code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
handlers = HANDLERS['id_token'] # Select only the relevant section of the claims request. claims_request_section = claims_request.get('id_token', {}) if claims_request else {} scope_request = provider.scope.to_names(access_token.scope) if nonce: claims_request_section.update({'nonce': {'value': nonce}}) scopes, claims = collect( handlers, access_token, scope_request=scope_request, claims_request=claims_request_section, ) return IDToken(access_token, scopes, claims)
def id_token(access_token, nonce=None, claims_request=None)
Returns data required for an OpenID Connect ID Token according to: - http://openid.net/specs/openid-connect-basic-1_0.html#IDToken Arguments: access_token (:class:`AccessToken`): Associated OAuth2 access token. nonce (str): Optional nonce to protect against replay attacks. claims_request (dict): Optional dictionary with the claims request parameters. Information on the `claims_request` parameter specification: - http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter Returns an :class:`IDToken` instance with the scopes from the access_token and the corresponding claims. Claims in the `claims_request` paramater id_token section will be included *in addition* to the ones corresponding to the scopes specified in the `access_token`.
4.857718
4.521341
1.074398
handlers = HANDLERS['userinfo'] # Select only the relevant section of the claims request. claims_request_section = claims_request.get('userinfo', {}) if claims_request else {} # If nothing is requested, return the claims for the scopes in the access token. if not scope_request and not claims_request_section: scope_request = provider.scope.to_names(access_token.scope) else: scope_request = scope_request scopes, claims = collect( handlers, access_token, scope_request=scope_request, claims_request=claims_request_section, ) return IDToken(access_token, scopes, claims)
def userinfo(access_token, scope_request=None, claims_request=None)
Returns data required for an OpenID Connect UserInfo response, according to: http://openid.net/specs/openid-connect-basic-1_0.html#UserInfoResponse Supports scope and claims request parameter as described in: - http://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims - http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter Arguments: access_token (:class:`AccessToken`): Associated access token. scope_request (list): Optional list of requested scopes. Only scopes authorized in the `access_token` will be considered. claims_request (dict): Optional dictionary with a claims request parameter. Information on the claims request parameter specification: - http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter As a convinience, if neither `scope_request` or user_info claim is specified in the `claims_request`, it will return the claims for all the scopes in the `access_token`. Returns an :class:`IDToken` instance with the scopes from the `scope_request` and the corresponding claims. Claims in the `claims_request` paramater userinfo section will be included *in addition* to the ones corresponding to `scope_request`.
4.290046
3.841871
1.116655
return jwt.encode(self.claims, secret, algorithm)
def encode(self, secret, algorithm='HS256')
Encode the set of claims to the JWT (JSON Web Token) format according to the OpenID Connect specification: http://openid.net/specs/openid-connect-basic-1_0.html#IDToken Arguments: claims (dict): A dictionary with the OpenID Connect claims. secret (str): Secret used to encode the id_token. algorithm (str): Algorithm used for encoding. Defaults to HS256. Returns encoded JWT token string.
6.841002
9.451788
0.723779
# Clear the scope for requests that do not use OpenID Connect. # Scopes for pure OAuth2 request are currently not supported. scope = constants.DEFAULT_SCOPE extra_data = {} # Add OpenID Connect `id_token` if requested. # # TODO: Unfourtunately because of how django-oauth2-provider implements # scopes, we cannot check if `openid` is the first scope to be # requested, as required by OpenID Connect specification. if provider.scope.check(constants.OPEN_ID_SCOPE, access_token.scope): id_token = self.get_id_token(access_token, nonce) extra_data['id_token'] = self.encode_id_token(id_token) scope = provider.scope.to_int(*id_token.scopes) # Update the token scope, so it includes only authorized values. access_token.scope = scope access_token.save() # Get the main fields for OAuth2 response. response_data = super(AccessTokenView, self).access_token_response_data(access_token) # Add any additional fields if OpenID Connect is requested. The order of # the addition makes sures the OAuth2 values are not overrided. response_data = dict(extra_data.items() + response_data.items()) return response_data
def access_token_response_data(self, access_token, response_type=None, nonce='')
Return `access_token` fields for OAuth2, and add `id_token` fields for OpenID Connect according to the `access_token` scope.
6.265841
5.703971
1.098505
claims_string = self.request.POST.get('claims') claims_request = json.loads(claims_string) if claims_string else {} return oidc.id_token(access_token, nonce, claims_request)
def get_id_token(self, access_token, nonce)
Return an ID token for the given Access Token.
4.121981
4.05607
1.01625
# Encode the ID token using the `client_secret`. # # TODO: Using the `client_secret` is not ideal, since it is transmitted # over the wire in some authentication flows. A better alternative is # to use the public key of the issuer, which also allows the ID token to # be shared among clients. Doing so however adds some operational # costs. We should consider this for the future. secret = id_token.access_token.client.client_secret return id_token.encode(secret)
def encode_id_token(self, id_token)
Return encoded ID token.
8.415169
7.877363
1.068272
access_token = self.access_token scope_string = request.GET.get('scope') scope_request = scope_string.split() if scope_string else None claims_string = request.GET.get('claims') claims_request = json.loads(claims_string) if claims_string else None if not provider.scope.check(constants.OPEN_ID_SCOPE, access_token.scope): return self._bad_request('Missing openid scope.') try: claims = self.userinfo_claims(access_token, scope_request, claims_request) except ValueError, exception: return self._bad_request(str(exception)) # TODO: Encode and sign responses if requested. response = JsonResponse(claims) return response
def get(self, request, *_args, **_kwargs)
Respond to a UserInfo request. Two optional query parameters are accepted, scope and claims. See the references above for more details.
4.02377
3.534319
1.138485
id_token = oidc.userinfo(access_token, scope_request, claims_request) return id_token.claims
def userinfo_claims(self, access_token, scope_request, claims_request)
Return the claims for the requested parameters.
4.055961
3.386315
1.197751
user = access_token.user client = access_token.client # Instantiate handlers. Each handler is instanciated only once, allowing the # handler to keep state in-between calls to its scope and claim methods. handlers = [cls() for cls in handlers] # Find all authorized scopes by including the access_token scopes. Note # that the handlers determine if a scope is authorized, not its presense in # the access_token. required_scopes = set(REQUIRED_SCOPES) token_scopes = set(provider.scope.to_names(access_token.scope)) authorized_scopes = _collect_scopes(handlers, required_scopes | token_scopes, user, client) # Select only the authorized scopes from the requested scopes. scope_request = set(scope_request) if scope_request else set() scopes = required_scopes | (authorized_scopes & scope_request) # Find all authorized claims names for the authorized_scopes. authorized_names = _collect_names(handlers, authorized_scopes, user, client) # Select only the requested claims if no scope has been requested. Selecting # scopes has prevalence over selecting claims. claims_request = _validate_claim_request(claims_request) # Add the requested claims that are authorized to the response. requested_names = set(claims_request.keys()) & authorized_names names = _collect_names(handlers, scopes, user, client) | requested_names # Get the values for the claims. claims = _collect_values( handlers, names=names, user=user, client=client, values=claims_request or {} ) return authorized_scopes, claims
def collect(handlers, access_token, scope_request=None, claims_request=None)
Collect all the claims values from the `handlers`. Arguments: handlers (list): List of claim :class:`Handler` classes. access_token (:class:AccessToken): Associated access token. scope_request (list): List of requested scopes. claims_request (dict): Dictionary with only the relevant section of a OpenID Connect claims request. Returns a list of the scopes from `scope_request` that are authorized, and a dictionary of the claims associated with the authorized scopes in `scope_request`, and additionally, the authorized claims listed in `claims_request`.
