code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
try: return legacy_decrypt(*args, **kwargs) except (NotYetValid, Expired) as e: # these should be raised immediately. # The token has been decrypted successfully to get to here. # decrypting using `legacy_decrypt` will not help things. raise e except (Error, ValueError) as e: return spec_compliant_decrypt(*args, **kwargs)
def decrypt(*args, **kwargs)
Decrypts legacy or spec-compliant JOSE token. First attempts to decrypt the token in a legacy mode (https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-19). If it is not a valid legacy token then attempts to decrypt it in a spec-compliant way (http://tools.ietf.org/html/rfc7519)
9.584394
7.345369
1.304821
(hash_fn, _), mod = JWA[alg] header = dict((add_header or {}).items() + [(HEADER_ALG, alg)]) header, payload = map(b64encode_url, map(json_encode, (header, claims))) sig = b64encode_url(hash_fn(_jws_hash_str(header, payload), jwk['k'], mod=mod)) return JWS(header, payload, sig)
def sign(claims, jwk, add_header=None, alg='HS256')
Signs the given claims and produces a :class:`~jose.JWS` :param claims: A `dict` representing the claims for this :class:`~jose.JWS`. :param jwk: A `dict` representing the JWK to be used for signing of the :class:`~jose.JWS`. This parameter is algorithm-specific. :parameter add_header: Additional items to be added to the header. Additional headers *will* be authenticated. :parameter alg: The algorithm to use to produce the signature. :rtype: :class:`~jose.JWS`
6.221216
7.604618
0.818084
header, payload, sig = map(b64decode_url, jws) header = json_decode(header) if alg != header[HEADER_ALG]: raise Error('Invalid algorithm') (_, verify_fn), mod = JWA[header[HEADER_ALG]] if not verify_fn(_jws_hash_str(jws.header, jws.payload), jwk['k'], sig, mod=mod): raise Error('Mismatched signatures') claims = json_decode(b64decode_url(jws.payload)) _validate(claims, validate_claims, expiry_seconds) return JWT(header, claims)
def verify(jws, jwk, alg, validate_claims=True, expiry_seconds=None)
Verifies the given :class:`~jose.JWS` :param jws: The :class:`~jose.JWS` to be verified. :param jwk: A `dict` representing the JWK to use for verification. This parameter is algorithm-specific. :param alg: The algorithm to verify the signature with. :param validate_claims: A `bool` indicating whether or not the `exp`, `iat` and `nbf` claims should be validated. Defaults to `True`. :param expiry_seconds: An `int` containing the JWT expiry in seconds, used when evaluating the `iat` claim. Defaults to `None`, which disables `iat` claim validation. :rtype: :class:`~jose.JWT` :raises: :class:`~jose.Expired` if the JWT has expired :raises: :class:`~jose.NotYetValid` if the JWT is not yet valid :raises: :class:`~jose.Error` if there is an error decrypting the JWE
5.475872
6.144145
0.891234
istr = encode_safe(istr) try: return urlsafe_b64decode(istr + '=' * (4 - (len(istr) % 4))) except TypeError as e: raise Error('Unable to decode base64: %s' % (e))
def b64decode_url(istr)
JWT Tokens may be truncated without the usual trailing padding '=' symbols. Compensate by padding to the nearest 4 bytes.
3.124312
3.276864
0.953446
if not validate_claims: return now = time() # TODO: implement support for clock skew # The exp (expiration time) claim identifies the expiration time on or # after which the JWT MUST NOT be accepted for processing. The # processing of the exp claim requires that the current date/time MUST # be before the expiration date/time listed in the exp claim. try: expiration_time = claims[CLAIM_EXPIRATION_TIME] except KeyError: pass else: _check_expiration_time(now, expiration_time) # The iat (issued at) claim identifies the time at which the JWT was # issued. This claim can be used to determine the age of the JWT. # If expiry_seconds is provided, and the iat claims is present, # determine the age of the token and check if it has expired. try: issued_at = claims[CLAIM_ISSUED_AT] except KeyError: pass else: if expiry_seconds is not None: _check_expiration_time(now, issued_at + expiry_seconds) # The nbf (not before) claim identifies the time before which the JWT # MUST NOT be accepted for processing. The processing of the nbf claim # requires that the current date/time MUST be after or equal to the # not-before date/time listed in the nbf claim. try: not_before = claims[CLAIM_NOT_BEFORE] except KeyError: pass else: _check_not_before(now, not_before)
def _validate(claims, validate_claims, expiry_seconds)
Validate expiry related claims. If validate_claims is False, do nothing. Otherwise, validate the exp and nbf claims if they are present, and validate the iat claim if expiry_seconds is provided.
2.000046
1.926648
1.038097
return global_registry().gauge(key, gauge=gauge, default=default, **dims)
def gauge(key, gauge=None, default=float("nan"), **dims)
Adds gauge with dimensions to the global pyformance registry
4.755735
3.447481
1.379481
def counter_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): counter("%s_calls" % pyformance.registry.get_qualname(fn), **dims).inc() return fn(*args, **kwargs) return fn_wrapper return counter_wrapper
def count_calls_with_dims(**dims)
Decorator to track the number of times a function is called with with dimensions.
4.08225
3.978266
1.026138
def meter_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): meter("%s_calls" % pyformance.registry.get_qualname(fn), **dims).mark() return fn(*args, **kwargs) return fn_wrapper return meter_wrapper
def meter_calls_with_dims(**dims)
Decorator to track the rate at which a function is called with dimensions.
3.906639
3.768207
1.036737
@functools.wraps(fn) def wrapper(*args, **kwargs): _histogram = histogram( "%s_calls" % pyformance.registry.get_qualname(fn)) rtn = fn(*args, **kwargs) if type(rtn) in (int, float): _histogram.add(rtn) return rtn return wrapper
def hist_calls(fn)
Decorator to check the distribution of return values of a function.
4.0793
3.87478
1.052782
def hist_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): _histogram = histogram( "%s_calls" % pyformance.registry.get_qualname(fn), **dims) rtn = fn(*args, **kwargs) if type(rtn) in (int, float): _histogram.add(rtn) return rtn return fn_wrapper return hist_wrapper
def hist_calls_with_dims(**dims)
Decorator to check the distribution of return values of a function with dimensions.
3.731494
3.549853
1.051169
def time_wrapper(fn): @functools.wraps(fn) def fn_wrapper(*args, **kwargs): _timer = timer("%s_calls" % pyformance.registry.get_qualname(fn), **dims) with _timer.time(fn=pyformance.registry.get_qualname(fn)): return fn(*args, **kwargs) return fn_wrapper return time_wrapper
def time_calls_with_dims(**dims)
Decorator to time the execution of the function with dimensions.
