operators serving this stop.""" ret = set([i.onestop() for i in self.operators()]) ret |= set(self.data.get('servedBy', [])) return ret def operators(self): agencies = set() for i in self.parents: agencies |= i.parents return agencies def operator(self, onestop_id): """Return a single operator by Onestop ID.""" return util.filtfirst(self.operators(), onestop=onestop_id)
{ "content_hash": "f0086271db41e9a417a43b9a3d33fd02", "timestamp": "", "source": "github", "line_count": 74, "max_line_length": 101, "avg_line_length": 25.14864864864865, "alnum_prop": 0.6190220311660397, "repo_name": "srthurman/transitland-python-client", "id": "c70de641ae98dc858c030805f13192405a5475d2", "size": "1861", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "transitland/stop.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "48540" } ], "symlink_target": "" }
from click.testing import CliRunner from pyskel.scripts.cli import cli def test_cli_count(): runner = CliRunner() result = runner.invoke(cli, ['3']) assert result.exit_code == 0 assert result.output == "False\nFalse\nFalse\n"
{ "content_hash": "f5c55b5beba1458c569f8ba8250ffb8a", "timestamp": "", "source": "github", "line_count": 10, "max_line_length": 51, "avg_line_length": 24.5, "alnum_prop": 0.689795918367347, "repo_name": "mapbox/pyskel", "id": "924cc90ee67e70a429deb803c0c84d018232b81a", "size": "245", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_cli.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1465" } ], "symlink_target": "" }
"""The Gumbel distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution class _Gumbel(distribution.Distribution): """The scalar Gumbel distribution with location `loc` and `scale` parameters. #### Mathematical details The probability density function (pdf) of this distribution is, ```none pdf(x; mu, sigma) = exp(-(x - mu) / sigma - exp(-(x - mu) / sigma)) ``` where `loc = mu` and `scale = sigma`. The cumulative density function of this distribution is, ```cdf(x; mu, sigma) = exp(-exp(-(x - mu) / sigma))``` The Gumbel distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ Gumbel(loc=0, scale=1) Y = loc + scale * X ``` #### Examples Examples of initialization of one or a batch of distributions. ```python tfd = tf.contrib.distributions # Define a single scalar Gumbel distribution. dist = tfd.Gumbel(loc=0., scale=3.) # Evaluate the cdf at 1, returning a scalar. dist.cdf(1.) # Define a batch of two scalar valued Gumbels. # The first has mean 1 and scale 11, the second 2 and 22. dist = tfd.Gumbel(loc=[1, 2.], scale=[11, 22.]) # Evaluate the pdf of the first distribution on 0, and the second on 1.5, # returning a length two tensor. dist.prob([0, 1.5]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) ``` Arguments are broadcast when possible. ```python # Define a batch of two scalar valued Logistics. # Both have mean 1, but different scales. dist = tfd.Gumbel(loc=1., scale=[11, 22.]) # Evaluate the pdf of both distributions on the same point, 3.0, # returning a length 2 tensor. dist.prob(3.0) ``` """ def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="Gumbel"): """Construct Gumbel distributions with location and scale `loc` and `scale`. The parameters `loc` and `scale` must be shaped in a way that supports broadcasting (e.g. `loc + scale` is a valid operation). Args: loc: Floating point tensor, the means of the distribution(s). scale: Floating point tensor, the scales of the distribution(s). scale must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if loc and scale are different dtypes. """ parameters = locals() with ops.name_scope(name, values=[loc, scale]): with ops.control_dependencies([check_ops.assert_positive(scale)] if validate_args else []): self._loc = array_ops.identity(loc, name="loc") self._scale = array_ops.identity(scale, name="scale") check_ops.assert_same_float_dtype([self._loc, self._scale]) super(_Gumbel, self).__init__( dtype=self._scale.dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc, self._scale], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("loc", "scale"), ([ops.convert_to_tensor( sample_shape, dtype=dtypes.int32)] * 2))) @property def loc(self): """Distribution parameter for the location.""" return self._loc @property def scale(self): """Distribution parameter for scale.""" return self._scale def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.loc), array_ops.shape(self.scale)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.loc.get_shape(), self.scale.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.scalar() def _sample_n(self, n, seed=None): # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. uniform = random_ops.random_uniform( shape=array_ops.concat([[n], self.batch_shape_tensor()], 0), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., dtype=self.dtype, seed=seed) sampled = -math_ops.log(-math_ops.log(uniform)) return sampled * self.scale + self.loc def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _log_cdf(self, x): return -math_ops.exp(-self._z(x)) def _cdf(self, x): return math_ops.exp(-math_ops.exp(-self._z(x))) def _log_unnormalized_prob(self, x): z = self._z(x) return - z - math_ops.exp(-z) def _log_normalization(self): return math_ops.log(self.scale) def _entropy(self): # Use broadcasting rules to calculate the full broadcast sigma. scale = self.scale * array_ops.ones_like(self.loc) return 1 + math_ops.log(scale) + np.euler_gamma def _mean(self): return self.loc + self.scale * np.euler_gamma def _stddev(self): return self.scale * array_ops.ones_like(self.loc) * math.pi / math.sqrt(6) def _mode(self): return self.loc * array_ops.ones_like(self.scale) def _z(self, x): """Standardize input `x` to a unit logistic.""" with ops.name_scope("standardize", values=[x]): return (x - self.loc) / self.scale
{ "content_hash": "9f2d108511ddea6efd58eaa531f7f5b8", "timestamp": "", "source": "github", "line_count": 209, "max_line_length": 80, "avg_line_length": 33.0622009569378, "alnum_prop": 0.6589001447178003, "repo_name": "Xeralux/tensorflow", "id": "8d05ad6b8032fb8bada99389959091fb1c28beda", "size": "7599", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "tensorflow/contrib/distributions/python/ops/gumbel.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "9274" }, { "name": "C", "bytes": "340972" }, { "name": "C++", "bytes": "39479562" }, { "name": "CMake", "bytes": "194702" }, { "name": "Go", "bytes": "1046987" }, { "name": "HTML", "bytes": "4680032" }, { "name": "Java", "bytes": "567239" }, { "name": "Jupyter Notebook", "bytes": "1940883" }, { "name": "LLVM", "bytes": "6536" }, { "name": "Makefile", "bytes": "48231" }, { "name": "Objective-C", "bytes": "12456" }, { "name": "Objective-C++", "bytes": "94385" }, { "name": "PHP", "bytes": "2140" }, { "name": "Perl", "bytes": "6179" }, { "name": "Perl 6", "bytes": "1357" }, { "name": "PureBasic", "bytes": "25356" }, { "name": "Python", "bytes": "33675501" }, { "name": "Ruby", "bytes": "533" }, { "name": "Shell", "bytes": "425916" } ], "symlink_target": "" }
"""This module contains functions for fetching and extracting archived builds. The builds may be stored in different places by different types of builders; for example, builders on tryserver.chromium.perf stores builds in one place, while builders on chromium.linux store builds in another. This module can be either imported or run as a stand-alone script to download and extract a build. Usage: fetch_build.py <type> <revision> <output_dir> [options] """ import argparse import errno import logging import os import shutil import sys import zipfile # Telemetry (src/tools/telemetry) is expected to be in the PYTHONPATH. from telemetry.util import cloud_storage import bisect_utils # Possible builder types. PERF_BUILDER = 'perf' FULL_BUILDER = 'full' def GetBucketAndRemotePath(revision, builder_type=PERF_BUILDER, target_arch='ia32', target_platform='chromium', deps_patch_sha=None): """Returns the location where a build archive is expected to be. Args: revision: Revision string, e.g. a git commit hash or SVN revision. builder_type: Type of build archive. target_arch: Architecture, e.g. "ia32". target_platform: Platform name, e.g. "chromium" or "android". deps_patch_sha: SHA1 hash which identifies a particular combination of custom revisions for dependency repositories. Returns: A pair of strings (bucket, path), where the archive is expected to be. """ build_archive = BuildArchive.Create( builder_type, target_arch=target_arch, target_platform=target_platform) bucket = build_archive.BucketName() remote_path = build_archive.FilePath(revision, deps_patch_sha=deps_patch_sha) return bucket, remote_path class BuildArchive(object): """Represents a place where builds of some type are stored. There are two pieces of information required to locate a file in Google Cloud Storage, bucket name and file path. Subclasses of this class contain specific logic about which bucket names and paths should be used to fetch a build. """ @staticmethod def Create(builder_type, target_arch='ia32', target_platform='chromium'): if builder_type == PERF_BUILDER: return PerfBuildArchive(target_arch, target_platform) if builder_type == FULL_BUILDER: return FullBuildArchive(target_arch, target_platform) raise NotImplementedError('Builder type "%s" not supported.' % builder_type) def __init__(self, target_arch='ia32', target_platform='chromium'): if bisect_utils.IsLinuxHost() and target_platform == 'android': self._platform = 'android' elif bisect_utils.IsLinuxHost(): self._platform = 'linux' elif bisect_utils.IsMacHost(): self._platform = 'mac' elif bisect_utils.Is64BitWindows() and target_arch == 'x64': self._platform = 'win64' elif bisect_utils.IsWindowsHost(): self._platform = 'win' else: raise NotImplementedError('Unknown platform "%s".' % sys.platform) def BucketName(self): raise NotImplementedError() def FilePath(self, revision, deps_patch_sha=None): """Returns the remote file path to download a build from. Args: revision: A Chromium revision; this could be a git commit hash or commit position or SVN revision number. deps_patch_sha: The SHA1 hash of a patch to the DEPS file, which uniquely identifies a change to use a particular revision of a dependency. Returns: A file path, which not does not include a bucket name. """ raise NotImplementedError() def _ZipFileName(self, revision, deps_patch_sha=None): """Gets the file name of a zip archive for a particular revision. This returns a file name of the form full-build-<platform>_<revision>.zip, which is a format used by multiple types of builders that store archives. Args: revision: A git commit hash or other revision string. deps_patch_sha: SHA1 hash of a DEPS file patch. Returns: The archive file name. """ base_name = 'full-build-%s' % self._PlatformName() if deps_patch_sha: revision = '%s_%s' % (revision, deps_patch_sha) return '%s_%s.zip' % (base_name, revision) def _PlatformName(self): """Return a string to be used in paths for the platform.""" if self._platform in ('win', 'win64'): # Build archive for win64 is still stored with "win32" in the name. return 'win32' if self._platform in ('linux', 'android'): # Android builds are also stored with "linux" in the name. return 'linux' if self._platform == 'mac': return 'mac' raise NotImplementedError('Unknown platform "%s".' % sys.platform) class PerfBuildArchive(BuildArchive): def BucketName(self): return 'chrome-perf' def FilePath(self, revision, deps_patch_sha=None): return '%s/%s' % (self._ArchiveDirectory(), self._ZipFileName(revision, deps_patch_sha)) def _ArchiveDirectory(self): """Returns the directory name to download builds from.""" platform_to_directory = { 'android': 'android_perf_rel', 'linux': 'Linux Builder', 'mac': 'Mac Builder', 'win64': 'Win x64 Builder', 'win': 'Win Builder', } assert self._platform in platform_to_directory return platform_to_directory.get(self._platform) class FullBuildArchive(BuildArchive): def BucketName(self): platform_to_bucket = { 'android': 'chromium-android', 'linux': 'chromium-linux-archive', 'mac': 'chromium-mac-archive', 'win64': 'chromium-win-archive', 'win': 'chromium-win-archive', } assert self._platform in platform_to_bucket return platform_to_bucket.get(self._platform) def FilePath(self, revision, deps_patch_sha=None): return '%s/%s' % (self._ArchiveDirectory(), self._ZipFileName(revision, deps_patch_sha)) def _ArchiveDirectory(self): """Returns the remote directory to download builds from.""" platform_to_directory = { 'android': 'android_main_rel', 'linux': 'chromium.linux/Linux Builder', 'mac': 'chromium.mac/Mac Builder', 'win64': 'chromium.win/Win x64 Builder', 'win': 'chromium.win/Win Builder', } assert self._platform in platform_to_directory return platform_to_directory.get(self._platform) def BuildIsAvailable(bucket_name, remote_path): """Checks whether a build is currently archived at some place.""" logging.info('Checking existance: gs://%s/%s' % (bucket_name, remote_path)) try: exists = cloud_storage.Exists(bucket_name, remote_path) logging.info('Exists? %s' % exists) return exists except cloud_storage.CloudStorageError: return False def FetchFromCloudStorage(bucket_name, source_path, destination_dir): """Fetches file(s) from the Google Cloud Storage. As a side-effect, this prints messages to stdout about what's happening. Args: bucket_name: Google Storage bucket name. source_path: Source file path. destination_dir: Destination file path. Returns: Local file path of downloaded file if it was downloaded. If the file does not exist in the given bucket, or if there was an error while downloading, None is returned. """ target_file = os.path.join(destination_dir, os.path.basename(source_path)) gs_url = 'gs://%s/%s' % (bucket_name, source_path) try: if cloud_storage.Exists(bucket_name, source_path): logging.info('Fetching file from %s...', gs_url) cloud_storage.Get(bucket_name, source_path, target_file) if os.path.exists(target_file): return target_file else: logging.info('File %s not found in cloud storage.', gs_url) return None except Exception as e: logging.warn('Exception while fetching from cloud storage: %s', e) if os.path.exists(target_file): os.remove(target_file) return None def Unzip(file_path, output_dir, verbose=True): """Extracts a zip archive's contents into the given output directory. This was based on ExtractZip from build/scripts/common/chromium_utils.py. Args: file_path: Path of the zip file to extract. output_dir: Path to the destination directory. verbose: Whether to print out what is being extracted. Raises: IOError: The unzip command had a non-zero exit code. RuntimeError: Failed to create the output directory. """ _MakeDirectory(output_dir) # On Linux and Mac, we use the unzip command because it handles links and # file permissions bits, so achieving this behavior is easier than with # ZipInfo options. # # The Mac Version of unzip unfortunately does not support Zip64, whereas # the python module does, so we have to fall back to the python zip module # on Mac if the file size is greater than 4GB. mac_zip_size_limit = 2 ** 32 # 4GB if (bisect_utils.IsLinuxHost() or (bisect_utils.IsMacHost() and os.path.getsize(file_path) < mac_zip_size_limit)): unzip_command = ['unzip', '-o'] _UnzipUsingCommand(unzip_command, file_path, output_dir) return # On Windows, try to use 7z if it is installed, otherwise fall back to the # Python zipfile module. If 7z is not installed, then this may fail if the # zip file is larger than 512MB. sevenzip_path = r'C:\Program Files\7-Zip\7z.exe' if bisect_utils.IsWindowsHost() and os.path.exists(sevenzip_path): unzip_command = [sevenzip_path, 'x', '-y'] _UnzipUsingCommand(unzip_command, file_path, output_dir) return _UnzipUsingZipFile(file_path, output_dir, verbose) def _UnzipUsingCommand(unzip_command, file_path, output_dir): """Extracts a zip file using an external command. Args: unzip_command: An unzipping command, as a string list, without the filename. file_path: Path to the zip file. output_dir: The directory which the contents should be extracted to. Raises: IOError: The command had a non-zero exit code. """ absolute_filepath = os.path.abspath(file_path) command = unzip_command + [absolute_filepath] return_code = _RunCommandInDirectory(output_dir, command) if return_code: _RemoveDirectoryTree(output_dir) raise IOError('Unzip failed: %s => %s' % (str(command), return_code)) def _RunCommandInDirectory(directory, command): """Changes to a directory, runs a command, then changes back.""" saved_dir = os.getcwd() os.chdir(directory) return_code = bisect_utils.RunProcess(command) os.chdir(saved_dir) return return_code def _UnzipUsingZipFile(file_path, output_dir, verbose=True): """Extracts a zip file using the Python zipfile module.""" assert bisect_utils.IsWindowsHost() or bisect_utils.IsMacHost() zf = zipfile.ZipFile(file_path) for name in zf.namelist(): if verbose: print 'Extracting %s' % name zf.extract(name, output_dir) if bisect_utils.IsMacHost(): # Restore file permission bits. mode = zf.getinfo(name).external_attr >> 16 os.chmod(os.path.join(output_dir, name), mode) def _MakeDirectory(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def _RemoveDirectoryTree(path): try: if os.path.exists(path): shutil.rmtree(path) except OSError, e: if e.errno != errno.ENOENT: raise def Main(argv): """Downloads and extracts a build based on the command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument('builder_type') parser.add_argument('revision') parser.add_argument('output_dir') parser.add_argument('--target-arch', default='ia32') parser.add_argument('--target-platform', default='chromium') parser.add_argument('--deps-patch-sha') args = parser.parse_args(argv[1:]) bucket_name, remote_path = GetBucketAndRemotePath( args.revision, args.builder_type, target_arch=args.target_arch, target_platform=args.target_platform, deps_patch_sha=args.deps_patch_sha) print 'Bucket name: %s, remote path: %s' % (bucket_name, remote_path) if not BuildIsAvailable(bucket_name, remote_path): print 'Build is not available.' return 1 FetchFromCloudStorage(bucket_name, remote_path, args.output_dir) print 'Build has been downloaded to and extracted in %s.' % args.output_dir return 0 if __name__ == '__main__': sys.exit(Main(sys.argv))
{ "content_hash": "041985ab0da5d6c88ef90cbf7eca7f4b", "timestamp": "", "source": "github", "line_count": 360, "max_line_length": 80, "avg_line_length": 34.34444444444444, "alnum_prop": 0.6895017793594306, "repo_name": "Jonekee/chromium.src", "id": "4aaee54fbbfc13d36e51a4955205a8497abff5c3", "size": "12527", "binary": false, "copies": "9", "ref": "refs/heads/nw12", "path": "tools/auto_bisect/fetch_build.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "AppleScript", "bytes": "6973" }, { "name": "Arduino", "bytes": "464" }, { "name": "Assembly", "bytes": "34522" }, { "name": "Batchfile", "bytes": "8451" }, { "name": "C", "bytes": "9249764" }, { "name": "C++", "bytes": "222763973" }, { "name": "CSS", "bytes": "875874" }, { "name": "Dart", "bytes": "74976" }, { "name": "Go", "bytes": "18155" }, { "name": "HTML", "bytes": "27190037" }, { "name": "Java", "bytes": "7645280" }, { "name": "JavaScript", "bytes": "18828195" }, { "name": "Makefile", "bytes": "96270" }, { "name": "Objective-C", "bytes": "1397246" }, { "name": "Objective-C++", "bytes": "7575073" }, { "name": "PHP", "bytes": "97817" }, { "name": "PLpgSQL", "bytes": "248854" }, { "name": "Perl", "bytes": "63937" }, { "name": "Protocol Buffer", "bytes": "418340" }, { "name": "Python", "bytes": "8032766" }, { "name": "Shell", "bytes": "464218" }, { "name": "Standard ML", "bytes": "4965" }, { "name": "XSLT", "bytes": "418" }, { "name": "nesC", "bytes": "18335" } ], "symlink_target": "" }
import threading from rpyc.utils.authenticators import SSLAuthenticator from rpyc.utils.server import ThreadPoolServer from . import PupyService import textwrap import pkgutil import modules import logging from .PupyErrors import PupyModuleExit, PupyModuleError from .PupyJob import PupyJob try: import ConfigParser as configparser except ImportError: import configparser from . import PupyClient import os.path class PupyServer(threading.Thread): def __init__(self, configFile="pupy.conf"): super(PupyServer, self).__init__() self.daemon=True self.server=None self.authenticator=None self.clients=[] self.jobs={} self.jobs_id=1 self.clients_lock=threading.Lock() self.current_id=1 self.config = configparser.ConfigParser() self.config.read(configFile) self.port=self.config.getint("pupyd","port") self.address=self.config.get("pupyd","address") def add_client(self, conn): with self.clients_lock: conn.execute(textwrap.dedent( """ import platform import getpass import uuid import sys import os def get_uuid(): user=None node=None plat=None release=None version=None machine=None macaddr=None pid=None proc_arch=None proc_path=sys.executable try: user=getpass.getuser() except Exception: pass try: node=platform.node() except Exception: pass try: version=platform.platform() except Exception: pass try: plat=platform.system() except Exception: pass try: release=platform.release() except Exception: pass try: version=platform.version() except Exception: pass try: machine=platform.machine() except Exception: pass try: pid=os.getpid() except Exception: pass try: proc_arch=platform.architecture()[0] except Exception: pass try: macaddr=uuid.getnode() macaddr=':'.join(("%012X" % macaddr)[i:i+2] for i in range(0, 12, 2)) except Exception: pass return (user, node, plat, release, version, machine, macaddr, pid, proc_arch, proc_path) """)) l=conn.namespace["get_uuid"]() self.clients.append(PupyClient.PupyClient({ "id": self.current_id, "conn" : conn, "user" : l[0], "hostname" : l[1], "platform" : l[2], "release" : l[3], "version" : l[4], "os_arch" : l[5], "proc_arch" : l[8], "exec_path" : l[9], "macaddr" : l[6], "pid" : l[7], "address" : conn._conn._config['connid'].split(':')[0], }, self)) self.current_id+=1 def remove_client(self, client): with self.clients_lock: for i,c in enumerate(self.clients): if c.conn is client: del self.clients[i] break def get_clients(self, search_criteria): """ return a list of clients corresponding to the search criteria. ex: platform:*win* """ #if the criteria is a simple id we return the good client try: index=int(search_criteria) for c in self.clients: if int(c.desc["id"])==index: return [c] return [] except Exception: pass l=set([]) if search_criteria=="*": return self.clients for c in self.clients: take=False for sc in search_criteria.split(): tab=sc.split(":",1) if len(tab)==2 and tab[0] in [x for x in c.desc.iterkeys()]:#if the field is specified we search for the value in this field take=True if not tab[1].lower() in str(c.desc[tab[0]]).lower(): take=False break elif len(tab)!=2:#if there is no field specified we search in every field for at least one match take=False for k,v in c.desc.iteritems(): if type(v) is unicode or type(v) is str: if tab[0].lower() in v.decode('utf8').lower(): take=True break else: if tab[0].lower() in str(v).decode('utf8').lower(): take=True break if not take: break if take: l.add(c) return list(l) def get_clients_list(self): return self.clients def list_modules(self): l=[] for loader, module_name, is_pkg in pkgutil.iter_modules(modules.__path__): module=self.get_module(module_name) l.append((module_name,module.__doc__)) return l def get_module(self, name): script_found=False for loader, module_name, is_pkg in pkgutil.iter_modules(modules.__path__): if module_name==name: script_found=True module=loader.find_module(module_name).load_module(module_name) class_name=None if hasattr(module,"__class_name__"): class_name=module.__class_name__ if not hasattr(module,class_name): logging.error("script %s has a class_name=\"%s\" global variable defined but this class does not exists in the script !"%(script_name,class_name)) if not class_name: #TODO automatically search the class name in the file pass return getattr(module,class_name) def module_parse_args(self, module_name, args): """ This method is used by the PupyCmd class to verify validity of arguments passed to a specific module """ module=self.get_module(module_name) ps=module(None,None) return ps.arg_parser.parse_args(args) def del_job(self, job_id): if job_id is not None: job_id=int(job_id) if job_id in self.jobs: del self.jobs[job_id] def add_job(self, job): job.id=self.jobs_id self.jobs[self.jobs_id]=job self.jobs_id+=1 def get_job(self, job_id): try: job_id=int(job_id) except ValueError: raise PupyModuleError("job id must be an integer !") if job_id not in self.jobs: raise PupyModuleError("%s: no such job !"%job_id) return self.jobs[job_id] def run(self): self.authenticator = SSLAuthenticator(self.config.get("pupyd","keyfile").replace("\\",os.sep).replace("/",os.sep), self.config.get("pupyd","certfile").replace("\\",os.sep).replace("/",os.sep), ciphers="SHA256+AES256:SHA1+AES256:@STRENGTH") self.server = ThreadPoolServer(PupyService.PupyService, port = self.port, hostname=self.address, authenticator=self.authenticator) self.server.start()
{ "content_hash": "523023fadcd00980f7412dccf012569c", "timestamp": "", "source": "github", "line_count": 221, "max_line_length": 241, "avg_line_length": 27.212669683257918, "alnum_prop": 0.655470568673096, "repo_name": "paran0ids0ul/pupy", "id": "66c8431f834ff0b09ecd11ca380d87ef21c9df83", "size": "7696", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "pupy/pupylib/PupyServer.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Batchfile", "bytes": "7428" }, { "name": "C", "bytes": "203798" }, { "name": "Python", "bytes": "517858" }, { "name": "Shell", "bytes": "85" } ], "symlink_target": "" }
from setuptools import setup setup( name = 'localbitcoins', version = "0.1dev", license = "GPL3", description = "trade bitcoins locally", long_description = open('README').read(), author = "dinosaur", author_email = "dinosaur@riseup.net", package_dir = { '' : 'src' }, packages = [ 'localbitcoins'], install_requires = ['setuptools', 'requests', 'campbx'], entry_points = { 'console_scripts' : [ "main = localbitcoins.main:main", "test = localbitcoins.test.main:main" ] }, zip_safe = False)
{ "content_hash": "ace89c564f25c9098923f0c0445243d5", "timestamp": "", "source": "github", "line_count": 19, "max_line_length": 60, "avg_line_length": 31.105263157894736, "alnum_prop": 0.5685279187817259, "repo_name": "ahdinosaur/localbitcoins", "id": "54653e0b03f1cb22fe22e09cff26ce538f936148", "size": "591", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "21460" } ], "symlink_target": "" }
""" This module contains class for representing base json object """ import json import copy __all__ = ['BaseJsonObject'] class BaseJsonObject: """ Every Codeforces Json object should extend this class """ def __init__(self, data): """ :param data: Data in JSON format :type data: str or dict """ assert isinstance(data, (str, dict)) or data is None if data is not None: if isinstance(data, str): self.load_from_json(data) else: self.load_from_dict(data) def __eq__(self, other): if type(self) == type(other): return self.__dict__ == other.__dict__ else: return False def __hash__(self): return make_hash(self.__dict__) def load_from_json(self, s): """ Loads data from given string in JSON format :param s: Data in JSON format :type s: str """ values = json.loads(s) self.load_from_dict(values) def load_from_dict(self, values): """ Loads data from given dictionary :param values: Dictionary with values :type values: dict :exception ValueError: raised when given dictionary does not contain required field """ try: self.load_required_fields_from_dict(values) except KeyError as e: raise ValueError('Missed required field', e.args[0]) self.load_optional_fields_from_dict(values) def load_required_fields_from_dict(self, values): """ Loads required fields from given dictionary. This method SHOULD NOT care if value was not given Note: given dictionary may contain extra fields. just ignore them :param values: Dictionary with values :type values: dict """ assert isinstance(values, dict) def load_optional_fields_from_dict(self, values): """ Loads optional fields from given dictionary. Note: given dictionary may not contain needed value. It is recommended to use dict.get method The given dictionary may also contain extra fields. Just ignore them :param values: Dictionary with optional values :type values: dict """ assert isinstance(values, dict) # http://stackoverflow.com/a/8714242/1532460 def make_hash(o): """ Makes a hash from a dictionary, list, tuple or set to any level, that contains only other hashable types (including any lists, tuples, sets, and dictionaries). """ if isinstance(o, (set, tuple, list)): return tuple([make_hash(e) for e in o]) elif not isinstance(o, dict): return hash(o) new_o = copy.deepcopy(o) for k, v in new_o.items(): new_o[k] = make_hash(v) return hash(tuple(frozenset(sorted(new_o.items()))))
{ "content_hash": "402dc225af3d6c6cdaec0a66ef28e258", "timestamp": "", "source": "github", "line_count": 108, "max_line_length": 101, "avg_line_length": 26.824074074074073, "alnum_prop": 0.597859855022437, "repo_name": "soon/CodeforcesAPI", "id": "70d3dbe41783fd9cd5b19ca5e8959b0d79391805", "size": "2897", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "codeforces/api/json_objects/base_json_object.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "150288" } ], "symlink_target": "" }
