content
stringlengths
22
815k
id
int64
0
4.91M
def find_2020(inputs,num_combinations = 2): """ accepts an interable as input and returns the product of the first two numbers in the iterable that sum to 2020 """ for vals in itertools.permutations(inputs,num_combinations): if sum(vals) == 2020: yield np.prod(vals)
5,341,500
def test_compare_build(): """Build version must not be use in precedence.""" # https://semver.org/#spec-item-10 assert Version(1, 0, 0, None, "build1") == Version(1, 0, 0) assert Version(1, 0, 0, None, "build1") == Version(1, 0, 0, None, "build2")
5,341,501
def feedback(olsys,H=1): """Calculate the closed-loop transfer function olsys cltf = -------------- 1+H*olsys where olsys is the transfer function of the open loop system (Gc*Gp) and H is the transfer function in the feedback loop (H=1 for unity feedback).""" clsys=olsys/(1.0+H*olsys) return clsys
5,341,502
def get_sigma_grid( init_sigma: float = 1.0, factor: int = 2, n_grid_points: int = 20 ) -> List[float]: """Get a standard parameter grid for the cross validation strategy. Parameters ---------- init_sigma : float, default=1.0 The initial sigma to use to populate the grid points. factor : int, default=2 The log scale factor to use for both the beginning and end of the grid. n_grid_points : int, default=20 The number of grid points to use. Returns ------- param_grid : List[float] The parameter grid as per the specifications Example ------- >> param_grid = get_param_grid() >> param_grid = get_param_grid(10.0, 3, 1_000) """ # create bounds for search space (logscale) init_space = 10 ** (-factor) end_space = 10 ** (factor) # create param grid param_grid = np.logspace( np.log10(init_sigma * init_space), np.log10(init_sigma * end_space), n_grid_points, ) return param_grid
5,341,503
def parse_csv(value_column): """Parses a CSV file based on the provided column types.""" columns = tf.decode_csv(value_column, record_defaults=DEFAULTS) features = dict(zip(ALL_COLUMNS, columns)) label = features.pop(LABEL_COLUMN) classes = tf.cast(label, tf.int32) - 1 return features, classes
5,341,504
def on_over_limit(): """ This is called when the rate limit is reached """ return jsonify(status='error', error=[_('Whoa, calm down and wait a bit before posting again.')])
5,341,505
def comment(strng,indent=''): """return an input string, commented out""" template = indent + '# %s' lines = [template % s for s in strng.splitlines(True)] return ''.join(lines)
5,341,506
def square(number): """ Calculates how many grains were on each square :param number: :return: """ if number <= 0 or not number or number > 64: raise ValueError(ERROR) return 2**(number - 1)
5,341,507
def get_doc(name=None, filename=None, url=None, parsed=True, start=0, end=None, localfile=None, params=None, cookies=None, **kwargs): """ Retrieve an IDE file from either a file or URL. Note: `name`, `filename`, and `url` are mutually exclusive arguments. One and only one must be specified. Attempting to supply more than one will generate an error. Example usage:: get_doc("my_recording.ide") get_doc("https://example.com/remote_recording.ide") get_doc(filename="my_recording.ide") get_doc(url="https://example.com/remote_recording.ide") get_doc(filename="my_recording.ide", start="1:23") The `start` and `end` times, if used, may be specified in several ways: * `int`/`float` (Microseconds from the recording start) * `str` (formatted as a time from the recording start, e.g., `MM:SS`, `HH:MM:SS`, `DDd HH:MM:SS`). More examples: * ``":01"`` or ``":1"`` or ``"1s"`` (1 second) * ``"22:11"`` (22 minutes, 11 seconds) * ``"3:22:11"`` (3 hours, 22 minutes, 11 seconds) * ``"1d 3:22:11"`` (1 day, 3 hours, 22 minutes, 11 seconds) * `datetime.timedelta` or `pandas.Timedelta` (time from the recording start) * `datetime.datetime` (an explicit UTC time) :param name: The name or URL of the IDE. The method of fetching it will be automatically chosen based on how it is formatted. :param filename: The name of an IDE file. Supplying a name this way will force it to be read from a file, avoiding the possibility of accidentally trying to retrieve it via URL. :param url: The URL of an IDE file. Supplying a name this way will force it to be read from a URL, avoiding the possibility of accidentally trying to retrieve it from a local file. :param parsed: If `True` (default), the IDE will be fully parsed after it is fetched. If `False`, only the file metadata will be initially loaded, and a call to `idelib.importer.readData()`. This can save time. :param start: The starting time. Defaults to the start of the recording. Only applicable if `parsed` is `True`. :param end: The ending time. Defaults to the end of the recording. Only applicable if `parsed` is `True`. :param localfile: The name of the file to which to write data recieved from a URL. If none is supplied, a temporary file will be used. Only applicable when opening a URL. :param params: Additional URL request parameters. Only applicable when opening a URL. :param cookies: Additional browser cookies for use in the URL request. Only applicable when opening a URL. :return: The fetched IDE data. Additionally, `get_doc()` will accept the keyword arguments for `idelib.importer.importFile()` or `idelib.importer.openFile()` """ if len([x for x in (name, filename, url) if x]) != 1: raise TypeError("Only one source can be specified: name, filename, or url") original = name or filename or url # For error reporting stream = None parsed_url = None if name: if os.path.isfile(name): filename = name else: parsed_url = urlparse(name.replace('\\', '/')) if not parsed_url.scheme or parsed_url.scheme == "file": filename = parsed_url.path else: url = name if filename: filename = os.path.abspath(os.path.expanduser(filename)) stream = open(filename, 'rb') elif url: kwargs.setdefault('name', url) parsed_url = parsed_url or urlparse(url) if parsed_url.scheme.startswith('http'): stream, _total = _get_url(url, localfile=localfile, params=params, cookies=cookies) else: # future: more fetching schemes before this `else` (ftp, etc.)? raise ValueError(f"Unsupported transfer scheme: {parsed_url.scheme}") if stream: if not validate(stream): stream.close() raise ValueError(f"Could not read a Dataset from '{original}'" f"(not an IDE file?)") # Separate `openFile()` and `readData` kwargs, remove ones that aren't shared open_kwargs = kwargs.copy() read_kwargs = kwargs.copy() for k in ('startTime', 'endTime', 'channels', 'source', 'total', 'bytesRead', 'samplesRead'): open_kwargs.pop(k, None) doc = openFile(stream, **open_kwargs) if parsed: for k in ('defaults', 'name', 'quiet'): read_kwargs.pop(k, None) session_start = doc.lastSession.utcStartTime if session_start: session_start = datetime.utcfromtimestamp(session_start) if start: read_kwargs['startTime'] = parse_time(start, session_start) if end: read_kwargs['endTime'] = parse_time(end, session_start) readData(doc, **read_kwargs) return doc raise ValueError(f"Could not read data from '{original}'")
5,341,508
def naginator(parser, xml_parent, data): """yaml: naginator Automatically reschedule a build after a build failure Requires the Jenkins :jenkins-wiki:`Naginator Plugin <Naginator+Plugin>`. :arg bool rerun-unstable-builds: Rerun build for unstable builds as well as failures (default False) :arg int fixed-delay: Fixed delay before retrying build (cannot be used with progressive-delay-increment or progressive-delay-maximum. This is the default delay type. (Default 0) :arg int progressive-delay-increment: Progressive delay before retrying build increment (cannot be used when fixed-delay is being used) (Default 0) :arg int progressive-delay-maximum: Progressive delay before retrying maximum delay (cannot be used when fixed-delay is being used) (Default 0) :arg int max-failed-builds: Maximum number of successive failed builds (Default 0) :arg str regular-expression: Only rerun build if regular expression is found in output (Default '') Example: .. literalinclude:: /../../tests/publishers/fixtures/naginator001.yaml :language: yaml """ naginator = XML.SubElement( xml_parent, 'com.chikli.hudson.plugin.naginator.NaginatorPublisher') XML.SubElement(naginator, 'regexpForRerun').text = str( data.get('regular-expression', '')) XML.SubElement(naginator, 'checkRegexp').text = str( 'regular-expression' in data).lower() XML.SubElement(naginator, 'rerunIfUnstable').text = str( data.get('rerun-unstable-builds', False)).lower() progressive_delay = ('progressive-delay-increment' in data or 'progressive-delay-maximum' in data) if 'fixed-delay' in data and progressive_delay: raise JenkinsJobsException("You cannot specify both fixed " "and progressive delays") if not progressive_delay: delay = XML.SubElement( naginator, 'delay', {'class': 'com.chikli.hudson.plugin.naginator.FixedDelay'}) XML.SubElement(delay, 'delay').text = str( data.get('fixed-delay', '0')) else: delay = XML.SubElement( naginator, 'delay', {'class': 'com.chikli.hudson.plugin.naginator.ProgressiveDelay'}) XML.SubElement(delay, 'increment').text = str( data.get('progressive-delay-increment', '0')) XML.SubElement(delay, 'max').text = str( data.get('progressive-delay-maximum', '0')) XML.SubElement(naginator, 'maxSchedule').text = str( data.get('max-failed-builds', '0'))
5,341,509
def health_check() -> ControllerResponse: """ Retrieve the current health of service integrations. Returns ------- dict Response content. int HTTP status code. dict Response headers. """ status = {} for name, obj in _getServices(): logger.info('Getting status of %s' % name) status[name] = _healthy_session(obj) return status, 200, {}
5,341,510
def GeoSim(hss_0, pow_law_exp, lat1, lon1, lat2, lon2): """ In order to make the Similarity adimensional I have to add a scale to the game. This scale is hss, i.e. the scale after which the similairty is damped by a factor 2. :param pow_law_exp: is the exponent of the power law """ # @TODO: measure power operator performance vs `math.pow` return (float(hss_0)/(hss_0 + GeoDist(lat1, lon1, lat2, lon2)))**pow_law_exp
5,341,511
