content
stringlengths
22
815k
id
int64
0
4.91M
def lambda_handler(event, context): """ Generate a pre-signed URL that allows a save file to be uploaded to S3 in the player's specified save slot. If the slot is new, will verify that MAX_SAVE_SLOTS_PER_PLAYER has not been reached. Parameters: Request Context: custom:gk_user_id: str The player_id to associate the save file with. This value comes from the Cognito Authorizer that validates the API Gateway request. Header Parameters: metadata: str An arbitrary Base64 encoded string to associate with the save file. [Optional, defaults to an empty string: ''] The total size of the metadata string cannot exceed 1887 bytes (MAX_METADATA_BYTES, see docs above) and must be Base64 encoded, otherwise the Lambda will return an error. The 2KB limit comes from an S3 limitation, and the Base64 encoding saves space compared to S3's native behavior for non-ASCII strings: https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingMetadata.html#UserMetadata The GameKit SDK handles encoding and decoding the metadata string for you; if not using the SDK, please Base64 encode your metadata values before calling this lambda function. Examples: A string, representing the save slot's description: unencoded_metadata = 'about to fight the boss 👍' metadata = 'YWJvdXQgdG8gZmlnaHQgdGhlIGJvc3Mg8J+RjQ==' # Pass this to the lambda A JSON blob, containing several metadata fields: unencoded_metadata = '{"description": "about to fight the boss 👍", "total_playtime_seconds": "16200"}' metadata = 'eyJkZXNjcmlwdGlvbiI6ICJhYm91dCB0byBmaWdodCB0aGUgYm9zcyDwn5GNIiwgInRvdGFsX3BsYXl0aW1lX3NlY29uZHMiOiAiMTYyMDAifQ==' # Pass this to the lambda hash: str The Base64 encoded SHA-256 hash of the file to upload. The total size of the hash string will be 44 bytes; the SHA-256 hash itself is 32 bytes, and the Base64 encoding of it will bring the size up to 44. Base64 encoding is used to convert the SHA-256 hash from a byte stream to an ASCII compliant string. last_modified_epoch_time: int The number of milliseconds since epoch of the last UTC time when the save slot was modified on the caller's device. Path Parameters: slot_name: str The slot name to use for the save file. Limited to 512 characters long, using alphanumeric characters, dashes (-), underscores (_), and periods (.). This lambda will return an error if a malformed slot name is provided. If the slot_name is not occupied with another save file, the Lambda will check whether this new save file will exceed the MAX_SAVE_SLOTS_PER_PLAYER. If it would be exceeded, the Lambda will return an error. Query String Parameters: time_to_live: int The number of seconds the URL will be valid. The URL will no longer work after the time has expired. [Optional, defaults to 120 seconds (DEFAULT_TIME_TO_LIVE_SECONDS).] consistent_read: bool Whether to use "Consistent Read" when querying DynamoDB. [Optional, defaults to True (DEFAULT_CONSISTENT_READ).] Errors: 400 Bad Request - Returned when a malformed 'slot_name' path parameter is provided. 400 Bad Request - Returned when the 'metadata' parameter exceeds 1883 bytes (MAX_METADATA_BYTES) after being ASCII encoded. 400 Bad Request - Returned when the 'hash' parameter is not exactly 44 bytes (BASE_64_ENCODED_SHA_256_BYTES) in size. 400 Bad Request - Returned when the save slot is new and would exceed the player's MAX_SAVE_SLOTS_PER_PLAYER. 401 Unauthorized - Returned when the 'custom:gk_user_id' parameter is missing from the request context. """ log_event(event) # Get player_id from requestContext: player_id = get_player_id(event) if player_id is None: return response_envelope(status_code=401) # Get header inputs: metadata = get_header_param(event, 'metadata', DEFAULT_METADATA) sha_hash: str = get_header_param(event, S3_HASH_METADATA_KEY) last_modified_epoch_time = int(get_header_param(event, 'last_modified_epoch_time')) # Get path param inputs: slot_name = get_path_param(event, 'slot_name') # Get query param inputs: time_to_live = int(get_query_string_param(event, 'time_to_live', DEFAULT_TIME_TO_LIVE_SECONDS)) consistent_read = bool(strtobool(get_query_string_param(event, 'consistent_read', DEFAULT_CONSISTENT_READ))) # Validate inputs: if not is_valid_primary_identifier(slot_name): logger.error((f'Malformed slot_name: {slot_name} provided for player_id: {player_id}').encode(UTF_8)) return response_envelope(status_code=400, status_message=ResponseStatus.MALFORMED_SLOT_NAME) if get_bytes_length(metadata) > MAX_METADATA_BYTES: return response_envelope(status_code=400, status_message=ResponseStatus.MAX_METADATA_BYTES_EXCEEDED) if not is_valid_base_64(metadata): logger.error((f'Malformed metadata provided, expected a Base64 encoded string. Metadata: {metadata}').encode(UTF_8)) return response_envelope(status_code=400, status_message=ResponseStatus.MALFORMED_METADATA) if len(sha_hash) != BASE_64_ENCODED_SHA_256_BYTES or not sha_hash.isascii(): logger.error((f'Malformed SHA-256 hash: {sha_hash} provided. Must be 44 characters and Base64 encoded.').encode(UTF_8)) return response_envelope(status_code=400, status_message=ResponseStatus.MALFORMED_HASH_SIZE_MISMATCH) # Verify MAX_SAVE_SLOTS_PER_PLAYER won't be exceeded: if is_new_save_slot(player_id, slot_name, consistent_read) and would_exceed_slot_limit(player_id, consistent_read): return response_envelope(status_code=400, status_message=ResponseStatus.MAX_CLOUD_SAVE_SLOTS_EXCEEDED) # Generate URL: bucket_name = os.environ.get('GAMESAVES_BUCKET_NAME') url = generate_presigned_url( bucket_name, player_id, slot_name, metadata, sha_hash, last_modified_epoch_time, time_to_live ) # Construct response object: return response_envelope( status_code=200, response_obj={ 'url': url } )
5,336,400
def getLanguageLevel() -> dict: """ Takes the user input and returns the found documents as dictionary. :text: String :language: String :return: Dictionary """ text: str = request.params.get('text') language: str = request.params.get('language') # check API Key if str(request.params.get('key')) != API_KEY: response.status = 401 return { "error": "API-KEY is wrong or missing. See https://github.com/elaisasearch/categorizer/blob/master/README.md for more information." } if language == "en": return { "result": categorizeText(text) } # other languages will follow in the future else: return { "error": "'{}' currently isn't supported. Please use 'en' for English as language. Thank you.".format(language) }
5,336,401
def list_networks(**kwargs): """Lists all networks of the given compartment Args: **kwargs: Additional options Keyword Args: public_subnet (bool): Whether only public or private subnets should be considered compartment_id (str): OCID of the parent compartment. config (object): An OCI config object or None. return_formatted (bool): If set to true, a list object is returned. check_privileges (bool): Checks if the user has privileges for the subnet Returns: a network object """ public_subnet = kwargs.get("public_subnet") compartment_id = kwargs.get("compartment_id") config = kwargs.get("config") return_formatted = kwargs.get("return_formatted", True) check_privileges = kwargs.get("check_privileges", False) # Get the active config and compartment try: config = configuration.get_current_config(config=config) compartment_id = configuration.get_current_compartment_id( compartment_id=compartment_id, config=config) import oci.exceptions # Create VirtualNetworkClient virtual_network = core.get_oci_virtual_network_client( config=config) # List the virtual networks vcns = virtual_network.list_vcns( compartment_id=compartment_id).data # Filter out all sub-nets that are not conforming to the # public_subnet options if public_subnet is not None: # Loop over VCNs to see if access is granted good_vcns = [] for vcn in vcns: try: if network_has_subnet( network=vcn, compartment_id=compartment_id, config=config, public_subnet=public_subnet, check_privileges=check_privileges): good_vcns.append(vcn) except oci.exceptions.ServiceError as e: pass vcns = good_vcns if return_formatted: return format_network_listing(vcns) else: return oci.util.to_dict(vcns) except ValueError as e: print(f"ERROR: {str(e)}") return
5,336,402
def ed_affine_to_extended(pt): """Map (x, y) to (x : y : x*y : 1).""" new_curve = EllipticCurve(pt.curve, ED_EXT_HOM_PROJ, Edwards_ExtProj_Arithm) return new_curve((pt.x, pt.y, pt.x * pt.y, new_curve.field(1)))
5,336,403
def _download(path, url, archive_name, hash_, hash_type='md5'): """Download and extract an archive, completing the filename.""" full_name = op.join(path, archive_name) remove_archive = True fetch_archive = True if op.exists(full_name): logger.info('Archive exists (%s), checking hash %s.' % (archive_name, hash_,)) fetch_archive = False if hashfunc(full_name, hash_type=hash_type) != hash_: if input('Archive already exists but the hash does not match: ' '%s\nOverwrite (y/[n])?' % (archive_name,)).lower() == 'y': os.remove(full_name) fetch_archive = True if fetch_archive: logger.info('Downloading archive %s to %s' % (archive_name, path)) try: temp_file_name, header = urlretrieve(url) # check hash sum eg md5sum if hash_ is not None: logger.info('Verifying hash %s.' % (hash_,)) hashsum = hashfunc(temp_file_name, hash_type=hash_type) if hash_ != hashsum: raise RuntimeError('Hash mismatch for downloaded file %s, ' 'expected %s but got %s' % (temp_file_name, hash_, hashsum)) shutil.move(temp_file_name, full_name) except Exception: logger.error('Error while fetching file %s.' ' Dataset fetching aborted.' % url) raise # _fetch_file(url, full_name, print_destination=False, # hash_=hash_, hash_type=hash_type) return remove_archive, full_name
5,336,404
def do_setup(experiment_folder, path_to_additional_args): """ Setup Shell Scripts for Experiment """ additional_args = joblib.load(path_to_additional_args) # Setup Data logger.info("Setting Up Data") data_args = setup_train_test_data(experiment_folder, **additional_args) # Setup logger.info("Saving Experiment Options per ID") sampler_args = additional_args['sampler_args'] arg_list = dict_product(sampler_args, data_args) options_df = setup_options(experiment_folder, arg_list) return options_df
5,336,405
def getorgadmins(apikey, orgid, suppressprint=False): """ Args: apikey: User's Meraki API Key orgid: OrganizationId for operation to be performed against suppressprint: Returns: """ __hasorgaccess(apikey, orgid) calltype = 'Organization' geturl = '{0}/organizations/{1}/admins'.format(str(base_url), str(orgid)) headers = { 'x-cisco-meraki-api-key': format(str(apikey)), 'Content-Type': 'application/json' } dashboard = requests.get(geturl, headers=headers) # # Call return handler function to parse Dashboard response # result = __returnhandler(dashboard.status_code, dashboard.text, calltype, suppressprint) return result
