code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
x_shift = x - center_x y_shift = y - center_y return amp * (1. + (x_shift**2+y_shift**2)/alpha**2)**(-beta)
def function(self, x, y, amp, alpha, beta, center_x, center_y)
returns Moffat profile
2.475056
2.513353
0.984763
if theta_E < 0: theta_E = 0 if s_scale < 0.00000001: s_scale = 0.00000001 if gamma < 1.2: gamma = 1.2 theta_E = 0 if gamma > 2.9: gamma = 2.9 theta_E = 0 if q < 0.01: q = 0.01 theta_E = 0 if q > 1: q = 1. theta_E = 0 return theta_E, gamma, q, phi_G, s_scale
def _parameter_constraints(self, theta_E, gamma, q, phi_G, s_scale)
sets bounds to parameters due to numerical stability :param theta_E: :param gamma: :param q: :param phi_G: :param s_scale: :return:
1.800551
1.784077
1.009234
if num_sigma > 3: raise ValueError("Number of sigma-constraints restircted to three. %s not valid" % num_sigma) num = len(sample) num_threshold1 = int(round((num-1)*0.833)) num_threshold2 = int(round((num-1)*0.977249868)) num_threshold3 = int(round((num-1)*0.998650102)) median = np.median(sample) sorted_sample = np.sort(sample) if num_sigma > 0: upper_sigma1 = sorted_sample[num_threshold1-1] lower_sigma1 = sorted_sample[num-num_threshold1-1] else: return median, [[]] if num_sigma > 1: upper_sigma2 = sorted_sample[num_threshold2-1] lower_sigma2 = sorted_sample[num-num_threshold2-1] else: return median, [[median-lower_sigma1, upper_sigma1-median]] if num_sigma > 2: upper_sigma3 = sorted_sample[num_threshold3-1] lower_sigma3 = sorted_sample[num-num_threshold3-1] return median, [[median-lower_sigma1, upper_sigma1-median], [median-lower_sigma2, upper_sigma2-median], [median-lower_sigma3, upper_sigma3-median]] else: return median, [[median-lower_sigma1, upper_sigma1-median], [median-lower_sigma2, upper_sigma2-median]]
def compute_lower_upper_errors(sample, num_sigma=1)
computes the upper and lower sigma from the median value. This functions gives good error estimates for skewed pdf's :param sample: 1-D sample :return: median, lower_sigma, upper_sigma
2.087714
2.063923
1.011527
t = (x-e) / w return 2. / w * stats.norm.pdf(t) * stats.norm.cdf(a*t)
def pdf(self, x, e=0., w=1., a=0.)
probability density function see: https://en.wikipedia.org/wiki/Skew_normal_distribution :param x: input value :param e: :param w: :param a: :return:
5.021868
6.660064
0.754027
if skw > 1 or skw < -1: print("skewness %s out of range" % skw) skw = 1. e, w, a = self.map_mu_sigma_skw(mu, sigma, skw) pdf = self.pdf(x, e, w, a) return pdf
def pdf_new(self, x, mu, sigma, skw)
function with different parameterisation :param x: :param mu: mean :param sigma: sigma :param skw: skewness :return:
4.015105
4.182294
0.960025
sigma2=sigma**2 w2 = sigma2/(1-2*delta**2/np.pi) w = np.sqrt(w2) return w
def _w_sigma_delta(self, sigma, delta)
invert variance :param sigma: :param delta: :return: w parameter
5.51817
5.914146
0.933046
delta = self._delta_skw(skw) a = self._alpha_delta(delta) w = self._w_sigma_delta(sigma, delta) e = self._e_mu_w_delta(mu, w, delta) return e, w, a
def map_mu_sigma_skw(self, mu, sigma, skw)
map to parameters e, w, a :param mu: mean :param sigma: standard deviation :param skw: skewness :return: e, w, a
4.13241
3.201078
1.290943
if lower_start is None or upper_start is None: lower_start, upper_start = np.array(self.lower_limit), np.array(self.upper_limit) print("PSO initialises its particles with default values") else: lower_start = np.maximum(lower_start, self.lower_limit) upper_start = np.minimum(upper_start, self.upper_limit) if mpi is True: pso = MpiParticleSwarmOptimizer(self.chain, lower_start, upper_start, n_particles, threads=1) if pso.isMaster(): print('MPI option chosen') else: pso = ParticleSwarmOptimizer(self.chain, lower_start, upper_start, n_particles, threads=threadCount) if init_pos is None: init_pos = (upper_start - lower_start) / 2 + lower_start if not init_pos is None: pso.gbest.position = init_pos pso.gbest.velocity = [0]*len(init_pos) pso.gbest.fitness, _ = self.chain.likelihood(init_pos) X2_list = [] vel_list = [] pos_list = [] time_start = time.time() if pso.isMaster(): print('Computing the %s ...' % print_key) num_iter = 0 for swarm in pso.sample(n_iterations): X2_list.append(pso.gbest.fitness*2) vel_list.append(pso.gbest.velocity) pos_list.append(pso.gbest.position) num_iter += 1 if pso.isMaster(): if num_iter % 10 == 0: print(num_iter) if not mpi: result = pso.gbest.position else: result = MpiUtil.mpiBCast(pso.gbest.position) #if (pso.isMaster() and mpi is True) or self.chain.sampling_option == 'X2_catalogue': if mpi is True and not pso.isMaster(): pass else: lens_dict, source_dict, lens_light_dict, ps_dict, kwargs_cosmo = self.chain.param.args2kwargs(result) print(pso.gbest.fitness * 2 / (self.chain.effectiv_num_data_points(lens_dict, source_dict, lens_light_dict, ps_dict)), 'reduced X^2 of best position') print(pso.gbest.fitness, 'logL') print(self.chain.effectiv_num_data_points(lens_dict, source_dict, lens_light_dict, ps_dict), 'effective number of data points') print(lens_dict, 'lens result') print(source_dict, 'source result') print(lens_light_dict, 'lens light result') print(ps_dict, 'point source result') print(kwargs_cosmo, 'cosmo result') time_end = time.time() print(time_end - time_start, 'time used for PSO', print_key) print('===================') return result, [X2_list, pos_list, vel_list, []]
def pso(self, n_particles, n_iterations, lower_start=None, upper_start=None, threadCount=1, init_pos=None, mpi=False, print_key='PSO')
returns the best fit for the lense model on catalogue basis with particle swarm optimizer
2.92947
2.86003
1.024279
lowerLimit, upperLimit = self.lower_limit, self.upper_limit mean_start = np.maximum(lowerLimit, mean_start) mean_start = np.minimum(upperLimit, mean_start) low_start = mean_start - sigma_start high_start = mean_start + sigma_start low_start = np.maximum(lowerLimit, low_start) high_start = np.minimum(upperLimit, high_start) sigma_start = (high_start - low_start) / 2 mean_start = (high_start + low_start) / 2 params = np.array([mean_start, lowerLimit, upperLimit, sigma_start]).T chain = LikelihoodComputationChain( min=lowerLimit, max=upperLimit) temp_dir = tempfile.mkdtemp("Hammer") file_prefix = os.path.join(temp_dir, "logs") #file_prefix = "./lenstronomy_debug" # chain.addCoreModule(CambCoreModule()) chain.addLikelihoodModule(self.chain) chain.setup() store = InMemoryStorageUtil() #store = None if mpi is True: sampler = MpiCosmoHammerSampler( params=params, likelihoodComputationChain=chain, filePrefix=file_prefix, walkersRatio=walkerRatio, burninIterations=n_burn, sampleIterations=n_run, threadCount=1, initPositionGenerator=init_pos, storageUtil=store) else: sampler = CosmoHammerSampler( params=params, likelihoodComputationChain=chain, filePrefix=file_prefix, walkersRatio=walkerRatio, burninIterations=n_burn, sampleIterations=n_run, threadCount=threadCount, initPositionGenerator=init_pos, storageUtil=store) time_start = time.time() if sampler.isMaster(): print('Computing the MCMC...') print('Number of walkers = ', len(mean_start)*walkerRatio) print('Burn-in iterations: ', n_burn) print('Sampling iterations:', n_run) sampler.startSampling() if sampler.isMaster(): time_end = time.time() print(time_end - time_start, 'time taken for MCMC sampling') # if sampler._sampler.pool is not None: # sampler._sampler.pool.close() try: shutil.rmtree(temp_dir) except Exception as ex: print(ex, 'shutil.rmtree did not work') pass #samples = np.loadtxt(file_prefix+".out") #prob = np.loadtxt(file_prefix+"prob.out") return store.samples, store.prob