def _get_script(): """Get path to the image sequence script""" try: from openpype.scripts import publish_filesequence except Exception: raise RuntimeError("Expected module 'publish_deadline'" "to be available") module_path = publish_filesequence.__file__ if module_path.endswith(".pyc"): module_path = module_path[:-len(".pyc")] + ".py" return module_path
5,341,512
def main(): """Main""" try: config.load_kube_config() except FileNotFoundError: config.load_incluster_config() core_v1_client = client.CoreV1Api() k8s_client = client.ApiClient() # ConfigMap deploy_config_map(core_v1_client) # CSI Pods deploy_csi_pods(core_v1_client) # Storage Class deploy_storage_class() # Watch CRD crd_watch(core_v1_client, k8s_client)
5,341,513
def residual_unit(data, nchw_inshape, num_filter, stride, dim_match, name, bottle_neck=True, workspace=256, memonger=False, conv_layout='NCHW', batchnorm_layout='NCHW', verbose=False, cudnn_bn_off=False, bn_eps=2e-5, bn_mom=0.9, conv_algo=-1, fuse_bn_relu=False, fuse_bn_add_relu=False, cudnn_tensor_core_only=False): """Return ResNet Unit symbol for building ResNet Parameters ---------- data : str Input data nhwc_shape : tuple of int Input minibatch shape in (n, c, h, w) format independent of actual layout num_filter : int Number of output channels bnf : int Bottle neck channels factor with regard to num_filter stride : tuple Stride used in convolution dim_match : Boolean True means channel number between input and output is the same, otherwise means differ name : str Base name of the operators workspace : int Workspace used in convolution operator Returns ------- (sym, nchw_outshape) sym : the model symbol (up to this point) nchw_outshape : tuple (batch_size, features, height, width) """ nchw_shape = nchw_inshape act = 'relu' if fuse_bn_relu else None if bottle_neck: conv1 = mx.sym.Convolution(data=data, num_filter=int(num_filter*0.25), kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv1', layout=conv_layout, cudnn_algo_verbose=verbose, cudnn_algo_fwd=conv_algo, cudnn_algo_bwd_data=conv_algo, cudnn_algo_bwd_filter=conv_algo, cudnn_tensor_core_only=cudnn_tensor_core_only) nchw_shape = conv_nchw_out_shape(nchw_shape, num_filter=int(num_filter*0.25), kernel=(1,1), stride=(1,1), pad=(0,0)) bn1 = batchnorm(data=conv1, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, eps=bn_eps, momentum=bn_mom, name=name + '_bn1', cudnn_off=cudnn_bn_off, act_type=act) act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') if not fuse_bn_relu else bn1 conv2 = mx.sym.Convolution(data=act1, num_filter=int(num_filter*0.25), kernel=(3,3), stride=stride, pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2', layout=conv_layout, cudnn_algo_verbose=verbose, cudnn_algo_fwd=conv_algo, cudnn_algo_bwd_data=conv_algo, cudnn_algo_bwd_filter=conv_algo, cudnn_tensor_core_only=cudnn_tensor_core_only) nchw_shape = conv_nchw_out_shape(nchw_shape, num_filter=int(num_filter*0.25), kernel=(3,3), stride=stride, pad=(1,1)) bn2 = batchnorm(data=conv2, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, eps=bn_eps, momentum=bn_mom, name=name + '_bn2', cudnn_off=cudnn_bn_off, act_type=act) act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2') if not fuse_bn_relu else bn2 conv3 = mx.sym.Convolution(data=act2, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, workspace=workspace, name=name + '_conv3', layout=conv_layout, cudnn_algo_verbose=verbose, cudnn_algo_fwd=conv_algo, cudnn_algo_bwd_data=conv_algo, cudnn_algo_bwd_filter=conv_algo, cudnn_tensor_core_only=cudnn_tensor_core_only) nchw_shape = conv_nchw_out_shape(nchw_shape, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0)) if dim_match: shortcut = data else: conv1sc = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_conv1sc', layout=conv_layout, cudnn_algo_verbose=verbose, cudnn_algo_fwd=conv_algo, cudnn_algo_bwd_data=conv_algo, cudnn_algo_bwd_filter=conv_algo, cudnn_tensor_core_only=cudnn_tensor_core_only) sc_nchw_shape = conv_nchw_out_shape(nchw_inshape, num_filter=num_filter, kernel=(1,1), stride=stride) shortcut = batchnorm(data=conv1sc, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, eps=bn_eps, momentum=bn_mom, name=name + '_sc', cudnn_off=cudnn_bn_off) if memonger: shortcut._set_attr(mirror_stage='True') if fuse_bn_add_relu: return (batchnorm_add_relu(data=conv3, addend=shortcut, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, eps=bn_eps, momentum=bn_mom, name=name + '_bn3', cudnn_off=cudnn_bn_off), nchw_shape) else: bn3 = batchnorm(data=conv3, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, eps=bn_eps, momentum=bn_mom, name=name + '_bn3', cudnn_off=cudnn_bn_off) return (mx.sym.Activation(data=bn3 + shortcut, act_type='relu', name=name + '_relu3'), nchw_shape) else: conv1 = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv1', layout=conv_layout, cudnn_algo_verbose=verbose, cudnn_algo_fwd=conv_algo, cudnn_algo_bwd_data=conv_algo, cudnn_algo_bwd_filter=conv_algo, cudnn_tensor_core_only=cudnn_tensor_core_only) nchw_shape = conv_nchw_out_shape(nchw_shape, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1)) bn1 = batchnorm(data=conv1, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, momentum=bn_mom, eps=bn_eps, name=name + '_bn1', cudnn_off=cudnn_bn_off, act_type=act) act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') if not fuse_bn_relu else bn1 conv2 = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1), no_bias=True, workspace=workspace, name=name + '_conv2', layout=conv_layout, cudnn_algo_verbose=verbose, cudnn_algo_fwd=conv_algo, cudnn_algo_bwd_data=conv_algo, cudnn_algo_bwd_filter=conv_algo, cudnn_tensor_core_only=cudnn_tensor_core_only) nchw_shape = conv_nchw_out_shape(nchw_shape, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1)) if dim_match: shortcut = data else: conv1sc = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, workspace=workspace, name=name+'_conv1sc', layout=conv_layout, cudnn_algo_verbose=verbose, cudnn_algo_fwd=conv_algo, cudnn_algo_bwd_data=conv_algo, cudnn_algo_bwd_filter=conv_algo, cudnn_tensor_core_only=cudnn_tensor_core_only) sc_nchw_shape = conv_nchw_out_shape(nchw_inshape, num_filter=num_filter, kernel=(1,1), stride=stride) shortcut = batchnorm(data=conv1sc, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, momentum=bn_mom, eps=bn_eps, name=name + '_sc', cudnn_off=cudnn_bn_off) if memonger: shortcut._set_attr(mirror_stage='True') if fuse_bn_add_relu: return (batchnorm_add_relu(data=conv2, addend=shortcut, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, momentum=bn_mom, eps=bn_eps, name=name + '_bn2', cudnn_off=cudnn_bn_off), nchw_shape) else: bn2 = batchnorm(data=conv2, io_layout=conv_layout, batchnorm_layout=batchnorm_layout, fix_gamma=False, momentum=bn_mom, eps=bn_eps, name=name + '_bn2', cudnn_off=cudnn_bn_off) return (mx.sym.Activation(data=bn2 + shortcut, act_type='relu', name=name + '_relu2'), nchw_shape)
5,341,514
def dwa_control(x, config, goal, ob): """ Dynamic Window Approach control """ dw = calc_dynamic_window(x, config) u, trajectory = calc_final_input(x, dw, config, goal, ob) return u, trajectory
5,341,515
def detect_meteors(rf_dir, id_dir, noise_dir, output_dir, t0=None, t1=None, rxch='zenith-l', txch='tx-h'): """Function to detect and summarize meteor head echoes. Arguments --------- rf_dir : string or list RF data directory or directories. id_dir : string ID code metadata directory. noise_dir : string RX noise metadata directory. output_dir : string Meteor data output directory. t0 : float, optional Start time, seconds since epoch. If None, start at beginning of data. t1 : float, optional End time, seconds since epoch. If None, end at end of data. rxch : string, optional Receiver channel to process. txch : string, optional Transmitter channel. """ rfo = drf.read_hdf5(rf_dir) ido = dmd.read_digital_metadata(id_dir) no = dmd.read_digital_metadata(noise_dir) if t0 is None or t1 is None: bounds = [] bounds.append(rfo.get_bounds(rxch)) bounds.append(rfo.get_bounds(txch)) bounds.append(ido.get_bounds()) bounds.append(no.get_bounds()) bounds = np.asarray(bounds) ss = np.max(bounds[:, 0]) se = np.min(bounds[:, 1]) fs = rfo.get_metadata(rxch)['sample_rate'].value if t0 is None: s0 = ss else: s0 = int(np.round(t0*fs)) if t1 is None: s1 = se else: s1 = int(np.round(t1*fs)) tmm = TimingModeManager.TimingModeManager() if os.path.exists('/tmp/tmm.hdf5'): tmm.loadFromHdf5('/tmp/tmm.hdf5', skip_lowlevel=True) else: tmm.loadFromHdf5(skip_lowlevel=True) for k, (tx, rx) in enumerate(data_generator(rfo, ido, no, tmm, s0, s1, rxch, txch)): #FIXME call processing functions here pass
5,341,516
def GetCoverageDirectory(fuzzer): """Get a coverage report directory for a fuzzer Args: fuzzer: The fuzzer to get the coverage report directory for. Returns: The location of the coverage report directory for the |fuzzer|. """ relative_path = os.path.join(COVERAGE_REPORT_DIRECTORY_NAME, fuzzer) return GetScriptStoragePath(relative_path)
5,341,517
def decompress_bytes(inp_bytes: bytes, verbose=False) -> bytearray: """ Main function to decompress input bytes by extracting the Huffman map and using the map to replace the encoded sequences with the original characters. :param inp_bytes: Input data to be compressed :param verbose: set to True for printing console outputs :return: decompressed bytearray data """ huff_map: HuffCode rem: int huff_map, rem = extract_huff_map(inp_bytes, verbose=verbose) inp_bytes = inp_bytes[:-rem] rev_seq: str = reverse_final_sequence(inp_bytes, verbose=verbose) res: bytearray = reverse_huff_sequence(huff_map, rev_seq, verbose=verbose) return res
5,341,518
def test_init(): """ Config initialization works as expected """ inst = _config.Config.from_file(fixture('config1.schema')) assert inst.tables == [ ('Yo', 'Yo'), ('some', 'table'), ('somethingElse', 'somethingElse'), ('y', 'x.y'), ('a', 'b.c'), ] assert inst.schemas == {'foo': 'bar'} assert inst._lines == [ '# This is a comment. I love comments.\n', '#\n', '\n', 'Yo\n', 'some = table\n', 'somethingElse\n', 'x.y\n', 'a = b.c\n', '\n', '[schemas]\n', 'foo = bar\n', ]
5,341,519
