content
stringlengths
22
815k
id
int64
0
4.91M
def handle_mpd_rm(bot, ievent): """ arguments: <playlist> - remove playlist. """ handle_mpd_playlist_manipulation(bot, ievent, 'rm')
5,336,600
def createOutputBuffer(file, encoding): """Create a libxml2 output buffer from a Python file """ ret = libxml2mod.xmlCreateOutputBuffer(file, encoding) if ret is None:raise treeError('xmlCreateOutputBuffer() failed') return outputBuffer(_obj=ret)
5,336,601
def get_table_name(yaml_path): """gives how the yaml file name should be in the sql query""" table_name = os.path.basename(yaml_path) table_name = os.path.splitext(table_name)[0] return table_name
5,336,602
def wait_for_proof(node, proofid_hex, timeout=60, expect_orphan=None): """ Wait for the proof to be known by the node. If expect_orphan is set, the proof should match the orphan state, otherwise it's a don't care parameter. """ def proof_found(): try: wait_for_proof.is_orphan = node.getrawavalancheproof(proofid_hex)[ "orphan"] return True except JSONRPCException: return False wait_until_helper(proof_found, timeout=timeout) if expect_orphan is not None: assert_equal(expect_orphan, wait_for_proof.is_orphan)
5,336,603
def check(verbose=1): """ Runs a couple of functions to check the module is working. :param verbose: 0 to hide the standout output :return: list of dictionaries, result of each test """ return []
5,336,604
def cylinder_sideways(): """ sideways cylinder for poster """ call_separator('cylinder sidweays') T1 = .1 #gs = gridspec.GridSpec(nrows=2,ncols=3,wspace=-.1,hspace=.5) fig = plt.figure(figsize=(5,4)) ax11 = fig.add_subplot(111,projection='3d') #ax12 = fig.add_subplot(gs[0,2]) #ax22 = fig.add_subplot(gs[1,2]) a = lubrication(phi1=.57,Rp=0.96,Rc=1.22,base_radius=1.22, pi3=1,pi4=4.7,pi5=0.1,pi6=10, mu=1.2,T=T1,constriction='piecewise',U0=0.2, dt=0.02,eps=1, F0=50,method='euler') a.Z0 = -5/a.Rp z = np.linspace(-7,7,100) # dimensional r = a.pi1(z) th = np.linspace(0,2*np.pi,100) radius_al = 0.25 # draw arrow going into spine ar1 = Arrow3D([-5,-1.5],[0,0],[0,0], mutation_scale=10, lw=2, arrowstyle="-|>", color="k") ax11.add_artist(ar1) # A # draw spine Z,TH = np.meshgrid(z,th) #Z,TH = np.mgrid[-7:7:.1, 0:2*np.pi:.1] X = np.zeros_like(Z) Y = np.zeros_like(Z) #print(np.shape(Z)) for i in range(len(Z[:,0])): X[i,:] = a.pi1(Z[i,:])*np.cos(TH[i,:]) Y[i,:] = a.pi1(Z[i,:])*np.sin(TH[i,:]) ax11.plot_surface(Z,Y,X,alpha=.25) shifts = np.array([-6,0,-4]) names = ['z','y','x'] size = 2 for i in range(3): coords = np.zeros((3,2)) coords[:,0] += shifts coords[:,1] += shifts coords[i][1] += size arx = Arrow3D(*list(coords), mutation_scale=5, lw=2, arrowstyle="-|>", color="k") ax11.text(*list(coords[:,1]),names[i],horizontalalignment='center') ax11.add_artist(arx) # draw sphere for cap b = a.base_radius r = np.sqrt(b**2+7**2) th2 = np.linspace(0,np.arctan(b/7),100) phi = np.linspace(0,2*np.pi,100) TH2,PHI = np.meshgrid(th2,phi) X = r*np.sin(TH2)*np.cos(PHI) Y = r*np.sin(TH2)*np.sin(PHI) Z = r*np.cos(TH2) ax11.plot_surface(Z,Y,X,color='tab:blue',alpha=.5) # draw sphere vesicle u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j] X = np.cos(u)*np.sin(v) Y = np.sin(u)*np.sin(v) Z = np.cos(v) ax11.plot_surface(Z,Y,X,color='gray',alpha=.5) # label spine head and base ax11.text(7,0,-2,r'\setlength{\parindent}{0pt}Spine Head\\(Closed End)') ax11.text(-4,0,3,r'\setlength{\parindent}{0pt}Spine Base\\(Open End)') # set equal aspect ratios #ax11.set_aspect('auto') # only auto allowed?? ax11.set_box_aspect((np.ptp(X), np.ptp(Y), np.ptp(Z))) ax11.set_axis_off() lo = -4.4 hi = 4.4 dx = -.5 ax11.set_xlim(lo-dx,hi+dx) ax11.set_ylim(lo-dx,hi+dx) ax11.set_zlim(lo,hi) ax11.view_init(20,65) return fig
5,336,605
def test(dir): """Discover and run unit tests.""" from unittest import TestLoader, TextTestRunner testsuite = TestLoader().discover(f'./{dir}') TextTestRunner(verbosity=2, buffer=True).run(testsuite)
5,336,606
def get_generic_or_msg(intent, result): """ The master method. This method takes in the intent and the result dict structure and calls the proper interface method. """ return Msg_Fn_Dict[intent](result)
5,336,607
def s3_example_tile(gtiff_s3): """Example tile for fixture.""" return (5, 15, 32)
5,336,608
def execute_list_of_commands(command_list): """ INPUT: - ``command_list`` -- a list of strings or pairs OUTPUT: For each entry in command_list, we attempt to run the command. If it is a string, we call ``os.system()``. If it is a pair [f, v], we call f(v). If the environment variable :envvar:`SAGE_NUM_THREADS` is set, use that many threads. """ t = time.time() # Determine the number of threads from the environment variable # SAGE_NUM_THREADS, which is set automatically by sage-env try: nthreads = int(os.environ['SAGE_NUM_THREADS']) except KeyError: nthreads = 1 # normalize the command_list to handle strings correctly command_list = [ [run_command, x] if isinstance(x, str) else x for x in command_list ] # No need for more threads than there are commands, but at least one nthreads = min(len(command_list), nthreads) nthreads = max(1, nthreads) def plural(n,noun): if n == 1: return "1 %s"%noun return "%i %ss"%(n,noun) print "Executing %s (using %s)"%(plural(len(command_list),"command"), plural(nthreads,"thread")) execute_list_of_commands_in_parallel(command_list, nthreads) print "Time to execute %s: %s seconds"%(plural(len(command_list),"command"), time.time() - t)
5,336,609
def get_transceiver_diagnostics(baseurl, cookie_header, transceiver): """ Get the diagnostics of a given transceivers in the switch :param baseurl: imported baseurl variable :param cookie_header: Parse cookie resulting from successful loginOS.login_os(baseurl) :param transceiver: data parsed to specify a transceiver in switch :return return transceiver's diagnostics information in json format """ url = baseurl + 'transceivers/' + transceiver + '/diagnostics' headers = {'cookie': cookie_header} response = requests.get(url, verify=False, headers=headers) if response.status_code == 200: return response.json()
5,336,610
def plot_cross_sections(obj, paths, xs_label_size=12, xs_color='black', map_style='contour', scale='lin', n=101, x_labeling='distance', show_max=True, fp_max=True, fp_text=True, cmap='viridis_r', max_fig_width=12, max_fig_height=8, legend_padding=6, **kw): """Generate a map style plot (either contour or pcolormesh) with cross sections labeled on it and generate plots of the fields corresponding to the cross sections args: obj - Results object or Model object, because the grid of fields in a Results object must be interpolated to compute fields along each cross section, passing a Model object instead will yield smoother profiles of the fields along each cross section. The Model object will, however, be used to compute a grid of fields for the map style plot (contour or pcolormesh), so passing a Model object could be slower. paths - An iterable of iterables of x,y pairs representing paths through the results domain to plot as cross sections. For example, ([(1,2), (3,5)], [(2,5), (9,3), (4,7)], [(5,3), (9,2)]) optional args: xs_label_size - int, fontsize of text labels on the map style figure xs_color - any matplotlib compatible color definition map_style - str, 'contour' or 'pcolormesh', determines which map style plot is generated with the cross sections labeled on it, default is 'contour' scale - str, can be 'log' or 'lin', only applies if map_style is 'contour' (default is 'lin') n - integer, number of points sampled along the sections (default 101) x_labeling - 'distance' or 'location', for x axis ticks on the cross section plots labeled according to the distance along the segment or with the (x,y) coordinates of sample points, default is 'distance' show_max - bool, toggle labeling of the maximum field location, default is True fp_max - bool, toggle whether the maximum fields along footprints "of concern" are labeled fp_text - bool, toggle footprint group labeling with text cmap - str, name of matplotlib colormap, see: http://matplotlib.org/examples/color/colormaps_reference.html max_fig_width - float/int, inches, maximum width of figure max_fig_height - float/int, inches, maximum height of figure legend_padding - float/int, inches, width left for legend area kw: prefix - string prepended to the file names of saved plots suffix - string appended to the file names of saved plots and any keyword arguments that can be passed to plot_contour(), plot_pcolormesh(), or plot_segment() note: Only a directory name can be passed to the 'path' keyword. File names aren't accepted, which prevents saved plots from overwriting each other. File names are created automatically. returns: A tuple of tuples of plotting objects. The first tuple contains the return arguments of the map plot (contour or pcolormesh) and the other tuples contain the return arguments of plot_path, for however many cross sections are created.""" #deal with Model vs Results input if(type(obj) is subcalc_class.Results): res = obj elif(type(obj) is subcalc_class.Model): res = obj.calculate() #separate saving kw from others save_kw = {} for k in ['save', 'path', 'format', 'prefix', 'suffix']: if(k in kw): save_kw[k] = kw[k] kw.pop(k) #deal with the saving kw if('prefix' in save_kw): save_kw['save'] = True fn_prefix = save_kw['prefix'] if(fn_prefix[-1] != '-'): fn_prefix = fn_prefix + '-' else: fn_prefix = '' if('suffix' in save_kw): save_kw['save'] = True fn_suffix = save_kw['suffix'] if(fn_suffix[0] != '-'): fn_suffix = '-' + fn_suffix else: fn_suffix = '' if('save' in save_kw): save = save_kw['save'] elif('path' in save_kw): if(not os.path.isdir(save_kw['path'])): raise(subcalc_class.EMFError('The path keyword argument to plot_cross_sections must be a directory path. Plot names are created automatically, with some control available through the prefix and suffix keyword arguments.')) save_kw['save'] = True save = True else: save = False #check inputs if(len(paths) > 26): raise(subcalc_class.EMFError('There cannot be more than 26 cross sections on a single figure. Make sure that your input for the "points" argument has the correct number of levels (sublists).')) #list of return arguments R = [] #plot the map style figure if(map_style == 'contour'): r = plot_contour(res, scale, show_max, fp_max, fp_text, cmap, max_fig_width, max_fig_height, legend_padding, **kw) R.append(r) fig, ax = r[0], r[1] fn = fn_prefix + 'contour-with-cross-sections' + fn_suffix else: r = plot_pcolormesh(res, show_max, fp_max, fp_text, cmap, max_fig_width, max_fig_height, legend_padding, **kw) R.append(r) fig, ax = r[0], r[1] fn = fn_prefix + 'pcolormesh-with-cross-sections' + fn_suffix #draw cross section traces on the figure alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for i, path in enumerate(paths): #get x,y x, y = zip(*path) xb, xe, yb, ye = x[0], x[-1], y[0], y[-1] #plot the trace ax.plot(x, y, color=xs_color) #label the trace hab, vab = _get_text_alignment(path[1], path[0]) hae, vae = _get_text_alignment(path[-2], path[-1]) ax.text(xb, yb, alphabet[i], ha=hab, va=vab, color=xs_color, fontsize=xs_label_size) ax.text(xe, ye, alphabet[i] + "'", ha=hae, va=vae, color=xs_color, fontsize=xs_label_size) #save or don't if(save): _save_fig(fn, fig, **save_kw) #plot the cross sections for i, path in enumerate(paths): r = plot_path(obj, path, n, x_labeling, scale, cmap, **kw) R.append(r) fig, ax = r c = alphabet[i] ax.set_title("Cross Section %s-%s'" % (c, c)) if(save): fn = '%scross-section%s' % (fn_prefix, c + fn_suffix) _save_fig(fn, fig, **save_kw) return(tuple(R))
5,336,611
def mask_valid_boxes(boxes, return_mask=False): """ :param boxes: (cx, cy, w, h,*_) :return: mask """ w = boxes[:,2] h = boxes[:,3] ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16)) mask = (w > 2) & (h > 2) & (ar < 30) if return_mask: return mask else: return boxes[mask]
5,336,612