def mcmc_CH(self, walkerRatio, n_run, n_burn, mean_start, sigma_start, threadCount=1, init_pos=None, mpi=False)
runs mcmc on the parameter space given parameter bounds with CosmoHammerSampler returns the chain
2.867338
2.852039
1.005364
exposure_time_tot = num_exposures * exposure_time readout_noise_tot = num_exposures * readout_noise ** 2 sky_per_pixel = sky_brightness * pixel_scael ** 2 sigma_bkg = np.sqrt(readout_noise_tot + exposure_time_tot * sky_per_pixel ** 2) / exposure_time_tot return sigma_bkg
def bkg_noise(readout_noise, exposure_time, sky_brightness, pixel_scael, num_exposures=1)
computes the expected Gaussian background noise of a pixel in units of counts/second :param readout_noise: noise added per readout :param exposure_time: exposure time per exposure (in seconds) :param sky_brightness: counts per second per unit arcsecond square :param pixel_scael: size of pixel in units arcseonds :param num_exposures: number of exposures (with same exposure time) to be co-added :return: estimated Gaussian noise sqrt(variance)
2.26455
2.376397
0.952934
if self.PointSource is not None: self.PointSource.delete_lens_model_cach() self.PointSource.set_save_cache(bool)
def reset_point_source_cache(self, bool=True)
deletes all the cache in the point source class and saves it from then on :return:
7.926554
7.900605
1.003284
A = self._response_matrix(self.ImageNumerics.ra_grid_ray_shooting, self.ImageNumerics.dec_grid_ray_shooting, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, self.ImageNumerics.mask) return A
def linear_response_matrix(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None)
computes the linear response matrix (m x n), with n beeing the data size and m being the coefficients :param kwargs_lens: :param kwargs_source: :param kwargs_lens_light: :param kwargs_ps: :return:
4.18527
4.970788
0.841973
d = self.ImageNumerics.image2array(self.Data.data * self.ImageNumerics.mask) return d
def data_response(self)
returns the 1d array of the data element that is fitted for (including masking) :return: 1d numpy array
20.897778
15.961881
1.30923
model_error = self.error_map(kwargs_lens, kwargs_ps) error_map_1d = self.ImageNumerics.image2array(model_error) C_D_response = self.ImageNumerics.C_D_response + error_map_1d return C_D_response, model_error
def error_response(self, kwargs_lens, kwargs_ps)
returns the 1d array of the error estimate corresponding to the data response :return: 1d numpy array of response, 2d array of additonal errors (e.g. point source uncertainties)
4.889143
5.054728
0.967242
chi2 = self.reduced_residuals(model, error_map) return np.sum(chi2**2) / self.num_data_evaluate()
def reduced_chi2(self, model, error_map=0)
returns reduced chi2 :param model: :param error_map: :return:
5.075542
6.194157
0.819408
args = self.lensParams.setParams(kwargs_lens) args += self.souceParams.setParams(kwargs_source) args += self.lensLightParams.setParams(kwargs_lens_light) args += self.pointSourceParams.setParams(kwargs_ps) args += self.cosmoParams.setParams(kwargs_cosmo) return args
def kwargs2args(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None, kwargs_cosmo=None)
inverse of getParam function :param kwargs_lens: keyword arguments depending on model options :param kwargs_source: keyword arguments depending on model options :return: tuple of parameters
2.002854
2.139736
0.936029
kwargs_source_copy = copy.deepcopy(kwargs_source) for i, kwargs in enumerate(kwargs_source_copy): if self._image_plane_source_list[i] is True and not image_plane: if 'center_x' in kwargs: x_mapped, y_mapped = self._image2SourceMapping.image2source(kwargs['center_x'], kwargs['center_y'], kwargs_lens, idex_source=i) kwargs['center_x'] = x_mapped kwargs['center_y'] = y_mapped return kwargs_source_copy
def image2source_plane(self, kwargs_source, kwargs_lens, image_plane=False)
maps the image plane position definition of the source plane :param kwargs_source: :param kwargs_lens: :return:
3.201626
3.273851
0.977939
kwargs_lens_updated = copy.deepcopy(kwargs_lens) if self._mass_scaling is False: return kwargs_lens_updated scale_factor_list = np.array(kwargs_cosmo['scale_factor']) if inverse is True: scale_factor_list = 1. / np.array(kwargs_cosmo['scale_factor']) for i, kwargs in enumerate(kwargs_lens_updated): if self._mass_scaling_list[i] is not False: scale_factor = scale_factor_list[self._mass_scaling_list[i] - 1] if 'theta_E' in kwargs: kwargs['theta_E'] *= scale_factor elif 'theta_Rs' in kwargs: kwargs['theta_Rs'] *= scale_factor elif 'sigma0' in kwargs: kwargs['sigma0'] *= scale_factor elif 'k_eff' in kwargs: kwargs['k_eff'] *= scale_factor return kwargs_lens_updated
def update_lens_scaling(self, kwargs_cosmo, kwargs_lens, inverse=False)
multiplies the scaling parameters of the profiles :param args: :param kwargs_lens: :param i: :param inverse: :return:
2.156718
2.175265
0.991474
if self._solver is True: image_x, image_y = kwargs_ps[0]['ra_image'], kwargs_ps[0]['dec_image'] image_x, image_y = self.real_image_positions(image_x, image_y, kwargs_cosmo) dist = self._solver_module.check_solver(image_x, image_y, kwargs_lens) return np.max(dist) else: return 0
def check_solver(self, kwargs_lens, kwargs_ps, kwargs_cosmo={})
test whether the image positions map back to the same source position :param kwargs_lens: :param kwargs_ps: :return: Euclidean distance between the rayshooting of the image positions
3.262689
3.165092
1.030836
num, param_list = self.num_param() num_linear = self.num_param_linear() print("The following model options are chosen:") print("Lens models:", self._lens_model_list) print("Source models:", self._source_light_model_list) print("Lens light models:", self._lens_light_model_list) print("Point source models:", self._point_source_model_list) print("===================") print("The following parameters are being fixed:") print("Lens:", self.lensParams.kwargs_fixed) print("Source:", self.souceParams.kwargs_fixed) print("Lens light:", self.lensLightParams.kwargs_fixed) print("Point source:", self.pointSourceParams.kwargs_fixed) print("===================") print("Joint parameters for different models") print("Joint lens with lens:", self._joint_lens_with_lens) print("Joint lens with lens light:", self._joint_lens_light_with_lens_light) print("Joint source with source:", self._joint_source_with_source) print("Joint lens with light:", self._joint_lens_with_light) print("Joint source with point source:", self._joint_source_with_point_source) print("===================") print("Number of non-linear parameters being sampled: ", num) print("Parameters being sampled: ", param_list) print("Number of linear parameters being solved for: ", num_linear)
def print_setting(self)
prints the setting of the parameter class :return:
2.771905
2.734357
1.013732
rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core) if Rs < 0.0000001: Rs = 0.0000001 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) dx, dy = self.coreBurkAlpha(R, Rs, rho0, r_core, x_, y_) return dx, dy
def derivatives(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0)
