content
stringlengths 22
815k
| id
int64 0
4.91M
|
|---|---|
def test_get_releases_mine(client: TestClient, session: db.Session):
"""Releases list must mark which releases are in the user's collection"""
master_set = Release(name="Master Set")
master_set.is_public = True
session.add(master_set)
first_expansion = Release(name="First Expansion")
first_expansion.is_public = True
session.add(first_expansion)
session.commit()
user, token = create_user_token(session)
session.add(UserRelease(release_id=master_set.id, user_id=user.id))
session.commit()
response = client.get(
"/v2/releases",
headers={"Authorization": f"Bearer {token}"},
)
assert response.status_code == status.HTTP_200_OK
data = response.json()
assert data[0]["stub"] == master_set.stub
assert data[0]["is_mine"] == True
assert data[1]["is_mine"] == False
| 21,200
|
def UnN(X, Z, N, sampling_type):
"""Computes block-wise complete U-statistic."""
return UN(X, Z, N, Un, sampling_type=sampling_type)
| 21,201
|
def view_log_view(request, model_name, object_id):
"""view log view
Arguments:
request {object} -- wsgi request object
content_type {str} -- content type
object_id {int} -- admin_log id
Returns:
retun -- html view
"""
if model_name not in register_form:
return render(request, 'admin/error.html', {'error_msg': 'illegal request!'})
model = register_form[model_name]['model']
res = get_object_or_404(model, pk=object_id)
log_entries = LogEntry.objects.filter(
content_type_id=get_content_type_for_model(model).pk,
object_id=res.id
)
return render(request, 'admin/view_log.html', {
'log_data': log_entries
})
| 21,202
|
def parse_markdown(source: str) -> Tuple[str, Dict]:
"""Parse a Markdown document using our custom parser.
Args:
source (str): the Markdown source text
Returns:
tuple(str, dict):
1. the converted output as a string
2. any extracted metadata as a dict
"""
# Reset or we'll have leftover garbage from the previous file
_md_parser.reset()
html: str = _md_parser.convert(source)
meta: Dict = set_metadata(_md_parser.metadata)
return html, meta
| 21,203
|
def flatten_list(nested_list):
# Essentially we want to loop through each element in the list
# and check to see if it is of type integer or list
"""
Flatten a arbitrarily nested list
Args:
nested_list: a nested list with item to be either integer or list
example:
[2,[[3,[4]], 5]]
Returns:
a flattened list with only integers
example:
[2,3,4,5]
"""
result = []
for element in nested_list:
if isinstance(element, int):
result.append(element)
elif hasattr(element, '__iter__'):
#check to see if it is of type list
list_result = flatten_list(element) #recursive call
for single_integer in list_result:
result.append(single_integer)
return result
| 21,204
|
def detect_runner():
""" Guess which test runner we're using by traversing the stack and looking
for the first matching module. This *should* be reasonably safe, as
it's done during test discovery where the test runner should be the
stack frame immediately outside. """
if _test_runner_override is not None:
return _test_runner_override
global _test_runner_guess
if _test_runner_guess is False:
stack = inspect.stack()
for record in reversed(stack):
frame = record[0]
module = frame.f_globals.get("__name__").partition(".")[0]
if module in _test_runner_aliases:
module = _test_runner_aliases[module]
if module in _test_runners:
_test_runner_guess = module
break
if record[1].endswith("python2.6/unittest.py"):
_test_runner_guess = "unittest"
break
else:
_test_runner_guess = None
return _test_runner_guess
| 21,205
|
def analyze(ss, cfg):
"""
Run job
:param ss: SparkSession
:param cfg: app configuration
:return: None
"""
logger = logging.getLogger(__name__)
logger.info('Python version: {}'.format(sys.version))
logger.info('Finding all papers')
# MAG dataset to use
db_name = cfg['mag_db_name']
# avoid nazis
spark = ss
papers_df = spark \
.table(db_name + '.papers')
journals_df = spark \
.table(db_name + '.journals') \
.select("journalid", "normalizedname", "displayname", "publisher")
paper_author_affil = spark \
.table(db_name + '.paperauthoraffiliations')
# the maximum of the authorsequencenumber should be the number of authors a
# given paper has
# how to do the aggregation: https://stackoverflow.com/a/36251274/3149349
coauthors_per_paper = paper_author_affil \
.groupBy("paperid") \
.agg(f.max(f.col("authorsequencenumber")).alias("n_authors"))
papers_with_coauthors = papers_df.join(coauthors_per_paper, "paperid", "left")
# compute average citations across journals and years
aggregated_citations = papers_with_coauthors \
.groupBy("journalid", "year") \
.agg(f.avg(f.col("citationcount")).alias("mean_citations"),
f.avg(f.col("n_authors")).alias("mean_authors"))
journal_table = journals_df.join(aggregated_citations, "journalid", "left")
logger.info('Writing averaged coauthors and citations to file...')
out_file = "/project/core/bikash_dataset/journal_averages.csv"
journal_table. \
write.csv(out_file, mode="overwrite", header=True, sep=",",
quoteAll=True)
logger.info('Done.')
| 21,206
|
def retinanet(
mode,
offsets_mean=None,
offsets_std=None,
architecture='resnet50',
train_bn=False,
channels_fmap=256,
num_anchors_per_pixel=9,
num_object_classes=1,
pi=0.01,
alpha=0.25,
gamma=2.0,
confidence_threshold=0.05,
num_top_scoring=1000,
batch_size=2,
max_objects_per_class_per_img=100,
iou_threshold=0.5,
output_top_scoring=False
):
"""
Builds a RetinaNet.
Parameters
----------
mode : string
The mode of building a retinanet either in 'training' or 'inference'.
offsets_mean, offsets_std : float
The mean and std of anchor offsets for a given dataset. If offsets are
normalized, they will be used to de-normalize offsets.
architecture : string, optional
ResNet architecture in {'resnet50', 'resnet101'}. The default is
'resnet50'.
train_bn : boolean, optional
Whether one should normalize the layer input by the mean and variance
over the current batch. The default is False, i.e., use the moving
average of mean and variance to normalize the layer input.
channels_fmap : integer, optional
The number of filters in all FPN conv layers. The default is 256.
num_anchors_per_pixel : integer, optional
The number of anchors to generate at different scales for every pixel;
see anchors.anchors_from_fpn(). The default is 9.
num_object_classes : integer, optional
The number of classes containing only objects, i.e., object classes
denoted by positive integers while background denoted by 0. The default
is 1.
pi : float, optional
The bias initialization at the final conv layer of the classification
subnet, prevents the large number of anchors from generating a large
loss value in the first iteration of training. The default is 0.01.
alpha : float, optional
A weighting factor in [0,1] for the object class, addressing class
imbalance. The default is 0.25.
gamma : float, optional
A focusing parameter >= 0 for removing easy examples. The default is
2.0.
confidence_threshold : float, optional
The minimum selection's probabilites. The default is 0.05.
num_top_scoring : integer, optional
The number of top-scoring selections. The default is 1000.
batch_size : integer, optional
The batch size of input images. The default is 2.
max_objects_per_class_per_img : integer, optional
The maximum number of objects over all images for a particular class.
The default is 100.
iou_threshold : float, optional
An iou threshold for NMS. The default is 0.5.
output_top_scoring : boolean, optional
Whether to include the output of detections.select_top_scoring() in the
inference mode. The default is False.
Returns
-------
model : tf keras
The retinanet.
- Training mode
* inputs are a batch of images, anchor indicators, ground-truth
class ids and offsets generated by data_gen.data_generator();
* outputs are predicted anchor probabilities, offsets,
classification and regression losses.
- Inference mode
* inputs are a batch of raw images, a list of anchors at all
levels generated by anchors.anchors_from_fpn() and a window with
shape of [1, 4] used in clipping anchors in
detections.SelectTopScoring() where 4 is (y1, x1, y2, x2) corner
coordinates for all images in the batch.
* outputs is a list of detections, each has corresponding target
boxes, class ids and scores.