5,336,406
def calc_recall(TP, FN): """ Calculate recall from TP and FN """ if TP + FN != 0: recall = TP / (TP + FN) else: recall = 0 return recall
5,336,407
def lookup_last_report_execution(job_type, work_ids=None): """Lookup in the database when the report/job chunk last executed This is the expected table schema from the database (id and timestamp columns are omitted), --------------------------------------------------- | work_id | history | --------------------------------------------------- | 1000 | {"report_A": 2019-01-11 11:22:33, "report_B": 2020-01-12 02:03:44} | | 2000 | {"report_A": 2012-01-11 12:23:33} | --------------------------------------------------- The work_id parameter is expected to be work ids. The reason for naming the parameter work_ids is to support future changes. Args: job_type (str): The name of the job to check execution time for work_ids (list): Specific work ids to check execution time for Returns: last_exec_min (int or None): Largest number of minutes since the last execution for any of the work ids. None if never executed Examples: Looking up the greatest time since work id 1000 executed report_B should be 2 minutes >>> str(datetime.utcnow()) 2020-01-12 02:05:44 >>> lookup_last_report_execution("report_B", [1000]) 2 Looking up the greatest time since work id 1234 executed report_B should be None, as it was never executed >>> print(lookup_last_report_execution("report_B", [1234])) None """ # Create string ready for SQL work_ids_string = ", ".join([str(c) for c in work_ids]) # Query database # This returns a single number that is the latest execution for any of # the work_ids in minutes or a single row containing 99999999 sql = f""" SELECT MAX(IFNULL(MINUTES_SINCE_LAST_EXEC, 99999999)) AS last_exec FROM ( -- Calculate the time since last execution SELECT TIMESTAMPDIFF( MINUTE, STR_TO_DATE( JSON_UNQUOTE( JSON_EXTRACT( history, '$."{job_type}"') ), "%Y-%m-%d %H:%i:%s"), CURRENT_TIMESTAMP() ) AS MINUTES_SINCE_LAST_EXEC FROM StauLatestExecution WHERE workId IN ({work_ids_string}) ) as subq """ with Stau() as queue: rtn = queue._exec(sql, {}) return rtn.get("last_exec", None)
5,336,408
def get_course_goal_options(): """ Returns the valid options for goal keys, mapped to their translated strings, as defined by theCourseGoal model. """ return {goal_key: goal_text for goal_key, goal_text in GOAL_KEY_CHOICES}
5,336,409
def to_dataframe(y): """ If the input is not a dataframe, convert it to a dataframe :param y: The target variable :return: A dataframe """ if not isinstance(y, pd.DataFrame): return pd.DataFrame(y) return y
5,336,410
def url_equal(first, second, ignore_scheme=False, ignore_netloc=False, ignore_path=False, ignore_params=False, ignore_query=False, ignore_fragment=False): """ Compare two URLs and return True if they are equal, some parts of the URLs can be ignored :param first: URL :param second: URL :param ignore_scheme: ignore the scheme :param ignore_netloc: ignore the netloc :param ignore_path: ignore the path :param ignore_params: ignore the params :param ignore_query: ignore the query string :param ignore_fragment: ignore the fragment :return: result of comparison """ # <scheme>://<netloc>/<path>;<params>?<query>#<fragment> firstp = urlparse(first) secondp = urlparse(second) return ( (firstp.scheme == secondp.scheme or ignore_scheme) and (firstp.netloc == secondp.netloc or ignore_netloc) and (firstp.path == secondp.path or ignore_path) and (firstp.params == secondp.params or ignore_params) and (firstp.query == secondp.query or ignore_query) and (firstp.fragment == secondp.fragment or ignore_fragment) )
5,336,411
def yggdrasil_model_to_keras_model( src_path: str, dst_path: str, input_model_signature_fn: Optional[tf_core.InputModelSignatureFn] = tf_core .build_default_input_model_signature): """Converts an Yggdrasil model into a Keras model. Args: src_path: Path to input Yggdrasil Decision Forests model. dst_path: Path to output TensorFlow Decision Forests SavedModel model. input_model_signature_fn: A lambda that returns the (Dense,Sparse,Ragged)TensorSpec (or structure of TensorSpec e.g. dictionary, list) corresponding to input signature of the model. If not specified, the input model signature is created by "build_default_input_model_signature". For example, specify "input_model_signature_fn" if an numerical input feature (which is consumed as DenseTensorSpec(float32) by default) will be feed differently (e.g. RaggedTensor(int64)). """ inspector = inspector_lib.make_inspector(src_path) objective = inspector.objective() model = CoreModel( task=objective.task, learner="MANUAL", ranking_group=objective.group if objective.task == inspector_lib.Task.RANKING else None) model._set_from_yggdrasil_model( # pylint: disable=protected-access inspector, src_path, input_model_signature_fn=input_model_signature_fn) model.save(dst_path)
5,336,412
def test_struct(n: cython.int, x: cython.double) -> MyStruct2: """ >>> test_struct(389, 1.64493) (389, 1.64493) >>> d = test_struct.__annotations__ >>> sorted(d) ['n', 'return', 'x'] """ assert cython.typeof(n) == 'int', cython.typeof(n) if is_compiled: assert cython.typeof(x) == 'double', cython.typeof(x) # C double else: assert cython.typeof(x) == 'float', cython.typeof(x) # Python float a = cython.declare(MyStruct2) a[0] = MyStruct(is_integral=True, data=MyUnion(n=n)) a[1] = MyStruct(is_integral=False, data={'x': x}) return a[0].data.n, a[1].data.x
5,336,413
def build_document(json_schema: dict) -> list: """ Returns a list of lines to generate a basic adoc file, with the format: Title A table for the data properties A table for the data attributes and nested attributes if any """ lines = [] """ Title and description of schema """ title = get_json_attribute(['title'], json_schema) description = get_json_attribute(['description'], json_schema) """ Id and required properties of object """ data = get_json_attribute(['properties', 'data'], json_schema) data_required = get_json_attribute(['required'], data) data_properties = get_json_attribute(['properties'], data) """ Attributes of object """ attributes = get_json_attribute(['attributes'], data_properties) required = get_json_attribute(['required'], attributes) attribute_properties = get_json_attribute(['properties'], attributes) """ Relationships of object """ relationships = get_json_attribute(['relationships', 'properties'], data_properties) print(relationships) if relationships: for relationship_name in relationships: relationship_object = get_json_attribute([relationship_name], relationships) relationship_required = get_json_attribute(['required'], relationship_object) relationship_properties = get_json_attribute(['data', 'properties'], relationship_object) if not relationship_required: relationship_required = '' if 'type' in relationship_properties: relationship_type = get_json_attribute(['type', 'const'], relationship_properties) relationship_object.update({'type': str(relationship_type)}) """ Cleans up properties table """ # TODO: retrieve nested 'const' attribute from relationship to display under 'Type' in adoc table data_type = get_json_attribute(['type', 'const'], data_properties) if 'type' in data_properties: data_properties.update({'type': {'type': str(data_type)}}) if 'relationships' in data_properties: del data_properties['relationships'] del data_properties['attributes'] """ Sets title, description, and tables """ lines.append(get_adoc_title(title, 3)) if description: lines.append(description+'\n') if data_properties: lines.extend(get_adoc_table('Properties', ['Type', 'Description'], data_properties, data_required)) if attributes: lines.extend(get_adoc_table('Attributes', ['Type', 'Description'], attribute_properties, required, True)) lines.append('\n') if relationships: lines.extend(get_adoc_table('Relationships', ['Type', 'Description'], relationships, relationship_required)) return lines
5,336,414
def test_streaming_histogram_1d(dtype, error): """Test the computation of streaming histogram for a 1D array.""" values = np.random.random_sample((10000, )).astype(dtype) hist = StreamingHistogram(values, dtype=dtype, bin_count=values.size) check_stats(hist, values, dtype, error) assert np.all(hist.bins()["value"] == np.sort(values)) assert np.all(hist.bins()["weight"] == np.ones_like(values)) other = pickle.loads(pickle.dumps(hist)) check_stats(other, values, dtype, error) hist = StreamingHistogram(values, weights=np.ones(values.size), bin_count=values.size) check_stats(hist, values, dtype, error) hist = StreamingHistogram(da.from_array(values, chunks=(1000, )), bin_count=values.size) check_stats(hist, values, dtype, error) assert isinstance(str(hist), str)
5,336,415
def remove_potential_nonlipids_bad_esi_mode(): """ remove_potential_nonlipids_bad_esi_mode description: ESI mode of the dataset is not 'pos' or 'neg' returns: (bool) -- test pass (True) or fail (False) """ dset = Dataset(os.path.join(os.path.dirname(__file__), 'real_data_1.csv')) try: remove_potential_nonlipids(dset) except ValueError: return True return False
5,336,416
def test_no_args_workspace_configured_with_some_groups(tmp_path: Path) -> None: """Scenario: * Nothing passed on the command line * A group named 'group1' in the manifest containing foo * A group named 'group2' in the manifest containing bar * Workspace configured with repo_groups=[group1] Should return foo from group1 """ groups = { "group1": {"repos": ["foo"]}, "group2": {"repos": ["bar"]}, } create_manifest(tmp_path, repos=["foo", "bar"], groups=groups) workspace = create_workspace(tmp_path, repo_groups=["group1"]) actual = resolve_repos(workspace, groups=None, all_cloned=False) assert repo_names(actual) == ["foo"]
5,336,417
def is_oasis_db(): """ Is this likely an OASIS database? Look at the table names to see if we have the more specific ones. Return "yes", "no", or "empty" """ expect = ['qtvariations', 'users', 'examqtemplates', 'marklog', 'qtattach', 'questions', 'guesses', 'exams', 'qtemplates'] tables = public_tables() if len(tables) == 0: return "empty" if set(expect).issubset(tables): return "yes" return "no"
5,336,418
def selection_screen(screen: pygame.Surface) -> None: """ Selection screen between SEARCHING, SORTING, TITLE """ clear_screen(screen) border(screen) # Labels draw_header(screen, "Table of Content") b1 = PButton(screen, (180, 230, 300, 50)) b1.add_text("Sorting") b2 = PButton(screen, (180, 300, 300, 50)) b2.add_text("Searching") buttons = [b1 ,b2] # TODO: Recognize when clicked on "Searching" and go there while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() if event.type == pygame.MOUSEBUTTONUP: x, y = event.pos if b1.is_cursor_on((x, y), True): sort_selection(screen) if b2.is_cursor_on((x, y), True): search_selection(screen) for b in buttons: if b.is_cursor_on(pygame.mouse.get_pos()): b.hover() else: b.draw() pygame.display.flip()