deflection angles :param x: x coordinate :param y: y coordinate :param Rs: scale radius :param rho0: central core density :param r_core: core radius :param center_x: :param center_y: :return:
3.425037
3.46141
0.989492
if Rs < 0.0001: Rs = 0.0001 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) rho0 = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs, r_core=r_core) kappa = self.density_2d(x_, y_, Rs, rho0, r_core) gamma1, gamma2 = self.cBurkGamma(R, Rs, rho0, r_core, x_, y_) f_xx = kappa + gamma1 f_yy = kappa - gamma1 f_xy = gamma2 return f_xx, f_yy, f_xy
def hessian(self, x, y, Rs, theta_Rs, r_core, center_x=0, center_y=0)
:param x: x coordinate :param y: y coordinate :param Rs: scale radius :param rho0: central core density :param r_core: core radius :param center_x: :param center_y: :return:
3.154614
3.099449
1.017798
x = R * Rs ** -1 p = Rs * r_core ** -1 gx = self._G(x, p) m_2d = 2 * np.pi * rho0 * Rs ** 3 * gx return m_2d
def mass_2d(self, R, Rs, rho0, r_core)
analytic solution of the projection integral (convergence) :param R: projected distance :param Rs: scale radius :param rho0: central core density :param r_core: core radius
4.663474
5.217732
0.893774
x = R * Rs ** -1 p = Rs * r_core ** -1 gx = self._G(x, p) a = 2 * rho0 * Rs ** 2 * gx / x return a * ax_x / R, a * ax_y / R
def coreBurkAlpha(self, R, Rs, rho0, r_core, ax_x, ax_y)
deflection angle :param R: :param Rs: :param rho0: :param r_core: :param ax_x: :param ax_y: :return:
6.569632
7.469386
0.879541
Rs = float(Rs) b = r_core * Rs ** -1 c = R * Rs ** -1 M0 = 4*np.pi*Rs**3 * rho0 return M0 * (1+b**2) ** -1 * (0.5*np.log(1+c**2) + b**2*np.log(c*b**-1 + 1) - b*np.arctan(c))
def mass_3d(self, R, Rs, rho0, r_core)
:param R: projected distance :param Rs: scale radius :param rho0: central core density :param r_core: core radius
4.372849
4.507954
0.97003
x = R * Rs ** -1 p = Rs * r_core ** -1 hx = self._H(x, p) return 2 * rho0 * Rs ** 3 * hx
def cBurkPot(self, R, Rs, rho0, r_core)
:param R: projected distance :param Rs: scale radius :param rho0: central core density :param r_core: core radius
7.077143
6.85438
1.032499
prefactor = 0.5 * (1 + p ** 2) ** -1 * p if isinstance(x, np.ndarray): inds0 = np.where(x * p == 1) inds1 = np.where(x * p < 1) inds2 = np.where(x * p > 1) func = np.ones_like(x) func[inds0] = self._u(x[inds0]) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x[inds0]) ** -1)) func[inds1] = self._u(x[inds1]) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x[inds1]) ** -1)) - \ (2 * p * self._g(x[inds1], p) ** -1 * np.arctanh(self._g(x[inds1], p))) func[inds2] = self._u(x[inds2]) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x[inds2]) ** -1)) - \ (2 * p * self._f(x[inds2], p) ** -1 * np.arctan(self._f(x[inds2], p))) return prefactor * func else: if x * p == 1: func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x) ** -1)) elif x * p < 1: func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x) ** -1)) - \ (2 * p * self._g(x, p) ** -1 * np.arctanh(self._g(x, p))) else: func = self._u(x) ** -1 * (np.pi + 2 * p * np.arctanh(self._u(x) ** -1)) - \ (2 * p * self._f(x, p) ** -1 * np.arctan(self._f(x, p))) return prefactor * func
def _F(self, x, p)
solution of the projection integal (kappa) arctanh / arctan function :param x: r/Rs :param p: r_core / Rs :return:
1.55789
1.56003
0.998628
prefactor = (p + p ** 3) ** -1 * p if isinstance(x, np.ndarray): inds0 = np.where(x * p == 1) inds1 = np.where(x * p < 1) inds2 = np.where(x * p > 1) func = np.ones_like(x) func[inds0] = np.log(0.25 * x[inds0] ** 2 * p ** 2) + np.pi * p * (self._u(x[inds0]) - 1) + \ 2 * p ** 2 * (self._u(x[inds0]) * np.arctanh(self._u(x[inds0]) ** -1) + np.log(0.5 * x[inds0])) func[inds1] = np.log(0.25 * x[inds1] ** 2 * p ** 2) + np.pi * p * (self._u(x[inds1]) - 1) + \ 2 * p ** 2 * (self._u(x[inds1]) * np.arctanh(self._u(x[inds1]) ** -1) + np.log(0.5 * x[inds1])) + 2 * self._g(x[inds1], p) * np.arctanh( self._g(x[inds1], p)) func[inds2] = np.log(0.25 * x[inds2] ** 2 * p ** 2) + np.pi * p * (self._u(x[inds2]) - 1) + \ 2 * p ** 2 * (self._u(x[inds2]) * np.arctanh(self._u(x[inds2]) ** -1) + np.log(0.5 * x[inds2])) - 2 * self._f(x[inds2], p) * np.arctan( self._f(x[inds2], p)) else: if x * p == 1: func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1) + \ 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) + np.log(0.5 * x)) elif x * p < 1: func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1) + \ 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) + np.log(0.5 * x)) + 2 * self._g(x, p) * np.arctanh(self._g(x, p)) else: func = np.log(0.25 * x ** 2 * p ** 2) + np.pi * p * (self._u(x) - 1) + \ 2 * p ** 2 * (self._u(x) * np.arctanh(self._u(x) ** -1) + np.log(0.5 * x)) - 2 * self._f(x, p) * np.arctan(self._f(x, p)) return func * prefactor
def _G(self, x, p)
analytic solution of the 2d projected mass integral integral: 2 * pi * x * kappa * dx :param x: :param p: :return:
1.47926
1.475303
1.002682
A = [] for i in range(self._num_bands): if self._compute_bool[i] is True: A_i = self._imageModel_list[i].linear_response_matrix(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) if A == []: A = A_i else: A = np.append(A, A_i, axis=1) return A
def linear_response_matrix(self, kwargs_lens=None, kwargs_source=None, kwargs_lens_light=None, kwargs_ps=None)
computes the linear response matrix (m x n), with n beeing the data size and m being the coefficients :param kwargs_lens: :param kwargs_source: :param kwargs_lens_light: :param kwargs_ps: :return:
2.716209
2.924547
0.928762
d = [] for i in range(self._num_bands): if self._compute_bool[i] is True: d_i = self._imageModel_list[i].data_response if d == []: d = d_i else: d = np.append(d, d_i) return d
def data_response(self)
returns the 1d array of the data element that is fitted for (including masking) :return: 1d numpy array
4.996149
4.38412
1.139601
image_list = [] k = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: num_data = self.num_response_list[i] array_i = array[k:k + num_data] image_i = self._imageModel_list[i].ImageNumerics.array2image(array_i) image_list.append(image_i) k += num_data return image_list
def _array2image_list(self, array)
maps 1d vector of joint exposures in list of 2d images of single exposures :param array: 1d numpy array :return: list of 2d numpy arrays of size of exposures
4.139485
4.450428
0.930132
# generate image im_sim_list, model_error_list, cov_matrix, param = self.image_linear_solve(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=source_marg) # compute X^2 logL = 0 index = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: logL += self._imageModel_list[i].Data.log_likelihood(im_sim_list[index], self._imageModel_list[i].ImageNumerics.mask, model_error_list[index]) index += 1 if cov_matrix is not None and source_marg: marg_const = de_lens.marginalisation_const(cov_matrix) logL += marg_const return logL
def likelihood_data_given_model(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=False)
computes the likelihood of the data given a model This is specified with the non-linear parameters and a linear inversion and prior marginalisation. :param kwargs_lens: :param kwargs_source: :param kwargs_lens_light: :param kwargs_ps: :return: log likelihood (natural logarithm) (sum of the log likelihoods of the individual images)
4.637409
4.525506
1.024727