"""
assert mode in ['training', 'inference']
# input images
images = tf.keras.Input(shape=(None, None, 3), name='images')
if mode == 'training':
# inputs generated by anchors.anchors_targets()
gt_anchor_indicators = tf.keras.Input(
shape=(None,),
name='gt_anchor_indicators',
dtype=tf.int32)
gt_anchor_class_ids = tf.keras.Input(
shape=(None, num_object_classes),
name='gt_anchor_class_ids',
dtype=tf.int32)
gt_anchor_offsets = tf.keras.Input(
shape=(None, 4),
name='gt_anchor_offsets',
dtype=tf.float32)
# backbone, ResNet + FPN
fmaps = resnet_fpn.resnet_fpn(
images, architecture, train_bn, channels_fmap)
if mode == 'inference':
# input generated by anchors.anchors_from_fpn(), and then each
# element is broadcasted to batch_size, resulting in shape of
# [batch_size, num_anchors_per_fmap, 4]
anchors_fpn_batches = []
for i in range(len(fmaps)):
anchors_i = tf.keras.Input(
shape=(None, 4),
name='anchors_p'+str(i+3),
dtype=tf.float32)
anchors_fpn_batches.append(anchors_i)
# input used when clipping anchors in detections.SelectTopScoring()
window = tf.keras.Input(
shape=(4),
batch_size=1,
name='window',
dtype=tf.int32)
# classification and regression subnets
cls_subnet = subnets.cls_subnet(
num_anchors_per_pixel,
num_object_classes,
channels_fmap,
pi)
reg_subnet = subnets.reg_subnet(
num_anchors_per_pixel,
channels_fmap)
# outputs, list, each element is for one FPN level
if mode == 'training':
pred_anchor_probs, pred_anchor_offsets = [], []
else:
list_anchor_idxes = []
list_anchors, list_class_ids, list_scores = [], [], []
# loop for each FPN level
for i in range(len(fmaps)):
# fmap, [batch_size, h_i, w_i, channels_fmap] where h_i and w_i denote
# the current fmap size
p = fmaps[i]
# cls, [batch_size, h_i, w_i, num_anchors_per_pixel*num_object_classes]
pred_anchor_probs_i = cls_subnet([p])
# reshape, [batch_size, h_i*w_i*num_anchors_per_pixel, num_object_classes]
pred_anchor_probs_i = tf.keras.layers.Reshape(
(-1, num_object_classes),
name='cls_probs_p'+str(i+3)
)(pred_anchor_probs_i)
# reg, [batch_size, h_i, w_i, num_anchors_per_pixel*4]
pred_anchor_offsets_i = reg_subnet([p])
# reshape, [batch_size, h_i*w_i*num_anchors_per_pixel, 4]
pred_anchor_offsets_i = tf.keras.layers.Reshape(
(-1, 4),
name='reg_offsets_p'+str(i+3)
)(pred_anchor_offsets_i)
if mode == 'training':
pred_anchor_probs.append(pred_anchor_probs_i)
pred_anchor_offsets.append(pred_anchor_offsets_i)
else:
# filter low confidence, select top-scoring and refine anchors
anchors_i = anchors_fpn_batches[i]
select_top_scoring_inputs_i = [
anchors_i,
pred_anchor_probs_i,
pred_anchor_offsets_i,
window]
select_top_scoring_outputs_i = detections.SelectTopScoring(
confidence_threshold,
num_top_scoring,
batch_size,
offsets_mean,
offsets_std,
name='select_top_detection_p'+str(i+3)
)(select_top_scoring_inputs_i)
list_anchor_idxes.append(select_top_scoring_outputs_i[0])
list_anchors.append(select_top_scoring_outputs_i[1])
list_class_ids.append(select_top_scoring_outputs_i[2])
list_scores.append(select_top_scoring_outputs_i[3])
if mode == 'training':
# probs, [batch_size, num_anchors, num_object_classes]
pred_anchor_probs = tf.keras.layers.Concatenate(
axis=1, name='pred_anchor_probs')(pred_anchor_probs)
# offsets, [batch_size, num_anchors, 4]
pred_anchor_offsets = tf.keras.layers.Concatenate(
axis=1, name='pred_anchor_offsets')(pred_anchor_offsets)
# cls loss
cls_inputs = [
gt_anchor_indicators, gt_anchor_class_ids, pred_anchor_probs]
cls_loss = losses.ClsLoss(alpha, gamma)(cls_inputs)
# reg loss
reg_inputs = [
gt_anchor_indicators, gt_anchor_offsets, pred_anchor_offsets]
reg_loss = losses.RegLoss()(reg_inputs)
# training model's inputs and outputs
inputs = [
images,
gt_anchor_indicators,
gt_anchor_class_ids,
gt_anchor_offsets,]
outputs = [
pred_anchor_probs,
pred_anchor_offsets,
cls_loss,
reg_loss]
else:
# NMS
nms_fpn_inputs = [
list_anchor_idxes, list_anchors, list_class_ids, list_scores]
nms_fpn_outputs = detections.NMS_FPN(
max_objects_per_class_per_img,
iou_threshold,
batch_size,
name='nms'
)(nms_fpn_inputs)
# anchors_batch, class_ids_batch, scores_batch = nms_fpn_outputs
# inference model's inputs and outputs
inputs = [images, anchors_fpn_batches, window]
if output_top_scoring:
outputs = [nms_fpn_inputs, nms_fpn_outputs]
else:
outputs = nms_fpn_outputs
with tf.device('/cpu:0'):
model = tf.keras.Model(inputs, outputs, name='RetinaNet')
return model
| 21,207
|
def default_chap_exec(gallery_or_id: Union[Gallery, int], chap: Chapter, only_values=False) \
-> Union[Tuple[str, dict], Tuple[int, Union[str, List[str]], int, bytes, int, Literal[0, 1]]]:
"""Pass a Gallery object or gallery id and a Chapter object"""
gid: int
if isinstance(gallery_or_id, Gallery):
gallery: Gallery = gallery_or_id
gid = gallery.id
in_archive = gallery.is_archive
else:
gid = gallery_or_id
in_archive = chap.in_archive
if only_values:
result_exec = (gid, chap.title, chap.number, str.encode(chap.path), chap.pages, in_archive)
else:
result_exec = (
"""
INSERT INTO chapters(series_id, chapter_title, chapter_number, chapter_path, pages, in_archive)
VALUES(:series_id, :chapter_title, :chapter_number, :chapter_path, :pages, :in_archive)""",
{
'series_id': gid,
'chapter_title': chap.title,
'chapter_number': chap.number,
'chapter_path': str.encode(chap.path),
'pages': chap.pages,
'in_archive': in_archive
}
)
return result_exec
| 21,208
|
def merge_closest_groups(groups, special_tokens=None):
""" Finds the two token groups with the best merge score and merges them.
"""
scores = [merge_score(groups[i], groups[i+1], special_tokens) for i in range(len(groups)-1)]
#print(scores)
ind = np.argmax(scores)
groups[ind] = groups[ind] + groups[ind+1]
#print(groups[ind][0].s in openers, groups[ind][0])
if groups[ind][0].s in openers and groups[ind+1][-1].s == openers[groups[ind][0].s]:
groups[ind][0].balanced = True
groups[ind+1][-1].balanced = True
groups.pop(ind+1)
| 21,209
|
def _list_all(listing_call, output_format='dict', *args, **filters):
"""Helper to handle paged listing requests.
Example usage:
``evaluations = list_all(list_evaluations, "predictive_accuracy", task=mytask)``
Parameters
----------
listing_call : callable
Call listing, e.g. list_evaluations.
output_format : str, optional (default='dict')
The parameter decides the format of the output.
- If 'dict' the output is a dict of dict
- If 'dataframe' the output is a pandas DataFrame
*args : Variable length argument list
Any required arguments for the listing call.
**filters : Arbitrary keyword arguments
Any filters that can be applied to the listing function.
additionally, the batch_size can be specified. This is
useful for testing purposes.
Returns
-------
dict or dataframe
"""
# eliminate filters that have a None value
active_filters = {key: value for key, value in filters.items()
if value is not None}
page = 0
result = {}
if output_format == 'dataframe':
result = pd.DataFrame()
# Default batch size per paging.
# This one can be set in filters (batch_size), but should not be
# changed afterwards. The derived batch_size can be changed.
BATCH_SIZE_ORIG = 10000
if 'batch_size' in active_filters:
BATCH_SIZE_ORIG = active_filters['batch_size']
del active_filters['batch_size']
# max number of results to be shown
LIMIT = None
offset = 0
if 'size' in active_filters:
LIMIT = active_filters['size']
del active_filters['size']
if LIMIT is not None and BATCH_SIZE_ORIG > LIMIT:
BATCH_SIZE_ORIG = LIMIT
if 'offset' in active_filters:
offset = active_filters['offset']
del active_filters['offset']
batch_size = BATCH_SIZE_ORIG
while True:
try:
current_offset = offset + BATCH_SIZE_ORIG * page
new_batch = listing_call(
*args,
limit=batch_size,
offset=current_offset,
output_format=output_format,
**active_filters
)
except openml.exceptions.OpenMLServerNoResult:
# we want to return an empty dict in this case
break
if output_format == 'dataframe':
if len(result) == 0:
result = new_batch
else:
result = result.append(new_batch, ignore_index=True)
else:
# For output_format = 'dict' or 'object'
result.update(new_batch)
if len(new_batch) < batch_size:
break
page += 1
if LIMIT is not None:
# check if the number of required results has been achieved
# always do a 'bigger than' check,
# in case of bugs to prevent infinite loops
if len(result) >= LIMIT:
break
# check if there are enough results to fulfill a batch
if BATCH_SIZE_ORIG > LIMIT - len(result):
batch_size = LIMIT - len(result)
return result
| 21,210
|
def get_matching_based_variables(match_definitions:List[Dict[Literal['name', 'matching'],Any]],
global_dict=None,
local_dict=None,
var_lenght=0):
"""
Function to construct an array with values depending on the condition provided by user
The idea is to define things like, for example, 'region' for a table,
indicating which analysis region is used.
Example:
Assume we want to have region="SRB" when "MET>100 && mt2<450".
For ``MET=[50 ,150,250]`` and ``mt2=[300,400,500]``,
when provided with argument
``matching_definitions=[{name:"SRB","matching":["np.logical_and(MET>100,mt2<450)"]}]``
will give output of ``[None,SRB, None]``.
Args:
match_definitions: list of dictionaries defining matching conditions and
the value associated with the match.
Each dictionary has to have field 'name' (value of variable when condition is met)
and 'matching' -- list of cuts and indices for which the condition is met.
Conditions are concacanated to each other.
In the example above ``matching_definitions=[{name:"SRB","matching":["np.logical_and(MET>100,mt2<450)"]}``
is equivalent to ``matching_definitions=[{name:"SRB","matching":[1]}`` (index specifying position that matches)
submission_dict: collections of variables and other known objects to be used in the transformation
local_vars: yet another collection of variables known to be used in the transformation
var_lenght: lenght of the corresponding variable/table (in case index is is chosen for matching specification)
"""
result=None
for specification in match_definitions:
var=specification.get('name',None)
if(var is None):
raise ValueError(f"matching_definitions have to have name for each specification.")
cuts=specification.get('matching',[])
for cut in cuts:
if(type(cut)==str):
cutOutput=np.where(eval(cut,global_dict,local_dict),var,None)
ToAppend=cutOutput.reshape(len(cutOutput),1)
if(not result):
result=ToAppend
else:
result=np.concatenate((result,ToAppend),axis=1)
elif(type(cut)==int):
if(cut>=len(cuts)):
raise RuntimeError("lenght of cut table smaller than required index.")
else:
ToAppend=np.array([[None]]*len(var_lenght))
ToAppend[cut]=var
if(not result):
result=ToAppend
else:
result=np.concatenate((result,ToAppend),axis=1)
else:
raise TypeError("Variable cutDefinitions has improper content.")
return result
| 21,211
|
def _AStar_graph(problem: BridgeProblem) -> (list, list):
"""Used for graphing, returns solution as well as all nodes in a list"""
all_nodes = [problem.initial_node]
pq = [(problem.initial_node.path_cost + problem.h(problem.initial_node.state), problem.initial_node)]
closed = set()
while True:
assert pq
priority, node = heappop(pq)
if problem.goal_test(node):
return problem.get_ancestors(node), all_nodes
closed.add(node)
children = problem.expand(node)
for node in children:
priority = node.path_cost + problem.h(node.state)
bn = (priority, node)
inpq = None
for i, (_, pq_node) in enumerate(pq):
if node == pq_node: inpq = i
if node not in closed and inpq is None:
heappush(pq, bn)
elif inpq is not None and bn < pq[inpq]:
pq.pop(inpq)
pq.append(bn)
heapify(pq)
all_nodes.extend(children)
| 21,212
|
def plot_setup(name, figsize=None, fontsize=9, font='paper', dpi=None):
""" Setup a PDF page for plot.
name: PDF file name. If not ending with .pdf, will automatically append.
figsize: dimension of the plot in inches, should be an array of length two.
fontsize: fontsize for legends and labels.
font: font for legends and labels, 'paper' uses Times New Roman, 'default'
uses default, a tuple of (family, font, ...) customizes font.
dpi: resolution of the figure.