from flask import Flask, url_for, request, session, redirect, render_template from flask_oauth import OAuth FACEBOOK_APP_ID = '293823757717281' FACEBOOK_APP_SECRET = '49b409de34973230b046a4a091cea4a6' app = Flask(__name__) app.secret_key = '9ujYZLNmd6NIdPdlTSVJ' oauth = OAuth() facebook = oauth.remote_app('facebook', base_url='https://graph.facebook.com/', request_token_url=None, access_token_url='/oauth/access_token', authorize_url='https://www.facebook.com/dialog/oauth', consumer_key=FACEBOOK_APP_ID, consumer_secret=FACEBOOK_APP_SECRET, request_token_params={'scope': ('email, ')} ) @facebook.tokengetter def get_facebook_token(): return session.get('facebook_token') def pop_login_session(): session.pop('logged_in', None) session.pop('facebook_token', None) @app.route("/facebook_login") def facebook_login(): return facebook.authorize(callback=url_for('facebook_authorized', next=request.args.get('next'), _external=True)) @app.route('/') def index(): if session.get('logged_in'): data = facebook.get('/me').data return render_template('index.html', data = op) return render_template('index.html') @app.route("/facebook_authorized") @facebook.authorized_handler def facebook_authorized(resp): next_url = request.args.get('next') or url_for('index') if resp is None or 'access_token' not in resp: return redirect(next_url) session['logged_in'] = True session['facebook_token'] = (resp['access_token'], '') return redirect(next_url) @app.route("/logout") def logout(): pop_login_session() return redirect(url_for('index')) if __name__ == "__main__": app.run(host='0.0.0.0', debug = True)
{ "content_hash": "46eb9d8cdd81007f5e6110dcaca62b8e", "timestamp": "", "source": "github", "line_count": 58, "max_line_length": 77, "avg_line_length": 29.344827586206897, "alnum_prop": 0.6880141010575793, "repo_name": "adwalvekar/FacebookAppTest", "id": "e793558c92adc86ff1bb7817d48369c82fd64f8e", "size": "1702", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "159514" }, { "name": "HTML", "bytes": "1337" }, { "name": "Python", "bytes": "1702" } ], "symlink_target": "" }
class QWeiboError(Exception): """basic weibo error class""" pass def assertion(condition, msg): try: assert condition, msg except AssertionError as e: raise QWeiboError(e.message)
{ "content_hash": "a25f6ae53385c480d786d2ad72889eb6", "timestamp": "", "source": "github", "line_count": 11, "max_line_length": 36, "avg_line_length": 19.545454545454547, "alnum_prop": 0.6558139534883721, "repo_name": "2014/qqweibo", "id": "c151eb172d4dbd99cd51f1b34d8e80c6d790f932", "size": "371", "binary": false, "copies": "7", "ref": "refs/heads/master", "path": "qqweibo/error.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "135853" } ], "symlink_target": "" }
from BeautifulSoup import BeautifulSoup # for each file in folder import glob files = glob.glob("amazonproducts/*.html") # find all the products for fileName in files : with open(fileName) as f: text = BeautifulSoup(f) print text.findAll(class="productTitle") # write out file for later
{ "content_hash": "9e3dae1e9346572d8204137678933740", "timestamp": "", "source": "github", "line_count": 14, "max_line_length": 44, "avg_line_length": 21.5, "alnum_prop": 0.7375415282392026, "repo_name": "dgonzo/bmdc_skullcandy", "id": "bf02fbc9f63f296e7ca852555c87bb4f59d36ac2", "size": "301", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "collections/amazon_review_downloader/extractAmazonProducts.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "1322" }, { "name": "JavaScript", "bytes": "24280" }, { "name": "Perl", "bytes": "5862" }, { "name": "Python", "bytes": "30009" }, { "name": "R", "bytes": "9795" }, { "name": "Shell", "bytes": "121" } ], "symlink_target": "" }
from __future__ import (unicode_literals, absolute_import, division, print_function) import logging from snisi_core.models.Projects import Domain from snisi_sms.common import test, echo, change_passwd, ask_for_help logger = logging.getLogger(__name__) def snisi_sms_handler(message): # migration to non-snisi prefixed SMS if message.content.startswith('snisi '): message.text = message.content[6:] message.save() logger.debug("Incoming SMS from {}: {}".format( message.identity, message.content)) keywords = {'test': test, 'echo': echo, 'passwd': change_passwd, 'help': ask_for_help} for domain in Domain.active.all(): domain_kw = domain.import_from('sms_handlers.KEYWORDS') if domain_kw: keywords.update(domain_kw) for keyword, handler in keywords.items(): if message.content.lower().startswith(keyword): return handler(message) # message.respond("Message non pris en charge.") return False
{ "content_hash": "bb315ed3ccfd02c69c2e1be7f52e67df", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 68, "avg_line_length": 30.771428571428572, "alnum_prop": 0.627669452181987, "repo_name": "yeleman/snisi", "id": "1836e0e3681620d8fc4eb0183ed92b15a1e39f67", "size": "1156", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "snisi_sms/handler.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "410022" }, { "name": "HTML", "bytes": "1007275" }, { "name": "Java", "bytes": "7211" }, { "name": "JavaScript", "bytes": "292583" }, { "name": "Python", "bytes": "2237855" }, { "name": "Shell", "bytes": "111" } ], "symlink_target": "" }
import mimeo import argparse import os import sys import shutil def mainArgs(): parser = argparse.ArgumentParser(description='Find all high-identity segments shared between genomes.', prog='mimeo-map') # Input options parser.add_argument('--adir',type=str,default=None,help='Name of directory containing sequences from A genome.') parser.add_argument('--bdir',type=str,default=None,help='Name of directory containing sequences from B genome.') parser.add_argument('--afasta',type=str,default=None,help='A genome as multifasta.') parser.add_argument('--bfasta',type=str,default=None,help='B genome as multifasta.') parser.add_argument('-r','--recycle',action="store_true",help='Use existing alignment "--outfile" if found.') # Output options parser.add_argument('-d', '--outdir',type=str,default=None,help='Write output files to this directory. (Default: cwd)') parser.add_argument('--gffout',type=str,default=None,help='Name of GFF3 annotation file. If not set, suppress output.') parser.add_argument('--outfile',type=str,default="mimeo_alignment.tab",help='Name of alignment result file.') parser.add_argument('--verbose',action="store_true",default=False,help='If set report LASTZ progress.') parser.add_argument('--label',type=str,default="BHit",help='Set annotation TYPE field in gff.') parser.add_argument('--prefix',type=str,default="BHit",help='ID prefix for B-genome hits annotated in A-genome.') parser.add_argument('--keeptemp',action="store_true",default=False,help='If set do not remove temp files.') # Alignment options parser.add_argument('--lzpath',type=str,default="lastz",help='Custom path to LASTZ executable if not in $PATH.') parser.add_argument('--minIdt',type=int,default=60,help='Minimum alignment identity to report.') parser.add_argument('--minLen',type=int,default=100,help='Minimum alignment length to report.') parser.add_argument('--hspthresh',type=int,default=3000,help='Set HSP min score threshold for LASTZ.') # TRF filtering parser.add_argument('--TRFpath',type=str,default="trf",help='Custom path to TRF executable if not in $PATH.') parser.add_argument('--tmatch',type=int,default=2,help='TRF matching weight') parser.add_argument('--tmismatch',type=int,default=7,help='TRF mismatching penalty') parser.add_argument('--tdelta',type=int,default=7,help='TRF indel penalty') parser.add_argument('--tPM',type=int,default=80,help='TRF match probability') parser.add_argument('--tPI',type=int,default=10,help='TRF indel probability') parser.add_argument('--tminscore',type=int,default=50,help='TRF minimum alignment score to report') parser.add_argument('--tmaxperiod',type=int,default=50,help='TRF maximum period size to report') parser.add_argument('--maxtandem',type=float,default=None,help='Max percentage of an A-genome alignment which may be masked by TRF. If exceeded, alignment will be discarded.') parser.add_argument('--writeTRF',action="store_true",default=False,help='If set write TRF filtered alignment file for use with other mimeo modules.') args = parser.parse_args() return args def main(): # Get cmd line args args = mainArgs() # Check for required programs. tools = [args.lzpath, args.TRFpath] missing_tools = [] for tool in tools: missing_tools += mimeo.missing_tool(tool) if missing_tools: print('WARNING: Some tools required by mimeo could not be found: ' + ', '.join(missing_tools)) print('You may need to install them to use all features.') # Set output paths adir_path, bdir_path, outdir, outtab, gffout, tempdir = mimeo.set_paths( adir=args.adir, bdir=args.bdir, afasta=args.afasta, bfasta=args.bfasta, outdir=args.outdir, outtab=args.outfile, gffout=args.gffout, runtrf=args.maxtandem) # Get all B to A alignment pairs pairs = mimeo.get_all_pairs(Adir=adir_path, Bdir=bdir_path) # Get chrm lens for GFF header chrLens = mimeo.chromlens(seqDir=adir_path) # Do not realign if outtab exists AND recycle mode is set if not args.recycle or not os.path.isfile(outtab): if not pairs: print("No files to align. Check --adir and --bdir contain \ at least one fasta each.") sys.exit(1) # Compose alignment commands cmds = mimeo.map_LZ_cmds(lzpath=args.lzpath, pairs=pairs, minIdt=args.minIdt, minLen=args.minLen, hspthresh=args.hspthresh, outfile=outtab, verbose=args.verbose) # Run alignments mimeo.run_cmd(cmds, verbose=args.verbose, keeptemp=args.keeptemp) # Import alignment as df alignments = mimeo.import_Align(infile=outtab, prefix=args.prefix, minLen=args.minLen, minIdt=args.minIdt) # Filter alignments if A-genome location >= x% masked by TRF if args.maxtandem: alignments = mimeo.trfFilter(alignDF=alignments, tempdir=tempdir, prefix=args.prefix, adir=adir_path, TRFpath=args.TRFpath, tmatch=args.tmatch, tmismatch=args.tmismatch, tdelta=args.tdelta, tPM=args.tPM, tPI=args.tPI, tminscore=args.tminscore, tmaxperiod=args.tmaxperiod, maxtandem=args.maxtandem) if args.writeTRF: mimeo.writetrf(alignDF=alignments, outtab=outtab) # Write to GFF3 if gffout: with open(gffout, 'w') as f: for x in mimeo.writeGFFlines(alnDF=alignments, chrlens=chrLens, ftype=args.label): f.write(x) if tempdir and os.path.isdir(tempdir) and not args.keeptemp: shutil.rmtree(tempdir) print("Finished!")
{ "content_hash": "a21863c85b71d327915ac84e6d2a2e89", "timestamp": "", "source": "github", "line_count": 102, "max_line_length": 179, "avg_line_length": 59.34313725490196, "alnum_prop": 0.6489344126879233, "repo_name": "Adamtaranto/mimeo", "id": "460d2420ab3a949af8a7d2566760172627633104", "size": "6100", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mimeo/run_map.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "40899" }, { "name": "Shell", "bytes": "18180" } ], "symlink_target": "" }
from .auth import auth
{ "content_hash": "41a7766c8e789c5c5a4cc0bb4c1082a3", "timestamp": "", "source": "github", "line_count": 2, "max_line_length": 22, "avg_line_length": 12, "alnum_prop": 0.75, "repo_name": "najce/freebook", "id": "f683fb30744044b3e47aefcf35670530fb528393", "size": "24", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "app/api/users.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "770" }, { "name": "HTML", "bytes": "28785" }, { "name": "JavaScript", "bytes": "5268" }, { "name": "Python", "bytes": "31230" } ], "symlink_target": "" }
from subconscious.model import RedisModel, Column, InvalidModelDefinition, UnexpectedColumnError from uuid import uuid1 from .base import BaseTestCase import enum class StatusEnum(enum.Enum): ACTIVE = 'active' class TestUser(RedisModel): id = Column(primary_key=True) name = Column(index=True) age = Column(index=True, type=int) locale = Column(index=True, type=int, required=False) status = Column(type=str, enum=StatusEnum, index=True) class TestSaveAndLoad(BaseTestCase): def test_save_and_load(self): user_id = str(uuid1()) user = TestUser(id=user_id, name='Test name', age=100, status='active') ret = self.loop.run_until_complete(user.save(self.db)) self.assertTrue(ret) # load user_in_db = self.loop.run_until_complete(TestUser.load(self.db, identifier=user_id)) self.assertEqual(user_in_db.name, user.name) def test_init_model_with_no_indexed_cols_should_error(self): with self.assertRaises(InvalidModelDefinition): class BadModel(RedisModel): unindex_col = Column() class BadSave(BaseTestCase): def test_unexpected_column_should_fail(self): class TestModel(RedisModel): id = Column(type=int, primary_key=True) with self.assertRaises(UnexpectedColumnError): TestModel(id=1, this_column_does_not_exist='foo')
{ "content_hash": "09b8f16b89634b98b9cbf1a213374e22", "timestamp": "", "source": "github", "line_count": 45, "max_line_length": 96, "avg_line_length": 31.044444444444444, "alnum_prop": 0.6800286327845383, "repo_name": "paxos-bankchain/subconscious", "id": "14988f88c8c8903f5d5120e03bb6bb4347d00f78", "size": "1397", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "tests/test_save_and_load.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "34889" } ], "symlink_target": "" }
from typing import Tuple from typing import List from typing import Any from matplotlib.patches import Circle from matplotlib.transforms import ScaledTranslation from compas.geometry import Point from compas.artists import PrimitiveArtist from .artist import PlotterArtist Color = Tuple[float, float, float] class PointArtist(PlotterArtist, PrimitiveArtist): """Artist for COMPAS points. Parameters ---------- point : :class:`~compas.geometry.Point` A COMPAS point. size : int, optional The size of the point. facecolor : Color, optional Color of the interior of the point representing the point. edgecolor : Color, optional Color of the boundary of the point representing the point. zorder : int, optional Stacking order above the XY plane of the plotter canvas. **kwargs : dict, optional Additional keyword arguments. See :class:`PlotterArtist` or :class:`PrimitiveArtist`. Attributes ---------- point : :class:`~compas.geometry.Point` The point associated with the artist. size : float Size of the point, relative to the resolution of the plotter. ``size = self._size / self.plotter.dpi``. """ def __init__( self, point: Point, size: int = 5, facecolor: Color = (1.0, 1.0, 1.0), edgecolor: Color = (0, 0, 0), zorder: int = 9000, **kwargs: Any ): super().__init__(primitive=point, **kwargs) self._mpl_circle = None self._size = None self.size = size self.facecolor = facecolor self.edgecolor = edgecolor self.zorder = zorder @property def point(self) -> Point: return self.primitive @point.setter def point(self, point: Point): self.primitive = point @property def _T(self): F = self.plotter.figure.dpi_scale_trans S = ScaledTranslation(self.point[0], self.point[1], self.plotter.axes.transData) T = F + S return T @property def size(self) -> float: return self._size / self.plotter.dpi @size.setter def size(self, size: int): self._size = size @property def data(self) -> List[List[float]]: return [self.point[:2]] def draw(self) -> None: """Draw the circle. Returns ------- None """ circle = Circle( [0, 0], radius=self.size, facecolor=self.facecolor, edgecolor=self.edgecolor, transform=self._T, zorder=self.zorder, ) self._mpl_circle = self.plotter.axes.add_artist(circle) self.update_data() def redraw(self) -> None: """Update the point using the current geometry and visualization settings. Returns ------- None """ self._mpl_circle.set_radius(self.size) self._mpl_circle.set_edgecolor(self.edgecolor) self._mpl_circle.set_facecolor(self.facecolor) self._mpl_circle.set_transform(self._T) self.update_data()
{ "content_hash": "239885342b714c924e796c12c0fb4aac", "timestamp": "", "source": "github", "line_count": 120, "max_line_length": 93, "avg_line_length": 26.158333333333335, "alnum_prop": 0.5931825422108952, "repo_name": "compas-dev/compas", "id": "30ec854e1f65f269b36c183dc52b19019562f480", "size": "3139", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "src/compas_plotters/artists/pointartist.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "3181804" } ], "symlink_target": "" }
from email.message import Message import os import tempfile from tests.BaseTestClasses import Email2PDFTestCase class TestBasic(Email2PDFTestCase): def setUp(self): super(TestBasic, self).setUp() self.msg = Message() def test_simple(self): self.addHeaders() (rc, output, error) = self.invokeAsSubprocess() self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_simple_with_explicit_stdin(self): self.addHeaders() (rc, output, error) = self.invokeAsSubprocess(extraParams=['-i-']) self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_help(self): (rc, output, error) = self.invokeAsSubprocess(extraParams=['--help'], expectOutput=True) self.assertEqual(0, rc) self.assertRegex(output, 'usage:') self.assertEqual(error, '') self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_invalid_option(self): (rc, output, error) = self.invokeAsSubprocess(extraParams=['--invalid-option']) self.assertEqual(2, rc) self.assertRegex(error, 'ERROR: unrecognized.*') self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_dont_print_body(self): (rc, output, error) = self.invokeAsSubprocess(extraParams=['--no-body']) self.assertEqual(1, rc) self.assertFalse(self.existsByTime()) self.assertRegex(error, "body.*any.*attachments") self.assertTrue(self.existsByTimeWarning()) self.assertRegex(self.getWarningFileContents(), "body.*any.*attachments") self.assertTrue(self.existsByTimeOriginal()) self.assertValidOriginalFileContents() def test_dont_print_body_mostly_hide_warnings(self): (rc, output, error) = self.invokeAsSubprocess(extraParams=['--no-body', '--mostly-hide-warnings']) self.assertEqual(0, rc) self.assertFalse(self.existsByTime()) self.assertEqual('', error) self.assertTrue(self.existsByTimeWarning()) self.assertRegex(self.getWarningFileContents(), "body.*any.*attachments") self.assertTrue(self.existsByTimeOriginal()) self.assertValidOriginalFileContents() def test_no_message_headers(self): (rc, output, error) = self.invokeAsSubprocess() self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_no_message_headers_mostly_hide_warnings(self): (rc, output, error) = self.invokeAsSubprocess(extraParams=['--mostly-hide-warnings']) self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_withinputfile(self): self.addHeaders() (rc, output, error) = self.invokeAsSubprocess(inputFile=True) self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_nosubject(self): self.addHeaders(Email2PDFTestCase.DEFAULT_FROM, Email2PDFTestCase.DEFAULT_TO, None) (rc, output, error) = self.invokeAsSubprocess() self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_plaincontent(self): self.addHeaders() self.setPlainContent("Hello!") (rc, output, error) = self.invokeAsSubprocess() self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertRegex(self.getPDFText(self.getTimedFilename()), "Hello!") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_plaincontent_upsidedown(self): self.addHeaders() self.setPlainContent("ɯɐɹƃoɹd ɟpdᄅlᴉɐɯǝ ǝɥʇ ɟo ʇsǝʇ ɐ sᴉ sᴉɥʇ ollǝH") (rc, output, error) = self.invokeAsSubprocess() self.assertEqual(0, rc) self.assertTrue(self.existsByTime()) self.assertEqual('', error) self.assertRegex(self.getPDFText(self.getTimedFilename()), "ɯɐɹƃoɹd ɟpdᄅlᴉɐɯǝ ǝɥʇ ɟo ʇsǝʇ ɐ sᴉ sᴉɥʇ ollǝH") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_plaincontent_poundsign_iso88591(self): self.addHeaders() path = os.path.join(self.examineDir, "plaincontent_poundsign_iso88591.pdf") self.setPlainContent("Hello - this email costs \xa35!", charset="ISO-8859-1") (rc, output, error) = self.invokeAsSubprocess(outputFile=path) self.assertEqual(0, rc) self.assertEqual('', error) self.assertTrue(os.path.exists(path)) self.assertRegex(self.getPDFText(path), "Hello - this email costs \xa35!") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_plaincontent_notrailingslash(self): self.setPlainContent("Hello!") (rc, output, error) = self.invokeAsSubprocess(outputDirectory="/tmp") self.assertEqual(0, rc) self.assertEqual('', error) self.assertTrue(self.existsByTime("/tmp")) self.assertRegex(self.getPDFText(self.getTimedFilename("/tmp/")), "Hello!") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_plaincontent_trailingslash(self): self.setPlainContent("Hello!") (rc, output, error) = self.invokeAsSubprocess(outputDirectory="/tmp/") self.assertEqual(0, rc) self.assertEqual('', error) self.assertTrue(self.existsByTime("/tmp/")) self.assertRegex(self.getPDFText(self.getTimedFilename("/tmp/")), "Hello!") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_plaincontent_outputfileoverrides(self): filename = os.path.join(self.examineDir, "outputFileOverrides.pdf") with tempfile.TemporaryDirectory() as pathname: self.setPlainContent("Hello!") (rc, output, error) = self.invokeAsSubprocess(outputDirectory=pathname, outputFile=filename) self.assertEqual(0, rc) self.assertEqual('', error) self.assertFalse(self.existsByTime(pathname)) self.assertTrue(os.path.exists(filename)) self.assertRegex(self.getPDFText(filename), "Hello!") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_plaincontent_fileexist(self): self.setPlainContent("Hello!") with tempfile.NamedTemporaryFile() as tmpfile: (rc, output, error) = self.invokeAsSubprocess(outputFile=tmpfile.name, okToExist=True) self.assertEqual(2, rc) self.assertRegex(error, "file.*exist") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_verbose(self): self.setPlainContent("Hello!") (rc, output, error) = self.invokeAsSubprocess(extraParams=['-v']) self.assertEqual(0, rc) self.assertNotEqual('', error) self.assertTrue(self.existsByTime()) self.assertRegex(self.getPDFText(self.getTimedFilename()), "Hello!") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal()) def test_veryverbose(self): self.setPlainContent("Hello!") (rc, output, error) = self.invokeAsSubprocess(extraParams=['-vv']) self.assertEqual(0, rc) self.assertNotEqual('', error) self.assertTrue(self.existsByTime()) self.assertRegex(self.getPDFText(self.getTimedFilename()), "Hello!") self.assertFalse(self.existsByTimeWarning()) self.assertFalse(self.existsByTimeOriginal())
{ "content_hash": "a565d30a2e61320caa99529daacfd907", "timestamp": "", "source": "github", "line_count": 195, "max_line_length": 115, "avg_line_length": 44.333333333333336, "alnum_prop": 0.6681318681318681, "repo_name": "andrewferrier/email2pdf", "id": "5a27e23280dfd3e653f024476c85156179f29670", "size": "8701", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "tests/Subprocess/test_Subprocess_Basic.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "1393" }, { "name": "Makefile", "bytes": "2193" }, { "name": "Python", "bytes": "123550" } ], "symlink_target": "" }
class ChannelApplicator(object): def __init__(self,): super(ChannelApplicator, self).__init__() self.target_channel = None def set_target_channel(self, target_channel): assert self.target_channel is None self.target_channel = target_channel # Check that everything that is over-ridden actually exists: for varname in self.get_variables_overriden(): assert varname in self.target_channel.get_variables(), 'unexpected setting of %s' % varname def get_variable_value_for_section(self, variablename, section): raise NotImplementedError() def get_description(self): raise NotImplementedError() def get_variables_overriden(self): raise NotImplementedError() class ChannelApplicatorUniform(ChannelApplicator): def __init__(self, parameter_multipliers=None, parameter_overrides=None): super(ChannelApplicatorUniform, self).__init__() self._parameter_multipliers = parameter_multipliers or {} self._parameter_overrides = parameter_overrides or {} # Check no parameters are specified twice: duplicate_defs = set(self._parameter_multipliers.keys()) & set(self._parameter_overrides.keys()) assert len(duplicate_defs) == 0, 'Ambiguity: Parameter specified twice: %s' % duplicate_defs def get_variables_overriden(self): return set(self._parameter_multipliers.keys()) | set(self._parameter_overrides.keys()) def get_variable_value_for_section(self, variable_name, section): assert not ( variable_name in self._parameter_multipliers and variable_name in self._parameter_overrides) if variable_name in self._parameter_multipliers: return self._parameter_multipliers[variable_name] * self.target_channel.get_default(variable_name) if variable_name in self._parameter_overrides: return self._parameter_overrides[variable_name] return self.target_channel.get_default(variable_name) def get_description(self): s1 = 'Uniform Applicator: ' s2 = ('Overrides:{%s} ' % (','.join( [ "%s=%s" % (key,value) for (key,value) in self._parameter_overrides.iteritems()] )) ) if self._parameter_overrides else '' s3 = ('Multipliers:{%s} ' % (','.join( [ "%s=%s" % (key,value) for (key,value) in self._parameter_multipliers.iteritems()] )) ) if self._parameter_multipliers else '' return (s1 + s2 + s3).strip()
{ "content_hash": "7bb2b19665246b43e03d6493243e4e24", "timestamp": "", "source": "github", "line_count": 60, "max_line_length": 174, "avg_line_length": 41.083333333333336, "alnum_prop": 0.6709939148073022, "repo_name": "mikehulluk/morphforge", "id": "f3c5c8dd9a663a834c6e870880a0318c8749de9e", "size": "4005", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/morphforge/simulation/base/biophysics/channelapplicators.py", "mode": "33261", "license": "bsd-2-clause", "language": [ { "name": "AMPL", "bytes": "4818" }, { "name": "C", "bytes": "1499" }, { "name": "Makefile", "bytes": "4436" }, { "name": "Python", "bytes": "1557833" }, { "name": "Shell", "bytes": "14" }, { "name": "XSLT", "bytes": "94266" } ], "symlink_target": "" }
"""A helper module to work with metadata associated with the dataset. The metadata is a JSON file containing a single dictionary with key/value pairs. The module contains both helper functions to work with the metadata and constants for fields that are expected to be included. """ import json import logging import os.path import tensorflow.compat.v1 as tf gfile = tf.gfile # Constants for fields contained in the metadata for the dataset. MIN_WIDTH = 'min_width' # The min width of an image in the dataset. MIN_HEIGHT = 'min_height' # The max height of an image in the dataset. MAX_WIDTH = 'max_width' # The max width of an image in the dataset. MAX_HEIGHT = 'max_height' # The max height of an image in the dataset. NUM_EXAMPLES_POS = 'num_examples_positive' # Number of positive examples. NUM_EXAMPLES_NEG = 'num_examples_negative' # Number of negative examples. NUM_EXAMPLES_TRAIN = 'num_examples_train' # Number of negative examples. NUM_EXAMPLES_TEST = 'num_examples_test' # Number of negative examples. NUM_EXAMPLES_IGNORED = 'num_examples_ignored' # Number of negative examples. def metadata_path(data_dir=None, model_dir=None): """Returns path to serialized metadata under either data_dir or model_dir. This metadata file is generated by mr_tfexamples and records information about the table's contents and construction. Args: data_dir: Directory with training, testing data. Takes precedence over model_dir. model_dir: Model training directory. Returns: String path to file with serialized metadata. Raises: ValueError: If neither data_dir or model_dir are set. """ if data_dir and not model_dir: return os.path.join(data_dir, 'metadata.json') if model_dir and not data_dir: return os.path.join(model_dir, 'input_metadata.json') raise ValueError('One of data_dir or model_dir must be set') def shape_from_metadata(metadata): """Returns the shape of the largest images in the dataset. Args: metadata: The metadata dictionary Returns: A (height, width) shape tuple. """ max_shape = (metadata[MAX_HEIGHT], metadata[MAX_WIDTH]) return max_shape def load_metadata(data_dir=None, model_dir=None): """Loads metadata structure from file. Args: data_dir: Directory with training, testing data. model_dir: Model training directory. Returns: A dictionary of the metadata for the dataset. """ path = metadata_path(data_dir=data_dir, model_dir=model_dir) logging.info('Loading metadata from path: %s', path) with gfile.Open(path) as fl: return json.load(fl)
{ "content_hash": "5ada4a6e1ca3a542a12dff28991b9bd9", "timestamp": "", "source": "github", "line_count": 79, "max_line_length": 80, "avg_line_length": 32.81012658227848, "alnum_prop": 0.7291666666666666, "repo_name": "verilylifesciences/classifaedes", "id": "127208bae3fc7810692648de8581f40c2f6872d8", "size": "3181", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "classifaedes/metadata.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "782" }, { "name": "Python", "bytes": "39504" }, { "name": "Starlark", "bytes": "5233" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('geo', '0022_auto_20210129_0951'), ('time_based', '0054_auto_20210129_0951'), ] operations = [ migrations.AddField( model_name='periodactivity', name='is_online', field=models.NullBooleanField(choices=[(None, 'Not set yet'), (True, 'Yes, participants can join from anywhere or online'), (False, 'No, enter a location')], default=None, verbose_name='is online'), ), migrations.AddField( model_name='periodactivity', name='location', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='geo.Geolocation', verbose_name='location'), ), migrations.AddField( model_name='periodactivity', name='location_hint', field=models.TextField(blank=True, null=True, verbose_name='location hint'), ), ]