5,336,419
def make_segment(segment, discontinuity=False): """Create a playlist response for a segment.""" response = [] if discontinuity: response.append("#EXT-X-DISCONTINUITY") response.extend(["#EXTINF:10.0000,", f"./segment/{segment}.m4s"]), return "\n".join(response)
5,336,420
def seq_aggregate_with_reducer(x, y): """ Sequencing function that works with the dataframe created by get_normal_frame :param x: :param y: :return: """ res = [] for i in range(0, len(x)): res.append((x[i][0], x[i][1], get_aggregation_func_by_name(x[i][0])(x[i][2], y[i][2]))) return tuple(res)
5,336,421
def console(bot: Optional[Union[T_Base, T_Group]]=None, **kwargs) -> None: """ Function for direct interaction via terminal. Useful for testing, not advised for production code Params: -bot = Instance of the bot/botgroup you wish to control via console. -kwargs = dict of global variables defined in the __main__ module give the console access to. """ if kwargs: # Define global access for variables passed to the function for x, y in kwargs.items(): globals()[x] = y main = __import__('__main__') for x, y in main.__dict__.items(): if x != 'bot' and (isinstance(y, BotGroup) or isinstance(y, Base)): # Creates local variable for the relevant variables from the __main__ module locals()[x] = y if x.lower() not in main.__dict__ \ or not ( isinstance(main.__dict__[x.lower()], BotGroup) or isinstance(main.__dict__[x.lower()], Base) ): # Alternate local variabe with all lowercase as the variable name # as long as a variable by the same name won't be imported locals()[x.lower()] = y while True: # Control loop try: a = input() print('===============') print(eval(a)) print('===============') except SystemExit: if bot: bot.close() for x in locals(): if isinstance(x, Base) or isinstance(x, BotGroup): x.close() return except: # Catch for exceptions to allow the console to continue operating. print('>>>Exception occured: {0}'.format(sys.exc_info()[1])) print_tb(sys.exc_info()[2]) print('===============')
5,336,422
def from_dicts(key: str, *dicts, default: Any = None): """ Returns value of key in first matchning dict. If not matching dict, default value is returned. Return: Any """ for d in dicts: if key in d: return d[key] return default
5,336,423
def comp_play_hand(hand, word_list): """ Allows the computer to play the given hand, as follows: * The hand is displayed. * The computer chooses a word using comp_choose_words(hand, word_dict). * After every valid word: the score for that word is displayed, the remaining letters in the hand are displayed, and the computer chooses another word. * The sum of the word scores is displayed when the hand finishes. * The hand finishes when the computer has exhausted its possible choices (i.e. comp_play_hand returns None). hand: dictionary (string -> int) word_list: list (string) """ # TO DO ... score = 0 handlen = calculate_handlen(hand) while True: print 'Current Hand:' display_hand(hand) word = comp_choose_word(hand, word_list) print 'computer choose word:', word if word == None: break if is_valid_word(word, hand, word_list): hand = update_hand(hand, word) earn = get_word_score(word, handlen) score += earn print word, 'earn', earn, 'points, Total points:', score, '\n' else: print 'invalid word,', word, ' please try again' continue
5,336,424
def test_clear_objects(): """ Checks the clear_objects method """ obj_storage = ( object_storage.ObjectStorage() ) # obj_storage is a wrapper object to a collection of objects x = torch.tensor(1) obj_storage.set_obj(x) objs = obj_storage.current_objects() # Returns a copy of the objects in obj_storage(here:x) assert len(objs) == 1 assert objs[x.id] == x ret_val = obj_storage.clear_objects() # Completely removes all objects from obj_storage objs = obj_storage.current_objects() assert len(objs) == 0 assert ret_val == obj_storage
5,336,425
def test_update_patient(mock_app, test_client, gpx4_patients, test_node, database): """Test updating a patient by sending a POST request to the add endpoint with valid data""" patient_data = gpx4_patients[1] # Given a node with authorized token ok_token = test_client["auth_token"] add_node(mongo_db=mock_app.db, obj=test_client, is_client=True) add_node( mongo_db=mock_app.db, obj=test_node, is_client=False ) # add a test node, to perform external matching # a matches collection without documents assert database["matches"].find_one() is None # and an empty patients collection assert database["patients"].find_one() is None # GIVEN a patient added using the add enpoint patient_obj = {"patient": patient_data} # this is a valid patient object response = mock_app.test_client().post( "patient/add", data=json.dumps(patient_obj), headers=auth_headers(ok_token) ) assert response.status_code == 200 # WHEN the patient is updated using the same add endpoint patient_data["label"] = "modified patient label" patient_obj = {"patient": patient_data} # this response = mock_app.test_client().post( "patient/add", data=json.dumps(patient_obj), headers=auth_headers(ok_token) ) assert response.status_code == 200 # Then there should still be one patient in the database results = database["patients"].find() assert len(list(results)) == 1 # And the update has triggered an additional external patient matching results = database["matches"].find() assert len(list(results)) == 2
5,336,426
def setIndexingRules(fixed_allocations, indexer_id,blacklist_parameter = True, parallel_allocations = 0 , network = "mainnet"): """ setIndexingRule via indexer agent management endpoint (default :18000). Endpoint works with graphQL mutation. So the mutations are sent via a request.post method. returns: IndexingRule which was set via """ print("YOU ARE IN AUTOMATION MODE") indexer_id = indexer_id.lower() # get relevant gateway for mainnet or testnet if network == 'mainnet': API_GATEWAY = os.getenv('API_GATEWAY') else: API_GATEWAY = os.getenv('TESTNET_GATEWAY') # get blacklisted subgraphs if wanted if blacklist_parameter: with open("./config.json", "r") as jsonfile: INVALID_SUBGRAPHS = json.load(jsonfile).get('blacklist') else: INVALID_SUBGRAPHS = False # set amount of parallel allocations per subgraph parallel_allocations = parallel_allocations # get the amount of GRT that should be allocated from the optimizer fixed_allocation_sum = sum(list(fixed_allocations.values())) * parallel_allocations # get relevant indexer data indexer_data = requests.post( API_GATEWAY, data='{"query":"{ indexer(id:\\"' + indexer_id + '\\") { account { defaultName { name } } stakedTokens delegatedTokens allocatedTokens tokenCapacity } }"}', headers={'content-type': 'application/json', 'Accept-Charset': 'UTF-8'} ).json()['data']['indexer'] remaining_stake = int(indexer_data['tokenCapacity']) - int(fixed_allocation_sum) print( f"Processing subgraphs for indexer {indexer_data['account']['defaultName']['name'] if indexer_data['account']['defaultName'] else indexer_id}") print(f"Staked: {int(indexer_data['stakedTokens']) / 10 ** 18:,.2f}") print(f"Delegated: {int(indexer_data['delegatedTokens']) / 10 ** 18:,.2f}") print(f"Token Capacity: {int(indexer_data['tokenCapacity']) / 10 ** 18:,.2f}") print(f"Currently Allocated: {int(indexer_data['allocatedTokens']) / 10 ** 18:,.2f}") print(f"Fixed Allocation: {int(fixed_allocation_sum) / 10 ** 18:,.2f}") print(f"Remaining Stake: {remaining_stake / 10 ** 18:,.2f}") print('=' * 40) if (int(indexer_data['tokenCapacity']) - int(indexer_data['allocatedTokens']) < int(fixed_allocation_sum)): print("Not enough free stake for fixed allocation. Free to stake first") # sys.exit() subgraph_data = requests.post( API_GATEWAY, data='{"query":"{ subgraphDeployments(first: 1000) { id originalName stakedTokens signalledTokens } }"}', headers={'content-type': 'application/json', 'Accept-Charset': 'UTF-8'} ).json()['data']['subgraphDeployments'] subgraphs = set() invalid_subgraphs = set() total_signal = 0 total_stake = 0 dynamic_allocation = 0 for subgraph_deployment in subgraph_data: subgraph = base58.b58encode(bytearray.fromhex('1220' + subgraph_deployment['id'][2:])).decode("utf-8") if INVALID_SUBGRAPHS: if subgraph in INVALID_SUBGRAPHS: #print(f" Skipping invalid Subgraph: {subgraph_deployment['originalName']} ({subgraph})") invalid_subgraphs.add(subgraph) pass if subgraph in fixed_allocations.keys(): if fixed_allocations[subgraph] > 0: print( f"{subgraph_deployment['originalName']} ({subgraph}) Total Stake: {int(subgraph_deployment['stakedTokens']) / 10 ** 18:,.2f} Total Signal: {int(subgraph_deployment['signalledTokens']) / 10 ** 18:,.2f} , Ratio: {(int(subgraph_deployment['stakedTokens']) / 10 ** 18) / ((int(subgraph_deployment['signalledTokens']) + 1) / 10 ** 18)}") subgraphs.add(subgraph) total_signal += int(subgraph_deployment['signalledTokens']) total_stake += int(subgraph_deployment['stakedTokens']) else: if subgraph in fixed_allocations.keys(): if fixed_allocations[subgraph] > 0: print( f"{subgraph_deployment['originalName']} ({subgraph}) Total Stake: {int(subgraph_deployment['stakedTokens']) / 10 ** 18:,.2f} Total Signal: {int(subgraph_deployment['signalledTokens']) / 10 ** 18:,.2f} , Ratio: {(int(subgraph_deployment['stakedTokens']) / 10 ** 18) / ((int(subgraph_deployment['signalledTokens']) + 1) / 10 ** 18)}") subgraphs.add(subgraph) total_signal += int(subgraph_deployment['signalledTokens']) total_stake += int(subgraph_deployment['stakedTokens']) print(f"Total Signal: {total_signal / 10 ** 18:,.2f}") print(f"Total Stake: {total_stake / 10 ** 18:,.2f}") print('=' * 40) print(f"Subgraphs: {len(subgraphs)}") print(f"Fixed: {len(set(fixed_allocations.keys()))}") print(f"Dynamic: {len(subgraphs - set(fixed_allocations.keys()))}") print(f"Dynamic Allocation: {dynamic_allocation / 10 ** 18:,.2f}") print('=' * 40) print() # Closing Allocations via Indexer Agent Endpoint (localhost:18000), set decision_basis to never print("NOW CLOSING ALLOCATIONS AUTOMATICALLY VIA INDEXER MANAGEMENT ENDPOINT") active_allocations = getActiveAllocations(indexer_id = indexer_id, network = network) if active_allocations: active_allocations = active_allocations['allocations'] allocation_ids = [] for allocation in active_allocations: subgraph_hash = allocation["subgraphDeployment"]['id'] allocation_amount = allocation["allocatedTokens"] print("CLOSING ALLOCATION FOR SUBGRAPH: " + str(subgraph_hash)) print("SUBGRAPH IPFS HASH: " + allocation['subgraphDeployment']['ipfsHash']) print("ALLOCATION AMOUNT: " + str(allocation_amount)) setIndexingRuleQuery(deployment = subgraph_hash, decision_basis = "never", parallel_allocations = parallel_allocations, allocation_amount = 0 ) allocation_ids.append(allocation['id']) print("Closing Allocations amount: " + str(len(allocation_ids))) asyncFilterAllocationEvents(indexer_id = indexer_id, allocation_ids = allocation_ids, network= network, event_type = "closing" ) # Allocating via Indexer Agent Endpoint (localhost:18000) set decision_basis to always print("NOW RUNNING THE AUTOMATIC ALLOCATION VIA INDEXER MANAGEMENT ENDPOINT") subgraph_deployment_ids = [] for subgraph in subgraphs: if subgraph in fixed_allocations.keys(): if fixed_allocations[subgraph] != 0: subgraph_hash = "0x"+base58.b58decode(subgraph).hex()[4:] subgraph_deployment_ids.append(subgraph_hash) allocation_amount = fixed_allocations[subgraph] / 10 ** 18 print("ALLOCATING SUBGRAPH: " + "0x"+base58.b58decode(subgraph).hex()[4:]) print("Allocation Amount: " + str(allocation_amount)) print("") setIndexingRuleQuery(deployment = subgraph_hash, decision_basis = "always", parallel_allocations = parallel_allocations, allocation_amount = allocation_amount) asyncFilterAllocationEvents(indexer_id = indexer_id, allocation_ids = allocation_ids, network = network, subgraph_deployment_ids = subgraph_deployment_ids)