def filter_nans(data, threshold = 3, threshold_type = "data"): """ ================================================================================================= filter_nans(data, threshold, threshold_type) This function is meant to filter out the nan values from a list, based on the input arguments. ================================================================================================= Arguments: data -> A list (or iterable) of data points. The points are assumed to be numbers. threshold -> An integer describing the minimum value requirement. threshold_type -> A string describing how the threshold integer will be applied. "on_data" "on_nan" ================================================================================================= Returns: The filtered list, or an empty list if the threshold requirements were not met. ================================================================================================= """ # Make sure the user gave a valid thresholding option assert threshold_type.lower() in ["data", "on_data", "on data", "nan", "on_nan", "on nan"], "Threshold is either relative to NaN or data." assert type(data) == list, "The data should be in a list" # Filter NaNs, as they do not equal themselves filtered = [val for val in data if val == val] # Keep data if there are at least <threshold> data points if threshold_type.lower() in ["data", "on_data", "on data"]: if len(filtered) >= threshold: return filtered else: return [] # Keep data if there are no more than <threshold> nans elif threshold_type.lower() in ["nan", "on_nan", "on nan"]: if len(data) - len(filtered) <= threshold: return filtered else: return []
5,341,520
def configure_template_filters(app): """Configures the template filters.""" filters = {} filters['format_date'] = format_date filters['time_since'] = time_since filters['is_online'] = is_online filters['crop_title'] = crop_title filters['forum_is_unread'] = forum_is_unread filters['topic_is_unread'] = topic_is_unread permissions = [ ('is_admin', IsAdmin), ('is_moderator', IsAtleastModerator), ('is_admin_or_moderator', IsAtleastModerator), ('can_edit_user', CanEditUser), ('can_ban_user', CanBanUser), ] filters.update( [(name, partial(perm, request=request)) for name, perm in permissions] ) # these create closures filters['can_moderate'] = TplCanModerate(request) filters['post_reply'] = TplCanPostReply(request) filters['edit_post'] = TplCanEditPost(request) filters['delete_post'] = TplCanDeletePost(request) filters['post_topic'] = TplCanPostTopic(request) filters['delete_topic'] = TplCanDeleteTopic(request) app.jinja_env.filters.update(filters) app.jinja_env.globals["run_hook"] = template_hook app.pluggy.hook.flaskbb_jinja_directives(app=app)
5,341,521
def edit_seq2seq_config(config, frameworks=FULL_FRAMEWORKS, no_attn=False): """Rotate frameworks and optionally remove attention.""" configs = [] for fw in frameworks: c = deepcopy(config) c['backend'] = fw configs.append(c) if not no_attn: new_configs = [] # Run the non attention version for config in configs: c = deepcopy(config) c['model']['model_type'] = 'default' new_configs.append(c) new_configs.append(config) configs = new_configs return configs
5,341,522
def get_bioportal_prefix(prefix: str) -> Optional[str]: """Get the Bioportal prefix if available.""" return _get_mapped_prefix(prefix, "bioportal")
5,341,523
def _obtain_rapt(request, access_token, requested_scopes): """Given an http request method and reauth access token, get rapt token. Args: request (google.auth.transport.Request): A callable used to make HTTP requests. access_token (str): reauth access token requested_scopes (Sequence[str]): scopes required by the client application Returns: str: The rapt token. Raises: google.auth.exceptions.ReauthError: if reauth failed """ msg = _get_challenges( request, list(challenges.AVAILABLE_CHALLENGES.keys()), access_token, requested_scopes, ) if msg["status"] == _AUTHENTICATED: return msg["encodedProofOfReauthToken"] for _ in range(0, RUN_CHALLENGE_RETRY_LIMIT): if not ( msg["status"] == _CHALLENGE_REQUIRED or msg["status"] == _CHALLENGE_PENDING ): raise exceptions.ReauthFailError( "Reauthentication challenge failed due to API error: {}".format( msg["status"] ) ) if not is_interactive(): raise exceptions.ReauthFailError( "Reauthentication challenge could not be answered because you are not" " in an interactive session." ) msg = _run_next_challenge(msg, request, access_token) if msg["status"] == _AUTHENTICATED: return msg["encodedProofOfReauthToken"] # If we got here it means we didn't get authenticated. raise exceptions.ReauthFailError("Failed to obtain rapt token.")
5,341,524
def argunique(items, key=None): """ Returns indices corresponding to the first instance of each unique item. Args: items (Sequence[VT]): indexable collection of items key (Callable[[VT], Any], default=None): custom normalization function. If specified returns items where ``key(item)`` is unique. Returns: Iterator[int] : indices of the unique items Example: >>> import ubelt as ub >>> items = [0, 2, 5, 1, 1, 0, 2, 4] >>> indices = list(ub.argunique(items)) >>> assert indices == [0, 1, 2, 3, 7] >>> indices = list(ub.argunique(items, key=lambda x: x % 2 == 0)) >>> assert indices == [0, 2] """ if key is None: return unique(range(len(items)), key=lambda i: items[i]) else: return unique(range(len(items)), key=lambda i: key(items[i]))
5,341,525
def promote_cvals(*vals): """ Promote Python values into the most general dshape containing all of them. Only defined over simple CType instances. >>> promote_vals(1,2.) dshape("float64") >>> promote_vals(1,2,3j) dshape("complex128") """ promoted = np.result_type(*vals) datashape = CType.from_dtype(promoted) return datashape
5,341,526
def setup_logging( color: bool, verbose: bool = False, add_timestamp: bool = False ) -> None: # pragma: no cover """Setup logging. Args: color (bool): If true, the output will be colored using colorlog. Otherwise, it will be plaintext. """ root_logger = logging.getLogger() if verbose: root_logger.setLevel(OUTPUT) else: root_logger.setLevel(logging.DEBUG) handler = logging.StreamHandler() handler.setFormatter(_get_formatter(color, add_timestamp)) root_logger.addHandler(handler) # Silence noisy loggers logging.getLogger("sh").setLevel(logging.WARNING)
5,341,527
def load_directory_metadata(directory_path, return_copy=True): """ Get stored metadata for files in path. This currently only stores bookmarks. If no metadata is available, return an empty dictionary. This is a hidden file in the directory which stores metadata for all files in the directory, as well as the directory itself. This has a bunch of advantages over putting the data in each file: - Every file format has its own way of storing metadata, and there are no robust libraries that handle all of them. - We don't have to modify the user's files, so there's no chance of us screwing up and causing data loss. - Opening each file during a refresh is extremely slow. It's much faster to have a single file that we only read once per directory scan. - We can use Windows Search to search this data if we format it properly. Use a file extension that it indexes by default (we use .txt), and we can insert keywords in the file that we can search for. Windows Search will index metadata for some file types, but it's hit-or-miss (it handles JPEGs much better than PNGs). """ with _metadata_lock: return _load_directory_metadata_locked(directory_path, return_copy=return_copy)
5,341,528
def download_all(): """Download all files in the DATA_HUB""" for name in DATA_HUB: download(name)
5,341,529
def _traverse_tree_and_group_all_objects_by_oclass(root_obj, result=None): """Traverses the tree once and groups all objects by oclass :param root_obj: The root object where to start the traversion :type root_obj: CUDS :param result: The current results of the recursion, defaults to None :type result: dict, optional :return: All CUDS objects in the tree, grouped by oclass. :rtype: dict """ if result is None: result = {str(root_obj.oclass): [root_obj]} for neighbour in root_obj.iter(): if neighbour.oclass not in result.keys(): result[str(neighbour.oclass)] = [neighbour] else: result[str(neighbour.oclass)].append(neighbour) _traverse_tree_and_group_all_objects_by_oclass(neighbour, result) return result
5,341,530
def check_measurement(m_info, filters): """ Determine whether a given measurement should be included based on the filters. Inputs: m_info - A dictionary containing the configuration parameters for an individual measurement. filters - A dictionary containing a set of configuration parameter values that should be included Output: include - Boolean indicating whether to include the given measurement """ include = True for filter_field, filter_values in filters.iteritems(): try: iter(filter_values) except: filter_values = [filter_values] if not m_info[filter_field] in filter_values: include = False return include
5,341,531
def audiosegment2wav(data: AudioSegment): """ pydub.AudioSegment格式转为音频信号wav。 :param data: :return: """ wav = np.array(data.get_array_of_samples()) / _int16_max return wav
5,341,532
def embargo(cand_times, test_times, embargo_table): """ "Embargo" observations from the training set. Args: cand_times(Series): times of candidates to be the "embargoed set" index: t0(start time) value: t1(end time) test_times(Series): times of the test set index: t0(start time) value: t1(end time) embargo_table(Series): embargo times table returned by get_embargo_table() Returns: embargoed_times(Series): times of embargoed training set index: t0(start time) value: t1(end time) """ first_test_start = test_times.index[0] final_test_start = test_times.index[-1] final_embargo_start = embargo_table[final_test_start] # end time of the embargo to_embargo_idx = cand_times.loc[first_test_start:final_embargo_start].index embargoed_times = cand_times.drop(to_embargo_idx) return embargoed_times
5,341,533
def mkdirp(directory): """ 利用python库来做到shell中的 ``mkdir -p`` 好处是不用 ``os.system()``,避免了fork进程造成的资源浪费。 :param directory: 路径 """ if not os.path.isdir(directory): os.makedirs(directory)