wls_list, error_map_list, cov_param_list, param_list = [], [], [], [] for i in range(self._num_bands): if self._compute_bool[i] is True: kwargs_source_i = [kwargs_source[k] for k in self._index_source_list[i]] kwargs_lens_light_i = [kwargs_lens_light[k] for k in self._index_lens_light_list[i]] wls_model, error_map, cov_param, param = self._imageModel_list[i].image_linear_solve(kwargs_lens, kwargs_source_i, kwargs_lens_light_i, kwargs_ps, inv_bool=inv_bool) wls_list.append(wls_model) error_map_list.append(error_map) cov_param_list.append(cov_param) param_list.append(param) return wls_list, error_map_list, cov_param_list, param_list
def image_linear_solve(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=False)
computes the image (lens and source surface brightness with a given lens model). The linear parameters are computed with a weighted linear least square optimization (i.e. flux normalization of the brightness profiles) :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles :param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions :param inv_bool: if True, invert the full linear solver Matrix Ax = y for the purpose of the covariance matrix. :return: 1d array of surface brightness pixels of the optimal solution of the linear parameters to match the data
1.94082
1.969807
0.985284
# generate image logL = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: kwargs_source_i = [kwargs_source[k] for k in self._index_source_list[i]] kwargs_lens_light_i = [kwargs_lens_light[k] for k in self._index_lens_light_list[i]] logL += self._imageModel_list[i].likelihood_data_given_model(kwargs_lens, kwargs_source_i, kwargs_lens_light_i, kwargs_ps, source_marg=source_marg) return logL
def likelihood_data_given_model(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=False)
computes the likelihood of the data given a model This is specified with the non-linear parameters and a linear inversion and prior marginalisation. :param kwargs_lens: :param kwargs_source: :param kwargs_lens_light: :param kwargs_ps: :return: log likelihood (natural logarithm) (sum of the log likelihoods of the individual images)
2.363994
2.417532
0.977854
source_x, source_y = self._lensModel.ray_shooting(image_x, image_y, kwargs_lens) dist = np.sqrt((source_x - source_x[0]) ** 2 + (source_y - source_y[0]) ** 2) return dist
def check_solver(self, image_x, image_y, kwargs_lens)
returns the precision of the solver to match the image position :param kwargs_lens: full lens model (including solved parameters) :param image_x: point source in image :param image_y: point source in image :return: precision of Euclidean distances between the different rays arriving at the image positions
2.103826
2.263464
0.929472
kwargs_fixed_lens = self._solver.add_fixed_lens(kwargs_fixed_lens, kwargs_lens_init) return kwargs_fixed_lens
def add_fixed_lens(self, kwargs_fixed_lens, kwargs_lens_init)
returns kwargs that are kept fixed during run, depending on options :param kwargs_options: :param kwargs_lens: :return:
2.809613
3.119948
0.900532
if not hasattr(self, '_Epsilon_Crit'): const_SI = const.c ** 2 / (4 * np.pi * const.G) #c^2/(4*pi*G) in units of [kg/m] conversion = const.Mpc / const.M_sun # converts [kg/m] to [M_sun/Mpc] factor = const_SI*conversion #c^2/(4*pi*G) in units of [M_sun/Mpc] self._Epsilon_Crit = self.D_s/(self.D_d*self.D_ds) * factor #[M_sun/Mpc^2] return self._Epsilon_Crit
def epsilon_crit(self)
returns the critical projected mass density in units of M_sun/Mpc^2 (physical units) :return: critical projected mass density
4.464348
3.95301
1.129354
mass = self.arcsec2phys_lens(theta_E) ** 2 * np.pi * self.epsilon_crit return mass
def mass_in_theta_E(self, theta_E)
mass within Einstein radius (area * epsilon crit) [M_sun] :param theta_E: Einstein radius [arcsec] :return: mass within Einstein radius [M_sun]
8.545235
7.714655
1.107663
Rs = Rs_angle * const.arcsec * self.D_d theta_scaled = theta_Rs * self.epsilon_crit * self.D_d * const.arcsec rho0 = theta_scaled / (4 * Rs ** 2 * (1 + np.log(1. / 2.))) rho0_com = rho0 / self.h**2 * self.a_z(self.z_lens)**3 c = self.nfw_param.c_rho0(rho0_com) r200 = c * Rs M200 = self.nfw_param.M_r200(r200 * self.h / self.a_z(self.z_lens)) / self.h return rho0, Rs, c, r200, M200
def nfw_angle2physical(self, Rs_angle, theta_Rs)
converts the angular parameters into the physical ones for an NFW profile :param theta_Rs: observed bending angle at the scale radius in units of arcsec :param Rs: scale radius in units of arcsec :return: M200, r200, Rs_physical, c
4.476482
4.383677
1.02117
rho0, Rs, r200 = self.nfwParam_physical(M, c) Rs_angle = Rs / self.D_d / const.arcsec # Rs in arcsec theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1. / 2.))) return Rs_angle, theta_Rs / self.epsilon_crit / self.D_d / const.arcsec
def nfw_physical2angle(self, M, c)
converts the physical mass and concentration parameter of an NFW profile into the lensing quantities :param M: mass enclosed 200 rho_crit in units of M_sun :param c: NFW concentration parameter (r200/r_s) :return: theta_Rs (observed bending angle at the scale radius, Rs_angle (angle at scale radius) (in units of arcsec)
6.860722
6.154288
1.114787
r200 = self.nfw_param.r200_M(M * self.h) / self.h * self.a_z(self.z_lens) # physical radius r200 rho0 = self.nfw_param.rho0_c(c) * self.h**2 / self.a_z(self.z_lens)**3 # physical density in M_sun/Mpc**3 Rs = r200/c return rho0, Rs, r200
def nfwParam_physical(self, M, c)
returns the NFW parameters in physical units :param M: physical mass in M_sun :param c: concentration :return:
3.995978
3.8558
1.036355
v_sigma_c2 = theta_E * const.arcsec / (4*np.pi) * self.D_s / self.D_ds return np.sqrt(v_sigma_c2)*const.c / 1000
def sis_theta_E2sigma_v(self, theta_E)
converts the lensing Einstein radius into a physical velocity dispersion :param theta_E: Einstein radius (in arcsec) :return: velocity dispersion in units (km/s)
5.614827
5.822703
0.964299
theta_E = 4 * np.pi * (v_sigma * 1000./const.c)**2 * self.D_ds / self.D_s / const.arcsec return theta_E
def sis_sigma_v2theta_E(self, v_sigma)
converts the velocity dispersion into an Einstein radius for a SIS profile :param v_sigma: velocity dispersion (km/s) :return: theta_E (arcsec)
6.495914
6.223675
1.043742
lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_d
def D_d(self, H_0, Om0, Ode0=None)
angular diameter to deflector :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]
6.099614
7.422866
0.821733
lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_s
def D_s(self, H_0, Om0, Ode0=None)
angular diameter to source :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]
6.058127
7.389849
0.81979
lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_ds
def D_ds(self, H_0, Om0, Ode0=None)
angular diameter from deflector to source :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]
6.036915
7.236716
0.834206
lensCosmo = self._get_cosom(H_0, Om0, Ode0) return lensCosmo.D_dt
def D_dt(self, H_0, Om0, Ode0=None)
time delay distance :param H_0: Hubble parameter [km/s/Mpc] :param Om0: normalized matter density at present time :return: float [Mpc]
6.277036
7.365797
0.852187