4.049574
3.791468
1.068075
return super(MetricsRegistry, self).add( self.metadata.register(key, **dims), metric)
def add(self, key, metric, **dims)
Adds custom metric instances to the registry with dimensions which are not created with their constructors default arguments
10.306337
9.417229
1.094413
return super(MetricsRegistry, self).counter( self.metadata.register(key, **dims))
def counter(self, key, **dims)
Adds counter with dimensions to the registry
13.512028
10.281936
1.314152
return super(MetricsRegistry, self).histogram( self.metadata.register(key, **dims))
def histogram(self, key, **dims)
Adds histogram with dimensions to the registry
14.685633
10.788639
1.361213
return super(MetricsRegistry, self).gauge( self.metadata.register(key, **dims), gauge=gauge, default=default)
def gauge(self, key, gauge=None, default=float("nan"), **dims)
Adds gauge with dimensions to the registry
7.212727
6.434132
1.12101
return super(MetricsRegistry, self).meter( self.metadata.register(key, **dims))
def meter(self, key, **dims)
Adds meter with dimensions to the registry
13.783063
10.141212
1.359114
return super(MetricsRegistry, self).timer( self.metadata.register(key, **dims))
def timer(self, key, **dims)
Adds timer with dimensions to the registry
13.874782
10.571656
1.312451
return super(RegexRegistry, self).timer(self._get_key(key), **dims)
def timer(self, key, **dims)
Adds timer with dimensions to the registry
8.599865
6.737528
1.276412
return super(RegexRegistry, self).histogram(self._get_key(key), **dims)
def histogram(self, key, **dims)
Adds histogram with dimensions to the registry
9.164052
6.980687
1.312772
return super(RegexRegistry, self).counter(self._get_key(key), **dims)
def counter(self, key, **dims)
Adds counter with dimensions to the registry
8.906584
6.798339
1.310112
return super(RegexRegistry, self).gauge( self._get_key(key), gauge=gauge, default=default, **dims)
def gauge(self, key, gauge=None, default=float("nan"), **dims)
Adds gauge with dimensions to the registry
5.311579
4.527774
1.173111
return super(RegexRegistry, self).meter(self._get_key(key), **dims)
def meter(self, key, **dims)
Adds meter with dimensions to the registry
8.883645
6.786922
1.308936
with self._lock: for dimension in dimension_names: if dimension in self._extra_dimensions: del self._extra_dimensions[dimension]
def remove_dimensions(self, dimension_names)
Removes extra dimensions added by the add_dimensions() function. Ignores dimension names that don't exist. Args: dimension_names (list): List of dimension names to remove.
3.293815
3.419626
0.963209
if not gauges and not cumulative_counters and not counters: return data = { 'cumulative_counter': cumulative_counters, 'gauge': gauges, 'counter': counters, } _logger.debug('Sending datapoints to SignalFx: %s', data) for metric_type, datapoints in data.items(): if not datapoints: continue if not isinstance(datapoints, list): raise TypeError('Datapoints not of type list %s', datapoints) for datapoint in datapoints: self._add_extra_dimensions(datapoint) self._add_to_queue(metric_type, datapoint) # Ensure the sending thread is running. self._start_thread()
def send(self, cumulative_counters=None, gauges=None, counters=None)
Send the given metrics to SignalFx. Args: cumulative_counters (list): a list of dictionaries representing the cumulative counters to report. gauges (list): a list of dictionaries representing the gauges to report. counters (list): a list of dictionaries representing the counters to report.
3.183112
2.996759
1.062185
if category and category not in SUPPORTED_EVENT_CATEGORIES: raise ValueError('Event category is not one of the supported' + 'types: {' + ', '.join(SUPPORTED_EVENT_CATEGORIES) + '}') data = { 'eventType': event_type, 'category': category, 'dimensions': dimensions or {}, 'properties': properties or {}, 'timestamp': int(timestamp) if timestamp else None, } _logger.debug('Sending event to SignalFx: %s', data) self._add_extra_dimensions(data) return self._send_event(event_data=data, url='{0}/{1}'.format( self._endpoint, self._INGEST_ENDPOINT_EVENT_SUFFIX), session=self._session)
def send_event(self, event_type, category=None, dimensions=None, properties=None, timestamp=None)
Send an event to SignalFx. Args: event_type (string): the event type (name of the event time series). category (string): the category of the event. dimensions (dict): a map of event dimensions. properties (dict): a map of extra properties on that event. timestamp (float): timestamp when the event has occured
3.578663
3.733905
0.958424
with self._lock: if not self._thread_running: return self._thread_running = False self._queue.put(_BaseSignalFxIngestClient._QUEUE_STOP) self._send_thread.join() _logger.debug(msg)
def stop(self, msg='Thread stopped')
Stop send thread and flush points for a safe exit.