"""
paper_plot(fontsize=fontsize, font=font)
if not name.endswith('.pdf'):
name += '.pdf'
pdfpage = matplotlib.backends.backend_pdf.PdfPages(name)
fig = matplotlib.pyplot.figure(figsize=figsize, dpi=dpi)
return pdfpage, fig
| 21,213
|
def author_endyear(pub2author_df = None, colgroupby = 'AuthorId', datecol = 'Year', show_progress=False):
"""
Calculate the year of last publication for each author.
Parameters
----------
pub2author_df : DataFrame, default None, Optional
A DataFrame with the author2publication information.
colgroupby : str, default 'AuthorId', Optional
The DataFrame column with Author Ids. If None then the database 'AuthorId' is used.
datecol : str, default 'Year', Optional
The DataFrame column with Date information. If None then the database 'Year' is used.
Returns
-------
DataFrame
Productivity DataFrame with 2 columns: 'AuthorId', 'CareerLength'
"""
newname_dict = zip2dict([str(datecol), '0'], ['EndYear']*2)
return pub2author_df.groupby(colgroupby)[datecol].max().to_frame().reset_index().rename(columns=newname_dict)
| 21,214
|
def plot_spatial_3d(pos, output_file, box_size):
"""
Plots the 3D spatial distribution of galaxies.
Parameters
==========
pos : ``numpy`` 3D array with length equal to the number of galaxies
The position (in Mpc/h) of the galaxies.
output_file : String
Name of the file the plot will be saved as.
Returns
=======
None. A plot will be saved as ``output_file``.
"""
from mpl_toolkits.mplot3d import Axes3D
from random import sample
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
# Generate a subsample if necessary.
num_gals = len(pos)
sample_size = 10000
if num_gals > sample_size:
w = sample(list(np.arange(num_gals)), sample_size)
else:
w = np.arange(num_gals)
ax.scatter(pos[w,0], pos[w,1], pos[w,2], alpha=0.5)
ax.set_xlim([0.0, box_size])
ax.set_ylim([0.0, box_size])
ax.set_zlim([0.0, box_size])
ax.set_xlabel(r"$\mathbf{x \: [h^{-1}Mpc]}$")
ax.set_ylabel(r"$\mathbf{y \: [h^{-1}Mpc]}$")
ax.set_zlabel(r"$\mathbf{z \: [h^{-1}Mpc]}$")
fig.tight_layout()
fig.savefig(output_file)
print("Saved file to {0}".format(output_file))
plt.close()
| 21,215
|
def _filter_switch_ip(data):
"""filter switch ip related params to db/api understandable format.
Examples:
{'switchIp': '10.0.0.1'} to {'ip_int': {'eq': int of '10.0.0.1'}}
{'switchIpStart': '10.0.0.1'} to
{'ip_int': {'ge': int of '10.0.0.1'}}
{'switchIpEnd': '10.0.0.1'} to
{'ip_int': {'le': int of '10.0.0.1'}}
{'switchIpRange': '10.0.0.1,10.0.0.254'} to
{'ip_int': {'between': [int of '10.0.0.1', int of '10.0.0.254']}}
the switch ip related params can be declared multi times.
"""
ip_filter = {}
switch_ips = _get_data_list(data, 'switchIp')
if switch_ips:
ip_filter['eq'] = []
for switch_ip in switch_ips:
ip_filter['eq'].append(long(netaddr.IPAddress(switch_ip)))
switch_start = _get_data(data, 'switchIpStart')
if switch_start is not None:
ip_filter['ge'] = long(netaddr.IPAddress(switch_start))
switch_end = _get_data(data, 'switchIpEnd')
if switch_end is not None:
ip_filter['lt'] = long(netaddr.IPAddress(switch_end))
switch_nets = _get_data_list(data, 'switchIpNetwork')
if switch_nets:
ip_filter['between'] = []
for switch_net in switch_nets:
network = netaddr.IPNetwork(switch_net)
ip_filter['between'].append((network.first, network.last))
switch_ranges = _get_data_list(data, 'switchIpRange')
if switch_ranges:
ip_filter.setdefault('between', [])
for switch_range in switch_ranges:
ip_start, ip_end = switch_range.split(',')
ip_filter['between'].append(
long(netaddr.IPAddress(ip_start)),
long(netaddr.IPAddress(ip_end))
)
if ip_filter:
data['ip_int'] = ip_filter
_clean_data(
data,
[
'switchIp', 'switchIpStart', 'switchIpEnd',
'switchIpNetwork', 'switchIpRange'
]
)
| 21,216
|
def to_gif(images, fps):
"""Converts image sequence (4D numpy array) to gif."""
imageio.mimsave('./animation.gif', images, fps=fps)
return embed.embed_file('./animation.gif')
| 21,217
|
async def stop_all(consumers):
"""Stop all consumers.
"""
# pylint: disable=expression-not-assigned
[await a.stop() for a in consumers.values()]
| 21,218
|
def get_half_max_down(signal, peak):
"""See `get_half_max_up` for explanation.
This is a minor modification of the above function.
"""
if peak['peak'] == 0:
return np.nan
fflag = False
half_max = signal[peak['peak']] / 2
falling_signal = signal[peak['peak']:(peak['right']+1)]
closest_idx = (np.abs(falling_signal - half_max)).argmin() + peak['peak']
if closest_idx <= 1 or closest_idx >= 98:
logging.warning('HM_DOWN: half-max too close to end of signal')
return np.nan
# If the signal at the index is nearly equal to half max, take that index
if np.allclose(half_max, signal[closest_idx]):
half_max_point = closest_idx
# ...otherwise interpolate
else:
ix = -1
triplet = signal[(closest_idx - 1):(closest_idx + 2)]
if triplet[0] > half_max > triplet[1]:
ix = 0
elif triplet[1] > half_max > triplet[2]:
ix = 1
else:
logging.warning('HM_DOWN: simple method for interpolating'
' half-max decay time failed')
fflag = True
if ix != -1:
y = [ix,ix+1]
x = [triplet[ix], triplet[ix+1]]
f = interp1d(x,y)
trip_coord = f(half_max)
half_max_point = closest_idx + (trip_coord - 1)
if fflag == True:
half_max_down = np.nan
else:
half_max_down = float(half_max_point - peak['peak'])
return half_max_down
| 21,219
|
def connect2server(env=None, key=None, keyfile=None, logger=None):
"""Sets up credentials for accessing the server. Generates a key using info
from the named keyname in the keyfile and checks that the server can be
reached with that key.
Also handles keyfiles stored in s3 using the env param"""
if key and keyfile:
keys = None
if os.path.isfile(keyfile):
with io.open(keyfile, 'r') as kf:
keys_json_string = kf.read()
keys = json.loads(keys_json_string)
if keys:
key = keys.get(key)
try:
auth = get_authentication_with_server(key, env)
except Exception:
logger.error("Authentication failed")
sys.exit(1)
return auth
| 21,220
|
def ternary(c):
"""
Encodes the circuit with ternary values
Parameters
----------
c : Circuit
Circuit to encode.
Returns
-------
Circuit
Encoded circuit.
"""
if c.blackboxes:
raise ValueError(f"{c.name} contains a blackbox")
t = copy(c)
# add dual nodes
for n in c:
if c.type(n) in ["and", "nand"]:
t.add(f"{n}_x", "and")
t.add(
f"{n}_x_in_fi",
"or",
fanout=f"{n}_x",
fanin=[f"{p}_x" for p in c.fanin(n)],
)
t.add(f"{n}_0_not_in_fi", "nor", fanout=f"{n}_x")
for p in c.fanin(n):
t.add(
f"{p}_is_0", "nor", fanout=f"{n}_0_not_in_fi", fanin=[p, f"{p}_x"]
)
elif c.type(n) in ["or", "nor"]:
t.add(f"{n}_x", "and")
t.add(
f"{n}_x_in_fi",
"or",
fanout=f"{n}_x",
fanin=[f"{p}_x" for p in c.fanin(n)],
)
t.add(f"{n}_1_not_in_fi", "nor", fanout=f"{n}_x")
for p in c.fanin(n):
t.add(f"{p}_is_1", "and", fanout=f"{n}_1_not_in_fi", fanin=p)
t.add(f"{p}_not_x", "not", fanout=f"{p}_is_1", fanin=f"{p}_x")
elif c.type(n) in ["buf", "not"]:
p = c.fanin(n).pop()
t.add(f"{n}_x", "buf", fanin=f"{p}_x")
elif c.type(n) in ["output"]:
p = c.fanin(n).pop()
t.add(f"{n}_x", "output", fanin=f"{p}_x")
elif c.type(n) in ["xor", "xnor"]:
t.add(f"{n}_x", "or", fanin=(f"{p}_x" for p in c.fanin(n)))
elif c.type(n) in ["0", "1"]:
t.add(f"{n}_x", "0")
elif c.type(n) in ["input"]:
t.add(f"{n}_x", "input")
else:
raise ValueError(f"Node {n} has unrecognized type: {c.type(n)}")
return t
| 21,221
|
def eval_lane_per_frame(
gt_file: str, pred_file: str, bound_ths: List[float]
) -> Dict[str, np.ndarray]:
"""Compute mean,recall and decay from per-frame evaluation."""