4.696195
4.705173
0.998092
results = set() data = {'user': user, 'client': client} def visitor(scope_name, func): claim_names = func(data) # If the claim_names is None, it means that the scope is not authorized. if claim_names is not None: results.add(scope_name) _visit_handlers(handlers, visitor, 'scope', scopes) return results
def _collect_scopes(handlers, scopes, user, client)
Get a set of all the authorized scopes according to the handlers.
4.862234
4.255696
1.142524
results = set() data = {'user': user, 'client': client} def visitor(_scope_name, func): claim_names = func(data) # If the claim_names is None, it means that the scope is not authorized. if claim_names is not None: results.update(claim_names) _visit_handlers(handlers, visitor, 'scope', scopes) return results
def _collect_names(handlers, scopes, user, client)
Get the names of the claims supported by the handlers for the requested scope.
5.295607
4.397281
1.204291
results = {} def visitor(claim_name, func): data = {'user': user, 'client': client} data.update(values.get(claim_name) or {}) claim_value = func(data) # If the claim_value is None, it means that the claim is not authorized. if claim_value is not None: # New values overwrite previous results results[claim_name] = claim_value _visit_handlers(handlers, visitor, 'claim', names) return results
def _collect_values(handlers, names, user, client, values)
Get the values from the handlers of the requested claims.
4.650513
4.084792
1.138495
results = {} claims = claims if claims else {} for name, value in claims.iteritems(): if value is None: results[name] = None elif isinstance(value, dict): results[name] = _validate_claim_values(name, value, ignore_errors) else: if not ignore_errors: msg = 'Invalid claim {}.'.format(name) raise ValueError(msg) return results
def _validate_claim_request(claims, ignore_errors=False)
Validates a claim request section (`userinfo` or `id_token`) according to section 5.5 of the OpenID Connect specification: - http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter Returns a copy of the claim request with only the valid fields and values. Raises ValueError is the claim request is invalid and `ignore_errors` is False
2.907488
3.078388
0.944484
results = {'essential': False} for key, value in value.iteritems(): if key in CLAIM_REQUEST_FIELDS: results[key] = value else: if not ignore_errors: msg = 'Unknown attribute {} in claim value {}.'.format(key, name) raise ValueError(msg) return results
def _validate_claim_values(name, value, ignore_errors)
Helper for `validate_claim_request`
4.538367
4.102986
1.106113
results = [] for handler in handlers: for suffix in suffixes: func = getattr(handler, '{}_{}'.format(prefix, suffix).lower(), None) if func: results.append(visitor(suffix, func)) return results
def _visit_handlers(handlers, visitor, prefix, suffixes)
Use visitor partern to collect information from handlers
3.246549
2.952921
1.099436
for k, v in self.parse_form().items(): setattr(model, k, v)
def update_model(self, model)
trivial implementation for simple data in the form, using the model prefix.
6.335686
5.396487
1.174039
locale = 'en' if request.accept_language: locale = request.accept_language.best_match(LANGUAGES) locale = LANGUAGES.get(locale, 'en') return locale
def locale_negotiator(request)
Locale negotiator base on the `Accept-Language` header
2.489101
2.451119
1.015496
if sys.version_info[0] < 3: reload(sys) sys.setdefaultencoding('utf-8') settings = dict(settings) # Scoping sessions for Pyramid ensure session are commit/rollback # after the template has been rendered create_engine(settings, scoped=True) authn_policy = RouteSwitchAuthPolicy(secret=settings['pyshop.cookie_key'], callback=groupfinder) authz_policy = ACLPolicy() route_prefix = settings.get('pyshop.route_prefix') config = Configurator(settings=settings, root_factory=RootFactory, route_prefix=route_prefix, locale_negotiator=locale_negotiator, authentication_policy=authn_policy, authorization_policy=authz_policy) config.end() return config.make_wsgi_app()
def main(global_config, **settings)
Get a PyShop WSGI application configured with settings.
4.490096
4.166723
1.077609
return cls.first(session, where=(cls.name == name,))
def by_name(cls, session, name)
Get a package from a given name. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param name: name of the group :type name: `unicode :return: package instance :rtype: :class:`pyshop.models.Group`
8.491291
17.973637
0.47243
user = cls.first(session, where=((cls.login == login), (cls.local == local),) ) # XXX it's appear that this is not case sensitive ! return user if user and user.login == login else None
def by_login(cls, session, login, local=True)
Get a user from a given login. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param login: the user login :type login: unicode :return: the associated user :rtype: :class:`pyshop.models.User`
7.480319
9.251044
0.808592
user = cls.by_login(session, login, local=True) if not user: return None if crypt.check(user.password, password): return user
def by_credentials(cls, session, login, password)
Get a user from given credentials :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param login: username :type login: unicode :param password: user password :type password: unicode :return: associated user :rtype: :class:`pyshop.models.User`
4.471068
6.097105
0.73331
return cls.find(session, where=(cls.local == True,), order_by=cls.login, **kwargs)
def get_locals(cls, session, **kwargs)
Get all local users. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :return: local users :rtype: generator of :class:`pyshop.models.User`
8.953303
8.500695
1.053244
errors = [] if not self.login: errors.append(u'login is required') else: other = User.by_login(session, self.login) if other and other.id != self.id: errors.append(u'duplicate login %s' % self.login) if not self.password: errors.append(u'password is required') if not self.email: errors.append(u'email is required') elif not re_email.match(self.email): errors.append(u'%s is not a valid email' % self.email) if len(errors): raise ModelError(errors) return True
def validate(self, session)
Validate that the current user can be saved. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :return: ``True`` :rtype: bool :raise: :class:`pyshop.helpers.sqla.ModelError` if user is not valid
2.270962
1.996405
1.137526
classifier = cls.first(session, where=(cls.name == name,)) if not kwargs.get('create_if_not_exists', False): return classifier if not classifier: splitted_names = [n.strip() for n in name.split(u'::')] classifiers = [u' :: '.join(splitted_names[:i + 1]) for i in range(len(splitted_names))] parent_id = None category = splitted_names[0] for c in classifiers: classifier = cls.first(session, where=(cls.name == c,)) if not classifier: classifier = Classifier(name=c, parent_id=parent_id, category=category) session.add(classifier) session.flush() parent_id = classifier.id return classifier
def by_name(cls, session, name, **kwargs)
Get a classifier from a given name. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param name: name of the classifier :type name: `unicode :return: classifier instance :rtype: :class:`pyshop.models.Classifier`
2.863173
2.959933
0.96731
releases = [(parse_version(release.version), release) for release in self.releases] releases.sort(reverse=True) return [release[1] for release in releases]
def sorted_releases(self)
Releases sorted by version.