{ "content_hash": "4e6ebfa4466955719550505f035ad775", "timestamp": "", "source": "github", "line_count": 30, "max_line_length": 210, "avg_line_length": 36.46666666666667, "alnum_prop": 0.6188299817184644, "repo_name": "onepercentclub/bluebottle", "id": "7f818516d10f9d0ba4ae6e01ba57cf5259f58ce3", "size": "1168", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bluebottle/time_based/migrations/0055_auto_20210129_0951.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "41694" }, { "name": "HTML", "bytes": "246695" }, { "name": "Handlebars", "bytes": "63" }, { "name": "JavaScript", "bytes": "139123" }, { "name": "PHP", "bytes": "35" }, { "name": "PLpgSQL", "bytes": "1369882" }, { "name": "PostScript", "bytes": "2927" }, { "name": "Python", "bytes": "4983116" }, { "name": "Rich Text Format", "bytes": "39109" }, { "name": "SCSS", "bytes": "99555" }, { "name": "Shell", "bytes": "3068" }, { "name": "Smarty", "bytes": "3814" } ], "symlink_target": "" }
from designate.objects import base class Server(base.DictObjectMixin, base.PersistentObjectMixin, base.DesignateObject): FIELDS = { 'name': { 'schema': { 'type': 'string', 'description': 'Zone name', 'format': 'domainname', 'maxLength': 255, }, 'immutable': True, 'required': True } } STRING_KEYS = [ 'id', 'name' ] class ServerList(base.ListObjectMixin, base.DesignateObject): LIST_ITEM_TYPE = Server
{ "content_hash": "41d9c8eb0bac060da74527a4e4b2a042", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 62, "avg_line_length": 23.04, "alnum_prop": 0.5017361111111112, "repo_name": "ramsateesh/designate", "id": "b2d9cfb7f9ee0c7a1c6728ea53d886f706b066cb", "size": "1212", "binary": false, "copies": "6", "ref": "refs/heads/master", "path": "designate/objects/server.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "2214082" }, { "name": "Ruby", "bytes": "4170" }, { "name": "Shell", "bytes": "12933" } ], "symlink_target": "" }
import sys, time, random, math, pygame # Class # class Point class Point(object): def __init__(self, x, y): self.__x = x self.__y = y # X property def getx(self): return self.__x def setx(self, x): self.__x = x x = property(getx, setx) # Y property def gety(self): return self.__y def sety(self, y): self.__y = y y = property(gety, sety) def __str__(self): return "{X:" + "{:.0f}".format(self.__x) + \ ", Y:" + "{:.0f}".format(self.__y) + "}" # class Sprite class Sprite(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self)# extend the base Sprite class self.master_image = None self.frame = 0 self.ord_frame = -1 self.frame_width = 1 self.frame_height = 1 self.first_frame = 0 self.last_frame = 0 self.columns = 1 self.last_time = 0 self.direction = 0 self.velocity = Point(0 ,0) # x property def _getx(self): return self.rect.x def _setx(self, value): self.rect.x = value x = property(_getx, _setx) # y property def _gety(self): return self.rect.y def _sety(self, value): self.rect.y = value y = property(_gety, _sety) # position property def _getpos(self): return self.rect.topleft def _setpos(self, pos): self.rect.topleft = pos position = property(_getpos, _setpos) def load(self, filename, width, height, columns): self.master_image = pygame.image.load(filename).convert_alpha() self.frame_width = width self.frame_height = height self.rect = pygame.Rect(0, 0, width, height) self.columns = columns # try to auto-calculate total frames rect = self.master_image.get_rect() self.last_frame = (rect.width // width) * (rect.height // height) - 1 def update(self, current_time, rate=30): # upate animation frame number if current_time > self.last_time + rate: self.frame += 1 if self.frame > self.last_frame: self.frame = self.first_frame self.last_time = current_time # build current frame only if it changed if self.frame != self.ord_frame: frame_x = (self.frame % self.columns) * self.frame_width frame_y = (self.frame // self.columns) * self.frame_height rect = pygame.Rect(frame_x, frame_y, self.frame_width, self.frame_height) self.image = self.master_image.subsurface(rect) self.ord_frame = self.frame def __str__(self): return str(self.frame) + ',' + str(self.first_frame) + \ ',' + str(self.last_frame) + ',' + str(self.frame_width) + \ ',' + str(self.frame_height) + ',' + str(self.columns) + \ ',' + str(self.rect) # Def # def print_text def print_text(font,screen,x, y, text, color=(255, 255, 255)): imgText = font.render(text, True, color) screen.blit(imgText, (x, y))
{ "content_hash": "0e8be5888fe999fe2ef613969813918b", "timestamp": "", "source": "github", "line_count": 99, "max_line_length": 85, "avg_line_length": 31.585858585858585, "alnum_prop": 0.5481291973137192, "repo_name": "sun1218/Pygames", "id": "47dffe40df70f38eabd521c575b37634ddab066c", "size": "3127", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "game/zombie_mob/library.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "126530" } ], "symlink_target": "" }
""" Copyright (c) Microsoft Open Technologies (Shanghai) Co. Ltd.  All rights reserved. The MIT License (MIT) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys sys.path.append("..") from mongoengine import * from hackathon.util import get_now, make_serializable from hackathon.constants import TEMPLATE_STATUS, HACK_USER_TYPE from pagination import Pagination def to_dic(obj): ret = make_serializable(obj.to_mongo().to_dict()) # normalize if "_id" in ret: ret["id"] = ret.pop("_id") if "_cls" in ret: ret.pop("_cls") return ret class HQuerySet(QuerySet): """add some handy helpers on the default query set from mongoengine """ def paginate(self, page, per_page): return Pagination(self, page, per_page) class HDocumentBase(DynamicDocument): """ DB model base class, providing basic functions """ create_time = DateTimeField(default=get_now()) update_time = DateTimeField(default=get_now()) meta = { 'allow_inheritance': True, 'abstract': True, 'queryset_class': HQuerySet} def __init__(self, **kwargs): super(HDocumentBase, self).__init__(**kwargs) def dic(self): return to_dic(self) def __repr__(self): return '%s: %s' % (self.__class__.__name__, self.to_json()) class UserEmail(EmbeddedDocument): email = StringField() primary_email = BooleanField() verified = BooleanField() class UserProfile(DynamicEmbeddedDocument): address = StringField() age = IntField(min_value=1) career = StringField() career_type = StringField() gender = IntField() # 0:women 1:man notes = StringField() # a short activity or mood phone = StringField(max_length=20) qq = StringField() real_name = StringField(max_length=80) self_introduction = StringField() skype = StringField() wechat = StringField() weibo = StringField() avatar_url = URLField() # high priority than avatar_url in User class User(HDocumentBase): name = StringField(max_length=50, min_length=1, required=True) nickname = StringField(max_length=50, min_length=1, required=True) password = StringField(max_length=100) emails = EmbeddedDocumentListField(UserEmail) is_super = BooleanField(default=False) profile = EmbeddedDocumentField(UserProfile) provider = StringField(max_length=20) openid = StringField(max_length=100) avatar_url = StringField() # if avatar_url in UserProfile setted, this is not used access_token = StringField(max_length=1024) online = BooleanField(default=False) last_login_time = DateTimeField() login_times = IntField(default=1) # a new user usually added upon whose first login, by default 1 thus meta = { "indexes": [ { # default unqiue is not sparse, so we have to set it by ourselves "fields": ["provider", "openid"], "unqiue": True, "sparse": True}]} def __init__(self, **kwargs): super(User, self).__init__(**kwargs) class UserToken(HDocumentBase): token = UUIDField(required=True) user = ReferenceField(User) issue_date = DateTimeField(default=get_now()) expire_date = DateTimeField(required=True) meta = { 'indexes': [ { # See mongodb and mongo engine documentation for details # by default, mongoengine will add a `_cls` field with the index as a compund index # but mongodb only support Single Key Index on Hashed Token so far # set the `cls` option to False can disable this beahviour on mongoengine "fields": ["#token"], "cls": False}]} def __init__(self, **kwargs): super(UserToken, self).__init__(**kwargs) class Template(HDocumentBase): name = StringField(required=True, unique=True) url = URLField(required=True) provider = IntField() status = IntField(default=TEMPLATE_STATUS.UNCHECKED) # constants.TEMPLATE_STATUS description = StringField() virtual_environment_count = IntField(min_value=1, required=True) creator = ReferenceField(User) def __init__(self, **kwargs): super(Template, self).__init__(**kwargs) class Organization(DynamicEmbeddedDocument): id = UUIDField(required=True) name = StringField(required=True) description = StringField() homepage = URLField() logo = URLField() organization_type = IntField() # see ORGANIZATION_TYPE : ORGANIZER = 1, PARTNER = 2 class Award(EmbeddedDocument): id = UUIDField(required=True) name = StringField(required=True) description = StringField(required=True) level = IntField(min_value=0, max_value=10) # 0-10 quota = IntField(min_value=1, default=1, required=True) award_url = StringField() class AzureKey(HDocumentBase): """ Azure certificate information of user/hackathon Open-hackathon will try to use local certification file, if it doesn't exist, open-hackathon will try to recover it from azure. """ cert_url = StringField(required=True) # cert_url is cert file path in azure # pem_url is "encrypted" pem file path in azure, so be careful to use this, # at the most time you should use get_local_pem_url() pem_url = StringField(required=True) subscription_id = StringField(required=True) management_host = StringField(required=True) verified = BooleanField() def __init__(self, **kwargs): super(AzureKey, self).__init__(**kwargs) class Hackathon(HDocumentBase): name = StringField(unique=True, required=True) display_name = StringField(required=True) ribbon = StringField() # a short sentence of advertisement short_description = StringField() location = StringField() description = StringField() banners = ListField() status = IntField(default=0) # 0-new 1-online 2-offline creator = ReferenceField(User) config = DictField() # max_enrollment, auto_approve, login_provider type = IntField(default=1) # enum.HACK_TYPE organizers = EmbeddedDocumentListField(Organization) tags = ListField() awards = EmbeddedDocumentListField(Award) templates = ListField(ReferenceField(Template, reverse_delete_rule=PULL)) # templates for hackathon azure_keys = ListField(ReferenceField(AzureKey)) event_start_time = DateTimeField() event_end_time = DateTimeField() registration_start_time = DateTimeField() registration_end_time = DateTimeField() judge_start_time = DateTimeField() judge_end_time = DateTimeField() archive_time = DateTimeField() def __init__(self, **kwargs): super(Hackathon, self).__init__(**kwargs) class UserHackathon(HDocumentBase): user = ReferenceField(User) hackathon = ReferenceField(Hackathon) role = IntField(default=HACK_USER_TYPE.COMPETITOR) # 0-visitor 1-admin 2-judge 3-competitor status = IntField() # 0-not approved user 1-approved user 2-refused user 3-auto approved user like = BooleanField(default=True) assets = DictField(default={}) # assets for user remark = StringField() deleted = BooleanField(default=False) def __init__(self, **kwargs): super(UserHackathon, self).__init__(**kwargs) class HackathonStat(HDocumentBase): type = StringField() # class HACKATHON_STAT count = IntField(min_value=0) hackathon = ReferenceField(Hackathon) class HackathonNotice(HDocumentBase): category = IntField() # category: Class HACK_NOTICE_CATEGORY, controls how icons/descriptions are shown at front-end event = IntField() # event: Class HACK_NOTICE_EVENT, records the specfic event that triggers current notice content = StringField() related_id = DynamicField() link = StringField() creator = ReferenceField(User) hackathon = ReferenceField(Hackathon) receiver = ReferenceField(User) is_read = BooleanField(default=False) def __init__(self, **kwargs): super(HackathonNotice, self).__init__(**kwargs) class TeamWork(EmbeddedDocument): id = UUIDField(required=True) description = StringField() type = IntField(required=True) # see TEAM_SHOW_TYPE uri = StringField() create_time = DateTimeField(default=get_now()) class TeamScore(EmbeddedDocument): type = IntField(default=0) score = IntField(required=True, min_value=0) reason = StringField() score_date = DateTimeField(default=get_now()) judge = ReferenceField(User) class TeamMember(EmbeddedDocument): join_time = DateTimeField() status = IntField() # 0:unaudit ,1:audit_passed, 2:audit_refused user = ReferenceField(User) class Team(HDocumentBase): name = StringField(required=True) description = StringField() logo = StringField() leader = ReferenceField(User) cover = StringField() project_name = StringField() project_description = StringField() dev_plan = StringField() hackathon = ReferenceField(Hackathon) works = EmbeddedDocumentListField(TeamWork) scores = EmbeddedDocumentListField(TeamScore) members = EmbeddedDocumentListField(TeamMember) awards = ListField() # list of uuid. UUID reference class Award-id assets = DictField() # assets for team azure_keys = ListField(ReferenceField(AzureKey)) templates = ListField(ReferenceField(Template)) # templates for team def __init__(self, **kwargs): super(Team, self).__init__(**kwargs) class DockerHostServer(HDocumentBase): vm_name = StringField(required=True) public_dns = StringField() public_ip = StringField() public_docker_api_port = IntField(min_value=1, max_value=65535, default=4243) private_ip = StringField() private_docker_api_port = IntField(min_value=1, max_value=65535, default=4243) container_count = IntField(required=True, min_value=0, default=0) container_max_count = IntField(required=True, min_value=0) is_auto = BooleanField(default=False) # 0-started manually 1-started by OHP server state = IntField(default=0) # 0-VM starting, 1-docker init, 2-docker API ready, 3-unavailable disabled = BooleanField(default=False) # T-disabled by manager, F-available hackathon = ReferenceField(Hackathon) def __init__(self, **kwargs): super(DockerHostServer, self).__init__(**kwargs) class PortBinding(DynamicEmbeddedDocument): # for simplicity, the port won't be released until the corresponding container removed(not stopped). # that means a port occupied by stopped container won't be allocated to new container. So it's possible to start the # container again. And the number of port should be enough since we won't have too many containers on the same VM. name = StringField() is_public = BooleanField() public_port = IntField() # port that are public accessible host_port = IntField() # port on hosted VM container_port = IntField() # port inside docker container url = StringField() # public url pattern for display where host and port should be replaced class DockerContainer(DynamicEmbeddedDocument): name = StringField(required=True, unique=True) image = StringField() container_id = StringField() host_server = ReferenceField(DockerHostServer) port_bindings = EmbeddedDocumentListField(PortBinding, default=[]) class AzureStorageAccount(DynamicEmbeddedDocument): name = StringField(required=True) description = StringField() label = StringField() location = StringField(required=True) # ASAStatus in enum.py status = StringField() create_time = DateTimeField() update_time = DateTimeField() deletable = BooleanField() # F-cannot delete T-can be deleted class AzureCloudService(DynamicEmbeddedDocument): name = StringField() label = StringField() location = StringField() # ACSStatus in enum.py status = StringField() azure_key = ReferenceField(AzureKey) deletable = BooleanField() # F-cannot delete T-can be deleted class AzureDeployment(DynamicEmbeddedDocument): name = StringField() slot = StringField() # ADStatus in enum.py status = StringField() cloud_service = EmbeddedDocumentField(AzureCloudService) create_time = DateTimeField() update_time = DateTimeField() deletable = BooleanField() # F-cannot delete T-can be deleted class AzureEndPoint(DynamicEmbeddedDocument): name = StringField() protocol = StringField() public_port = IntField() private_port = IntField() url = StringField() class AzureVirtualMachine(DynamicEmbeddedDocument): name = StringField(required=True) label = StringField() # AVMStatus in enum.py dns = StringField() public_ip = StringField() private_ip = StringField() deployment = EmbeddedDocumentField(AzureDeployment) create_time = DateTimeField() update_time = DateTimeField() deletable = BooleanField() # F-cannot delete T-can be deleted end_points = EmbeddedDocumentListField(AzureEndPoint, default=[]) class VirtualEnvironment(DynamicEmbeddedDocument): """ Virtual environment is abstraction of smallest environment unit in template """ provider = IntField() # VE_PROVIDER in enum.py name = StringField(required=True, unique=True) status = IntField(required=True) # VEStatus in enum.py remote_provider = IntField() # VERemoteProvider in enum.py remote_paras = DictField() create_time = DateTimeField(default=get_now()) update_time = DateTimeField() docker_container = EmbeddedDocumentField(DockerContainer) azure_resource = EmbeddedDocumentField(AzureVirtualMachine) class Experiment(HDocumentBase): status = IntField() # EStatus in enum.py last_heart_beat_time = DateTimeField() template = ReferenceField(Template) user = ReferenceField(User) azure_key = ReferenceField(AzureKey) hackathon = ReferenceField(Hackathon) virtual_environments = EmbeddedDocumentListField(VirtualEnvironment, default=[]) def __init__(self, **kwargs): super(Experiment, self).__init__(**kwargs)
{ "content_hash": "0d032fdc3da0e305a4ecbd7378456ab7", "timestamp": "", "source": "github", "line_count": 425, "max_line_length": 121, "avg_line_length": 35.66823529411765, "alnum_prop": 0.6958242628141698, "repo_name": "lclchen/open-hackathon", "id": "235336b816335dce91601509dfc0ae97127dbad2", "size": "15184", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "open-hackathon-server/src/hackathon/hmongo/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "189542" }, { "name": "HTML", "bytes": "494496" }, { "name": "Java", "bytes": "9272" }, { "name": "JavaScript", "bytes": "634650" }, { "name": "Python", "bytes": "672432" }, { "name": "Ruby", "bytes": "1595" }, { "name": "Shell", "bytes": "16003" } ], "symlink_target": "" }
import sys from setuptools import setup, find_packages install_requires = ['redis'] print find_packages() setup( name='twiceredis', version='2.0.0', author='Trey Morris', author_email='trey@treymorris.com', description='sentinel pool backed read and write redis client', long_description=open('README.rst').read(), install_requires=install_requires, classifiers=['Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License'], keywords='redis', packages=find_packages(), license='Apache Software License', url='https://github.com/tr3buchet/twiceredis')
{ "content_hash": "dcbad6d5095647efe500ab57b2a728ef", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 71, "avg_line_length": 30, "alnum_prop": 0.6833333333333333, "repo_name": "tr3buchet/twiceredis", "id": "19d80d3969a823114a320a464cb24a372b20ee10", "size": "1279", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "13876" } ], "symlink_target": "" }
"""Unit tests for the raised exception documentation checking in the `DocstringChecker` in :mod:`pylint.extensions.check_docs` """ # pylint: disable=too-many-public-methods import astroid from pylint.extensions.docparams import DocstringParameterChecker from pylint.testutils import CheckerTestCase, Message, set_config class TestDocstringCheckerRaise(CheckerTestCase): """Tests for pylint_plugin.RaiseDocChecker""" CHECKER_CLASS = DocstringParameterChecker def test_ignores_no_docstring(self): raise_node = astroid.extract_node( """ def my_func(self): raise RuntimeError('hi') #@ """ ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_ignores_unknown_style(self): node = astroid.extract_node( ''' def my_func(self): """This is a docstring.""" raise RuntimeError('hi') ''' ) raise_node = node.body[0] with self.assertNoMessages(): self.checker.visit_raise(raise_node) @set_config(accept_no_raise_doc=False) def test_warns_unknown_style(self): node = astroid.extract_node( ''' def my_func(self): """This is a docstring.""" raise RuntimeError('hi') ''' ) raise_node = node.body[0] with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_find_missing_sphinx_raises(self): node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises NameError: Never """ raise RuntimeError('hi') raise NameError('hi') ''' ) raise_node = node.body[0] with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_find_missing_google_raises(self): node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises: NameError: Never """ raise RuntimeError('hi') raise NameError('hi') ''' ) raise_node = node.body[0] with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_find_google_attr_raises_exact_exc(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a google docstring. Raises: re.error: Sometimes """ import re raise re.error('hi') #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_google_attr_raises_substr_exc(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a google docstring. Raises: re.error: Sometimes """ from re import error raise error('hi') #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_valid_missing_google_attr_raises(self): node = astroid.extract_node( ''' def my_func(self): """This is a google docstring. Raises: re.anothererror: Sometimes """ from re import error raise error('hi') ''' ) raise_node = node.body[1] with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("error",)) ): self.checker.visit_raise(raise_node) def test_find_invalid_missing_google_attr_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a google docstring. Raises: bogusmodule.error: Sometimes """ from re import error raise error('hi') #@ ''' ) # pylint allows this to pass since the comparison between Raises and # raise are based on the class name, not the qualified name. with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_google_raises_local_reference(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a google docstring. Raises: .LocalException: Always """ from neighbor_module import LocalException raise LocalException('hi') #@ ''' ) # pylint allows this to pass since the comparison between Raises and # raise are based on the class name, not the qualified name. with self.assertNoMessages(): self.checker.visit_raise(raise_node) @set_config(accept_no_raise_doc=False) def test_google_raises_with_prefix(self): code_snippet = ''' def my_func(self): """This is a google docstring. Raises: {prefix}re.error: Sometimes """ import re raise re.error('hi') #@ ''' for prefix in ["~", "!"]: raise_node = astroid.extract_node(code_snippet.format(prefix=prefix)) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_missing_numpy_raises(self): node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises ------ NameError Never """ raise RuntimeError('hi') raise NameError('hi') ''' ) raise_node = node.body[0] with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_ignore_spurious_sphinx_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises RuntimeError: Always :except NameError: Never :raise OSError: Never :exception ValueError: Never """ raise RuntimeError('Blah') #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_all_sphinx_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises RuntimeError: Always :except NameError: Never :raise OSError: Never :exception ValueError: Never """ raise RuntimeError('hi') #@ raise NameError('hi') raise OSError(2, 'abort!') raise ValueError('foo') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_all_google_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises: RuntimeError: Always NameError: Never """ raise RuntimeError('hi') #@ raise NameError('hi') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_all_numpy_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises ------ RuntimeError Always NameError Never """ raise RuntimeError('hi') #@ raise NameError('hi') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_multiple_sphinx_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises RuntimeError: Always :raises NameError, OSError, ValueError: Never """ raise RuntimeError('hi') raise NameError('hi') #@ raise OSError(2, 'abort!') raise ValueError('foo') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_multiple_google_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises: RuntimeError: Always NameError, OSError, ValueError: Never """ raise RuntimeError('hi') raise NameError('hi') #@ raise OSError(2, 'abort!') raise ValueError('foo') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_finds_rethrown_sphinx_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises NameError: Sometimes """ try: fake_func() except RuntimeError: raise #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_find_rethrown_google_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises: NameError: Sometimes """ try: fake_func() except RuntimeError: raise #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_find_rethrown_numpy_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises ------ NameError Sometimes """ try: fake_func() except RuntimeError: raise #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_finds_rethrown_sphinx_multiple_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises NameError: Sometimes """ try: fake_func() except (RuntimeError, ValueError): raise #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message( msg_id="missing-raises-doc", node=node, args=("RuntimeError, ValueError",), ) ): self.checker.visit_raise(raise_node) def test_find_rethrown_google_multiple_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises: NameError: Sometimes """ try: fake_func() except (RuntimeError, ValueError): raise #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message( msg_id="missing-raises-doc", node=node, args=("RuntimeError, ValueError",), ) ): self.checker.visit_raise(raise_node) def test_find_rethrown_numpy_multiple_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises ------ NameError Sometimes """ try: fake_func() except (RuntimeError, ValueError): raise #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message( msg_id="missing-raises-doc", node=node, args=("RuntimeError, ValueError",), ) ): self.checker.visit_raise(raise_node) def test_ignores_caught_sphinx_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises NameError: Sometimes """ try: raise RuntimeError('hi') #@ except RuntimeError: pass raise NameError('hi') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_ignores_caught_google_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. Raises: NameError: Sometimes """ try: raise RuntimeError('hi') #@ except RuntimeError: pass raise NameError('hi') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_ignores_caught_numpy_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a numpy docstring. Raises ------ NameError Sometimes """ try: raise RuntimeError('hi') #@ except RuntimeError: pass raise NameError('hi') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_numpy_attr_raises_exact_exc(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a numpy docstring. Raises ------ re.error Sometimes """ import re raise re.error('hi') #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_numpy_attr_raises_substr_exc(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a numpy docstring. Raises ------ re.error Sometimes """ from re import error raise error('hi') #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_valid_missing_numpy_attr_raises(self): node = astroid.extract_node( ''' def my_func(self): """This is a numpy docstring. Raises ------ re.anothererror Sometimes """ from re import error raise error('hi') ''' ) raise_node = node.body[1] with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("error",)) ): self.checker.visit_raise(raise_node) def test_find_invalid_missing_numpy_attr_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a numpy docstring. Raises ------ bogusmodule.error Sometimes """ from re import error raise error('hi') #@ ''' ) # pylint allows this to pass since the comparison between Raises and # raise are based on the class name, not the qualified name. with self.assertNoMessages(): self.checker.visit_raise(raise_node) @set_config(accept_no_raise_doc=False) def test_numpy_raises_with_prefix(self): code_snippet = ''' def my_func(self): """This is a numpy docstring. Raises ------ {prefix}re.error Sometimes """ import re raise re.error('hi') #@ ''' for prefix in ["~", "!"]: raise_node = astroid.extract_node(code_snippet.format(prefix=prefix)) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_missing_sphinx_raises_infer_from_instance(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises NameError: Never """ my_exception = RuntimeError('hi') raise my_exception #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_find_missing_sphinx_raises_infer_from_function(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises NameError: Never """ def ex_func(val): return RuntimeError(val) raise ex_func('hi') #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): self.checker.visit_raise(raise_node) def test_find_sphinx_attr_raises_exact_exc(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a sphinx docstring. :raises re.error: Sometimes """ import re raise re.error('hi') #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_sphinx_attr_raises_substr_exc(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a sphinx docstring. :raises re.error: Sometimes """ from re import error raise error('hi') #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_find_valid_missing_sphinx_attr_raises(self): node = astroid.extract_node( ''' def my_func(self): """This is a sphinx docstring. :raises re.anothererror: Sometimes """ from re import error raise error('hi') ''' ) raise_node = node.body[1] with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("error",)) ): self.checker.visit_raise(raise_node) def test_find_invalid_missing_sphinx_attr_raises(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a sphinx docstring. :raises bogusmodule.error: Sometimes """ from re import error raise error('hi') #@ ''' ) # pylint allows this to pass since the comparison between Raises and # raise are based on the class name, not the qualified name. with self.assertNoMessages(): self.checker.visit_raise(raise_node) @set_config(accept_no_raise_doc=False) def test_sphinx_raises_with_prefix(self): code_snippet = ''' def my_func(self): """This is a sphinx docstring. :raises {prefix}re.error: Sometimes """ import re raise re.error('hi') #@ ''' for prefix in ["~", "!"]: raise_node = astroid.extract_node(code_snippet.format(prefix=prefix)) with self.assertNoMessages(): self.checker.visit_raise(raise_node) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_ignores_raise_uninferable(self): raise_node = astroid.extract_node( ''' from unknown import Unknown def my_func(self): """This is a docstring. :raises NameError: Never """ raise Unknown('hi') #@ raise NameError('hi') ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_ignores_returns_from_inner_functions(self): raise_node = astroid.extract_node( ''' def my_func(self): """This is a docstring. :raises NameError: Never """ def ex_func(val): def inner_func(value): return OSError(value) return RuntimeError(val) raise ex_func('hi') #@ raise NameError('hi') ''' ) node = raise_node.frame() with self.assertAddsMessages( Message(msg_id="missing-raises-doc", node=node, args=("RuntimeError",)) ): # we do NOT expect a warning about the OSError in inner_func! self.checker.visit_raise(raise_node) def test_ignores_returns_use_only_names(self): raise_node = astroid.extract_node( ''' def myfunc(): """This is a docstring :raises NameError: Never """ def inner_func(): return 42 raise inner_func() #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_ignores_returns_use_only_exception_instances(self): raise_node = astroid.extract_node( ''' def myfunc(): """This is a docstring :raises MyException: Never """ class MyException(Exception): pass def inner_func(): return MyException raise inner_func() #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_no_crash_when_inferring_handlers(self): raise_node = astroid.extract_node( ''' import collections def test(): """raises :raise U: pass """ try: pass except collections.U as exc: raise #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_no_crash_when_cant_find_exception(self): raise_node = astroid.extract_node( ''' import collections def test(): """raises :raise U: pass """ try: pass except U as exc: raise #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node) def test_no_error_notimplemented_documented(self): raise_node = astroid.extract_node( ''' def my_func(): """ Raises: NotImplementedError: When called. """ raise NotImplementedError #@ ''' ) with self.assertNoMessages(): self.checker.visit_raise(raise_node)
{ "content_hash": "12f4d6d9297277c8d9aafffec32a208b", "timestamp": "", "source": "github", "line_count": 886, "max_line_length": 83, "avg_line_length": 28.159142212189618, "alnum_prop": 0.49232434165698025, "repo_name": "ruchee/vimrc", "id": "7ed7c405cf69857e50c03877298bf4c0a8ec39ce", "size": "25733", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vimfiles/bundle/vim-python/submodules/pylint/tests/extensions/test_check_raise_docs.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "22028" }, { "name": "Blade", "bytes": "3314" }, { "name": "C#", "bytes": "1734" }, { "name": "CSS", "bytes": "31547" }, { "name": "Clojure", "bytes": "47036" }, { "name": "CoffeeScript", "bytes": "9274" }, { "name": "Common Lisp", "bytes": "54314" }, { "name": "D", "bytes": "11562" }, { "name": "Dockerfile", "bytes": "7620" }, { "name": "Elixir", "bytes": "41696" }, { "name": "Emacs Lisp", "bytes": "10489" }, { "name": "Erlang", "bytes": "137788" }, { "name": "F#", "bytes": "2230" }, { "name": "Go", "bytes": "54655" }, { "name": "HTML", "bytes": "178954" }, { "name": "Haml", "bytes": "39" }, { "name": "Haskell", "bytes": "2031" }, { "name": "JavaScript", "bytes": "9086" }, { "name": "Julia", "bytes": "9540" }, { "name": "Kotlin", "bytes": "8669" }, { "name": "Less", "bytes": "327" }, { "name": "Makefile", "bytes": "87500" }, { "name": "Mustache", "bytes": "3375" }, { "name": "Nix", "bytes": "1860" }, { "name": "PHP", "bytes": "9238" }, { "name": "PLpgSQL", "bytes": "33747" }, { "name": "Perl", "bytes": "84200" }, { "name": "PostScript", "bytes": "3891" }, { "name": "Python", "bytes": "7366233" }, { "name": "Racket", "bytes": "1150" }, { "name": "Raku", "bytes": "21146" }, { "name": "Ruby", "bytes": "133344" }, { "name": "SCSS", "bytes": "327" }, { "name": "Sass", "bytes": "308" }, { "name": "Scala", "bytes": "13125" }, { "name": "Shell", "bytes": "52916" }, { "name": "Smarty", "bytes": "300" }, { "name": "Swift", "bytes": "11436" }, { "name": "TypeScript", "bytes": "4663" }, { "name": "Vim Script", "bytes": "10545492" }, { "name": "Vim Snippet", "bytes": "559139" } ], "symlink_target": "" }
'''Display positioned, scaled and rotated images. A sprite is an instance of an image displayed on-screen. Multiple sprites can display the same image at different positions on the screen. Sprites can also be scaled larger or smaller, rotated at any angle and drawn at a fractional opacity. The following complete example loads a ``"ball.png"`` image and creates a sprite for that image. The sprite is then drawn in the window's draw event handler:: import pyglet ball_image = pyglet.image.load('ball.png') ball = pyglet.sprite.Sprite(ball_image, x=50, y=50) window = pyglet.window.Window() @window.event def on_draw(): ball.draw() pyglet.app.run() The sprite can be moved by modifying the ``x`` and ``y`` properties. Other properties determine the sprite's rotation, scale and opacity. The sprite's positioning, rotation and scaling all honor the original image's anchor (anchor_x, anchor_y). Drawing multiple sprites ======================== Sprites can be "batched" together and drawn at once more quickly than if each of their ``draw`` methods were called individually. The following example creates one hundred ball sprites and adds each of them to a `Batch`. The entire batch of sprites is then drawn in one call:: batch = pyglet.graphics.Batch() ball_sprites = [] for i in range(100): x, y = i * 10, 50 ball_sprites.append(pyglet.sprite.Sprite(ball_image, x, y, batch=batch) @window.event def on_draw(): batch.draw() Sprites can be freely modified in any way even after being added to a batch, however a sprite can belong to at most one batch. See the documentation for `pyglet.graphics` for more details on batched rendering, and grouping of sprites within batches. :since: pyglet 1.1 ''' __docformat__ = 'restructuredtext' __version__ = '$Id: sprite.py 2541 2009-12-31 04:31:11Z benjamin.coder.smith@gmail.com $' import math import sys from pyglet.gl import * from pyglet import clock from pyglet import event from pyglet import graphics from pyglet import image _is_epydoc = hasattr(sys, 'is_epydoc') and sys.is_epydoc class SpriteGroup(graphics.Group): '''Shared sprite rendering group. The group is automatically coalesced with other sprite groups sharing the same parent group, texture and blend parameters. ''' def __init__(self, texture, blend_src, blend_dest, parent=None): '''Create a sprite group. The group is created internally within `Sprite`; applications usually do not need to explicitly create it. :Parameters: `texture` : `Texture` The (top-level) texture containing the sprite image. `blend_src` : int OpenGL blend source mode; for example, ``GL_SRC_ALPHA``. `blend_dest` : int OpenGL blend destination mode; for example, ``GL_ONE_MINUS_SRC_ALPHA``. `parent` : `Group` Optional parent group. ''' super(SpriteGroup, self).__init__(parent) self.texture = texture self.blend_src = blend_src self.blend_dest = blend_dest def set_state(self): glEnable(self.texture.target) glBindTexture(self.texture.target, self.texture.id) glPushAttrib(GL_COLOR_BUFFER_BIT) glEnable(GL_BLEND) glBlendFunc(self.blend_src, self.blend_dest) def unset_state(self): glPopAttrib() glDisable(self.texture.target) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self.texture) def __eq__(self, other): return (other.__class__ is self.__class__ and self.parent is other.parent and self.texture.target == other.texture.target and self.texture.id == other.texture.id and self.blend_src == other.blend_src and self.blend_dest == other.blend_dest) def __hash__(self): return hash((id(self.parent), self.texture.id, self.texture.target, self.blend_src, self.blend_dest)) class Sprite(event.EventDispatcher): '''Instance of an on-screen image. See the module documentation for usage. ''' _batch = None _animation = None _rotation = 0 _opacity = 255 _rgb = (255, 255, 255) _scale = 1.0 _visible = True _vertex_list = None def __init__(self, img, x=0, y=0, blend_src=GL_SRC_ALPHA, blend_dest=GL_ONE_MINUS_SRC_ALPHA, batch=None, group=None, usage='dynamic'): '''Create a sprite. :Parameters: `img` : `AbstractImage` or `Animation` Image or animation to display. `x` : int X coordinate of the sprite. `y` : int Y coordinate of the sprite. `blend_src` : int OpenGL blend source mode. The default is suitable for compositing sprites drawn from back-to-front. `blend_dest` : int OpenGL blend destination mode. The default is suitable for compositing sprites drawn from back-to-front. `batch` : `Batch` Optional batch to add the sprite to. `group` : `Group` Optional parent group of the sprite. `usage` : str Vertex buffer object usage hint, one of ``"none"`` (default), ``"stream"``, ``"dynamic"`` or ``"static"``. Applies only to vertex data. ''' if batch is not None: self._batch = batch self._x = x self._y = y if isinstance(img, image.Animation): self._animation = img self._frame_index = 0 self._texture = img.frames[0].image.get_texture() self._next_dt = img.frames[0].duration if self._next_dt: clock.schedule_once(self._animate, self._next_dt) else: self._texture = img.get_texture() self._group = SpriteGroup(self._texture, blend_src, blend_dest, group) self._usage = usage self._create_vertex_list() def __del__(self): try: if self._vertex_list is not None: self._vertex_list.delete() except: pass def delete(self): '''Force immediate removal of the sprite from video memory. This is often necessary when using batches, as the Python garbage collector will not necessarily call the finalizer as soon as the sprite is garbage. ''' if self._animation: clock.unschedule(self._animate) self._vertex_list.delete() self._vertex_list = None self._texture = None # Easy way to break circular reference, speeds up GC self._group = None def _animate(self, dt): self._frame_index += 1 if self._frame_index >= len(self._animation.frames): self._frame_index = 0 self.dispatch_event('on_animation_end') if self._vertex_list is None: return # Deleted in event handler. frame = self._animation.frames[self._frame_index] self._set_texture(frame.image.get_texture()) if frame.duration is not None: duration = frame.duration - (self._next_dt - dt) duration = min(max(0, duration), frame.duration) clock.schedule_once(self._animate, duration) self._next_dt = duration else: self.dispatch_event('on_animation_end') def _set_batch(self, batch): if self._batch == batch: return if batch is not None and self._batch is not None: self._batch.migrate(self._vertex_list, GL_QUADS, self._group, batch) self._batch = batch else: self._vertex_list.delete() self._batch = batch self._create_vertex_list() def _get_batch(self): return self._batch batch = property(_get_batch, _set_batch, doc='''Graphics batch. The sprite can be migrated from one batch to another, or removed from its batch (for individual drawing). Note that this can be an expensive operation. :type: `Batch` ''') def _set_group(self, group): if self._group.parent == group: return self._group = SpriteGroup(self._texture, self._group.blend_src, self._group.blend_dest, group) if self._batch is not None: self._batch.migrate(self._vertex_list, GL_QUADS, self._group, self._batch) def _get_group(self): return self._group.parent group = property(_get_group, _set_group, doc='''Parent graphics group. The sprite can change its rendering group, however this can be an expensive operation. :type: `Group` ''') def _get_image(self): if self._animation: return self._animation return self._texture def _set_image(self, img): if self._animation is not None: clock.unschedule(self._animate) self._animation = None if isinstance(img, image.Animation): self._animation = img self._frame_index = 0 self._set_texture(img.frames[0].image.get_texture()) self._next_dt = img.frames[0].duration clock.schedule_once(self._animate, self._next_dt) else: self._set_texture(img.get_texture()) self._update_position() image = property(_get_image, _set_image, doc='''Image or animation to display. :type: `AbstractImage` or `Animation` ''') def _set_texture(self, texture): if texture.id is not self._texture.id: self._group = SpriteGroup(texture, self._group.blend_src, self._group.blend_dest, self._group.parent) if self._batch is None: self._vertex_list.tex_coords[:] = texture.tex_coords else: self._vertex_list.delete() self._texture = texture self._create_vertex_list() else: self._vertex_list.tex_coords[:] = texture.tex_coords self._texture = texture def _create_vertex_list(self): if self._batch is None: self._vertex_list = graphics.vertex_list(4, 'v2i/%s' % self._usage, 'c4B', ('t3f', self._texture.tex_coords)) else: self._vertex_list = self._batch.add(4, GL_QUADS, self._group, 'v2i/%s' % self._usage, 'c4B', ('t3f', self._texture.tex_coords)) self._update_position() self._update_color() def _update_position(self): img = self._texture if not self._visible: self._vertex_list.vertices[:] = [0, 0, 0, 0, 0, 0, 0, 0] elif self._rotation: x1 = -img.anchor_x * self._scale y1 = -img.anchor_y * self._scale x2 = x1 + img.width * self._scale y2 = y1 + img.height * self._scale x = self._x y = self._y r = -math.radians(self._rotation) cr = math.cos(r) sr = math.sin(r) ax = int(x1 * cr - y1 * sr + x) ay = int(x1 * sr + y1 * cr + y) bx = int(x2 * cr - y1 * sr + x) by = int(x2 * sr + y1 * cr + y) cx = int(x2 * cr - y2 * sr + x) cy = int(x2 * sr + y2 * cr + y) dx = int(x1 * cr - y2 * sr + x) dy = int(x1 * sr + y2 * cr + y) self._vertex_list.vertices[:] = [ax, ay, bx, by, cx, cy, dx, dy] elif self._scale != 1.0: x1 = int(self._x - img.anchor_x * self._scale) y1 = int(self._y - img.anchor_y * self._scale) x2 = int(x1 + img.width * self._scale) y2 = int(y1 + img.height * self._scale) self._vertex_list.vertices[:] = [x1, y1, x2, y1, x2, y2, x1, y2] else: x1 = int(self._x - img.anchor_x) y1 = int(self._y - img.anchor_y) x2 = x1 + img.width y2 = y1 + img.height self._vertex_list.vertices[:] = [x1, y1, x2, y1, x2, y2, x1, y2] def _update_color(self): r, g, b = self._rgb self._vertex_list.colors[:] = [r, g, b, int(self._opacity)] * 4 def set_position(self, x, y): '''Set the X and Y coordinates of the sprite simultaneously. :Parameters: `x` : int X coordinate of the sprite. `y` : int Y coordinate of the sprite. ''' self._x = x self._y = y self._update_position() position = property(lambda self: (self._x, self._y), lambda self, t: self.set_position(*t), doc='''The (x, y) coordinates of the sprite. :type: (int, int) ''') def _set_x(self, x): self._x = x self._update_position() x = property(lambda self: self._x, _set_x, doc='''X coordinate of the sprite. :type: int ''') def _set_y(self, y): self._y = y self._update_position() y = property(lambda self: self._y, _set_y, doc='''Y coordinate of the sprite. :type: int ''') def _set_rotation(self, rotation): self._rotation = rotation self._update_position() rotation = property(lambda self: self._rotation, _set_rotation, doc='''Clockwise rotation of the sprite, in degrees. The sprite image will be rotated about its image's (anchor_x, anchor_y) position. :type: float ''') def _set_scale(self, scale): self._scale = scale self._update_position() scale = property(lambda self: self._scale, _set_scale, doc='''Scaling factor. A scaling factor of 1 (the default) has no effect. A scale of 2 will draw the sprite at twice the native size of its image. :type: float ''') width = property(lambda self: int(self._texture.width * self._scale), doc='''Scaled width of the sprite. Read-only. Invariant under rotation. :type: int ''') height = property(lambda self: int(self._texture.height * self._scale), doc='''Scaled height of the sprite. Read-only. Invariant under rotation. :type: int ''') def _set_opacity(self, opacity): self._opacity = opacity self._update_color() opacity = property(lambda self: self._opacity, _set_opacity, doc='''Blend opacity. This property sets the alpha component of the colour of the sprite's vertices. With the default blend mode (see the constructor), this allows the sprite to be drawn with fractional opacity, blending with the background. An opacity of 255 (the default) has no effect. An opacity of 128 will make the sprite appear translucent. :type: int ''') def _set_color(self, rgb): self._rgb = map(int, rgb) self._update_color() color = property(lambda self: self._rgb, _set_color, doc='''Blend color. This property sets the color of the sprite's vertices. This allows the sprite to be drawn with a color tint. The color is specified as an RGB tuple of integers ``(red, green, blue)``. Each color component must be in the range 0 (dark) to 255 (saturated). :type: (int, int, int) ''') def _set_visible(self, visible): self._visible = visible self._update_position() visible = property(lambda self: self._visible, _set_visible, '''True if the sprite will be drawn. :type: bool ''') def draw(self): '''Draw the sprite at its current position. See the module documentation for hints on drawing multiple sprites efficiently. ''' self._group.set_state_recursive() self._vertex_list.draw(GL_QUADS) self._group.unset_state_recursive() if _is_epydoc: def on_animation_end(self): '''The sprite animation reached the final frame. The event is triggered only if the sprite has an animation, not an image. For looping animations, the event is triggered each time the animation loops. :event: ''' Sprite.register_event_type('on_animation_end')
{ "content_hash": "ac8d928ac65370eecd7658f0255938ff", "timestamp": "", "source": "github", "line_count": 534, "max_line_length": 89, "avg_line_length": 31.803370786516854, "alnum_prop": 0.5562621444974386, "repo_name": "Codlydodly/python-client", "id": "f160b1eff4b31d62ddbe83d3f9530a94e430cf1d", "size": "18699", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "venv/lib/python2.7/site-packages/pyglet/sprite.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "4631454" }, { "name": "Shell", "bytes": "3753" } ], "symlink_target": "" }
from functools import wraps from json import loads from datetime import datetime, timedelta from time import mktime try: from urllib import urlencode from urllib2 import Request, urlopen from urlparse import urlsplit, urlunsplit, parse_qsl # monkeypatch httpmessage from httplib import HTTPMessage def get_charset(self): try: data = filter(lambda s: 'Content-Type' in s, self.headers)[0] if 'charset' in data: cs = data[data.index(';') + 1:-2].split('=')[1].lower() return cs except IndexError: pass return 'utf-8' HTTPMessage.get_content_charset = get_charset except ImportError: # pragma: no cover from urllib.parse import urlencode, urlsplit, urlunsplit, parse_qsl from urllib.request import Request, urlopen class Client(object): """ OAuth 2.0 client object """ def __init__(self, auth_endpoint=None, token_endpoint=None, resource_endpoint=None, client_id=None, client_secret=None, token_transport=None): """ Instantiates a `Client` to authorize and authenticate a user :param auth_endpoint: The authorization endpoint as issued by the provider. This is where the user should be redirect to provider authorization for your application. :param token_endpoint: The endpoint against which a `code` will be exchanged for an access token. :param resource_endpoint: The base url to use when accessing resources via `Client.request`. :param client_id: The client ID as issued by the provider. :param client_secret: The client secret as issued by the provider. This must not be shared. """ assert token_transport is None or hasattr(token_transport, '__call__') self.auth_endpoint = auth_endpoint self.token_endpoint = token_endpoint self.resource_endpoint = resource_endpoint self.client_id = client_id self.client_secret = client_secret self.access_token = None self.token_transport = token_transport or transport_query self.token_expires = -1 self.refresh_token = None def auth_uri(self, redirect_uri=None, scope=None, scope_delim=None, state=None, **kwargs): """ Builds the auth URI for the authorization endpoint :param scope: (optional) The `scope` parameter to pass for authorization. The format should match that expected by the provider (i.e. Facebook expects comma-delimited, while Google expects space-delimited) :param state: (optional) The `state` parameter to pass for authorization. If the provider follows the OAuth 2.0 spec, this will be returned to your `redirect_uri` after authorization. Generally used for CSRF protection. :param **kwargs: Any other querystring parameters to be passed to the provider. """ kwargs.update({ 'client_id': self.client_id, 'response_type': 'code', }) if scope is not None: kwargs['scope'] = scope if state is not None: kwargs['state'] = state if redirect_uri is not None: kwargs['redirect_uri'] = redirect_uri return '%s?%s' % (self.auth_endpoint, urlencode(kwargs)) def request_token(self, parser=None, redirect_uri=None, **kwargs): """ Request an access token from the token endpoint. This is largely a helper method and expects the client code to understand what the server expects. Anything that's passed into ``**kwargs`` will be sent (``urlencode``d) to the endpoint. Client secret and client ID are automatically included, so are not required as kwargs. For example:: # if requesting access token from auth flow: { 'code': rval_from_auth, } # if refreshing access token: { 'refresh_token': stored_refresh_token, 'grant_type': 'refresh_token', } :param parser: Callback to deal with returned data. Not all providers use JSON. """ kwargs = kwargs and kwargs or {} parser = parser or _default_parser kwargs.update({ 'client_id': self.client_id, 'client_secret': self.client_secret, 'grant_type': 'grant_type' in kwargs and kwargs['grant_type'] or \ 'authorization_code' }) if redirect_uri is not None: kwargs.update({'redirect_uri': redirect_uri}) # TODO: maybe raise an exception here if status code isn't 200? msg = urlopen(self.token_endpoint, urlencode(kwargs).encode( 'utf-8')) data = parser(msg.read().decode(msg.info().get_content_charset() or 'utf-8')) for key in data: setattr(self, key, data[key]) # expires_in is RFC-compliant. if anything else is used by the # provider, token_expires must be set manually if hasattr(self, 'expires_in'): try: # python3 dosn't support long seconds = long(self.expires_in) except: seconds = int(self.expires_in) self.token_expires = mktime((datetime.utcnow() + timedelta( seconds=seconds)).timetuple()) def refresh(self): self.request_token(refresh_token=self.refresh_token, grant_type='refresh_token') def request(self, url, method=None, data=None, headers=None, parser=None): """ Request user data from the resource endpoint :param url: The path to the resource and querystring if required :param method: HTTP method. Defaults to ``GET`` unless data is not None in which case it defaults to ``POST`` :param data: Data to be POSTed to the resource endpoint :param parser: Parser callback to deal with the returned data. Defaults to ``json.loads`.` """ assert self.access_token is not None parser = parser or loads if not method: method = 'GET' if not data else 'POST' req = self.token_transport('{0}{1}'.format(self.resource_endpoint, url), self.access_token, data=data, method=method, headers=headers) resp = urlopen(req) data = resp.read() try: return parser(data.decode(resp.info().get_content_charset() or 'utf-8')) # try to decode it first using either the content charset, falling # back to utf-8 except UnicodeDecodeError: # if we've gotten a decoder error, the calling code better know how # to deal with it. some providers (i.e. stackexchange) like to gzip # their responses, so this allows the client code to handle it # directly. return parser(data) def transport_headers(url, access_token, data=None, method=None, headers=None): try: req = Request(url, data=data, method=method) except TypeError: req = Request(url, data=data) req.get_method = lambda: method add_headers = {'Authorization': 'Bearer {0}'.format(access_token)} if headers is not None: add_headers.update(headers) req.headers.update(add_headers) return req def transport_query(url, access_token, data=None, method=None, headers=None): parts = urlsplit(url) query = dict(parse_qsl(parts.query)) query.update({ 'access_token': access_token }) url = urlunsplit((parts.scheme, parts.netloc, parts.path, urlencode(query), parts.fragment)) try: req = Request(url, data=data, method=method) except TypeError: req = Request(url, data=data) req.get_method = lambda: method if headers is not None: req.headers.update(headers) return req def _default_parser(data): try: return loads(data) except ValueError: return dict(parse_qsl(data))
{ "content_hash": "a7e02dca69ad453806fcc885949657a0", "timestamp": "", "source": "github", "line_count": 224, "max_line_length": 79, "avg_line_length": 37.620535714285715, "alnum_prop": 0.5932122938174914, "repo_name": "demianbrecht/sanction", "id": "a4946d7f450cbe3be67e36392baaaa33e1f7d748", "size": "8449", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "sanction/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "35578" }, { "name": "Shell", "bytes": "5100" } ], "symlink_target": "" }
from app.auth.models import Role def run(): Role.insert_roles()
{ "content_hash": "c5d6adbb3e225175e5add6b3c24c35d4", "timestamp": "", "source": "github", "line_count": 5, "max_line_length": 32, "avg_line_length": 14, "alnum_prop": 0.6857142857142857, "repo_name": "teracyhq/flask-boilerplate", "id": "3362370e803cb2dcc2d43d4e0292e70207b1cad5", "size": "70", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "tests/integration/fixtures.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "HTML", "bytes": "298" }, { "name": "Makefile", "bytes": "596" }, { "name": "Mako", "bytes": "412" }, { "name": "Python", "bytes": "192155" }, { "name": "Shell", "bytes": "789" } ], "symlink_target": "" }