5,336,427
def make_obj(f, mesh): """Crude export to Wavefront mesh format""" for v in mesh.verts: f.write("v {} {} {}\n".format(v.x, v.y, v.z)) for face in mesh.faces: if isinstance(face, Quad): f.write("f {} {} {} {}\n".format(face.v1, face.v2, face.v3, face.v4)) if isinstance(face, Tri): f.write("f {} {} {}\n".format(face.v1, face.v2, face.v3))
5,336,428
def temporary_dir(chdir=True): """Context manager that creates a temporary directory and chdirs to it. When the context manager exits it returns to the previous cwd and deletes the temporary directory. """ d = tempfile.mkdtemp() try: with contextlib.ExitStack() as stack: if chdir: stack.enter_context(cd(d)) yield d finally: if os.path.exists(d): shutil.rmtree(d)
5,336,429
def time_in_words(h, m): """Hackerrank Problem: https://www.hackerrank.com/challenges/the-time-in-words/problem Given the time in numerals we may convert it into words, as shown below: ---------------------------------------------- | 5:00 | -> | five o' clock | | 5:01 | -> | one minute past five | | 5:10 | -> | ten minutes past five | | 5:15 | -> | quarter past five | | 5:30 | -> | half past five | | 5:40 | -> | twenty minutes to six | | 5:45 | -> | quarter to six | | 5:47 | -> | thirteen minutes to six | | 5:28 | -> | twenty eight minutes past five | ---------------------------------------------- At minutes = 0, use o' clock. For 1 <= minutes <= 30, use past, and for 30 < minutes use to. Note the space between the apostrophe and clock in o' clock. Write a program which prints the time in words for the input given in the format described. Args: h (int): hour of the day m (int): minutes after the hour Returns: str: string representation of the time """ time = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty", "twenty one", "twenty two", "twenty three", "twenty four", "twenty five", "twenty six", "twenty seven", "twenty eight", "twenty nine"] # We check for a certain set of cases: # Case 1 - we're on the hour, so we use o' clock if m == 0: return "{0} o' clock".format(time[h-1]) # Case 2 - we're one minute after, so we use minute (versus minutes later on to describe the time) if m == 1: return "{0} minute past {1}".format(time[m-1], time[h-1]) # Case 3 - we're a quarter past the hour if m == 15: return "quarter past {0}".format(time[h-1]) # Case 4 - we're half past the hour if m == 30: return "half past {0}".format(time[h-1]) # Case 5 - we're a quarter to the next hour if m == 45: return "quarter to {0}".format(time[h]) # Case 6 - we check for minutes after the hour, which is until we hit minute 30 if m < 30: return "{0} minutes past {1}".format(time[m-1], time[h-1]) # Case 7 - this covers the cases where the minutes are after 30 so we're mintues to the next hour return "{0} minutes to {1}".format(time[59-m], time[h])
5,336,430
def swap_values_at(first_position, second_position, list): """ Swaps two values in-place in a list of lists. :param first_position: A two-tuple of integers - the index of the first value. :param second_position: A two-tuple of integers - the index of the second value. :param list: A list of lists. """ i, j = first_position k, l = second_position list[i][j], list[k][l] = list[k][l], list[i][j]
5,336,431
def majorityElement(nums): """超过三分之一的数,最多不超过两个数""" num1, num2 = -1, -1 count1, count2 = 0, 0 for i in range(len(nums)): curNum = nums[i] if curNum == num1: count1 += 1 elif curNum == num2: count2 += 1 elif count1 == 0: num1 = curNum count1 = 1 elif count2 == 0: num2 = curNum count2 = 1 else: count1 -= 1 count2 -= 2 count1, count2 = 0, 0 for n in nums: if n == num1: count1 += 1 elif n == num2: count2 += 1 print("num1: {}, count1: {}; num2: {}, count2: {}".format(num1, count1, num2, count2)) numLens = len(nums) ret = [] if count1 > numLens//3: ret.append(num1) if count2 > numLens//3: ret.append(num2) return ret
5,336,432
def calcDensHeight(T,p,z): """ Calculate the density scale height H_rho Parameters ---------- T: vector (float) temperature (K) p: vector (float) of len(T) pressure (pa) z: vector (float) of len(T height (m) Returns ------- Hbar: vector (float) of len(T) density scale height (m) """ dz=np.diff(z) TLayer=(T[1:] + T[0:-1])/2. dTdz=np.diff(T)/np.diff(z) oneOverH=g/(Rd*TLayer) + (1/TLayer*dTdz) Zthick=z[-1] - z[0] oneOverHbar=np.sum(oneOverH*dz)/Zthick Hbar = 1/oneOverHbar return Hbar
5,336,433
def test_app_initialisation(): """ .. test:: Additional test 1 :id: TC_LE_GROUNDWORK_0_1_12_0404 This test case checks - if a groundwork app can be instantiated - if the app path is set to the current working directory (APP_PATH is unset because no configuration is given) """ app = groundwork.App() assert app.path == os.getcwd()
5,336,434
def resetDb(db_name): """ Create or cleanup a user DB""" if db_name in bw.databases: _eprint("Db %s was here. Reseting it" % db_name) del bw.databases[db_name] db = bw.Database(db_name) db.write(dict())
5,336,435
def Signal_figure(name,I,mask): """Plots a figure designed to show the influences of the image parameters and creates a .png image of it. Parameters ---------- name: string Desired name of the image. I: array MRI image. mask: array Region of interest binary mask. Return ------ References ---------- """ sns.set() sns.set_style('ticks') sns.set_context('talk') fig=plt.figure(figsize=(20,20)) gs = fig.add_gridspec(2,2) ax1=fig.add_subplot(gs[0, 0:1]) ax1.imshow(I,cmap='gray') ax1.set_xticks([]) ax1.set_yticks([]) ax1.set_title('Noiseless image',fontsize=40) ax2=fig.add_subplot(gs[0, 1:2]) ax2.imshow(mask,cmap='gray') ax2.set_xticks([]) ax2.set_yticks([]) ax2.set_title('Mask',fontsize=40) ax3=fig.add_subplot(gs[1, 0:]) hist, bins = np.histogram(I,80) ax3.plot(bins[:-1],hist,'k') ax3.fill_between(bins[:-1], hist,color='black') ax3.set_title('Noiseless image histogram',fontsize=40) ax3.set_ylabel('Number os pixels',fontsize=40) ax3.set_xlabel('Value',fontsize=40) ax3.set_xlim(0,750) plt.xticks(fontsize=30) plt.yticks(fontsize=30) os.chdir('Figures') plt.savefig(name+'.png') os.chdir('..') return None
5,336,436
async def test_zeroconf_parse_error( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker ) -> None: """Test we abort zeroconf flow on IPP parse error.""" mock_connection(aioclient_mock, parse_error=True) discovery_info = MOCK_ZEROCONF_IPP_SERVICE_INFO.copy() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_ZEROCONF}, data=discovery_info, ) assert result["type"] == RESULT_TYPE_ABORT assert result["reason"] == "parse_error"
5,336,437
def load_many_data(filenames, clean=True, first_seconds_remove=2, bandpass_range=(5, 50)): """ Loads several files and cleans data if clean is True. Returns a concatenated set of data (MNE object). """ # TODO: check for matching channels and other errors raw_data = [] if filenames is None: # open tkinter dialogue #multiple files selected at one time root = Tk() root.withdraw() filenames = filedialog.askopenfilenames() for f in filenames: #Check sample frequencies and ask user which sfreq files they would like to look at cur_raw = load_data(f) # current raw object raw_data.append(cur_raw) print("The length of raw_data is:" + str(len(raw_data))) # print("raw_data[0] is " + str(raw_data[0])) # print("The length of the file list is:" + str(len([PATH1 + f for f in glob.glob(PATH1 + '*.raw.fif.gz')]))) #This file list doesn't return anything data = mne.concatenate_raws(raw_data) if clean: data = clean_data(data, remove=first_seconds_remove, bandpass_range=bandpass_range) return data
5,336,438
def extract_push_target(push_target: str): """ Extract push target from the url configured Workspace is optional """ if not push_target: raise ValueError("Cannot extract push-target if push-target is not set.") match_pattern = re.compile( r"(?P<http_scheme>https|http):\/\/(?P<askanna_host>[\w\.\-\:]+)\/(?P<workspace_suuid>[\w-]+){0,1}\/{0,1}project\/(?P<project_suuid>[\w-]+)\/{0,1}" # noqa: E501 ) matches = match_pattern.match(push_target) matches_dict = matches.groupdict() return matches_dict
5,336,439