5,341,534
def test_can_parse_and_serialize_frozen_attrs_class(): """Parse and serialize a frozen attrs class.""" processor = xml.user_object('book', _FrozenBook, [ xml.string('title'), xml.string('author'), ]) value = _FrozenBook( title='The Three Body Problem', author='Liu Cixin' ) assert_can_roundtrip_xml_value(processor, value)
5,341,535
async def async_setup_entry(hass, entry, async_add_entities): """Set up the WiZ Light platform from config_flow.""" # Assign configuration variables. wiz_data = hass.data[DOMAIN][entry.entry_id] wizbulb = WizBulbEntity(wiz_data.bulb, entry.data.get(CONF_NAME), wiz_data.scenes) # Add devices with defined name async_add_entities([wizbulb], update_before_add=True) return True
5,341,536
def handle_uploaded_file(file, filename): """ Обработка файла csv спарсенного с online.edu.ru """ if not os.path.exists('upload/'): os.mkdir('upload/') path = 'upload/' + filename with open(path, 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) df = pandas.read_csv(path, sep=',', encoding='utf-8') df.dropna(subset=['Направления подготовки'], inplace=True) df = df.drop(['Unnamed: 0'], axis=1) return df
5,341,537
async def check_account(): """ A check that checks if the user has an account and if not creates one for them. """ async def check(ctx) -> bool: conn = get_db() cur = conn.cursor() cur.execute("SELECT * FROM economy WHERE user_id = ?", (ctx.author.id,)) if cur.fetchone() is None: cur.execute("INSERT INTO economy (user_id) VALUES (?)", (ctx.author.id,)) cur.execute("INSERT INTO cooldowns (user_id) VALUES (?)", (ctx.author.id,)) conn.commit() cur.close() conn.close() return True return check
5,341,538
def run_send_feedback(args): """ Do a semd-feedback call to the Seldon API Parameters ---------- args Command line args """ contract = json.load(open(args.contract, "r")) contract = unfold_contract(contract) sc = get_seldon_client(args) if args.grpc: transport = "grpc" else: transport = "rest" for i in range(args.n_requests): batch = generate_batch(contract, args.batch_size, "features") response_predict = sc.predict(data=batch, deployment_name=args.deployment) response_feedback = sc.feedback( prediction_request=response_predict.request, prediction_response=response_predict.response, reward=1.0, deployment_name=args.deployment, transport=transport, ) if args.prnt: print(f"RECEIVED RESPONSE:\n{response_feedback}\n")
5,341,539
def mtf_image_transformer_base_cifar(): """Data parallel CIFAR parameters.""" hparams = mtf_image_transformer_base() hparams.mesh_shape = "batch:8" hparams.layout = "batch:batch" hparams.learning_rate_decay_steps = 13600 # one epoch hparams.batch_size = 32 hparams.num_heads = 4 hparams.num_decoder_layers = 12 hparams.block_length = 256 hparams.hidden_size = 512 hparams.d_ff = 2048 hparams.learning_rate = 0.5 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 hparams.unconditional = True return hparams
5,341,540
def edc_t(path): """EPICA Dome C Ice Core 800KYr Temperature Estimates Temperature record, using Deuterium as a proxy, from the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core covering 0 to 800 kyr BP. A data frame with 5788 observations on the following 5 variables. `Bag` Bag number `ztop` Top depth (m) `Age` Years before 1950 `Deuterium` Deuterium dD data `dT` Temperature difference from the average of the last 1000 years ~ -54.5degC http://www.ncdc.noaa.gov/paleo/icecore/antarctica/domec/domec_epica_data.html Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `edc_t.csv`. Returns: Tuple of np.ndarray `x_train` with 5788 rows and 5 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'edc_t.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/DAAG/edcT.csv' maybe_download_and_extract(path, url, save_file_name='edc_t.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
5,341,541
def init_group_prams(net): """Initialize group_prams.""" decayed_params = [] no_decayed_params = [] for param in net.trainable_params(): if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: decayed_params.append(param) else: no_decayed_params.append(param) group_params = [{'params': decayed_params, 'weight_decay': 0.0001}, {'params': no_decayed_params}, {'order_params': net.trainable_params()}] return group_params
5,341,542
def nni_differences_parameters(nni=None, rpeaks=None): """Computes basic statistical parameters from a series of successive NN interval differences (mean, min, max, standard deviation). Parameters ---------- nni : array NN intervals in [ms] or [s]. rpeaks : array R-peak times in [ms] or [s]. Returns (biosppy.utils.ReturnTuple Object) ------------------------------------------ [key : format] Description. nni_diff_mean: float Mean NN interval difference [ms]. nni_diff_min : float Minimum NN interval difference [ms]. nni_diff_max : float Maximum NN interval difference [ms]. Notes ----- .. Only one type of input data is required. .. If both 'nni' and 'rpeaks' are provided, 'nni' will be chosen over the 'rpeaks' .. NN and R-peak series provided in [s] format will be converted to [ms] format. """ # Check input nn = tools.check_input(nni, rpeaks) # Get NN interval differences nnd = tools.nni_diff(nn) # output args = (float(nnd.mean()), int(nnd.min()), int(nnd.max()), ) names = ('nni_diff_mean', 'nni_diff_min', 'nni_diff_max', ) return utils.ReturnTuple(args, names)
5,341,543
def contextualize_model(model, cell_line, genes): """Contextualize model at the level of a PySB model.""" # Here we just make a PysbAssembler to be able # to apply set_context on the model being passed in model.name = cell_line cell_line_ccle = cell_line + '_SKIN' pa = PysbAssembler() pa.model = model pa.set_context(cell_line_ccle) # Set initial conditions for missense mutations variants = read_ccle_variants(genes) mutations = variants['missense'][cell_line_ccle] for gene, mut_list in mutations.items(): for fres, loc, tres in mut_list: site_name = fres + loc for ic in model.initial_conditions: if ic[0].monomer_patterns[0].monomer.name == gene: sc = ic[0].monomer_patterns[0].site_conditions if site_name in sc: sc[site_name] = tres return pa.model
5,341,544
def _quaternionInverse(quat): """ Inverses a list of quaternions """ quat_ = np.empty((quat.shape[0],4)) # For every quaternion for i in range(quat.shape[0]): mag = quat[i,0]**2 + quat[i,1]**2 + quat[i,2]**2 + quat[i,3]**2 quat_[i,0] = -quat[i,0]/mag quat_[i,1] = -quat[i,1]/mag quat_[i,2] = -quat[i,2]/mag quat_[i,3] = quat[i,3]/mag return quat_
5,341,545
def load_dataset(files: list[str]) -> Union[list[int], list[list[list[int]]]]: """load the images and labels of the test dataset Args: files (list[str]): list of files path for images and label dataset Returns: Union[list[int], list[list[list[int]]]]: list of labels and list of int matrixes """ print("loading the dataset...") with open(files[0], "rb") as image_file: megic_number = int.from_bytes(image_file.read(4), 'big', signed=True) number_of_images = int.from_bytes(image_file.read(4), 'big', signed=True) rows = int.from_bytes(image_file.read(4), 'big', signed=True) cols = int.from_bytes(image_file.read(4), 'big', signed=True) images = [] for _ in range(number_of_images): matrix = [] for _ in range(rows): row = [] for _ in range(cols): row.append(int.from_bytes(image_file.read(1), 'big', signed=False)) matrix.append(row) images.append(matrix) with open(files[1], "rb") as label_file: megic_number = int.from_bytes(label_file.read(4), 'big', signed=True) number_of_labels = int.from_bytes(label_file.read(4), 'big', signed=True) labels = [] for _ in range(number_of_labels): labels.append(int.from_bytes(label_file.read(1), 'big', signed=False)) return labels, images
5,341,546
def get_minion_node_ips(boot_conf, hb_conf): """ Returns a list of IPs for all master nodes :param boot_conf: the snaps-boot configuration dict :param hb_conf: the adrenaline configuration dict :return: a list of IP addresses """ return __get_node_ips(boot_conf, hb_conf, 'minions')
5,341,547
def _normalize_sql(sql, maxlen=150): """Collapse whitespace and middle-truncate if needed.""" out = ' '.join(sql.split()) if len(out) > maxlen: i = int(maxlen / 2 - 4) out = (out[0:i] + ' . . . ' + out[-i:None]) return out
5,341,548
def utt_non_punct_dialog(dialog: Dict): """ Used by: book_skill """ dialog = utils.get_last_n_turns(dialog) dialog = utils.remove_clarification_turns_from_dialog(dialog) return [{"dialogs": [dialog]}]
5,341,549
def griddata_easy(xx, yy, data, xi=None, yi=None, dx=None, dy=None, nx=10, ny=10, method='nearest', fill_value=None): """ Generate a girdded data from scattered data z=f(x, y) ... Wrapper of scipy.interplate.riddata Parameters ---------- xx: nd array-like x-coordinate of scattered data yy: nd array-like y-coordinate of scattered data data: nd array-like values of scattered data xi: 1d array x-coordinate of the interpolated grid ... The array must be monotonically increasing. ... If None, xi = np.arange(xmin, xmax, dx) yi: 1d array y-coordinate of the interpolated grid ... The array must be monotonically increasing. ... If None, yi = np.arange(ymin, ymax, dy) dx: float spacing of 'xi' if 'xi' is not given dy: float spacing of 'xi' if 'xi' is not given nx: int if 'dx' were not given, dx is set as (xmax-xmin)/nx ny: int if 'dy' were not given, dx is set as (ymax-ymin)/ny method: method of 2D interpolation ... Options: 'nearest', 'linear', 'cubic' Returns ------- xxi: 2d array x-coordinate of the grid yyi: 2d array x-coordinate of the grid data_i: 2d array values on the grid """ xx, yy, data = np.asarray(xx), np.asarray(yy), np.asarray(data) if not xx.shape == yy.shape == data.shape: print('x.shape, y.shape, and data.shape must match. ', xx.shape, yy.shape, data.shape) raise ValueError('shapes of x, y, and data do not match.') x, y, data1d = xx.flatten(), yy.flatten(), data.flatten() if xi is None: xmin, xmax = np.nanmin(x), np.nanmax(x) if dx is None: dx = (xmax - xmin) / nx xi = np.arange(xmin, xmax, dx) if yi is None: ymin, ymax = np.nanmin(y), np.nanmax(y) if dy is None: dy = (ymax - ymin) / ny yi = np.arange(ymin, ymax, dy) xxi, yyi = np.meshgrid(xi, yi) # interpolate data_i = griddata((x, y), data1d, (xxi, yyi), method=method, fill_value=fill_value) return xxi, yyi, data_i