6.794167
5.963403
1.13931
# bool inherits int, so bool instance check must be executed prior to # checking for integer types if isinstance(value, bool) and _bool is True: pbuf_obj.value.boolValue = value elif isinstance(value, six.integer_types) and \ not isinstance(value, bool) and _integer is True: if value < INTEGER_MIN or value > INTEGER_MAX: raise ValueError( ('{}: {} exceeds signed 64 bit integer range ' 'as defined by ProtocolBuffers ({} to {})') .format(error_prefix, str(value), str(INTEGER_MIN), str(INTEGER_MAX))) pbuf_obj.value.intValue = value elif isinstance(value, float) and _float is True: pbuf_obj.value.doubleValue = value elif isinstance(value, six.string_types) and _string is True: pbuf_obj.value.strValue = value else: raise ValueError( '{}: {} is of invalid type {}' .format(error_prefix, str(value), str(type(value))))
def _assign_value_by_type(self, pbuf_obj, value, _bool=True, _float=True, _integer=True, _string=True, error_prefix='')
Assigns the supplied value to the appropriate protobuf value type
2.646549
2.689675
0.983966
self._assign_value_by_type(pbuf_dp, value, _bool=False, error_prefix='Invalid value')
def _assign_value(self, pbuf_dp, value)
Assigns a value to the protobuf obj
10.672882
9.943721
1.073329
iterator = iter(self._stream) while self._state < Computation.STATE_COMPLETED: try: message = next(iterator) except StopIteration: if self._state < Computation.STATE_COMPLETED: self._stream = self._execute() iterator = iter(self._stream) continue if isinstance(message, messages.StreamStartMessage): self._state = Computation.STATE_STREAM_STARTED continue if isinstance(message, messages.JobStartMessage): self._state = Computation.STATE_COMPUTATION_STARTED self._id = message.handle yield message continue if isinstance(message, messages.JobProgressMessage): yield message continue if isinstance(message, messages.ChannelAbortMessage): self._state = Computation.STATE_ABORTED raise errors.ComputationAborted(message.abort_info) if isinstance(message, messages.EndOfChannelMessage): self._state = Computation.STATE_COMPLETED continue # Intercept metadata messages to accumulate received metadata... if isinstance(message, messages.MetadataMessage): self._metadata[message.tsid] = message.properties yield message continue # ...as well as expired-tsid messages to clean it up. if isinstance(message, messages.ExpiredTsIdMessage): if message.tsid in self._metadata: del self._metadata[message.tsid] yield message continue if isinstance(message, messages.InfoMessage): self._process_info_message(message.message) self._batch_count_detected = True if self._current_batch_message: yield self._get_batch_to_yield() continue # Accumulate data messages and release them when we have received # all batches for the same logical timestamp. if isinstance(message, messages.DataMessage): self._state = Computation.STATE_DATA_RECEIVED if not self._batch_count_detected: self._expected_batches += 1 if not self._current_batch_message: self._current_batch_message = message self._current_batch_count = 1 elif (message.logical_timestamp_ms == self._current_batch_message.logical_timestamp_ms): self._current_batch_message.add_data(message.data) self._current_batch_count += 1 else: self._batch_count_detected = True if (self._batch_count_detected and self._current_batch_count == self._expected_batches): yield self._get_batch_to_yield() continue if isinstance(message, messages.EventMessage): yield message continue if isinstance(message, messages.ErrorMessage): raise errors.ComputationFailed(message.errors) # Yield last batch, even if potentially incomplete. if self._current_batch_message: yield self._get_batch_to_yield()
def stream(self)
Iterate over the messages from the computation's output. Control and metadata messages are intercepted and interpreted to enhance this Computation's object knowledge of the computation's context. Data and event messages are yielded back to the caller as a generator.
2.74416
2.60647
1.052826
# Extract the output resolution from the appropriate message, if # it's present. if message['messageCode'] == 'JOB_RUNNING_RESOLUTION': self._resolution = message['contents']['resolutionMs'] elif message['messageCode'] == 'FETCH_NUM_TIMESERIES': self._num_input_timeseries += int(message['numInputTimeSeries'])
def _process_info_message(self, message)
Process an information message received from the computation.
10.522623
10.411176
1.010705
params = self._get_params(start=start, stop=stop, resolution=resolution, maxDelay=max_delay, persistent=persistent, immediate=immediate, disableAllMetricPublishes=disable_all_metric_publishes) def exec_fn(since=None): if since: params['start'] = since return self._transport.execute(program, params) c = computation.Computation(exec_fn) self._computations.add(c) return c
def execute(self, program, start=None, stop=None, resolution=None, max_delay=None, persistent=False, immediate=False, disable_all_metric_publishes=None)
Execute the given SignalFlow program and stream the output back.
3.03948
3.020508
1.006281
params = self._get_params(start=start, stop=stop, resolution=resolution, maxDelay=max_delay) def exec_fn(since=None): if since: params['start'] = since return self._transport.preflight(program, params) c = computation.Computation(exec_fn) self._computations.add(c) return c
def preflight(self, program, start, stop, resolution=None, max_delay=None)
Preflight the given SignalFlow program and stream the output back.
4.563303
4.916777
0.928109
params = self._get_params(start=start, stop=stop, resolution=resolution, maxDelay=max_delay) self._transport.start(program, params)
def start(self, program, start=None, stop=None, resolution=None, max_delay=None)
Start executing the given SignalFlow program without being attached to the output of the computation.
3.762666
4.0155
0.937036
params = self._get_params(filters=filters, resolution=resolution) c = computation.Computation( lambda since: self._transport.attach(handle, params)) self._computations.add(c) return c
def attach(self, handle, filters=None, resolution=None)
Attach to an existing SignalFlow computation.
6.469855
5.62562
1.15007
params = self._get_params(reason=reason) self._transport.stop(handle, params)
def stop(self, handle, reason=None)
Stop a SignalFlow computation.
6.387542
6.306804
1.012802
_logger.debug('Performing an elasticsearch for %(qry)s at %(pt)s', {'qry': query, 'pt': metadata_endpoint}) url_to_get = '{0}?query={1}'.format(self._u(metadata_endpoint), query) if order_by is not None: url_to_get += '&orderBy=' + order_by # for offset and limit, use API defaults (by leaving them out of url) if offset is not None: url_to_get += '&offset=' + str(offset) if limit is not None: url_to_get += '&limit=' + str(limit) timeout = timeout or self._timeout resp = self._get(url_to_get, session=self._session, timeout=timeout) resp.raise_for_status() return resp.json()
def _search_metrics_and_metadata(self, metadata_endpoint, query, order_by=None, offset=None, limit=None, timeout=None)
generic function for elasticsearch queries; can search metrics, dimensions, metrictimeseries by changing metadata_endpoint Args: metadata_endpoint (string): API endpoint suffix (e.g. 'v2/metric') query (string): elasticsearch string query order_by (optional[string]): property by which to order results offset (optional[int]): number of results to skip for pagination (default=0) limit (optional[int]): how many results to return (default=50) timeout (optional[int]): how long to wait for response (in seconds) Returns: dictionary of query result