task2arr: Dict[str, np.ndarray] = dict() # str -> 2d array
gt_byte = np.asarray(Image.open(gt_file))
pred_byte = np.asarray(Image.open(pred_file))
gt_foreground = get_foreground(gt_byte)
pd_foreground = get_foreground(pred_byte)
for task_name, class_func in sub_task_funcs.items():
task_scores: List[List[float]] = []
for value in range(len(sub_task_cats[task_name])):
gt_mask = class_func(gt_byte, value) & gt_foreground
pd_mask = class_func(pred_byte, value) & pd_foreground
cat_scores = [
eval_lane_per_threshold(gt_mask, pd_mask, bound_th)
for bound_th in bound_ths
]
task_scores.append(cat_scores)
task2arr[task_name] = np.array(task_scores)
return task2arr
| 21,222
|
def membrane(field, voxel_size=1, bound='dct2', dim=None, weights=None):
"""Precision matrix for the Membrane energy
Note
----
.. This is exactly equivalent to SPM's membrane energy
Parameters
----------
field : (..., *spatial) tensor
voxel_size : float or sequence[float], default=1
bound : str, default='dct2'
dim : int, default=field.dim()
weights : (..., *spatial) tensor, optional
Returns
-------
field : (..., *spatial) tensor
"""
if weights is None:
return _membrane_l2(field, voxel_size, bound, dim)
def mul_(x, y):
"""Smart in-place multiplication"""
if ((torch.is_tensor(x) and x.requires_grad) or
(torch.is_tensor(y) and y.requires_grad)):
return x * y
else:
return x.mul_(y)
backend = dict(dtype=field.dtype, device=field.device)
dim = dim or field.dim()
if torch.is_tensor(voxel_size):
voxel_size = make_vector(voxel_size, dim, **backend)
dims = list(range(field.dim()-dim, field.dim()))
fieldf = diff(field, dim=dims, voxel_size=voxel_size, side='f', bound=bound)
weights = torch.as_tensor(weights, **backend)
fieldf = mul_(fieldf, weights[..., None])
fieldb = diff(field, dim=dims, voxel_size=voxel_size, side='b', bound=bound)
fieldb = mul_(fieldb, weights[..., None])
dims = list(range(fieldb.dim() - 1 - dim, fieldb.dim() - 1))
fieldb = div(fieldb, dim=dims, voxel_size=voxel_size, side='b', bound=bound)
dims = list(range(fieldf.dim()-1-dim, fieldf.dim()-1))
field = div(fieldf, dim=dims, voxel_size=voxel_size, side='f', bound=bound)
del fieldf
field += fieldb
field *= 0.5
return field
| 21,223
|
def test_can_accept_colormap_dict():
"""Test that we can accept vispy colormaps in a dictionary"""
colors = np.array([[0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]])
cmap = ensure_colormap({'colors': colors, 'name': 'special_name'})
assert isinstance(cmap, Colormap)
np.testing.assert_almost_equal(cmap.colors, colors)
assert cmap.name == 'special_name'
| 21,224
|
def get_uint64(dgram: bytes, start_index: int) -> Tuple[int, int]:
"""Get a 64-bit big-endian unsigned integer from the datagram.
Args:
dgram: A datagram packet.
start_index: An index where the integer starts in the datagram.
Returns:
A tuple containing the integer and the new end index.
Raises:
ParseError if the datagram could not be parsed.
"""
try:
if len(dgram[start_index:]) < _UINT64_DGRAM_LEN:
raise ParseError('Datagram is too short')
return (
struct.unpack('>Q',
dgram[start_index:start_index + _UINT64_DGRAM_LEN])[0],
start_index + _UINT64_DGRAM_LEN)
except (struct.error, TypeError) as e:
raise ParseError('Could not parse datagram %s' % e)
| 21,225
|
def fftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor:
"""
Similar to np.fft.fftshift but applies to PyTorch Tensors
Args:
x: A PyTorch tensor.
dim: Which dimension to fftshift.
Returns:
fftshifted version of x.
"""
if dim is None:
# this weird code is necessary for toch.jit.script typing
dim = [0] * (x.dim())
for i in range(1, x.dim()):
dim[i] = i
# also necessary for torch.jit.script
shift = [0] * len(dim)
for i, dim_num in enumerate(dim):
shift[i] = x.shape[dim_num] // 2
return roll(x, shift, dim)
| 21,226
|
def flatten(x):
"""Flattens nested list"""
if isinstance(x, list):
return [a for i in x for a in flatten(i)]
else:
return [x]
| 21,227
|
def get_capture_points_gazebo(bag, odom_topic='/gazebo/model_states', sync_topic='/mavros/imu/data_raw', camera_freq=20, sync_topic_freq=100, method='every'):
"""
method(string): method for sampling capturing points.
'every': Sample IMU for every n msgs, and then capture odometry msg which has the closest timestamp. This requires the existence of odom_msg for every imu_msg.
"""
odom_msg_list = []
odom_time_list = []
odom_stamp_list = []
capture_time_list = []
sync_topic_num = 0
for topic, msg, t in bag:
if topic==odom_topic:
odom_msg_list.append(msg)
odom_time_list.append(t.to_time())
odom_stamp_list.append(copy.deepcopy(t))
for topic, msg, t in bag:
if topic==sync_topic:
if odom_time_list[0] > t.to_time():
continue
if sync_topic_num % (int(sync_topic_freq/camera_freq)) == 0:
capture_time_list.append(t.to_time())
sync_topic_num += 1
assert len(odom_msg_list)==len(odom_time_list) and len(odom_msg_list)==len(odom_stamp_list), 'length of odom_(msg/time/stamp)_list is not equal.'
# start sampling odometry
capture_points = []
curr_odom_idx = 0
for idx, capture_time in enumerate(capture_time_list):
# take an odometry msg which has the timestamp closest to capture_time
if capture_time < min(odom_time_list):
continue
while abs(capture_time - odom_time_list[curr_odom_idx]) >= 5*10**(-5):
curr_odom_idx += 1
if curr_odom_idx >= len(odom_time_list):
break
if curr_odom_idx >= len(odom_time_list):
break
if odom_topic=='/gazebo/gazebo_states':
capture_point = get_capture_point_from_gazebo_model_states(idx, odom_msg_list[curr_odom_idx], odom_stamp_list[curr_odom_idx])
elif odom_topic=='/odometry':
capture_point = get_capture_point_from_navmsgs_odom(idx, odom_msg_list[curr_odom_idx], odom_stamp_list[curr_odom_idx])
capture_points.append(capture_point)
return capture_points
| 21,228
|
async def test_get_connected_devices_no_ip(event_loop, mocker):
"""Test for get asuswrt_data and not requiring ip."""
mock_run_cmd(mocker, [WL_DATA, ARP_DATA, NEIGH_DATA, LEASES_DATA])
scanner = AsusWrt(host="localhost", port=22, mode="ap", require_ip=False)
data = await scanner.async_get_connected_devices()
assert WAKE_DEVICES_NO_IP == data
| 21,229
|
def parse_input():
"""Parse input and return array of calendar
A user can either pass the calendar via the stdin or via one or several
icalendar files. This method will parse the input and return an array
of valid icalendar
"""
input_data = ''
calendars = []
for line in fileinput.input():
if 'BEGIN:VCALENDAR' in line:
calendars.append(input_data)
input_data = line
else:
input_data += line
calendars.append(input_data)
return calendars[1:]
| 21,230
|
def identity(obj):
"""Returns the ``obj`` parameter itself
:param obj: The parameter to be returned
:return: ``obj`` itself
>>> identity(5)
5
>>> foo = 2
>>> identity(foo) is foo
True
"""
return obj
| 21,231
|
def assignCrowdingDist(individuals):
"""Assign a crowding distance to each individual's fitness. The
crowding distance can be retrieve via the :attr:`crowding_dist`
attribute of each individual's fitness.
"""
if len(individuals) == 0:
return
distances = [0.0] * len(individuals)
crowd = [(ind.fitness.values, i) for i, ind in enumerate(individuals)]
nobj = len(individuals[0].fitness.values)
for i in xrange(nobj):
crowd.sort(key=lambda element: element[0][i])
distances[crowd[0][1]] = float("inf")
distances[crowd[-1][1]] = float("inf")
if crowd[-1][0][i] == crowd[0][0][i]:
continue
norm = nobj * float(crowd[-1][0][i] - crowd[0][0][i])
for prev, cur, next in zip(crowd[:-2], crowd[1:-1], crowd[2:]):
distances[cur[1]] += (next[0][i] - prev[0][i]) / norm
for i, dist in enumerate(distances):
individuals[i].fitness.crowding_dist = dist
| 21,232
|
def loadAllProteins(proteinfiles, basefile, chromosomes,
matrixfile,correctmatrix,celltype,resolution,internaloutdir,chromsizefile):
"""
Function for binning ChIP-seq data.
Data must be provided in narrowPeak, broadPeak or bigwig format.
Simultaneous usage of different formats is possible.
Outputs a ph5 file which contains binned proteins per chromosome
"""
#if matrixfile has been provided, internalOutDir must also be present
if matrixfile and not internaloutdir:
msg = "Error: If --matrixFile / -mif is provided, --internalOutDir / -iod cannot be empty\n"
sys.exit(msg)
### checking extensions of files
if not checkExtension(basefile, '.ph5'):
basefilename = os.path.splitext(basefile)[0]
basefile = basefilename + ".ph5"
msg = "basefile must have .ph5 file extension\n"
msg += "renamed to {:s}"
print(msg.format(basefile))
#remove existing basefiles, since they sometimes caused problems
if os.path.isfile(basefile):
os.remove(basefile)
#split up the inputs and separate by file extensions
protPeakFileList = [fileName for fileName in proteinfiles if checkExtension(fileName,['.narrowPeak', '.broadPeak'])]
bigwigFileList = [fileName for fileName in proteinfiles if checkExtension(fileName, 'bigwig')]
wrongFileExtensionList = [fileName for fileName in proteinfiles \
if not fileName in protPeakFileList and not fileName in bigwigFileList]
if wrongFileExtensionList:
msg = "The following input files are neither narrowPeak / broadPeak nor bigwig files and cannot be processed:\n"
msg += ", ".join(wrongFileExtensionList)
print(msg)
if not protPeakFileList and not bigwigFileList:
msg = "Nothing to process. Exiting"
print(msg)
return
### creation of parameter set
params = initParamDict()
params['resolution'] = resolution
params['cellType'] = celltype
### conversion of desired chromosomes to list
if chromosomes:
chromosomeList = chromosomes.split(',')
chromosomeList = [chrom.strip() for chrom in chromosomeList]
else:
chromosomeList = [str(chrom) for chrom in range(1, 23)]
params['chromSizes'] = getChromSizes(chromosomeList, chromsizefile)
params['proteinFileNames'] = [os.path.basename(x) for x in protPeakFileList + bigwigFileList]
###load protein data from files and store into python objects
proteinData = getProteinFiles(protPeakFileList + bigwigFileList)
### iterate over all possible combinations of settings (merging)
for setting in conf.getBaseCombinations():
### get settings and file tag for each combination
params['mergeOperation'] = setting['mergeOperation']
proteinTag =createProteinTag(params)
for chromosome in tqdm(params['chromSizes'], desc= 'Iterate chromosomes'):
### get protein data from each object into a dataframe and store in a list
binnedProteins = []
for proteinfile in proteinData.keys():
binnedProteins.append(loadProteinData(proteinData[proteinfile], chromosome, params))
### merge the binned protein dataframes from the list into a single dataframe
for i in range(len(binnedProteins)):
binnedProteins[i].columns = [str(i)] #rename signalValue columns to make joining easy
maxBinInt = math.ceil(params['chromSizes'][chromosome] / int(resolution))
proteinDf = pd.DataFrame(columns=['bin_id'])
proteinDf['bin_id'] = list(range(0,maxBinInt))
proteinDf.set_index('bin_id', inplace=True)
proteinDf = proteinDf.join(binnedProteins, how='outer')
proteinDf.fillna(0.0,inplace=True)
### store binned proteins in base file
proteinChromTag = proteinTag + "_chr" + chromosome
store = pd.HDFStore(basefile)
store.put(proteinChromTag, proteinDf, format='table')
store.get_storer(proteinChromTag).attrs.metadata = params
store.close()
#if a matrixfile has been provided, cut it into chromosomes
#and store the resulting matrices internally
#these matrices can later be used for training
if matrixfile:
for chromosome in params['chromSizes']:
cutHicMatrix(matrixfile, chromosome, internaloutdir, basefile)
if correctmatrix:
correctHiCMatrix(matrixfile, chromosome, internaloutdir)
params['matrixCorrection'] = correctmatrix
| 21,233
|
def percent_clipper(x, percentiles):
"""
Takes data as np.ndarray and percentiles as array-like
Returns clipped ndarray
"""
LOWERBOUND, UPPERBOUND = np.percentile(x, [percentiles[0], percentiles[1])
return np.clip(x, LOWERBOUND, UPPERBOUND)
| 21,234
|
def check_prob_vector(p):
"""
Check if a vector is a probability vector.