""" Ensure that we can use pathlib.Path objects in all relevant IO functions. """ import sys from pathlib import Path import numpy as np import scipy.io import scipy.io.wavfile from scipy._lib._tmpdirs import tempdir import scipy.sparse class TestPaths: data = np.arange(5).astype(np.int64) def test_savemat(self): with tempdir() as temp_dir: path = Path(temp_dir) / 'data.mat' scipy.io.savemat(path, {'data': self.data}) assert path.is_file() def test_loadmat(self): # Save data with string path, load with pathlib.Path with tempdir() as temp_dir: path = Path(temp_dir) / 'data.mat' scipy.io.savemat(str(path), {'data': self.data}) mat_contents = scipy.io.loadmat(path) assert (mat_contents['data'] == self.data).all() def test_whosmat(self): # Save data with string path, load with pathlib.Path with tempdir() as temp_dir: path = Path(temp_dir) / 'data.mat' scipy.io.savemat(str(path), {'data': self.data}) contents = scipy.io.whosmat(path) assert contents[0] == ('data', (1, 5), 'int64') def test_readsav(self): path = Path(__file__).parent / 'data/scalar_string.sav' scipy.io.readsav(path) def test_hb_read(self): # Save data with string path, load with pathlib.Path with tempdir() as temp_dir: data = scipy.sparse.csr_matrix(scipy.sparse.eye(3)) path = Path(temp_dir) / 'data.hb' scipy.io.harwell_boeing.hb_write(str(path), data) data_new = scipy.io.harwell_boeing.hb_read(path) assert (data_new != data).nnz == 0 def test_hb_write(self): with tempdir() as temp_dir: data = scipy.sparse.csr_matrix(scipy.sparse.eye(3)) path = Path(temp_dir) / 'data.hb' scipy.io.harwell_boeing.hb_write(path, data) assert path.is_file() def test_mmio_read(self): # Save data with string path, load with pathlib.Path with tempdir() as temp_dir: data = scipy.sparse.csr_matrix(scipy.sparse.eye(3)) path = Path(temp_dir) / 'data.mtx' scipy.io.mmwrite(str(path), data) data_new = scipy.io.mmread(path) assert (data_new != data).nnz == 0 def test_mmio_write(self): with tempdir() as temp_dir: data = scipy.sparse.csr_matrix(scipy.sparse.eye(3)) path = Path(temp_dir) / 'data.mtx' scipy.io.mmwrite(path, data) def test_netcdf_file(self): path = Path(__file__).parent / 'data/example_1.nc' scipy.io.netcdf.netcdf_file(path) def test_wavfile_read(self): path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav' scipy.io.wavfile.read(path) def test_wavfile_write(self): # Read from str path, write to Path input_path = Path(__file__).parent / 'data/test-8000Hz-le-2ch-1byteu.wav' rate, data = scipy.io.wavfile.read(str(input_path)) with tempdir() as temp_dir: output_path = Path(temp_dir) / input_path.name scipy.io.wavfile.write(output_path, rate, data)
{ "content_hash": "b3cd30890c08683494b3147861a28eb7", "timestamp": "", "source": "github", "line_count": 94, "max_line_length": 81, "avg_line_length": 34.47872340425532, "alnum_prop": 0.5871644554149954, "repo_name": "pizzathief/scipy", "id": "4ba6dc312dcc7b573669e662546a4f3b3c1f7214", "size": "3241", "binary": false, "copies": "9", "ref": "refs/heads/master", "path": "scipy/io/tests/test_paths.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "4395775" }, { "name": "C++", "bytes": "649767" }, { "name": "Dockerfile", "bytes": "1236" }, { "name": "Fortran", "bytes": "5367672" }, { "name": "MATLAB", "bytes": "4346" }, { "name": "Makefile", "bytes": "778" }, { "name": "Python", "bytes": "12449825" }, { "name": "Shell", "bytes": "538" }, { "name": "TeX", "bytes": "52106" } ], "symlink_target": "" }
import json import urllib BASE_URL = 'https://blockchain.info/' def query(call): return urllib.urlopen(BASE_URL + call).read() def block_count(): """Return blockchain.info's most recent block count. This is useful in comparison with the local blockcount, which may be lagging behind.""" return int(query('q/getblockcount')) def transaction(txid): s = query('tx-index/' + txid + '?format=json') return json.loads(s)
{ "content_hash": "a5f83381bc7df8ad2f6f7e970b813d41", "timestamp": "", "source": "github", "line_count": 17, "max_line_length": 62, "avg_line_length": 25.058823529411764, "alnum_prop": 0.7183098591549296, "repo_name": "dasmithii/Stone", "id": "a66f0be7db921909eab836ba9f321fb27f52c6f4", "size": "426", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "stone/info.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "7393" } ], "symlink_target": "" }
""" fMRIprep base processing workflows ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autofunction:: init_fmriprep_wf .. autofunction:: init_single_subject_wf """ import sys import os from collections import OrderedDict from copy import deepcopy from nipype import __version__ as nipype_ver from nipype.pipeline import engine as pe from nipype.interfaces import utility as niu from nilearn import __version__ as nilearn_ver from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.interfaces.bids import ( BIDSInfo, BIDSDataGrabber, BIDSFreeSurferDir ) from niworkflows.utils.bids import collect_data from niworkflows.utils.misc import fix_multi_T1w_source_name from smriprep.workflows.anatomical import init_anat_preproc_wf from ..interfaces import SubjectSummary, AboutSummary, DerivativesDataSink from ..__about__ import __version__ from .bold import init_func_preproc_wf def init_fmriprep_wf( anat_only, aroma_melodic_dim, bold2t1w_dof, cifti_output, debug, dummy_scans, echo_idx, err_on_aroma_warn, fmap_bspline, fmap_demean, force_syn, freesurfer, hires, ignore, layout, longitudinal, low_mem, medial_surface_nan, omp_nthreads, output_dir, output_spaces, regressors_all_comps, regressors_dvars_th, regressors_fd_th, run_uuid, skull_strip_fixed_seed, skull_strip_template, subject_list, t2s_coreg, task_id, use_aroma, use_bbr, use_syn, work_dir, ): """ This workflow organizes the execution of FMRIPREP, with a sub-workflow for each subject. If FreeSurfer's recon-all is to be run, a FreeSurfer derivatives folder is created and populated with any needed template subjects. .. workflow:: :graph2use: orig :simple_form: yes import os from collections import namedtuple, OrderedDict BIDSLayout = namedtuple('BIDSLayout', ['root']) from fmriprep.workflows.base import init_fmriprep_wf os.environ['FREESURFER_HOME'] = os.getcwd() wf = init_fmriprep_wf( anat_only=False, aroma_melodic_dim=-200, bold2t1w_dof=9, cifti_output=False, debug=False, dummy_scans=None, echo_idx=None, err_on_aroma_warn=False, fmap_bspline=False, fmap_demean=True, force_syn=True, freesurfer=True, hires=True, ignore=[], layout=BIDSLayout('.'), longitudinal=False, low_mem=False, medial_surface_nan=False, omp_nthreads=1, output_dir='.', output_spaces=OrderedDict([ ('MNI152Lin', {}), ('fsaverage', {'density': '10k'}), ('T1w', {}), ('fsnative', {})]), regressors_all_comps=False, regressors_dvars_th=1.5, regressors_fd_th=0.5, run_uuid='X', skull_strip_fixed_seed=False, skull_strip_template='OASIS30ANTs', subject_list=['fmripreptest'], t2s_coreg=False, task_id='', use_aroma=False, use_bbr=True, use_syn=True, work_dir='.', ) Parameters anat_only : bool Disable functional workflows bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration cifti_output : bool Generate bold CIFTI file in output spaces debug : bool Enable debugging outputs dummy_scans : int or None Number of volumes to consider as non steady state echo_idx : int or None Index of echo to preprocess in multiecho BOLD series, or ``None`` to preprocess all err_on_aroma_warn : bool Do not fail on ICA-AROMA errors fmap_bspline : bool **Experimental**: Fit B-Spline field using least-squares fmap_demean : bool Demean voxel-shift map during unwarp force_syn : bool **Temporary**: Always run SyN-based SDC freesurfer : bool Enable FreeSurfer surface reconstruction (may increase runtime) hires : bool Enable sub-millimeter preprocessing in FreeSurfer ignore : list Preprocessing steps to skip (may include "slicetiming", "fieldmaps") layout : BIDSLayout object BIDS dataset layout longitudinal : bool Treat multiple sessions as longitudinal (may increase runtime) See sub-workflows for specific differences low_mem : bool Write uncompressed .nii files in some cases to reduce memory usage medial_surface_nan : bool Replace medial wall values with NaNs on functional GIFTI files omp_nthreads : int Maximum number of threads an individual process may use output_dir : str Directory in which to save derivatives output_spaces : OrderedDict Ordered dictionary where keys are TemplateFlow ID strings (e.g., ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNI152NLin2009cAsym``, or ``fsLR``) strings designating nonstandard references (e.g., ``T1w`` or ``anat``, ``sbref``, ``run``, etc.), or paths pointing to custom templates organized in a TemplateFlow-like structure. Values of the dictionary aggregate modifiers (e.g., the value for the key ``MNI152Lin`` could be ``{'resolution': 2}`` if one wants the resampling to be done on the 2mm resolution version of the selected template). regressors_all_comps Return all CompCor component time series instead of the top fraction regressors_dvars_th Criterion for flagging DVARS outliers regressors_fd_th Criterion for flagging framewise displacement outliers run_uuid : str Unique identifier for execution instance skull_strip_template : str Name of ANTs skull-stripping template ('OASIS30ANTs' or 'NKI') skull_strip_fixed_seed : bool Do not use a random seed for skull-stripping - will ensure run-to-run replicability when used with --omp-nthreads 1 subject_list : list List of subject labels t2s_coreg : bool For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration task_id : str or None Task ID of BOLD series to preprocess, or ``None`` to preprocess all use_aroma : bool Perform ICA-AROMA on MNI-resampled functional series use_bbr : bool or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. use_syn : bool **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC). If fieldmaps are present and enabled, this is not run, by default. work_dir : str Directory in which to store workflow execution state and temporary files """ fmriprep_wf = Workflow(name='fmriprep_wf') fmriprep_wf.base_dir = work_dir if freesurfer: fsdir = pe.Node( BIDSFreeSurferDir( derivatives=output_dir, freesurfer_home=os.getenv('FREESURFER_HOME'), spaces=[s for s in output_spaces.keys() if s.startswith('fsaverage')] + [ 'fsnative'] * ('fsnative' in output_spaces)), name='fsdir_run_' + run_uuid.replace('-', '_'), run_without_submitting=True) reportlets_dir = os.path.join(work_dir, 'reportlets') for subject_id in subject_list: single_subject_wf = init_single_subject_wf( anat_only=anat_only, aroma_melodic_dim=aroma_melodic_dim, bold2t1w_dof=bold2t1w_dof, cifti_output=cifti_output, debug=debug, dummy_scans=dummy_scans, echo_idx=echo_idx, err_on_aroma_warn=err_on_aroma_warn, fmap_bspline=fmap_bspline, fmap_demean=fmap_demean, force_syn=force_syn, freesurfer=freesurfer, hires=hires, ignore=ignore, layout=layout, longitudinal=longitudinal, low_mem=low_mem, medial_surface_nan=medial_surface_nan, name="single_subject_" + subject_id + "_wf", omp_nthreads=omp_nthreads, output_dir=output_dir, output_spaces=output_spaces, regressors_all_comps=regressors_all_comps, regressors_dvars_th=regressors_dvars_th, regressors_fd_th=regressors_fd_th, reportlets_dir=reportlets_dir, skull_strip_fixed_seed=skull_strip_fixed_seed, skull_strip_template=skull_strip_template, subject_id=subject_id, t2s_coreg=t2s_coreg, task_id=task_id, use_aroma=use_aroma, use_bbr=use_bbr, use_syn=use_syn, ) single_subject_wf.config['execution']['crashdump_dir'] = ( os.path.join(output_dir, "fmriprep", "sub-" + subject_id, 'log', run_uuid) ) for node in single_subject_wf._get_all_nodes(): node.config = deepcopy(single_subject_wf.config) if freesurfer: fmriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf, 'inputnode.subjects_dir') else: fmriprep_wf.add_nodes([single_subject_wf]) return fmriprep_wf def init_single_subject_wf( anat_only, aroma_melodic_dim, bold2t1w_dof, cifti_output, debug, dummy_scans, echo_idx, err_on_aroma_warn, fmap_bspline, fmap_demean, force_syn, freesurfer, hires, ignore, layout, longitudinal, low_mem, medial_surface_nan, name, omp_nthreads, output_dir, output_spaces, reportlets_dir, regressors_all_comps, regressors_dvars_th, regressors_fd_th, skull_strip_fixed_seed, skull_strip_template, subject_id, t2s_coreg, task_id, use_aroma, use_bbr, use_syn, ): """ This workflow organizes the preprocessing pipeline for a single subject. It collects and reports information about the subject, and prepares sub-workflows to perform anatomical and functional preprocessing. Anatomical preprocessing is performed in a single workflow, regardless of the number of sessions. Functional preprocessing is performed using a separate workflow for each individual BOLD series. .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.base import init_single_subject_wf from collections import namedtuple, OrderedDict BIDSLayout = namedtuple('BIDSLayout', ['root']) wf = init_single_subject_wf( anat_only=False, aroma_melodic_dim=-200, bold2t1w_dof=9, cifti_output=False, debug=False, dummy_scans=None, echo_idx=None, err_on_aroma_warn=False, fmap_bspline=False, fmap_demean=True, force_syn=True, freesurfer=True, hires=True, ignore=[], layout=BIDSLayout('.'), longitudinal=False, low_mem=False, medial_surface_nan=False, name='single_subject_wf', omp_nthreads=1, output_dir='.', output_spaces=OrderedDict([ ('MNI152Lin', {}), ('fsaverage', {'density': '10k'}), ('T1w', {}), ('fsnative', {})]), reportlets_dir='.', regressors_all_comps=False, regressors_dvars_th=1.5, regressors_fd_th=0.5, skull_strip_fixed_seed=False, skull_strip_template='OASIS30ANTs', subject_id='test', t2s_coreg=False, task_id='', use_aroma=False, use_bbr=True, use_syn=True, ) Parameters anat_only : bool Disable functional workflows aroma_melodic_dim : int Maximum number of components identified by MELODIC within ICA-AROMA (default is -200, i.e., no limitation). bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration cifti_output : bool Generate bold CIFTI file in output spaces debug : bool Enable debugging outputs dummy_scans : int or None Number of volumes to consider as non steady state echo_idx : int or None Index of echo to preprocess in multiecho BOLD series, or ``None`` to preprocess all err_on_aroma_warn : bool Do not fail on ICA-AROMA errors fmap_bspline : bool **Experimental**: Fit B-Spline field using least-squares fmap_demean : bool Demean voxel-shift map during unwarp force_syn : bool **Temporary**: Always run SyN-based SDC freesurfer : bool Enable FreeSurfer surface reconstruction (may increase runtime) hires : bool Enable sub-millimeter preprocessing in FreeSurfer ignore : list Preprocessing steps to skip (may include "slicetiming", "fieldmaps") layout : BIDSLayout object BIDS dataset layout longitudinal : bool Treat multiple sessions as longitudinal (may increase runtime) See sub-workflows for specific differences low_mem : bool Write uncompressed .nii files in some cases to reduce memory usage medial_surface_nan : bool Replace medial wall values with NaNs on functional GIFTI files name : str Name of workflow omp_nthreads : int Maximum number of threads an individual process may use output_dir : str Directory in which to save derivatives output_spaces : OrderedDict Ordered dictionary where keys are TemplateFlow ID strings (e.g., ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNI152NLin2009cAsym``, or ``fsLR``) strings designating nonstandard references (e.g., ``T1w`` or ``anat``, ``sbref``, ``run``, etc.), or paths pointing to custom templates organized in a TemplateFlow-like structure. Values of the dictionary aggregate modifiers (e.g., the value for the key ``MNI152Lin`` could be ``{'resolution': 2}`` if one wants the resampling to be done on the 2mm resolution version of the selected template). reportlets_dir : str Directory in which to save reportlets regressors_all_comps Return all CompCor component time series instead of the top fraction regressors_fd_th Criterion for flagging framewise displacement outliers regressors_dvars_th Criterion for flagging DVARS outliers skull_strip_fixed_seed : bool Do not use a random seed for skull-stripping - will ensure run-to-run replicability when used with --omp-nthreads 1 skull_strip_template : str Name of ANTs skull-stripping template ('OASIS30ANTs' or 'NKI') subject_id : str List of subject labels t2s_coreg : bool For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration task_id : str or None Task ID of BOLD series to preprocess, or ``None`` to preprocess all use_aroma : bool Perform ICA-AROMA on MNI-resampled functional series use_bbr : bool or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. use_syn : bool **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC). If fieldmaps are present and enabled, this is not run, by default. Inputs subjects_dir FreeSurfer SUBJECTS_DIR """ from .bold.resampling import NONSTANDARD_REFERENCES if name in ('single_subject_wf', 'single_subject_fmripreptest_wf'): # for documentation purposes subject_data = { 't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'], 'bold': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz'] } else: subject_data = collect_data(layout, subject_id, task_id, echo_idx)[0] # Make sure we always go through these two checks if not anat_only and subject_data['bold'] == []: raise Exception("No BOLD images found for participant {} and task {}. " "All workflows require BOLD images.".format( subject_id, task_id if task_id else '<all>')) if not subject_data['t1w']: raise Exception("No T1w images found for participant {}. " "All workflows require T1w images.".format(subject_id)) workflow = Workflow(name=name) workflow.__desc__ = """ Results included in this manuscript come from preprocessing performed using *fMRIPrep* {fmriprep_ver} (@fmriprep1; @fmriprep2; RRID:SCR_016216), which is based on *Nipype* {nipype_ver} (@nipype1; @nipype2; RRID:SCR_002502). """.format(fmriprep_ver=__version__, nipype_ver=nipype_ver) workflow.__postdesc__ = """ Many internal operations of *fMRIPrep* use *Nilearn* {nilearn_ver} [@nilearn, RRID:SCR_001362], mostly within the functional processing workflow. For more details of the pipeline, see [the section corresponding to workflows in *fMRIPrep*'s documentation]\ (https://fmriprep.readthedocs.io/en/latest/workflows.html \ "FMRIPrep's documentation"). ### References """.format(nilearn_ver=nilearn_ver) # Filter out standard spaces to a separate dict std_spaces = OrderedDict([ (key, modifiers) for key, modifiers in output_spaces.items() if key not in NONSTANDARD_REFERENCES]) inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']), name='inputnode') bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data, anat_only=anat_only), name='bidssrc') bids_info = pe.Node(BIDSInfo( bids_dir=layout.root, bids_validate=False), name='bids_info') summary = pe.Node(SubjectSummary( std_spaces=list(std_spaces.keys()), nstd_spaces=list(set(NONSTANDARD_REFERENCES).intersection(output_spaces.keys()))), name='summary', run_without_submitting=True) about = pe.Node(AboutSummary(version=__version__, command=' '.join(sys.argv)), name='about', run_without_submitting=True) ds_report_summary = pe.Node( DerivativesDataSink(base_directory=reportlets_dir, desc='summary', keep_dtype=True), name='ds_report_summary', run_without_submitting=True) ds_report_about = pe.Node( DerivativesDataSink(base_directory=reportlets_dir, desc='about', keep_dtype=True), name='ds_report_about', run_without_submitting=True) # Preprocessing of T1w (includes registration to MNI) anat_preproc_wf = init_anat_preproc_wf( bids_root=layout.root, debug=debug, freesurfer=freesurfer, hires=hires, longitudinal=longitudinal, name="anat_preproc_wf", num_t1w=len(subject_data['t1w']), omp_nthreads=omp_nthreads, output_dir=output_dir, output_spaces=std_spaces, reportlets_dir=reportlets_dir, skull_strip_fixed_seed=skull_strip_fixed_seed, skull_strip_template=skull_strip_template, ) workflow.connect([ (inputnode, anat_preproc_wf, [('subjects_dir', 'inputnode.subjects_dir')]), (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')]), (inputnode, summary, [('subjects_dir', 'subjects_dir')]), (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w'), ('bold', 'bold')]), (bids_info, summary, [('subject', 'subject_id')]), (bids_info, anat_preproc_wf, [(('subject', _prefix), 'inputnode.subject_id')]), (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'), ('t2w', 'inputnode.t2w'), ('roi', 'inputnode.roi'), ('flair', 'inputnode.flair')]), (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name), 'source_file')]), (summary, ds_report_summary, [('out_report', 'in_file')]), (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name), 'source_file')]), (about, ds_report_about, [('out_report', 'in_file')]), ]) # Overwrite ``out_path_base`` of smriprep's DataSinks for node in workflow.list_node_names(): if node.split('.')[-1].startswith('ds_'): workflow.get_node(node).interface.out_path_base = 'fmriprep' if anat_only: return workflow for bold_file in subject_data['bold']: func_preproc_wf = init_func_preproc_wf( aroma_melodic_dim=aroma_melodic_dim, bold2t1w_dof=bold2t1w_dof, bold_file=bold_file, cifti_output=cifti_output, debug=debug, dummy_scans=dummy_scans, err_on_aroma_warn=err_on_aroma_warn, fmap_bspline=fmap_bspline, fmap_demean=fmap_demean, force_syn=force_syn, freesurfer=freesurfer, ignore=ignore, layout=layout, low_mem=low_mem, medial_surface_nan=medial_surface_nan, num_bold=len(subject_data['bold']), omp_nthreads=omp_nthreads, output_dir=output_dir, output_spaces=output_spaces, reportlets_dir=reportlets_dir, regressors_all_comps=regressors_all_comps, regressors_fd_th=regressors_fd_th, regressors_dvars_th=regressors_dvars_th, t2s_coreg=t2s_coreg, use_aroma=use_aroma, use_bbr=use_bbr, use_syn=use_syn, ) workflow.connect([ (anat_preproc_wf, func_preproc_wf, [(('outputnode.t1_preproc', _pop), 'inputnode.t1_preproc'), ('outputnode.t1_brain', 'inputnode.t1_brain'), ('outputnode.t1_mask', 'inputnode.t1_mask'), ('outputnode.t1_seg', 'inputnode.t1_seg'), ('outputnode.t1_aseg', 'inputnode.t1_aseg'), ('outputnode.t1_aparc', 'inputnode.t1_aparc'), ('outputnode.t1_tpms', 'inputnode.t1_tpms'), ('outputnode.template', 'inputnode.template'), ('outputnode.forward_transform', 'inputnode.anat2std_xfm'), ('outputnode.reverse_transform', 'inputnode.std2anat_xfm'), ('outputnode.joint_template', 'inputnode.joint_template'), ('outputnode.joint_forward_transform', 'inputnode.joint_anat2std_xfm'), ('outputnode.joint_reverse_transform', 'inputnode.joint_std2anat_xfm'), # Undefined if --no-freesurfer, but this is safe ('outputnode.subjects_dir', 'inputnode.subjects_dir'), ('outputnode.subject_id', 'inputnode.subject_id'), ('outputnode.t1_2_fsnative_forward_transform', 'inputnode.t1_2_fsnative_forward_transform'), ('outputnode.t1_2_fsnative_reverse_transform', 'inputnode.t1_2_fsnative_reverse_transform')]), ]) return workflow def _prefix(subid): if subid.startswith('sub-'): return subid return '-'.join(('sub', subid)) def _pop(inlist): if isinstance(inlist, (list, tuple)): return inlist[0] return inlist
{ "content_hash": "7279a449fd73253a28a2148918b7e9f2", "timestamp": "", "source": "github", "line_count": 642, "max_line_length": 99, "avg_line_length": 37.78971962616822, "alnum_prop": 0.5955236799802152, "repo_name": "oesteban/preprocessing-workflow", "id": "bd4b977dc641d39e594d80df833167d5d0719686", "size": "24421", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "fmriprep/workflows/base.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "146866" }, { "name": "Shell", "bytes": "559" } ], "symlink_target": "" }
"""NApp responsible for installing a DROP ipv6 flow on switch setup.""" from kytos.core import KytosEvent, KytosNApp, log from kytos.core.helpers import listen_to from pyof.v0x01.common.flow_match import Match from pyof.v0x01.controller2switch.flow_mod import FlowMod, FlowModCommand class Main(KytosNApp): """Main class of of_ipv6drop NApp.""" def setup(self): """Replace the 'init' method for the KytosApp subclass. The setup method is automatically called by the run method. Users shouldn't call this method directly. """ pass def execute(self): """Method to be runned once on app 'start' or in a loop. The execute method is called by the run method of KytosNApp class. Users shouldn't call this method directly. """ pass @listen_to('kytos/core.switch.new') def ipv6_drop(self, event): """Install a flow on the switch that drop all incoming ipv6 packets.""" switch = event.content['switch'] if switch.connection.protocol.version is not 0x01: return flow_mod = FlowMod() flow_mod.command = FlowModCommand.OFPFC_ADD flow_mod.match = Match() flow_mod.match.dl_type = 0x86dd # ipv6 event_out = KytosEvent(name=('kytos/of_ipv6drop.messages.out.' 'ofpt_flow_mod'), content={'destination': switch.connection, 'message': flow_mod}) log.info('Sending "IPv6 DROP" flow to switch %s', switch.id) self.controller.buffers.msg_out.put(event_out) def shutdown(self): """End of the application.""" pass
{ "content_hash": "6be4c2f6f816c258c510ad0c12ee013d", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 79, "avg_line_length": 35.854166666666664, "alnum_prop": 0.6130156885531668, "repo_name": "kytos/kyco-core-napps", "id": "4ffd3d24c14ff6a1db8eb85ba3f8aa366ff7cec7", "size": "1721", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "napps/kytos/of_ipv6drop/main.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "73608" } ], "symlink_target": "" }
"""Tests for epi_forecast_stat_mech.evaluation.run_on_data.""" import functools from absl.testing import absltest from epi_forecast_stat_mech import sir_sim from epi_forecast_stat_mech.evaluation import run_on_data import numpy as np def create_synthetic_dataset( seed=0, num_epidemics=50, num_important_cov=1, num_unimportant_cov=2, num_time_steps=100, ): """Creates synthetic data.""" np.random.seed(seed) # TODO(shoyer): use np.random.RandomState beta_fn = functools.partial(sir_sim.generate_betas_many_cov2, num_pred=num_important_cov, num_not_pred=num_unimportant_cov) trajectories = sir_sim.generate_simulations( beta_fn, num_epidemics, num_time_steps=num_time_steps) return trajectories class TestRunOnData(absltest.TestCase): """Tests for run_on_data.""" def test_TrainTestSplitTime(self): """Verify we can split data at a time point.""" first_test_day = 20 data = create_synthetic_dataset(num_epidemics=50, num_time_steps=100) train_data, test_data = run_on_data.train_test_split_time( data, first_test_day) self.assertCountEqual(['location', 'time'], test_data.dims) self.assertLen(test_data.time, 100 - first_test_day) self.assertLen(train_data.time, first_test_day) np.testing.assert_array_equal(data.location, train_data.location) np.testing.assert_array_equal(data.location, test_data.location) if __name__ == '__main__': absltest.main()
{ "content_hash": "cd27285f48a345207258cb660aa81b05", "timestamp": "", "source": "github", "line_count": 48, "max_line_length": 73, "avg_line_length": 31.6875, "alnum_prop": 0.6811308349769888, "repo_name": "HopkinsIDD/EpiForecastStatMech", "id": "19cc6ed23243a6ed87eff5dab491691137a50690", "size": "1540", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "epi_forecast_stat_mech/evaluation/run_on_data_test.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "365929" }, { "name": "R", "bytes": "68202" } ], "symlink_target": "" }
import argparse import tkinter as tk import math import numpy import PIL.ImageTk import PIL.Image from colormath.color_objects import sRGBColor, LabColor, HSVColor from colormath.color_conversions import convert_color from colormath.color_diff import delta_e_cie2000 IMAGE_SIZE = (600, 400) def cap_number(number, min_, max_): if number < min_: return min_ elif number > max_: return max_ else: return number def barkovsky_distance_3000(hsv1, hsv2): return ( abs(hsv1.hsv_h - hsv2.hsv_h) + abs(hsv1.hsv_s - hsv2.hsv_s) * 0.25 + abs(hsv1.hsv_v - hsv2.hsv_v) * 0.25 ) class RecolorWindow: def __init__(self, image_path): self.root = tk.Tk() self.image = PIL.Image.open(image_path) self._original_tk_image = None self._result_tk_image = None self._from_lab = None self._to_lab = None self.label_original = tk.Label(self.root) self.label_original.grid(row=0, column=0, columnspan=3) self.set_original_image(self.image) self.label_result = tk.Label(self.root) self.label_result.grid(row=0, column=3, columnspan=3) self.set_result_image(self.image) self.from_r_scale = tk.Scale( self.root, from_=0, to=255, orient=tk.HORIZONTAL, label='From red' ) self.from_r_scale.grid(row=1, column=0, sticky='nsew') self.from_g_scale = tk.Scale( self.root, from_=0, to=255, orient=tk.HORIZONTAL, label='From green' ) self.from_g_scale.grid(row=1, column=1, sticky='nsew') self.from_b_scale = tk.Scale( self.root, from_=0, to=255, orient=tk.HORIZONTAL, label='From blue' ) self.from_b_scale.grid(row=1, column=2, sticky='nsew') self.to_r_scale = tk.Scale( self.root, from_=0, to=255, orient=tk.HORIZONTAL, label='To red' ) self.to_r_scale.grid(row=1, column=3, sticky='nsew') self.to_g_scale = tk.Scale( self.root, from_=0, to=255, orient=tk.HORIZONTAL, label='To green' ) self.to_g_scale.grid(row=1, column=4, sticky='nsew') self.to_b_scale = tk.Scale( self.root, from_=0, to=255, orient=tk.HORIZONTAL, label='To blue' ) self.to_b_scale.grid(row=1, column=5, sticky='nsew') self.range_scale = tk.Scale( self.root, from_=0, to=255, orient=tk.HORIZONTAL, label='Range' ) self.range_scale.grid(row=2, column=0, sticky='nsew') self.button = tk.Button(self.root, text="Recolor", command=self.recolor) self.button.grid(row=3, column=0, sticky='nsew') def set_original_image(self, image): scaled_image = image.copy() scaled_image.thumbnail(IMAGE_SIZE) self.image = scaled_image self._original_tk_image = PIL.ImageTk.PhotoImage(scaled_image) self.label_original.config(image=self._original_tk_image) def set_result_image(self, image): scaled_image = image.copy() scaled_image.thumbnail(IMAGE_SIZE) self._result_tk_image = PIL.ImageTk.PhotoImage(scaled_image) self.label_result.config(image=self._result_tk_image) @property def from_color(self): red = self.from_r_scale.get() green = self.from_g_scale.get() blue = self.from_b_scale.get() return (red, green, blue) @property def to_color(self): red = self.to_r_scale.get() green = self.to_g_scale.get() blue = self.to_b_scale.get() return (red, green, blue) @property def range(self): return self.range_scale.get() def recolor(self): from_lab = convert_color(sRGBColor(*self.from_color), LabColor) from_hsv = convert_color(sRGBColor(*self.from_color), HSVColor) self._to_lab = convert_color(sRGBColor(*self.to_color), LabColor) range_ = self.range from_r, from_g, from_b = self.from_color to_r, to_g, to_b = self.to_color width, height = self.image.width, self.image.height pixel_count = width * height source_pixels = numpy.asarray(self.image) result_image = PIL.Image.new('RGB', (width, height), "black") target_pixels = result_image.load() pixels_done = 0 for i in range(width): for j in range(height): r, g, b = source_pixels[j, i] hsv_pixel = convert_color(sRGBColor(r, g, b), HSVColor) distance = barkovsky_distance_3000(hsv_pixel, from_hsv) #distance = delta_e_cie2000(lab_pixel, from_lab) # distance = math.sqrt( # (r - from_r) ** 2 + # (g - from_g) ** 2 + # (b - from_b) ** 2 # ) pixels_done += 1 if pixels_done % 10000 == 0: print('%d%%' % (pixels_done / pixel_count * 100)) if distance > range_: target_pixels[i, j] = (r, g, b) continue r_diff = r - from_r g_diff = g - from_g b_diff = b - from_b r_new = cap_number(to_r + r_diff, 0, 255) g_new = cap_number(to_g + g_diff, 0, 255) b_new = cap_number(to_b + b_diff, 0, 255) target_pixels[i, j] = ( int(r_new), int(g_new), int(b_new) ) self.set_result_image(result_image) def main(): parser = argparse.ArgumentParser() parser.add_argument('image_path', type=str, help='Path to the image file') args = parser.parse_args() window = RecolorWindow(args.image_path) window.root.mainloop() if __name__ == '__main__': main()