def import_buffer_to_hst(buf): """Import content from buf and return an Hy AST.""" return tokenize(buf + "\n")
5,336,613
def main(): """Start web application.""" host = os.environ.get("HOST") if not host: host = "0.0.0.0" if os.getenv("DYNO") else "127.0.0.1" # noqa: S104 port = os.getenv("PORT", "") port = int(port) if port.isdigit() else 5000 uvicorn.run("syndio_backend_test.api:API", host=host, port=port, log_level="info")
5,336,614
def parse_args(): """ Parse command line arguments. """ parser = argparse.ArgumentParser(description="Deep SORT") parser.add_argument( "--sequence_dir", help="Path to MOTChallenge sequence directory", default=None, required=False) parser.add_argument( "--detection_file", help="Path to custom detections.", default=None, required=False) parser.add_argument( "--output_file", help="Path to the tracking output file. This file will" " contain the tracking results on completion.", default="/tmp/hypotheses.txt") parser.add_argument( "--min_confidence", help="Detection confidence threshold. Disregard " "all detections that have a confidence lower than this value.", default=0.8, type=float) parser.add_argument( "--min_detection_height", help="Threshold on the detection bounding " "box height. Detections with height smaller than this value are " "disregarded", default=0, type=int) parser.add_argument( "--nms_max_overlap", help="Non-maxima suppression threshold: Maximum " "detection overlap.", default=1.0, type=float) parser.add_argument( "--max_cosine_distance", help="Gating threshold for cosine distance " "metric (object appearance).", type=float, default=0.2) parser.add_argument( "--max_frame_idx", help="Maximum size of the frame ids.", type=int, default=None) parser.add_argument( "--display", help="Show intermediate tracking results", default=True, type=bool_string) parser.add_argument('--min-box-area', type=float, default=50, help='filter out tiny boxes') parser.add_argument('--cfg_file', default='aic_mcmt.yml', help='Config file for mcmt') parser.add_argument('--seq_name', default='c041', help='Seq name') return parser.parse_args()
5,336,615
def load_lane_segments_from_xml(map_fpath: _PathLike) -> Mapping[int, LaneSegment]: """ Load lane segment object from xml file Args: map_fpath: path to xml file Returns: lane_objs: List of LaneSegment objects """ tree = ET.parse(os.fspath(map_fpath)) root = tree.getroot() logger.info(f"Loaded root: {root.tag}") all_graph_nodes = {} lane_objs = {} # all children are either Nodes or Ways for child in root: if child.tag == "node": node_obj = extract_node_from_ET_element(child) all_graph_nodes[node_obj.id] = node_obj elif child.tag == "way": lane_obj, lane_id = extract_lane_segment_from_ET_element(child, all_graph_nodes) lane_objs[lane_id] = lane_obj else: logger.error("Unknown XML item encountered.") raise ValueError("Unknown XML item encountered.") return lane_objs
5,336,616
def preprocess_input(x, **kwargs): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)
5,336,617
def build_gauss_kernel(sigma_x, sigma_y, angle): """ Build the rotated anisotropic gaussian filter kernel Parameters ---------- sigma_x : numpy.float64 sigma in x-direction sigma_y: numpy.float64 sigma in y-direction angle: int angle in degrees of the needle holder measuered with respect to 'vertical' transducer axis Returns ------- kernel: numpy.ndarray roteted filter kernel """ angle = np.pi/2-np.deg2rad(angle) # Calculate gaussian kernel kernel = ascon.Gaussian2DKernel(sigma_x, sigma_y, 0) # Extract size and kernel values x_size = kernel.shape[0]; y_size = kernel.shape[1] kernel = kernel.array # Rotate kernel = ndimage.rotate(kernel,np.rad2deg(-angle), reshape=False) # Parameters for cropping max_in_kernel = np.amax(abs(kernel)) threshold = 0.05*max_in_kernel # Crop the kernel to reduce its size x_start = 0; for i in range(0, x_size, 1): if abs(max(kernel[i,:])) > threshold: x_start = i break x_end = (x_size-1)-x_start y_start = 0; for i in range(0, y_size, 1): if abs(max(kernel[:,i])) > threshold: y_start = i break y_end = (y_size-1)-y_start kernel = kernel[x_start:x_end, y_start:y_end] return kernel
5,336,618
def parse_tle(fileobj): """Parse a file of TLE satellite element sets. Builds an Earth satellite from each pair of adjacent lines in the file that start with "1 " and "2 " and have 69 or more characters each. If the preceding line is exactly 24 characters long, then it is parsed as the satellite's name. For each satellite found, yields a tuple `(names, sat)` giving the name(s) on the preceding line (or `None` if no name was found) and the satellite object itself. An exception is raised if the attempt to parse a pair of candidate lines as TLE elements fails. """ b0 = b1 = b'' for b2 in fileobj: if (b1.startswith(b'1 ') and len(b1) >= 69 and b2.startswith(b'2 ') and len(b2) >= 69): b0 = b0.rstrip(b'\n\r') if len(b0) == 24: # Celestrak name = b0.decode('ascii').rstrip() names = [name] elif b0.startswith(b'0 '): # Spacetrack 3-line format name = b0[2:].decode('ascii').rstrip() names = [name] else: name = None names = () line1 = b1.decode('ascii') line2 = b2.decode('ascii') sat = EarthSatellite(line1, line2, name) if name and ' (' in name: # Given a name like `ISS (ZARYA)` or `HTV-6 (KOUNOTORI # 6)`, also support lookup by the name inside or outside # the parentheses. short_name, secondary_name = name.split(' (') secondary_name = secondary_name.rstrip(')') names.append(short_name) names.append(secondary_name) yield names, sat b0 = b1 b1 = b2
5,336,619
def kwargs_to_flags(**kwargs): """Convert `kwargs` to flags to pass on to CLI.""" flag_strings = [] for (key, val) in kwargs.items(): if isinstance(val, bool): if val: flag_strings.append(f"--{key}") else: flag_strings.append(f"--{key}={val}") return " ".join(flag_strings)
5,336,620
def extractBananas(item): """ Parser for 'Bananas' """ badwords = [ 'iya na kao manga chapters', ] if any([bad in item['tags'] for bad in badwords]): return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or 'preview' in item['title'].lower(): return None tagmap = [ ('isekai joushu chapters', 'Struggling Hard As The Lord Of A Castle In A Different World', 'translated'), ('dungeon harem wn chapters', 'The Dungeon Harem I Built With My Elf Sex Slave', 'translated'), ('erufu seidorei wn', 'The Dungeon Harem I Built With My Elf Sex Slave', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) chp_prefixes = [ ('AARASL', 'An A-ranked Adventurer’s “Slow-living”', 'translated'), ('Isekai Taneuma', 'Isekai Taneuma', 'translated'), ('Gang of Yuusha', 'Gang of Yusha', 'translated'), ('Gang of Yusha', 'Gang of Yusha', 'translated'), ('The Revenge of the Soul Eater', 'Soul Eater of the Rebellion', 'translated'), ('Soul Eater of the Rebellion', 'Soul Eater of the Rebellion', 'translated'), ('Sparta Teikoku ', 'Sparta Teikoku Kenkoku Senki ', 'translated'), ] for prefix, series, tl_type in chp_prefixes: if item['title'].lower().startswith(prefix.lower()): return buildReleaseMessageWithType(item, series, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
5,336,621
def main(): """Make a jazz noise here""" args = get_args() text = args.text for line in args.text.splitlines(): print(' '.join(map(calc, line.split())))
5,336,622
def BuildSymbolToFileAddressMapping(): """ Constructs a map of symbol-string -> [ (file_id, address), ... ] so that each symbol is associated with all the files and addresses where it occurs. """ result = defaultdict(list) # Iterate over all the extracted_symbols_*.txt files. for filename in os.listdir(FLAGS.work_directory): if fnmatch.fnmatch(filename, "extracted_symbols_*.txt"): contents = open( FLAGS.work_directory + "/" + filename, "rt" ).readlines() for line in contents: file_id, filename, address, symbol, vuln = line.split() result[symbol].append((file_id, address)) return result
5,336,623
def get_template_parameters_s3(template_key, s3_resource): """ Checks for existance of parameters object in S3 against supported suffixes and returns parameters file key if found Args: template_key: S3 key for template file. omit bucket. s3_resource: a boto3 s3 resource Returns: filename of parameters file if it exists """ for suffix in EFConfig.PARAMETER_FILE_SUFFIXES: parameters_key = template_key.replace("/templates", "/parameters") + suffix try: obj = s3_resource.Object(EFConfig.S3_CONFIG_BUCKET, parameters_key) obj.get() return parameters_key except ClientError: continue return None
5,336,624
def cell_from_system(sdict): """ Function to obtain cell from namelist SYSTEM read from PW input. Args: sdict (dict): Dictinary generated from namelist SYSTEM of PW input. Returns: ndarray with shape (3,3): Cell is 3x3 matrix with entries:: [[a_x b_x c_x] [a_y b_y c_y] [a_z b_z c_z]], where a, b, c are crystallographic vectors, and x, y, z are their coordinates in the cartesian reference frame. """ ibrav = sdict.get('ibrav', None) if ibrav == 0: return None params = ['a', 'b', 'c', 'cosab', 'cosac', 'cosbc'] celldm = [sdict.get(f'celldm({i + 1})', 0) for i in range(6)] if not any(celldm): abc = [sdict.get(a, 0) for a in params] celldm = celldms_from_abc(ibrav, abc) if not any(celldm): return None if ibrav == 1: cell = np.eye(3) * celldm[0] return cell elif ibrav == 2: v1 = celldm[0] / 2 * np.array([-1, 0, 1]) v2 = celldm[0] / 2 * np.array([0, 1, 1]) v3 = celldm[0] / 2 * np.array([-1, 1, 0]) elif ibrav == 3: v1 = celldm[0] / 2 * np.array([1, 1, 1]) v2 = celldm[0] / 2 * np.array([-1, 1, 1]) v3 = celldm[0] / 2 * np.array([-1, -1, 1]) elif ibrav == -3: v1 = celldm[0] / 2 * np.array([-1, 1, 1]) v2 = celldm[0] / 2 * np.array([1, -1, 1]) v3 = celldm[0] / 2 * np.array([1, 1, -1]) elif ibrav == 4: v1 = celldm[0] * np.array([1, 0, 0]) v2 = celldm[0] * np.array([-1 / 2, np.sqrt(3) / 2, 0]) v3 = celldm[0] * np.array([0, 0, celldm[2]]) elif ibrav == 5: term_1 = np.sqrt(1 + 2 * celldm[3]) term_2 = np.sqrt(1 - celldm[3]) v1 = celldm[0] * np.array([term_2 / np.sqrt(2), -term_2 / np.sqrt(6), term_1 / np.sqrt(3)]) v2 = celldm[0] * np.array([0, term_2 * np.sqrt(2 / 3), term_1 / np.sqrt(3)]) v3 = celldm[0] * np.array([-term_2 / np.sqrt(2), -term_2 / np.sqrt(6), term_1 / np.sqrt(3)]) elif ibrav == -5: term_1 = np.sqrt(1 + 2 * celldm[3]) term_2 = np.sqrt(1 - celldm[3]) v1 = celldm[0] * np.array([(term_1 - 2 * term_2) / 3, (term_1 + term_2) / 3, (term_1 + term_2) / 3]) v2 = celldm[0] * np.array([(term_1 + term_2) / 3, (term_1 - 2 * term_2) / 3, (term_1 + term_2) / 3]) v3 = celldm[0] * np.array([(term_1 + term_2) / 3, (term_1 + term_2) / 3, (term_1 - 2 * term_2) / 3]) elif ibrav == 6: v1 = celldm[0] * np.array([1, 0, 0]) v2 = celldm[0] * np.array([0, 1, 0]) v3 = celldm[0] * np.array([0, 0, celldm[2]]) elif ibrav == 7: v1 = celldm[0] / 2 * np.array([1, -1, celldm[2]]) v2 = celldm[0] / 2 * np.array([1, 1, celldm[2]]) v3 = celldm[0] / 2 * np.array([-1, -1, celldm[2]]) elif ibrav == 8: v1 = celldm[0] * np.array([1, 0, 0]) v2 = celldm[0] * np.array([0, celldm[1], 0]) v3 = celldm[0] * np.array([0, 0, celldm[2]]) elif ibrav == 9: v1 = celldm[0] / 2 * np.array([1, celldm[1], 0]) v2 = celldm[0] / 2 * np.array([-1, celldm[1], 0]) v3 = celldm[0] * np.array([0, 0, celldm[2]]) elif ibrav == -9: v1 = celldm[0] / 2 * np.array([1, -celldm[1], 0]) v2 = celldm[0] / 2 * np.array([+1, celldm[1], 0]) v3 = celldm[0] * np.array([0, 0, celldm[2]]) elif ibrav == 91: v1 = celldm[0] * np.array([1, 0, 0]) v2 = celldm[0] / 2 * np.array([0, celldm[1], -celldm[2]]) v3 = celldm[0] / 2 * np.array([0, celldm[1], celldm[2]]) elif ibrav == 10: v1 = celldm[0] / 2 * np.array([1, 0, celldm[2]]) v2 = celldm[0] / 2 * np.array([1, celldm[1], 0]) v3 = celldm[0] / 2 * np.array([0, celldm[1], celldm[2]]) elif ibrav == 11: v1 = celldm[0] / 2 * np.array([1, celldm[1], celldm[2]]) v2 = celldm[0] / 2 * np.array([-1, celldm[1], celldm[2]]) v3 = celldm[0] / 2 * np.array([-1, -celldm[1], celldm[2]]) elif ibrav == 12: sen = np.sqrt(1 - celldm[3] ** 2) v1 = celldm[0] * np.array([1, 0, 0]) v2 = celldm[0] * np.array([celldm[1] * celldm[3], celldm[1] * sen, 0]) v3 = celldm[0] * np.array([0, 0, celldm[2]]) elif ibrav == -12: sen = np.sqrt(1 - celldm[4] ** 2) v1 = celldm[0] * np.array([1, 0, 0]) v2 = celldm[0] * np.array([0, celldm[1], 0]) v3 = celldm[0] * np.array([celldm[2] * celldm[4], 0, celldm[2] * sen]) elif ibrav == 13: sen = np.sqrt(1 - celldm[3] ** 2) v1 = celldm[0] / 2 * np.array([1, 0, -celldm[2]]) v2 = celldm[0] * np.array([celldm[1] * celldm[3], celldm[1] * sen, 0]) v3 = celldm[0] / 2 * np.array([1, 0, celldm[2]]) elif ibrav == -13: sen = np.sqrt(1 - celldm[4] ** 2) v1 = celldm[0] / 2 * np.array([1, celldm[1], 0]) v2 = celldm[0] / 2 * np.array([-1, celldm[1], 0]) v3 = celldm[0] * np.array([celldm[2] * celldm[4], 0, celldm[2] * sen]) elif ibrav == 14: singam = np.sqrt(1 - celldm[5] ** 2) term = (1 + 2 * celldm[3] * celldm[4] * celldm[5] - celldm[3] ** 2 - celldm[4] ** 2 - celldm[5] ** 2) term = np.sqrt(term / (1 - celldm[5] ** 2)) v1 = celldm[0] * np.array([1, 0, 0]) v2 = celldm[0] * np.array([celldm[1] * celldm[5], celldm[1] * singam, 0]) v3 = celldm[0] * np.array([celldm[2] * celldm[4], celldm[2] * (celldm[3] - celldm[4] * celldm[5]) / singam, celldm[2] * term]) else: raise ValueError('Unsupported ibrav') cell = np.stack([v1, v2, v3], axis=1) return cell