3.248098
2.739421
1.185688
# XXX the field "name" should be created with a # case insensitive collation. pkg = cls.first(session, where=(cls.name.like(name),)) if not pkg: name = name.replace(u'-', u'_').upper() pkg = cls.first(session, where=(cls.name.like(name),)) # XXX _ is a like operator if pkg and pkg.name.upper().replace(u'-', u'_') != name: pkg = None return pkg
def by_name(cls, session, name)
Get a package from a given name. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param name: name of the package :type name: `unicode :return: package instance :rtype: :class:`pyshop.models.Package`
5.24603
5.482664
0.95684
where = [] if opts.get('local_only'): where.append(cls.local == True) if opts.get('names'): where.append(cls.name.in_(opts['names'])) if opts.get('classifiers'): ids = [c.id for c in opts.get('classifiers')] cls_pkg = classifier__package qry = session.query(cls_pkg.c.package_id, func.count('*')) qry = qry.filter(cls_pkg.c.classifier_id.in_(ids)) qry = qry.group_by(cls_pkg.c.package_id) qry = qry.having(func.count('*') >= len(ids)) where.append(cls.id.in_([r[0] for r in qry.all()])) return cls.find(session, where=where, **kwargs)
def by_filter(cls, session, opts, **kwargs)
Get packages from given filters. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param opts: filtering options :type opts: `dict :return: package instances :rtype: generator of :class:`pyshop.models.Package`
2.372463
2.402388
0.987544
return cls.find(session, join=(cls.owners), where=(User.login == owner_name,), order_by=cls.name)
def by_owner(cls, session, owner_name)
Get packages from a given owner username. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param owner_name: owner username :type owner_name: unicode :return: package instances :rtype: generator of :class:`pyshop.models.Package`
6.980105
10.210633
0.683611
return cls.find(session, join=(cls.maintainers), where=(User.login == maintainer_name,), order_by=cls.name)
def by_maintainer(cls, session, maintainer_name)
Get package from a given maintainer name. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param maintainer_name: maintainer username :type maintainer_name: unicode :return: package instances :rtype: generator of :class:`pyshop.models.Package`
6.653712
9.390029
0.708593
return cls.find(session, where=(cls.local == True,))
def get_locals(cls, session)
Get all local packages. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :return: package instances :rtype: generator of :class:`pyshop.models.Package`
25.983286
30.161972
0.861458
return cls.find(session, where=(cls.local == False,))
def get_mirrored(cls, session)
Get all mirrored packages. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :return: package instances :rtype: generator of :class:`pyshop.models.Package`
27.492085
43.700478
0.629103
return cls.first(session, join=(Package,), where=((Package.name == package_name), (cls.version == version)))
def by_version(cls, session, package_name, version)
Get release for a given version. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param package_name: package name :type package_name: unicode :param version: version :type version: unicode :return: release instance :rtype: :class:`pyshop.models.Release`
8.050824
11.38379
0.707218
return cls.find(session, join=(cls.classifiers,), where=(Classifier.name.in_(classifiers),), )
def by_classifiers(cls, session, classifiers)
Get releases for given classifiers. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param classifiers: classifiers :type classifiers: unicode :return: release instances :rtype: generator of :class:`pyshop.models.Release`
7.07685
10.71823
0.660263
available = {'name': Package.name, 'version': cls.version, 'author': User.login, 'author_email': User.email, 'maintainer': User.login, 'maintainer_email': User.email, 'home_page': cls.home_page, 'license': cls.license, 'summary': cls.summary, 'description': cls.description, 'keywords': cls.keywords, 'platform': cls.platform, 'download_url': cls.download_url } oper = {'or': or_, 'and': and_} join_map = {'name': Package, 'author': cls.author, 'author_email': cls.author, 'maintainer': cls.maintainer, 'maintainer_email': cls.maintainer, } where = [] join = [] for opt, val in opts.items(): field = available[opt] if hasattr(val, '__iter__') and len(val) > 1: stmt = or_(*[field.like(u'%%%s%%' % v) for v in val]) else: stmt = field.like(u'%%%s%%' % val) where.append(stmt) if opt in join_map: join.append(join_map[opt]) return cls.find(session, join=join, where=(oper[operator](*where),))
def search(cls, session, opts, operator)
Get releases for given filters. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param opts: filtering options :type opts: dict :param operator: filtering options joining operator (`and` or `or`) :type operator: basestring :return: release instances :rtype: generator of :class:`pyshop.models.Release`
2.42015
2.405559
1.006066
return cls.find(session, join=(Release, Package), where=(Package.name == package_name, Release.version == version, ))
def by_release(cls, session, package_name, version)
Get release files for a given package name and for a given version. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param package_name: package name :type package_name: unicode :param version: version :type version: unicode :return: release files :rtype: generator of :class:`pyshop.models.ReleaseFile`
5.041506
9.752338
0.516954
return cls.first(session, where=(ReleaseFile.release_id == release.id, ReleaseFile.filename == filename, ))
def by_filename(cls, session, release, filename)
Get a release file for a given release and a given filename. :param session: SQLAlchemy session :type session: :class:`sqlalchemy.Session` :param release: release :type release: :class:`pyshop.models.Release` :param filename: filename of the release file :type filename: unicode :return: release file :rtype: :class:`pyshop.models.ReleaseFile`
4.263135
5.78436
0.737011
event['static_url'] = lambda x: static_path(x, event['request']) event['route_url'] = lambda name, *args, **kwargs: \ route_path(name, event['request'], *args, **kwargs) event['parse_rest'] = parse_rest event['has_permission'] = event['request'].has_permission
def add_urlhelpers(event)
Add helpers to the template engine.
3.560537
3.483794
1.022029
session = DBSession() names = [p.name for p in Package.all(session, order_by=Package.name)] return names
def list_packages(request)
Retrieve a list of the package names registered with the package index. Returns a list of name strings.
5.690326
5.376923
1.058287
session = DBSession() package = Package.by_name(session, package_name) return [rel.version for rel in package.sorted_releases]
def package_releases(request, package_name, show_hidden=False)
Retrieve a list of the releases registered for the given package_name. Returns a list with all version strings if show_hidden is True or only the non-hidden ones otherwise.
6.106568
4.904615
1.245066
session = DBSession() package = Package.by_name(session, package_name) owners = [('Owner', o.name) for o in package.owners] maintainers = [('Maintainer', o.name) for o in package.maintainers] return owners + maintainers
def package_roles(request, package_name)
Retrieve a list of users and their attributes roles for a given package_name. Role is either 'Maintainer' or 'Owner'.
3.337315
2.812113
1.186764
session = DBSession() owned = Package.by_owner(session, user) maintained = Package.by_maintainer(session, user) owned = [('Owner', p.name) for p in owned] maintained = [('Maintainer', p.name) for p in maintained] return owned + maintained
def user_packages(request, user)
Retrieve a list of [role_name, package_name] for a given username. Role is either 'Maintainer' or 'Owner'.
3.588411
2.881859
1.245172
session = DBSession() release_files = ReleaseFile.by_release(session, package_name, version) if release_files: release_files = [(f.release.package.name, f.filename) for f in release_files] return release_files
def release_downloads(request, package_name, version)
Retrieve a list of files and download count for a given package and release version.
4.065566
4.320292
0.941039
session = DBSession() release_files = ReleaseFile.by_release(session, package_name, version) return [{'url': f.url, 'packagetype': f.package_type, 'filename': f.filename, 'size': f.size, 'md5_digest': f.md5_digest, 'downloads': f.downloads, 'has_sig': f.has_sig, 'comment_text': f.comment_text, 'python_version': f.python_version } for f in release_files]
def release_urls(request, package_name, version)
Retrieve a list of download URLs for the given package release. Returns a list of dicts with the following keys: url packagetype ('sdist', 'bdist', etc) filename size md5_digest downloads has_sig python_version (required version, or 'source', or 'any') comment_text
2.677954
1.895023
1.413151
session = DBSession() release = Release.by_version(session, package_name, version) if release: result = {'name': release.package.name, 'version': release.version, 'stable_version': '', 'author': release.author.name, 'author_email': release.author.email, 'home_page': release.home_page, 'license': release.license, 'summary': release.summary, 'description': release.description, 'keywords': release.keywords, 'platform': release.platform, 'download_url': release.download_url, 'classifiers': [c.name for c in release.classifiers], #'requires': '', #'requires_dist': '', #'provides': '', #'provides_dist': '', #'requires_external': '', #'requires_python': '', #'obsoletes': '', #'obsoletes_dist': '', 'bugtrack_url': release.bugtrack_url, 'docs_url': release.docs_url, } if release.maintainer: result.update({'maintainer': release.maintainer.name, 'maintainer_email': release.maintainer.email, }) return dict([(key, val or '') for key, val in result.items()])
def release_data(request, package_name, version)
Retrieve metadata describing a specific package release. Returns a dict with keys for: name version stable_version author author_email maintainer maintainer_email home_page license summary description keywords platform download_url classifiers (list of classifier strings) requires requires_dist provides provides_dist requires_external requires_python obsoletes obsoletes_dist project_url docs_url (URL of the packages.python.org docs if they've been supplied) If the release does not exist, an empty dictionary is returned.