3.392095
3.374108
1.005331
timeout = timeout or self._timeout resp = self._get(self._u(object_endpoint, object_name), session=self._session, timeout=timeout) resp.raise_for_status() return resp.json()
def _get_object_by_name(self, object_endpoint, object_name, timeout=None)
generic function to get object (metadata, tag, ) by name from SignalFx. Args: object_endpoint (string): API endpoint suffix (e.g. 'v2/tag') object_name (string): name of the object (e.g. 'jvm.cpu.load') Returns: dictionary of response
3.723722
5.069815
0.734489
return self._search_metrics_and_metadata( self._METRIC_ENDPOINT_SUFFIX, *args, **kwargs)
def search_metrics(self, *args, **kwargs)
Args: query (string): elasticsearch string query order_by (optional[string]): property by which to order results offset (optional[int]): number of results to skip for pagination (default=0) limit (optional[int]): how many results to return (default=50) timeout (optional[int]): how long to wait for response (in seconds) Returns: result of query search on metrics
10.608509
16.581841
0.639767
return self._get_object_by_name(self._METRIC_ENDPOINT_SUFFIX, metric_name, **kwargs)
def get_metric_by_name(self, metric_name, **kwargs)
get a metric by name Args: metric_name (string): name of metric Returns: dictionary of response
6.381822
8.299677
0.768924
data = {'type': metric_type.upper(), 'description': description or '', 'customProperties': custom_properties or {}, 'tags': tags or []} resp = self._put(self._u(self._METRIC_ENDPOINT_SUFFIX, str(metric_name)), data=data, **kwargs) resp.raise_for_status() return resp.json()
def update_metric_by_name(self, metric_name, metric_type, description=None, custom_properties=None, tags=None, **kwargs)
Create or update a metric object Args: metric_name (string): name of metric type (string): metric type, must be one of 'gauge', 'counter', 'cumulative_counter' description (optional[string]): a description custom_properties (optional[dict]): dictionary of custom properties tags (optional[list of strings]): list of tags associated with metric
3.235869
3.995282
0.809923
return self._search_metrics_and_metadata( self._DIMENSION_ENDPOINT_SUFFIX, *args, **kwargs)
def search_dimensions(self, *args, **kwargs)
Args: query (string): elasticsearch string query order_by (optional[string]): property by which to order results offset (optional[int]): number of results to skip for pagination (default=0) limit (optional[int]): how many results to return (default=50) timeout (optional[int]): how long to wait for response (in seconds) Returns: result of query search on dimensions
12.109378
15.388577
0.786907
return self._get_object_by_name(self._DIMENSION_ENDPOINT_SUFFIX, '{0}/{1}'.format(key, value), **kwargs)
def get_dimension(self, key, value, **kwargs)
get a dimension by key and value Args: key (string): key of the dimension value (string): value of the dimension Returns: dictionary of response
7.136742
8.348245
0.854879
data = {'description': description or '', 'customProperties': custom_properties or {}, 'tags': tags or [], 'key': key, 'value': value} resp = self._put(self._u(self._DIMENSION_ENDPOINT_SUFFIX, key, value), data=data, **kwargs) resp.raise_for_status() return resp.json()
def update_dimension(self, key, value, description=None, custom_properties=None, tags=None, **kwargs)
update a dimension Args: key (string): key of the dimension value (string): value of the dimension description (optional[string]): a description custom_properties (optional[dict]): dictionary of custom properties tags (optional[list of strings]): list of tags associated with metric
3.1607
3.656062
0.864509
return self._search_metrics_and_metadata(self._MTS_ENDPOINT_SUFFIX, *args, **kwargs)
def search_metric_time_series(self, *args, **kwargs)
Args: query (string): elasticsearch string query order_by (optional[string]): property by which to order results offset (optional[int]): number of results to skip for pagination (default=0) limit (optional[int]): how many results to return (default=50) timeout (optional[int]): how long to wait for response (in seconds) Returns: result of query search on metric time series
12.743593
18.221977
0.699353
return self._get_object_by_name(self._MTS_ENDPOINT_SUFFIX, mts_id, **kwargs)
def get_metric_time_series(self, mts_id, **kwargs)
get a metric time series by id
6.011555
5.845264
1.028449
return self._search_metrics_and_metadata(self._TAG_ENDPOINT_SUFFIX, *args, **kwargs)
def search_tags(self, *args, **kwargs)
Args: query (string): elasticsearch string query order_by (optional[string]): property by which to order results offset (optional[int]): number of results to skip for pagination (default=0) limit (optional[int]): how many results to return (default=50) timeout (optional[int]): how long to wait for response (in seconds) Returns: result of query search on tags
13.552693
20.079788
0.674942
return self._get_object_by_name(self._TAG_ENDPOINT_SUFFIX, tag_name, **kwargs)
def get_tag(self, tag_name, **kwargs)
get a tag by name Args: tag_name (string): name of tag to get Returns: dictionary of the response
6.474005
8.801364
0.735568
data = {'description': description or '', 'customProperties': custom_properties or {}} resp = self._put(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name), data=data, **kwargs) resp.raise_for_status() return resp.json()
def update_tag(self, tag_name, description=None, custom_properties=None, **kwargs)
update a tag by name Args: tag_name (string): name of tag to update description (optional[string]): a description custom_properties (optional[dict]): dictionary of custom properties
3.709884
4.433055
0.836869
resp = self._delete(self._u(self._TAG_ENDPOINT_SUFFIX, tag_name), **kwargs) resp.raise_for_status() # successful delete returns 204, which has no associated json return resp
def delete_tag(self, tag_name, **kwargs)
delete a tag by name Args: tag_name (string): name of tag to delete
8.712335
9.301356
0.936674
resp = self._get(self._u(self._ORGANIZATION_ENDPOINT_SUFFIX), **kwargs) resp.raise_for_status() return resp.json()
def get_organization(self, **kwargs)
Get the organization to which the user belongs Returns: dictionary of the response
5.424343
6.009565
0.902618
resp = self._get_object_by_name(self._CHART_ENDPOINT_SUFFIX, id, **kwargs) return resp
def get_chart(self, id, **kwargs)
Retrieve a (v2) chart by id.
7.338021
7.003904
1.047704
resp = self._get_object_by_name(self._DASHBOARD_ENDPOINT_SUFFIX, id, **kwargs) return resp
def get_dashboard(self, id, **kwargs)
Retrieve a (v2) dashboard by id.
7.637624
7.695833
0.992436
resp = self._get_object_by_name(self._DETECTOR_ENDPOINT_SUFFIX, id, **kwargs) return resp
def get_detector(self, id, **kwargs)
Retrieve a (v2) detector by id.
7.016281
6.688263
1.049044
detectors = [] offset = 0 while True: resp = self._get( self._u(self._DETECTOR_ENDPOINT_SUFFIX), params={ 'offset': offset, 'limit': batch_size, 'name': name, 'tags': tags or [], }, **kwargs) resp.raise_for_status() data = resp.json() detectors += data['results'] if len(detectors) == data['count']: break offset = len(detectors) return detectors
def get_detectors(self, name=None, tags=None, batch_size=100, **kwargs)
Retrieve all (v2) detectors matching the given name; all (v2) detectors otherwise. Note that this method will loop through the paging of the results and accumulate all detectors that match the query. This may be expensive.