shapelets = self._createShapelet(coeffs) n_order = self._get_num_n(len(coeffs)) dx_shapelets = self._dx_shapelets(shapelets, beta) dy_shapelets = self._dy_shapelets(shapelets, beta) n = len(np.atleast_1d(x)) if n <= 1: f_x = self._shapeletOutput(x, y, beta, dx_shapelets, precalc=False) f_y = self._shapeletOutput(x, y, beta, dy_shapelets, precalc=False) else: H_x, H_y = self.pre_calc(x, y, beta, n_order+1, center_x, center_y) f_x = self._shapeletOutput(H_x, H_y, beta, dx_shapelets) f_y = self._shapeletOutput(H_x, H_y, beta, dy_shapelets) return f_x, f_y
def derivatives(self, x, y, coeffs, beta, center_x=0, center_y=0)
returns df/dx and df/dy of the function
2.889927
2.810729
1.028177
shapelets = self._createShapelet(coeffs) n_order = self._get_num_n(len(coeffs)) dxx_shapelets = self._dxx_shapelets(shapelets, beta) dyy_shapelets = self._dyy_shapelets(shapelets, beta) dxy_shapelets = self._dxy_shapelets(shapelets, beta) n = len(np.atleast_1d(x)) if n <= 1: f_xx = self._shapeletOutput(x, y, beta, dxx_shapelets, precalc=False) f_yy = self._shapeletOutput(x, y, beta, dyy_shapelets, precalc=False) f_xy = self._shapeletOutput(x, y, beta, dxy_shapelets, precalc=False) else: H_x, H_y = self.pre_calc(x, y, beta, n_order+2, center_x, center_y) f_xx = self._shapeletOutput(H_x, H_y, beta, dxx_shapelets) f_yy = self._shapeletOutput(H_x, H_y, beta, dyy_shapelets) f_xy = self._shapeletOutput(H_x, H_y, beta, dxy_shapelets) return f_xx, f_yy, f_xy
def hessian(self, x, y, coeffs, beta, center_x=0, center_y=0)
returns Hessian matrix of function d^2f/dx^2, d^f/dy^2, d^2/dxdy
2.233428
2.210883
1.010197
n_coeffs = len(coeffs) num_n = self._get_num_n(n_coeffs) shapelets=np.zeros((num_n+1, num_n+1)) n = 0 k = 0 for coeff in coeffs: shapelets[n-k][k] = coeff k += 1 if k == n + 1: n += 1 k = 0 return shapelets
def _createShapelet(self, coeffs)
returns a shapelet array out of the coefficients *a, up to order l :param num_l: order of shapelets :type num_l: int. :param coeff: shapelet coefficients :type coeff: floats :returns: complex array :raises: AttributeError, KeyError
2.883511
3.003345
0.9601
n = len(np.atleast_1d(x)) if n <= 1: values = 0. else: values = np.zeros(len(x[0])) n = 0 k = 0 i = 0 num_n = len(shapelets) while i < num_n * (num_n+1)/2: values += self._function(x, y, shapelets[n-k][k], beta, n-k, k, precalc=precalc) k += 1 if k == n + 1: n += 1 k = 0 i += 1 return values
def _shapeletOutput(self, x, y, beta, shapelets, precalc=True)
returns the the numerical values of a set of shapelets at polar coordinates :param shapelets: set of shapelets [l=,r=,a_lr=] :type shapelets: array of size (n,3) :param coordPolar: set of coordinates in polar units :type coordPolar: array of size (n,2) :returns: array of same size with coords [r,phi] :raises: AttributeError, KeyError
3.495043
3.890432
0.898369
num_n = len(shapelets) dx = np.zeros((num_n+1, num_n+1)) for n1 in range(num_n): for n2 in range(num_n): amp = shapelets[n1][n2] dx[n1+1][n2] -= np.sqrt((n1+1)/2.) * amp if n1 > 0: dx[n1-1][n2] += np.sqrt(n1/2.) * amp return dx/beta
def _dx_shapelets(self, shapelets, beta)
computes the derivative d/dx of the shapelet coeffs :param shapelets: :param beta: :return:
2.839108
2.844248
0.998193
num_n = len(shapelets) dy = np.zeros((num_n+1, num_n+1)) for n1 in range(num_n): for n2 in range(num_n): amp = shapelets[n1][n2] dy[n1][n2+1] -= np.sqrt((n2+1)/2.) * amp if n2 > 0: dy[n1][n2-1] += np.sqrt(n2/2.) * amp return dy/beta
def _dy_shapelets(self, shapelets, beta)
computes the derivative d/dx of the shapelet coeffs :param shapelets: :param beta: :return:
2.761715
2.757558
1.001508
n_array = np.zeros(n+1) n_array[n] = 1 return hermite.hermval(x, n_array, tensor=False)
def H_n(self, n, x)
constructs the Hermite polynomial of order n at position x (dimensionless) :param n: The n'the basis function. :type name: int. :param x: 1-dim position (dimensionless) :type state: float or numpy array. :returns: array-- H_n(x). :raises: AttributeError, KeyError
4.747534
5.565606
0.853013
prefactor = 1./np.sqrt(2**n*np.sqrt(np.pi)*math.factorial(n)) return prefactor*self.H_n(n,x)*np.exp(-x**2/2.)
def phi_n(self,n,x)
constructs the 1-dim basis function (formula (1) in Refregier et al. 2001) :param n: The n'the basis function. :type name: int. :param x: 1-dim position (dimensionless) :type state: float or numpy array. :returns: array-- phi_n(x). :raises: AttributeError, KeyError
3.444309
4.112904
0.83744
lens_model = self._lens_mode_list[0] if self._solver_type == 'CENTER': center_x = kwargs_list[0]['center_x'] center_y = kwargs_list[0]['center_y'] x = [center_x, center_y] elif self._solver_type == 'ELLIPSE': e1 = kwargs_list[0]['e1'] e2 = kwargs_list[0]['e2'] x = [e1, e2] elif self._solver_type == 'SHAPELETS': coeffs = list(kwargs_list[0]['coeffs']) [c10, c01] = coeffs[1: 3] x = [c10, c01] elif self._solver_type == 'THETA_E_PHI': theta_E = kwargs_list[0]['theta_E'] e1 = kwargs_list[1]['e1'] e2 = kwargs_list[1]['e2'] phi_ext, gamma_ext = param_util.ellipticity2phi_gamma(e1, e2) x = [theta_E, phi_ext] else: raise ValueError("Solver type %s not supported for 2-point solver!" % self._solver_type) return x
def _extract_array(self, kwargs_list)
inverse of _update_kwargs :param kwargs_list: :return:
2.58854
2.582156
1.002472
if self._background_noise is None: return data_util.bkg_noise(self.read_noise, self._exposure_time, self.sky_brightness, self.pixel_scale, num_exposures=self._num_exposures) else: return self._background_noise
def background_noise(self)
Gaussian sigma of noise level per pixel (in counts per second) :return: sqrt(variance) of background noise level
4.273021
4.669784
0.915036
if self._data_count_unit == 'ADU': exp_time = self.ccd_gain * self.exposure_time else: exp_time = self.exposure_time return exp_time
def scaled_exposure_time(self)
scaled "effective" exposure time of IID counts. This can be used by lenstronomy to estimate the Poisson errors keeping the assumption that the counts are IIDs (even if they are not). :return: scaled exposure time
3.977553
4.030285
0.986916
# compute counts in units of ADS (as magnitude zero point is defined) cps = data_util.magnitude2cps(magnitude, magnitude_zero_point=self._magnitude_zero_point) if self._data_count_unit == 'e-': cps *= self.ccd_gain return cps
def magnitude2cps(self, magnitude)
converts an apparent magnitude to counts per second (in units of the data) The zero point of an instrument, by definition, is the magnitude of an object that produces one count (or data number, DN) per second. The magnitude of an arbitrary object producing DN counts in an observation of length EXPTIME is therefore: m = -2.5 x log10(DN / EXPTIME) + ZEROPOINT :param magnitude: magnitude of object :return: counts per second of object
10.503045
9.673745
1.085727
Ra, Rs = self._sort_ra_rs(Ra, Rs) rho = rho0 / ((1 + (r / Ra) ** 2) * (1 + (r / Rs) ** 2)) return rho
def density(self, r, rho0, Ra, Rs)
computes the density :param x: :param y: :param rho0: :param Ra: :param Rs: :return:
3.363724
3.935128
0.854794
Ra, Rs = self._sort_ra_rs(Ra, Rs) x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) sigma0 = self.rho2sigma(rho0, Ra, Rs) sigma = sigma0 * Ra * Rs / (Rs - Ra) * (1 / np.sqrt(Ra ** 2 + r ** 2) - 1 / np.sqrt(Rs ** 2 + r ** 2)) return sigma
def density_2d(self, x, y, rho0, Ra, Rs, center_x=0, center_y=0)
projected density :param x: :param y: :param rho0: :param Ra: :param Rs: :param center_x: :param center_y: :return:
2.817644
3.016779
0.933991
m_3d = 4 * np.pi * rho0 * Ra ** 2 * Rs ** 2 / (Rs ** 2 - Ra ** 2) * (Rs * np.arctan(r / Rs) - Ra * np.arctan(r / Ra)) return m_3d