{ "content_hash": "05c10921b6a958bb5054d39fc31a4360", "timestamp": "", "source": "github", "line_count": 193, "max_line_length": 80, "avg_line_length": 30.590673575129532, "alnum_prop": 0.5523373983739838, "repo_name": "CG2016/barkovsky_3", "id": "db68b1236dd99e831dee8cbfcf4c9ca5ad9e0086", "size": "5926", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "lab2/recolor.py", "mode": "33261", "license": "mit", "language": [ { "name": "CSS", "bytes": "810" }, { "name": "HTML", "bytes": "3707" }, { "name": "JavaScript", "bytes": "66031" }, { "name": "Python", "bytes": "45966" } ], "symlink_target": "" }
"""This example gets the current network that you can make requests against.""" __author__ = ('Nicholas Chen', 'Joseph DiLallo') # Import appropriate modules from the client library. from googleads import dfp def main(client): # Initialize appropriate service. network_service = client.GetService('NetworkService', version='v201505') # Get the current network. network = network_service.getCurrentNetwork() # Display results. print ('Current network has network code \'%s\' and display name \'%s\'.' % (network['networkCode'], network['displayName'])) if __name__ == '__main__': # Initialize client object. dfp_client = dfp.DfpClient.LoadFromStorage() main(dfp_client)
{ "content_hash": "9314a1057254334345a0b08a81ce8de1", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 79, "avg_line_length": 29.875, "alnum_prop": 0.6903765690376569, "repo_name": "cctaylor/googleads-python-lib", "id": "52138ce9354106078805c1235622594b43f69265", "size": "1335", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "examples/dfp/v201505/network_service/get_current_network.py", "mode": "33261", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "492" }, { "name": "HTML", "bytes": "8336" }, { "name": "JavaScript", "bytes": "504" }, { "name": "Python", "bytes": "2774292" } ], "symlink_target": "" }
"""Test Home Assistant yaml loader.""" import io import os import unittest from unittest.mock import patch from homeassistant.exceptions import HomeAssistantError from homeassistant.util import yaml from homeassistant.config import YAML_CONFIG_FILE, load_yaml_config_file from tests.common import get_test_config_dir, patch_yaml_files class TestYaml(unittest.TestCase): """Test util.yaml loader.""" # pylint: disable=no-self-use, invalid-name def test_simple_list(self): """Test simple list.""" conf = "config:\n - simple\n - list" with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert doc['config'] == ["simple", "list"] def test_simple_dict(self): """Test simple dict.""" conf = "key: value" with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert doc['key'] == 'value' def test_duplicate_key(self): """Test duplicate dict keys.""" files = {YAML_CONFIG_FILE: 'key: thing1\nkey: thing2'} with self.assertRaises(HomeAssistantError): with patch_yaml_files(files): load_yaml_config_file(YAML_CONFIG_FILE) def test_unhashable_key(self): """Test an unhasable key.""" files = {YAML_CONFIG_FILE: 'message:\n {{ states.state }}'} with self.assertRaises(HomeAssistantError), \ patch_yaml_files(files): load_yaml_config_file(YAML_CONFIG_FILE) def test_no_key(self): """Test item without an key.""" files = {YAML_CONFIG_FILE: 'a: a\nnokeyhere'} with self.assertRaises(HomeAssistantError), \ patch_yaml_files(files): yaml.load_yaml(YAML_CONFIG_FILE) def test_enviroment_variable(self): """Test config file with enviroment variable.""" os.environ["PASSWORD"] = "secret_password" conf = "password: !env_var PASSWORD" with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert doc['password'] == "secret_password" del os.environ["PASSWORD"] def test_invalid_enviroment_variable(self): """Test config file with no enviroment variable sat.""" conf = "password: !env_var PASSWORD" with self.assertRaises(HomeAssistantError): with io.StringIO(conf) as file: yaml.yaml.safe_load(file) def test_include_yaml(self): """Test include yaml.""" with patch_yaml_files({'test.yaml': 'value'}): conf = 'key: !include test.yaml' with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert doc["key"] == "value" with patch_yaml_files({'test.yaml': None}): conf = 'key: !include test.yaml' with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert doc["key"] == {} @patch('homeassistant.util.yaml.os.walk') def test_include_dir_list(self, mock_walk): """Test include dir list yaml.""" mock_walk.return_value = [ ['/tmp', [], ['one.yaml', 'two.yaml']], ] with patch_yaml_files({ '/tmp/one.yaml': 'one', '/tmp/two.yaml': 'two', }): conf = "key: !include_dir_list /tmp" with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert sorted(doc["key"]) == sorted(["one", "two"]) @patch('homeassistant.util.yaml.os.walk') def test_include_dir_list_recursive(self, mock_walk): """Test include dir recursive list yaml.""" mock_walk.return_value = [ ['/tmp', ['tmp2', '.ignore', 'ignore'], ['zero.yaml']], ['/tmp/tmp2', [], ['one.yaml', 'two.yaml']], ['/tmp/ignore', [], ['.ignore.yaml']] ] with patch_yaml_files({ '/tmp/zero.yaml': 'zero', '/tmp/tmp2/one.yaml': 'one', '/tmp/tmp2/two.yaml': 'two' }): conf = "key: !include_dir_list /tmp" with io.StringIO(conf) as file: assert '.ignore' in mock_walk.return_value[0][1], \ "Expecting .ignore in here" doc = yaml.yaml.safe_load(file) assert 'tmp2' in mock_walk.return_value[0][1] assert '.ignore' not in mock_walk.return_value[0][1] assert sorted(doc["key"]) == sorted(["zero", "one", "two"]) @patch('homeassistant.util.yaml.os.walk') def test_include_dir_named(self, mock_walk): """Test include dir named yaml.""" mock_walk.return_value = [ ['/tmp', [], ['first.yaml', 'second.yaml']] ] with patch_yaml_files({ '/tmp/first.yaml': 'one', '/tmp/second.yaml': 'two' }): conf = "key: !include_dir_named /tmp" correct = {'first': 'one', 'second': 'two'} with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert doc["key"] == correct @patch('homeassistant.util.yaml.os.walk') def test_include_dir_named_recursive(self, mock_walk): """Test include dir named yaml.""" mock_walk.return_value = [ ['/tmp', ['tmp2', '.ignore', 'ignore'], ['first.yaml']], ['/tmp/tmp2', [], ['second.yaml', 'third.yaml']], ['/tmp/ignore', [], ['.ignore.yaml']] ] with patch_yaml_files({ '/tmp/first.yaml': 'one', '/tmp/tmp2/second.yaml': 'two', '/tmp/tmp2/third.yaml': 'three' }): conf = "key: !include_dir_named /tmp" correct = {'first': 'one', 'second': 'two', 'third': 'three'} with io.StringIO(conf) as file: assert '.ignore' in mock_walk.return_value[0][1], \ "Expecting .ignore in here" doc = yaml.yaml.safe_load(file) assert 'tmp2' in mock_walk.return_value[0][1] assert '.ignore' not in mock_walk.return_value[0][1] assert doc["key"] == correct @patch('homeassistant.util.yaml.os.walk') def test_include_dir_merge_list(self, mock_walk): """Test include dir merge list yaml.""" mock_walk.return_value = [['/tmp', [], ['first.yaml', 'second.yaml']]] with patch_yaml_files({ '/tmp/first.yaml': '- one', '/tmp/second.yaml': '- two\n- three' }): conf = "key: !include_dir_merge_list /tmp" with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert sorted(doc["key"]) == sorted(["one", "two", "three"]) @patch('homeassistant.util.yaml.os.walk') def test_include_dir_merge_list_recursive(self, mock_walk): """Test include dir merge list yaml.""" mock_walk.return_value = [ ['/tmp', ['tmp2', '.ignore', 'ignore'], ['first.yaml']], ['/tmp/tmp2', [], ['second.yaml', 'third.yaml']], ['/tmp/ignore', [], ['.ignore.yaml']] ] with patch_yaml_files({ '/tmp/first.yaml': '- one', '/tmp/tmp2/second.yaml': '- two', '/tmp/tmp2/third.yaml': '- three\n- four' }): conf = "key: !include_dir_merge_list /tmp" with io.StringIO(conf) as file: assert '.ignore' in mock_walk.return_value[0][1], \ "Expecting .ignore in here" doc = yaml.yaml.safe_load(file) assert 'tmp2' in mock_walk.return_value[0][1] assert '.ignore' not in mock_walk.return_value[0][1] assert sorted(doc["key"]) == sorted(["one", "two", "three", "four"]) @patch('homeassistant.util.yaml.os.walk') def test_include_dir_merge_named(self, mock_walk): """Test include dir merge named yaml.""" mock_walk.return_value = [['/tmp', [], ['first.yaml', 'second.yaml']]] files = { '/tmp/first.yaml': 'key1: one', '/tmp/second.yaml': 'key2: two\nkey3: three', } with patch_yaml_files(files): conf = "key: !include_dir_merge_named /tmp" with io.StringIO(conf) as file: doc = yaml.yaml.safe_load(file) assert doc["key"] == { "key1": "one", "key2": "two", "key3": "three" } @patch('homeassistant.util.yaml.os.walk') def test_include_dir_merge_named_recursive(self, mock_walk): """Test include dir merge named yaml.""" mock_walk.return_value = [ ['/tmp', ['tmp2', '.ignore', 'ignore'], ['first.yaml']], ['/tmp/tmp2', [], ['second.yaml', 'third.yaml']], ['/tmp/ignore', [], ['.ignore.yaml']] ] with patch_yaml_files({ '/tmp/first.yaml': 'key1: one', '/tmp/tmp2/second.yaml': 'key2: two', '/tmp/tmp2/third.yaml': 'key3: three\nkey4: four' }): conf = "key: !include_dir_merge_named /tmp" with io.StringIO(conf) as file: assert '.ignore' in mock_walk.return_value[0][1], \ "Expecting .ignore in here" doc = yaml.yaml.safe_load(file) assert 'tmp2' in mock_walk.return_value[0][1] assert '.ignore' not in mock_walk.return_value[0][1] assert doc["key"] == { "key1": "one", "key2": "two", "key3": "three", "key4": "four" } @patch('homeassistant.util.yaml.open', create=True) def test_load_yaml_encoding_error(self, mock_open): """Test raising a UnicodeDecodeError.""" mock_open.side_effect = UnicodeDecodeError('', b'', 1, 0, '') self.assertRaises(HomeAssistantError, yaml.load_yaml, 'test') def test_dump(self): """The that the dump method returns empty None values.""" assert yaml.dump({'a': None, 'b': 'b'}) == 'a:\nb: b\n' FILES = {} def load_yaml(fname, string): """Write a string to file and return the parsed yaml.""" FILES[fname] = string with patch_yaml_files(FILES): return load_yaml_config_file(fname) class FakeKeyring(): """Fake a keyring class.""" def __init__(self, secrets_dict): """Store keyring dictionary.""" self._secrets = secrets_dict # pylint: disable=protected-access def get_password(self, domain, name): """Retrieve password.""" assert domain == yaml._SECRET_NAMESPACE return self._secrets.get(name) class TestSecrets(unittest.TestCase): """Test the secrets parameter in the yaml utility.""" # pylint: disable=protected-access,invalid-name def setUp(self): """Create & load secrets file.""" config_dir = get_test_config_dir() yaml.clear_secret_cache() self._yaml_path = os.path.join(config_dir, YAML_CONFIG_FILE) self._secret_path = os.path.join(config_dir, yaml._SECRET_YAML) self._sub_folder_path = os.path.join(config_dir, 'subFolder') self._unrelated_path = os.path.join(config_dir, 'unrelated') load_yaml(self._secret_path, 'http_pw: pwhttp\n' 'comp1_un: un1\n' 'comp1_pw: pw1\n' 'stale_pw: not_used\n' 'logger: debug\n') self._yaml = load_yaml(self._yaml_path, 'http:\n' ' api_password: !secret http_pw\n' 'component:\n' ' username: !secret comp1_un\n' ' password: !secret comp1_pw\n' '') def tearDown(self): """Clean up secrets.""" yaml.clear_secret_cache() FILES.clear() def test_secrets_from_yaml(self): """Did secrets load ok.""" expected = {'api_password': 'pwhttp'} self.assertEqual(expected, self._yaml['http']) expected = { 'username': 'un1', 'password': 'pw1'} self.assertEqual(expected, self._yaml['component']) def test_secrets_from_parent_folder(self): """Test loading secrets from parent foler.""" expected = {'api_password': 'pwhttp'} self._yaml = load_yaml(os.path.join(self._sub_folder_path, 'sub.yaml'), 'http:\n' ' api_password: !secret http_pw\n' 'component:\n' ' username: !secret comp1_un\n' ' password: !secret comp1_pw\n' '') self.assertEqual(expected, self._yaml['http']) def test_secret_overrides_parent(self): """Test loading current directory secret overrides the parent.""" expected = {'api_password': 'override'} load_yaml(os.path.join(self._sub_folder_path, yaml._SECRET_YAML), 'http_pw: override') self._yaml = load_yaml(os.path.join(self._sub_folder_path, 'sub.yaml'), 'http:\n' ' api_password: !secret http_pw\n' 'component:\n' ' username: !secret comp1_un\n' ' password: !secret comp1_pw\n' '') self.assertEqual(expected, self._yaml['http']) def test_secrets_from_unrelated_fails(self): """Test loading secrets from unrelated folder fails.""" load_yaml(os.path.join(self._unrelated_path, yaml._SECRET_YAML), 'test: failure') with self.assertRaises(HomeAssistantError): load_yaml(os.path.join(self._sub_folder_path, 'sub.yaml'), 'http:\n' ' api_password: !secret test') def test_secrets_keyring(self): """Test keyring fallback & get_password.""" yaml.keyring = None # Ensure its not there yaml_str = 'http:\n api_password: !secret http_pw_keyring' with self.assertRaises(yaml.HomeAssistantError): load_yaml(self._yaml_path, yaml_str) yaml.keyring = FakeKeyring({'http_pw_keyring': 'yeah'}) _yaml = load_yaml(self._yaml_path, yaml_str) self.assertEqual({'http': {'api_password': 'yeah'}}, _yaml) def test_secrets_logger_removed(self): """Ensure logger: debug was removed.""" with self.assertRaises(yaml.HomeAssistantError): load_yaml(self._yaml_path, 'api_password: !secret logger') @patch('homeassistant.util.yaml._LOGGER.error') def test_bad_logger_value(self, mock_error): """Ensure logger: debug was removed.""" yaml.clear_secret_cache() load_yaml(self._secret_path, 'logger: info\npw: abc') load_yaml(self._yaml_path, 'api_password: !secret pw') assert mock_error.call_count == 1, \ "Expected an error about logger: value"
{ "content_hash": "ed009e2af15321a5954fa989c64cf7d0", "timestamp": "", "source": "github", "line_count": 387, "max_line_length": 79, "avg_line_length": 39.48837209302326, "alnum_prop": 0.5240151812589975, "repo_name": "eagleamon/home-assistant", "id": "79fd994ce86c221b216d525c00657d123e74fdf9", "size": "15282", "binary": false, "copies": "12", "ref": "refs/heads/dev", "path": "tests/util/test_yaml.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "1510047" }, { "name": "Python", "bytes": "5066084" }, { "name": "Ruby", "bytes": "379" }, { "name": "Shell", "bytes": "14079" } ], "symlink_target": "" }
"""MPEG audio stream information and tags.""" import os import struct from ._compat import endswith from mutagen import StreamInfo from mutagen._util import MutagenError from mutagen.id3 import ID3FileType, BitPaddedInt, delete __all__ = ["MP3", "Open", "delete", "MP3"] class error(RuntimeError, MutagenError): pass class HeaderNotFoundError(error, IOError): pass class InvalidMPEGHeader(error, IOError): pass # Mode values. STEREO, JOINTSTEREO, DUALCHANNEL, MONO = range(4) class MPEGInfo(StreamInfo): """MPEG audio stream information Parse information about an MPEG audio file. This also reads the Xing VBR header format. This code was implemented based on the format documentation at http://mpgedit.org/mpgedit/mpeg_format/mpeghdr.htm. Useful attributes: * length -- audio length, in seconds * bitrate -- audio bitrate, in bits per second * sketchy -- if true, the file may not be valid MPEG audio Useless attributes: * version -- MPEG version (1, 2, 2.5) * layer -- 1, 2, or 3 * mode -- One of STEREO, JOINTSTEREO, DUALCHANNEL, or MONO (0-3) * protected -- whether or not the file is "protected" * padding -- whether or not audio frames are padded * sample_rate -- audio sample rate, in Hz """ # Map (version, layer) tuples to bitrates. __BITRATE = { (1, 1): [0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448], (1, 2): [0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384], (1, 3): [0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320], (2, 1): [0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256], (2, 2): [0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160], } __BITRATE[(2, 3)] = __BITRATE[(2, 2)] for i in range(1, 4): __BITRATE[(2.5, i)] = __BITRATE[(2, i)] # Map version to sample rates. __RATES = { 1: [44100, 48000, 32000], 2: [22050, 24000, 16000], 2.5: [11025, 12000, 8000] } sketchy = False def __init__(self, fileobj, offset=None): """Parse MPEG stream information from a file-like object. If an offset argument is given, it is used to start looking for stream information and Xing headers; otherwise, ID3v2 tags will be skipped automatically. A correct offset can make loading files significantly faster. """ try: size = os.path.getsize(fileobj.name) except (IOError, OSError, AttributeError): fileobj.seek(0, 2) size = fileobj.tell() # If we don't get an offset, try to skip an ID3v2 tag. if offset is None: fileobj.seek(0, 0) idata = fileobj.read(10) try: id3, insize = struct.unpack('>3sxxx4s', idata) except struct.error: id3, insize = b'', 0 insize = BitPaddedInt(insize) if id3 == b'ID3' and insize > 0: offset = insize + 10 else: offset = 0 # Try to find two valid headers (meaning, very likely MPEG data) # at the given offset, 30% through the file, 60% through the file, # and 90% through the file. for i in [offset, 0.3 * size, 0.6 * size, 0.9 * size]: try: self.__try(fileobj, int(i), size - offset) except error: pass else: break # If we can't find any two consecutive frames, try to find just # one frame back at the original offset given. else: self.__try(fileobj, offset, size - offset, False) self.sketchy = True def __try(self, fileobj, offset, real_size, check_second=True): # This is going to be one really long function; bear with it, # because there's not really a sane point to cut it up. fileobj.seek(offset, 0) # We "know" we have an MPEG file if we find two frames that look like # valid MPEG data. If we can't find them in 32k of reads, something # is horribly wrong (the longest frame can only be about 4k). This # is assuming the offset didn't lie. data = fileobj.read(32768) frame_1 = data.find(b"\xff") while 0 <= frame_1 <= (len(data) - 4): frame_data = struct.unpack(">I", data[frame_1:frame_1 + 4])[0] if ((frame_data >> 16) & 0xE0) != 0xE0: frame_1 = data.find(b"\xff", frame_1 + 2) else: version = (frame_data >> 19) & 0x3 layer = (frame_data >> 17) & 0x3 protection = (frame_data >> 16) & 0x1 bitrate = (frame_data >> 12) & 0xF sample_rate = (frame_data >> 10) & 0x3 padding = (frame_data >> 9) & 0x1 # private = (frame_data >> 8) & 0x1 self.mode = (frame_data >> 6) & 0x3 # mode_extension = (frame_data >> 4) & 0x3 # copyright = (frame_data >> 3) & 0x1 # original = (frame_data >> 2) & 0x1 # emphasis = (frame_data >> 0) & 0x3 if (version == 1 or layer == 0 or sample_rate == 0x3 or bitrate == 0 or bitrate == 0xF): frame_1 = data.find(b"\xff", frame_1 + 2) else: break else: raise HeaderNotFoundError("can't sync to an MPEG frame") # There is a serious problem here, which is that many flags # in an MPEG header are backwards. self.version = [2.5, None, 2, 1][version] self.layer = 4 - layer self.protected = not protection self.padding = bool(padding) self.bitrate = self.__BITRATE[(self.version, self.layer)][bitrate] self.bitrate *= 1000 self.sample_rate = self.__RATES[self.version][sample_rate] if self.layer == 1: frame_length = ( (12 * self.bitrate // self.sample_rate) + padding) * 4 frame_size = 384 elif self.version >= 2 and self.layer == 3: frame_length = (72 * self.bitrate // self.sample_rate) + padding frame_size = 576 else: frame_length = (144 * self.bitrate // self.sample_rate) + padding frame_size = 1152 if check_second: possible = int(frame_1 + frame_length) if possible > len(data) + 4: raise HeaderNotFoundError("can't sync to second MPEG frame") try: frame_data = struct.unpack( ">H", data[possible:possible + 2])[0] except struct.error: raise HeaderNotFoundError("can't sync to second MPEG frame") if (frame_data & 0xFFE0) != 0xFFE0: raise HeaderNotFoundError("can't sync to second MPEG frame") self.length = 8 * real_size / float(self.bitrate) # Try to find/parse the Xing header, which trumps the above length # and bitrate calculation. fileobj.seek(offset, 0) data = fileobj.read(32768) try: xing = data[:-4].index(b"Xing") except ValueError: # Try to find/parse the VBRI header, which trumps the above length # calculation. try: vbri = data[:-24].index(b"VBRI") except ValueError: pass else: # If a VBRI header was found, this is definitely MPEG audio. self.sketchy = False vbri_version = struct.unpack('>H', data[vbri + 4:vbri + 6])[0] if vbri_version == 1: frame_count = struct.unpack( '>I', data[vbri + 14:vbri + 18])[0] samples = float(frame_size * frame_count) self.length = (samples / self.sample_rate) or self.length else: # If a Xing header was found, this is definitely MPEG audio. self.sketchy = False flags = struct.unpack('>I', data[xing + 4:xing + 8])[0] if flags & 0x1: frame_count = struct.unpack('>I', data[xing + 8:xing + 12])[0] samples = float(frame_size * frame_count) self.length = (samples / self.sample_rate) or self.length if flags & 0x2: bitrate_data = struct.unpack( '>I', data[xing + 12:xing + 16])[0] self.bitrate = int((bitrate_data * 8) // self.length) def pprint(self): s = "MPEG %s layer %d, %d bps, %s Hz, %.2f seconds" % ( self.version, self.layer, self.bitrate, self.sample_rate, self.length) if self.sketchy: s += " (sketchy)" return s class MP3(ID3FileType): """An MPEG audio (usually MPEG-1 Layer 3) file. :ivar info: :class:`MPEGInfo` :ivar tags: :class:`ID3 <mutagen.id3.ID3>` """ _Info = MPEGInfo _mimes = ["audio/mpeg", "audio/mpg", "audio/x-mpeg"] @property def mime(self): l = self.info.layer return ["audio/mp%d" % l, "audio/x-mp%d" % l] + super(MP3, self).mime @staticmethod def score(filename, fileobj, header_data): filename = filename.lower() return (header_data.startswith(b"ID3") * 2 + endswith(filename, b".mp3") + endswith(filename, b".mp2") + endswith(filename, b".mpg") + endswith(filename, b".mpeg")) Open = MP3 class EasyMP3(MP3): """Like MP3, but uses EasyID3 for tags. :ivar info: :class:`MPEGInfo` :ivar tags: :class:`EasyID3 <mutagen.easyid3.EasyID3>` """ from mutagen.easyid3 import EasyID3 as ID3 ID3 = ID3
{ "content_hash": "37cd5147958e0829ecd2389698516a4d", "timestamp": "", "source": "github", "line_count": 281, "max_line_length": 78, "avg_line_length": 35.405693950177934, "alnum_prop": 0.5358327470097497, "repo_name": "jwayneroth/mpd-touch", "id": "afbfd9535ee1b76dc00d02fbd6edbdaf0c840c73", "size": "10200", "binary": false, "copies": "7", "ref": "refs/heads/master", "path": "mutagen/mp3.py", "mode": "33261", "license": "mit", "language": [ { "name": "Python", "bytes": "870833" }, { "name": "Shell", "bytes": "4599" } ], "symlink_target": "" }
import time from utils.cu_io import IO from utils.cu_config import config from managers.products import Products from managers.listings import Listings from managers.rates import Rates from collections import OrderedDict __author__ = 'Stone' # Module 'match' -- common domain service """service for common records linkage operation importing this match class directly, you can trigger the matching process """ def timeit(method): def timed(*args, **kw): ts = time.time() result = method(*args, **kw) te = time.time() message = config()['method_messages'].get(method.__name__) if message is not None: print (message % (te - ts)) else: print ('%r %2.2f sec' % (method.__name__, te - ts)) return result return timed # class as a service of the matching process class Match: def __init__(self, conf=None): """ Initialize config from a cu_config :param conf: load a conf or used the default :return: """ if conf is None: conf = config() if conf is None: raise ValueError("config not found") self.config = conf self.io = IO() self.pm_dict = None self.count = 0 @timeit def initial(self): """ initialize data from a JSON files and prepossess the data :return: products and listings instances to be operated on """ products = Products.from_json(self.config['input_files']['products'], self.config['data_path']).to_lower_case() rates = Rates.from_json(products.get_max_year(), self.config['input_files']['rates'], self.config['data_path']) listings = Listings.from_json(self.config['input_files']['listings'], self.config['data_path']).convert_to_usd_price(rates).add_lower_case() self.cache_pm_dict(listings, products) return products, listings def cache_pm_dict(self, listings, products=None): """ load cache of list of index by pm if spot the cache file or create new dict and cache it :param listings: listing data to be divided :param products: products to provide valid manufacturers :return: """ if self.pm_dict is None: self.pm_dict = {} count = 0 pm_dict = self.io.load_cache(self.config['input_files']['cache'], self.config['data_path']) if products is not None and pm_dict is None: self.pm_dict = listings.get_pm_dict(products.get_manufacturers(), self.config["pm_mapping"]) pm_dict = {} for k, v in self.pm_dict.items(): pm_dict[k] = v.index_to_list() count += v.size() self.io.write_to_json(pm_dict, self.config['input_files']['cache'], self.config['data_path']) else: for k, v in pm_dict.items(): self.pm_dict[k] = listings.find_by_index_set(v) count += self.pm_dict[k].size() self.count = count @timeit def matching(self, products, listings): """ associates a Product with a list of matching Listing objects more concrete explanation please check the docstrings of filtered_by_pm , filtered_by_model and filtered_by_price and methods in cu_data :param products: products to be associated :param listings: all listings found in the file :return: the python dict object of the associated listings and count of the valid records """ count, res = 0, [] for i, product in products.iter_rows(): # find current product manufacturer(pm), model, product_name(pn), family(only when presents in pn) pm, model, pn = product.manufacturer, product.model, product.product_name family = None if (type(product.family) is not unicode or product.family not in pn.lower()) \ else product.family # if pm_listings of this product manufacturer was cached, fetch it. pm_listings = self.pm_dict.get(pm) # get matched items pn_listings = pm_listings.filtered_by_pm(pm).filtered_by_model( model).filtered_by_price(pm, family) # cache the unmatched items self.pm_dict[pm] = pm_listings.exclude(pn_listings) # count the listings count += pn_listings.size() # put the data into result res.append(OrderedDict([("product_name", pn), ("listings", pn_listings.to_ordered_dict())])) # write result into a file self.io.write_to_json_line(res, self.config['output_file'], self.config['data_path']) self.pm_dict = None self.cache_pm_dict(listings, products) return count def get_valid_listings_size(self): """ find all records with a valid manufacturer either in manufacturer col or title col greedy search :return: count of the valid records """ return self.count
{ "content_hash": "9d6d340fe39aba5bfd6af2c3545f80e9", "timestamp": "", "source": "github", "line_count": 136, "max_line_length": 119, "avg_line_length": 38.44117647058823, "alnum_prop": 0.5837796480489671, "repo_name": "alpenliebe/Sortable", "id": "ef3d0842fae09e6616cb17428e6b847d7a55ddc4", "size": "5228", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "services/match.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "1587400" }, { "name": "Shell", "bytes": "1537" } ], "symlink_target": "" }