2.169616
1.872412
1.158728
api = pypi.proxy rv = [] # search in proxy for k, v in spec.items(): rv += api.search({k: v}, True) # search in local session = DBSession() release = Release.search(session, spec, operator) rv += [{'name': r.package.name, 'version': r.version, 'summary': r.summary, # hack https://mail.python.org/pipermail/catalog-sig/2012-October/004633.html '_pypi_ordering':'', } for r in release] return rv
def search(request, spec, operator='and')
Search the package database using the indicated search spec. The spec may include any of the keywords described in the above list (except 'stable_version' and 'classifiers'), for example: {'description': 'spam'} will search description fields. Within the spec, a field's value can be a string or a list of strings (the values within the list are combined with an OR), for example: {'name': ['foo', 'bar']}. Valid keys for the spec dict are listed here. Invalid keys are ignored: name version author author_email maintainer maintainer_email home_page license summary description keywords platform download_url Arguments for different fields are combined using either "and" (the default) or "or". Example: search({'name': 'foo', 'description': 'bar'}, 'or'). The results are returned as a list of dicts {'name': package name, 'version': package release version, 'summary': package release summary}
6.139811
5.992166
1.02464
session = DBSession() release = Release.by_classifiers(session, classifiers) rv = [(r.package.name, r.version) for r in release] return rv
def browse(request, classifiers)
Retrieve a list of (name, version) pairs of all releases classified with all of the given classifiers. 'classifiers' must be a list of Trove classifier strings. changelog(since) Retrieve a list of four-tuples (name, version, timestamp, action) since the given timestamp. All timestamps are UTC values. The argument is a UTC integer seconds since the epoch.
6.72138
5.879684
1.143153
global proxy, PYPI_URL PYPI_URL = proxy_url proxy = xmlrpc.ServerProxy( proxy_url, transport=RequestsTransport(proxy_url.startswith('https://')), allow_none=True)
def set_proxy(proxy_url, transport_proxy=None)
Create the proxy to PyPI XML-RPC Server
5.936368
4.377838
1.356005
headers = {'User-Agent': self.user_agent, #Proxy-Connection': 'Keep-Alive', #'Content-Range': 'bytes oxy1.0/-1', 'Accept': 'text/xml', 'Content-Type': 'text/xml' } url = self._build_url(host, handler) try: resp = requests.post(url, data=request_body, headers=headers) except ValueError: raise except Exception: raise # something went wrong else: try: resp.raise_for_status() except requests.RequestException as e: raise xmlrpc.ProtocolError(url, resp.status_code, str(e), resp.headers) else: return self.parse_response(resp)
def request(self, host, handler, request_body, verbose)
Make an xmlrpc request.
3.666238
3.548704
1.03312
if len(request.environ.get('HTTP_AUTHORIZATION', '')) > 0: auth = request.environ.get('HTTP_AUTHORIZATION') scheme, data = auth.split(None, 1) assert scheme.lower() == 'basic' data = base64.b64decode(data) if not isinstance(data, unicode): data = data.decode('utf-8') username, password = data.split(':', 1) if User.by_ldap_credentials( DBSession(), username, password, request.registry.settings): return HTTPFound(location=request.url) if User.by_credentials(DBSession(), username, password): return HTTPFound(location=request.url) return Response(status=401, headerlist=[(str('WWW-Authenticate'), str('Basic realm="pyshop repository access"'), )], )
def authbasic(request)
Authentification basic, Upload pyshop repository access
2.838121
2.565087
1.106442
if RootFactory._acl is None: acl = [] session = DBSession() groups = Group.all(session) for g in groups: acl.extend([(Allow, g.name, p.name) for p in g.permissions]) RootFactory._acl = acl return RootFactory._acl
def get_acl(self, request)
Get ACL. Initialize the __acl__ from the sql database once, then use the cached version. :param request: pyramid request :type login: :class:`pyramid.request.Request` :return: ACLs in pyramid format. (Allow, group name, permission name) :rtype: list of tupple
4.62087
3.985437
1.159439
settings = request.registry.settings whlify = asbool(settings.get('pyshop.mirror.wheelify', '0')) session = DBSession() f = ReleaseFile.by_id(session, int(request.matchdict['file_id'])) whlify = whlify and f.package_type == 'sdist' filename = f.filename_whlified if whlify else f.filename url = f.url if url and url.startswith('http://pypi.python.org'): url = 'https' + url[4:] rv = {'url': url, 'filename': filename, 'original': f.filename, 'whlify': whlify } f.downloads += 1 f.release.downloads += 1 f.release.package.downloads += 1 session.add(f.release.package) session.add(f.release) session.add(f) request.response.etag = f.md5_digest request.response.cache_control = 'max-age=31557600, public' request.response.date = datetime.datetime.utcnow() return rv
def show_release_file(root, request)
Download a release file. Must be used with :func:`pyshop.helpers.download.renderer_factory` to download the release file. :return: download informations :rtype: dict
3.956451
3.941814
1.003713
session = DBSession() settings = request.registry.settings whlify = asbool(settings.get('pyshop.mirror.wheelify', '0')) release = Release.by_id(session, int(request.matchdict['release_id'])) filename = (release.whlify_download_url_file if whlify else release.download_url_file) rv = {'url': release.download_url, 'filename': filename, 'original': release.download_url_file, 'whlify': whlify } release.downloads += 1 release.package.downloads += 1 session.add(release.package) session.add(release) request.response.date = datetime.datetime.utcnow() return rv
def show_external_release_file(root, request)
Download a release from a download url from its package information. Must be used with :func:`pyshop.helpers.download.renderer_factory` to download the release file. :return: download informations :rtype: dict
4.982837
4.812938
1.035301
'''Wrapper for b64decode, without having to struggle with bytestrings.''' byte_string = data.encode('utf-8') decoded = base64.b64decode(byte_string) return decoded.decode('utf-8')
def decode_b64(data)
Wrapper for b64decode, without having to struggle with bytestrings.
4.626493
2.219589
2.084391
'''Wrapper for b64encode, without having to struggle with bytestrings.''' byte_string = data.encode('utf-8') encoded = base64.b64encode(byte_string) return encoded.decode('utf-8')
def encode_b64(data)
Wrapper for b64encode, without having to struggle with bytestrings.