def main(global_config, **settings): """This function returns a Pyramid WSGI application.""" engine = engine_from_config(settings, 'sqlalchemy.') DBSession.configure(bind=engine) Base.metadata.bind = engine authn_policy = AuthTktAuthenticationPolicy('sosecret', callback=groupfinder, hashalg='sha512') authz_policy = ACLAuthorizationPolicy() memcache_server = os.environ.get('MEMCACHE_SERVERS') settings['beaker.cache.url'] = memcache_server config = Configurator(settings=settings, root_factory='atv.models.RootFactory') config.include('pyramid_chameleon') config.set_authentication_policy(authn_policy) config.set_authorization_policy(authz_policy) config.add_static_view('URL', 'static', cache_max_age=3600) config.add_route('home', '/') config.add_route('panda', '/panda/authorize_upload') config.add_route('search', '/search') config.add_route('searchb', '/search/') config.add_route('answer', '/answer') config.add_route('delete', '/delete') config.add_route('denied', '/denied') config.add_route('explore', '/explore') config.add_route('exploreb', '/explore/') config.add_route('exploretrending', '/explore/trending') config.add_route('exploretrendingb', '/explore/trending/') config.add_route('explorelatest', '/explore/latest') config.add_route('explorelatestb', '/explore/latest/') config.add_route('exploreourpicks', '/explore/ourpicks') config.add_route('exploreourpicksb', '/explore/ourpicks/') config.add_route('vote', '/vote') config.add_route('deleteanswer', '/deleteanswer') config.add_route('stream', '/i/stream') config.add_route('streamb', '/i/stream/') config.add_route('streamlatest', '/i/stream/latest') config.add_route('streamlatestb', '/i/stream/latest/') config.add_route('streamtop', '/i/stream/top') config.add_route('streamtopb', '/i/stream/top/') config.add_route('edit', '/i/edit') config.add_route('editb', '/i/edit/') config.add_route('followunfollow', '/2x4b32cp') config.add_route('deletenotification', '/2x4b32qp') config.add_route('chanlatest', '/{channel}/latest') config.add_route('chanlatestb', '/{channel}/latest/') config.add_route('chanrising', '/{channel}/top') config.add_route('chanrisingb', '/{channel}/top/') config.add_route('ask', '/ask') config.add_route('signup', '/signup') config.add_route('signupb', '/signup/') config.add_route('login', '/login') config.add_route('loginb', '/login/') config.add_route('logout', '/logout') config.add_route('logoutb', '/logout/') config.add_route('privacy', '/privacy') config.add_route('privacyb', '/privacy/') config.add_route('terms', '/terms') config.add_route('termsb', '/terms/') config.add_route('blog', '/blog') config.add_route('blogb', '/blog/') config.add_route('admin', '/admin') config.add_route('adminb', '/admin/') config.add_route('copyright', '/copyright') config.add_route('copyrightb', '/copyright/') config.add_route('contact', '/contact') config.add_route('contactb', '/contact/') config.add_route('verify', '/verify') config.add_route('verifyb', '/verify/') config.add_route('reset', '/reset') config.add_route('resetb', '/reset/') config.add_route('ereset', '/ereset') config.add_route('eresetb', '/ereset/') config.add_route('verifyereset', '/ereset/{code}') config.add_route('verifyreset', '/reset/{code}') config.add_route('verifyemail', '/verify/{code}') config.add_route('following', '/{channel}/following') config.add_route('followingb', '/{channel}/following/') config.add_route('a_history', '/{channel}/history/a') config.add_route('a_historyb', '/{channel}/history/a/') config.add_route('history', '/{channel}/history/q') config.add_route('historyb', '/{channel}/history/q/') config.add_route('question', '/{channel}/{question}') config.add_route('questionb', '/{channel}/{question}/') config.add_route('channel', '/{channel}') config.add_route('channelb', '/{channel}/') #Create WSGI app config.scan() return config.make_wsgi_app()
5,336,440
def dish_gain(radius, freq): """ Dish radar gain. Inputs: - radius [float]: Dish radius (m) - freq [float]: Transmit frequency (Hz) Outputs: - g: Gain """ return 4*pi**2*radius**2/wavelen(freq)**2
5,336,441
def test_advection_1d_constructor(): """ Test constructor """ x_start = 0 x_end = 1 nx = 11 c = 1 advection_1d = Advection1D(c=c, x_start=x_start, x_end=x_end, nx=nx, t_start=0, t_stop=1, nt=11) np.testing.assert_equal(advection_1d.x_start, x_start) np.testing.assert_equal(advection_1d.x_end, x_end) np.testing.assert_equal(advection_1d.nx, nx - 1) np.testing.assert_almost_equal(advection_1d.dx, 0.1) np.testing.assert_equal(advection_1d.x, np.linspace(x_start, x_end, nx)[0:-1]) np.testing.assert_equal(True, isinstance(advection_1d.vector_template, VectorAdvection1D)) np.testing.assert_equal(True, isinstance(advection_1d.vector_t_start, VectorAdvection1D)) np.testing.assert_equal(advection_1d.vector_t_start.get_values(), np.exp(-np.linspace(x_start, x_end, nx)[0:-1] ** 2))
5,336,442
def _collect_files(gold_dir, system_dir, limit): """Return the list of files to run the comparison on.""" gold_files = os.listdir(gold_dir) system_files = os.listdir(system_dir) # don't assume the directory content is the same, take the intersection fnames = sorted(list(set(gold_files).intersection(set(system_files)))) # TODO: includes a hack to avoid a file, get rid of it fnames = [f for f in fnames[:limit] if not f.endswith('wsj_0907.tml')] return fnames
5,336,443
def center_img(img, size=None, fill_value=255): """ center img in a square background """ h, w = img.shape[:2] if size is None: size = max(h, w) shape = (size, size) + img.shape[2:] background = np.full(shape, fill_value, np.uint8) center_x = (size - w) // 2 center_y = (size - h) // 2 background[center_y:center_y + h, center_x:center_x + w] = img return background
5,336,444
def concat_files(*files): """ Concat some files together. Returns out and err to keep parity with shell commands. Args: *files: src1, src2, ..., srcN, dst. Returns: out: string err: string """ out = '' err = '' dst_name = files[-1] sources = [files[f] for f in range(len(files)) if f < len(files) - 1] with open(dst_name, 'w') as dst: for f in sources: with open(f, 'r') as src: for line in src: dst.write(line) return out, err
5,336,445
def distribution_quality( df, refdata, values, ascending, names, fig): """Locate the quantile position of each putative :class:`.DesingSerie` in a list of score distributions. :param df: Data container. :type df: :class:`~pandas.DataFrame` :param grid: Shape of the grid to plot the values in the figure (rows x columns). :type grid: :class:`tuple` with two :class:`int` :param refdata: Data content to use as reference. :type refdata: :class:`~pandas.DataFrame` :param values: Contents from the data container that are expected to be plotted. :type values: :func:`list` of :class:`str` :param ascending: Way the data should be sorted. :data:`True` if the score is better when lower, :data:`False` otherwise. :type ascending: :func:`list` of :class:`bool` :param names: Columns to use as identifiers for the query data. :type names: :func:`list` of :class:`str` :param fig: Figure into which the data is going to be plotted. :type fig: :class:`~matplotlib.figure.Figure` :return: :class:`~matplotlib.axes.Axes` :raises: :ValueError: If columns are requested that do not exist in the :class:`~pandas.DataFrame` of data **and** reference. :ValueError: If there isn't a ``ascending`` definition for each ``value``. :ValueError: If ``refdata`` or ``df`` are not :class:`~pandas.DataFrame`. :valueError: If the requested names do not exist in the input data. .. rubric:: Example: .. ipython:: :okwarning: In [1]: from rstoolbox.plot import distribution_quality ...: from rstoolbox.utils import load_refdata ...: import matplotlib.pyplot as plt ...: df = load_refdata('scop') ...: qr = pd.DataFrame([['2F4V', 'C'], ['3BFU', 'B'], ['2APJ', 'C'], ...: ['2C37', 'V'], ['2I6E', 'H']], ...: columns=['pdb', 'chain']) ...: qr = qr.merge(df, on=['pdb', 'chain']) ...: refs = [] ...: for i, t in qr.iterrows(): ...: refs.append(df[(df['length'] >= (t['length'] - 5)) & ...: (df['length'] <= (t['length'] + 5))]) ...: fig = plt.figure(figsize=(25, 6)) ...: ax = distribution_quality(df=qr, refdata=refs, ...: values=['score', 'pack', 'avdegree', ...: 'cavity', 'psipred'], ...: ascending=[True, False, True, True, False], ...: names=['pdb', 'chain'], fig=fig) ...: plt.tight_layout() @savefig distribution_quality_docs1.png width=5in In [2]: plt.show() In [3]: plt.close() """ if not isinstance(df, pd.DataFrame): raise ValueError('Unknown data format.') if not isinstance(refdata, (pd.DataFrame, list)): raise ValueError('Unknown reference data format.') if len(set(values).difference(set(list(df.columns)))) > 0: raise ValueError("Some of the requested values do not exist " "in the data container.") if len(set(names).difference(set(list(df.columns)))) > 0: raise ValueError("Some of the requested identifiers do not exist " "in the data container.") if isinstance(refdata, list): if len(refdata) != df.shape[0]: raise ValueError('If multiple references are provided, ' 'there should be the same as queries.') for i, x in enumerate(refdata): if not isinstance(x, pd.DataFrame): raise ValueError('Unknown reference {} data format.'.format(i)) if len(set(values).difference(set(list(x.columns)))) > 0: raise ValueError("Some of the requested values do not exist " "in the {} reference container.".format(i)) else: if len(set(values).difference(set(list(refdata.columns)))) > 0: raise ValueError("Some of the requested values do not exist " "in the {} reference container.".format(i)) refdata = [refdata, ] * len(df.shape[0]) if len(values) != len(ascending): raise ValueError("Number of values and orders should match.") ax = plt.subplot2grid((1, 1), (0, 0), fig=fig) cmap = discrete_cmap_from_colors([(144.0 / 255, 238.0 / 255, 144.0 / 255), (135.0 / 255, 206.0 / 255, 250.0 / 255), (255.0 / 255, 165.0 / 255, 0.0 / 255), (205.0 / 255, 92.0 / 255, 92.0 / 255)]) data = [] labs = [] identifiers = df[names[0]].map(str) for i in range(1, len(names)): identifiers += '_' + df[names[i]].map(str) df = df.reset_index(drop=True) for i, row in df.iterrows(): data.append([]) labs.append([]) for isc, sc in enumerate(values): qt = refdata[i][sc].quantile([.25, .5, .75]) if row[sc] <= qt[.25]: data[-1].append(.12 if ascending[isc] else .87) labs[-1].append('Q1' if ascending[isc] else 'Q4') elif row[sc] <= qt[.5]: data[-1].append(.37 if ascending[isc] else .67) labs[-1].append('Q2' if ascending[isc] else 'Q3') elif row[sc] <= qt[.75]: data[-1].append(.67 if ascending[isc] else .37) labs[-1].append('Q3' if ascending[isc] else 'Q2') else: data[-1].append(.87 if ascending[isc] else .12) labs[-1].append('Q4' if ascending[isc] else 'Q1') df = pd.DataFrame(data, columns=values, index=identifiers) sns.heatmap(df, square=True, cmap=cmap, cbar=False, annot=pd.DataFrame(labs), fmt='s', ax=ax) plt.setp( ax.yaxis.get_majorticklabels(), rotation=0 ) return ax
5,336,446
def join_paths(path, *paths): """ """ return os.path.join(path, *paths)
5,336,447
def determine_configure_options(module): """ Determine configure arguments for this system. Automatically determine configure options for this system and build options when the explicit configure options are not specified. """ options = module.params['configure_options'] build_userspace = module.params['build_userspace'] build_module = module.params['build_module'] build_terminal_programs = module.params['build_terminal_programs'] build_bindings = module.params['build_bindings'] build_fuse_client = module.params['build_fuse_client'] with_transarc_paths = module.params['with_transarc_paths'] with_debug_symbols = module.params['with_debug_symbols'] with_rxgk = module.params['with_rxgk'] if options is None: options = {'enable': [], 'disable': [], 'with': [], 'without': []} if not build_userspace or not build_module: module.fail_json(msg="build_userspace and build_module are false.") if build_module: options['enable'].append('kernel-module') if is_linux(): options['with'].append('linux-kernel-packaging') else: options['disable'].append('kernel-module') if not build_terminal_programs: options['disable'].append('gtx') if not build_bindings: options['without'].append('swig') if not build_fuse_client: options['disable'].append('fuse-client') if with_debug_symbols: options['enable'].append('debug') options['disable'].extend(['optimize', 'strip-binaries']) if build_module: options['enable'].append('debug-kernel') options['disable'].append('optimize-kernel') if with_transarc_paths: options['enable'].append('transarc-paths') if with_rxgk: options['enable'].append('rxgk') return options