5,341,550
def emit_cover(ctx, go_toolchain, source = None, mode = None, importpath = ""): """See go/toolchains.rst#cover for full documentation.""" if source == None: fail("source is a required parameter") if mode == None: fail("mode is a required parameter") if not importpath: fail("importpath is a required parameter") stdlib = go_toolchain.stdlib.get(ctx, go_toolchain, mode) covered = [] cover_vars = [] for s in source.entries: if not s.want_coverage: covered.append(s) continue outputs = [] for src in s.srcs: if not src.basename.endswith(".go"): outputs.append(src) continue cover_var = "Cover_" + src.basename[:-3].replace("-", "_").replace(".", "_") cover_vars.append("{}={}={}".format(cover_var, src.short_path, importpath)) out = declare_file(ctx, path=cover_var, ext='.cover.go') outputs.append(out) args = ctx.actions.args() add_go_env(args, stdlib, mode) args.add(["--", "--mode=set", "-var=%s" % cover_var, "-o", out, src]) ctx.actions.run( inputs = [src] + stdlib.files, outputs = [out], mnemonic = "GoCover", executable = go_toolchain.tools.cover, arguments = [args], ) members = structs.to_dict(s) members["srcs"] = outputs covered.append(GoSource(**members)) return GoSourceList(entries=covered), cover_vars
5,341,551
async def test_binary_sensor_update_mount_type_garage( hass: HomeAssistant, ufp: MockUFPFixture, sensor_all: Sensor ): """Test binary_sensor motion entity.""" await init_entry(hass, ufp, [sensor_all]) assert_entity_counts(hass, Platform.BINARY_SENSOR, 10, 10) _, entity_id = ids_from_device_description( Platform.BINARY_SENSOR, sensor_all, SENSE_SENSORS_WRITE[0] ) state = hass.states.get(entity_id) assert state assert state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.DOOR.value new_sensor = sensor_all.copy() new_sensor.mount_type = MountType.GARAGE mock_msg = Mock() mock_msg.changed_data = {} mock_msg.new_obj = new_sensor ufp.api.bootstrap.sensors = {new_sensor.id: new_sensor} ufp.ws_msg(mock_msg) await hass.async_block_till_done() state = hass.states.get(entity_id) assert state assert ( state.attributes[ATTR_DEVICE_CLASS] == BinarySensorDeviceClass.GARAGE_DOOR.value )
5,341,552
def shortdate(date=None): """turn (timestamp, tzoff) tuple into iso 8631 date.""" return datestr(date, format='%Y-%m-%d')
5,341,553
def default_fram( object_to_serialize): """ Python json api custom serializer function for FRAM Warehouse API per:'Specializing JSON object encoding', https://simplejson.readthedocs.org >>> import simplejson as json >>> json.dumps({'Without':[1,'a',datetime(1999, 1, 1),'Serializer']}) Traceback (most recent call last): ... TypeError: datetime.datetime(1999, 1, 1, 0, 0) is not JSON serializable >>> dict2 = {'With':[1,'a',datetime(1999, 1, 1),'Serializer']} >>> json.dumps( dict2, default=default_fram) '{"With": [1, "a", "1999-01-01T00:00:00Z", "Serializer"]}' >>> dict3 = {'With':[1,'a',date(1999, 1, 1),'Serializer']} >>> json.dumps( dict3, default=default_fram) '{"With": [1, "a", "1999-01-01", "Serializer"]}' >>> dict4 = {'With':[1,'a',time(4, 5, 6),'Serializer']} >>> json.dumps( dict4, default=default_fram) '{"With": [1, "a", "1970-01-01T04:05:06Z", "Serializer"]}' >>> numpy_64bit_int = {'With':[1,numpy.int64(5678),'Support']} >>> json.dumps(numpy_64bit_int, default=default_fram) '{"With": [1, 5678, "Support"]}' >>> numpy_32bit_int = {'With':[1,numpy.int32(5678),'Support']} >>> json.dumps(numpy_64bit_int, default=default_fram) '{"With": [1, 5678, "Support"]}' >>> numpy_16bit_int = {'With':[1,numpy.int16(5678),'Support']} >>> json.dumps(numpy_64bit_int, default=default_fram) '{"With": [1, 5678, "Support"]}' """ #Bake datetime objects into Strings if isinstance( object_to_serialize, datetime): if object_to_serialize.utcoffset() is None: #Append 'Z', to conform to ISO8601 date spec return object_to_serialize.isoformat()+'Z' #Else, TZ offset present. TZ info will be automatically included per # docs.python.org/3/library/datetime.html#datetime.datetime.isoformat return object_to_serialize.isoformat() if isinstance( object_to_serialize, date): # No Timezone info available, return object_to_serialize.isoformat() if isinstance( object_to_serialize, time): #No date available.Prefix:'1970-01-01T',to conform to ISO8601 date spec isoformat = '1970-01-01T'+object_to_serialize.isoformat() if object_to_serialize.utcoffset() is None: # No Timezone info available, # Append 'Z',to conform to ISO8601 date spec return isoformat+'Z' #else, TZ offset has already been added to string. return isoformat if isinstance(object_to_serialize, numpy.integer): return int(object_to_serialize) #per Python issue24313, no support for numpy Ints #Else, wasnt a datetime Date & we dont handle anything else.. so: raise TypeError(repr(object_to_serialize) + " is not JSON serializable")
5,341,554
def read_random_stack_for_multiple_pickles(all_spectra, all_sequence, num_spectra, stack_size): """TODO(nh2tran): docstring.""" print("read_random_stack_for_multiple_pickles()") random_idx = random.sample(xrange(num_spectra[-1]), min(stack_size, num_spectra[-1])) random_locations = [] f_idx = np.array(num_spectra) for i in random_idx: idx = np.where((f_idx > i))[0][0] if idx == 0: random_locations.append([idx, i]) else: random_locations.append([idx, i-num_spectra[idx-1]]) return read_spectra_from_multiple_pickles(all_spectra, all_sequence, random_locations)
5,341,555
def reset_fields_to_default(): """reset datamodel to default : core fields and default custom fields""" self.application.coll_model.remove({ "field_class" : "custom" }) create_generic_custom_fields()
5,341,556
def test_user_create_command(gsuite_client, mocker): """ Scenario: gsuite-user-create should works if valid arguments are provided. Given: - Command args. When: - Calling gsuite-user-create command with the arguments provided. Then: - Ensure CommandResult entry should be as expected. """ from GSuiteAdmin import user_create_command with open('test_data/user_create_args.json', 'r') as file: args = json.load(file) with open('test_data/user_create_response.json') as file: api_response = json.load(file) with open('test_data/user_create_entry_context.json') as file: expected_entry_context = json.load(file) mocker.patch('GSuiteAdmin.GSuiteClient.http_request', return_value=api_response) command_result = user_create_command(gsuite_client, args) assert command_result.readable_output == expected_entry_context['HumanReadable'] assert command_result.outputs == expected_entry_context['EntryContext']['GSuite.User(val.id == obj.id)'] assert command_result.raw_response == expected_entry_context['Contents'] assert command_result.outputs_key_field == ['id'] assert command_result.outputs_prefix == 'GSuite.User'
5,341,557
def perfect_pattern(dict_class_counts, distinct_classes, pattern, supporting_items, results_dir): """ Performs checking whether the pattern is perfect and a common class can be found directly without constructing the relative class hierarchy. :param dict_class_counts: the count of each distinct class combinations to weight the superclass :param distinct_classes: the distinct class combinations of relative hierarchy level 0 :param pattern: the pattern to evaluate :param supporting_items: the classes to which the supporting items belong to :param results_dir: the directory to store the results :return: """ base_case = False superclasses = list() for key in dict_class_counts: for subkey in key.split(): logging.debug('Subkey:\t%s', set([subkey])) subkey_class = True for cl in distinct_classes: if set([subkey]).issubset(set(cl)): pass # do nothing else: logging.debug('%s is no subset of %s', set([subkey]), set(cl)) subkey_class = False break if subkey_class and subkey not in superclasses: logging.debug('Setting base_case to True!') base_case = True superclasses.append(subkey) weights = [0 for superclass in superclasses] weights_indexes = [[0] for superclass in superclasses] if base_case: logging.info('Found pattern on first hierarchy level!') construct_result(pattern, {}, weights, weights_indexes, superclasses, dict_class_counts) write_to_csv(pattern, distinct_classes, weights, superclasses, weights_indexes, get_distribution(supporting_items), True, results_dir) return base_case
5,341,558
def _benchmark_grep(filename, pattern): """Benchmarks grep. Args: - filename: The name of the file to be searched. - pattern: The pattern we are searching for in the file. """ time_taken = timeit(setup=BENCHMARK_SETUP, number=SINGLE_STRING_TESTS, stmt='subprocess.call(%s)' % GREP_CALL_ARGS.format(pattern, filename)) return time_taken / SINGLE_STRING_TESTS
5,341,559
def inotify_test( test_paths: dict[str, pathlib.Path], tmp_path: pathlib.Path ) -> InotifyTest: """Generate a pre-configured test instance of `inotify_simple.INotify`. Parameters ---------- test_paths: dict[str, pathlib.Path] The test fixture that generates test files based on configuration (:obj:`test_paths`). tmp_path: pathlib.Path The pytest `tmp_path` fixture providing a path object to a temporary directory which is unique to each test function (:obj:`_pytest.tmpdir.tmp_path`). Returns ------- inotify_simple: InotifyTest A pre-configured `InotifyTest` object with the specified test paths. """ inotify = InotifyTest(tmp_path) for key, path in test_paths.items(): inotify.add_watch(path) return inotify
5,341,560
async def mock_pyatag_sleep(): """Mock out pyatag sleeps.""" asyncio_sleep = asyncio.sleep async def sleep(duration, loop=None): await asyncio_sleep(0) with patch("pyatag.gateway.asyncio.sleep", new=sleep): yield
5,341,561