4.560985
2.195289
2.077624
nx, ny = self._nx * subgrid_res, self._ny * subgrid_res if self._idex_mask_bool is True: idex_mask = self._idex_mask grid1d = np.zeros((nx * ny)) if subgrid_res > 1: idex_mask_subgrid = self._idex_mask_sub else: idex_mask_subgrid = idex_mask grid1d[idex_mask_subgrid == 1] = array else: grid1d = array grid2d = util.array2image(grid1d, nx, ny) return grid2d
def array2image(self, array, subgrid_res=1)
maps a 1d array into a (nx, ny) 2d grid with array populating the idex_mask indices :param array: 1d array :param idex_mask: 1d array of length nx*ny :param nx: x-axis of 2d grid :param ny: y-axis of 2d grid :return:
2.698714
2.441085
1.105539
idex_mask = self._idex_mask array = util.image2array(image) if self._idex_mask_bool is True: return array[idex_mask == 1] else: return array
def image2array(self, image)
returns 1d array of values in image in idex_mask :param image: :param idex_mask: :return:
5.765616
4.067679
1.417422
if not hasattr(self, '_x_min_psf'): idex_2d = self._idex_mask_2d self._x_min_psf = np.min(np.where(idex_2d == 1)[0]) self._x_max_psf = np.max(np.where(idex_2d == 1)[0]) self._y_min_psf = np.min(np.where(idex_2d == 1)[1]) self._y_max_psf = np.max(np.where(idex_2d == 1)[1])
def _init_mask_psf(self)
smaller frame that encolses all the idex_mask :param idex_mask: :param nx: :param ny: :return:
1.861565
1.749244
1.064212
self._init_mask_psf() return image[self._x_min_psf*subgrid_res:(self._x_max_psf+1)*subgrid_res, self._y_min_psf*subgrid_res:(self._y_max_psf+1)*subgrid_res]
def _cutout_psf(self, image, subgrid_res)
cutout the part of the image relevant for the psf convolution :param image: :return:
2.409315
2.363256
1.01949
n = self._index2n(index) num_prev = n * (n + 1) / 2 num = index + 1 delta = int(num - num_prev - 1) if n % 2 == 0: if delta == 0: m = delta complex_bool = False elif delta % 2 == 0: complex_bool = True m = delta else: complex_bool = False m = delta + 1 else: if delta % 2 == 0: complex_bool = False m = delta + 1 else: complex_bool = True m = delta return n, m, complex_bool
def index2poly(self, index)
manages the convention from an iterative index to the specific polynomial n, m, (real/imaginary part) :param index: int, index of list :return: n, m bool
2.923363
2.762464
1.058245
num_param = self.shapelets.num_param(n_max) param_list = np.zeros(num_param) amp_norm = 1. * deltaPix**2 L_list = self._pre_calc(x, y, beta, n_max, center_x, center_y) for i in range(num_param): base = self._pre_calc_function(L_list, i) * amp_norm param = np.sum(image*base) n, m, complex_bool = self.shapelets.index2poly(i) if m != 0: param *= 2 param_list[i] = param return param_list
def decomposition(self, image, x, y, n_max, beta, deltaPix, center_x=0, center_y=0)
decomposes an image into the shapelet coefficients in same order as for the function call :param image: :param x: :param y: :param n_max: :param beta: :param center_x: :param center_y: :return:
4.6639
4.632709
1.006733
nx, ny = np.shape(kernel) kernel_new = np.zeros((nx+2, ny+2)) + (kernel[0, 0] + kernel[0, -1] + kernel[-1, 0] + kernel[-1, -1]) / 4. kernel_new[1:-1, 1:-1] = kernel int_shift_x = int(round(shift_x)) frac_x_shift = shift_x - int_shift_x int_shift_y = int(round(shift_y)) frac_y_shift = shift_y - int_shift_y kernel_init = copy.deepcopy(kernel_new) kernel_init_shifted = copy.deepcopy(interp.shift(kernel_init, [int_shift_y, int_shift_x], order=1)) kernel_new = interp.shift(kernel_new, [int_shift_y, int_shift_x], order=1) norm = np.sum(kernel_init_shifted) for i in range(iterations): kernel_shifted_inv = interp.shift(kernel_new, [-frac_y_shift, -frac_x_shift], order=1) delta = kernel_init_shifted - kernel_norm(kernel_shifted_inv) * norm kernel_new += delta * 1. kernel_new = kernel_norm(kernel_new) * norm return kernel_new[1:-1, 1:-1]
def de_shift_kernel(kernel, shift_x, shift_y, iterations=20)
de-shifts a shifted kernel to the center of a pixel. This is performed iteratively. The input kernel is the solution of a linear interpolated shift of a sharper kernel centered in the middle of the pixel. To find the de-shifted kernel, we perform an iterative correction of proposed de-shifted kernels and compare its shifted version with the input kernel. :param kernel: (shifted) kernel, e.g. a star in an image that is not centered in the pixel grid :param shift_x: x-offset relative to the center of the pixel (sub-pixel shift) :param shift_y: y-offset relative to the center of the pixel (sub-pixel shift) :return: de-shifted kernel such that the interpolated shift boy (shift_x, shift_y) results in the input kernel
2.072986
2.060698
1.005963
kernel = kernel_norm(kernel) nx, ny = np.shape(kernel) if nx %2 == 0: raise ValueError("kernel needs odd number of pixels") # make coordinate grid of kernel x_grid, y_grid = util.make_grid(nx, deltapix=1, left_lower=False) # compute 1st moments to get light weighted center x_w = np.sum(kernel * util.array2image(x_grid)) y_w = np.sum(kernel * util.array2image(y_grid)) # de-shift kernel kernel_centered = de_shift_kernel(kernel, shift_x=-x_w, shift_y=-y_w, iterations=iterations) return kernel_norm(kernel_centered)
def center_kernel(kernel, iterations=20)
given a kernel that might not be perfectly centered, this routine computes its light weighted center and then moves the center in an iterative process such that it is centered :param kernel: 2d array (odd numbers) :param iterations: int, number of iterations :return: centered kernel
4.712097
4.467527
1.054744
subgrid_res = int(subgrid_res) if subgrid_res == 1: return kernel nx, ny = np.shape(kernel) d_x = 1. / nx x_in = np.linspace(d_x/2, 1-d_x/2, nx) d_y = 1. / nx y_in = np.linspace(d_y/2, 1-d_y/2, ny) nx_new = nx * subgrid_res ny_new = ny * subgrid_res if odd is True: if nx_new % 2 == 0: nx_new -= 1 if ny_new % 2 == 0: ny_new -= 1 d_x_new = 1. / nx_new d_y_new = 1. / ny_new x_out = np.linspace(d_x_new/2., 1-d_x_new/2., nx_new) y_out = np.linspace(d_y_new/2., 1-d_y_new/2., ny_new) kernel_input = copy.deepcopy(kernel) kernel_subgrid = image_util.re_size_array(x_in, y_in, kernel_input, x_out, y_out) kernel_subgrid = kernel_norm(kernel_subgrid) for i in range(max(num_iter, 1)): # given a proposition, re-size it to original pixel size if subgrid_res % 2 == 0: kernel_pixel = averaging_even_kernel(kernel_subgrid, subgrid_res) else: kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx) delta = kernel - kernel_pixel #plt.matshow(delta) #plt.colorbar() #plt.show() temp_kernel = kernel_input + delta kernel_subgrid = image_util.re_size_array(x_in, y_in, temp_kernel, x_out, y_out)#/norm_subgrid kernel_subgrid = kernel_norm(kernel_subgrid) kernel_input = temp_kernel #from scipy.ndimage import zoom #ratio = subgrid_res #kernel_subgrid = zoom(kernel, ratio, order=4) / ratio ** 2 #print(np.shape(kernel_subgrid)) # whatever has not been matched is added to zeroth order (in squares of the undersampled PSF) if subgrid_res % 2 == 0: return kernel_subgrid kernel_pixel = util.averaging(kernel_subgrid, numGrid=nx_new, numPix=nx) kernel_pixel = kernel_norm(kernel_pixel) delta_kernel = kernel_pixel - kernel_norm(kernel) id = np.ones((subgrid_res, subgrid_res)) delta_kernel_sub = np.kron(delta_kernel, id)/subgrid_res**2 return kernel_norm(kernel_subgrid - delta_kernel_sub)