Args:
p, array/list.
"""
assert np.all(p >= 0), p
assert np.isclose(np.sum(p), 1), p
return True
| 21,235
|
def relabel_subgraph():
""" This function adapts an existing sampler by relabelling the vertices in the edge list
to have dense index.
Returns
-------
sample: a function, that when invoked, produces a sample for the input function.
"""
def relabel(edge_list, positive_vertices):
shape = edge_list.shape
vertex_index, edge_list = np.unique(edge_list, return_inverse=True)
edge_list = edge_list.astype(np.int32).reshape(shape)
# relabel the positive vertices
positive_verts = np.searchsorted(vertex_index, positive_vertices)
is_positive = np.zeros_like(vertex_index)
is_positive[positive_verts] = 1
return edge_list, vertex_index, is_positive
def sample(data):
edge_list = data['edge_list']
positive_vertices = data.get('positive_vertices', tf.unique(tf.reshape(edge_list, [-1]))[0])
vertex_index = data.get('vertex_index', None)
if isinstance(edge_list, tf.Tensor):
new_edge_list, new_vertex_index, is_positive = tf.py_func(relabel, [edge_list, positive_vertices],
[tf.int32, tf.int32, tf.int32], stateful=False)
new_edge_list.set_shape(edge_list.shape)
new_vertex_index.set_shape([None])
is_positive.set_shape([None])
else:
new_edge_list, new_vertex_index, is_positive = relabel(edge_list, positive_vertices)
if vertex_index is not None:
if isinstance(vertex_index, tf.Tensor):
vertex_index = tf.gather(vertex_index, new_vertex_index, name='resample_vertex_index')
else:
vertex_index = vertex_index[new_vertex_index]
else:
vertex_index = new_vertex_index
return {**data, 'edge_list': new_edge_list, 'vertex_index': vertex_index, 'is_positive': is_positive}
return sample
| 21,236
|
def get_activation_bytes(input_file=None, checksum=None):
"""
Get the activation bytes from the .aax checksum using rainbow tables.
None is returned if the activation bytes can't be computed.
"""
if (not input_file and not checksum) or (input_file and checksum):
raise ValueError('Please specify only one of [input_file, checksum]')
if input_file:
checksum = get_checksum(input_file)
_, stdout, _ = run_cmd(
['./rcrack', '.', '-h', checksum],
cwd=os.path.join(_SCRIPT_PATH, 'tables')
)
activation_bytes = re.findall('hex:(.*)', stdout)[0]
return activation_bytes
| 21,237
|
def init_binary(mocker):
"""Initialize a dummy BinaryDigitalAssetFile for testing."""
mocker.patch.multiple(
houdini_package_runner.items.digital_asset.BinaryDigitalAssetFile,
__init__=lambda x, y, z: None,
)
def _create():
return houdini_package_runner.items.digital_asset.BinaryDigitalAssetFile(
None, None
)
return _create
| 21,238
|
def with_setup_(setup=None, teardown=None):
"""Decorator like `with_setup` of nosetest but which can be applied to any
function"""
def decorated(function):
def app(*args, **kwargs):
if setup:
setup()
try:
function(*args, **kwargs)
finally:
if teardown:
teardown()
return app
return decorated
| 21,239
|
def g_model(padmode, padvalue, interpolation, resource_names,
datasource, binning, output):
"""Derives a model from DATASOURCE with given BINNING.
The model is written to OUTPUT.
BINNING can be a path to a previously created binning, or custom bin edges
in all dimension: dimensions are separated by colons, edge values in
each dimension are separated by commas.
"""
# datasource checks
try:
source = DataSourceIO.read(datasource)
except:
raise click.FileError(datasource, "does not exist or is not readable.")
# validate dimensionality match between binning and source
if binning.dimensions != len(source.domain):
raise click.UsageError(
"Dimensions of binning (%d) and datasource (%d) mismatch."
% (binning.dimensions, len(source.domain)))
# resources checks: split list and verify dim match with source
if not resource_names is None:
resource_names = resource_names.split(",")
if len(resource_names) != len(source.column_names):
raise click.BadOptionUsage("resource-names",
"Dimensions of resource names (%d) and datasource (%d) mismatch."
% (len(resource_names), len(source.column_names)))
# convert model params to enums and create ModelParams object
model_params = ModelParams(
Pad_Modes[padmode.upper()],
Pad_Values[padvalue.upper()],
Interpolation_Modes[interpolation.upper()]
)
# histogram the data with given binning
histogram = source.get_histogram(binning)
model = Model.from_histogram(model_params, histogram, resource_names)
model.to_file(output)
| 21,240
|
def post_options():
"""Standard arguments and options for posting timeseries readings.
"""
options = [
click.argument('port'),
click.argument('value', type=JSONParamType()),
click.option('--timestamp', metavar='DATE',
help='the time of the reading'),
]
def wrapper(func):
func.__doc__ += _post_options_docs
for option in reversed(options):
func = option(func)
return func
return wrapper
| 21,241
|
def make_filesystem(device, block_device):
"""
Synchronously initialize a device file with an ext4 filesystem.
:param FilePath device: The path to the file onto which to put the
filesystem. Anything accepted by ``mkfs`` is acceptable (including a
regular file instead of a device file).
:param bool block_device: If ``True`` then the device is expected to be a
block device and the ``-F`` flag will not be passed to ``mkfs``. If
``False`` then the device is expected to be a regular file rather than
an actual device and ``-F`` will be passed to ``mkfs`` to force it to
create the filesystem. It's possible to detect whether the given file
is a device file or not. This flag is required anyway because it's
about what the caller *expects*. This is meant to provide an extra
measure of safety (these tests run as root, this function potentially
wipes the filesystem from the device specified, this could have bad
consequences if it goes wrong).
"""
options = []
if block_device and not device.isBlockDevice():
raise Exception(
"{} is not a block device but it was expected to be".format(
device.path
)
)
elif device.isBlockDevice() and not block_device:
raise Exception(
"{} is a block device but it was not expected to be".format(
device.path
)
)
if not block_device:
options.extend([
# Force mkfs to make the filesystem even though the target is not a
# block device.
b"-F",
])
command = [b"mkfs"] + options + [b"-t", b"ext4", device.path]
run_process(command)
| 21,242
|
def _partial_read_stats(
args: argparse.Namespace,
stats: Dict,
input_data: Dict,
):
"""Calculate statistics about partially read files.
:param args: Parsed command line arguments.
:param stats: Statistics data structure.
:param input_data: Input data from registry for partially read file.