def install_dependencies_ode(): from biokit.rtools import package pm = package.RPackageManager() if "Rsge" not in pm.installed.index: #rtools.install_packages("http://cran.r-project.org/src/contrib/Archive/Rsge/Rsge_0.6.3.tar.gz") pm.install("Rsge") #pm.install_packages(["snowfall", "Rsolnp"], repos=None) if "MEIGOR" not in pm.installed.index: pm.install_packages("http://www.cellnopt.org/downloads/MEIGOR_0.99.6_svn3222.tar.gz", type="source") from .cnorode import CNORode
{ "content_hash": "cd5602cdb6be52f5cec561793db3ad53", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 104, "avg_line_length": 33.8125, "alnum_prop": 0.6654343807763401, "repo_name": "cellnopt/cellnopt", "id": "9b76de4809efadbed4a0fcb901a850536f3b6eca", "size": "543", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cno/ode/__init__.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "CSS", "bytes": "11056" }, { "name": "JavaScript", "bytes": "496" }, { "name": "Jupyter Notebook", "bytes": "3748599" }, { "name": "Python", "bytes": "845977" } ], "symlink_target": "" }
if __name__ == '__main__': import module1 print(module1.sys) print(module1.name) print(module1.func) print(module1.klass)
{ "content_hash": "c7a1e320c711830987d8af7aaaeae986", "timestamp": "", "source": "github", "line_count": 7, "max_line_length": 26, "avg_line_length": 20.428571428571427, "alnum_prop": 0.6083916083916084, "repo_name": "ordinary-developer/education", "id": "a3668ccbee1bf89d1303a28ed637041c6708806b", "size": "143", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "py/m_lutz-learning_py-5_ed/code/part_5-modules/ch_23-coding_basics/09-namespaces/main.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "2435" }, { "name": "C", "bytes": "109331" }, { "name": "C#", "bytes": "163418" }, { "name": "C++", "bytes": "2504348" }, { "name": "CMake", "bytes": "24185" }, { "name": "GLSL", "bytes": "10134" }, { "name": "HTML", "bytes": "58556" }, { "name": "JavaScript", "bytes": "46010" }, { "name": "Makefile", "bytes": "748" }, { "name": "Python", "bytes": "189834" }, { "name": "QML", "bytes": "191657" }, { "name": "QMake", "bytes": "265220" }, { "name": "Scheme", "bytes": "32484" }, { "name": "Shell", "bytes": "2412" } ], "symlink_target": "" }
"""Provides a :class:`.Key` for Google Cloud Datastore. .. testsetup:: * from google.cloud import ndb A key encapsulates the following pieces of information, which together uniquely designate a (possible) entity in Google Cloud Datastore: * a Google Cloud Platform project (a string) * a list of one or more ``(kind, id)`` pairs where ``kind`` is a string and ``id`` is either a string or an integer * an optional namespace (a string) The application ID must always be part of the key, but since most applications can only access their own entities, it defaults to the current application ID and you rarely need to worry about it. The namespace designates a top-level partition of the key space for a particular application. If you've never heard of namespaces, you can safely ignore this feature. Most of the action is in the ``(kind, id)`` pairs. A key must have at least one ``(kind, id)`` pair. The last ``(kind, id)`` pair gives the kind and the ID of the entity that the key refers to, the others merely specify a "parent key". The kind is a string giving the name of the model class used to represent the entity. In more traditional databases this would be the table name. A model class is a Python class derived from :class:`.Model`. Only the class name itself is used as the kind. This means all your model classes must be uniquely named within one application. You can override this on a per-class basis. The ID is either a string or an integer. When the ID is a string, the application is in control of how it assigns IDs. For example, you could use an email address as the ID for Account entities. To use integer IDs, it's common to let the datastore choose a unique ID for an entity when first inserted into the datastore. The ID can be set to :data:`None` to represent the key for an entity that hasn't yet been inserted into the datastore. The completed key (including the assigned ID) will be returned after the entity is successfully inserted into the datastore. A key for which the ID of the last ``(kind, id)`` pair is set to :data:`None` is called an **incomplete key** or **partial key**. Such keys can only be used to insert entities into the datastore. A key with exactly one ``(kind, id)`` pair is called a top level key or a root key. Top level keys are also used as entity groups, which play a role in transaction management. If there is more than one ``(kind, id)`` pair, all but the last pair represent the "ancestor path", also known as the key of the "parent entity". Other constraints: * Kinds and string IDs must not be empty and must be at most 1500 bytes long (after UTF-8 encoding) * Integer IDs must be at least ``1`` and at most ``2**63 - 1`` (i.e. the positive part of the range for a 64-bit signed integer) For more info about namespaces, see the multitenancy `overview`_. In the "legacy" Google App Engine runtime, the default namespace could be set via the namespace manager (``google.appengine.api.namespace_manager``). On the gVisor Google App Engine runtime (e.g. Python 3.7), the namespace manager is not available so the default is to have an unset or empty namespace. To explicitly select the empty namespace pass ``namespace=""``. .. _overview: https://cloud.google.com/appengine/docs/standard/python/multitenancy/ """ import base64 import os from google.cloud.datastore import _app_engine_key_pb2 from google.cloud.datastore import key as _key_module import google.cloud.datastore from google.cloud.ndb import exceptions __all__ = ["Key"] _APP_ID_ENVIRONMENT = "APPLICATION_ID" _APP_ID_DEFAULT = "_" _WRONG_TYPE = "Cannot construct Key reference on non-Key class; received {!r}" _REFERENCE_APP_MISMATCH = ( "Key reference constructed uses a different app {!r} than " "the one specified {!r}" ) _REFERENCE_NAMESPACE_MISMATCH = ( "Key reference constructed uses a different namespace {!r} than " "the one specified {!r}" ) _INVALID_ID_TYPE = "Key ID must be a string or a number; received {!r}" _NO_LEGACY = "The `google.appengine.ext.db` module is not available." _MAX_INTEGER_ID = 0x7FFFFFFFFFFFFFFF # 2 ** 63 - 1 _MAX_KEYPART_BYTES = 1500 _BAD_KIND = ( "Key kind string must be a non-empty string up to {:d} bytes; received {}" ) _BAD_INTEGER_ID = ( "Key ID number is outside of range [1, 2^63 - 1]; received {:d}" ) _BAD_STRING_ID = ( "Key name strings must be non-empty strings up to {:d} bytes; received {}" ) class Key: """An immutable datastore key. For flexibility and convenience, multiple constructor signatures are supported. The primary way to construct a key is using positional arguments: .. testsetup:: * kind1, id1 = "Parent", "C" kind2, id2 = "Child", 42 .. doctest:: key-constructor-primary >>> ndb.Key(kind1, id1, kind2, id2) Key('Parent', 'C', 'Child', 42) This is shorthand for either of the following two longer forms: .. doctest:: key-constructor-flat-or-pairs >>> ndb.Key(pairs=[(kind1, id1), (kind2, id2)]) Key('Parent', 'C', 'Child', 42) >>> ndb.Key(flat=[kind1, id1, kind2, id2]) Key('Parent', 'C', 'Child', 42) Either of the above constructor forms can additionally pass in another key via the ``parent`` keyword. The ``(kind, id)`` pairs of the parent key are inserted before the ``(kind, id)`` pairs passed explicitly. .. doctest:: key-constructor-parent >>> parent = ndb.Key(kind1, id1) >>> parent Key('Parent', 'C') >>> ndb.Key(kind2, id2, parent=parent) Key('Parent', 'C', 'Child', 42) You can also construct a Key from a "url-safe" encoded string: .. doctest:: key-constructor-urlsafe >>> ndb.Key(urlsafe=b"agdleGFtcGxlcgsLEgRLaW5kGLkKDA") Key('Kind', 1337, app='example') For rare use cases the following constructors exist: .. testsetup:: key-constructor-rare from google.cloud.datastore import _app_engine_key_pb2 reference = _app_engine_key_pb2.Reference( app="example", path=_app_engine_key_pb2.Path(element=[ _app_engine_key_pb2.Path.Element(type="Kind", id=1337), ]), ) .. doctest:: key-constructor-rare >>> # Passing in a low-level Reference object >>> reference app: "example" path { Element { type: "Kind" id: 1337 } } <BLANKLINE> >>> ndb.Key(reference=reference) Key('Kind', 1337, app='example') >>> # Passing in a serialized low-level Reference >>> serialized = reference.SerializeToString() >>> serialized b'j\\x07exampler\\x0b\\x0b\\x12\\x04Kind\\x18\\xb9\\n\\x0c' >>> ndb.Key(serialized=serialized) Key('Kind', 1337, app='example') >>> # For unpickling, the same as ndb.Key(**kwargs) >>> kwargs = {"pairs": [("Cheese", "Cheddar")], "namespace": "good"} >>> ndb.Key(kwargs) Key('Cheese', 'Cheddar', namespace='good') The "url-safe" string is really a websafe-base64-encoded serialized ``Reference``, but it's best to think of it as just an opaque unique string. If a ``Reference`` is passed (using one of the ``reference``, ``serialized`` or ``urlsafe`` keywords), the positional arguments and ``namespace`` must match what is already present in the ``Reference`` (after decoding if necessary). The parent keyword cannot be combined with a ``Reference`` in any form. Keys are immutable, which means that a Key object cannot be modified once it has been created. This is enforced by the implementation as well as Python allows. Keys also support interaction with the datastore; the methods :meth:`get`, :meth:`get_async`, :meth:`delete` and :meth:`delete_async` are the only ones that engage in any kind of I/O activity. Keys may be pickled. Subclassing Key is best avoided; it would be hard to get right. Args: path_args (Union[Tuple[str, ...], Tuple[Dict]]): Either a tuple of ``(kind, id)`` pairs or a single dictionary containing only keyword arguments. reference (Optional[\ ~google.cloud.datastore._app_engine_key_pb2.Reference]): A reference protobuf representing a key. serialized (Optional[bytes]): A reference protobuf serialized to bytes. urlsafe (Optional[str]): A reference protobuf serialized to bytes. The raw bytes are then converted to a websafe base64-encoded string. pairs (Optional[Iterable[Tuple[str, Union[str, int]]]]): An iterable of ``(kind, id)`` pairs. If this argument is used, then ``path_args`` should be empty. flat (Optional[Iterable[Union[str, int]]]): An iterable of the ``(kind, id)`` pairs but flattened into a single value. For example, the pairs ``[("Parent", 1), ("Child", "a")]`` would be flattened to ``["Parent", 1, "Child", "a"]``. app (Optional[str]): The Google Cloud Platform project (previously on Google App Engine, this was called the Application ID). namespace (Optional[str]): The namespace for the key. parent (Optional[Key]): The parent of the key being constructed. If provided, the key path will be **relative** to the parent key's path. Raises: TypeError: If none of ``reference``, ``serialized``, ``urlsafe``, ``pairs`` or ``flat`` is provided as an argument and no positional arguments were given with the path. """ __slots__ = ("_key", "_reference") def __new__(cls, *path_args, **kwargs): _constructor_handle_positional(path_args, kwargs) instance = super(Key, cls).__new__(cls) if ( "reference" in kwargs or "serialized" in kwargs or "urlsafe" in kwargs ): ds_key, reference = _parse_from_ref(cls, **kwargs) elif "pairs" in kwargs or "flat" in kwargs: ds_key = _parse_from_args(**kwargs) reference = None else: raise TypeError( "Key() cannot create a Key instance without arguments." ) instance._key = ds_key instance._reference = reference return instance @classmethod def _from_ds_key(cls, ds_key): """Factory constructor for a :class:`~google.cloud.datastore.key.Key`. This bypasses the actual constructor and directly sets the ``_key`` attribute to ``ds_key``. Args: ds_key (~google.cloud.datastore.key.Key): A key from ``google-cloud-datastore``. Returns: Key: The constructed :class:`Key`. """ key = super(Key, cls).__new__(cls) key._key = ds_key key._reference = None return key def __repr__(self): """String representation used by :class:`str() <str>` and :func:`repr`. We produce a short string that conveys all relevant information, suppressing app and namespace when they are equal to the default. In many cases, this string should be able to be used to invoke the constructor. For example: .. doctest:: key-repr >>> key = ndb.Key("hi", 100) >>> repr(key) "Key('hi', 100)" >>> >>> key = ndb.Key( ... "bye", "hundred", app="specific", namespace="space" ... ) >>> str(key) "Key('bye', 'hundred', app='specific', namespace='space')" """ args = ["{!r}".format(item) for item in self.flat()] if self.app() != _project_from_app(None): args.append("app={!r}".format(self.app())) if self.namespace() is not None: args.append("namespace={!r}".format(self.namespace())) return "Key({})".format(", ".join(args)) def __str__(self): """Alias for :meth:`__repr__`.""" return self.__repr__() def __hash__(self): """Hash value, for use in dictionary lookups. .. note:: This ignores ``app`` and ``namespace``. Since :func:`hash` isn't expected to return a unique value (it just reduces the chance of collision), this doesn't try to increase entropy by including other values. The primary concern is that hashes of equal keys are equal, not the other way around. """ return hash(self.pairs()) def _tuple(self): """Helper to return an orderable tuple.""" return (self.app(), self.namespace(), self.pairs()) def __eq__(self, other): """Equality comparison operation.""" if not isinstance(other, Key): return NotImplemented return self._tuple() == other._tuple() def __ne__(self, other): """Inequality comparison operation.""" return not self == other def __lt__(self, other): """Less than ordering.""" if not isinstance(other, Key): return NotImplemented return self._tuple() < other._tuple() def __le__(self, other): """Less than or equal ordering.""" if not isinstance(other, Key): return NotImplemented return self._tuple() <= other._tuple() def __gt__(self, other): """Greater than ordering.""" return not self <= other def __ge__(self, other): """Greater than or equal ordering.""" return not self < other def __getstate__(self): """Private API used for pickling. Returns: Tuple[Dict[str, Any]]: A tuple containing a single dictionary of state to pickle. The dictionary has three keys ``pairs``, ``app`` and ``namespace``. """ return ( { "pairs": self.pairs(), "app": self.app(), "namespace": self.namespace(), }, ) def __setstate__(self, state): """Private API used for unpickling. Args: state (Tuple[Dict[str, Any]]): A tuple containing a single dictionary of pickled state. This should match the signature returned from :func:`__getstate__`, in particular, it should have three keys ``pairs``, ``app`` and ``namespace``. Raises: TypeError: If the ``state`` does not have length 1. TypeError: If the single element in ``state`` is not a dictionary. """ if len(state) != 1: msg = "Invalid state length, expected 1; received {:d}".format( len(state) ) raise TypeError(msg) kwargs = state[0] if not isinstance(kwargs, dict): raise TypeError( "Key accepts a dict of keyword arguments as state; " "received {!r}".format(kwargs) ) flat = _get_path(None, kwargs["pairs"]) project = _project_from_app(kwargs["app"]) self._key = _key_module.Key( *flat, project=project, namespace=kwargs["namespace"] ) self._reference = None def __getnewargs__(self): """Private API used to specify ``__new__`` arguments when unpickling. .. note:: This method is provided for backwards compatibility, though it isn't needed. Returns: Tuple[Dict[str, Any]]: A tuple containing a single dictionary of state to pickle. The dictionary has three keys ``pairs``, ``app`` and ``namespace``. """ return ( { "pairs": self.pairs(), "app": self.app(), "namespace": self.namespace(), }, ) def parent(self): """Parent key constructed from all but the last ``(kind, id)`` pairs. If there is only one ``(kind, id)`` pair, return :data:`None`. .. doctest:: key-parent >>> key = ndb.Key( ... pairs=[ ... ("Purchase", "Food"), ... ("Type", "Drink"), ... ("Coffee", 11), ... ] ... ) >>> parent = key.parent() >>> parent Key('Purchase', 'Food', 'Type', 'Drink') >>> >>> grandparent = parent.parent() >>> grandparent Key('Purchase', 'Food') >>> >>> grandparent.parent() is None True """ if self._key.parent is None: return None return Key._from_ds_key(self._key.parent) def root(self): """The root key. This is either the current key or the highest parent. .. doctest:: key-root >>> key = ndb.Key("a", 1, "steak", "sauce") >>> root_key = key.root() >>> root_key Key('a', 1) >>> root_key.root() is root_key True """ root_key = self._key while root_key.parent is not None: root_key = root_key.parent if root_key is self._key: return self return Key._from_ds_key(root_key) def namespace(self): """The namespace for the key, if set. .. doctest:: key-namespace >>> key = ndb.Key("A", "B") >>> key.namespace() is None True >>> >>> key = ndb.Key("A", "B", namespace="rock") >>> key.namespace() 'rock' """ return self._key.namespace def app(self): """The project ID for the key. .. warning:: This **may** differ from the original ``app`` passed in to the constructor. This is because prefixed application IDs like ``s~example`` are "legacy" identifiers from Google App Engine. They have been replaced by equivalent project IDs, e.g. here it would be ``example``. .. doctest:: key-app >>> key = ndb.Key("A", "B", app="s~example") >>> key.app() 'example' >>> >>> key = ndb.Key("A", "B", app="example") >>> key.app() 'example' """ return self._key.project def id(self): """The string or integer ID in the last ``(kind, id)`` pair, if any. .. doctest:: key-id >>> key_int = ndb.Key("A", 37) >>> key_int.id() 37 >>> key_str = ndb.Key("A", "B") >>> key_str.id() 'B' >>> key_partial = ndb.Key("A", None) >>> key_partial.id() is None True """ return self._key.id_or_name def string_id(self): """The string ID in the last ``(kind, id)`` pair, if any. .. doctest:: key-string-id >>> key_int = ndb.Key("A", 37) >>> key_int.string_id() is None True >>> key_str = ndb.Key("A", "B") >>> key_str.string_id() 'B' >>> key_partial = ndb.Key("A", None) >>> key_partial.string_id() is None True """ return self._key.name def integer_id(self): """The string ID in the last ``(kind, id)`` pair, if any. .. doctest:: key-integer-id >>> key_int = ndb.Key("A", 37) >>> key_int.integer_id() 37 >>> key_str = ndb.Key("A", "B") >>> key_str.integer_id() is None True >>> key_partial = ndb.Key("A", None) >>> key_partial.integer_id() is None True """ return self._key.id def pairs(self): """The ``(kind, id)`` pairs for the key. .. doctest:: key-pairs >>> key = ndb.Key("Satellite", "Moon", "Space", "Dust") >>> key.pairs() (('Satellite', 'Moon'), ('Space', 'Dust')) >>> >>> partial_key = ndb.Key("Known", None) >>> partial_key.pairs() (('Known', None),) """ flat = self.flat() pairs = [] for i in range(0, len(flat), 2): pairs.append(flat[i : i + 2]) return tuple(pairs) def flat(self): """The flat path for the key. .. doctest:: key-flat >>> key = ndb.Key("Satellite", "Moon", "Space", "Dust") >>> key.flat() ('Satellite', 'Moon', 'Space', 'Dust') >>> >>> partial_key = ndb.Key("Known", None) >>> partial_key.flat() ('Known', None) """ flat_path = self._key.flat_path if len(flat_path) % 2 == 1: flat_path += (None,) return flat_path def kind(self): """The kind of the entity referenced. This comes from the last ``(kind, id)`` pair. .. doctest:: key-kind >>> key = ndb.Key("Satellite", "Moon", "Space", "Dust") >>> key.kind() 'Space' >>> >>> partial_key = ndb.Key("Known", None) >>> partial_key.kind() 'Known' """ return self._key.kind def reference(self): """The ``Reference`` protobuf object for this key. The return value will be stored on the current key, so the caller promises not to mutate it. .. doctest:: key-reference >>> key = ndb.Key("Trampoline", 88, app="xy", namespace="zt") >>> key.reference() app: "xy" path { Element { type: "Trampoline" id: 88 } } name_space: "zt" <BLANKLINE> """ if self._reference is None: self._reference = _app_engine_key_pb2.Reference( app=self._key.project, path=_to_legacy_path(self._key.path), name_space=self._key.namespace, ) return self._reference def serialized(self): """A ``Reference`` protobuf serialized to bytes. .. doctest:: key-serialized >>> key = ndb.Key("Kind", 1337, app="example") >>> key.serialized() b'j\\x07exampler\\x0b\\x0b\\x12\\x04Kind\\x18\\xb9\\n\\x0c' """ reference = self.reference() return reference.SerializeToString() def urlsafe(self): """A ``Reference`` protobuf encoded as urlsafe base 64. .. doctest:: key-urlsafe >>> key = ndb.Key("Kind", 1337, app="example") >>> key.urlsafe() b'agdleGFtcGxlcgsLEgRLaW5kGLkKDA' """ raw_bytes = self.serialized() return base64.urlsafe_b64encode(raw_bytes).strip(b"=") def get(self, **ctx_options): """Synchronously get the entity for this key. Returns the retrieved :class:`.Model` or :data:`None` if there is no such entity. Args: ctx_options (Dict[str, Any]): The context options for the request. For example, ``{"read_policy": EVENTUAL_CONSISTENCY}``. Raises: NotImplementedError: Always. The method has not yet been implemented. """ raise NotImplementedError def get_async(self, **ctx_options): """Asynchronously get the entity for this key. The result for the returned future with either by the retrieved :class:`.Model` or :data:`None` if there is no such entity. Args: ctx_options (Dict[str, Any]): The context options for the request. For example, ``{"read_policy": EVENTUAL_CONSISTENCY}``. Raises: NotImplementedError: Always. The method has not yet been implemented. """ raise NotImplementedError def delete(self, **ctx_options): """Synchronously delete the entity for this key. This is a no-op if no such entity exists. Args: ctx_options (Dict[str, Any]): The context options for the request. For example, ``{"deadline": 5}``. Raises: NotImplementedError: Always. The method has not yet been implemented. """ raise NotImplementedError def delete_async(self, **ctx_options): """Schedule deletion of the entity for this key. This result of the returned a future becomes available once the deletion is complete. In all cases the future's result is :data:`None` (i.e. there is no way to tell whether the entity existed or not). Args: ctx_options (Dict[str, Any]): The context options for the request. For example, ``{"deadline": 5}``. Raises: NotImplementedError: Always. The method has not yet been implemented. """ raise NotImplementedError @classmethod def from_old_key(cls, old_key): """Factory constructor to convert from an "old"-style datastore key. The ``old_key`` was expected to be a ``google.appengine.ext.db.Key`` (which was an alias for ``google.appengine.api.datastore_types.Key``). However, the ``google.appengine.ext.db`` module was part of the legacy Google App Engine runtime and is not generally available. Raises: NotImplementedError: Always. """ raise NotImplementedError(_NO_LEGACY) def to_old_key(self): """Convert to an "old"-style datastore key. See :meth:`from_old_key` for more information on why this method is not supported. Raises: NotImplementedError: Always. """ raise NotImplementedError(_NO_LEGACY) def _project_from_app(app, allow_empty=False): """Convert a legacy Google App Engine app string to a project. Args: app (str): The application value to be used. If the caller passes :data:`None` then this will use the ``APPLICATION_ID`` environment variable to determine the running application. allow_empty (bool): Flag determining if an empty (i.e. :data:`None`) project is allowed. Defaults to :data:`False`. Returns: str: The cleaned project. """ if app is None: if allow_empty: return None app = os.environ.get(_APP_ID_ENVIRONMENT, _APP_ID_DEFAULT) # NOTE: This is the same behavior as in the helper # ``google.cloud.datastore.key._clean_app()``. parts = app.split("~", 1) return parts[-1] def _from_reference(reference, app, namespace): """Convert Reference protobuf to :class:`~google.cloud.datastore.key.Key`. This is intended to work with the "legacy" representation of a datastore "Key" used within Google App Engine (a so-called "Reference"). This assumes that ``serialized`` was created within an App Engine app via something like ``ndb.Key(...).reference()``. However, the actual type used here is different since this code will not run in the App Engine standard environment where the type was ``google.appengine.datastore.entity_pb.Reference``. Args: serialized (bytes): A reference protobuf serialized to bytes. app (Optional[str]): The application ID / project ID for the constructed key. namespace (Optional[str]): The namespace for the constructed key. Returns: google.cloud.datastore.key.Key: The key corresponding to ``serialized``. Raises: RuntimeError: If ``app`` is not :data:`None`, but not the same as ``reference.app``. RuntimeError: If ``namespace`` is not :data:`None`, but not the same as ``reference.name_space``. """ project = _project_from_app(reference.app) if app is not None: if _project_from_app(app) != project: raise RuntimeError( _REFERENCE_APP_MISMATCH.format(reference.app, app) ) parsed_namespace = _key_module._get_empty(reference.name_space, "") if namespace is not None: if namespace != parsed_namespace: raise RuntimeError( _REFERENCE_NAMESPACE_MISMATCH.format( reference.name_space, namespace ) ) _key_module._check_database_id(reference.database_id) flat_path = _key_module._get_flat_path(reference.path) return google.cloud.datastore.Key( *flat_path, project=project, namespace=parsed_namespace ) def _from_serialized(serialized, app, namespace): """Convert serialized protobuf to :class:`~google.cloud.datastore.key.Key`. This is intended to work with the "legacy" representation of a datastore "Key" used within Google App Engine (a so-called "Reference"). This assumes that ``serialized`` was created within an App Engine app via something like ``ndb.Key(...).serialized()``. Args: serialized (bytes): A reference protobuf serialized to bytes. app (Optional[str]): The application ID / project ID for the constructed key. namespace (Optional[str]): The namespace for the constructed key. Returns: Tuple[google.cloud.datastore.key.Key, .Reference]: The key corresponding to ``serialized`` and the Reference protobuf. """ reference = _app_engine_key_pb2.Reference() reference.ParseFromString(serialized) return _from_reference(reference, app, namespace), reference def _from_urlsafe(urlsafe, app, namespace): """Convert urlsafe string to :class:`~google.cloud.datastore.key.Key`. .. note:: This is borrowed from :meth:`~google.cloud.datastore.key.Key.from_legacy_urlsafe`. It is provided here, rather than calling that method, since component parts need to be re-used. This is intended to work with the "legacy" representation of a datastore "Key" used within Google App Engine (a so-called "Reference"). This assumes that ``urlsafe`` was created within an App Engine app via something like ``ndb.Key(...).urlsafe()``. Args: urlsafe (Union[bytes, str]): The base64 encoded (ASCII) string corresponding to a datastore "Key" / "Reference". app (Optional[str]): The application ID / project ID for the constructed key. namespace (Optional[str]): The namespace for the constructed key. Returns: Tuple[google.cloud.datastore.key.Key, .Reference]: The key corresponding to ``urlsafe`` and the Reference protobuf. """ if isinstance(urlsafe, str): urlsafe = urlsafe.encode("ascii") padding = b"=" * (-len(urlsafe) % 4) urlsafe += padding raw_bytes = base64.urlsafe_b64decode(urlsafe) return _from_serialized(raw_bytes, app, namespace) def _constructor_handle_positional(path_args, kwargs): """Properly handle positional arguments to Key constructor. This will modify ``kwargs`` in a few cases: * The constructor was called with a dictionary as the only positional argument (and no keyword arguments were passed). In this case, the contents of the dictionary passed in will be copied into ``kwargs``. * The constructor was called with at least one (non-dictionary) positional argument. In this case all of the positional arguments will be added to ``kwargs`` for the key ``flat``. Args: path_args (Tuple): The positional arguments. kwargs (Dict[str, Any]): The keyword arguments. Raises: TypeError: If keyword arguments were used while the first and only positional argument was a dictionary. TypeError: If positional arguments were provided and the keyword ``flat`` was used. """ if not path_args: return if len(path_args) == 1 and isinstance(path_args[0], dict): if kwargs: raise TypeError( "Key() takes no keyword arguments when a dict is the " "the first and only non-keyword argument (for " "unpickling)." ) kwargs.update(path_args[0]) else: if "flat" in kwargs: raise TypeError( "Key() with positional arguments " "cannot accept flat as a keyword argument." ) kwargs["flat"] = path_args def _exactly_one_specified(*values): """Make sure exactly one of ``values`` is truthy. Args: values (Tuple[Any, ...]): Some values to be checked. Returns: bool: Indicating if exactly one of ``values`` was truthy. """ count = sum(1 for value in values if value) return count == 1 def _parse_from_ref( klass, reference=None, serialized=None, urlsafe=None, app=None, namespace=None, **kwargs ): """Construct a key from a Reference. This makes sure that **exactly** one of ``reference``, ``serialized`` and ``urlsafe`` is specified (all three are