def subgrid_kernel(kernel, subgrid_res, odd=False, num_iter=100)
creates a higher resolution kernel with subgrid resolution as an interpolation of the original kernel in an iterative approach :param kernel: initial kernel :param subgrid_res: subgrid resolution required :return: kernel with higher resolution (larger)
2.683855
2.713461
0.989089
n_high = len(kernel_high_res) n_low = int((n_high + 1) / subgrid_res) kernel_low_res = np.zeros((n_low, n_low)) # adding pixels that are fully within a single re-binned pixel for i in range(subgrid_res-1): for j in range(subgrid_res-1): kernel_low_res += kernel_high_res[i::subgrid_res, j::subgrid_res] # adding half of a pixel that has over-lap with two pixels i = subgrid_res - 1 for j in range(subgrid_res - 1): kernel_low_res[1:, :] += kernel_high_res[i::subgrid_res, j::subgrid_res] / 2 kernel_low_res[:-1, :] += kernel_high_res[i::subgrid_res, j::subgrid_res] / 2 j = subgrid_res - 1 for i in range(subgrid_res - 1): kernel_low_res[:, 1:] += kernel_high_res[i::subgrid_res, j::subgrid_res] / 2 kernel_low_res[:, :-1] += kernel_high_res[i::subgrid_res, j::subgrid_res] / 2 # adding a quarter of a pixel value that is at the boarder of four pixels i = subgrid_res - 1 j = subgrid_res - 1 kernel_edge = kernel_high_res[i::subgrid_res, j::subgrid_res] kernel_low_res[1:, 1:] += kernel_edge / 4 kernel_low_res[:-1, 1:] += kernel_edge / 4 kernel_low_res[1:, :-1] += kernel_edge / 4 kernel_low_res[:-1, :-1] += kernel_edge / 4 return kernel_low_res
def averaging_even_kernel(kernel_high_res, subgrid_res)
makes a lower resolution kernel based on the kernel_high_res (odd numbers) and the subgrid_res (even number), both meant to be centered. :param kernel_high_res: high resolution kernel with even subsampling resolution, centered :param subgrid_res: subsampling resolution (even number) :return: averaged undersampling kernel
1.838849
1.870697
0.982976
numPix = len(kernel) numPix_new = int(round(numPix * deltaPix_in/deltaPix_out)) if numPix_new % 2 == 0: numPix_new -= 1 x_in = np.linspace(-(numPix-1)/2*deltaPix_in, (numPix-1)/2*deltaPix_in, numPix) x_out = np.linspace(-(numPix_new-1)/2*deltaPix_out, (numPix_new-1)/2*deltaPix_out, numPix_new) kernel_out = image_util.re_size_array(x_in, x_in, kernel, x_out, x_out) kernel_out = kernel_norm(kernel_out) return kernel_out
def kernel_pixelsize_change(kernel, deltaPix_in, deltaPix_out)
change the pixel size of a given kernel :param kernel: :param deltaPix_in: :param deltaPix_out: :return:
2.088163
2.099588
0.994558
kernel = image_util.cut_edges(psf_data, psf_size) kernel = kernel_norm(kernel) return kernel
def cut_psf(psf_data, psf_size)
cut the psf properly :param psf_data: image of PSF :param psf_size: size of psf :return: re-sized and re-normalized PSF
6.026328
7.681044
0.784572
kernel_subgrid = subgrid_kernel(point_source_kernel, subgrid_res, num_iter=10) kernel_size = len(point_source_kernel) kernel_pixel = np.zeros((kernel_size*subgrid_res, kernel_size*subgrid_res)) for i in range(subgrid_res): k_x = int((kernel_size-1) / 2 * subgrid_res + i) for j in range(subgrid_res): k_y = int((kernel_size-1) / 2 * subgrid_res + j) kernel_pixel = image_util.add_layer2image(kernel_pixel, k_x, k_y, kernel_subgrid) kernel_pixel = util.averaging(kernel_pixel, numGrid=kernel_size*subgrid_res, numPix=kernel_size) return kernel_norm(kernel_pixel)
def pixel_kernel(point_source_kernel, subgrid_res=7)
converts a pixelised kernel of a point source to a kernel representing a uniform extended pixel :param point_source_kernel: :param subgrid_res: :return: convolution kernel for an extended pixel
2.71149
2.869588
0.944906
n = len(kernel) n_sub = len(kernel_subgrid) if subsampling_size % 2 == 0: subsampling_size += 1 if subsampling_size > n: subsampling_size = n kernel_hole = copy.deepcopy(kernel) n_min = int((n-1)/2 - (subsampling_size-1)/2) n_max = int((n-1)/2 + (subsampling_size-1)/2 + 1) kernel_hole[n_min:n_max, n_min:n_max] = 0 n_min_sub = int((n_sub - 1) / 2 - (subsampling_size*subgrid_res - 1) / 2) n_max_sub = int((n_sub - 1) / 2 + (subsampling_size * subgrid_res - 1) / 2 + 1) kernel_subgrid_cut = kernel_subgrid[n_min_sub:n_max_sub, n_min_sub:n_max_sub] flux_subsampled = np.sum(kernel_subgrid_cut) flux_hole = np.sum(kernel_hole) if flux_hole > 0: kernel_hole *= (1. - flux_subsampled) / np.sum(kernel_hole) else: kernel_subgrid_cut /= np.sum(kernel_subgrid_cut) return kernel_hole, kernel_subgrid_cut
def split_kernel(kernel, kernel_subgrid, subsampling_size, subgrid_res)
pixel kernel and subsampling kernel such that the convolution of both applied on an image can be performed, i.e. smaller subsampling PSF and hole in larger PSF :param kernel: PSF kernel of the size of the pixel :param kernel_subgrid: subsampled kernel :param subsampling_size: size of subsampling PSF in units of image pixels :return: pixel and subsampling kernel
1.818897
1.801642
1.009578
if kernelsize % 2 == 0: raise ValueError("even pixel number kernel size not supported!") x_int = int(round(x_pos)) y_int = int(round(y_pos)) n = len(image) d = (kernelsize - 1)/2 x_max = int(np.minimum(x_int + d + 1, n)) x_min = int(np.maximum(x_int - d, 0)) y_max = int(np.minimum(y_int + d + 1, n)) y_min = int(np.maximum(y_int - d, 0)) image_cut = copy.deepcopy(image[y_min:y_max, x_min:x_max]) shift_x = x_int - x_pos shift_y = y_int - y_pos if shift is True: kernel_shift = de_shift_kernel(image_cut, shift_x, shift_y, iterations=50) else: kernel_shift = image_cut kernel_final = np.zeros((kernelsize, kernelsize)) k_l2_x = int((kernelsize - 1) / 2) k_l2_y = int((kernelsize - 1) / 2) xk_min = np.maximum(0, -x_int + k_l2_x) yk_min = np.maximum(0, -y_int + k_l2_y) xk_max = np.minimum(kernelsize, -x_int + k_l2_x + n) yk_max = np.minimum(kernelsize, -y_int + k_l2_y + n) kernel_final[yk_min:yk_max, xk_min:xk_max] = kernel_shift return kernel_final
def cutout_source(x_pos, y_pos, image, kernelsize, shift=True)
cuts out point source (e.g. PSF estimate) out of image and shift it to the center of a pixel :param x_pos: :param y_pos: :param image: :param kernelsize: :return:
1.940074
1.967493
0.986064
n = len(kernel) if n % 2 == 0: raise ValueError('only works with odd number of pixels in kernel!') max_flux = kernel[int((n-1)/2), int((n-1)/2)] I_2 = max_flux/2. I_r = kernel[int((n-1)/2), int((n-1)/2):] r = np.linspace(0, (n-1)/2, int((n + 1) / 2)) for i in range(1, len(r)): if I_r[i] < I_2: fwhm_2 = (I_2 - I_r[i-1])/(I_r[i] - I_r[i-1]) + r[i-1] return fwhm_2 * 2 raise ValueError('The kernel did not drop to half the max value - fwhm not determined!')