def set_system_bios( context, settings, system_id = None ): """ Finds a system matching the given ID and sets the BIOS settings Args: context: The Redfish client object with an open session settings: The settings to apply to the system system_id: The system to locate; if None, perform on the only system Returns: The response of the PATCH """ # Locate the system system = get_system( context, system_id ) # Get the BIOS resource and determine if the settings need to be applied to the resource itself or the settings object bios_uri = system.dict["Bios"]["@odata.id"] bios = context.get( bios_uri ) etag = bios.getheader( "ETag" ) if "@Redfish.Settings" in bios.dict: bios_uri = bios.dict["@Redfish.Settings"]["SettingsObject"]["@odata.id"] bios_settings = context.get( bios_uri ) etag = bios_settings.getheader( "ETag" ) # Update the settings payload = { "Attributes": settings } headers = None if etag is not None: headers = { "If-Match": etag } response = context.patch( bios_uri, body = payload, headers = headers ) verify_response( response ) return response
5,341,562
def ucs(): """show unicode categories with 10 example values""" print(A.print(ex=CAT))
5,341,563
def create() -> UserSecurityModel: """ Creates a new instance of the USM """ return UserSecurityModel()
5,341,564
def clDice(v_p, v_l): """[this function computes the cldice metric] Args: v_p ([bool]): [predicted image] v_l ([bool]): [ground truth image] Returns: [float]: [cldice metric] """ if len(v_p.shape)==2: tprec = cl_score(v_p,skeletonize(v_l)) tsens = cl_score(v_l,skeletonize(v_p)) elif len(v_p.shape)==3: tprec = cl_score(v_p,skeletonize_3d(v_l)) tsens = cl_score(v_l,skeletonize_3d(v_p)) return 2*tprec*tsens/(tprec+tsens)
5,341,565
def validate_regex(regex_str): """ Checks if a given string is valid regex :param str regex_str: a suspicios string that may or may not be valid regex :rtype: bool :return: True if valid regex was give, False in case of TypeError or re.error """ # another of those super basic function where i am not sure if there isn't an easier way try: re.compile(regex_str) return True except re.error: return False except TypeError: # for the string not being one return False
5,341,566
def main(): """ Initialize as global variable the settings as found in the config file and the command-line arguments. """ global done_list global CONFIG_FILE done_list = [] parser = argparse.ArgumentParser(fromfile_prefix_chars='@') parser.add_argument("titles", type=str, nargs='*', help="All the names separated by a space will be \ searched and downloaded.") parser.add_argument("-f", "--file", type=str, help="Specify the file name, to download using \ reference as.") parser.add_argument("-u", "--url", type=str, help="Specify the url where list is located.") parser.add_argument("-k", "--keyword", type=str, help="Add additional keywords for search.") parser.add_argument("-n", "--count", type=int, help="Number of files to download from playlist/url.") parser.add_argument("-r", "--repair_only", action="store_true", help="Skip downloading and only add metadata.") parser.add_argument("--ignore_downloaded", action="store_true", help="Skip checking the downloaded.txt and \ download all files.") parser.add_argument("--no_downloaded", action="store_true", help="Skip adding the downloaded files to \ downloaded.txt.") parser.add_argument("-c", "--config", type=str, help="Specify config file.") parser.add_argument("--ignore-config", action="store_true", help="Ignore the default config file.") parser.add_argument("--arrange", '-a', action="store_true", help="Rearrange directory into artsit->album folder.") parser.add_argument("--directory", "-d", type=str, help="Specify a directory.") # Check if arguments have a config file and use that. args_temp = parser.parse_args() if args_temp.config: CONFIG_FILE = args_temp.config if os.path.exists(CONFIG_FILE): logging.debug("Using config file.") sys.argv = ['@'+CONFIG_FILE] + sys.argv else: logging.debug("No conf file found at %s", CONFIG_FILE) args = parser.parse_args(sys.argv) logger.debug("ARGV: %s", sys.argv) logger.debug("ARGUMENTS SUPPLIED: %s", str(args)) if args.directory and os.path.exists(args.directory): ydl_opts['outtmpl'] = os.path.join(args.directory, ydl_opts['outtmpl']) logger.debug("Output path: %s", ydl_opts['outtmpl']) if args.arrange: if not args.directory: print("Need a directory to rearrange. Supply one with '-d' or '--directory'.") logger.debug("Directory not supplied, rearrangement failed.") else: logger.debug("Arranging in the direcotory: %s", args.directory) Rearrange(args.directory) logger.debug("Rearrangement finished.") if args.url: print("You want an url:", args.url) if 'thetoptens' in args.url: if args.count: GetTopTensMusic(args.url, args.keyword, args.count) else: GetTopTensMusic(args.url, args.keyword) if 'billboard' in args.url: if args.count: GetBillboardsMusic(args.url, args.count) else: GetBillboardsMusic(args.url) if 'youtube.com' in args.url: GetYoutubeMusic(args.url) args.titles = args.titles[1:] if args.titles: logger.debug("Getting titles: %s", args.titles) GetMusicFromList(args.titles, args.ignore_downloaded, args.no_downloaded) if args.file: try: with open(args.file) as f: tbd = f.readlines() GetMusicFromList(tbd, args.ignore_downloaded, args.no_downloaded) except FileNotFoundError: print("The specified file was not found.") print("Are you sure " + args.file + " exists here?")
5,341,567
def add_host_ages( input_metadata_file, host_id_list, host_birthday_list, float_years, output_metadata_file, ) -> None: """Add host age in years on to a metadata file. The column added will be named "host_age_years" if --float-years isn't set, and "host_age" if --float-years *is* set. """ manipulate_md( input_metadata_file, [host_id_list, host_birthday_list, float_years], output_metadata_file, _add_host_ages, )
5,341,568
def load_stats_from_file(date): """ Load stats data from a stat file. Params: date -- a `datetime` instance. """ file_path = _build_stats_file_path(date) if not isfile(file_path): raise IOError # This will be FileNotFoundError in Python3. with open(file_path, 'r') as fin: return json.loads(fin.read())
5,341,569
def one_permutation(index): """" save the interaction score on one permutation dataset to NN_idx """ name = 'NN_' + str(index) ## Generate permutation datasets with main effects NN model phenotype_y_perm = permutation_data_generation(BRRR, x_train, phenotype_y, gene_size) phenotype_y_test_perm = permutation_data_generation(BRRR, x_test, phenotype_y_test, gene_size) ## Gene interaction NN training sigma_int = tau_estimate(pve_int, slope_int, intercept_int) encoder = Encoder(gene_size, sigma_int); predictor = Predictor_wide(num_gene, sparsity, sigma_int, num_hidden_nodes) SSBNN = SparseBNN(encoder, predictor) train_errors, test_errors = training(SSBNN, x_train, phenotype_y_perm, x_test, phenotype_y_test_perm, learning_rate, batch_size, num_epoch) print('BNN model :') splited_x_test = splite_data(x_test, gene_size) PTVE_test(SSBNN, splited_x_test, phenotype_y_test_perm) # Detect interactions from the trained gene interaction NN num_samples = 50 ## number of samples of explanation torch.manual_seed(0); perm = torch.randperm(x_test.size(0)); idx = perm[:num_samples] gene_test, _ = SSBNN.encoder(splite_data(x_test[idx], gene_size), training = False); gene_test.detach_() baseline = torch.mean(gene_test, dim = 0).view(1,-1) GlobalSIS_BNN, topGlobalSIS_BNN, Shapely_BNN = GlobalSIS(SSBNN.predictor, gene_test, baseline) np.savetxt(cwd+'/PermutationDistribution/'+name+'.csv', Shapely_BNN, delimiter=",")
5,341,570
def null_gt_null(left, right): """:yaql:operator > Returns false. This function is called when left and right are null. :signature: left > right :arg left: left operand :argType left: null :arg right: right operand :argType right: null :returnType: boolean .. code: yaql> null > null false """ return False
5,341,571
def read_header(file): """ Read the information in an OpenFOAM file header. Parameters ---------- file : str Name (path) of OpenFOAM file. Returns ------- info : dictionary The information in the file header. """ with open(file, 'r') as f: content = f.read() info = {} info['file'] = file # read logo logo_info = _read_logo(content) info['foam_version'] = logo_info['Version'] info['website'] = logo_info['Website'] # read header header_info = _read_header_info(content) info['foam_class'] = header_info['foam_class'] info['name'] = header_info['name'] info['location'] = header_info['location'] return info
5,341,572
def set_object_show_name(object, show=True): """ Display the name of an object. Parameters: object (obj): Object to display name. show (bool): True or False. Returns: None """ object.show_name = show
5,341,573
def write_batch_preds_to_csv(predictions, csv_fpath: Path) -> None: """print batch preds to csv""" raise NotImplementedError(f"Not implemented for type {predictions}")
5,341,574
def point_from_b58(b): """Return b58 decoded P.""" x, y = [int_from_b58(t) for t in b.split(",")] return ECC.EccPoint(x=x, y=y, curve=CURVE)
5,341,575
def _cp_embeds_into(cp1, cp2): """Check that any state in ComplexPattern2 is matched in ComplexPattern1. """ # Check that any state in cp2 is matched in cp1 # If the thing we're matching to is just a monomer pattern, that makes # things easier--we just need to find the corresponding monomer pattern # in cp1 if cp1 is None or cp2 is None: return False cp1 = as_complex_pattern(cp1) cp2 = as_complex_pattern(cp2) if len(cp2.monomer_patterns) == 1: mp2 = cp2.monomer_patterns[0] # Iterate over the monomer patterns in cp1 and see if there is one # that has the same name for mp1 in cp1.monomer_patterns: if _mp_embeds_into(mp1, mp2): return True return False
5,341,576
def get_tags_for_message(khoros_object, msg_id): """This function retrieves the tags for a given message. .. versionadded:: 2.8.0 :param khoros_object: The core :py:class:`khoros.Khoros` object :type khoros_object: class[khoros.Khoros] :param msg_id: The Message ID for the message from which to retrieve tags :type msg_id: str, int :returns: A list of tags associated with the message """ tag_list = [] query = f"SELECT text FROM tags WHERE messages.id = '{msg_id}'" # nosec response = liql.perform_query(khoros_object, liql_query=query, verify_success=True) entries = api.get_items_list(response) for entry in entries: tag_list.append(entry['text']) return tag_list
5,341,577