"""
if args.verbose:
percent = (input_data['offset'] / input_data['source_size']) * 100.0
LOGGER.info("Partially read file (%0.2f%%): %s [offset=%s, size=%s]",
percent, input_data['source'], input_data['offset'],
input_data['source_size'])
if args.show_summary:
stats['count_partial'] += 1
| 21,243
|
def add_vcz_parameters(this_flux_lm, which_gate: str = None):
"""
Adds to `this_flux_lm` the necessary parameters used for the VCZ
flux waveform including corrections
"""
this_flux_lm.add_parameter(
"vcz_amp_dac_at_11_02_%s" % which_gate,
docstring="DAC amplitude (in the case of HDAWG) at the 11-02 "
"interaction point. NB: the units might be different for some "
"other AWG that is distinct from the HDAWG.",
parameter_class=ManualParameter,
vals=vals.Numbers(0.0, 10.0),
initial_value=0.5,
unit="a.u.",
label="DAC amp. at the interaction point",
)
this_flux_lm.add_parameter(
"vcz_amp_sq_%s" % which_gate,
docstring="Amplitude of the square parts of the NZ pulse. "
"1.0 means qubit detuned to the 11-02 interaction point.",
parameter_class=ManualParameter,
vals=vals.Numbers(0.0, 10.0),
initial_value=1.0,
unit="a.u.",
label="Square relative amp.",
)
this_flux_lm.add_parameter(
"vcz_amp_fine_%s" % which_gate,
docstring="Amplitude of the single sample point inserted at "
"the end of the first half of the NZ pulse and at the "
"beginning of the second half. "
"1.0 means same amplitude as `sq_amp_XX`.",
parameter_class=ManualParameter,
vals=vals.Numbers(0.0, 1.0),
initial_value=.5,
unit="a.u.",
label="Fine tuning amp.",
)
this_flux_lm.add_parameter(
"vcz_use_amp_fine_%s" % which_gate,
docstring="",
parameter_class=ManualParameter,
vals=vals.Bool(),
initial_value=True,
label="Add extra point with amplitude `vcz_amp_fine_XX`?",
)
this_flux_lm.add_parameter(
"vcz_amp_q_ph_corr_%s" % which_gate,
docstring="Amplitude at the squares of the NZ pulse for single "
"qubit phase correction.",
parameter_class=ManualParameter,
vals=vals.Numbers(0.0, 1.0),
initial_value=0.,
unit="a.u.",
label="Amp. phase correction",
)
this_flux_lm.add_parameter(
"vcz_time_q_ph_corr_%s" % which_gate,
docstring="Total time of the single qubit phase correction NZ pulse.",
parameter_class=ManualParameter,
vals=vals.Numbers(0.0, 500e-9),
initial_value=0.,
unit="s",
label="Time phase correction",
)
this_flux_lm.add_parameter(
"vcz_correct_q_phase_%s" % which_gate,
docstring="",
parameter_class=ManualParameter,
vals=vals.Bool(),
initial_value=False,
label="Correct single Q phase?",
)
this_flux_lm.add_parameter(
"vcz_time_single_sq_%s" % which_gate,
docstring="Duration of each square. "
"You should set it close to half speed limit (minimum "
"time required to perform a full swap, i.e. 11 -> 02 -> 11)",
parameter_class=ManualParameter,
vals=vals.Numbers(1.0 / 2.4e9, 500e-9),
initial_value=15.5555555e-9,
unit="s",
label="Duration single square",
)
this_flux_lm.add_parameter(
"vcz_time_middle_%s" % which_gate,
docstring="Time between the two square parts.",
parameter_class=ManualParameter,
vals=vals.Numbers(0., 500e-9),
initial_value=0.,
unit="s",
label="Time between squares",
)
this_flux_lm.add_parameter(
"vcz_time_pad_%s" % which_gate,
docstring="Time used to align different cz pulses.",
parameter_class=ManualParameter,
vals=vals.Numbers(0., 500e-9),
initial_value=0,
unit="s",
label="Time padding before and after main pulse",
)
this_flux_lm.add_parameter(
"vcz_time_before_q_ph_corr_%s" % which_gate,
docstring="Time after main pulse before single qubit phase "
"correction.",
parameter_class=ManualParameter,
vals=vals.Numbers(0., 500e-9),
initial_value=0.,
unit="s",
label="Time before correction",
)
this_flux_lm.add_parameter(
"vcz_use_asymmetric_amp_%s" % which_gate,
docstring="Flag to turn on asymmetric amplitudes of the SNZ pulse",
parameter_class=ManualParameter,
vals=vals.Bool(),
initial_value=False,
label="Use asymmetric SNZ pulse amplitudes",
)
this_flux_lm.add_parameter(
"vcz_amp_pos_%s" % which_gate,
docstring="Amplitude of positive part of SNZ pulse, "
"used only if vcz_use_asymmetric_amp is true.",
parameter_class=ManualParameter,
vals=vals.Numbers(0.0, 10.0),
initial_value=1.0,
unit="a.u.",
label="Positive SNZ amplitude, if asymmetric is used.",
)
this_flux_lm.add_parameter(
"vcz_amp_neg_%s" % which_gate,
docstring="Amplitude of negative part of SNZ pulse, "
"used only if vcz_use_asymmetric_amp is true.",
parameter_class=ManualParameter,
vals=vals.Numbers(0.0, 10.0),
initial_value=1.0,
unit="a.u.",
label="Negative SNZ amplitude, if asymmetric is used.",
)
for specificity in ["coarse", "fine"]:
this_flux_lm.add_parameter(
"vcz_{}_optimal_hull_{}".format(specificity, which_gate),
initial_value=np.array([]),
label="{} hull".format(specificity),
docstring=(
"Stores the boundary points of a optimal region 2D region "
"generated from a landscape. Intended for data points "
"(x, y) = (`vcz_amp_sq_XX`, `vcz_time_middle_XX`)"
),
parameter_class=ManualParameter,
vals=vals.Arrays(),
)
this_flux_lm.add_parameter(
"vcz_{}_cond_phase_contour_{}".format(specificity, which_gate),
initial_value=np.array([]),
label="{} contour".format(specificity),
docstring=(
"Stores the points for an optimal conditional phase "
"contour generated from a landscape. Intended for data points "
"(x, y) = (`vcz_amp_sq_XX`, `vcz_time_middle_XX`) "
"typically for the 180 deg cond. phase."
),
parameter_class=ManualParameter,
vals=vals.Arrays(),
)
| 21,244
|
def bufferSetDefaultAllocMode(defAllocMode, defInitialSize):
"""
Sets new global default allocation mode and minimal intial size.
defAllocMode : the new default buffer allocation mode.
defInitialSize : the new default buffer minimal intial size.
"""
xmlsecmod.bufferSetDefaultAllocMode(defAllocMode, defInitialSize)
| 21,245
|
def test_in_scalar():
""" Testing the in_scalar function
"""
scalar = in_scalar(5)
assert scalar.units == u.dimensionless
assert scalar.magnitude == 5
scalar = in_scalar(5 * u.dimensionless)
assert scalar.units == u.dimensionless
assert scalar.magnitude == 5
with pytest.raises(ValueError):
in_scalar(u.Quantity(5, u.m))
| 21,246
|
def authenticated(f):
"""Decorator for authenticating with the Hub"""
@wraps(f)
def decorated(*args, **kwargs):
token = request.cookies.get(auth.cookie_name)
if token:
user = auth.user_for_token(token)
else:
user = None
if user:
return f(user, *args, **kwargs)
else:
# redirect to login url on failed auth
state = auth.generate_state(next_url=request.path)
response = make_response(
redirect(auth.login_url + '&state=%s' % state)
)
response.set_cookie(auth.state_cookie_name, state)
return response
return decorated
| 21,247
|
def warn(msg):
"""
Print an warning message.
"""
print("WARNING: {}".format(msg), file=sys.stderr)
| 21,248
|
def json_complex_hook(dct):
"""
Return an encoded complex number to it's python representation.
:param dct: (dict) json encoded complex number (__complex__)
:return: python complex number
"""
if isinstance(dct, dict):
if '__complex__' in dct:
parts = dct['__complex__']
assert len(parts) == 2
return parts[0] + parts[1] * 1j
return dct
| 21,249
|
def reg_logLiklihood(x, weights, y, C):
"""Regularizd log-liklihood function (cost function to minimized in logistic
regression classification with L2 regularization)
Parameters
-----------
x : {array-like}, shape = [n_samples, n_features + 1]
feature vectors. Note, first column of x must be
a vector of ones.
weights : 1d-array, shape = [1, 1 + n_features]
Coefficients that weight each samples feature vector
y : list, shape = [n_samples,], values = 1|0
target values
C : float
Regularization parameter. C is equal to 1/lambda
Returns
-----------
Value of regularized log-liklihood function with the given feature values,
weights, target values, and regularization parameter
"""
z = np.dot(x, weights)
reg_term = (1 / (2 * C)) * np.dot(weights.T, weights)
return -1 * np.sum((y * np.log(logistic_func(z))) + ((1 - y) * np.log(1 - logistic_func(z)))) + reg_term
| 21,250
|
def two_dimension_heatmap(data, xmin, xmax, ymin, ymax):
"""
Args:
nparray with two dimensions
"""
# interpolation gaussian
plt.xlabel("Packet size (bit)")
plt.ylabel("bit error rate")
image = plt.imshow(
data,
cmap="Greens",
interpolation="none",
extent=[xmin, xmax, ymax, ymin],
aspect="auto",
)
plt.colorbar(image)
plt.show()
| 21,251
|
def smooth_internal(xyzlist, atom_names, width, allpairs=False, w_morse=0.0, rep=False, anchor=-1, window='hanning', **kwargs):
"""Smooth a trajectory by transforming to redundant, internal coordinates,
running a 1d timeseries smoothing algorithm on each DOF, and then
reconstructing a set of consistent cartesian coordinates.
TODO: write this function as a iterator that yields s_xyz, so that
they can be saved to disk (async) immediately when they're produced.
Parameters
----------
xyzlist : np.ndarray
Cartesian coordinates
atom_names : array_like of strings
The names of the atoms. Required for determing connectivity.
width : float
Width for the smoothing kernels
allpairs : bool
Use all interatomic distances (not just the bonds)
w_morse: float
Weight of the Morse potential in the smoothing
window: string, default='hanning'
Type of window to perform the averaging
Other Parameters
----------------
bond_width : float
Override width just for the bond terms
angle_width : float
Override width just for the angle terms
dihedral_width : float
Override width just for the dihedral terms
xyzlist_guess :
Cartesian coordinates to use as a guess during the
reconstruction from internal
xyzlist_match :
Cartesian coordinates to use as a guess during the
reconstruction from internal
Returns
-------
smoothed_xyzlist : np.ndarray
"""
bond_width = kwargs.pop('bond_width', width)
angle_width = kwargs.pop('angle_width', width)
dihedral_width = kwargs.pop('dihedral_width', width)
xyzlist_guess = kwargs.pop('xyzlist_guess', xyzlist)
xyzlist_match = kwargs.pop('xyzlist_match', None)
for key in list(kwargs.keys()):
raise KeyError('Unrecognized key, %s' % key)
ibonds, iangles, idihedrals = None, None, None
s_bonds, s_angles, s_dihedrals = None, None, None
ibonds, iangles, idihedrals = union_connectivity(xyzlist, atom_names, allpairs=allpairs)
# get the internal coordinates in each frame
bonds = core.bonds(xyzlist, ibonds)
angles = core.angles(xyzlist, iangles)
dihedrals = core.dihedrals(xyzlist, idihedrals)
# run the smoothing
s_bonds = np.zeros_like(bonds)
s_angles = np.zeros_like(angles)
s_dihedrals = np.zeros_like(dihedrals)
for i in range(bonds.shape[1]):
#s_bonds[:, i] = buttersworth_smooth(bonds[:, i], width=bond_width)
s_bonds[:, i] = window_smooth(bonds[:, i], window_len=bond_width, window=window)
for i in range(angles.shape[1]):
#s_angles[:, i] = buttersworth_smooth(angles[:, i], width=angle_width)
s_angles[:, i] = window_smooth(angles[:, i], window_len=angle_width, window=window)
# filter the dihedrals with the angular smoother, that filters
# the sin and cos components separately
for i in range(dihedrals.shape[1]):
#s_dihedrals[:, i] = angular_smooth(dihedrals[:, i],
# smoothing_func=buttersworth_smooth, width=dihedral_width)
s_dihedrals[:, i] = angular_smooth(dihedrals[:, i],
smoothing_func=window_smooth,
window_len=dihedral_width, window=window)
# compute the inversion for each frame
s_xyzlist = np.zeros_like(xyzlist_guess)
errors = np.zeros(len(xyzlist_guess))
# Thresholds for error and jump
w_xrefs = 0.0
for i, xyz_guess in enumerate(xyzlist_guess):
w_xref = 0.0
passed = False
corrected = False
while not passed:
passed = False
if i > 0:
xref = s_xyzlist[i-1]
else:
xref = None
passed = True
ramp = 0.1
if i >= (1.0-ramp)*len(xyzlist_guess):
w_morse_ = w_morse * float(len(xyzlist_guess)-i-1)/(ramp*len(xyzlist_guess))
elif i <= ramp*len(xyzlist_guess):
w_morse_ = w_morse * float(i)/(ramp*len(xyzlist_guess))
else:
w_morse_ = w_morse
r = least_squares_cartesian(s_bonds[i], ibonds, s_angles[i], iangles,
s_dihedrals[i], idihedrals, xyz_guess, xref=xref, w_xref=w_xref,
elem=atom_names, w_morse=w_morse_, rep=rep)
s_xyzlist[i], errors[i] = r
if i > 0:
aligned0 = align_trajectory(np.array([xyzlist[i],xyzlist[i-1]]), 0)
aligned1 = align_trajectory(np.array([s_xyzlist[i],s_xyzlist[i-1]]), 0)
maxd0 = np.max(np.abs(aligned0[1] - aligned0[0]))
maxd1 = np.max(np.abs(aligned1[1] - aligned1[0]))
if maxd0 > 1e-5:
jmp = maxd1 / maxd0
else:
jmp = 0.0
else:
maxd1 = 0.0
jmp = 0.0
if (not passed) and (anchor < 0 or jmp < anchor):
passed = True
if w_xref >= 1.99:
w_xrefs = w_xref - 1.0
elif w_xref < 0.1:
w_xrefs = 0.0
else:
w_xrefs = w_xref / 1.5
elif not passed:
if w_xref == 0.0:
if w_xrefs > 0.0:
w_xref = w_xrefs
else:
w_xref = 2.0**10 / 3.0**10
else:
if w_xref >= 0.99:
w_xref += 1.0
else:
w_xref *= 1.5
if w_xref > 30:
print("\nanchor %f, giving up" % (w_xref))
# Set it back to a reasonable (but still high) number
w_xrefs = 20.0
passed = True
else:
print("jump %f max(dx) %f, trying anchor = %f\r" % (jmp, maxd1, w_xref), end=' ')
corrected = True
if xyzlist_match != None:
aligned_ij = align_trajectory(np.array([s_xyzlist[i], xyzlist_match[i]]), 0)
maxd_ij = np.max(np.abs(aligned_ij[1] - aligned_ij[0]))
if maxd_ij < 1e-3:
print("% .4f" % maxd_ij, "\x1b[92mMatch\x1b[0m")
s_xyzlist[i:] = xyzlist_match[i:]