def fwhm_kernel(kernel)
computes the full width at half maximum of a (PSF) kernel :param kernel: (psf) kernel, 2d numpy array :return: fwhm in units of pixels
3.522759
3.426331
1.028143
numPix_x, numPix_y = np.shape(data) #data_center = int((numPix-1.)/2) x_int = int(round(x_pos-0.49999))#+data_center y_int = int(round(y_pos-0.49999))#+data_center if x_int > 2 and x_int < numPix_x-2 and y_int > 2 and y_int < numPix_y-2: mean_image = max(np.sum(data[y_int-2:y_int+3, x_int-2:x_int+3]), 0) num = len(psf_kernel) center = int((num-0.5)/2) mean_kernel = np.sum(psf_kernel[center-2:center+3, center-2:center+3]) amp_estimated = mean_image/mean_kernel else: amp_estimated = 0 return amp_estimated
def estimate_amp(data, x_pos, y_pos, psf_kernel)
estimates the amplitude of a point source located at x_pos, y_pos :param data: :param x_pos: :param y_pos: :param deltaPix: :return:
2.398666
2.441089
0.982621
if not hasattr(self, '_light_cdf') or new_compute is True: r_array = np.linspace(self._min_interpolate, self._max_interpolate, self._interp_grid_num) cum_sum = np.zeros_like(r_array) sum = 0 for i, r in enumerate(r_array): if i == 0: cum_sum[i] = 0 else: sum += self.light_2d(r, kwargs_list) * r cum_sum[i] = copy.deepcopy(sum) cum_sum_norm = cum_sum/cum_sum[-1] f = interp1d(cum_sum_norm, r_array) self._light_cdf = f cdf_draw = np.random.uniform(0., 1, n) r_draw = self._light_cdf(cdf_draw) return r_draw
def draw_light_2d_linear(self, kwargs_list, n=1, new_compute=False, r_eff=1.)
constructs the CDF and draws from it random realizations of projected radii R :param kwargs_list: :return:
2.652346
2.558081
1.03685
if not hasattr(self, '_light_cdf_log') or new_compute is True: r_array = np.logspace(np.log10(self._min_interpolate), np.log10(self._max_interpolate), self._interp_grid_num) cum_sum = np.zeros_like(r_array) sum = 0 for i, r in enumerate(r_array): if i == 0: cum_sum[i] = 0 else: sum += self.light_2d(r, kwargs_list) * r * r cum_sum[i] = copy.deepcopy(sum) cum_sum_norm = cum_sum/cum_sum[-1] f = interp1d(cum_sum_norm, np.log(r_array)) self._light_cdf_log = f cdf_draw = np.random.uniform(0., 1, n) r_log_draw = self._light_cdf_log(cdf_draw) return np.exp(r_log_draw)
def draw_light_2d(self, kwargs_list, n=1, new_compute=False)
constructs the CDF and draws from it random realizations of projected radii R :param kwargs_list: :return:
2.62179
2.559465
1.024351
rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs) if Rs < 0.0000001: Rs = 0.0000001 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) f_x, f_y = self.nfwAlpha(R, Rs, rho0_input, x_, y_) return f_x, f_y
def derivatives(self, x, y, Rs, theta_Rs, center_x=0, center_y=0)
returns df/dx and df/dy of the function (integral of NFW)
3.326046
3.02872
1.098169
return rho0/(R/Rs*(1+R/Rs)**2)
def density(self, R, Rs, rho0)
three dimenstional NFW profile :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :return: rho(R) density
8.230124
12.457923
0.660634
x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) x = R/Rs Fx = self.F_(x) return 2*rho0*Rs*Fx
def density_2d(self, x, y, Rs, rho0, center_x=0, center_y=0)
projected two dimenstional NFW profile (kappa*Sigma_crit) :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param r200: radius of (sub)halo :type r200: float>0 :return: Epsilon(R) projected density at radius R
3.709531
4.459777
0.831775
Rs = float(Rs) m_3d = 4. * np.pi * rho0 * Rs**3 *(np.log((Rs + R)/Rs) - R/(Rs + R)) return m_3d
def mass_3d(self, R, Rs, rho0)
mass enclosed a 3d sphere or radius r :param r: :param Ra: :param Rs: :return:
3.89253
4.434577
0.877768
rho0 = self._alpha2rho0(theta_Rs, Rs) m_3d = self.mass_3d(R, Rs, rho0) return m_3d
def mass_3d_lens(self, R, Rs, theta_Rs)
mass enclosed a 3d sphere or radius r :param r: :param Ra: :param Rs: :return:
4.13266
4.903781
0.84275
x = R/Rs gx = self.g_(x) m_2d = 4*rho0*Rs*R**2*gx/x**2 * np.pi return m_2d
def mass_2d(self, R, Rs, rho0)
mass enclosed a 3d sphere or radius r :param r: :param Ra: :param Rs: :return:
6.177757
7.463492
0.82773
if self._interpol: if not hasattr(self, '_F_interp'): if self._lookup: x = self._x_lookup F_x = self._f_lookup else: x = np.linspace(0, self._max_interp_X, self._num_interp_X) F_x = self._F(x) self._F_interp = interp.interp1d(x, F_x, kind='linear', axis=-1, copy=False, bounds_error=False, fill_value=0, assume_sorted=True) return self._F_interp(X) else: return self._F(X)
def F_(self, X)
computes h() :param X: :return:
2.70996
2.764895
0.980131
if isinstance(X, int) or isinstance(X, float): if X < 1 and X > 0: a = 1/(X**2-1)*(1-2/np.sqrt(1-X**2)*np.arctanh(np.sqrt((1-X)/(1+X)))) elif X == 1: a = 1./3 elif X > 1: a = 1/(X**2-1)*(1-2/np.sqrt(X**2-1)*np.arctan(np.sqrt((X-1)/(1+X)))) else: # X == 0: c = 0.0000001 a = 1/(-1)*(1-2/np.sqrt(1)*np.arctanh(np.sqrt((1-c)/(1+c)))) else: a = np.empty_like(X) x = X[(X < 1) & (X > 0)] a[(X < 1) & (X > 0)] = 1/(x**2-1)*(1-2/np.sqrt(1-x**2)*np.arctanh(np.sqrt((1-x)/(1+x)))) a[X == 1] = 1./3. x = X[X > 1] a[X > 1] = 1/(x**2-1)*(1-2/np.sqrt(x**2-1)*np.arctan(np.sqrt((x-1)/(1+x)))) # a[X>y] = 0 c = 0.0000001 a[X == 0] = 1/(-1)*(1-2/np.sqrt(1)*np.arctanh(np.sqrt((1-c)/(1+c)))) return a
def _F(self, X)
analytic solution of the projection integral :param x: R/Rs :type x: float >0
1.923286
1.950069
0.986266
if self._interpol: if not hasattr(self, '_g_interp'): if self._lookup: x = self._x_lookup g_x = self._g_lookup else: x = np.linspace(0, self._max_interp_X, self._num_interp_X) g_x = self._g(x) self._g_interp = interp.interp1d(x, g_x, kind='linear', axis=-1, copy=False, bounds_error=False, fill_value=0, assume_sorted=True) return self._g_interp(X) else: return self._g(X)
def g_(self, X)
computes h() :param X: :return:
2.635338
2.697693
0.976886
if self._interpol: if not hasattr(self, '_h_interp'): if self._lookup: x = self._x_lookup h_x = self._h_lookup else: x = np.linspace(0, self._max_interp_X, self._num_interp_X) h_x = self._h(x) self._h_interp = interp.interp1d(x, h_x, kind='linear', axis=-1, copy=False, bounds_error=False, fill_value=0, assume_sorted=True) return self._h_interp(X) else: return self._h(X)
def h_(self, X)
computes h() :param X: :return:
2.684128
2.676466
1.002863
rho0 = theta_Rs / (4. * Rs ** 2 * (1. + np.log(1. / 2.))) return rho0
def _alpha2rho0(self, theta_Rs, Rs)
convert angle at Rs into rho0
4.883181
4.4611
1.094614
theta_Rs = rho0 * (4 * Rs ** 2 * (1 + np.log(1. / 2.))) return theta_Rs
def _rho02alpha(self, rho0, Rs)
convert rho0 to angle at Rs :param rho0: :param Rs: :return:
7.526702
7.230074
1.041027
name_list = [] for func in self.func_list: name_list.append(func.param_names) return name_list
def param_name_list(self)