def _build_hierarchical_histogram_computation( lower_bound: float, upper_bound: float, num_bins: int, aggregation_factory: factory.UnweightedAggregationFactory): """Utility function creating tff computation given the parameters and factory. Args: lower_bound: A `float` specifying the lower bound of the data range. upper_bound: A `float` specifying the upper bound of the data range. num_bins: The integer number of bins to compute. aggregation_factory: The aggregation factory used to construct the federated computation. Returns: A tff federated computation function. """ @computations.tf_computation(computation_types.SequenceType(tf.float32)) def client_work(client_data): return _discretized_histogram_counts(client_data, lower_bound, upper_bound, num_bins) aggregator = aggregation_factory.create(client_work.type_signature.result) @computations.federated_computation( computation_types.at_clients(client_work.type_signature.parameter)) def hierarchical_histogram_computation(federated_client_data): # Work done at clients. client_histogram = intrinsics.federated_map(client_work, federated_client_data) # Aggregation to server. return aggregator.next(aggregator.initialize(), client_histogram).result return hierarchical_histogram_computation
5,341,578
def test_fst_sta_start_session_no_add_params(dev, apdev, test_params): """FST STA start session - no add params""" fst_start_session(apdev, test_params, bad_param_session_add_no_params, False)
5,341,579
def detect_intent_texts(project_id, session_id, language_code): """Returns the result of detect intent with texts as inputs. Using the same `session_id` between requests allows continuation of the conversation.""" import dialogflow_v2 as dialogflow session_client = dialogflow.SessionsClient() session_id = '1234567' session = session_client.session_path(project_id, session_id) print('Session path: {}\n'.format(session)) import pandas as pd with open('AskUbuntu/test-ubuntu_with-labels', 'rb') as fp: TEST_DATA = pickle.load(fp) correct_count = 0 total_count = 0 predictions = [] true_labels = [] predicted_entities = dict() true_labels_for_testing = list() ne_class_list = set() sample_count = 10000 with open('log.txt', 'w') as log: for index, example in enumerate(TEST_DATA): text, label, ent_dict = example if len(text) >= 256: continue entities = ent_dict ent_labels = dict() for ent in entities: start, stop, ent_type = ent ent_type = ent_type.replace('_', '') ne_class_list.add(ent_type) if ent_type in ent_labels: ent_labels[ent_type].append((start, stop)) else: ent_labels[ent_type] = [(start, stop)] true_labels_for_testing.append(ent_labels) # print(true_labels_for_testing) true_labels.append(label) intent = str(label) total_count += 1 text_input = dialogflow.types.TextInput( text=text, language_code=language_code) query_input = dialogflow.types.QueryInput(text=text_input) response = session_client.detect_intent( session=session, query_input=query_input) print('=' * 20) # print(response) intent_predicted = response.query_result.fulfillment_text if intent_predicted.strip(): predictions.append(int(intent_predicted)) else: predictions.append(-1) if intent == intent_predicted: correct_count += 1 else: log.write('True:' + intent + '\n') log.write('Predicted:' + intent_predicted + '\n\n') parameters = response.query_result.parameters.fields # print(parameters) entity_dict = dict() for ent in parameters: for item in parameters[ent].list_value: try: entity_text_len = len(item) entity_dict[entity_text_len].add((item, ent)) except: entity_dict[entity_text_len] = {(item, ent)} predicted_entities[index] = entity_dict print('Query text: {}'.format(response.query_result.query_text)) # print('Query Entities: {0}'.format(parameters)) print('Detected intent: {} (confidence: {})\n'.format( response.query_result.intent.display_name, response.query_result.intent_detection_confidence)) print('Fulfillment text: {}\n'.format( response.query_result.fulfillment_text)) # sleep(0.25) print("Total count:{}, Correct count:{}".format(total_count, correct_count)) if index == sample_count: break print("Accuracy:{}".format(correct_count/total_count)) pred_df = pd.Series(predictions) true_df = pd.Series(true_labels) pred_df.reset_index(drop=True, inplace=True) true_df.reset_index(drop=True, inplace=True) acc = accuracy_score(true_df, pred_df) print("Accuracy sklearn:{}".format(acc)) print(f1_score(true_df, pred_df, average='weighted')) print(precision_score(true_df, pred_df, average='weighted')) print(recall_score(true_df, pred_df, average='weighted')) # print(f1_score(true_df, pred_df, average='micro')) # print(precision_score(true_df, pred_df, average='micro')) # print(recall_score(true_df, pred_df, average='micro')) test_segments = list() for idx, example in enumerate(TEST_DATA): raw_text, _, _ = example if len(raw_text) >= 256: continue entity_dict = predicted_entities[idx] entities_list = list() result = [] for index in sorted(entity_dict, reverse=True): for ent, key in entity_dict[index]: # print(ent, key) for match in finditer(re.escape(ent), raw_text): is_new = False start, stop = match.span() for low, high in result: if (low <= start <= high) or (low <= stop <= high): break else: is_new = True result.append((start, stop)) if is_new: entities_list.append((start, stop, key)) # For evaluation test_segments.append((raw_text, entities_list)) if idx == sample_count: break results_of_prediction = list() for example in test_segments: _, entities = example ent_labels = dict() for ent in entities: start, stop, ent_type = ent ent_type = ent_type.replace('_', '') if ent_type in ent_labels: ent_labels[ent_type].append((start, stop)) else: ent_labels[ent_type] = [(start, stop)] results_of_prediction.append(ent_labels) print(len(results_of_prediction), len(true_labels_for_testing)) from eval.quality import calculate_prediction_quality f1, precision, recall, results = \ calculate_prediction_quality(true_labels_for_testing, results_of_prediction, tuple(ne_class_list)) print(f1, precision, recall, results)
5,341,580
def check_endpoint(func): """Check available endpoint.""" @wraps(func) def wrapper(*args, **kwargs): sig = inspect.signature(func) args_value = sig.bind(*args, **kwargs) endpoint = args_value.arguments["endpoint"] if endpoint not in AVAILABLE_ENDPOINTS: raise ClientException(f"Unavailable endpoints: {endpoint}") return func(*args, **kwargs) return wrapper
5,341,581
def read_sql_one(id): """ This function responds to a request for api/reviews/{id} with one matching review from reviews :param id: id of the review :return: review matching the id """ response = Response.query.filter_by(id=id).one_or_none() if response is not None: # serialize the data for the response response_schema = ResponseSchema() return response_schema.dump(response).data else: abort(404, f"Review {id} not found.")
5,341,582
def ds_to_numpy(ds: Dataset) -> Tuple[np.ndarray, np.ndarray]: """Transform torch dataset to numpy arrays Parameters ---------- ds : Dataset COVID dataset Returns ------- Tuple[np.ndarray, np.ndarray] Flattened images + labels """ imgs = [] labels = [] for img, label in ds: imgs.append(img.detach().cpu().numpy().flatten()[np.newaxis, ]) labels.append(label) return np.concatenate(imgs), np.array(labels)
5,341,583
def _b64(b): """Helper function base64 encode for jose spec.""" return base64.urlsafe_b64encode(b).decode('utf8').replace("=", "")
5,341,584
def load_from_arff(filename, label_count, label_location="end", input_feature_type='float', encode_nominal=True, load_sparse=False, return_attribute_definitions=False): """Method for loading ARFF files as numpy array Parameters ---------- filename : str path to ARFF file labelcount: integer number of labels in the ARFF file endian: str {"big", "little"} (default is "big") whether the ARFF file contains labels at the beginning of the attributes list ("start", MEKA format) or at the end ("end", MULAN format) input_feature_type: numpy.type as string (default is "float") the desire type of the contents of the return 'X' array-likes, default 'i8', should be a numpy type, see http://docs.scipy.org/doc/numpy/user/basics.types.html encode_nominal: bool (default is True) whether convert categorical data into numeric factors - required for some scikit classifiers that can't handle non-numeric input features. load_sparse: boolean (default is False) whether to read arff file as a sparse file format, liac-arff breaks if sparse reading is enabled for non-sparse ARFFs. return_attribute_definitions: boolean (default is False) whether to return the definitions for each attribute in the dataset Returns ------- X : :mod:`scipy.sparse.lil_matrix` of `input_feature_type`, shape=(n_samples, n_features) input feature matrix y : :mod:`scipy.sparse.lil_matrix` of `{0, 1}`, shape=(n_samples, n_labels) binary indicator matrix with label assignments names of attributes : List[str] list of attribute names from ARFF file """ if not load_sparse: arff_frame = arff.load( open(filename, 'r'), encode_nominal=encode_nominal, return_type=arff.DENSE ) matrix = sparse.csr_matrix( arff_frame['data'], dtype=input_feature_type ) else: arff_frame = arff.load( open(filename, 'r'), encode_nominal=encode_nominal, return_type=arff.COO ) data = arff_frame['data'][0] row = arff_frame['data'][1] col = arff_frame['data'][2] matrix = sparse.coo_matrix( (data, (row, col)), shape=(max(row) + 1, max(col) + 1) ) if label_location == "start": X, y = matrix.tocsc()[:, label_count:].tolil(), matrix.tocsc()[:, :label_count].astype(int).tolil() feature_names = arff_frame['attributes'][label_count:] label_names = arff_frame['attributes'][:label_count] elif label_location == "end": X, y = matrix.tocsc()[:, :-label_count].tolil(), matrix.tocsc()[:, -label_count:].astype(int).tolil() feature_names = arff_frame['attributes'][:-label_count] label_names = arff_frame['attributes'][-label_count:] else: # unknown endian return None if return_attribute_definitions: return X, y, feature_names, label_names else: return X, y
5,341,585