def mass_3d(self, r, rho0, Ra, Rs)
mass enclosed a 3d sphere or radius r :param r: :param Ra: :param Rs: :return:
2.896625
3.249695
0.891353
Ra, Rs = self._sort_ra_rs(Ra, Rs) sigma0 = self.rho2sigma(rho0, Ra, Rs) m_2d = 2 * np.pi * sigma0 * Ra * Rs / (Rs - Ra) * (np.sqrt(Ra ** 2 + r ** 2) - Ra - np.sqrt(Rs ** 2 + r ** 2) + Rs) return m_2d
def mass_2d(self, r, rho0, Ra, Rs)
mass enclosed projected 2d sphere of radius r :param r: :param rho0: :param Ra: :param Rs: :return:
3.50246
3.599039
0.973165
Ra, Rs = self._sort_ra_rs(Ra, Rs) sigma0 = self.rho2sigma(rho0, Ra, Rs) m_tot = 2 * np.pi * sigma0 * Ra * Rs return m_tot
def mass_tot(self, rho0, Ra, Rs)
total mass within the profile :param rho0: :param Ra: :param Rs: :return:
3.959361
4.327614
0.914906
Ra, Rs = self._sort_ra_rs(Ra, Rs) x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) pot = 4 * np.pi * rho0 * Ra ** 2 * Rs ** 2 / (Rs ** 2 - Ra ** 2) * (Rs / r * np.arctan(r / Rs) - Ra / r * np.arctan(r / Ra) + 1. / 2 * np.log((Rs ** 2 + r ** 2) / (Ra ** 2 + r ** 2))) return pot
def grav_pot(self, x, y, rho0, Ra, Rs, center_x=0, center_y=0)
gravitational potential (modulo 4 pi G and rho0 in appropriate units) :param x: :param y: :param rho0: :param Ra: :param Rs: :param center_x: :param center_y: :return:
2.831388
2.933557
0.965172
return r_a/(1+np.sqrt(1 + r_a**2)) - r_s/(1+np.sqrt(1 + r_s**2))
def _f_A20(self, r_a, r_s)
equation A20 in Eliasdottir (2013) :param r_a: r/Ra :param r_s: r/Rs :return:
3.133049
3.629546
0.863207
return np.pi * rho0 * Ra * Rs / (Rs + Ra)
def rho2sigma(self, rho0, Ra, Rs)
converts 3d density into 2d projected density parameter :param rho0: :param Ra: :param Rs: :return:
7.505322
9.38016
0.800127
imageData = np.array(inputArray, copy=True) if scale_min is None: scale_min = imageData.min() if scale_max is None: scale_max = imageData.max() imageData = imageData.clip(min=scale_min, max=scale_max) imageData = imageData - scale_min indices = np.where(imageData < 0) imageData[indices] = 0.0 imageData = np.sqrt(imageData) imageData = imageData / math.sqrt(scale_max - scale_min) return imageData
def sqrt(inputArray, scale_min=None, scale_max=None)
Performs sqrt scaling of the input numpy array. @type inputArray: numpy array @param inputArray: image data array @type scale_min: float @param scale_min: minimum data value @type scale_max: float @param scale_max: maximum data value @rtype: numpy array @return: image data array
1.975582
2.031999
0.972236
#extract parameters kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo = self.param.args2kwargs(args) #generate image and computes likelihood self._reset_point_source_cache(bool=True) logL = 0 if self._check_bounds is True: penalty, bound_hit = self.check_bounds(args, self._lower_limit, self._upper_limit) logL -= penalty if bound_hit: return logL, None if self._image_likelihood is True: logL += self.image_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) if self._time_delay_likelihood is True: logL += self.time_delay_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo) if self._check_positive_flux is True: bool = self.param.check_positive_flux(kwargs_source, kwargs_lens_light, kwargs_ps) if bool is False: logL -= 10**10 if self._flux_ratio_likelihood is True: logL += self.flux_ratio_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo) logL += self._position_likelihood.logL(kwargs_lens, kwargs_ps, kwargs_cosmo) logL += self._prior_likelihood.logL(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, kwargs_cosmo) self._reset_point_source_cache(bool=False) return logL, None
def logL(self, args)
routine to compute X2 given variable parameters for a MCMC/PSO chain
2.667423
2.68378
0.993905
penalty = 0 bound_hit = False for i in range(0, len(args)): if args[i] < lowerLimit[i] or args[i] > upperLimit[i]: penalty = 10**15 bound_hit = True return penalty, bound_hit
def check_bounds(args, lowerLimit, upperLimit)
checks whether the parameter vector has left its bound, if so, adds a big number
2.848909
2.605716
1.09333
num_linear = 0 if self._image_likelihood is True: num_linear = self.image_likelihood.num_param_linear(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) num_param, _ = self.param.num_param() return self.num_data - num_param - num_linear
def effectiv_num_data_points(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps)
returns the effective number of data points considered in the X2 estimation to compute the reduced X2 value
3.854848
3.680401
1.047399
if self._multi_source_plane is False: x_source, y_source = self._lensModel.ray_shooting(x, y, kwargs_lens) else: if self._multi_lens_plane is False: x_alpha, y_alpha = self._lensModel.alpha(x, y, kwargs_lens) scale_factor = self._deflection_scaling_list[idex_source] x_source = x - x_alpha * scale_factor y_source = y - y_alpha * scale_factor else: z_stop = self._source_redshift_list[idex_source] x_comov, y_comov, alpha_x, alpha_y = self._lensModel.lens_model.ray_shooting_partial(0, 0, x, y, 0, z_stop, kwargs_lens, keep_range=False, include_z_start=False) T_z = self._bkg_cosmo.T_xy(0, z_stop) x_source = x_comov / T_z y_source = y_comov / T_z return x_source, y_source
def image2source(self, x, y, kwargs_lens, idex_source)
mapping of image plane to source plane coordinates WARNING: for multi lens plane computations and multi source planes, this computation can be slow and should be used as rarely as possible. :param x: image plane coordinate :param y: image plane coordinate :param kwargs_lens: lens model kwargs list :param idex_source: int, index of source model :return: source plane coordinate corresponding to the source model of index idex_source
3.02999
3.011349
1.00619
alpha_ra, alpha_dec = self.derivatives(x, y, amp, sigma, e1, e2, center_x, center_y) diff = self._diff alpha_ra_dx, alpha_dec_dx = self.derivatives(x + diff, y, amp, sigma, e1, e2, center_x, center_y) alpha_ra_dy, alpha_dec_dy = self.derivatives(x, y + diff, amp, sigma, e1, e2, center_x, center_y) f_xx = (alpha_ra_dx - alpha_ra) / diff f_xy = (alpha_ra_dy - alpha_ra) / diff # f_yx = (alpha_dec_dx - alpha_dec)/diff f_yy = (alpha_dec_dy - alpha_dec) / diff return f_xx, f_yy, f_xy
def hessian(self, x, y, amp, sigma, e1, e2, center_x=0, center_y=0)
returns Hessian matrix of function d^2f/dx^2, d^f/dy^2, d^2/dxdy
1.76195
1.745195
1.009601
sigma_s2_sum = 0 for i in range(0, num): sigma_s2_draw = self._vel_disp_one(kwargs_profile, kwargs_aperture, kwargs_light, kwargs_anisotropy) sigma_s2_sum += sigma_s2_draw sigma_s2_average = sigma_s2_sum/num return np.sqrt(sigma_s2_average)
def vel_disp(self, kwargs_profile, kwargs_aperture, kwargs_light, kwargs_anisotropy, num=1000)
computes the averaged LOS velocity dispersion in the slit (convolved) :param gamma: :param phi_E: :param r_eff: :param r_ani: :param R_slit: :param FWHM: :return:
2.179057
2.446546
0.890667
while True: r = self.lightProfile.draw_light(kwargs_light) # draw r R, x, y = util.R_r(r) # draw projected R x_, y_ = util.displace_PSF(x, y, self.FWHM) # displace via PSF bool = self.aperture.aperture_select(x_, y_, kwargs_aperture) if bool is True: break sigma_s2 = self.sigma_s2(r, R, kwargs_profile, kwargs_anisotropy, kwargs_light) return sigma_s2
def _vel_disp_one(self, kwargs_profile, kwargs_aperture, kwargs_light, kwargs_anisotropy)