5,336,625
def _exit(msg): """ Exits with red output """ exit(CFAIL + msg + CEND)
5,336,626
def main(): """Execute a rbpkg command. The registered console script will call this when executing :command:`rbpkg`. This will locate the appropriate command and execute it. """ parser = argparse.ArgumentParser( prog='rbpkg', usage='%(prog)s [--version] <command> [options] [<args>]', add_help=False) parser.add_argument('-v', '--version', action='version', version='rbpkg %s' % get_version_string()) parser.add_argument('-h', '--help', action='store_true', dest='help', default=False) parser.add_argument('command', nargs=argparse.REMAINDER, help='The command to execute, and any arguments. ' '(See below.)') opt = parser.parse_args() if not opt.command: _show_help([], parser) command_name = opt.command[0] args = opt.command[1:] if command_name == 'help': _show_help(args, parser) elif opt.help or '--help' in args or '-h' in args: _show_help(opt.command, parser) # Attempt to retrieve the command class from the entry points. command = _get_command(command_name) if command: command.run_from_argv(args) else: parser.error('"%s" is not a valid command.' % command_name)
5,336,627
def A12_6_3_2(FAxial, eta, Pp, Pu, Muey , Muez, Muay, Muaz, Ppls, Mby, Mbz, GammaRPa, GammaRPb): """ A.12.6.3.2 Interaction equation approach where : Pu is the applied axial force in a member due to factored actions, determined in an analysis that includes Pu effects (see A.12.4); Ppls is the representative local axial strength of a non-circular prismatic member, Pp is the representative axial strength of a non-circular prismatic member, Muey is the corrected bending moment due to factored actions about the member y-axis from A.12.4; Muez is the corrected bending moment due to factored actions about the member z-axis from A.12.4; Muay is the amplified bending moment due to factored actions about the member y-axis from A.12.4; Muaz is the amplified bending moment due to factored actions about the member z-axis from A.12.4; Mby is the representative bending moment strength about the member y-axis, as defined in A.12.6.2.5 or A.12.6.2.6. """ # Each non-circular prismatic structural member should satisfy # the following conditions in Equations (A.12.6-38] to [A.12.6-40] # at all cross-sections along its length. When the shear due to # factored actions is greater than 60 percent of the shear strength, # the bending moment strength should be reduced parabolically to zero # when the shear equals the shear strength (Pv in A.12.6.3.4). # # Local strength check (for all members): # (A.12.6-38) _UR1 = ((GammaRPa * Pu / Ppls) + pow((pow((GammaRPb * Muey / Mby),eta) + pow((GammaRPb * Muez / Mbz),eta)), 1.0 / eta)) print("") print("A.12.6.3.2 Interaction equation approach") print("Uint [Local strength check ] = {: 1.4f}".format(_UR1)) _UR2 = 0 if FAxial == 'compression': # and beam-column check (for members subject to axial compression): if GammaRPa * Pu / Pp > 0.20: # after AISC[A.12.5-1], Equation H1-1a (A.12.6-39) _UR2 = ((GammaRPa * Pu / Pp) + (8.0 / 9.0) * pow((pow((GammaRPb * Muay / Mby),eta) + pow((GammaRPb * Muaz / Mbz),eta)), 1.0 / eta)) # else: # after AISC[A.12.5-1], Equation H1-1b (A.12.6-40) _UR2 = ((GammaRPa * Pu / (2.0 * Pp)) + pow((pow((GammaRPb * Muay / Mby),eta) + pow((GammaRPb * Muaz / Mbz),eta)), 1.0/eta)) print("Uint [beam-column check ] = {: 1.4f}".format(_UR2)) print("-----------------") # # # return _UR1, _UR2 #
5,336,628
def gain_deploy_data(): """ @api {get} /v1/deploy/new_data 获取当前deploy_id 的信息 @apiName deployNew_data @apiGroup Deploy @apiDescription 获取当前deploy_id 的信息 @apiParam {int} project_id 项目id @apiParam {int} flow_id 流程id @apiParam {int} deploy_id 部署id @apiParamExample {json} Request-Example: { "project_id": 45, "flow_id": 1, "deploy_id": 1 } @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "code": 0, "data": [ { "branch": "develop", "deploy_id": 160, "flow_id": 232, "id": 179, "node_id": 31, "node_name": "yn-244", "project_id": 4, "result": 1, "server_id": 45, "server_name": "submarine-test", "status": 0, "version": "1.1.75" } ], "message": "成功" } """ data = DeployRecordBusiness.query_deploy_id_json() combine_data = {'is_one_Key': 1, 'data': data} single_data = DeployRecordBusiness.is_one_key() if len(single_data) == 0: combine_data['is_one_Key'] = 0 return json_detail_render(0, combine_data)
5,336,629
def topk_mask(score, k): """Efficient implementation of topk_mask for TPUs. This is a more efficient implementation of the following snippet with support for higher rank tensors. It has the limitation that it only supports float32 as element type. The mask only contains k elements even if other elements have the same value as the kth largest. def topk_mask(score, k): _, indices = tf.nn.top_k(score, k=k) return tf.scatter_nd(tf.expand_dims(indices, -1), tf.ones(k), tf.squeeze(score).shape.as_list()) The implementation binary searches for the kth value along each row of the input and once the kth value is found it creates the mask via a single select instruction. This approach is more than 100x faster on TPUs for large inputs compared with the above snippet. Args: score: 1-D or higher Tensor with last dimension at least k. k: Number of top elements to look for along the last dimension (along each row for matrices). """ last_dim_size = score.get_shape().as_list()[-1] # Choose top k+epsilon where epsilon is the number of times the k'th largest i # element is present in the input. topk_mask_with_duplicate = topk_mask_internal(score, k) # Calculate the number of redudant duplicate values to discard. select_num = tf.cast( tf.reduce_sum(topk_mask_with_duplicate, axis=-1, keepdims=True), tf.int32) redudant_num = select_num - k # softmax cross entropy value range [0, 1]. # k's largest value is the smallest value being selected. k_th_value = tf.reduce_min( tf.where( tf.cast(topk_mask_with_duplicate, tf.bool), score, tf.ones_like(score) * 2.0), axis=-1, keepdims=True) # Mask to indicate if score equals k th largest value. equal_k_th_value = tf.equal(score, k_th_value) # Creates a tensor wherer the value is 1 if the value is equal to kth largest # value, otherwise, 0. k_th_value = tf.where(equal_k_th_value, tf.ones_like(score, dtype=tf.int32), tf.zeros_like(score, dtype=tf.int32)) index = tf.range(last_dim_size) k_th_value_index = tf.multiply(k_th_value, index) duplicate_mask = topk_mask_internal( tf.cast(k_th_value_index, tf.float32), redudant_num) return tf.where( tf.cast(duplicate_mask, tf.bool), tf.zeros_like(topk_mask_with_duplicate), topk_mask_with_duplicate)
5,336,630
def _generateGroundTruth(uids, COURSEDESCRIPTIONS): """Generate the ground truths from pre-stored bert model results given unique id lists :param uids: list of unique ids :type uids: list :param COURSEDESCRIPTIONS: dictionary of course Descriptions :type COURSEDESCRIPTIONS: dict :return: a dictionary with (uid, ground truth similarity) as key-val pair :rtype: dict """ gt = {} # _pseudoGroundTruth(COURSEDESCRIPTIONS) bertVecs = np.load("data/bert_vecs.npy") cidLists = list(COURSEDESCRIPTIONS.keys()) for uid in uids: twoids = uid.split("-") id1, id2 = twoids[0], twoids[1] vec1, vec2 = bertVecs[cidLists.index( id1)], bertVecs[cidLists.index(id2)] sim = np.dot(vec1, vec2)/np.linalg.norm(vec1)/np.linalg.norm(vec2) # augment to [0,1] gt[uid] = sim # to ensure the similarities are comparable, 0-center the similarity value # ? variance TODO ave = np.mean(list(gt.values())) for key in gt.keys(): gt[key] -= ave return gt
5,336,631
def test_common_Generator(): """Test Generator module class.""" scale = MajorScale('C') chord_generator = Generator( pitches = scale.getPitches('C','B') ) generated_chords = set() for chord in chord_generator.run(): generated_chords.add( chordSymbolFigure(chord, inversion=0) ) assert generated_chords <= reference_chords assert generated_chords >= reference_chords
5,336,632
def test_get_option_env_var(os_env): """ If an option is given as an environment variable, then it should be returned. """ os_env['DJANGO_ADMIN_USERNAME'] = 'foo' assert createadmin.Command.get_option('username') == 'foo'
5,336,633
def valueSearch(stat_type,op,value,**kwargs): """Quick function to designate a value, and the days or months where the attribute of interest exceeded, equalled, or was less than the passed value valueSearch("attribute","operator",value,**{sortmonth=False}) * "attribute" must be in ["prcp","snow","snwd","tavg","tmax","tmin"] (other values are accepted, but these are what are assessed * "operator" must be in ["<=","<","==","!=",">",">="] * value must be an integer or a float OPT **kwarg: sortmonth = True --> If set to true, it will do a value search based on monthly data instead of daily (no snwd data is available for months though) EXAMPLE: valueSearch("prcp",">=",5) --> returns a list of all days on record where 5+ inches of rain fell """ #operator=">", year=1984, month=12,season="winter" # v, args[rain,prcp,snow,temp,avgtemp,tmax,avgtmax,tmin,avgtmin], kwargs[condition,year,metyear,season,month] valid_yrs = sorted([x for x in clmt.keys() if type(x) == int]) valid_metyrs = sorted([x for x in metclmt.keys() if type(x) == int]) # ERROR HANDLING if stat_type.lower() not in ["rain","prcp","precip","snow","snwd","temp","temps","temperature","temperatures","avgtemp","tavg","tempavglist","tmax","hi","high","tmin","lo","low"]: return print("OOPS! {} is not a supported stat category. Try again!".format(stat_type)) if op not in ["<","<=","==",">",">="]: return print("OOPS! '{}' is not a supported operator. Try again!".format(op)) if type(value) not in [int,float]: return print("OOPS! Only integers or floats are supported for value intake") # Format passed variables stat_type = stat_type.lower() # Convert to lower-case for homogeniety if stat_type in ["rain","prcp","precip"]: stat_type = "prcp" if stat_type in ["snow"]: stat_type = "snow" if stat_type in ["snwd"]: stat_type = "snwd" if stat_type in ["avgtemp","tavg","tempavglist","temp","temps","temperature","temperatures"]: stat_type = "tavg" if stat_type in ["tmax","hi","high"]: stat_type = "tmax" if stat_type in ["tmin","lo","low"]: stat_type = "tmin" if "sortmonth" in kwargs and kwargs["sortmonth"] == True: CLMTDICT = clmt_vars_months stype = "month" else: # Just sorting indv days CLMTDICT = clmt_vars_days stype = "day" results = [] for VAR in CLMTDICT[stat_type]: for DAY in CLMTDICT[stat_type][VAR]: if op == "<": if stype == "month": if VAR < value and clmt[DAY.year][DAY.month]["recordqty"] > excludemonth: results.append(DAY) else: if VAR < value: results.append(DAY) elif op == "<=": if stype == "month": if VAR <= value and clmt[DAY.year][DAY.month]["recordqty"] > excludemonth: results.append(DAY) else: if VAR <= value: results.append(DAY) elif op == "!