returns the list of all parameter names :return: list of list of strings (for each light model separately)
3.580527
3.344923
1.070436
x = np.array(x, dtype=float) y = np.array(y, dtype=float) flux = np.zeros_like(x) for i, func in enumerate(self.func_list): if k is None or k == i: out = np.array(func.function(x, y, **kwargs_list[i]), dtype=float) flux += out return flux
def surface_brightness(self, x, y, kwargs_list, k=None)
:param x: coordinate in units of arcsec relative to the center of the image :type x: set or single 1d numpy array
2.338593
2.622224
0.891836
r = np.array(r, dtype=float) flux = np.zeros_like(r) for i, func in enumerate(self.func_list): if k is None or k == i: kwargs = {k: v for k, v in kwargs_list[i].items() if not k in ['center_x', 'center_y']} if self.profile_type_list[i] in ['HERNQUIST', 'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', 'GAUSSIAN', 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE', 'POWER_LAW']: flux += func.light_3d(r, **kwargs) else: raise ValueError('Light model %s does not support a 3d light distribution!' % self.profile_type_list[i]) return flux
def light_3d(self, r, kwargs_list, k=None)
computes 3d density at radius r :param x: coordinate in units of arcsec relative to the center of the image :type x: set or single 1d numpy array
2.664351
2.915771
0.913772
norm_flux_list = [] for i, model in enumerate(self.profile_type_list): if k is None or k == i: if model in ['SERSIC', 'SERSIC_ELLIPSE', 'INTERPOL', 'GAUSSIAN', 'GAUSSIAN_ELLIPSE', 'MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE']: kwargs_new = kwargs_list[i].copy() if norm is True: if model in ['MULTI_GAUSSIAN', 'MULTI_GAUSSIAN_ELLIPSE']: new = {'amp': np.array(kwargs_new['amp'])/kwargs_new['amp'][0]} else: new = {'amp': 1} kwargs_new.update(new) norm_flux = self.func_list[i].total_flux(**kwargs_new) norm_flux_list.append(norm_flux) else: raise ValueError("profile %s does not support flux normlization." % model) # TODO implement total flux for e.g. 'HERNQUIST', 'HERNQUIST_ELLIPSE', 'PJAFFE', 'PJAFFE_ELLIPSE', # 'GAUSSIAN', 'GAUSSIAN_ELLIPSE', 'POWER_LAW', 'NIE', 'CHAMELEON', 'DOUBLE_CHAMELEON', 'UNIFORM' return norm_flux_list
def total_flux(self, kwargs_list, norm=False, k=None)
Computes the total flux of each individual light profile. This allows to estimate the total flux as well as lenstronomy amp to magnitude conversions. Not all models are supported :param kwargs_list: list of keyword arguments corresponding to the light profiles. The 'amp' parameter can be missing. :param norm: bool, if True, computes the flux for amp=1 :param k: int, if set, only evaluates the specific light model :return: list of (total) flux values attributed to each profile
2.98474
2.759187
1.081746
bn = self.b_n(n) k = bn*Re**(-1./n) return k, bn
def k_bn(self, n, Re)
returns normalisation of the sersic profile such that Re is the half light radius given n_sersic slope
8.016342
6.471511
1.238713
x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) if isinstance(r, int) or isinstance(r, float): r = max(self._s, r) else: r[r < self._s] = self._s x_reduced = (r/r_eff)**(1./n_sersic) return x_reduced
def _x_reduced(self, x, y, n_sersic, r_eff, center_x, center_y)
coordinate transform to normalized radius :param x: :param y: :param center_x: :param center_y: :return:
2.378657
2.495155
0.95331
b = self.b_n(n_sersic) alpha_eff = n_sersic * r_eff * k_eff * b**(-2*n_sersic) * np.exp(b) * special.gamma(2*n_sersic) return -alpha_eff
def _alpha_eff(self, r_eff, n_sersic, k_eff)
deflection angle at r_eff :param r_eff: :param n_sersic: :param k_eff: :return:
4.018836
4.55539
0.882216
raise ValueError("not implemented! Use a Multi-Gaussian-component decomposition.")
def density(self, x, y, n_sersic, r_eff, k_eff, center_x=0, center_y=0)
de-projection of the Sersic profile based on Prugniel & Simien (1997) :return:
133.552673
141.96077
0.940772
bn = self.b_n(n_sersic) return I_eff * r_eff**2 * 2 * np.pi * n_sersic * np.exp(bn) / bn**(2*n_sersic) * scipy.special.gamma(2*n_sersic)
def _total_flux(self, r_eff, I_eff, n_sersic)
computes total flux of a Sersic profile :param r_eff: projected half light radius :param I_eff: surface brightness at r_eff (in same units as r_eff) :param n_sersic: Sersic index :return: integrated flux to infinity
4.350215
4.766006
0.912759
gamma = self._gamma_limit(gamma) x_ = x - center_x y_ = y - center_y E = theta_E / ((3. - gamma) / 2.) ** (1. / (1. - gamma)) # E = phi_E_spp eta= -gamma + 3 p2 = x_**2+y_**2 s2 = 0. # softening return 2 * E**2/eta**2 * ((p2 + s2)/E**2)**(eta/2)
def function(self, x, y, theta_E, gamma, center_x=0, center_y=0)
:param x: set of x-coordinates :type x: array of size (n) :param theta_E: Einstein radius of lense :type theta_E: float. :param gamma: power law slope of mass profifle :type gamma: <2 float :param q: Axis ratio :type q: 0<q<1 :param phi_G: position angel of SES :type q: 0<phi_G<pi/2 :returns: function :raises: AttributeError, KeyError
6.828287
7.442542
0.917467
fac = np.sqrt(np.pi) * special.gamma(1. / 2 * (-1 + gamma)) / special.gamma(gamma / 2.) * 2 / (3 - gamma) * rho0 #fac = theta_E**(gamma - 1) theta_E = fac**(1. / (gamma - 1)) return theta_E
def rho2theta(self, rho0, gamma)
converts 3d density into 2d projected density parameter :param rho0: :param gamma: :return:
5.704965
5.957314
0.957641
fac1 = np.sqrt(np.pi) * special.gamma(1. / 2 * (-1 + gamma)) / special.gamma(gamma / 2.) * 2 / (3 - gamma) fac2 = theta_E**(gamma - 1) rho0 = fac2 / fac1 return rho0
def theta2rho(self, theta_E, gamma)
converts projected density parameter (in units of deflection) into 3d density parameter :param theta_E: :param gamma: :return:
4.845932
5.132892
0.944094
mass_3d = 4 * np.pi * rho0 /(-gamma + 3) * r ** (-gamma + 3) return mass_3d
def mass_3d(self, r, rho0, gamma)
mass enclosed a 3d sphere or radius r :param r: :param a: :param s: :return:
5.229198
7.366728
0.70984
alpha = np.sqrt(np.pi) * special.gamma(1. / 2 * (-1 + gamma)) / special.gamma(gamma / 2.) * r ** (2 - gamma)/(3 - gamma) *np.pi * 2 * rho0 mass_2d = alpha*r return mass_2d
def mass_2d(self, r, rho0, gamma)
mass enclosed projected 2d sphere of radius r :param r: :param rho0: :param a: :param s: :return:
5.961955
6.5123
0.915491
x_ = x - center_x y_ = y - center_y r = np.sqrt(x_**2 + y_**2) mass_3d = self.mass_3d(r, rho0, gamma) pot = mass_3d/r return pot
def grav_pot(self, x, y, rho0, gamma, center_x=0, center_y=0)
gravitational potential (modulo 4 pi G and rho0 in appropriate units) :param x: :param y: :param rho0: :param a: :param s: :param center_x: :param center_y: :return:
2.779139
3.297537
0.842792