break
# Print out a message if we had to correct it.
if corrected:
print('\rxyz: error %f max(dx) %f jump %s anchor %f' % (errors[i], maxd1, jmp, w_xref))
if (i%10) == 0:
print("\rWorking on frame %i / %i" % (i, len(xyzlist_guess)), end=' ')
print()
if i > 0:
print('max(dx) %f (new) %f (old) %s%f\x1b[0m (ratio)' % (maxd1, maxd0, "\x1b[91m" if jmp > 3 else "", jmp))
#return_value = (interweave(s_xyzlist), interweave(errors))
return_value = s_xyzlist, errors
return return_value
| 21,252
|
def cli():
"""Define the command line interface of the script."""
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawTextHelpFormatter
)
parser.add_argument("--output", help="the directory to store the archives")
parser.add_argument("--repeats", type=int, default=2, help="the number of compilations to run")
parser.add_argument("--overwrite", action="store_true", help="ignore existing archives")
parser.add_argument("--log-level", choices=("debug", "info", "warning", "error", "critical"),
default="info", help="the severity of log messages to print")
return parser
| 21,253
|
def estimate_gridsearch_size(model, params):
""" Compute the total number of parameter combinations in a grid search
Parameters
----------
model: str
name of the model to train. The function currently supports feedforward neural networks (model = 'FNN'),
long-short term memory (model = 'LSTM') and naive discriminative learning (model = 'NDL') also commonly known as
Rescorla-Wagner model.
params: dict of lists
parameter set of the grid search:
Returns
-------
int
number of param combinations
"""
### FNN model
if model == 'FNN':
# Extract the dimensions of the pretrained embeddings
pretrain_embed_dim = {}
embed_inputs = params['embedding_input']
for i, e in enumerate(embed_inputs):
if embed_inputs[i] and embed_inputs[i] != 'learn':
pretrain_embed_dim.update({embed_inputs[i]:extract_embedding_dim(embed_inputs[i])})
# Create a list of dictionaries giving all possible parameter combinations
keys, values = zip(*params.items())
grid_full = [dict(zip(keys, v)) for v in itertools.product(*values)]
### Remove impossible combinations
ind_to_remove = []
for i,d in enumerate(grid_full):
# In the case of no hidden layer, no need to set the 'activation' parameter - only 'last_activation' is used
if grid_full[i]['hidden_layers'] == 0:
grid_full[i]['activation'] = None
# In the case of hot encoding or pretrained embedding, no need to set embedding_dim, otherwise,
# it is essential to set embedding_dim, so remove all cases where embedding_dim is not given with
# embeddings to be learned from scratch
if not grid_full[i]['embedding_input']:
grid_full[i]['embedding_dim'] = None
elif grid_full[i]['embedding_input'] == 'learn' and not grid_full[i]['embedding_dim']:
ind_to_remove.append(i)
elif grid_full[i]['embedding_input'] and grid_full[i]['embedding_input'] != 'learn':
grid_full[i]['embedding_dim'] = pretrain_embed_dim[grid_full[i]['embedding_input']]
# In the case of embeddings, it is essential to set 'max_len' (max_len cannot be None),
# so remove all cases where embeddings are used max_len is not given
if grid_full[i]['embedding_input'] and not grid_full[i]['max_len']:
ind_to_remove.append(i)
# First remove the detected impossible combinations (e.g. 'embedding_input = 'learn', embedding_dim = None')
for ii in sorted(ind_to_remove, reverse = True):
del grid_full[ii]
# Second remove the duplicated combinations 'embedding_input != 'learn', embedding_dim = None'
grid_full = [dict(t) for t in {tuple(d.items()) for d in grid_full}]
### LSTM model
elif model == 'LSTM':
# Extract the dimensions of the pretrained embeddings
pretrain_embed_dim = {}
embed_inputs = params['embedding_input']
for i, e in enumerate(embed_inputs):
if embed_inputs[i] and embed_inputs[i] != 'learn':
pretrain_embed_dim.update({embed_inputs[i]:extract_embedding_dim(embed_inputs[i])})
### Create a list of dictionaries giving all possible parameter combinations
keys, values = zip(*params.items())
grid_full = [dict(zip(keys, v)) for v in itertools.product(*values)]
### Remove impossible combinations
ind_to_remove = []
for i,d in enumerate(grid_full):
# In the case of hot encoding or pretrained embedding, no need to set embedding_dim, otherwise,
# it is essential to set embedding_dim, so remove all cases where embedding_dim is not given with
# embeddings to be learned from scratch
if not grid_full[i]['embedding_input']:
grid_full[i]['embedding_dim'] = None
elif grid_full[i]['embedding_input'] == 'learn' and not grid_full[i]['embedding_dim']:
ind_to_remove.append(i)
elif grid_full[i]['embedding_input'] and grid_full[i]['embedding_input'] != 'learn':
grid_full[i]['embedding_dim'] = pretrain_embed_dim[grid_full[i]['embedding_input']]
# First remove the combinations 'embedding_input = 'learn', embedding_dim = None'
for ii in sorted(ind_to_remove, reverse = True):
del grid_full[ii]
# Second remove the duplicated combinations 'embedding_input != 'learn', embedding_dim = None'
grid_full = [dict(t) for t in {tuple(d.items()) for d in grid_full}]
### NDL model
elif model == 'NDL':
### Create a list of dictionaries giving all possible parameter combinations
keys, values = zip(*params.items())
grid_full = [dict(zip(keys, v)) for v in itertools.product(*values)]
# Raise an error if a non-supported model is entered
else:
raise ValueError(f'The entered model "{model}" is not supported')
return len(grid_full)
| 21,254
|
def softmax_logits_kld(ops, p_logits, q_logits, keepdims=False):
"""
Compute the KL-divergence between two softmax categorical distributions
via logits. The last dimension of `p` and `q` are treated as the
softmax dimension, and will be reduced for computing KL-divergence.
.. math::
\\operatorname{D}_{KL}(p(y)\\|q(y)) =
\\sum_y p(y) \\left(\\log p(y) - \\log q(y)\\right)
Args:
ops (npyops or tfops): The math operations module.
p_logits: Logits of softmax categorical :math:`p(y)`.
q_logits: Logits of softmax categorical :math:`q(y)`.
keepdims (bool): Whether or not to keep the reduced dimension?
(default :obj:`False`)
Returns:
The computed softmax categorical distributions KL-divergence.
"""
p_logits = ops.convert_to_tensor(p_logits)
q_logits = ops.convert_to_tensor(q_logits)
with ops.name_scope('softmax_logits_kld', values=[p_logits, q_logits]):
log_p = log_softmax(ops, p_logits)
log_q = log_softmax(ops, q_logits)
p = softmax(ops, p_logits)
# TODO: can we reduce time consumption by ``np.exp(log_p)``?
# p = ops.exp(log_p)
return ops.reduce_sum(p * (log_p - log_q), axis=-1, keepdims=keepdims)
| 21,255
|
def E_inductive_from_ElectricDipoleWholeSpace(
XYZ,
srcLoc,
sig,
f,
current=1.0,
length=1.0,
orientation="X",
kappa=1.0,
epsr=1.0,
t=0.0,
):
"""
Computing Inductive portion of Electric fields from Electrical Dipole in a Wholespace
TODO:
Add description of parameters
"""
mu = mu_0 * (1 + kappa)
epsilon = epsilon_0 * epsr
sig_hat = sig + 1j * omega(f) * epsilon
XYZ = utils.asArray_N_x_Dim(XYZ, 3)
# Check
if XYZ.shape[0] > 1 & f.shape[0] > 1:
raise Exception(
"I/O type error: For multiple field locations only a single frequency can be specified."