2.527268
2.516818
1.004152
resp = self._post(self._u(self._DETECTOR_ENDPOINT_SUFFIX, 'validate'), data=detector) resp.raise_for_status()
def validate_detector(self, detector)
Validate a detector. Validates the given detector; throws a 400 Bad Request HTTP error if the detector is invalid; otherwise doesn't return or throw anything. Args: detector (object): the detector model object. Will be serialized as JSON.
9.00491
10.304794
0.873856
resp = self._post(self._u(self._DETECTOR_ENDPOINT_SUFFIX), data=detector) resp.raise_for_status() return resp.json()
def create_detector(self, detector)
Creates a new detector. Args: detector (object): the detector model object. Will be serialized as JSON. Returns: dictionary of the response (created detector model).
6.066045
5.855909
1.035884
resp = self._put(self._u(self._DETECTOR_ENDPOINT_SUFFIX, detector_id), data=detector) resp.raise_for_status() return resp.json()
def update_detector(self, detector_id, detector)
Update an existing detector. Args: detector_id (string): the ID of the detector. detector (object): the detector model object. Will be serialized as JSON. Returns: dictionary of the response (updated detector model).
5.141138
5.24892
0.979466
resp = self._delete(self._u(self._DETECTOR_ENDPOINT_SUFFIX, detector_id), **kwargs) resp.raise_for_status() # successful delete returns 204, which has no response json return resp
def delete_detector(self, detector_id, **kwargs)
Remove a detector. Args: detector_id (string): the ID of the detector.
7.378069
8.561993
0.861723
resp = self._get( self._u(self._DETECTOR_ENDPOINT_SUFFIX, id, 'incidents'), None, **kwargs ) resp.raise_for_status() return resp.json()
def get_detector_incidents(self, id, **kwargs)
Gets all incidents for a detector
4.906148
5.195816
0.94425
resp = self._get_object_by_name(self._INCIDENT_ENDPOINT_SUFFIX, id, **kwargs) return resp
def get_incident(self, id, **kwargs)
Retrieve a (v2) incident by id.
7.239147
7.202245
1.005124
resp = self._get( self._u(self._INCIDENT_ENDPOINT_SUFFIX), params={ 'offset': offset, 'limit': limit, 'include_resolved': str(include_resolved).lower(), }, **kwargs) resp.raise_for_status() return resp.json()
def get_incidents(self, offset=0, limit=None, include_resolved=False, **kwargs)
Retrieve all (v2) incidents.
3.1248
3.183892
0.98144
resp = self._put( self._u(self._INCIDENT_ENDPOINT_SUFFIX, id, 'clear'), None, **kwargs ) resp.raise_for_status() return resp
def clear_incident(self, id, **kwargs)
Clear an incident.
5.563849
5.622322
0.9896
data = {} metadata = {} c = client.execute(program, start=start, stop=stop, resolution=resolution) for msg in c.stream(): if isinstance(msg, messages.DataMessage): if msg.logical_timestamp_ms in data: data[msg.logical_timestamp_ms].update(msg.data) else: data[msg.logical_timestamp_ms] = msg.data elif isinstance(msg, messages.MetadataMessage): metadata[msg.tsid] = msg.properties df = pandas.DataFrame.from_dict(data, orient='index') df.metadata = metadata return df
def get_data_frame(client, program, start, stop, resolution=None)
Executes the given program across the given time range (expressed in millisecond timestamps since Epoch), and returns a Pandas DataFrame containing the results, indexed by output timestamp. If the program contains multiple publish() calls, their outputs are merged into the returned DataFrame.
2.757176
2.782228
0.990996
r = requests.post('{0}/v2/session'.format(self._api_endpoint), json={'email': email, 'password': password}) r.raise_for_status() return r.json()['accessToken']
def login(self, email, password)
Authenticate a user with SignalFx to acquire a session token. Note that data ingest can only be done with an organization or team API access token, not with a user token obtained via this method. Args: email (string): the email login password (string): the password Returns a new, immediately-usable session token for the logged in user.
3.44459
3.212638
1.0722
from . import rest return rest.SignalFxRestClient( token=token, endpoint=endpoint or self._api_endpoint, timeout=timeout or self._timeout)
def rest(self, token, endpoint=None, timeout=None)
Obtain a metadata REST API client.
6.04498
4.80009
1.259347
from . import ingest if ingest.sf_pbuf: client = ingest.ProtoBufSignalFxIngestClient else: _logger.warn('Protocol Buffers not installed properly; ' 'falling back to JSON.') client = ingest.JsonSignalFxIngestClient compress = compress if compress is not None else self._compress return client( token=token, endpoint=endpoint or self._ingest_endpoint, timeout=timeout or self._timeout, compress=compress)
def ingest(self, token, endpoint=None, timeout=None, compress=None)
Obtain a datapoint and event ingest client.
5.539603
5.351142
1.035219
from . import signalflow compress = compress if compress is not None else self._compress return signalflow.SignalFlowClient( token=token, endpoint=endpoint or self._stream_endpoint, timeout=timeout or self._timeout, compress=compress)
def signalflow(self, token, endpoint=None, timeout=None, compress=None)
Obtain a SignalFlow API client.
3.6368
3.09353
1.175615
dimensions = dict((k, str(v)) for k, v in kwargs.items()) composite_key = self._composite_name(key, dimensions) self._metadata[composite_key] = { 'metric': key, 'dimensions': dimensions } return composite_key
def register(self, key, **kwargs)
Registers metadata for a metric and returns a composite key
4.124486
3.04748
1.353409
request = { 'type': 'authenticate', 'token': self._token, 'userAgent': '{} ws4py/{}'.format(version.user_agent, ws4py.__version__), } self.send(json.dumps(request))
def opened(self)
Handler called when the WebSocket connection is opened. The first thing to do then is to authenticate ourselves.
6.426891
4.931684
1.303184
if code != 1000: self._error = errors.SignalFlowException(code, reason) _logger.info('Lost WebSocket connection with %s (%s: %s).', self, code, reason) for c in self._channels.values(): c.offer(WebSocketComputationChannel.END_SENTINEL) self._channels.clear() with self._connection_cv: self._connected = False self._connection_cv.notify()
def closed(self, code, reason=None)
Handler called when the WebSocket is closed. Status code 1000 denotes a normal close; all others are errors.