computes one realisation of the velocity dispersion realized in the slit :param gamma: :param rho0_r0_gamma: :param r_eff: :param r_ani: :param R_slit: :param dR_slit: :param FWHM: :return:
5.475137
5.641561
0.9705
beta = self.anisotropy.beta_r(r, kwargs_anisotropy) return (1 - beta * R**2/r**2) * self.sigma_r2(r, kwargs_profile, kwargs_anisotropy, kwargs_light)
def sigma_s2(self, r, R, kwargs_profile, kwargs_anisotropy, kwargs_light)
projected velocity dispersion :param r: :param R: :param r_ani: :param a: :param gamma: :param phi_E: :return:
3.400757
3.595625
0.945804
return self.jeans_solver.sigma_r2(r, kwargs_profile, kwargs_anisotropy, kwargs_light)
def sigma_r2(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light)
computes radial velocity dispersion at radius r (solving the Jeans equation :param r: :return:
3.698301
3.719888
0.994197
# first term theta_E = kwargs_profile['theta_E'] gamma = kwargs_profile['gamma'] r_ani = kwargs_anisotropy['r_ani'] a = 0.551 * kwargs_light['r_eff'] rho0_r0_gamma = self._rho0_r0_gamma(theta_E, gamma) prefac1 = 4*np.pi * const.G * a**(-gamma) * rho0_r0_gamma / (3-gamma) prefac2 = r * (r + a)**3/(r**2 + r_ani**2) hyp1 = vel_util.hyp_2F1(a=2+gamma, b=gamma, c=3+gamma, z=1./(1+r/a)) hyp2 = vel_util.hyp_2F1(a=3, b=gamma, c=1+gamma, z=-a/r) fac = r_ani**2/a**2 * hyp1 / ((2+gamma) * (r/a + 1)**(2+gamma)) + hyp2 / (gamma*(r/a)**gamma) sigma2_dim_less = prefac1 * prefac2 * fac return sigma2_dim_less * (self.cosmo.arcsec2phys_lens(1.) * const.Mpc / 1000)**2
def power_law_anisotropy(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light)
equation (19) in Suyu+ 2010 :param r: :return:
4.435073
4.429794
1.001192
if self._mass_profile == 'power_law': if self._anisotropy_type == 'r_ani': if self._light_profile == 'Hernquist': sigma_r = self.power_law_anisotropy(r, kwargs_profile, kwargs_anisotropy, kwargs_light) else: raise ValueError('light profile %s not supported for Jeans solver' % self._light_profile) else: raise ValueError('anisotropy type %s not implemented in Jeans equation modelling' % self._anisotropy_type) else: raise ValueError('mass profile type %s not implemented in Jeans solver' % self._mass_profile) return sigma_r
def sigma_r2(self, r, kwargs_profile, kwargs_anisotropy, kwargs_light)
solves radial Jeans equation
3.134186
2.85741
1.096862
if self._aperture_type == 'shell': bool_list = self.shell_select(ra, dec, **kwargs_aperture) elif self._aperture_type == 'slit': bool_list = self.slit_select(ra, dec, **kwargs_aperture) else: raise ValueError("aperture type %s not implemented!" % self._aperture_type) return bool_list
def aperture_select(self, ra, dec, kwargs_aperture)
returns a bool list if the coordinate is within the aperture (list) :param ra: :param dec: :return:
2.207493
2.156239
1.02377
wls_list, error_map_list, cov_param_list, param_list = [], [], [], [] for i in range(self._num_bands): wls_model, error_map, cov_param, param = self._imageModel_list[i].image_linear_solve(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_else, inv_bool=inv_bool) wls_list.append(wls_model) error_map_list.append(error_map) cov_param_list.append(cov_param) param_list.append(param) return wls_list, error_map_list, cov_param_list, param_list
def image_linear_solve(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_else, inv_bool=False)
computes the image (lens and source surface brightness with a given lens model). The linear parameters are computed with a weighted linear least square optimization (i.e. flux normalization of the brightness profiles) :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles :param kwargs_else: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions :param inv_bool: if True, invert the full linear solver Matrix Ax = y for the purpose of the covariance matrix. :return: 1d array of surface brightness pixels of the optimal solution of the linear parameters to match the data
1.929742
2.018726
0.955921
# generate image logL = 0 for i in range(self._num_bands): if self._compute_bool[i] is True: logL += self._imageModel_list[i].likelihood_data_given_model(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=source_marg) return logL
def likelihood_data_given_model(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, source_marg=False)
computes the likelihood of the data given a model This is specified with the non-linear parameters and a linear inversion and prior marginalisation. :param kwargs_lens: :param kwargs_source: :param kwargs_lens_light: :param kwargs_ps: :return: log likelihood (natural logarithm) (sum of the log likelihoods of the individual images)
3.074005
3.199445
0.960793
A = self.linear_response_matrix(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) C_D_response, model_error_list = self.error_response(kwargs_lens, kwargs_ps) d = self.data_response param, cov_param, wls_model = de_lens.get_param_WLS(A.T, 1 / C_D_response, d, inv_bool=inv_bool) kwargs_lens_0 = [kwargs_lens[k] for k in self._idex_lens_list[0]] _, _, _, _ = self._imageModel_list[0]._update_linear_kwargs(param, kwargs_lens_0, kwargs_source, kwargs_lens_light, kwargs_ps) wls_list = self._array2image_list(wls_model) return wls_list, model_error_list, cov_param, param
def image_linear_solve(self, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps, inv_bool=False)
computes the image (lens and source surface brightness with a given lens model). The linear parameters are computed with a weighted linear least square optimization (i.e. flux normalization of the brightness profiles) :param kwargs_lens: list of keyword arguments corresponding to the superposition of different lens profiles :param kwargs_source: list of keyword arguments corresponding to the superposition of different source light profiles :param kwargs_lens_light: list of keyword arguments corresponding to different lens light surface brightness profiles :param kwargs_ps: keyword arguments corresponding to "other" parameters, such as external shear and point source image positions :param inv_bool: if True, invert the full linear solver Matrix Ax = y for the purpose of the covariance matrix. :return: 1d array of surface brightness pixels of the optimal solution of the linear parameters to match the data
4.890826
5.011773
0.975867
C_D_response, model_error = [], [] for i in range(self._num_bands): if self._compute_bool[i] is True: kwargs_lens_i = [kwargs_lens[k] for k in self._idex_lens_list[i]] C_D_response_i, model_error_i = self._imageModel_list[i].error_response(kwargs_lens_i, kwargs_ps) model_error.append(model_error_i) if C_D_response == []: C_D_response = C_D_response_i else: C_D_response = np.append(C_D_response, C_D_response_i) return C_D_response, model_error
def error_response(self, kwargs_lens, kwargs_ps)
returns the 1d array of the error estimate corresponding to the data response :return: 1d numpy array of response, 2d array of additonal errors (e.g. point source uncertainties)
2.588604
2.630931
0.983912
c = amp/(2*np.pi*sigma_x*sigma_y) delta_x = x - center_x delta_y = y - center_y exponent = -((delta_x/sigma_x)**2+(delta_y/sigma_y)**2)/2. return c * np.exp(exponent)
def function(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0)
returns Gaussian
2.225957
2.303566
0.966309
f_ = self.function(x, y, amp, sigma_x, sigma_y, center_x, center_y) return f_ * (center_x-x)/sigma_x**2, f_ * (center_y-y)/sigma_y**2