=": if VAR != value: results.append(DAY) elif op == "==": if VAR == value: results.append(DAY) elif op == ">=": if VAR >= value: results.append(DAY) elif op == ">": if VAR > value: results.append(DAY) results.sort() if "sortmonth" in kwargs and kwargs["sortmonth"] == True: if stat_type == "prcp": print("Total months where the Total Rainfall {} {}: {}".format(op,value,len(results))) elif stat_type == "snow": print("Total months where the Total Snowfall {} {}: {}".format(op,value,len(results))) elif stat_type in ["tmax","tmin"]: print("Total months where the Average {} {} {}: {}".format(stat_type.upper(),op,value,len(results))) elif stat_type == "tavg": print("Total months where the Average Temperature {} {}: {}".format(op,value,len(results))) else: return print("*** valueSearch does not report on monthly variations of {} ***".format(stat_type)) if len(results) <= 50: stillprint = True else: stillpr = input("print results? ('y'/'n'): ") if stillpr == "y": stillprint = True else: stillprint = False if stillprint == True: if stat_type == "prcp": for x in results: print("{:6.2f}: {} {}".format(round(sum(clmt[x.year][x.month]["prcp"]),2),calendar.month_abbr[x.month],x.year)) if stat_type == "snow": for x in results: print("{:5.1f}: {} {}".format(round(sum(clmt[x.year][x.month]["snow"]),1),calendar.month_abbr[x.month],x.year)) #if stat_type == "snwd": #for x in results: print("{:5.1f}: {} {}".format(round(sum(clmt[x.year][x.month]["snwd"]),1),calendar.month_abbr[x.month],x.year)) if stat_type == "tavg": for x in results: print("{:5.1f}: {} {}".format(round(mean(clmt[x.year][x.month]["tempAVGlist"]),1),calendar.month_abbr[x.month],x.year)) if stat_type == "tmax": for x in results: print("{:5.1f}: {} {}".format(round(mean(clmt[x.year][x.month]["tmax"]),1),calendar.month_abbr[x.month],x.year)) if stat_type == "tmin": for x in results: print("{:5.1f}: {} {}".format(round(mean(clmt[x.year][x.month]["tmin"]),1),calendar.month_abbr[x.month],x.year)) else: # Just assessing individual days print("Total days where '{}' {} {}: {}".format(stat_type,op,value,len(results))) if len(results) <= 50: stillprint = True else: stillpr = input("print results? ('y'/'n'): ") if stillpr == "y": stillprint = True else: stillprint = False if stillprint == True: if stat_type == "prcp": for x in results: print("{:>5.2f}: {}".format(float(clmt[x.year][x.month][x.day].prcp),x)) if stat_type == "snow": for x in results: print("{:>5.1f}: {}".format(float(clmt[x.year][x.month][x.day].snow),x)) if stat_type == "snwd": for x in results: print("{:>5.1f}: {}".format(float(clmt[x.year][x.month][x.day].snwd),x)) if stat_type == "tmax": for x in results: print("{:>3}: {}".format(clmt[x.year][x.month][x.day].tmax,x)) if stat_type == "tmin": for x in results: print("{:>3}: {}".format(clmt[x.year][x.month][x.day].tmin,x)) print("")
5,336,634
def get_gnid(rec): """ Use geonames API (slow and quota limit for free accounts) """ if not any("http://www.geonames.org" in s for s in rec.get("sameAs")) and rec["geo"].get("latitude") and rec["geo"].get("longitude"): changed = False r = requests.get("http://api.geonames.org/findNearbyJSON?lat="+rec["geo"].get( "latitude")+"&lng="+rec["geo"].get("longitude")+"&username=slublod") if r.ok and isiter(r.json().get("geonames")): for geoNameRecord in r.json().get("geonames"): if rec.get("name") in geoNameRecord.get("name") or geoNameRecord.get("name") in rec.get("name"): # match! newSameAs = {'@id': "https://sws.geonames.org/"+str(geoNameRecord.get("geonameId"))+"/", 'publisher': {'abbr': "geonames", 'preferredName': "GeoNames", "isBasedOn": {"@type": "Dataset", "@id": "https://sws.geonames.org/"+str(record.get("id"))+"/" } } } rec["sameAs"] = litter(rec.get("sameAs"), newSameAs) changed = True else: if r.json().get("status").get("message").startswith("the hourly limit") or r.json().get("status").get("message").startswith("the daily limit"): eprint("Limit exceeded!\n") exit(0) if changed: return rec
5,336,635
def handle_message(message): """Handles every message and creates the reply""" if re_vpncheck_short.search(message.body) or re_vpncheck_long.search(message.body): """Checks for VPN Connectivity""" servername = None protocol = None if re_vpncheck_short.search(message.body): servername = (re_vpncheck_short.search(message.body).group(2) + "#" + re_vpncheck_short.search( message.body).group(4).lstrip("0")).upper() if re_vpncheck_short.search(message.body).group(5) != None: protocol = re_vpncheck_short.search(message.body).group(5).strip().lower() else: protocol = "udp" elif re_vpncheck_long.search(message.body): servername = (re_vpncheck_long.search(message.body).group(3) + "-" + re_vpncheck_long.search( message.body).group(5) + "#" + re_vpncheck_long.search(message.body).group(7).lstrip("0")).upper() if re_vpncheck_long.search(message.body).group(8) != None: protocol = re_vpncheck_long.search(message.body).group(8).strip().lower() else: protocol = "udp" ServerID = get_vpnserver_id(servername) if ServerID != None: res = test_vpn(servername, ServerID, protocol) return res else: if servername != None: logger.debug("Server {} not found".format(servername)) return "Server {} not found".format(servername) else: return if re_vpncheck_random.search(message.body): return test_vpn("FillerServername", "FillerServerID", rand=True) if re_mailcheck_login.search(message.body): return test_pm_login()
5,336,636
def test_list_g_month_enumeration_1_nistxml_sv_iv_list_g_month_enumeration_2_3(mode, save_output, output_format): """ Type list/gMonth is restricted by facet enumeration. """ assert_bindings( schema="nistData/list/gMonth/Schema+Instance/NISTSchema-SV-IV-list-gMonth-enumeration-2.xsd", instance="nistData/list/gMonth/Schema+Instance/NISTXML-SV-IV-list-gMonth-enumeration-2-3.xml", class_name="NistschemaSvIvListGMonthEnumeration2", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,336,637
def allowed_file(filename): """ Is file extension allowed for upload""" return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
5,336,638
def parse_tsv(filename, name_dict): """ """ output_matrix = [] with open(filename, 'rU') as handle: curr_protein = [] for line in handle: if line[0] == "#" or line[0] == "-" or len(line.strip('\n')) < 1: continue if re.match("Protein", line): continue arow = line.strip('\n').split() if arow[0] == "pos": continue arow[12] = float(arow[12]) if len(arow[10].split('-')) == 3: #arow = arow[:10] + arow[10].split('_') + arow[11:] arow = arow[:10] + name_dict[arow[10]].split('-') + arow[11:] #print arow output_matrix.append(arow) return output_matrix
5,336,639
def get_orlist(site=DEFAULT_SITE, namespace="0|6|10|14|100|828", redirects="nonredirects"): """Get list of oldreviewed pages.""" request = Request(site=site, action="query", list="oldreviewedpages", ornamespace=namespace, orfilterredir=redirects, orlimit="5000") result = [] while True: answer = request.submit() result += [page["title"] for page in answer["query"]["oldreviewedpages"]] if "query-continue" in answer: request["orstart"] = answer["query-continue"]["oldreviewedpages"]["orstart"] else: break return result
5,336,640
def meshVolume(verts, norm, tri): """Compute the Volume of a mesh specified by vertices, their normals, and indices of triangular faces """ # TEST zeronorms = [] for i, n in enumerate(norm): #if n == [0., 0., 0.] or n == (0., 0., 0.): if n[0] == 0 and n[1] == 0 and n[2] == 0: #print "normal %d is zero!" % i, n zeronorms.append(i) #print "in meshVolume, zeronorms length: ", len(zeronorms), "normals length:", len(norm) # Initialize volSum = 0.0 oneThird = 1./3. # Compute face normals trinorm = [] for t in tri: n1 = norm[t[0]] n2 = norm[t[1]] n3 = norm[t[2]] tn = [ (n1[0]+n2[0]+n3[0])*oneThird, (n1[1]+n2[1]+n3[1])*oneThird, (n1[2]+n2[2]+n3[2])*oneThird ] trinorm.append(tn) # print trinorm # TEST # Compute volume for t,tn in zip(tri, trinorm): s1 = verts[t[0]] s2 = verts[t[1]] s3 = verts[t[2]] area = triangleArea(s1,s2,s3) g = [ (s1[0]+s2[0]+s3[0])*oneThird, (s1[1]+s2[1]+s3[1])*oneThird, (s1[2]+s2[2]+s3[2])*oneThird ] volSum += (g[0]*tn[0] + g[1]*tn[1] + g[2]*tn[2])*area return volSum*oneThird
5,336,641
def _groupby_clause(uuid=None, owner=None, human_name=None, processing_name=None): """ Build the groupby clause. Simply detect which fields are set, and group by those. Args: uuid: owner: human_name: processing_name: Returns: (str): "field, ..., field" """ gbc = '' clauses = [] if uuid is not None: clauses.append('uuid') if owner is not None: clauses.append('owner') if human_name is not None: clauses.append('human_name') if processing_name is not None: clauses.append('processing_name') if len(clauses) > 0: gbc = ','.join(clauses) return gbc
5,336,642
async def test_response_body_can_be_missing(mock_app): """ The TestClient should allow for a response with no headers in the message https://asgi.readthedocs.io/en/latest/specs/www.html#response-body-send-event """ async def custom_http_request(scope, receive, send, msg): await send({"type": "http.response.start", "headers": [], "status": 200}) # A http.response.body is NOT required to have a body key; if missing, defaults to b"". await send({"type": "http.response.body", "more_body": False}) mock_app.http_request = custom_http_request async with TestClient(mock_app) as client: resp = await client.get("/") assert resp.status_code == 200
5,336,643
def internalize_lexicon(mode, to_add): """Reads all entries from the lexicons specified in to_add and puts them in sql. They may then be edited. The ES index is not effected and this operation may hence be run at any time """ ok = 0 es = conf_mgr.elastic(mode) sql_bulk = None for lex in to_add: print("Internalize", lex) # Go through each lexicon separately query = {"query": {"term": {"lexiconName": lex}}} # scan and scroll ans = es_helpers.scan( es, query=query, scroll="3m", raise_on_error=True, preserve_order=False, index=mode, request_timeout=30, ) sql_bulk = [] for hit in ans: # ans is an iterator of objects from in hits.hits _id = hit.get("_id") source = hit.get("_source") if not isinstance(source, dict): source = json.loads(source) sql_doc = document.doc_to_sql(source, lex, "bulk") sql_bulk.append( ( _id, json.dumps(sql_doc), "admin", "entry automatically added or reloaded", lex, "imported", ) ) db_loaded, db_error = db.update_bulk(lex, sql_bulk) if db_error: raise Exception(db_error) ok += db_loaded if sql_bulk: print("will load %s entries, starting with %s" % (len(sql_bulk), sql_bulk[0])) if not ok: _logger.warning("No data. 0 documents uploaded.") raise Exception("No data") print("Ok. %s documents loaded to sql\n" % ok)
5,336,644
def closeConn(client): """Remove client data and close connection with client""" logMsg('Closing client connection') # Clear client data logout(client, False) client.factory.clients.remove(client) # Disconnect client.abortConnection()
5,336,645
def _coeff_mod_wfe_drift(self, wfe_drift, key='wfe_drift'): """ Modify PSF polynomial coefficients as a function of WFE drift. """ # Modify PSF coefficients based on WFE drift if wfe_drift==0: cf_mod = 0 # Don't modify coefficients elif (self._psf_coeff_mod[key] is None): _log.warning("You must run `gen_wfedrift_coeff` first before setting the wfe_drift parameter.") _log.warning("Will continue assuming `wfe_drift=0`.") cf_mod = 0 else: _log.info("Generating WFE drift modifications...") psf_coeff = self.psf_coeff cf_fit = self._psf_coeff_mod[key] lxmap = self._psf_coeff_mod['wfe_drift_lxmap'] # Fit function cf_fit_shape = cf_fit.shape cf_fit = cf_fit.reshape([cf_fit.shape[0], -1]) cf_mod = jl_poly(np.array([wfe_drift]), cf_fit, use_legendre=True, lxmap=lxmap) cf_mod = cf_mod.reshape(cf_fit_shape[1:]) # Pad cf_mod array with 0s if undersized if not np.allclose(psf_coeff.shape, cf_mod.shape): new_shape = psf_coeff.shape[1:] cf_mod_resize = np.asarray([pad_or_cut_to_size(im, new_shape) for im in cf_mod]) cf_mod = cf_mod_resize return cf_mod