6.622135
6.54623
1.011595
try: resp = requests.get(AWS_ID_URL, timeout=timeout).json() except requests.exceptions.ConnectTimeout: _logger.warning('Connection timeout when determining AWS unique ' 'ID. Not using AWS unique ID.') return None else: aws_id = "{0}_{1}_{2}".format(resp['instanceId'], resp['region'], resp['accountId']) _logger.debug('Using AWS unique ID %s.', aws_id) return aws_id
def get_aws_unique_id(timeout=DEFAULT_AWS_TIMEOUT)
Determine the current AWS unique ID Args: timeout (int): How long to wait for a response from AWS metadata IP
3.171212
3.294455
0.962591
pwm = self._pca.pwm_regs[self._index] if pwm[0] == 0x1000: return 0xffff return pwm[1] << 4
def duty_cycle(self)
16 bit value that dictates how much of one cycle is high (1) versus low (0). 0xffff will always be high, 0 will always be low and 0x7fff will be half high and then half low.
8.740579
8.076617
1.082208
output = mkl_fft.fft(a, n, axis) if _unitary(norm): output *= 1 / sqrt(output.shape[axis]) return output
def fft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError if `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : for definition of the DFT and conventions used. ifft : The inverse of `fft`. fft2 : The two-dimensional FFT. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. fftfreq : Frequency bins for given FFT parameters. Notes ----- FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when `n` is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the `numpy.fft` module. References ---------- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," *Math. Comput.* 19: 297-301. Examples -------- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j]) >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show() In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation.
6.133804
15.758137
0.389247
unitary = _unitary(norm) output = mkl_fft.ifft(a, n, axis) if unitary: output *= sqrt(output.shape[axis]) return output
def ifft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional *n*-point discrete Fourier transform computed by `fft`. In other words, ``ifft(fft(a)) == a`` to within numerical accuracy. For a general description of the algorithm and definitions, see `numpy.fft`. The input should be ordered in the same way as is returned by `fft`, i.e., * ``a[0]`` should contain the zero frequency term, * ``a[1:n//2]`` should contain the positive-frequency terms, * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in increasing order starting from the most negative frequency. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. See notes about padding issues. axis : int, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError If `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : An introduction, with definitions and general explanations. fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse ifft2 : The two-dimensional inverse FFT. ifftn : The n-dimensional inverse FFT. Notes ----- If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`. Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') ... >>> plt.legend(('real', 'imaginary')) ... >>> plt.show()
6.521132
21.109983
0.308912
unitary = _unitary(norm) if unitary and n is None: a = asarray(a) n = a.shape[axis] output = mkl_fft.rfft_numpy(a, n=n, axis=axis) if unitary: output *= 1 / sqrt(n) return output
def rfft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array n : int, optional Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. irfft : The inverse of `rfft`. fft : The one-dimensional FFT of general (complex) input. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. Notes ----- When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore ``n//2 + 1``. When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains the zero-frequency term 0*fs, which is real due to Hermitian symmetry. If `n` is even, ``A[-1]`` contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains the largest positive frequency (fs/2*(n-1)/n), and is complex in the general case. If the input `a` contains an imaginary part, it is silently discarded. Examples -------- >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is exploited to compute only the non-negative frequency terms.
4.062356
6.786771
0.59857
output = mkl_fft.irfft_numpy(a, n=n, axis=axis) if _unitary(norm): output *= sqrt(output.shape[axis]) return output
def irfft(a, n=None, axis=-1, norm=None)
Compute the inverse of the n-point DFT for real input. This function computes the inverse of the one-dimensional *n*-point discrete Fourier Transform of real input computed by `rfft`. In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical accuracy. (See Notes below for why ``len(a)`` is necessary here.) The input is expected to be in the form returned by `rfft`, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. fft : The one-dimensional FFT. irfft2 : The inverse of the two-dimensional FFT of real input. irfftn : The inverse of the *n*-dimensional FFT of real input. Notes ----- Returns the real valued `n`-point inverse discrete Fourier transform of `a`, where `a` contains the non-negative frequency terms of a Hermitian-symmetric sequence. `n` is the length of the result, not the input. If you specify an `n` such that `a` must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to `m` points via Fourier interpolation by: ``a_resamp = irfft(rfft(a), m)``. Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) >>> np.fft.irfft([1, -1j, -1]) array([ 0., 1., 0., 0.]) Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real.
6.412196
15.524574
0.413035
# The copy may be required for multithreading. a = array(a, copy=True, dtype=complex) if n is None: n = (a.shape[axis] - 1) * 2 unitary = _unitary(norm) return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n)
def hfft(a, n=None, axis=-1, norm=None)
Compute the FFT of a signal which has Hermitian symmetry (real spectrum). Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n//2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input along the axis specified by `axis`. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where ``m`` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([1, 2, 3, 4, 3, 2]) >>> np.fft.fft(signal) array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) >>> np.fft.hfft(signal[:4]) # Input first half of signal array([ 15., -4., 0., -1., 0., -4.]) >>> np.fft.hfft(signal, 6) # Input entire signal and truncate array([ 15., -4., 0., -1., 0., -4.]) >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]])
4.985022
8.20077
0.607872
# The copy may be required for multithreading. a = array(a, copy=True, dtype=float) if n is None: n = a.shape[axis] unitary = _unitary(norm) output = conjugate(rfft(a, n, axis)) return output * (1 / (sqrt(n) if unitary else n))
def ihfft(a, n=None, axis=-1, norm=None)
Compute the inverse FFT of a signal which has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input along the axis specified by `axis` is used. axis : int, optional Axis over which to compute the inverse FFT. If not given, the last axis is used. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. If `n` is even, the length of the transformed axis is ``(n/2)+1``. If `n` is odd, the length is ``(n+1)/2``. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> np.fft.ifft(spectrum) array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j]) >>> np.fft.ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])
4.934489
8.785034
0.561693
return fftn(a, s=s, axes=axes, norm=norm)
def fft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional discrete Fourier Transform This function computes the *n*-dimensional discrete Fourier Transform over any axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters ---------- a : array_like Input array, can be complex s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 : The inverse two-dimensional FFT. fft : The one-dimensional FFT. fftn : The *n*-dimensional FFT. fftshift : Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes ----- `fft2` is just `fftn` with a different default for `axes`. The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See `fftn` for details and a plotting example, and `numpy.fft` for definitions and conventions used. Examples -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ], [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j , 0.0 +0.j , 0.0 +0.j ]])
3.410544
9.879125
0.345227
return ifftn(a, s=s, axes=axes, norm=norm)
def ifft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fft2`, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. ifftn : The inverse of the *n*-dimensional FFT. fft : The one-dimensional FFT. ifft : The one-dimensional inverse FFT. Notes ----- `ifft2` is just `ifftn` with a different default for `axes`. See `ifftn` for details and a plotting example, and `numpy.fft` for definition and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called. Examples -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
2.797055
9.479079
0.295077
unitary = _unitary(norm) if unitary: a = asarray(a) s, axes = _cook_nd_args(a, s, axes) output = mkl_fft.rfftn_numpy(a, s, axes) if unitary: n_tot = prod(asarray(s, dtype=output.dtype)) output *= 1 / sqrt(n_tot) return output
def rfftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional discrete Fourier Transform for real input. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex. Parameters ---------- a : array_like Input array, taken to be real. s : sequence of ints, optional Shape (length along each transformed axis) to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). The final element of `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. The length of the last axis transformed will be ``s[-1]//2+1``, while the remaining transformed axes will have lengths according to `s`, or unchanged from the input. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT of real input. fft : The one-dimensional FFT, with definitions and conventions used. rfft : The one-dimensional FFT of real input. fftn : The n-dimensional FFT. rfft2 : The two-dimensional FFT of real input. Notes ----- The transform for real input is performed over the last transformation axis, as by `rfft`, then the transform over the remaining axes is performed as by `fftn`. The order of the output is as for `rfft` for the final transformation axis, and as for `fftn` for the remaining transformation axes. See `fft` for details, definitions and conventions used. Examples -------- >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) array([[[ 8.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) array([[[ 4.+0.j, 0.+0.j], [ 4.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]])
5.463334
9.796214
0.557698
return rfftn(a, s, axes, norm)
def rfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional FFT of a real array. Parameters ---------- a : array Input array, taken to be real. s : sequence of ints, optional Shape of the FFT. axes : sequence of ints, optional Axes over which to compute the FFT. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The result of the real 2-D FFT. See Also -------- rfftn : Compute the N-dimensional discrete Fourier Transform for real input. Notes ----- This is really just `rfftn` with different default behavior. For more details see `rfftn`.