5,336,448
def __test_maxwellian_solution__(collision_operator, solver): """ tests if df/dt = 0 if f = maxwellian :return: """ f, f_out, v, dv = __run_collision_operator_test_loop__( vshift=0.0, t_end=T_END, collision_operator=collision_operator, solver=solver ) np.testing.assert_almost_equal(f, f_out, decimal=4)
5,336,449
def test_transform_coverage_to_coordinates(coverage, snapshot): """ Test that two sample coverage data sets are correctly converted to coordinates. """ assert transform_coverage_to_coordinates(coverage) == snapshot
5,336,450
def getElementTypeToolTip(t): """Wrapper to prevent loading qtgui when this module is imported""" if t == PoolControllerView.ControllerModule: return "Controller module" elif t == PoolControllerView.ControllerClass: return "Controller class"
5,336,451
def parse_dates(array): """Parse the valid dates in an array of strings. """ parsed_dates = [] for elem in array: elem = parse_date(elem) if elem is not None: parsed_dates.append(elem) return parsed_dates
5,336,452
def export_secret_to_environment(name): """ Add secret to envvar. :param name: The secret key. :return: """ logger.info('Adding envvar: {0}.'.format(name)) try: value = base64.b64decode(os.environ[name]) except KeyError: raise EcosystemTestException( 'Secret env var not set {0}.'.format(name)) if isinstance(value, bytes): value = value.decode(encoding='UTF-8') os.environ[name.upper()] = value
5,336,453
def app_factory(global_config, **local_config): """ 定义一个 app 的 factory 方法,以便在运行时绑定具体的 app,而不是在配置文件中就绑定。 :param global_config: :param local_config: :return: """ return MyApp()
5,336,454
def str_to_datetime(dt_str): """ Converts a string to a UTC datetime object. @rtype: datetime """ try: return dt.datetime.strptime( dt_str, DATE_STR_FORMAT).replace(tzinfo=pytz.utc) except ValueError: # If dt_str did not match our format return None
5,336,455
def quantize(img): """Quantize the output of model. :param img: the input image :type img: ndarray :return: the image after quantize :rtype: ndarray """ pixel_range = 255 return img.mul(pixel_range).clamp(0, 255).round().div(pixel_range)
5,336,456
def detect_os(ctx, loc="local", verbose=0): """ detect what type of os we are using Usage: inv db.detect-os """ env = get_compose_env(ctx, loc=loc) # Override run commands' env variables one key at a time for k, v in env.items(): ctx.config["run"]["env"][k] = v res_os = ctx.run("uname -s") ctx.config["run"]["env"]["OS"] = "{}".format(res_os.stdout) if ctx.config["run"]["env"]["OS"] == "Windows_NT": ctx.config["run"]["env"]["DETECTED_OS"] = "Windows" else: ctx.config["run"]["env"]["DETECTED_OS"] = ctx.config["run"]["env"]["OS"] if verbose >= 1: msg = "[detect-os] Detected: {}".format(ctx.config["run"]["env"]["DETECTED_OS"]) click.secho(msg, fg=COLOR_SUCCESS) if ctx.config["run"]["env"]["DETECTED_OS"] == "Darwin": ctx.config["run"]["env"]["ARCHFLAGS"] = "-arch x86_64" ctx.config["run"]["env"][ "PKG_CONFIG_PATH" ] = "/usr/local/opt/libffi/lib/pkgconfig" ctx.config["run"]["env"]["LDFLAGS"] = "-L/usr/local/opt/openssl/lib" ctx.config["run"]["env"]["CFLAGS"] = "-I/usr/local/opt/openssl/include"
5,336,457
def test_confusion_matrix_per_subgroup_indexed(): """ Tests calculating confusion matrix per index-based sub-population. Tests :func:`fatf.utils.metrics.tools.confusion_matrix_per_subgroup_indexed` function. """ incorrect_shape_error_gt = ('The ground_truth parameter should be a ' '1-dimensional numpy array.') incorrect_shape_error_p = ('The predictions parameter should be a ' '1-dimensional numpy array.') flat = np.array([1, 2]) square = np.array([[1, 2], [3, 4]]) with pytest.raises(IncorrectShapeError) as exin: fumt.confusion_matrix_per_subgroup_indexed([[0]], square, square) assert str(exin.value) == incorrect_shape_error_gt with pytest.raises(IncorrectShapeError) as exin: fumt.confusion_matrix_per_subgroup_indexed([[0]], flat, square) assert str(exin.value) == incorrect_shape_error_p mx1 = np.array([[2, 1, 0], [0, 0, 0], [0, 0, 0]]) mx2 = np.array([[2, 0, 0], [0, 0, 0], [0, 2, 1]]) mx3 = np.array([[2, 0, 1], [0, 2, 0], [1, 0, 1]]) with pytest.warns(UserWarning) as w: pcmxs_1 = fumt.confusion_matrix_per_subgroup_indexed( _INDICES_PER_BIN, GROUND_TRUTH, PREDICTIONS, labels=[0, 1, 2]) pcmxs_2 = fumt.confusion_matrix_per_subgroup_indexed( _INDICES_PER_BIN, GROUND_TRUTH, PREDICTIONS) assert len(w) == 2 wmsg = ('Some of the given labels are not present in either of the input ' 'arrays: {2}.') assert str(w[0].message) == wmsg assert str(w[1].message) == wmsg assert len(pcmxs_1) == 3 assert len(pcmxs_2) == 3 assert np.array_equal(pcmxs_1[0], mx1) assert np.array_equal(pcmxs_2[0], mx1) assert np.array_equal(pcmxs_1[1], mx2) assert np.array_equal(pcmxs_2[1], mx2) assert np.array_equal(pcmxs_1[2], mx3) assert np.array_equal(pcmxs_2[2], mx3)
5,336,458
def is_normalized(M, x, eps): """Return True if (a Fuchsian) matrix M is normalized, that is all the eigenvalues of it's residues in x lie in [-1/2, 1/2) range (in limit eps->0). Return False otherwise. Examples: >>> x, e = var("x epsilon") >>> is_normalized(matrix([[(1+e)/3/x, 0], [0, e/x]]), x, e) True """ points = singularities(M, x) for x0, p in points.items(): M0 = matrix_residue(M, x, x0) for ev in M0.eigenvalues(): ev = limit_fixed(ev, eps, 0) if not (Rational((-1, 2)) <= ev and ev < Rational((1, 2))): return False return True
5,336,459
def _get_dashboard_link(course_key): """ Construct a URL to the external analytics dashboard """ analytics_dashboard_url = f'{settings.ANALYTICS_DASHBOARD_URL}/courses/{str(course_key)}' link = HTML("<a href=\"{0}\" rel=\"noopener\" target=\"_blank\">{1}</a>").format( analytics_dashboard_url, settings.ANALYTICS_DASHBOARD_NAME ) return link
5,336,460
def show_datas(x_train, y_train, x_test, y_test): """Show shapes, values, and images.""" # Show shapes. print('x_train', x_train.shape) print('y_train', y_train.shape) print('x_test', x_test.shape) print('y_test', y_test.shape) # Show a data value. #print(x_train[0]) #print(y_train[0]) # Show an image. img = x_train[0] img = Image.fromarray(img) #img.show()
5,336,461
def figure1_control(data1, cols): """ Creates a data set to plot figure 1, Panel B, D, F. Args: - data1 (pd.DataFrame): the original data set - cols (list): a list of column names ["agus", "bct", "bcg"] Returns: - df_fig1_contr (pd.DataFrame): a data set for plotting panels with controls """ data1["uazY"] = data1["uazY"].astype("category") for column in cols: data_df = data1.loc[(data1["dzagr01"] != 0) & (abs(data1["dzagr01"]) < 0.2), [column, "uazY"]].dropna() data_df["constant"] = [1] * len(data_df.index) y,X = patsy.dmatrices("{}~constant".format(column), data = data_df, return_type='dataframe') ybar = y.mean() y = y - y.groupby(data_df["uazY"]).transform('mean') + ybar Xbar = X.mean() X = X - X.groupby(data_df["uazY"]).transform('mean') + Xbar reg = smp.OLS(y,X).fit() y_hat = reg.predict() y_hat.shape = (len(y_hat), 1) residual = y - y_hat data1["{}_res".format(column)] = residual df_fig1_contr = data1.groupby("dzagr01")["{}_res".format(cols[0]), "{}_res".format(cols[1]), "{}_res".format(cols[2])].mean() df_fig1_contr.reset_index(level = 0, inplace = True) for column in cols: fig1_B1 = sm.ols(formula = "{}_res ~ dzagr01".format(column), data = df_fig1_contr[(df_fig1_contr["dzagr01"] < 0) & (abs(df_fig1_contr["dzagr01"]) < 0.2)]).fit() fig1_B2 = sm.ols(formula = "{}_res ~ dzagr01".format(column), data = df_fig1_contr[(df_fig1_contr["dzagr01"] > 0) & (abs(df_fig1_contr["dzagr01"]) < 0.2)]).fit() pred_B1 = fig1_B1.predict() pred_B2 = fig1_B2.predict() df_fig1_contr.loc[(df_fig1_contr["dzagr01"] < 0) & (abs(df_fig1_contr["dzagr01"]) < 0.2), "pred_{}1".format(column)] = pred_B1 df_fig1_contr.loc[(df_fig1_contr["dzagr01"] > 0) & (abs(df_fig1_contr["dzagr01"]) < 0.2), "pred_{}2".format(column)] = pred_B2 return df_fig1_contr
5,336,462
async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up the IPX800 lights.""" controller = hass.data[DOMAIN][entry.entry_id][CONTROLLER] coordinator = hass.data[DOMAIN][entry.entry_id][COORDINATOR] devices = hass.data[DOMAIN][entry.entry_id][CONF_DEVICES]["light"] entities: list[LightEntity] = [] for device in devices: if device[CONF_EXT_TYPE] == IPX: entities.append(IpxLight(device, controller, coordinator)) if device[CONF_EXT_TYPE] == EXT_X8R: entities.append(X8RLight(device, controller, coordinator)) elif device[CONF_EXT_TYPE] == EXT_XDIMMER: entities.append(XDimmerLight(device, controller, coordinator)) elif device[CONF_EXT_TYPE] == EXT_XPWM and CONF_TYPE not in device: entities.append(XPWMLight(device, controller, coordinator)) elif ( device[CONF_EXT_TYPE] == EXT_XPWM and device.get(CONF_TYPE) == TYPE_XPWM_RGB ): entities.append(XPWMRGBLight(device, controller, coordinator)) elif ( device[CONF_EXT_TYPE] == EXT_XPWM and device.get(CONF_TYPE) == TYPE_XPWM_RGBW ): entities.append(XPWMRGBWLight(device, controller, coordinator)) async_add_entities(entities, True)
5,336,463
def GetEffectiveRightsFromAclW(acl, sid): """ Takes a SID instead of a trustee! """ _GetEffectiveRightsFromAclW = windll.advapi32.GetEffectiveRightsFromAclW _GetEffectiveRightsFromAclW.argtypes = [PVOID, PTRUSTEE_W, PDWORD] #[HANDLE, SE_OBJECT_TYPE, DWORD, PSID, PSID, PACL, PACL, PSECURITY_DESCRIPTOR] _GetEffectiveRightsFromAclW.restype = RaiseIfNotErrorSuccess sid_data = sid.to_bytes() psid = ctypes.create_string_buffer(sid_data, len(sid_data)) trustee = TRUSTEE_W() trustee.pMultipleTrustee = 0 trustee.MultipleTrusteeOperation = 0 trustee.TrusteeForm = 0 trustee.TrusteeType = 0 trustee.ptstrName = ctypes.c_void_p(ctypes.addressof(psid)) effective_rigths_mask = DWORD(0) acl_data = acl.to_bytes() pacl = ctypes.create_string_buffer(acl_data, len(acl_data)) res = _GetEffectiveRightsFromAclW(pacl, trustee, byref(effective_rigths_mask)) return effective_rigths_mask.value
5,336,464
def store(mnemonic, opcode): """ Create a store instruction """ ra = Operand("ra", Or1kRegister, read=True) rb = Operand("rb", Or1kRegister, read=True) imm = Operand("imm", int) syntax = Syntax(["l", ".", mnemonic, " ", imm, "(", ra, ")", ",", " ", rb]) patterns = {"opcode": opcode, "ra": ra, "rb": rb, "imm": imm} members = { "ra": ra, "rb": rb, "imm": imm, "syntax": syntax, "patterns": patterns, "tokens": [Orbis32StoreToken], } class_name = mnemonic.title() return type(class_name, (Orbis32Instruction,), members)