def derivatives(self, x, y, amp, sigma_x, sigma_y, center_x=0, center_y=0)
returns df/dx and df/dy of the function
2.2167
2.172975
1.020122
f_ = self.function(x, y, amp, sigma_x, sigma_y, center_x, center_y) f_xx = f_ * ( (-1./sigma_x**2) + (center_x-x)**2/sigma_x**4 ) f_yy = f_ * ( (-1./sigma_y**2) + (center_y-y)**2/sigma_y**4 ) f_xy = f_ * (center_x-x)/sigma_x**2 * (center_y-y)/sigma_y**2 return f_xx, f_yy, f_xy
def hessian(self, x, y, amp, sigma_x, sigma_y, center_x = 0, center_y = 0)
returns Hessian matrix of function d^2f/dx^2, d^f/dy^2, d^2/dxdy
1.848102
1.838537
1.005203
return 4*np.pi*rho0*Rs**3*(np.log(1.+c)-c/(1.+c))
def M200(self, Rs, rho0, c)
M(R_200) calculation for NFW profile :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param c: concentration :type c: float [4,40] :return: M(R_200) density
4.630567
5.399677
0.857564
return 200./3*self.rhoc*c**3/(np.log(1.+c)-c/(1.+c))
def rho0_c(self, c)
computes density normalization as a function of concentration parameter :return: density normalization in h^2/Mpc^3 (comoving)
8.013542
7.839578
1.02219
if not hasattr(self, '_c_rho0_interp'): c_array = np.linspace(0.1, 10, 100) rho0_array = self.rho0_c(c_array) from scipy import interpolate self._c_rho0_interp = interpolate.InterpolatedUnivariateSpline(rho0_array, c_array, w=None, bbox=[None, None], k=3) return self._c_rho0_interp(rho0)
def c_rho0(self, rho0)
computes the concentration given a comoving overdensity rho0 (inverse of function rho0_c) :param rho0: density normalization in h^2/Mpc^3 (comoving) :return: concentration parameter c
2.6278
2.489365
1.055611
# fitted parameter values A = 5.22 B = -0.072 C = -0.42 M_pivot = 2.*10**12 return A*(M/M_pivot)**B*(1+z)**C
def c_M_z(self, M, z)
fitting function of http://moriond.in2p3.fr/J08/proceedings/duffy.pdf for the mass and redshift dependence of the concentration parameter :param M: halo mass in M_sun/h :type M: float or numpy array :param z: redshift :type z: float >0 :return: concentration parameter as float
8.083947
7.078096
1.142108
c = self.c_M_z(M, z) r200 = self.r200_M(M) rho0 = self.rho0_c(c) Rs = r200/c return r200, rho0, c, Rs
def profileMain(self, M, z)
returns all needed parameter (in comoving units modulo h) to draw the profile of the main halo r200 in co-moving Mpc/h rho_s in h^2/Mpc^3 (co-moving) Rs in Mpc/h co-moving c unit less
3.58345
3.065794
1.168849
# reconstructed model with given psf model, error_map, cov_param, param = image_model_class.image_linear_solve(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) #model = image_model_class.image(kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps) data = image_model_class.Data.data mask = image_model_class.ImageNumerics.mask point_source_list = image_model_class.point_sources_list(kwargs_ps, kwargs_lens) n = len(point_source_list) model_single_source_list = [] for i in range(n): model_single_source = (data - model + point_source_list[i]) * mask model_single_source_list.append(model_single_source) return model_single_source_list
def image_single_point_source(self, image_model_class, kwargs_lens, kwargs_source, kwargs_lens_light, kwargs_ps)
return model without including the point source contributions as a list (for each point source individually) :param image_model_class: ImageModel class instance :param kwargs_lens: lens model kwargs list :param kwargs_source: source model kwargs list :param kwargs_lens_light: lens light model kwargs list :param kwargs_ps: point source model kwargs list :return: list of images with point source isolated
3.133347
3.135006
0.999471
n = int(len(kernel_list_new) * symmetry) angle = 360. / symmetry kernelsize = len(kernel_old) kernel_list = np.zeros((n, kernelsize, kernelsize)) i = 0 for kernel_new in kernel_list_new: for k in range(symmetry): kernel_rotated = image_util.rotateImage(kernel_new, angle * k) kernel_norm = kernel_util.kernel_norm(kernel_rotated) kernel_list[i, :, :] = kernel_norm i += 1 kernel_old_rotated = np.zeros((symmetry, kernelsize, kernelsize)) for i in range(symmetry): kernel_old_rotated[i, :, :] = kernel_old kernel_list_new = np.append(kernel_list, kernel_old_rotated, axis=0) if stacking_option == 'median': kernel_new = np.median(kernel_list_new, axis=0) elif stacking_option == 'mean': kernel_new = np.mean(kernel_list_new, axis=0) else: raise ValueError(" stack_option must be 'median' or 'mean', %s is not supported." % stacking_option) kernel_new[kernel_new < 0] = 0 kernel_new = kernel_util.kernel_norm(kernel_new) kernel_return = factor * kernel_new + (1.-factor)* kernel_old kernel_bkg = copy.deepcopy(kernel_return) kernel_bkg[kernel_bkg < sigma_bkg] = sigma_bkg error_map = np.var(kernel_list_new, axis=0) / kernel_bkg**2 / 2. return kernel_return, error_map
def combine_psf(kernel_list_new, kernel_old, sigma_bkg, factor=1, stacking_option='median', symmetry=1)
updates psf estimate based on old kernel and several new estimates :param kernel_list_new: list of new PSF kernels estimated from the point sources in the image :param kernel_old: old PSF kernel :param sigma_bkg: estimated background noise in the image :param factor: weight of updated estimate based on new and old estimate, factor=1 means new estimate, factor=0 means old estimate :param stacking_option: option of stacking, mean or median :param symmetry: imposed symmetry of PSF estimate :return: updated PSF estimate and error_map associated with it
2.295998
2.19236
1.047272
if self._kde_type == 'scipy_gaussian': density = self._PDF_kernel([D_d, D_delta_t]) logL = np.log(density) else: x = np.array([[D_d], [D_delta_t]]) logL = self._kde.score_samples(x.T) return logL
def logLikelihood(self, D_d, D_delta_t)
likelihood of the data (represented in the distribution of this class) given a model with predicted angular diameter distances. :param D_d: model predicted angular diameter distance :param D_delta_t: model predicted time-delay distance :return: loglikelihood (log of KDE value)
3.455985
3.402915
1.015596
rho = rho0 / (r/Rs * (1 + (r/Rs))**3) return rho
def density(self, r, rho0, Rs)
computes the density :param x: :param y: :param rho0: :param a: :param s: :return:
5.951176
11.608481
0.512658
x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) X = r/Rs sigma0 = self.rho2sigma(rho0, Rs) if isinstance(X, int) or isinstance(X, float): if X == 1: X = 1.000001 else: X[X == 1] = 1.000001 sigma = sigma0 / (X**2-1)**2 * (-3 + (2+X**2)*self._F(X)) return sigma
def density_2d(self, x, y, rho0, Rs, center_x=0, center_y=0)
projected density :param x: :param y: :param rho0: :param a: :param s: :param center_x: :param center_y: :return:
3.225533
3.395915
0.949827
mass_3d = 2*np.pi*Rs**3*rho0 * r**2/(r + Rs)**2 return mass_3d
def mass_3d(self, r, rho0, Rs)
mass enclosed a 3d sphere or radius r :param r: :param a: :param s: :return:
4.584394
5.971422
0.767722
rho0 = self.sigma2rho(sigma0, Rs) return self.mass_3d(r, rho0, Rs)
def mass_3d_lens(self, r, sigma0, Rs)
mass enclosed a 3d sphere or radius r for lens parameterisation :param sigma0: :param Rs: :return:
3.688619
4.514276
0.817101
sigma0 = self.rho2sigma(rho0, Rs) return self.mass_2d_lens(r, sigma0, Rs)
def mass_2d(self, r, rho0, Rs)
mass enclosed projected 2d sphere of radius r :param r: :param rho0: :param a: :param s: :return:
5.550016
5.991891
0.926255