4.971882
8.366845
0.594236
output = mkl_fft.irfftn_numpy(a, s, axes) if _unitary(norm): output *= sqrt(_tot_size(output, axes)) return output
def irfftn(a, s=None, axes=None, norm=None)
Compute the inverse of the N-dimensional FFT of real input. This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, and for the same reason.) The input should be ordered in the same way as is returned by `rfftn`, i.e. as for `irfft` for the final transformation axis, and as for `ifftn` along all the other axes. Parameters ---------- a : array_like Input array. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used. Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input along the axes specified by `axes` is used. axes : sequence of ints, optional Axes over which to compute the inverse FFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of `s`, or the length of the input in every axis except for the last one if `s` is not given. In the final transformed axis the length of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, `s` must be specified. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- rfftn : The forward n-dimensional FFT of real input, of which `ifftn` is the inverse. fft : The one-dimensional FFT, with definitions and conventions used. irfft : The inverse of the one-dimensional FFT of real input. irfft2 : The inverse of the two-dimensional FFT of real input. Notes ----- See `fft` for definitions and conventions used. See `rfft` for definitions and conventions used for real input. Examples -------- >>> a = np.zeros((3, 2, 2)) >>> a[0, 0, 0] = 3 * 2 * 2 >>> np.fft.irfftn(a) array([[[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]]])
9.318543
21.364082
0.436178
return irfftn(a, s, axes, norm)
def irfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the 2-dimensional inverse FFT of a real array. Parameters ---------- a : array_like The input array s : sequence of ints, optional Shape of the inverse FFT. axes : sequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. norm : {None, "ortho"}, optional .. versionadded:: 1.10.0 Normalization mode (see `numpy.fft`). Default is None. Returns ------- out : ndarray The result of the inverse real 2-D FFT. See Also -------- irfftn : Compute the inverse of the N-dimensional FFT of real input. Notes ----- This is really `irfftn` with different defaults. For more details see `irfftn`.
5.238524
8.349931
0.627373
client = obj['client'] if delete: client.delete_blackout(delete) else: if not environment: raise click.UsageError('Missing option "--environment" / "-E".') try: blackout = client.create_blackout( environment=environment, service=service, resource=resource, event=event, group=group, tags=tags, customer=customer, start=start, duration=duration, text=text ) except Exception as e: click.echo('ERROR: {}'.format(e)) sys.exit(1) click.echo(blackout.id)
def cli(obj, environment, service, resource, event, group, tags, customer, start, duration, text, delete)
Suppress alerts for specified duration based on alert attributes.
2.194373
2.25763
0.971981
client = obj['client'] if delete: client.delete_key(delete) else: try: expires = datetime.utcnow() + timedelta(seconds=duration) if duration else None key = client.create_key(username, scopes, expires, text, customer) except Exception as e: click.echo('ERROR: {}'.format(e)) sys.exit(1) click.echo(key.key)
def cli(obj, username, scopes, duration, text, customer, delete)
Create or delete an API key.
2.523763
2.393107
1.054597
client = obj['client'] if delete: client.delete_customer(delete) else: if not customer: raise click.UsageError('Missing option "--customer".') if not match: raise click.UsageError('Missing option "--org" / "--group" / "--domain" / "--role".') try: customer = client.create_customer(customer, match) except Exception as e: click.echo('ERROR: {}'.format(e)) sys.exit(1) click.echo(customer.id)
def cli(obj, customer, match, delete)
Add group/org/domain/role-to-customer or delete lookup entry.
2.897911
2.624212
1.104298
client = obj['client'] if delete: client.delete_user(delete) elif id: if not any([name, email, password, status, roles, text, email_verified]): click.echo('Nothing to update.') sys.exit(1) try: r = client.update_user( id, name=name, email=email, password=password, status=status, roles=roles, attributes=None, text=text, email_verified=email_verified ) except Exception as e: click.echo('ERROR: {}'.format(e)) sys.exit(1) if r['status'] == 'ok': click.echo('Updated.') else: click.echo(r['message']) else: if not email: raise click.UsageError('Need "--email" to create user.') if not password: password = click.prompt('Password', hide_input=True) try: user = client.create_user( name=name, email=email, password=password, status=status, roles=roles, attributes=None, text=text, email_verified=email_verified ) except Exception as e: click.echo('ERROR: {}'.format(e)) sys.exit(1) click.echo(user.id)
def cli(obj, id, name, email, password, status, roles, text, email_verified, delete)
Create user or update user details, including password reset.