5,336,465
def hlmlDeviceGetPowerUsage(device: hlml_t.HLML_DEVICE.TYPE) -> int: """ Retrieves power usage for the device in mW Parameters: device (HLML_DEVICE.TYPE) - The handle for a habana device. Returns: power (int) - The given device's power usage in mW. """ global _hlmlOBJ power = ctypes.c_uint() fn = _hlmlOBJ.get_func_ptr("hlml_device_get_power_usage") ret = fn(device, ctypes.byref(power)) check_return(ret) return power.value
5,336,466
def usgs_coef_parse(**kwargs): """ Combine, parse, and format the provided dataframes :param kwargs: potential arguments include: dataframe_list: list of dataframes to concat and format args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ # load arguments necessary for function args = kwargs['args'] # Read directly into a pandas df df_raw = pd.read_csv(externaldatapath + "USGS_WU_Coef_Raw.csv") # rename columns to match flowbyactivity format df = df_raw.copy() df = df.rename(columns={"Animal Type": "ActivityConsumedBy", "WUC_Median": "FlowAmount", "WUC_Minimum": "Min", "WUC_Maximum": "Max" }) # drop columns df = df.drop(columns=["WUC_25th_Percentile", "WUC_75th_Percentile"]) # hardcode data df["Class"] = "Water" df["SourceName"] = "USGS_WU_Coef" df["Location"] = US_FIPS df['Year'] = args['year'] df = assign_fips_location_system(df, '2005') df["Unit"] = "gallons/animal/day" df['DataReliability'] = 5 # tmp df['DataCollection'] = 5 # tmp return df
5,336,467
def repeat_move_randomly(n, circle, window): """ Runs move_randomly n times using the given circle and window, each time making 1000 random moves with 0 seconds pause after each. Waits for a mouse click after each of the n trials. Preconditions: :type n: int :type circle: rg.Circle :type window: rg.RoseWindow where n is nonnegative and the circle is already attached to a canvas on the given window. """ for _ in range(n): move_randomly(window, circle, 1000, 0) window.continue_on_mouse_click()
5,336,468
def success_poly_overlap(gt_poly, res_poly, n_frame): """ :param gt_poly: [Nx8] :param result_bb: :param n_frame: :return: """ thresholds_overlap = np.arange(0, 1.05, 0.05) success = np.zeros(len(thresholds_overlap)) iou_list = [] for i in range(gt_poly.shape[0]): iou = poly_overlap_ratio(gt_poly[i], res_poly[i]) iou_list.append(iou) iou_np = np.array(iou_list) for i in range(len(thresholds_overlap)): success[i] = np.sum(iou_np > thresholds_overlap[i]) / float(n_frame) return success
5,336,469
def my_get_size_png(gg, height, width, dpi, limitsize): """ Get actual size of ggplot image saved (with bbox_inches="tight") """ buf = io.BytesIO() gg.save(buf, format= "png", height = height, width = width, dpi=dpi, units = "in", limitsize = limitsize,verbose=False, bbox_inches="tight") buf.seek(0) img = Image.open(buf) width, height = img.size return width / dpi, height / dpi
5,336,470
def main() -> None: """Main function for model inference.""" args = parse_args() assert args.format_only or args.show or args.show_dir, ( "Please specify at least one operation (save/eval/format/show the " "results / save the results) with the argument '--format-only', " "'--show' or '--show-dir'" ) cfg = Config.fromfile(args.config) if cfg.load_from is None: cfg_name = os.path.split(args.config)[-1].replace( "_bdd100k.py", ".pth" ) cfg.load_from = MODEL_SERVER + cfg_name if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get("cudnn_benchmark", False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None if cfg.model.get("neck"): if isinstance(cfg.model.neck, list): for neck_cfg in cfg.model.neck: if neck_cfg.get("rfp_backbone"): if neck_cfg.rfp_backbone.get("pretrained"): neck_cfg.rfp_backbone.pretrained = None elif cfg.model.neck.get("rfp_backbone"): if cfg.model.neck.rfp_backbone.get("pretrained"): cfg.model.neck.rfp_backbone.pretrained = None # in case the test dataset is concatenated samples_per_gpu = 1 if isinstance(cfg.data.test, dict): cfg.data.test.test_mode = True # type: ignore samples_per_gpu = cfg.data.test.pop("samples_per_gpu", 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor( # type: ignore cfg.data.test.pipeline # type: ignore ) elif isinstance(cfg.data.test, list): for ds_cfg in cfg.data.test: ds_cfg.test_mode = True samples_per_gpu = max( [ds_cfg.pop("samples_per_gpu", 1) for ds_cfg in cfg.data.test] ) if samples_per_gpu > 1: for ds_cfg in cfg.data.test: ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline) # init distributed env first, since logger depends on the dist info. if args.launcher == "none": distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) rank, _ = get_dist_info() # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False, ) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get("test_cfg")) fp16_cfg = cfg.get("fp16", None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, cfg.load_from, map_location="cpu") if args.fuse_conv_bn: model = fuse_conv_bn(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if "CLASSES" in checkpoint.get("meta", {}): model.CLASSES = checkpoint["meta"]["CLASSES"] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test( model, data_loader, args.show, args.show_dir, args.show_score_thr ) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, ) outputs = multi_gpu_test( model, data_loader, args.tmpdir, args.gpu_collect ) rank, _ = get_dist_info() if rank == 0: if args.format_only: dataset.convert_format(outputs, args.format_dir)
5,336,471
def dispatch(bot, update: Update): """ Takes a Telegram Update delegates to the correct function to handle that update. Keyword Arguments: bot -- The overall BuzzardBot instance update -- The raw Telegram Update """ print(update) message = Message(bot, update) text = message.text if "/set " in text: handle_set_command(message) elif "/remove " in text: handle_remove_command(message) else: handle_message(message)
5,336,472
def main(): """main""" args = sys.argv if len(args) == 1: arg1 = os.path.basename(args[0]) print('Usage: {} FILE'.format(arg1)) sys.exit(1) infile = sys.argv[1] if not os.path.isfile(infile): print('{} is not a file'.format(infile)) sys.exit(1) for i,line in enumerate(open(infile).read().splitlines(), 1): print ('{:5}: {}'.format(i,line))
5,336,473
def getRnnGenerator(vocab_size,hidden_dim,input_dim=512): """ "Apply" the RNN to the input x For initializing the network, the vocab size needs to be known Default of the hidden layer is set tot 512 like Karpathy """ generator = SequenceGenerator( Readout(readout_dim = vocab_size, source_names = ["states"], # transition.apply.states ??? emitter = SoftmaxEmitter(name="emitter"), feedback_brick = LookupFeedback( vocab_size, input_dim, name = 'feedback' ), name = "readout" ), MySimpleRecurrent( name = "transition", activation = Tanh(), dim = hidden_dim ), weights_init = IsotropicGaussian(0.01), biases_init = Constant(0), name = "generator" ) generator.push_initialization_config() generator.transition.weights_init = IsotropicGaussian(0.01) generator.initialize() return generator
5,336,474
def first_true(iterable, default=False, pred=None): """Returns the first true value in the iterable. If no true value is found, returns *default* If *pred* is not None, returns the first item for which pred(item) is true. """ # first_true([a,b,c], x) --> a or b or c or x # first_true([a,b], x, f) --> a if f(a) else b if f(b) else x return next(filter(pred, iterable), default)
5,336,475
def display_results(final=True): """ Display the results using a colored barplot and event location plot """ if final: st.pyplot( barplot_colored(st.session_state.thresh_fvs, st.session_state.results) ) st.pyplot(mk_event_location_plot(st.session_state.results)) st.success( "The detected phone digits are " + "".join([str(num) for num in st.session_state.number]) ) else: st.pyplot(st.session_state.plt, clear_figure=False) st.pyplot(mk_event_location_plot(st.session_state.results)) st.write("".join([str(num) for num in st.session_state.number]))
5,336,476
def parseFileRefs(htmlfile, usedFiles, skipFiles, indent, trace=print): """ find files referenced in root, recur for html files """ trace('%sParsing:' % ('.' * indent), htmlfile) parser = MyParser(usedFiles, skipFiles, indent) text = open(htmlfile).read() try: parser.feed(text) except html.parser.HTMLParseError as E: print('==>FAILED:', E) # file's refs may be missed! parser.close()
5,336,477
def get_length(filename): """ Get the length of a specific file with ffrobe from the ffmpeg library :param filename: this param is used for the file :type filename: str :return: length of the given video file :rtype: float """ # use ffprobe because it is faster then other (for example moviepy) result = subprocess.run([ "ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", filename ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) return float(result.stdout)
5,336,478
def get_loan_by_id(link): """performs a GET request to the /api/loans/:{insert loanId here} endpoint """ get = requests.get(link) print(get.text)
5,336,479
def is_File(path): """Takes the path of the folder as argument Returns is the path is a of a Folder or not in bool""" if os.path.isfile(path): return True else: return False
5,336,480
def get_device_serial_no(instanceId, gwMgmtIp, fwApiKey): """ Retrieve the serial number from the FW. @param gwMgmtIP: The IP address of the FW @type: ```str``` @param fwApiKey: Api key of the FW @type: ```str``` @return The serial number of the FW @rtype: ```str``` """ serial_no = None if gwMgmtIp is None: logger.error('Firewall IP could not be found. Can not interact with the device') return False logger.info('Retrieve the serial number from FW {} with IP: {}'.format(instanceId, gwMgmtIp)) cmd_show_system_info = "/api/?type=op&key={}&cmd=<show><system><info/></system></show>".format(fwApiKey) response = execute_api_request(gwMgmtIp, 443, cmd_show_system_info) if response['result'] == False: logger.error('PAN Firewall: Fail to execute the show system info command for device: {} with IP: {}'.format(instanceId, gwMgmtIp)) result = response['data'].findall(".//line") for msg in result: error_msg = msg.text logger.error('Reason for failure: {}'.format(error_msg)) return False serial_info = response['data'].findall(".//serial") for info in serial_info: serial_no = info.text if not serial_no: logger.error("Unable to retrieve the serial number from device: {} with IP: {}".format(instanceId, gwMgmtIp)) return serial_no
5,336,481