5,336,646
def get_transformed_webhook_payload(gh_payload, default_branch=None, lookup_user=None): """ Returns the GitHub webhook JSON payload transformed into our own payload format. If the gh_payload is not valid, returns None. """ try: validate(gh_payload, GITHUB_WEBHOOK_PAYLOAD_SCHEMA) except Exception as exc: raise InvalidPayloadException(exc.message) payload = JSONPathDict(gh_payload) if payload['head_commit'] is None: raise SkipRequestException config = SafeDictSetter() config['commit'] = payload['head_commit.id'] config['ref'] = payload['ref'] config['default_branch'] = payload['repository.default_branch'] or default_branch config['git_url'] = payload['repository.ssh_url'] config['commit_info.url'] = payload['head_commit.url'] config['commit_info.message'] = payload['head_commit.message'] config['commit_info.date'] = payload['head_commit.timestamp'] config['commit_info.author.username'] = payload['head_commit.author.username'] config['commit_info.author.url'] = payload.get('head_commit.author.html_url') config['commit_info.author.avatar_url'] = payload.get('head_commit.author.avatar_url') config['commit_info.committer.username'] = payload.get('head_commit.committer.username') config['commit_info.committer.url'] = payload.get('head_commit.committer.html_url') config['commit_info.committer.avatar_url'] = payload.get('head_commit.committer.avatar_url') # Note: GitHub doesn't always return the extra information for users, so we do the lookup # manually if possible. if (lookup_user and not payload.get('head_commit.author.html_url') and payload.get('head_commit.author.username')): author_info = lookup_user(payload['head_commit.author.username']) if author_info: config['commit_info.author.url'] = author_info['html_url'] config['commit_info.author.avatar_url'] = author_info['avatar_url'] if (lookup_user and payload.get('head_commit.committer.username') and not payload.get('head_commit.committer.html_url')): committer_info = lookup_user(payload['head_commit.committer.username']) if committer_info: config['commit_info.committer.url'] = committer_info['html_url'] config['commit_info.committer.avatar_url'] = committer_info['avatar_url'] return config.dict_value()
5,336,647
def get_retweeted_tweet(tweet): """ Get the retweeted Tweet and return it as a dictionary If the Tweet is not a Retweet, return None Args: tweet (Tweet or dict): A Tweet object or a dictionary Returns: dict: A dictionary representing the retweeted status or None if there is no quoted status. \n - For original format, this is the value of "retweeted_status" \n - For activity streams, If the Tweet is a Retweet this is the value of the key "object" """ if get_tweet_type(tweet) == "retweet": if is_original_format(tweet): return tweet["retweeted_status"] else: return tweet["object"] else: return None
5,336,648
def listminus(c1, c2): """Return a list of all elements of C1 that are not in C2.""" s2 = {} for delta in c2: s2[delta] = 1 c = [] for delta in c1: if not s2.has_key(delta): c.append(delta) return c
5,336,649
def distribute_quantity_skew(batch_size, grouped_data, distributed_dataset, groupings, p=0.5, scalar=1.5): """ Adds quantity skew to the data distribution. If p=0. or scalar=1., no skew is applied and the data are divided evenly among the workers in each label group. :param batch_size: the batch size for training :param grouped_data: a dictionary containing the data for each label skew group, key is the label integer and value is the data :param distributed_dataset: an initialized empty dictionary that will be filled with data for each worker :param groupings: a dictionary of the groupings for each worker id, key is the label integer and value is a list of worker ids :param p: the portion of workers within each group that will receive higher data quantities, p=0 indicates no skew :param scalar: the factor used to multiply the size of datasets for high quantity workers, e.g. if scalar=1.5 then each worker with high quantity skew has 1.5x as many data points as the low quantity workers in their group :return: the distributed dataset """ for n, group in groupings.items(): high_quantity = random.sample(group, k=int(p*len(group))) low_quantity = [i for i in group if i not in high_quantity] base_k = int(len(grouped_data[n])/len(group)) print(f"Base K: {base_k}") print(f"Length of grouped data: {len(grouped_data[n])}") if p > 0.: low_k = int(len(grouped_data[n]) / (len(low_quantity) + len(high_quantity) * scalar)) high_k = int(low_k * scalar) print(f"High Quantity Skew: {high_quantity}") print(f"High Quantity K: {high_k}") print(f"Low Quantity Skew: {low_quantity}") print(f"Low Quantity K: {low_k}") else: low_k = base_k assert len(high_quantity) == 0, "Quantity skew with probability 0 should have no high quantity clients" print(f"High Quantity Skew: {high_quantity}") print(f"Low Quantity Skew: {low_quantity}") print(f"Base K: {base_k}") for worker in high_quantity: selected = random.sample(list(range(len(grouped_data[n]))), k=high_k) temp = [grouped_data[n][i] for i in selected] # This would need to be changed if the number of samples is not divisible by batch size worker_vals = [] for i in range(len(temp) // batch_size): ix = i * batch_size vals = temp[ix:ix + batch_size] targets = [] inputs = [] for j in vals: targets.append(int(j[1].numpy())) inputs.append(j[0].numpy()) worker_vals.append((torch.Tensor(inputs), torch.Tensor(targets))) distributed_dataset[worker].extend(worker_vals) grouped_data[n] = [grouped_data[n][i] for i in range(len(grouped_data[n])) if i not in selected] for nx, worker in enumerate(low_quantity): if nx+1 == len(low_quantity): print(f"Length of remaining data = {len(grouped_data[n])}\nLow_k = {low_k}") temp = grouped_data[n] else: selected = random.sample(list(range(len(grouped_data[n]))), k=low_k) temp = [grouped_data[n][i] for i in selected] # This would need to be changed if the number of samples is not divisible by batch size worker_vals = [] for i in range(len(temp) // batch_size): ix = i * batch_size vals = temp[ix:ix + batch_size] targets = [] inputs = [] for j in vals: targets.append(int(j[1].numpy())) inputs.append(j[0].numpy()) worker_vals.append((torch.Tensor(inputs), torch.Tensor(targets))) distributed_dataset[worker].extend(worker_vals) if nx+1 != len(low_quantity): grouped_data[n] = [grouped_data[n][i] for i in range(len(grouped_data[n])) if i not in selected] return distributed_dataset
5,336,650
def xmkpy3_tpf_get_coordinates_v1(): """Unit test""" import numpy as np import lightkurve as lk print(lk.__version__, "=lk.__version__") def msg(ok, tag_): # helper function print("***" + tag_ + ": ", end="") if ok: print("PASS***") else: print("FAIL***") # fed tpf = lk.search_targetpixelfile( target="kepler-138b", mission="kepler", cadence="long", quarter=10 ).download(quality_bitmask=0) w = tpf.wcs # alias ll_x0 = 0 ll_y0 = 0 print(ll_x0, "=ll_x0") print(ll_y0, "=ll_y0") origin0 = 0 ra_ll_x0, dec_ll_y0 = w.wcs_pix2world(ll_x0, ll_y0, origin0) print(ra_ll_x0, dec_ll_y0, "=ra_ll_x0, dec_ll_y0") print() x0_ra_ll_x0, y0_dec_ll_y0 = w.wcs_world2pix(ra_ll_x0, dec_ll_y0, origin0) print( x0_ra_ll_x0, y0_dec_ll_y0, "=x0_ra_ll_x0, y0_dec_ll_y0 [should be about (0,0)]" ) ra_x0_ra_ll_x0, dec_y0_dec_ll_y0 = w.wcs_pix2world( x0_ra_ll_x0, y0_dec_ll_y0, origin0 ) print(ra_x0_ra_ll_x0, dec_y0_dec_ll_y0, "=ra_x0_ra_ll_x0, dec_y0_dec_ll_y0") print("\nra_x0_ra_ll_x0 is_close_to ra_ll_x0 ?") ok = np.abs(ra_x0_ra_ll_x0 - ra_ll_x0) < 0.000001 msg(ok, "TEST1") print("^--- THIS BETTER PASS!") print("\ndec_y0_dec_ll_y0 is_close_to dec_ll_y0 ?") ok = np.abs(dec_y0_dec_ll_y0 - dec_ll_y0) < 0.000001 msg(ok, "TEST2") print("^--- THIS BETTER PASS!") print() frame0 = 0 # Set one of the next 3 if statements to TRUE depending on the function to # be tested if False: print("---> check tpf.get_coordinates()") rax_ll_x0 = tpf.get_coordinates()[0][frame0][0][0] decx_ll_y0 = tpf.get_coordinates()[1][frame0][0][0] print( "NOTE: next two tests will PASS --- if the tpf.get_coordinates " "bug has been fixed" ) # fi if True: print("---> check mkpy3_tpf_get_coordinates_v1()") rax_ll_x0 = mkpy3_tpf_get_coordinates_v1(tpf=tpf)[0][frame0][0][0] decx_ll_y0 = mkpy3_tpf_get_coordinates_v1(tpf=tpf)[1][frame0][0][0] print("NOTE: next two tests should PASS") # fi if False: print("---> check mkpy3_tpf_get_coordinates_v1(...,recreate_bug=True)") rax_ll_x0 = mkpy3_tpf_get_coordinates_v1(tpf=tpf, recreate_bug=True)[0][frame0][ 0 ][0] decx_ll_y0 = mkpy3_tpf_get_coordinates_v1(tpf=tpf, recreate_bug=True)[1][ frame0 ][0][0] print("NOTE: next two tests should FAIL") # fi print(rax_ll_x0, decx_ll_y0, "=rax_ll_x0, decx_ll_y0") print() x0_rax_ll_x0, y0_decx_ll_y0 = w.wcs_world2pix(rax_ll_x0, decx_ll_y0, origin0) print(x0_rax_ll_x0, y0_decx_ll_y0, "=x0_rax_ll_x0, y_decx_ll_y0") tpf_pos_corr1_frame0 = tpf.pos_corr1[frame0] tpf_pos_corr2_frame0 = tpf.pos_corr2[frame0] print( tpf_pos_corr1_frame0, tpf_pos_corr2_frame0, "=tpf_pos_corr1_frame0, tpf_pos_corr2_frame0", ) xx0_rax_ll_x0 = x0_rax_ll_x0 - tpf_pos_corr1_frame0 yy0_decx_ll_y0 = y0_decx_ll_y0 - tpf_pos_corr2_frame0 print( xx0_rax_ll_x0, yy0_decx_ll_y0, "=xx0_rax_ll_x0, yy0_decx_ll_y0 [should be about (0,0)]", ) ra_xx0_rax_ll_x0, dec_yy0_decx_ll_y0 = w.wcs_pix2world( xx0_rax_ll_x0, yy0_decx_ll_y0, origin0 ) print(ra_xx0_rax_ll_x0, dec_yy0_decx_ll_y0, "=ra_xx0_rax_ll_x0, dec_yy0_decx_ll_y0") print("\nra_xx0_rax_ll_x0 is_close_to ra_ll_x0 ?") ok = np.abs(ra_xx0_rax_ll_x0 - ra_ll_x0) < 0.000001 msg(ok, "TEST3") print("\ndec_yy0_decx_ll_y0 is_close_to dec_ll_y0 ?") ok = np.abs(dec_yy0_decx_ll_y0 - dec_ll_y0) < 0.000001 msg(ok, "TEST4") return None # fed
5,336,651
def __loadModule(modulePath): # type: (str) -> module """ Load module Args: modulePath (str): Full path to the python module Return: mod (module object): command module None: if path doesn't exist """ # Create module names for import, for exapmle ... # # "rush/template" # "animation/animate" # "common/create" # "common/display" normPath = os.path.normpath(modulePath) if sys.platform == "win32": name = os.path.splitext(normPath)[0].split("\\") else: name = os.path.splitext(normPath)[0].split("/") name = "/".join(name[-2:]) # If arnold is not loaded or installed, ignore modules for arnold if name.startswith("Arnold"): hasArnold = cmds.pluginInfo("mtoa", q=True, loaded=True) if not hasArnold: return None try: mod = imp.load_source(name, modulePath) return mod except Exception: print("Failed to load module : %s" % modulePath) return None
5,336,652
def get_dtype(names, array_dtype=DEFAULT_FLOAT_DTYPE): """ Get a list of tuples containing the dtypes for the structured array Parameters ---------- names : list of str Names of parameters array_dtype : optional dtype to use Returns ------- list of tuple Dtypes as tuples with (field, dtype) """ return [(n, array_dtype) for n in names] \ + [('logP', array_dtype), ('logL', LOGL_DTYPE)]
5,336,653
def test_unhexlify(): """ Ensure that we can get the script back out using unhexlify and that the result is a properly decoded string. """ hexlified = uflash.hexlify(TEST_SCRIPT) unhexlified = uflash.unhexlify(hexlified) assert unhexlified == TEST_SCRIPT.decode('utf-8')
5,336,654