1.859588
1.857247
1.001261
client = obj['client'] click.echo('alerta {}'.format(client.mgmt_status()['version'])) click.echo('alerta client {}'.format(client_version)) click.echo('requests {}'.format(requests_version)) click.echo('click {}'.format(click.__version__)) ctx.exit()
def cli(ctx, obj)
Show Alerta server and client versions.
5.588152
4.254789
1.313379
client = obj['client'] userinfo = client.userinfo() if show_userinfo: for k, v in userinfo.items(): if isinstance(v, list): v = ', '.join(v) click.echo('{:20}: {}'.format(k, v)) else: click.echo(userinfo['preferred_username'])
def cli(obj, show_userinfo)
Display logged in user or full userinfo.
2.513712
2.4514
1.025419
for k, v in obj.items(): if isinstance(v, list): v = ', '.join(v) click.echo('{:20}: {}'.format(k, v))
def cli(obj)
Display client config downloaded from API server.
2.717649
2.716561
1.000401
client = obj['client'] query = [('roles', r) for r in roles] if obj['output'] == 'json': r = client.http.get('/users', query) click.echo(json.dumps(r['users'], sort_keys=True, indent=4, ensure_ascii=False)) else: timezone = obj['timezone'] headers = {'id': 'ID', 'name': 'USER', 'email': 'EMAIL', 'roles': 'ROLES', 'status': 'STATUS', 'text': 'TEXT', 'createTime': 'CREATED', 'updateTime': 'LAST UPDATED', 'lastLogin': 'LAST LOGIN', 'email_verified': 'VERIFIED'} click.echo( tabulate([u.tabular(timezone) for u in client.get_users(query)], headers=headers, tablefmt=obj['output']) )
def cli(obj, roles)
List users.
3.446305
3.286133
1.048742
client = obj['client'] if ids: total = len(ids) else: if not (query or filters): click.confirm('Deleting all alerts. Do you want to continue?', abort=True) if query: query = [('q', query)] else: query = build_query(filters) total, _, _ = client.get_count(query) ids = [a.id for a in client.get_alerts(query)] with click.progressbar(ids, label='Deleting {} alerts'.format(total)) as bar: for id in bar: client.delete_alert(id)
def cli(obj, ids, query, filters)
Delete alerts.
3.051168
2.926767
1.042505
client = obj['client'] status = client.mgmt_status() now = datetime.fromtimestamp(int(status['time']) / 1000.0) uptime = datetime(1, 1, 1) + timedelta(seconds=int(status['uptime']) / 1000.0) click.echo('{} up {} days {:02d}:{:02d}'.format( now.strftime('%H:%M'), uptime.day - 1, uptime.hour, uptime.minute ))
def cli(obj)
Display API server uptime in days, hours.
3.081118
2.792054
1.103531
client = obj['client'] if ids: total = len(ids) else: if query: query = [('q', query)] else: query = build_query(filters) total, _, _ = client.get_count(query) ids = [a.id for a in client.get_alerts(query)] with click.progressbar(ids, label='Untagging {} alerts'.format(total)) as bar: for id in bar: client.untag_alert(id, tags)
def cli(obj, ids, query, filters, tags)
Remove tags from alerts.
3.369136
3.193235
1.055085
if details: display = 'details' else: display = 'compact' from_date = None auto_refresh = True while auto_refresh: try: auto_refresh, from_date = ctx.invoke(query_cmd, ids=ids, query=query, filters=filters, display=display, from_date=from_date) time.sleep(interval) except (KeyboardInterrupt, SystemExit) as e: sys.exit(e)
def cli(ctx, ids, query, filters, details, interval)
Watch for new alerts.
3.44035
3.537182
0.972625
client = obj['client'] metrics = client.mgmt_status()['metrics'] headers = {'title': 'METRIC', 'type': 'TYPE', 'name': 'NAME', 'value': 'VALUE', 'average': 'AVERAGE'} click.echo(tabulate([{ 'title': m['title'], 'type': m['type'], 'name': '{}.{}'.format(m['group'], m['name']), 'value': m.get('value', None) or m.get('count', 0), 'average': int(m['totalTime']) * 1.0 / int(m['count']) if m['type'] == 'timer' else None } for m in metrics], headers=headers, tablefmt=obj['output']))
def cli(obj)
Display API server switch status and usage metrics.
3.597582
3.429985
1.048862
client = obj['client'] if ids: total = len(ids) else: if query: query = [('q', query)] else: query = build_query(filters) total, _, _ = client.get_count(query) ids = [a.id for a in client.get_alerts(query)] with click.progressbar(ids, label='Updating {} alerts'.format(total)) as bar: for id in bar: client.update_attributes(id, dict(a.split('=') for a in attributes))
def cli(obj, ids, query, filters, attributes)
Update alert attributes.
3.769238
3.421448
1.10165
client = obj['client'] query = [('scopes', s) for s in scopes] if obj['output'] == 'json': r = client.http.get('/perms', query) click.echo(json.dumps(r['permissions'], sort_keys=True, indent=4, ensure_ascii=False)) else: headers = {'id': 'ID', 'scopes': 'SCOPES', 'match': 'ROLE'} click.echo(tabulate([p.tabular() for p in client.get_perms(query)], headers=headers, tablefmt=obj['output']))
def cli(obj, scopes)
List permissions.
4.00827
3.714034
1.079223
client = obj['client'] provider = obj['provider'] client_id = obj['client_id'] try: if provider == 'azure': token = azure.login(client, obj['azure_tenant'], client_id)['token'] elif provider == 'github': token = github.login(client, obj['github_url'], client_id)['token'] elif provider == 'gitlab': token = gitlab.login(client, obj['gitlab_url'], client_id)['token'] elif provider == 'google': if not username: username = click.prompt('Email') token = google.login(client, username, client_id)['token'] elif provider == 'openid': token = oidc.login(client, obj['oidc_auth_url'], client_id)['token'] elif provider == 'basic': if not username: username = click.prompt('Email') password = click.prompt('Password', hide_input=True) token = client.login(username, password)['token'] else: click.echo('ERROR: unknown provider {provider}'.format(provider=provider)) sys.exit(1) except Exception as e: raise AuthError(e) jwt = Jwt() preferred_username = jwt.parse(token)['preferred_username'] if preferred_username: save_token(client.endpoint, preferred_username, token) click.echo('Logged in as {}'.format(preferred_username)) else: click.echo('Failed to login.') sys.exit(1)
def cli(obj, username)
Authenticate using Azure, Github, Gitlab, Google OAuth2, OpenID or Basic Auth username/password instead of using an API key.
2.271255
2.161259
1.050895