def dump_dict(dct, outpath='./dict.txt'): """ Dump dict into file. """ with open(Path(outpath), 'w') as file: for k in sorted(dct.keys()): file.write('{}: {}\n'.format(k, dct[k]))
5,336,482
def multilabel_cross_entropy( x: Tensor, target: Tensor, weight: Optional[Tensor] = None, ignore_index: int = -100, reduction: str = 'mean' ) -> Tensor: """Implements the cross entropy loss for multi-label targets Args: x (torch.Tensor[N, K, ...]): input tensor target (torch.Tensor[N, K, ...]): target tensor weight (torch.Tensor[K], optional): manual rescaling of each class ignore_index (int, optional): specifies target value that is ignored and do not contribute to gradient reduction (str, optional): reduction method Returns: torch.Tensor: loss reduced with `reduction` method """ # log(P[class]) = log_softmax(score)[class] logpt = F.log_softmax(x, dim=1) # Ignore index (set loss contribution to 0) valid_idxs = torch.ones(logpt.shape[1], dtype=torch.bool, device=x.device) if ignore_index >= 0 and ignore_index < x.shape[1]: valid_idxs[ignore_index] = False # Weight if weight is not None: # Tensor type if weight.type() != x.data.type(): weight = weight.type_as(x.data) logpt = logpt * weight.view(1, -1, *([1] * (x.ndim - 2))) # type: ignore[attr-defined] # CE Loss loss = - target * logpt # Loss reduction if reduction == 'sum': loss = loss[:, valid_idxs].sum() else: loss = loss[:, valid_idxs].sum(dim=1) if reduction == 'mean': loss = loss.mean() return loss
5,336,483
def dataset_string(dataset): """Generate string from dataset""" data = dataset_data(dataset) try: # single value return fn.VALUE_FORMAT % data except TypeError: # array if dataset.size > 1: return fn.data_string(data) # probably a string return fn.shortstr('%s' % data)
5,336,484
def create_constant_value_validator( constant_cls: Type, is_required: bool ) -> Callable[[str], bool]: """ Create a validator func that validates a value is one of the valid values. Parameters ---------- constant_cls: Type The constant class that contains the valid values. is_required: bool Whether the value is required. Returns ------- validator_func: Callable[[str], bool] The validator func. """ def is_valid(value: str) -> bool: """ Validate that value is valid. Parameters ---------- value: str The value to validate. Returns ------- status: bool The validation status. """ if value is None: return not is_required return value in get_all_class_attr_values(constant_cls) return is_valid
5,336,485
def process_arguments(arguments): """ Process command line arguments to execute VM actions. Called from cm4.command.command :param arguments: """ result = None if arguments.get("--debug"): pp = pprint.PrettyPrinter(indent=4) print("vm processing arguments") pp.pprint(arguments) default_cloud = Config().data["cloudmesh"]["default"]["cloud"] vm = Vm(default_cloud) if arguments.get("list"): result = vm.list() elif arguments.get("create"): # TODO: Reconcile `create` behavior here and in docopts where # create is called with a `VMCOUNT`. vm_name = arguments.get("VMNAME") if vm_name is None: vm_name = vm.new_name() vm.create(vm_name) result = f"Created {vm_name}" elif arguments.get("start"): result = vm.start(arguments.get("--vms")) elif arguments.get("stop"): result = vm.stop(arguments.get("--vms")) elif arguments.get("destroy"): result = vm.destroy(arguments.get("--vms")) elif arguments.get("status"): result = vm.status(arguments.get("--vms")) elif arguments.get("publicip"): result = vm.get_public_ips(arguments.get('--vms')) elif arguments.get("ssh"): # TODO pass elif arguments.get("run"): # TODO pass elif arguments.get("script"): # TODO pass return result
5,336,486
def forward_resolve(state): """Mark the target of a forward branch""" target_label = state.data_stack.pop() label(target_label)
5,336,487
def deliver_hybrid(): """ Endpoint for submissions intended for dap and legacy systems. POST request requires the submission JSON to be uploaded as "submission", the zipped transformed artifact as "transformed", and the filename passed in the query parameters. """ logger.info('Processing Hybrid submission') filename = request.args.get("filename") meta = MetaWrapper(filename) files = request.files submission_bytes = files[SUBMISSION_FILE].read() survey_dict = json.loads(submission_bytes.decode()) data_bytes = files[TRANSFORMED_FILE].read() meta.set_legacy(survey_dict, data_bytes) return process(meta, data_bytes)
5,336,488
def clear_screen(): """Clear the screen""" os.system("cls" if os.name == "nt" else "clear")
5,336,489
def change_path(path, dir="", file="", pre="", post="", ext=""): """ Change the path ingredients with the provided directory, filename prefix, postfix, and extension :param path: :param dir: new directory :param file: filename to replace the filename full_path :param pre: prefix to be appended to filename full_path :param post: postfix to be appended to filename full_path :param ext: extension of filename to be changed :return: """ from pathlib import Path target = "" path_obj = Path(path) old_filename = path_obj.name.replace(path_obj.suffix, "") \ if len(path_obj.suffix) > 0 else path_obj.name if os.name == "nt": if len(dir) > 0: directory = dir elif path.endswith("\\"): directory = path[:-1] old_filename = "" else: directory = str(path_obj.parent) old_extension = path_obj.suffix new_filename = file if len(file) > 0 else old_filename new_filename = pre + new_filename if len(pre) > 0 else new_filename new_filename = new_filename + post if len(post) > 0 else new_filename new_extension = "." + ext if len(ext) > 0 else old_extension target = directory + "\\" + new_filename + new_extension else: if len(dir) > 0: directory = dir elif path.endswith("/"): directory = path[:-1] old_filename = "" else: directory = str(path_obj.parent) old_extension = path_obj.suffix new_filename = file if len(file) > 0 else old_filename new_filename = pre + new_filename if len(pre) > 0 else new_filename new_filename = new_filename + post if len(post) > 0 else new_filename new_extension = "." + ext if len(ext) > 0 else old_extension target = directory + "/" + new_filename + new_extension return target
5,336,490
def test_entities_false(): """Test entity ID policy.""" policy = False with pytest.raises(vol.Invalid): ENTITY_POLICY_SCHEMA(policy)
5,336,491
def midi_to_chroma(pitch): """Given a midi pitch (e.g. 60 == C), returns its corresponding chroma class value. A == 0, A# == 1, ..., G# == 11 """ return ((pitch % 12) + 3) % 12
5,336,492
def _snippet_items(snippet): """Return all markdown items in the snippet text. For this we expect it the snippet to contain *nothing* but a markdown list. We do not support "indented" list style, only one item per linebreak. Raises SyntaxError if snippet not in proper format (e.g. contains anything other than a markdown list). """ unformatted = snippet.text and snippet.text.strip() # treat null text value as empty list if not unformatted: return [] # parse out all markdown list items items = re.findall(r'^[-*+] +(.*)$', unformatted, re.MULTILINE) # if there were any lines that didn't yield an item, assume there was # something we didn't parse. since we never want to lose existing data # for a user, this is an error condition. if len(items) < len(unformatted.splitlines()): raise SyntaxError('unparsed lines in user snippet: %s' % unformatted) return items
5,336,493
def get_collection(*args, **kwargs): """ Returns event collection schema :param event_collection: string, the event collection from which schema is to be returned, if left blank will return schema for all collections """ _initialize_client_from_environment() return _client.get_collection(*args, **kwargs)
5,336,494
def get_tf_generator(data_source: extr.PymiaDatasource): """Returns a generator that wraps :class:`.PymiaDatasource` for the tensorflow data handling. The returned generator can be used with `tf.data.Dataset.from_generator <https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_generator>`_ in order to build a tensorflow dataset`_. Args: data_source (.PymiaDatasource): the datasource to be wrapped. Returns: generator: Function that loops over the entire datasource and yields all entries. """ def generator(): for i in range(len(data_source)): yield data_source[i] return generator
5,336,495
def is_mechanical_ventilation_heat_recovery_active(bpr, tsd, t): """ Control of activity of heat exchanger of mechanical ventilation system Author: Gabriel Happle Date: APR 2017 :param bpr: Building Properties :type bpr: BuildingPropertiesRow :param tsd: Time series data of building :type tsd: dict :param t: time step / hour of the year :type t: int :return: Heat exchanger ON/OFF status :rtype: bool """ if is_mechanical_ventilation_active(bpr, tsd, t)\ and has_mechanical_ventilation_heat_recovery(bpr)\ and control_heating_cooling_systems.is_heating_season(t, bpr): # heat recovery is always active if mechanical ventilation is active (no intelligent by pass) # this is the usual system configuration according to Clayton Miller return True elif is_mechanical_ventilation_active(bpr, tsd, t)\ and has_mechanical_ventilation_heat_recovery(bpr)\ and control_heating_cooling_systems.is_cooling_season(t, bpr)\ and tsd['T_int'][t-1] < tsd['T_ext'][t]: return True elif is_mechanical_ventilation_active(bpr, tsd, t) \ and control_heating_cooling_systems.is_cooling_season(t, bpr) \ and tsd['T_int'][t-1] >= tsd['T_ext'][t]: # heat recovery is deactivated in the cooling case, # if outdoor air conditions are colder than indoor (free cooling) return False else: return False
5,336,496
def test_get_triup_dim(): """Check that the function returns the correct number of nodes couples.""" cm = BiCM(np.array([[1, 0, 1], [1, 1, 1]])) assert cm.get_triup_dim(False) == 3 assert cm.get_triup_dim(True) == 1 td = np.random.randint(low=0, high=2, size=50).reshape(5, 10) cm = BiCM(td) n = cm.get_triup_dim(True) assert n == td.shape[0] * (td.shape[0] - 1) / 2 n = cm.get_triup_dim(False) assert n == td.shape[1] * (td.shape[1] - 1) / 2
5,336,497
def init_app(app, **kwargs): """ Performs app-initialization operations related to the current module. """ from . import errors # noqa: F401 from . import views app.register_blueprint(views.main_blueprint)
5,336,498
async def fetch_user(user_id): """ Asynchronous function which performs an API call to retrieve a user from their ID """ session = aiohttp.ClientSession() res = await session.get(url=str(f'{MAIN_URL}/api/user/{user_id}'), headers=headers) await session.close() # Reminder : 2XX is a success # If unsuccessful we return the error message if res.status != 200: return res.content # However, if successful return the json data that was returned and transform it into its python equivalent return await res.json()
5,336,499