different representations of a ``Reference`` protobuf). Args: klass (type): The class of the instance being constructed. It must be :class:`.Key`; we do not allow constructing :class:`.Key` subclasses from a serialized Reference protobuf. reference (Optional[\ ~google.cloud.datastore._app_engine_key_pb2.Reference]): A reference protobuf representing a key. serialized (Optional[bytes]): A reference protobuf serialized to bytes. urlsafe (Optional[str]): A reference protobuf serialized to bytes. The raw bytes are then converted to a websafe base64-encoded string. app (Optional[str]): The Google Cloud Platform project (previously on Google App Engine, this was called the Application ID). namespace (Optional[str]): The namespace for the key. kwargs (Dict[str, Any]): Any extra keyword arguments not covered by the explicitly provided ones. These are passed through to indicate to the user that the wrong combination of arguments was used, e.g. if ``parent`` and ``urlsafe`` were used together. Returns: Tuple[~.datastore.Key, \ ~google.cloud.datastore._app_engine_key_pb2.Reference]: A pair of the constructed key and the reference that was serialized in one of the arguments. Raises: TypeError: If ``klass`` is not :class:`.Key`. TypeError: If ``kwargs`` isn't empty. TypeError: If any number other than exactly one of ``reference``, ``serialized`` or ``urlsafe`` is provided. """ if klass is not Key: raise TypeError(_WRONG_TYPE.format(klass)) if kwargs or not _exactly_one_specified(reference, serialized, urlsafe): raise TypeError( "Cannot construct Key reference from incompatible " "keyword arguments." ) if reference: ds_key = _from_reference(reference, app, namespace) elif serialized: ds_key, reference = _from_serialized(serialized, app, namespace) else: # NOTE: We know here that ``urlsafe`` is truth-y; # ``_exactly_one_specified()`` guarantees this. ds_key, reference = _from_urlsafe(urlsafe, app, namespace) return ds_key, reference def _parse_from_args( pairs=None, flat=None, app=None, namespace=None, parent=None ): """Construct a key the path (and possibly a parent key). Args: pairs (Optional[Iterable[Tuple[str, Union[str, int]]]]): An iterable of (kind, ID) pairs. flat (Optional[Iterable[Union[str, int]]]): An iterable of the (kind, ID) pairs but flattened into a single value. For example, the pairs ``[("Parent", 1), ("Child", "a")]`` would be flattened to ``["Parent", 1, "Child", "a"]``. app (Optional[str]): The Google Cloud Platform project (previously on Google App Engine, this was called the Application ID). namespace (Optional[str]): The namespace for the key. parent (Optional[~.ndb.key.Key]): The parent of the key being constructed. If provided, the key path will be **relative** to the parent key's path. Returns: ~.datastore.Key: The constructed key. Raises: .BadValueError: If ``parent`` is passed but is not a ``Key``. """ flat = _get_path(flat, pairs) _clean_flat_path(flat) parent_ds_key = None if parent is None: project = _project_from_app(app) else: project = _project_from_app(app, allow_empty=True) if not isinstance(parent, Key): raise exceptions.BadValueError( "Expected Key instance, got {!r}".format(parent) ) # Offload verification of parent to ``google.cloud.datastore.Key()``. parent_ds_key = parent._key return google.cloud.datastore.Key( *flat, parent=parent_ds_key, project=project, namespace=namespace ) def _get_path(flat, pairs): """Get a flat path of key arguments. Does this from exactly one of ``flat`` or ``pairs``. Args: pairs (Optional[Iterable[Tuple[str, Union[str, int]]]]): An iterable of (kind, ID) pairs. flat (Optional[Iterable[Union[str, int]]]): An iterable of the (kind, ID) pairs but flattened into a single value. For example, the pairs ``[("Parent", 1), ("Child", "a")]`` would be flattened to ``["Parent", 1, "Child", "a"]``. Returns: List[Union[str, int]]: The flattened path as a list. Raises: TypeError: If both ``flat`` and ``pairs`` are provided. ValueError: If the ``flat`` path does not have an even number of elements. TypeError: If the paths are both empty. """ if flat: if pairs is not None: raise TypeError( "Key() cannot accept both flat and pairs arguments." ) if len(flat) % 2: raise ValueError( "Key() must have an even number of positional arguments." ) flat = list(flat) else: flat = [] for kind, id_ in pairs: flat.extend((kind, id_)) if not flat: raise TypeError("Key must consist of at least one pair.") return flat def _clean_flat_path(flat): """Verify and convert the flat path for a key. This may modify ``flat`` in place. In particular, if the last element is :data:`None` (for a partial key), this will pop it off the end. Also if some of the kinds are instance of :class:`.Model`, they will be converted to strings in ``flat``. Args: flat (List[Union[str, int]]): The flattened path as a list. Raises: TypeError: If the kind in a pair is an invalid type. .BadArgumentError: If a key ID is :data:`None` (indicating a partial key), but in a pair other than the last one. TypeError: If a key ID is not a string or integer. """ # Verify the inputs in ``flat``. for i in range(0, len(flat), 2): # Make sure the ``kind`` is either a string or a Model. kind = flat[i] if isinstance(kind, type): kind = kind._get_kind() flat[i] = kind if not isinstance(kind, str): raise TypeError( "Key kind must be a string or Model class; " "received {!r}".format(kind) ) # Make sure the ``id_`` is either a string or int. In the special case # of a partial key, ``id_`` can be ``None`` for the last pair. id_ = flat[i + 1] if id_ is None: if i + 2 < len(flat): raise exceptions.BadArgumentError( "Incomplete Key entry must be last" ) elif not isinstance(id_, (str, int)): raise TypeError(_INVALID_ID_TYPE.format(id_)) # Remove trailing ``None`` for a partial key. if flat[-1] is None: flat.pop() def _verify_path_value(value, is_str, is_kind=False): """Verify a key path value: one of a kind, string ID or integer ID. Args: value (Union[str, int]): The value to verify is_str (bool): Flag indicating if the ``value`` is a string. If :data:`False`, then the ``value`` is assumed to be an integer. is_kind (Optional[bool]): Flag indicating if the value is meant to be a kind. Defaults to :data:`False`. Returns: Union[str, int]: The ``value`` passed in, if it passed verification checks. Raises: ValueError: If the ``value`` is a ``str`` for the kind, but the number of UTF-8 encoded bytes is outside of the range ``[1, 1500]``. ValueError: If the ``value`` is a ``str`` for the name, but the number of UTF-8 encoded bytes is outside of the range ``[1, 1500]``. ValueError: If the ``value`` is an integer but lies outside of the range ``[1, 2^63 - 1]``. """ if is_str: if 1 <= len(value.encode("utf-8")) <= _MAX_KEYPART_BYTES: return value if is_kind: raise ValueError(_BAD_KIND.format(_MAX_KEYPART_BYTES, value)) else: raise ValueError(_BAD_STRING_ID.format(_MAX_KEYPART_BYTES, value)) else: if 1 <= value <= _MAX_INTEGER_ID: return value raise ValueError(_BAD_INTEGER_ID.format(value)) def _to_legacy_path(dict_path): """Convert a tuple of ints and strings in a legacy "Path". .. note: This assumes, but does not verify, that each entry in ``dict_path`` is valid (i.e. doesn't have more than one key out of "name" / "id"). Args: dict_path (Iterable[Tuple[str, Union[str, int]]]): The "structured" path for a ``google-cloud-datastore`` key, i.e. it is a list of dictionaries, each of which has "kind" and one of "name" / "id" as keys. Returns: _app_engine_key_pb2.Path: The legacy path corresponding to ``dict_path``. """ elements = [] for part in dict_path: element_kwargs = { "type": _verify_path_value(part["kind"], True, is_kind=True) } if "id" in part: element_kwargs["id"] = _verify_path_value(part["id"], False) elif "name" in part: element_kwargs["name"] = _verify_path_value(part["name"], True) element = _app_engine_key_pb2.Path.Element(**element_kwargs) elements.append(element) return _app_engine_key_pb2.Path(element=elements)
{ "content_hash": "256dcec00c48258b0e67f25fc0f7a868", "timestamp": "", "source": "github", "line_count": 1233, "max_line_length": 83, "avg_line_length": 34.850770478507705, "alnum_prop": 0.5808568569500361, "repo_name": "jonparrott/gcloud-python", "id": "b9fc411c7c9ca00ab1f551ce30ec002caedc30c2", "size": "43547", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "ndb/src/google/cloud/ndb/key.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "3366" }, { "name": "PowerShell", "bytes": "7195" }, { "name": "Protocol Buffer", "bytes": "62009" }, { "name": "Python", "bytes": "3459300" }, { "name": "Shell", "bytes": "7548" } ], "symlink_target": "" }
from distutils.core import setup # pylint: enable=import-error import os import sys # pylint: disable=import-error # pylint: disable=unused-import import py2exe # pylint: enable=unused-import # pylint: enable=import-error import zmq import zmq.libzmq def tree(root_dir, dest): """ Create a list with all files root_dir and its subfolders in an appropriate format for distutils data_files. """ prefix = os.path.dirname(root_dir) data_files = [ (dest+root[len(prefix):], [os.path.join(root, f) for f in files]) for root, _, files in os.walk(os.path.normpath(root_dir)) ] return data_files def main(): setup_dir = os.path.dirname(os.path.realpath(__file__)) root_dir = os.path.dirname(os.path.dirname(setup_dir)) zmq_dir = os.path.dirname(zmq.__file__) # py2exe depedency detection is quite problematic sys.path.insert(0, zmq_dir) # for libzmq.pyd sys.path.insert(0, root_dir) # for node sys.path.insert(0, setup_dir) # for local openbazaar.py data_files = tree(os.path.join(root_dir, "html"), ".") data_files.append( (".", [os.path.join(root_dir, "pycountry-1.8-py2.7.egg")]) ) setup( console=[ { 'script': 'openbazaar.py', 'icon_resources': [(1, 'icon.ico')] }, { 'script': 'stop.py' } ], options={ "py2exe": { 'dist_dir': 'dist_exe', 'bundle_files': 3, 'compressed': 2, 'optimize': 2, 'includes': [ "pkg_resources", "zmq.utils", "zmq.utils.jsonapi", "zmq.utils.strtypes", "zmq.backend.cython" ], # NOTE: py2exe copies libzmq.pyd with the wrong name # zmq.libzmq.pyd. Manually excluding zmq.libzmq.pyd # copies it with the right name. 'excludes': ['zmq.libzmq', 'pycountry'], 'dll_excludes': [ 'IPHLPAPI.DLL', 'PSAPI.DLL', 'WTSAPI32.dll', 'w9xpopen.exe' ] } }, data_files=data_files ) if __name__ == '__main__': main()
{ "content_hash": "d041a9964fdf657d728fd2c811d24c4d", "timestamp": "", "source": "github", "line_count": 83, "max_line_length": 73, "avg_line_length": 28.734939759036145, "alnum_prop": 0.5006289308176101, "repo_name": "STRML/OpenBazaar", "id": "114b94162132fcb9cf9f1117810cebfd95f2a03f", "size": "2416", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "installers/windows/setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "8930" }, { "name": "JavaScript", "bytes": "107310" }, { "name": "Makefile", "bytes": "134" }, { "name": "Perl", "bytes": "655" }, { "name": "PowerShell", "bytes": "6205" }, { "name": "Python", "bytes": "361116" }, { "name": "Shell", "bytes": "16486" } ], "symlink_target": "" }
import logging import fixtures class SetLogLevel(fixtures.Fixture): """Override the log level for the named loggers, restoring their previous value at the end of the test. To use:: from oslo_log import fixture as log_fixture self.useFixture(log_fixture.SetLogLevel(['myapp.foo'], logging.DEBUG)) :param logger_names: Sequence of logger names, as would be passed to getLogger(). :type logger_names: list(str) :param level: Logging level, usually one of logging.DEBUG, logging.INFO, etc. :type level: int """ def __init__(self, logger_names, level): self.logger_names = logger_names self.level = level def setUp(self): super(SetLogLevel, self).setUp() for name in self.logger_names: # NOTE(dhellmann): Use the stdlib version of getLogger() # so we get the logger and not any adaptor wrapping it. logger = logging.getLogger(name) self.addCleanup(logger.setLevel, logger.level) logger.setLevel(self.level)
{ "content_hash": "1da9fdc8c4b83cb5e5e2778ac28a2d21", "timestamp": "", "source": "github", "line_count": 35, "max_line_length": 76, "avg_line_length": 31.37142857142857, "alnum_prop": 0.6311475409836066, "repo_name": "openstack/oslo.log", "id": "d3e2e2c15e41624e080a4bc3cb39dc0774df25ab", "size": "1669", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "oslo_log/fixture/setlevel.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "218052" } ], "symlink_target": "" }
import os from ingenico.connect.sdk.factory import Factory class GetFileExample(object): def example(self): with self.__get_client() as client: headers, chunks = client.merchant("merchantId").files().get_file("fileId") # make sure all chunks are read for chunk in chunks: # use the chunk pass def __get_client(self): api_key_id = os.getenv("connect.api.apiKeyId", "someKey") secret_api_key = os.getenv("connect.api.secretApiKey", "someSecret") configuration_file_name = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../example_configuration.ini')) return Factory.create_client_from_file(configuration_file_name=configuration_file_name, api_key_id=api_key_id, secret_api_key=secret_api_key)
{ "content_hash": "1fc606d95cef55af08c665b6520a1362", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 100, "avg_line_length": 42.5, "alnum_prop": 0.5689839572192513, "repo_name": "Ingenico-ePayments/connect-sdk-python3", "id": "c52bcf3245527d2d5c7bb768dbba28d9b6f6ae55", "size": "1062", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "examples/merchant/files/get_file_example.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "36" }, { "name": "Python", "bytes": "1735057" } ], "symlink_target": "" }
import os # Add parent directory for imports parentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) os.sys.path.insert(0, parentdir) import boto.swf import log import json import random from optparse import OptionParser """ Amazon SWF LensArticlePublish starter """ class starter_LensArticlePublish(): def start(self, settings, all_doi=None, doi_id=None): # Log identity = "starter_%s" % int(random.random() * 1000) logFile = "starter.log" #logFile = None logger = log.logger(logFile, settings.setLevel, identity) # Simple connect conn = boto.swf.layer1.Layer1(settings.aws_access_key_id, settings.aws_secret_access_key) docs = [] if all_doi is True: # Publish all articles # TODO!! Add all articles support again pass elif doi_id is not None: doc = {} doc['article_id'] = str(doi_id).zfill(5) docs.append(doc) if docs: for doc in docs: article_id = doc["article_id"] # Start a workflow execution workflow_id = "LensArticlePublish_%s" % (article_id) workflow_name = "LensArticlePublish" workflow_version = "1" child_policy = None execution_start_to_close_timeout = str(60 * 30) input = '{"article_id": "' + str(article_id) + '"}' try: response = conn.start_workflow_execution( settings.domain, workflow_id, workflow_name, workflow_version, settings.default_task_list, child_policy, execution_start_to_close_timeout, input) logger.info('got response: \n%s' % json.dumps(response, sort_keys=True, indent=4)) except boto.swf.exceptions.SWFWorkflowExecutionAlreadyStartedError: # There is already a running workflow with that ID, cannot start another message = ('SWFWorkflowExecutionAlreadyStartedError: There is already ' + 'a running workflow with ID %s' % workflow_id) print message logger.info(message) if __name__ == "__main__": doi_id = None all_doi = False # Add options parser = OptionParser() parser.add_option("-e", "--env", default="dev", action="store", type="string", dest="env", help="set the environment to run, either dev or live") parser.add_option("-d", "--doi-id", default=None, action="store", type="string", dest="doi_id", help="specify the DOI id of a single article") parser.add_option("-a", "--all", default=None, action="store_true", dest="all_doi", help="start workflow for all article DOI") (options, args) = parser.parse_args() if options.env: ENV = options.env if options.doi_id: doi_id = options.doi_id if options.all_doi: all_doi = options.all_doi import settings as settingsLib settings = settingsLib.get_settings(ENV) o = starter_LensArticlePublish() o.start(settings=settings, all_doi=all_doi, doi_id=doi_id)
{ "content_hash": "321e65b4b012f04592a1f1768cc577cd", "timestamp": "", "source": "github", "line_count": 96, "max_line_length": 99, "avg_line_length": 34.5625, "alnum_prop": 0.5669077757685352, "repo_name": "gnott/elife-bot", "id": "96aa33751e4325c4027224f14b50dc2c74cac96c", "size": "3318", "binary": false, "copies": "2", "ref": "refs/heads/develop", "path": "starter/starter_LensArticlePublish.py", "mode": "33188", "license": "mit", "language": [ { "name": "Gherkin", "bytes": "53428" }, { "name": "HTML", "bytes": "3975" }, { "name": "Python", "bytes": "1295112" }, { "name": "Shell", "bytes": "2363" } ], "symlink_target": "" }
import sys import argparse import math import numpy as np def parseArgument(): # Parse the input parser=argparse.ArgumentParser(description=\ "Convert a matrix of continuous-valued TF peaks to a file in the format for HDP") parser.add_argument("--continuousMatFileName", required=True,\ help='File with continuous TF peaks, should be rank-normalized if numBins > 1') parser.add_argument("--numBins", type=int, required=False, default=3,\ help='Number of bins for the TF signal') parser.add_argument("--minTFs", type=int, required=False, default=1,\ help='Minimum number of TFs per merged peak') parser.add_argument("--HDPFileName", required=True,\ help='Name of file where the continuous matirx in HDP format will be recorded') options = parser.parse_args() return options def convertContinuousMatToHDPFormat(options): # Convert a matrix of continuous-valued TF peaks to a file in the format for HDP continuousMat = np.loadtxt(options.continuousMatFileName) HDPFile = open(options.HDPFileName, 'w+') for i in range(continuousMat.shape[0]): # Iterate through the rows of the continous matrix and put each into HDP format numNonZero = np.count_nonzero(continuousMat[i,:]) if numNonZero < options.minTFs: # All of the peaks have 0 signal, so continue continue HDPFile.write(str(numNonZero)) for j in range(continuousMat.shape[1]): # Iterate through the columns of the continuous matrix and put each entry into column number:value format if continuousMat[i][j] == 0: # There is no peak for the current TF in this location, so skip it continue HDPFile.write(" " + str(j) + ":") if options.numBins == 1: # The data will be binarized HDPFile.write("1") else: # The data will not be binarized # Adding 2 so that 0 will be more different from weak peaks that peaks are from peaks that are in the next bin binnedSignal = int(math.floor(float(options.numBins) * continuousMat[i][j])) + 2 HDPFile.write(str(binnedSignal)) HDPFile.write("\n") HDPFile.close() if __name__ == "__main__": options = parseArgument() convertContinuousMatToHDPFormat(options)
{ "content_hash": "83099219200842ed8cf1318b6a78b768", "timestamp": "", "source": "github", "line_count": 51, "max_line_length": 114, "avg_line_length": 41.94117647058823, "alnum_prop": 0.7288452547919588, "repo_name": "imk1/IMKTFBindingCode", "id": "2f6269b0aedd56f22ccf4ec86ff9d34f1aa4d6e2", "size": "2139", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "convertContinuousMatToHDPFormat.py", "mode": "33261", "license": "mit", "language": [ { "name": "Python", "bytes": "1156919" }, { "name": "R", "bytes": "22835" }, { "name": "Shell", "bytes": "416606" } ], "symlink_target": "" }
import os, sys lib = os.path.abspath(os.path.join(os.path.dirname( __file__ ),'..','hownewspaperswrite')) sys.path.append(lib) from django.core.exceptions import ObjectDoesNotExist from termcolor import colored class SaveDataInDatabase: def __init__(self,): """""" def dropTable(request, table_name = "hownewspaperswrite_app_entity_items" ): #hownewspaperswrite_app_entity from django.db import connection, transaction cursor = connection.cursor() try: cursor.execute("DROP TABLE "+table_name+";") except Exception as e: print "Error in dropping app_postitem table %s " % e def resetItemsFreqDist(self): """Resets items freq dist to zero for rebasing.""" from models import PostItem results = PostItem.most_common.delete_everything() #results = PostItem.objects.all().delete() print "Resetting %s items..." % results.count() return updated = 0 for res in results: if res.numeric != 0: print "Resetting: %s # %s" % (res.word, updated) res.numeric = 0 res.save() updated += 1 return updated def addSite(self, testate = "", url = "", thumbnail = "", description = "", language = 'eng'): """Creates site information.""" from models import Site if len(url) == 0: raise Exception("No url") try: r = Site.objects.create(title=testate, url=url, thumbnail = thumbnail, description = description, language = language) createdSite = True except: r = Site.objects.get(url=url) createdSite = False print "AddSite: Site was created? %s" % createdSite return r def addSitePost(self, site, testo, url_articolo, links, titolo = ""): """Save in database all events contained in a file. :param listOfEvents: List of event objects to save in DB. Return int with total saved videos in database. """ from models import SitePost if len(titolo) == 0: titolo = url_articolo #print titolo try: v = SitePost.objects.get(url_articolo = url_articolo) created = False except: v = SitePost.objects.create( testata = site, url_articolo = url_articolo, testo = testo, titolo = titolo ) created = True tot = 0 print "Created: %s | URL: %s" % (created, v.url_articolo) if created is True: links = [self.addPostItem(site,link,'LINK', url_articolo) for link in links if "http" in link and len(link)>3] for link in links: v.links.add(link) tot+=1 print "AddSitePost: Url: %s | Created? %s | Links created: %s" % (v.url_articolo, created, tot) return created def addPostItem(self, site, word, tipo, parent_url = "", numeric = 0, tfidf = 0, stem = ""): """Add video to db :param video: Django video DB object containing title, description, url, thumb url ... Return two variables with: * **v** -- Created video object in database, dict. * **created** -- True if video is created, false if video is already present, bool. """ from models import PostItem try: v = PostItem.objects.get(word = word, testata_nome = site.title) print colored("Updating: %s | %s | %s | %s | %s" % (word,v.testata.title, tipo,v.numeric, numeric), "red") v.numeric = int(v.numeric)+int(numeric) except ObjectDoesNotExist: v = PostItem.objects.create( word = word, tipo = tipo, url_articolo = parent_url, numeric = numeric, testata = site, testata_nome = site.title ) #v.testate.add(site) print colored("Saving: %s | %s | %s | %s" % (word,site.title, tipo, numeric), "green") if len(stem) > 0: v.stem = stem if tfidf > 0: #db specific hack v.tfidf = int(tfidf * 100000) print colored("Final: %s | %s | %s | %s | %s\n" % (word,site.title, tipo,v.numeric, v.stem), "white") return v def addEntity(self, nome= "", word = "", tipo = "", subtipo = "", value = 0, articles_ref = [], categoria = "cd ", add_items = True, add_articles = False): from models import Entity, PostItem, SitePost print colored("Saving %s from %s..." % (nome, word), "green") try: e = Entity.objects.get(name = nome) except ObjectDoesNotExist: e = Entity.objects.create( name = nome, tipo = tipo, subtipo = subtipo, category = categoria ) if value != e.valore: e.valore = value if add_items is True: posts = PostItem.stems.filter(word__istartswith = word) c = 0 for post in posts: c +=1 e.items.add(post) print "Linked %s to %s items." % (nome, c) def saveArticle(e,articles): d = 0 for article in articles: d +=1 #TYPOOOOOOOOOOO e.aritcles.add(article) print "Linked %s to %s articles." % (nome,d) e.save() return e if add_articles is True: articles = SitePost.objects.filter(testo_icontains = word) e = saveArticle(e, articles) if len(articles_ref) > 0: e = saveArticle(e, articles_ref) print colored("Saved %s" % e.name, "yellow") return e def addArticlesToEntity(self, entity = {}): """Adds articles to entity.""" from models import Entity, PostItem, SitePost if len(entity) == 0: entities = Entity.objects.all() else: entities = [entity] c = 0 for ent in entities: print "Matching articles for %s..." % ent.name articles = SitePost.objects.filter(testo__icontains = ent.name) for article in articles: for ent_art in ent.aritcles.all(): if article.titolo not in ent_art.titolo: ent.aritcles.add(article) c += 1 ent.save() print "[AddToModels][addArticlesToEntity] Saved %s for %s " % (ent.aritcles.count(), ent.name) return { "entities": len(entities), "total_articles": len() }
{ "content_hash": "3f41f08b0cb5d9cef072d0341c1164af", "timestamp": "", "source": "github", "line_count": 199, "max_line_length": 159, "avg_line_length": 35.175879396984925, "alnum_prop": 0.5128571428571429, "repo_name": "andrea-f/hownewspaperswrite", "id": "b7b2ba78250cf62f864e7cc44e44541a7faab9fa", "size": "7000", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "django/hownewspaperswrite/hownewspaperswrite_app/AddToModels.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "12887" }, { "name": "Python", "bytes": "39283" } ], "symlink_target": "" }
import json import os import uuid folder, fname = os.path.split(__file__) def contents_of(f): with open(f, 'r') as ins_file: contents = ' '.join(ins_file.readlines()) return contents DEBUG = bool(int(os.environ.get('SOWING_DEBUG', 1))) # True CSRF_SECRET = 'mysecretsRsaf3' if DEBUG else uuid.uuid4().hex LOCAL_SETTINGS = os.environ.get('SOWING_SETTINGS', None) if LOCAL_SETTINGS is None: LOCAL_SETTINGS = os.path.join(folder, 'local-settings.json') if not os.path.exists(LOCAL_SETTINGS): raise EnvironmentError('no configuration settings `local-settings.py`, %s' % LOCAL_SETTINGS) APP_CONFIG = { 'port': 8888, 'host': '127.0.0.1', 'domain': 'sowingseasons.com', 'protocol': 'http' if DEBUG else 'https', # we don't support HTTP on the WildWildWeb 'media': r'/home/blake/temp/sowing-seasons-media', 'private_settings': json.load(open(LOCAL_SETTINGS, 'r')), 'logging': { 'version': 1, 'incremental': False, 'disable_existing_loggers': False, 'loggers': { 'summer': { 'level': 'DEBUG', 'handlers': ['console', 'file'], 'qualname': 'sowing', 'propagate': 0 } }, 'formatters': { "default": { "format": "%(asctime)s %(ip)-15s %(levelname)-5s %(name)-40s: %(message)s", "datefmt": "%Y-%m-%d %H:%M:%S" } }, 'filters': { 'traffic': { '()': 'summer.ext.logs.IPFilter' } }, 'handlers': { 'file': { 'class': 'logging.handlers.RotatingFileHandler', 'formatter': 'default', 'level': 'DEBUG', 'filename': r'/home/blake/temp/sowing-seasons-logs/server.log', 'maxBytes': 10000000, 'backupCount': 20, 'mode': 'a', 'filters': ['traffic'] }, 'console': { 'class': 'logging.StreamHandler', 'formatter': 'default', 'level': 'DEBUG', 'stream': 'ext://sys.stdout', 'filters': ['traffic'] } } } } SEO_VALUES = { 'title': 'SowingSeasons - takes awhile to grow anything.', 'keywords': 'technology,programming,python', 'description': contents_of(r'DESCRIPTION'), 'author': 'Blake VandeMerwe <blakev@null.net>', 'author_name': 'Blake VandeMerwe', 'author_email': 'blakev@null.net', 'google': { 'author_id': '+BlakeVandeMerwe' }, 'img': r'/static/img/profile.jpg', 'run_analytics': not DEBUG } TORNADO_CONFIG = { 'debug': DEBUG, 'compress_response': True, 'cookie_secret': CSRF_SECRET, 'login_url': '/login', 'xsrf_cookies': True, # static files 'static_hash_cache': not DEBUG, } WHOOSH = { 'index_name': 'sowing-seasons', 'location': r'/home/blake/temp/sowing-seasons-index' }
{ "content_hash": "b136e47754bd8e92fa8cc42c83781232", "timestamp": "", "source": "github", "line_count": 107, "max_line_length": 100, "avg_line_length": 28.411214953271028, "alnum_prop": 0.5210526315789473, "repo_name": "blakev/sowing-seasons", "id": "d1d3e13e9cdc43c8b51dcc811db25033cfaf0a10", "size": "3040", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "summer/settings.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "3185" }, { "name": "HTML", "bytes": "29821" }, { "name": "Python", "bytes": "36386" } ], "symlink_target": "" }
from django.views.generic import TemplateView class DirectTemplateView(TemplateView): extra_context = None def get_context_data(self, **kwargs): context = super(self.__class__, self).get_context_data(**kwargs) if self.extra_context is not None: for key, value in self.extra_context.items(): if callable(value): context[key] = value() else: context[key] = value return context
{ "content_hash": "d8276032d126df6186f42214080bdf19", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 72, "avg_line_length": 31.25, "alnum_prop": 0.572, "repo_name": "DarioGT/docker-carra", "id": "7e11f25df20d992753f7fb951e1d224e874df5cc", "size": "542", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/protoExt/utils/generic_views.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "64175" }, { "name": "Dockerfile", "bytes": "739" }, { "name": "HTML", "bytes": "14125" }, { "name": "JavaScript", "bytes": "21266785" }, { "name": "Makefile", "bytes": "433" }, { "name": "Python", "bytes": "851053" }, { "name": "Shell", "bytes": "2934" }, { "name": "Visual Basic", "bytes": "7788" } ], "symlink_target": "" }