def print_progress_table(col_headers, col_widths = None, col_init_data = None, col_format_specs = None, skip_header=False): """ Live updates on progress with NUPACK and Multistrand computations. Note: This table has two rows. The Args: col_headers (list(str)): The header of the table. col_widths (list(int), optional): Spacing of the table columns. Strings are clipped to width-1. (?) col_intit_data (list(), optional): Prints initial data into the first row. col_format_specs (list(), optional): ? Returns: A progress update function which overwrites the data row (or the last line on screen). """ def update_progress(col_data, inline=True): """Print new data to your progress table.""" str_data = [('{:<'+str(w-1)+'}').format(f.format(d))[:w-1] for d,w,f in zip(col_data, col_widths, col_format_specs)] print("# {}{}".format(' '.join(str_data), "\r" if inline else "\n"), end='') sys.stdout.flush() if col_widths is None: col_widths = [max(len(h)+1, 8) for h in col_headers] else: assert len(col_widths) == len(col_headers) if col_format_specs is None: col_format_specs = ['{}'] * len(col_headers) else: assert len(col_format_specs) == len(col_headers) header = ' '.join([(h+' '*(w-1))[:w-1] for h,w in zip(col_headers, col_widths)]) if not skip_header: print("# {}".format(header)) if col_init_data is not None: update_progress(col_init_data) return update_progress
5,336,655
def main(): """ Centralized virtual environments. """
5,336,656
def remove_stroke(settings): """Removes the stroke (i.e. border in Faint) from the settings object, preserving fill. """ if settings.fillstyle == 'border': settings.fillstyle = 'none' elif settings.fillstyle == 'fill+border': settings.fg = settings.bg settings.fillstyle = 'fill'
5,336,657
def if_analyser(string): """调用python的eval函数计算True false""" trans = sign_transform(string.strip().lower()) # print('if_analyser>>', trans) boool = eval(trans) boool = 1 if boool else 0 return boool
5,336,658
def zzX_trunc(f, p): """Reduce Z[X] polynomial modulo polynomial p. """ return zzX_strip([ zzX_rem(g, p) for g in f ])
5,336,659
def update_points_constellation( points_in_range, new_constelation, point_to_constellation): """Update point_to_constellation mapping for points_in_range.""" for point_in_range in points_in_range: point_to_constellation[point_in_range] = new_constelation
5,336,660
def all_instances(clazz): """Return all subjects.""" logging.info( "Starting aggregation for all AnVIL workspaces, this will take several minutes.") print("Starting aggregation for all AnVIL workspaces, this will take several minutes.") consortiums = ( ('CMG', 'AnVIL_CMG_.*'), ('CCDG', 'AnVIL_CCDG_.*'), ('GTEx', '^AnVIL_GTEx_V8_hg38$'), ('ThousandGenomes', '^1000G-high-coverage-2019$') ) for item in reconcile_all(user_project=os.environ['GOOGLE_PROJECT'], consortiums=consortiums): if isinstance(item, Sample): append_drs(item) if clazz is None or isinstance(item, clazz): yield item
5,336,661
def _format_bin_intervals(bins_arr: np.ndarray) -> List[str]: """ Auxillary function to format bin intervals in a histogram Parameters ---------- bins_arr: np.ndarray Bin endpoints to format into intervals Returns ------- List of formatted bin intervals """ bins_arr = np.round(bins_arr, 3) intervals = [f"[{bins_arr[i]},{bins_arr[i+1]})" for i in range(len(bins_arr) - 2)] intervals.append(f"[{bins_arr[-2]},{bins_arr[-1]}]") return intervals
5,336,662
def log(message, prefix_newline=False): """Logging function, provides a hook to suppress or redirect log messages.""" print(('\n' if prefix_newline else '') + '{0:.2f}'.format(time.time()) + ': ' + str(message))
5,336,663
def createDataset(businessIDs, dataset): """Writes a new json file containing subset of given Yelp dataset given a dictionary of business IDs to specify which businesses""" writer = jsonlines.open(dataset + 'Dataset.json', mode='w') with open(dataset + '.json', 'r', encoding='utf8') as dataJson: for jsonObjects in dataJson: tempDict = json.loads(jsonObjects) if tempDict['business_id'] in businessIDs: writer.write(tempDict) writer.close()
5,336,664
def main(): """Zeigt den Link zum Repository in der Konsole an.""" print("Dieses Tool stellt übergreifende, grundlegende Funktionalitäten zur Verfügung.\n" "Für weitergehende Informationen: https://github.com/MZH-bust/general_helpers")
5,336,665
def get_embedder_functions(corpus: List[str]) -> Dict[str, Callable[[List[str]], List[float]]]: """ Returns a list of the available embedders. #! If updated, update next function too """ embedders = { # 'Bag of Words': bow_embedder(corpus), 'FastText (CBOW)': fasttext_embedder(corpus, model_type="cbow"), 'FastText (Skipgram)': fasttext_embedder(corpus, model_type="skipgram"), 'Doc2Vec': doc2vec_embedder(corpus), 'GPT2 Small Spanish': bert_embedder(model_name="datificate/gpt2-small-spanish"), 'BERT: TinyBERT-spanish-uncased-finetuned-ner': bert_embedder(model_name='mrm8488/TinyBERT-spanish-uncased-finetuned-ner'), 'BERT: paraphrase-xlm-r-multilingual-v1': bert_embedder(model_name='paraphrase-xlm-r-multilingual-v1'), 'BERT: distiluse-base-multilingual-cased-v2': bert_embedder(model_name='distiluse-base-multilingual-cased-v2'), } reduced_embedders = {} for name, embedder in embedders.items(): reduced_embedders[f"{name} (50-d)"] = reduce_dimensionality(embedder) return {**embedders, **reduced_embedders}
5,336,666
def test_stimeit(): """ Test the stimeit function """ dummy_function = lambda x: x + 2 @vtime.stimeit(logging.info) def stimeit_function(x): return dummy_function(x) assert dummy_function(42) == stimeit_function(42)
5,336,667
def tag_dataset(client, short_name, tag, description, force=False): """Creates a new tag for a dataset.""" dataset_ = client.load_dataset(short_name) if not dataset_: raise ParameterError('Dataset not found.') try: dataset = client.add_dataset_tag(dataset_, tag, description, force) except ValueError as e: raise ParameterError(e) dataset.to_yaml()
5,336,668
def main_aster(folder_name): """ @Input folder_name : name of the folder where training data are stored. @Output trained parameters are stored in 'params' folder """ # arguments are stored in pred_params.py from pred_params import Get_ocr_args args = Get_ocr_args() print('Evaluation : '+str(args.eval)) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) cudnn.benchmark = True torch.backends.cudnn.deterministic = True if args.cuda: print('using cuda.') torch.set_default_tensor_type('torch.cuda.FloatTensor') else: print('using cpu.') torch.set_default_tensor_type('torch.FloatTensor') # Create Character dict & max seq len args, char2id_dict , id2char_dict= Create_char_dict(args) print(id2char_dict) rec_num_classes = len(id2char_dict) # Get rec num classes / max len print('max len : '+str(args.max_len)) # Get file list for train set filenames = glob.glob('./data/' + folder_name + '/*/*.xml') filenames = [x[:-4] for x in filenames] print('file len : '+str(len(filenames))) # files are not splitted into train/valid set. train_list = Create_data_list_byfolder(args, char2id_dict, id2char_dict, filenames) encoder = ResNet_ASTER(with_lstm = True, n_group = args.n_group, use_cuda = args.cuda) encoder_out_planes = encoder.out_planes decoder = AttentionRecognitionHead(num_classes = rec_num_classes, in_planes = encoder_out_planes, sDim = args.decoder_sdim, attDim = args.attDim, max_len_labels = args.max_len, use_cuda = args.cuda) # Load pretrained weights if not args.eval: if args.use_pretrained: # use pretrained model pretrain_path = './data/demo.pth.tar' if args.cuda: pretrained_dict = torch.load(pretrain_path)['state_dict'] else: pretrained_dict = torch.load(pretrain_path, map_location='cpu')['state_dict'] encoder_dict = {} decoder_dict = {} for i, x in enumerate(pretrained_dict.keys()): if 'encoder' in x: encoder_dict['.'.join(x.split('.')[1:])] = pretrained_dict[x] elif 'decoder' in x: decoder_dict['.'.join(x.split('.')[1:])] = pretrained_dict[x] encoder.load_state_dict(encoder_dict) decoder.load_state_dict(decoder_dict) print('pretrained model loaded') else: # init model parameters def init_weights(m): if type(m) == nn.Linear: torch.nn.init.xavier_uniform(m.weight) #m.bias.data.fill_(0.01) encoder.apply(init_weights) decoder.apply(init_weights) print('Random weight initialized!') else: # loading parameters for inference if args.cuda: encoder.load_state_dict(torch.load('params/encoder_final')) decoder.load_state_dict(torch.load('params/decoder_final')) else: encoder.load_state_dict(torch.load('params/encoder_final', map_location=torch.device('cpu'))) decoder.load_state_dict(torch.load('params/decoder_final', map_location=torch.device('cpu'))) print('fine-tuned model loaded') # Training Phase rec_crit = SequenceCrossEntropyLoss() if (args.cuda == True) & torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') encoder.to(device) decoder.to(device) param_groups = encoder.parameters() param_groups = filter(lambda p: p.requires_grad, param_groups) optimizer = torch.optim.Adadelta(param_groups, lr = args.lr, weight_decay = args.weight_decay) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones = [4,5], gamma = 0.1) train_loader = DataLoader(train_list, batch_size = args.batch_size, shuffle = False, collate_fn = AlignCollate( imgH = args.height, imgW = args.width, keep_ratio = True) ) for epoch in range(args.n_epochs): for batch_idx, batch in enumerate(train_loader): x, rec_targets, rec_lengths = batch[0], batch[1], batch[2] x = x.to(device) encoder_feats = encoder(x) # bs x w x C rec_pred = decoder([encoder_feats, rec_targets, rec_lengths]) loss_rec = rec_crit(rec_pred, rec_targets, rec_lengths) if batch_idx == 0: print('train Loss : '+str(loss_rec)) rec_pred_idx = np.argmax(rec_pred.detach().cpu().numpy(), axis = -1) print(rec_pred[:3]) print(rec_pred_idx[:5]) optimizer.zero_grad() loss_rec.backward() optimizer.step() # Training phase ends # this is where trained model parameters are saved torch.save(encoder.state_dict(), 'params/encoder_final') torch.save(decoder.state_dict(), 'params/decoder_final')
5,336,669
def parse_thermal_properties(f): """thermal_properties.yaml parser.""" thermal_properties = { "temperatures": [], "free_energy": [], "entropy": [], "heat_capacity": [], } data = yaml.load(f, Loader=Loader) for tp in data["thermal_properties"]: thermal_properties["temperatures"].append(tp["temperature"]) thermal_properties["entropy"].append(tp["entropy"]) thermal_properties["free_energy"].append(tp["free_energy"]) thermal_properties["heat_capacity"].append(tp["heat_capacity"]) for key in thermal_properties: thermal_properties[key] = np.array(thermal_properties[key]) tprops = get_thermal_properties(thermal_properties) return tprops
5,336,670
async def test_add_invalid_repository_file(coresys, store_manager): """Test add custom repository.""" current = coresys.config.addons_repositories with patch("supervisor.store.repository.Repository.load", return_value=None), patch( "pathlib.Path.read_text", return_value=json.dumps({"name": "Awesome repository"}), ), patch("pathlib.Path.exists", return_value=False): await store_manager.update_repositories(current + ["http://example.com"]) assert not store_manager.get_from_url("http://example.com").validate() assert "http://example.com" in coresys.config.addons_repositories assert coresys.resolution.suggestions[-1].type == SuggestionType.EXECUTE_REMOVE
5,336,671
def convert(ts, new_freq, include_partial=True, **kwargs): """ This function converts a timeseries to another frequency. Conversion only works from a higher frequency to a lower frequency, for example daily to monthly. NOTE: add a gatekeeper for invalid kwargs. """ new_ts = ts.clone() series_dir = ts.series_direction() new_ts.sort_by_date(reverse=True) freq_idx = HIERARCHY.index(ts.frequency) new_idx = HIERARCHY.index(FREQ_Q) daily_idx = HIERARCHY.index(FREQ_D) if freq_idx > new_idx: raise ValueError( "Cannot convert from %s to %s." % (ts.frequency, new_freq) ) dates = new_ts.datetime_series() date_series_type = ts.get_date_series_type() if date_series_type == TS_ORDINAL: selected = _filter_dates(dates, new_freq, kwargs) elif date_series_type == TS_TIMESTAMP: selected = _filter_idates( dates, new_freq, end_of_period=ts.end_of_period ) else: raise ValueError("Invalid date series type: %s" % (date_series_type)) if selected.shape[0] > 0: if new_ts.end_of_period: selected += 1 # shift to start of next period if include_partial or freq_idx > daily_idx: if selected[0] != 0: # insert most recent date # selected = np.insert(selected, 0, 0) # np.insert(arr, obj, values, axis=None) selected = np.insert(selected, 0, 0) if freq_idx > daily_idx: # already processed (probably) if selected[-1] != len(dates) - 1: selected = np.append(selected, len(dates) - 1) new_ts.tseries = new_ts.tseries[selected.flatten()] new_ts.frequency = new_freq if new_freq == FREQ_D: # convert dates from timestamp to ordinal new_ts.dseries = np.fromiter( [date.toordinal() for date in np.array(dates)[selected]], dtype=np.int32, ) else: new_ts.dseries = new_ts.dseries[selected] new_ts.dseries = new_ts.dseries.flatten() if series_dir != new_ts.series_direction(): new_ts.reverse() return new_ts