def gapfill_to_ensemble(model, iterations=1, universal=None, lower_bound=0.05, penalties=None, exchange_reactions=False, demand_reactions=False, integer_threshold=1e-6): """ Performs gapfilling on model, pulling reactions from universal. Any existing constraints on base_model are maintained during gapfilling, so these should be set before calling gapfill_to_ensemble (e.g. secretion of metabolites, choice of objective function etc.). Currently, only iterative solutions are supported with accumulating penalties (i.e. after each iteration, the penalty for each reaction doubles). Parameters ---------- model : cobra.Model The model to perform gap filling on. universal : cobra.Model A universal model with reactions that can be used to complete the model. lower_bound : float, 0.05 The minimally accepted flux for the objective in the filled model. penalties : dict, None A dictionary with keys being 'universal' (all reactions included in the universal model), 'exchange' and 'demand' (all additionally added exchange and demand reactions) for the three reaction types. Can also have reaction identifiers for reaction specific costs. Defaults are 1, 100 and 1 respectively. integer_threshold : float, 1e-6 The threshold at which a value is considered non-zero (aka integrality threshold). If gapfilled models fail to validate, you may want to lower this value. However, picking a threshold that is too low may also result in reactions being added that are not essential to meet the imposed constraints. exchange_reactions : bool, False Consider adding exchange (uptake) reactions for all metabolites in the model. demand_reactions : bool, False Consider adding demand reactions for all metabolites. Returns ------- ensemble : medusa.core.Ensemble The ensemble object created from the gapfill solutions. """ gapfiller = GapFiller(model, universal=universal, lower_bound=lower_bound, penalties=penalties, demand_reactions=demand_reactions, exchange_reactions=exchange_reactions, integer_threshold=integer_threshold) solutions = gapfiller.fill(iterations=iterations) print("finished gap-filling. Constructing ensemble...") ensemble = _build_ensemble_from_gapfill_solutions(model,solutions, universal=universal) return ensemble
5,341,586
def reparameterize(mu, logvar, n_samples=1): """Reparameterization trick. Args: mu (torch.Tensor): Mean. logvar (torch.Tensor): Logarithm of variation. n_samples (int): The number of samples. Returns: torch.Tensor: Samples drawn from the given Gaussian distribution. The shape is equal to mu if n_samples is 1, and (n_samples, *mu.shape) if n_samples is larger than 1. """ std = torch.exp(0.5 * logvar) eps = torch.randn(n_samples, *std.size(), device=std.device) z = mu + eps * std return z.squeeze(0)
5,341,587
def rotationMatrixFromNormals(v0,v1,tol=1e-20): """ Performs the minimum number of rotations to define a rotation from the direction indicated by the vector n0 to the direction indicated by n1. The axis of rotation is n0 x n1 https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula :param numpy.array v0: vector of length 3 :param numpy.array v1: vector of length 3 :param tol = 1e-20: tolerance. If the norm of the cross product between the two vectors is below this, no rotation is performed :rtype: numpy.array, 3x3 :return: rotation matrix which rotates the frame so that n0 is aligned with n1 """ # ensure both n0, n1 are vectors of length 1 assert len(v0) == 3, "Length of n0 should be 3" assert len(v1) == 3, "Length of n1 should be 3" # ensure both are true normals n0 = v0*1./np.linalg.norm(v0) n1 = v1*1./np.linalg.norm(v1) n0dotn1 = n0.dot(n1) # define the rotation axis, which is the cross product of the two vectors rotAx = crossProd(n0,n1) if np.linalg.norm(rotAx) < tol: return np.eye(3,dtype=float) rotAx *= 1./np.linalg.norm(rotAx) cosT = n0dotn1/(np.linalg.norm(n0)*np.linalg.norm(n1)) sinT = np.sqrt(1.-n0dotn1**2) ux = np.array([[0., -rotAx[2], rotAx[1]], [rotAx[2], 0., -rotAx[0]], [-rotAx[1], rotAx[0], 0.]],dtype=float) return np.eye(3,dtype=float) + sinT*ux + (1.-cosT)*(ux.dot(ux))
5,341,588
def test_temporal(): """ Show that the kronecker product of a spherical harmonic covariance and a temporal covariance projected into flux space is just the elementwise product of the spherical harmonic covariance projected into flux space and the temporal covariance. """ np.random.seed(0) # Dimensions ydeg = 5 N = (ydeg + 1) ** 2 K = 10 # Random flux design matrix A = np.random.randn(K, N) # Random Ylm covariance Ly = np.tril(np.random.randn(N, N)) Sy = Ly @ Ly.T # Random temporal covariance Lt = np.tril(np.random.randn(K, K)) St = Lt @ Lt.T # Two ways of computing the same thing cov1 = (A @ Sy @ A.T) * St cov2 = block_diag(*A) @ np.kron(St, Sy) @ block_diag(*A).T assert np.allclose(cov1, cov2)
5,341,589
def test_original(ssf_app): """Test an unmodified call, without function calls.""" original = open_url('/', application=ssf_app) assert (original.SimpleGrid.SimpleGrid.shape == (2, 3))
5,341,590
def P_to_array(P: NestedDicts) -> np.array: """ Converts a transition matrix in nested dictionary format to a numpy array. P is usually given as starting state -> action -> ending state w/ data, we reorder this to action -> starting state -> ending state -> transition probability. """ # Action, Starting State, Ending State, value is probability out = np.zeros(shape=(len(P[0]), len(P), len(P))) for start_state, actions in P.items(): for action, results in actions.items(): for prob, end_state, _, __ in results: out[action, start_state, end_state] += prob return out
5,341,591
def write_dataframe(df, fileName): """write_dataframe Writes a DataFrame into a .csv file. Input: df -- the DataFrame to write fileName -- the name of the file (will be saved in ./data/) """ path = dataPath + fileName df.to_csv(path)
5,341,592
def get_available_smc_versions(): """ Return list of available SMC versions. SMC versioning is done by d70/smc:v6.1.2. Version returned is after the colon. """ return [repotag for image in get_images(filter='d70/smc') for repotag in image.get('RepoTags')]
5,341,593
def pprint(obj, cols=4, columnwise=True, gap=4): """ Print the given list in evenly-spaced columns. Parameters ---------- obj : list The list to be printed. cols : int The number of columns in which the list should be printed. columnwise : bool, default=True If True, the items in the list will be printed column-wise. If False the items in the list will be printed row-wise. gap : int The number of spaces that should separate the longest column item/s from the next column. This is the effective spacing between columns based on the maximum len() of the list items. """ sobj = [str(item) for item in obj] if cols > len(sobj): cols = len(sobj) max_len = max([len(item) for item in sobj]) if columnwise: cols = int(math.ceil(float(len(sobj)) / float(cols))) plist = [sobj[i: i+cols] for i in range(0, len(sobj), cols)] if columnwise: if not len(plist[-1]) == cols: plist[-1].extend(['']*(len(sobj) - len(plist[-1]))) plist = zip(*plist) printer = '\n'.join([ ''.join([c.ljust(max_len + gap) for c in p]) for p in plist]) print (printer)
5,341,594
def boolean_fn2(a, b, c): """ Return the truth value of (a ∧ b) ∨ (-a ∧ -b) """ return a and b or not a and not b
5,341,595
def get_ica_gds_configuration() -> libgds.Configuration: """ Get the configuration object for ica wes :return: """ from utils.ica_base import get_configuration return get_configuration(libgds.Configuration)
5,341,596
def retry_load_images(image_paths, retry=10, backend="pytorch"): """ This function is to load images with support of retrying for failed load. Args: image_paths (list): paths of images needed to be loaded. retry (int, optional): maximum time of loading retrying. Defaults to 10. backend (str): `pytorch` or `cv2`. Returns: imgs (list): list of loaded images. """ for i in range(retry): imgs = [] for image_path in image_paths: with g_pathmgr.open(image_path, "rb") as f: img_str = np.frombuffer(f.read(), np.uint8) img = cv2.imdecode(img_str, flags=cv2.IMREAD_COLOR) imgs.append(img) if all(img is not None for img in imgs): if backend == "pytorch": imgs = torch.as_tensor(np.stack(imgs)) return imgs else: logger.warn("Reading failed. Will retry.") time.sleep(1.0) if i == retry - 1: raise Exception("Failed to load images {}".format(image_paths))
5,341,597
def b2p(exts): """Convert two points of a polygon into its bounding box. (Rectangular polygon parallel with axes.) """ p0x = exts[0][0] p0y = exts[0][1] p0 = str(p0x) + ' ' + str(p0y) + ' ' + '0.0' p1x = exts[0][2] p1y = exts[0][3] p1 = str(p1x) + ' ' + str(p1y) + ' ' + '0.0' pb = str(p1x) + ' ' + str(p0y) + ' ' + '0.0' pu = str(p0x) + ' ' + str(p1y) + ' ' + '0.0' e = "%s %s %s %s %s" % (p0, pb, p1, pu, p0) i = [] if exts[1] is not None: for h in exts[1]: p0x = h[0] p0y = h[1] p0 = str(p0x) + ' ' + str(p0y) + ' ' + '0.0' p1x = h[2] p1y = h[3] p1 = str(p1x) + ' ' + str(p1y) + ' ' + '0.0' pb = str(p1x) + ' ' + str(p0y) + ' ' + '0.0' pu = str(p0x) + ' ' + str(p1y) + ' ' + '0.0' i.append("%s %s %s %s %s" % (p0, pu, p1, pb, p0)) return e, i
5,341,598
def unix_to_human_time(utime, alt_format=0): """convert Unix time to Human readable time""" try: fraction = utime - int(utime) except OverflowError as err: t = 'Unix time %s too long to convert, substituting 0' % utime # TODO log this time issue print('NEED TO LOG THIS TIME ISUSE:', t) fraction = utime = 0 # handle special case of -1 (not handled correctly by 'date') if int(utime == -1): return 1969, 12, 31, 23, 59, 59 cmd = 'date -u -d "1970-01-01 %d sec" +"%%Y %%m %%d %%H %%M %%S"' % int(utime) try: result = getoutput(cmd) # s = split(result) s = result.split() # s[5] = atoi(s[5]) + fraction s[5] = int(s[5]) + fraction except ValueError as err: t = 'date conversion error\ndate command was: %sdate command returned: %s' % (cmd, result) # TODO log this time issue print('NEED TO LOG THIS TIME ISUSE:', t) raise ValueError(err) if alt_format == 1: return "%s_%s_%s_%s_%s_%06.3f" % tuple(s) elif alt_format == 0: return "%s/%s/%s %s:%s:%06.3f" % tuple(s) else: # i.e. alt_format == 2 s[0:5] = list(map(atoi, s[0:5])) return tuple(s)
5,341,599