5,336,672
def _get_image_info(name: str) -> versions.Image: """Retrieve an `Image` information by name from the versions listing.""" try: return versions.CONTAINER_IMAGES_MAP[name] except KeyError: raise ValueError( 'Missing version for container image "{}"'.format(name) )
5,336,673
def _mother_proc_cpp_stat( amplitude_distribution, t_stop, rate, t_start=0 * pq.ms): """ Generate the hidden ("mother") Poisson process for a Compound Poisson Process (CPP). Parameters ---------- amplitude_distribution : np.ndarray CPP's amplitude distribution :math:`A`. `A[j]` represents the probability of a synchronous event of size `j` among the generated spike trains. The sum over all entries of :math:`A` must be equal to one. t_stop : pq.Quantity The stopping time of the mother process rate : pq.Quantity Homogeneous rate of the n spike trains that will be generated by the CPP function t_start : pq.Quantity, optional The starting time of the mother process Default: 0 pq.ms Returns ------- Poisson spike train representing the mother process generating the CPP """ n_spiketrains = len(amplitude_distribution) - 1 # expected amplitude exp_amplitude = np.dot( amplitude_distribution, np.arange(n_spiketrains + 1)) # expected rate of the mother process exp_mother_rate = (n_spiketrains * rate) / exp_amplitude return StationaryPoissonProcess( rate=exp_mother_rate, t_stop=t_stop, t_start=t_start ).generate_spiketrain()
5,336,674
def main(): """ Main execution flow. """ try: args = process_arguments() config = utilities.read(args.config_file) manifest = utilities.read(args.manifest_file) # TODO: Refactor core.config = config utilities.TOKENIZER = core.Tokenizer() database = Database(config['options']['datasource']) globaloptions = { 'today': config['options']['today'], 'timeout': config['options']['timeout'] } attributes = Attributes( manifest['attributes'], database, args.cleanup, args.key_string, **globaloptions ) if not os.path.exists(args.repositories_root): os.makedirs(args.repositories_root, exist_ok=True) table = 'reaper_results' if args.goldenset: table = 'reaper_goldenset' _run = run.Run( args.repositories_root, attributes, database, config['options']['threshold'], args.num_processes ) _run.run([int(line) for line in args.repositories_sample], table) except Exception as e: extype, exvalue, extrace = sys.exc_info() traceback.print_exception(extype, exvalue, extrace)
5,336,675
def get_service(hass, config): """Get the Telegram notification service.""" import telegram if not validate_config({DOMAIN: config}, {DOMAIN: [CONF_API_KEY, 'chat_id']}, _LOGGER): return None try: bot = telegram.Bot(token=config[CONF_API_KEY]) username = bot.getMe()['username'] _LOGGER.info("Telegram bot is '%s'.", username) except urllib.error.HTTPError: _LOGGER.error("Please check your access token.") return None return TelegramNotificationService(config[CONF_API_KEY], config['chat_id'])
5,336,676
def has_numbers(input_str: str): """ Check if a string has a number character """ return any(char.isdigit() for char in input_str)
5,336,677
def test_pyfs_delete_fail(pyfs, pyfs_testpath): """Test init of files.""" pyfs.save(BytesIO(b'somedata')) os.rename(pyfs_testpath, join(dirname(pyfs_testpath), 'newname')) pytest.raises(DirectoryNotEmpty, pyfs.delete)
5,336,678
def _validate_LIMS_data(input, field_label, selectedTemplate, planObj): """ No validation but LIMS data with leading/trailing blanks in the input will be trimmed off """ errorMsg = None if input: data = input.strip() try: if planObj.get_planObj().metaData: logger.debug( "plan_csv_validator._validator_LIMS_data() B4 planObj.get_planObj().metaData=%s" % (planObj.get_planObj().metaData) ) else: planObj.get_planObj().metaData = {} if len(planObj.get_planObj().metaData.get("LIMS", [])) == 0: planObj.get_planObj().metaData["LIMS"] = [] planObj.get_planObj().metaData["LIMS"].append(data) logger.debug( "EXIT plan_csv_validator._validator_LIMS_data() AFTER planObj.get_planObj().metaData=%s" % (planObj.get_planObj().metaData) ) except Exception: logger.exception(format_exc()) errorMsg = "Internal error during LIMS data processing" # self.metaData["Status"] = status # self.metaData["Date"] = "%s" % timezone.now() # self.metaData["Info"] = info # self.metaData["Comment"] = comment # # Try to read the Log entry, if it does not exist, create it # if len(self.metaData.get("Log",[])) == 0: # self.metaData["Log"] = [] # self.metaData["Log"].append({"Status":self.metaData.get("Status"), "Date":self.metaData.get("Date"), "Info":self.metaData.get("Info"), "Comment":comment}) return errorMsg
5,336,679
def show(ctx, advisory, yaml, json): """ Show RPMDiff failures for an advisory. """ runtime = ctx.obj # type: Runtime if not advisory: runtime.initialize() advisory = runtime.group_config.advisories.get("rpm", 0) if not advisory: raise ElliottFatalError("No RPM advisory number configured in ocp-build-data.") else: runtime.initialize(no_group=True) logger = runtime.logger logger.info("Fetching RPMDiff runs from Errata Tool for advisory {}...".format(advisory)) rpmdiff_runs = list(errata.get_rpmdiff_runs(advisory)) logger.info("Found {} RPMDiff runs.".format(len(rpmdiff_runs))) # "good" means PASSED, INFO, or WAIVED good_runs = [] # "bad" means NEEDS_INSPECTION or FAILED bad_runs = [] incomplete_runs = [] for rpmdiff_run in rpmdiff_runs: attr = rpmdiff_run['attributes'] if attr["status"] in constants.ET_GOOD_EXTERNAL_TEST_STATUSES: good_runs.append(rpmdiff_run) elif attr["status"] in constants.ET_BAD_EXTERNAL_TEST_STATUSES: bad_runs.append(rpmdiff_run) else: incomplete_runs.append(rpmdiff_run) util.green_prefix("good: {}".format(len(good_runs))) click.echo(", ", nl=False) util.red_prefix("bad: {}".format(len(bad_runs))) click.echo(", ", nl=False) util.yellow_print("incomplete: {}".format(len(incomplete_runs))) if not bad_runs: return logger.info("Fetching detailed information from RPMDiff for bad RPMDiff runs...") rpmdiff_client = RPMDiffClient(constants.RPMDIFF_HUB_URL) rpmdiff_client.authenticate() if yaml or json: _structured_output(bad_runs, rpmdiff_client, yaml) else: _unstructured_output(bad_runs, rpmdiff_client)
5,336,680
def get_report_permission(report: Report, user: User) -> Permission: """Get permission of given user for the report. :param report: The report :type report: Report :param user: The user whose permissions are to be checked :type user: User :return: The user's permissions for the report :rtype: Permission """ if 'reports' in session and str(report.id) in session['reports']: return session['reports'][str(report.id)] rp = ReportPermission.query.filter_by(ReportId=report.id, UserId=user.id).first() if rp is None and user.Role == 's': return ADMIN_DEFAULT_PERMISSION if rp is None: return 'n' return rp.Type
5,336,681
def peak_time_from_sxs( sxs_format_waveform, metadata, extrapolation_order='Extrapolated_N2'): """Returns the time when the sum of the squared amplitudes of an SXS-format waveform is largest. Note: this is not necessarily the time of the peak of the l=m=2 mode.""" extrap = extrapolation_order + ".dir" # All modes have the same time, so just look at the l=m=2 mode to get the # times times = sxs_format_waveform[extrapolation_order + ".dir"]['Y_l2_m2.dat'][:, 0] start = first_index_before_reference_time(times, metadata) sum_amp_squared = waveform_norm_squared( sxs_format_waveform, extrapolation_order) index_peak = start + sum_amp_squared[start:].argmax() return sxs_format_waveform[extrap]['Y_l2_m2.dat'][index_peak][0]
5,336,682
def create_trackhub_resource(project_dir, api_client, create_user_resource, create_genome_assembly_dump_resource): """ This fixture is used to create a temporary trackhub using POST API The created trackhub will be used to test GET API """ _, token = create_user_resource api_client.credentials(HTTP_AUTHORIZATION='Token ' + str(token)) submitted_hub = { 'url': 'file:///' + str(project_dir) + '/' + 'samples/JASPAR_TFBS/hub.txt' } response = api_client.post('/api/trackhub/', submitted_hub, format='json') return response
5,336,683
def create_node(x, y): """Create a node along the network. Parameters ---------- x : {float, int} The x coordinate of a point. y : {float, int} The y coordinate of a point. Returns ------- _node : shapely.geoemtry.Point Instantiated node. """ _node = Point(list(zip(x, y))[0]) return _node
5,336,684
def get_matchroom_name(match: Match) -> str: """Get a new unique channel name corresponding to the match. Parameters ---------- match: Match The match whose info determines the name. Returns ------- str The name of the channel. """ name_prefix = match.matchroom_name cut_length = len(name_prefix) + 1 largest_postfix = 1 found = False for channel in server.server.channels: if channel.name.startswith(name_prefix): found = True try: val = int(channel.name[cut_length:]) largest_postfix = max(largest_postfix, val) except ValueError: pass return name_prefix if not found else '{0}-{1}'.format(name_prefix, largest_postfix + 1)
5,336,685
def unidecode_name(uname): """ unidecode() of cjk ideograms can produce strings which contain spaces. Strip leading and trailing spaces, and reduce double-spaces to single. For some other ranges, unidecode returns all-lowercase names; fix these up with capitalization. """ # Fix double spacing name = unidecode.unidecode(uname) if name == uname: return name name = re.sub(' +', ' ', name.strip().replace('@', '').replace('"', '')) name = re.sub(r'(\w)\.(\w)', r'\1\2', name) # Fix all-upper and all-lower names: # Check for name particles -- don't capitalize those m = name_particle_match(name) particle = m.group(1) if m else None # Get the name parts prefix, first, middle, last, suffix = name_parts(name) # Capitalize names first = first.title() middle = ' '.join([ capfirst(p) for p in middle.split() ]) last = ' '.join([ capfirst(p) for p in last.split() ]) if len(last) == 1: last = (last+last).capitalize() # Restore the particle, if any if particle and last.startswith(capfirst(particle)+' '): last = ' '.join([ particle, last[len(particle)+1:] ]) # Recombine the parts parts = prefix, first, middle, last, suffix name = ' '.join([ p for p in parts if p and p.strip() != '' ]) name = re.sub(' +', ' ', name) return name
5,336,686
def scnet50(**kwargs): """ SCNet-50 model from 'Improving Convolutional Networks with Self-Calibrated Convolutions,' http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_scnet(blocks=50, model_name="scnet50", **kwargs)
5,336,687
def xception_block(inputs, depth_list, prefix, skip_connect_type, stride, rate=1, depth_activation=False, return_skip=False): """用于构建xception,同样用到了残差结构,但是将卷积换成了 深度可分离卷积(depthwise + pointwise + conv 1x1)""" residual = inputs for i in range(3): # depthwise + pointwise + conv2d residual = sep_layer(residual, depth_list[i], prefix + '_separable_conv{}'.format(i + 1), stride=stride if stride == 2 else 1, rate=rate, depth_activation=depth_activation) if i == 1: skip = residual # 两次: depth_wise + conv2d if skip_connect_type == 'conv': # 采用跳跃连接: 输入经过侧边conv后与主路输出相加 shortcut = conv_same_layer(inputs, depth_list[-1], prefix + '_shortcut', k_size=1, stride=stride) shortcut = layers.BatchNormalization(name=prefix + '_shortcut_BN')(shortcut) output = layers.Add()([residual, shortcut]) elif skip_connect_type == 'sum': # 采用跳跃连接直接与输入相加 output = layers.Add()([residual, shortcut]) elif skip_connect_type == 'none': # 不采用跳跃连接 output = residual if return_skip: # output是整个block的输出,skip只是主路的经过两次sep_conv的输出 return output, skip else: return output
5,336,688
def auth_test(): """ Test's the endpoint authenticiation works. :return: """ return "hello"
5,336,689
def cnn_2x_lstm_siamese(voc_size, max_len, dropout=0.5): """Two siamese branches, each embedding a statement. Binary classifier on top. Args: voc_size: size of the vocabulary for the input statements. max_len: maximum length for the input statements. dropout: Fraction of units to drop. Returns: A Keras model instance. """ pivot_input = layers.Input(shape=(max_len,), dtype='int32') statement_input = layers.Input(shape=(max_len,), dtype='int32') x = layers.Embedding( output_dim=256, input_dim=voc_size, input_length=max_len)(pivot_input) x = layers.Convolution1D(256, 7, activation='relu')(x) x = layers.MaxPooling1D(3)(x) x = layers.Convolution1D(256, 7, activation='relu')(x) x = layers.MaxPooling1D(5)(x) embedded_pivot = layers.LSTM(256)(x) encoder_model = Model(pivot_input, embedded_pivot) embedded_statement = encoder_model(statement_input) concat = layers.merge([embedded_pivot, embedded_statement], mode='concat') x = layers.Dense(256, activation='relu')(concat) x = layers.Dropout(dropout)(x) prediction = layers.Dense(1, activation='sigmoid')(x) model = Model([pivot_input, statement_input], prediction) return model
5,336,690
def play_throne_room(game): """ You may play an Action card from your hand twice. """ ps = game.player_state if 'Action' not in set(c.Type for c in ps.hand): print('ThroneRoom: No actions cards in hand') return card_name = game._respond(game.player, 'ThroneRoom') card_class = get_card_class(card_name) if card_class.Type != 'Action': print(f'ThroneRoom: {card_class.Name()} is not an action card') return # Play the requested action action card for the first time ps.actions += 1 result = game.play_action_card(card_name) if result: # Return the action card from the play area to the hand and play it again card = ps.play_area.pop() ps.actions += 1 if card.Name() != card_name: raise RuntimeError('Something went wrong during throne room!') ps.hand.append(card) game.play_action_card(card_name)
5,336,691
def SerialWrite(serialPort, Message): """ Write message on serial port.""" serialPort.flushInput() serialPort.write(Message) time.sleep(3)
5,336,692
def flatten_images_data(images, layer_path_segments=0, _test=False): """ Yield mapping for each layer of each image of an `images` list of Image. This is a flat data structure for CSV and tabular output. Keep only ``layer_path_segments`` trailing layer location segments (or keep the locations unmodified if ``layer_path_segments`` is 0) """ for img in images: img_extracted_location = img.extracted_location base_data = dict( image_extracted_location='' if _test else img_extracted_location, image_archive_location='' if _test else img.archive_location, image_id=img.image_id, image_tags=','.join(img.tags), ) for layer in img.layers: layer_data = dict(base_data) layer_data['is_empty_layer'] = layer.is_empty_layer layer_data['layer_id'] = layer.layer_id layer_data['layer_sha256'] = layer.sha256 layer_data['author'] = layer.author layer_data['created_by'] = layer.created_by layer_data['created'] = layer.created layer_data['comment'] = layer.comment lay_extracted_location = layer.extracted_location lay_archive_location = layer.archive_location if layer_path_segments: lay_extracted_location = get_trimmed_path( location=lay_extracted_location, num_segments=layer_path_segments, ) lay_archive_location = get_trimmed_path( location=lay_archive_location, num_segments=layer_path_segments, ) layer_data['layer_archive_location'] = lay_archive_location layer_data['layer_extracted_location'] = lay_extracted_location yield layer_data
5,336,693
def roll_function(positions, I, angular_velocity): """ Due to how the simulations are generated where the first point of the simulation is at the smallest x value and the subsequent positions are in a clockwise (counterclockwise) direction when the vorticity is positive (negative), the first point of the simulated intensity might lie in the middle of an intensity trace. This needs to be compensated for by rolling array elements. Simulations come onto the screen from one of 4 sides. Which side the sim comes onto the screen and which side the sim leaves the screen defines how to roll the intensity as a function of time such that the first returned position is at the entrance and the final returned position is at the exit. Args: positions (array): position of Particle I (array): intensities calculated as a function of position angular velocity (float): Particle angular velocity Returns: p (array): position of Particle, adjusted to preserve order of peaks I (array): intensities calculated as a function of p, adjusted to preserve order of peaks """ p = positions.T x_0 = p[0][0] y_0 = p[1][0] clockwise = True if angular_velocity < 0: clockwise = False roll = 0 if clockwise: if (x_0>0) and (y_0>0) and (y_0<616): # need to roll if 616/2 > y_0: # orbit starts in upper half of screen try: rollval = -np.argwhere(p[1][:(len(p[1])//4+1)]==0)[0] except IndexError: #if none of the points is actually equal to 0 rollval = -np.abs(p[1][:(len(p[1])//4+1)]).argmin() p = np.roll(p,rollval,axis=1) I = np.roll(I,rollval) else: #orbit starts in middle or lower half of screen try: rollval = np.argwhere(p[1]==616)[0]+len(p[1])//2 except IndexError: #if none of the points is actually equal to 0 rollval = np.abs(p[1][3*(len(p[1])//4):]).argmin() p = np.roll(p,rollval,axis=1) I = np.roll(I,rollval) else: print('need to implement this still... rolling for counterclockwise vorticity.') raise ValueError return p.T, I
5,336,694
def run_exkeys(hosts, capture=False): """ Runs gpssh-exkeys for the given list of hosts. If capture is True, the (returncode, stdout, stderr) from the gpssh-exkeys run is returned; otherwise an exception is thrown on failure and all stdout/err is untouched. """ host_opts = [] for host in hosts: host_opts.extend(['-h', host]) args = [ 'gpssh-exkeys', '-v' ] + host_opts if not capture: subprocess.check_call(args) return # Capture stdout/err for later use, while routing it through tee(1) so that # developers can still see the live stream output. # # XXX This is a very heavy-weight solution, using pipes.Template() for the # creation of shell pipeline processes. It's also platform-specific as it # relies on the functionality of /dev/stdout and /dev/stderr. # # The overview: we open up two shell processes running tee(1), using # pipes.Template(), and connect their standard output to the stdout/err of # the current Python process using Template.open(). We then connect the # stdout/stderr streams of subprocess.call() to the stdin of those tee # pipelines. tee(1) will duplicate all output to temporary files, which we # read after the subprocess call completes. NamedTemporaryFile() then cleans # up those files when we return. with tempfile.NamedTemporaryFile() as temp_out, tempfile.NamedTemporaryFile() as temp_err: pipe_out = pipes.Template() pipe_out.append('tee %s' % pipes.quote(temp_out.name), '--') pipe_err = pipes.Template() pipe_err.append('tee %s' % pipes.quote(temp_err.name), '--') with pipe_out.open('/dev/stdout', 'w') as out, pipe_err.open('/dev/stderr', 'w') as err: ret = subprocess.call(args, stdout=out, stderr=err) stored_out = temp_out.read() stored_err = temp_err.read() return ret, stored_out, stored_err
5,336,695
def ip_address(value): """ Validate whether or not the given string is a valid IP address. Args: value (str): the value to validate. Raises: `~serde.exceptions.ValidationError`: when the value is not a valid IP address. """ if not validators.ipv4(value) and not validators.ipv6(value): raise ValidationError('{!r} is not a valid IP address'.format(value))
5,336,696
def top10(): """Renders the top 10 page.""" top10_urls = ShortURL.query.order_by(ShortURL.hits.desc()).limit(10) return render_template("top10.html", urls=top10_urls)
5,336,697
def rename_group(str_group2=None): """ Rename OFF food group (pnns_group_2) to a standard name Args: str_group2 (str): OFF food group name Returns: conv_group (str): standard food group name """ #convert_group1 = {'Beverage':['Beverages'], # 'Cereals':['Cereals and potatoes'], # 'Meal':['Composite foods'], # 'Fat':['Fat and sauces'], # 'Meat':['Fish Meat Eggs'], # 'Fruits and vegetables':['Fruits and vegetables','fruits-and-vegetables'], # 'Dairy':['Milk and dairy products'], # 'Snack':['Salty snacks','Sugary snacks','sugary-snacks'], # None:[None,'unknown','']} convert_group2 = {'Beverage':['Alcoholic beverages','Artificially sweetened beverages', 'Fruit juices','Fruit nectars','Non-sugared beverages', 'Sweetened beverages'], 'Cereals':['Bread','Breakfast cereals','Cereals','Legumes','Patatoes'], 'Meal':['One-dish meals','Pizza pies and quiche','Sandwich'], 'Fat':['Dressings and sauces','Fats'], 'Meat':['Tripe dishes','Eggs','Fish and seafood','Meat','Processed meat','Nuts'], 'Fruit':['Fruits','fruits','Dried fruits'], 'Vegetable':['Soups','Vegetables','vegetables'], 'Dairy':['Cheese','Dairy desserts','Ice cream','Milk and yogurt'], 'Snack':['Appetizers','Salty and fatty products','Biscuits and cakes', 'Chocolate products','Sweets','pastries'], None:[None,'unknown','']} conv_group = [key for (key, value) in convert_group2.items() if (str_group2 in value)] conv_group = [None] if not conv_group else conv_group return conv_group[0]
5,336,698
def save_png(fig: Figure, path: Union[None, str, pathlib.Path], width: Union[int, float] = None, height: Union[int, float] = None, unit: str = 'px', print_info: bool = False) -> Union[str, io.BytesIO]: """ Save PNG image of the figure. :param fig: Figure to save. :param path: Full path of the image to save. If directory (string ending in slash - '/' or '\\') then the figure window title is used as a file name. If `None`, in-memory :class:`io.BytesIO` file will be generated and returned. :param width: Image width in `unit`. If not provided it will be left as it is. :param height: Image height in `unit`. If not provided it will be left as it is. :param unit: Unit of the image width and height, one of: 'px' (pixels), 'cm' (centimeters), 'in' (inch). :param print_info: Whether to print information about saved file. :return: Full path of the generated image if `path` was provided or in-memory :class:`io.BytesIO` file. """ if path: directory, file_name = os.path.split(path) # Create the directory if not existent os.makedirs(directory, exist_ok=True) # If the provided path is only a directory, use window title as filename if not file_name: file_name = get_window_title(fig) # Image path must have .png extension! if os.path.splitext(file_name)[1] != ".png": file_name += ".png" path = os.path.join(directory, file_name) dpi = fig.get_dpi() if width or height: size = fig.get_size_inches() if unit == 'px': fig.set_size_inches((width or size[0]) / dpi, (height or size[1]) / dpi) elif unit in ('mm', 'cm', 'in', 'inch'): if unit == 'mm': width /= 25.4 height /= 25.4 elif unit == 'cm': width /= 2.54 height /= 2.54 # Unit is inches. fig.set_size_inches(width or size[0], height or size[1]) else: raise ValueError(f"Unsupported size unit '{unit}'") width = fig.get_figwidth() height = fig.get_figheight() width_px = int(round(width * dpi)) height_px = int(round(height * dpi)) width_mm = width * 25.4 height_mm = height * 25.4 if path: fig.savefig(path, dpi=dpi) ret = path if print_info: print(f"Saved plot ({width_px}x{height_px} px = {width_mm:.1f}x{height_mm:.1f} mm @ {dpi} dpi)" f" to '{os.path.normpath(path)}'") else: file = io.BytesIO() fig.savefig(file, dpi=dpi) file.seek(0) ret = file return ret
5,336,699