)
dx = XYZ[:, 0] - srcLoc[0]
dy = XYZ[:, 1] - srcLoc[1]
dz = XYZ[:, 2] - srcLoc[2]
r = np.sqrt(dx ** 2.0 + dy ** 2.0 + dz ** 2.0)
# k = np.sqrt( -1j*2.*np.pi*f*mu*sig )
k = np.sqrt(omega(f) ** 2.0 * mu * epsilon - 1j * omega(f) * mu * sig)
front = current * length / (4.0 * np.pi * sig_hat * r ** 3) * np.exp(-1j * k * r)
if orientation.upper() == "X":
Ex_inductive = front * (k ** 2 * r ** 2)
Ey_inductive = np.zeros_like(Ex_inductive)
Ez_inductive = np.zeros_like(Ex_inductive)
return Ex_inductive, Ey_inductive, Ez_inductive
elif orientation.upper() == "Y":
# x--> y, y--> z, z-->x
Ey_inductive = front * (k ** 2 * r ** 2)
Ez_inductive = np.zeros_like(Ey_inductive)
Ex_inductive = np.zeros_like(Ey_inductive)
return Ex_inductive, Ey_inductive, Ez_inductive
elif orientation.upper() == "Z":
# x --> z, y --> x, z --> y
Ez_inductive = front * (k ** 2 * r ** 2)
Ex_inductive = np.zeros_like(Ez_inductive)
Ey_inductive = np.zeros_like(Ez_inductive)
return Ex_inductive, Ey_inductive, Ez_inductive
| 21,256
|
def translate_categories_json(n=10):
"""Translate category descriptions in categories.json to the most common n non-english languages"""
language_list = get_language_list()
language_list = language_list[:n]
with open(os.path.join(data_directory, 'categories.json'), 'r') as f:
categories_mapping = json.load(f)
categories_mapping = {**categories_mapping['Mobile'], **categories_mapping['Beauty'], **categories_mapping['Fashion']}
translate_client = translate.Client()
translated_categories = categories_mapping.copy()
for [lang, count] in language_list:
target = lang
for key, value in categories_mapping.items(): # key = description
try:
translation = translate_client.translate(
key, source_language='en', target_language=target)
except:
print('Error translating {} to {}'.format(key, target))
continue
translated_categories[translation['translatedText']] = value
| 21,257
|
def str2posix(timelist):
""" This will take a list of strings with the date along with a start and
end time and make a list with the posix times.
Inputs
timelist - A list of strings with the data followed by two times.
The date for the second time can also be used, it will be at index
2 and the second time will be at index 3.
Outputs
dtts - A list of posix times from the original inputs"""
if len(timelist)==3:
timelist.insert(2,timelist[0])
(dt1,dt2) = parser.parse(timelist[0]+ ' '+timelist[1]),parser.parse(timelist[2]+ ' '+timelist[3])
dt1 =dt1.replace(tzinfo=pytz.utc)
dt2 = dt2.replace(tzinfo=pytz.utc)
dt1ts = (dt1 -datetime(1970,1,1,0,0,0,tzinfo=pytz.utc)).total_seconds()
dt2ts = (dt2 -datetime(1970,1,1,0,0,0,tzinfo=pytz.utc)).total_seconds()
return [dt1ts,dt2ts]
| 21,258
|
def test_spherical_isolation_grid1():
""" Create a regular grid inside the unit box with points on each of the following
nodes: 0.1, 0.3, 0.5, 0.7, 0.9. Demonstrate that all points in such a sample
are isolated if r_max < 0.2, regardless of periodic boundary conditions.
"""
sample1 = generate_3d_regular_mesh(5)
r_max = 0.1
iso = spherical_isolation(sample1, sample1, r_max)
assert np.all(iso == True)
iso = spherical_isolation(sample1, sample1, r_max, period=1)
assert np.all(iso == True)
r_max = 0.25
iso2 = spherical_isolation(sample1, sample1, r_max)
assert np.all(iso2 == False)
iso2 = spherical_isolation(sample1, sample1, r_max, period=1)
assert np.all(iso2 == False)
| 21,259
|
def iterate_by_type(objs, typelist):
"""
collects a sequence of objs into buckets by type, then re-emits
objs from the buckets, sorting through the buckets in the order
specified by typelist. Any objects of a type not specified in
typelist will be emitted last in no guaranteed order (but still
grouped by type).
"""
cache = collect_by_type(objs)
for t in typelist:
for val in cache.pop(t, tuple()):
yield val
for tl in cache.values():
for val in tl:
yield val
| 21,260
|
def keys_verif(verif: bool = True):
"""
Used to verify existence of private or/and public keys of ElGamal.
"""
print("\nChecking the presence of keys in the system....")
if isFileHere("public_key.kpk", config.DIRECTORY_PROCESSING):
# from cipher.asymmetric import elGamal as elG
print(f"\nPublic key is already here.\n")
if isFileHere("private_key.kpk", config.DIRECTORY_PROCESSING):
print(f"Private key is here too.\n")
if verif and not query_yn("Do you want to keep them? (default: No)", "no"):
rmFile("public_key.kpk", config.DIRECTORY_PROCESSING)
rmFile("private_key.kpk", config.DIRECTORY_PROCESSING)
rmFile("encrypted.kat", config.DIRECTORY_PROCESSING)
return True
else:
print("Private key's missing.\n")
if query_yn("Do you want to add them now?\n"):
while not isFileHere("private_key.kpk", config.DIRECTORY_PROCESSING):
input("Please put your 'private_key.kpk' file into the 'processing' folder.")
print("Find it !")
keys_verif()
else:
katsuAsymm()
elif isFileHere("private_key.kpk", config.DIRECTORY_PROCESSING):
print("\nPrivate key's already here but not public one's.\n")
if query_yn("Do you want to add them now? ( default: No)\n", "no"):
while not isFileHere("public_key.kpk", config.DIRECTORY_PROCESSING):
input("Please put your 'public_key.kpk' file into the 'processing' folder.")
print("find it !")
keys_verif()
else:
return True
else:
return True
return False
| 21,261
|
def r2(ground_truth, simulation, join='inner', fill_value=0):
"""
R-squared value between ground truth and simulation
Inputs:
ground_truth - ground truth measurement (data frame) with measurement in the "value" column
simulation - simulation measurement (data frame) with measurement in the "value" column
join - type of join to perform between ground truth and simulation
fill_value - fill value for non-overlapping joins
"""
if simulation is None or ground_truth is None:
return None
if len(simulation) == 0 or len(ground_truth) == 0:
return None
if type(ground_truth) is list:
ground_truth = np.nan_to_num(ground_truth)
simulation = np.nan_to_num(simulation)
ground_truth = ground_truth[np.isfinite(ground_truth)]
simulation = simulation[np.isfinite(simulation)]
return np.sqrt(((np.asarray(ground_truth) - np.asarray(simulation)) ** 2).mean())
ground_truth = ground_truth[np.isfinite(ground_truth.value)]
simulation = simulation[np.isfinite(simulation.value)]
df = join_dfs(ground_truth,simulation,join=join,fill_value=fill_value)
if df.empty:
return None
else:
return r2_score(df["value_gt"],df["value_sim"])
| 21,262
|
def atualiza_pontos(lista_jogadores, indece, pontos_carregados):
"""
-> Funcão que ao ser chamada atualiza os pontos dos jogadores.
:param lista_jogadores: é a lista que contem todos os dados dos jogadores cadastados, seus respectivos
nomes e pontos.
:param indece: é o índece do jogador que está jogando no momento e que portanto deve ter seus pontos
atualizados.
:param pontos_carregados: é a pontuação registrada do jogador .
:return:
"""
lista_jogadores[indece][1] = pontos_carregados
arq = 'lista-jogadores.txt'
a = open(arq, 'wt')
for linha in lista_jogadores:
a.write(f'{linha[0]};{linha[1]}\n')
a.close()
| 21,263
|
def add_team_batting_stats(df, years, batter_metrics):
"""
"""
gids = list(set(df['gameId']))
bat_saber_paths = [
CONFIG.get('paths').get('batter_saber') + gid + \
"/batter_saber_team.parquet" for gid in
os.listdir(CONFIG.get('paths').get('batter_saber'))
]
curr_gids = list(set(
list(df['homePrevGameId']) +
list(df['awayPrevGameId'])
))
bat_saber_paths = [
x for x in bat_saber_paths if any(
gid in x for gid in curr_gids
)
]
batter_saber = pd.concat(
objs=[pd.read_parquet(path) for path in bat_saber_paths],
axis=0
)
print(batter_saber.shape)
print("batter saber shape above")
# Get top 9 by AB
batter_saber['game_id_team'] = (
batter_saber['gameId'] + batter_saber['team']
)
batter_saber.sort_values(by=['game_id_team', 'woba_trail6'],
ascending=False,
inplace=True)
batter_saber['rank'] = batter_saber.groupby('game_id_team')\
['batterId'].cumcount()
batter_saber = batter_saber.loc[batter_saber['rank'] <= 9, :]
batter_saber.loc[batter_saber['rank'] < 5, 'batter_group'] = 'high'
batter_saber.loc[batter_saber['rank'] >= 5, 'batter_group'] = 'low'
# Aggregate
batter_saber = batter_saber.groupby(
by=['gameId', 'team', 'batter_group'],
as_index=False
).agg({k: 'mean' for k in batter_metrics})
batter_saber = batter_saber.pivot_table(
index=['gameId', 'team'],
columns=['batter_group'],
values=[k for k in batter_metrics],
aggfunc='mean'
)
batter_saber.reset_index(inplace=True)
batter_saber.columns = [
x[0] if x[1] == '' else x[0]+"_"+x[1]
for x in batter_saber.columns
]
batter_saber.to_csv(
'/Users/peteraltamura/Desktop/batter_saber_wide.csv', index=False)
# Merge Home
df = pd.merge(
df,
batter_saber,
how='left',
left_on=['homePrevGameId', 'home_code'],
right_on=['gameId', 'team'],
validate='1:1',
suffixes=['', '_HOME']
)
# Merge Away
df = pd.merge(
df,
batter_saber,
how='left',
left_on=['awayPrevGameId', 'away_code'],
right_on=['gameId', 'team'],
validate='1:1',
suffixes=['', '_AWAY']
)
return df
| 21,264
|
def depth_analysis_transform_1(rgb_tensor, depth_tensor, num_filters):
"""Builds the analysis transform."""
with tf.variable_scope("analysis"):
# --------------------------------------- rgb branch
with tf.variable_scope("layer_0"):
layer = tfc.SignalConv2D(
num_filters, (9, 9), corr=True, strides_down=4, padding="same_zeros",
use_bias=True, activation=tf.nn.relu)
rgb_tensor = layer(rgb_tensor)
# --------------------------------------- depth branch
with tf.variable_scope("layer_d0"):
layer = tfc.SignalConv2D(
num_filters, (9, 9), corr=True, strides_down=4, padding="same_zeros",
use_bias=True, activation=tf.nn.relu)
depth_tensor = layer(depth_tensor)
# --------------------------------------- fusion
tf.summary.histogram('rgb_tensor', rgb_tensor)
tf.summary.histogram('depth_tensor', depth_tensor)
tensor = rgb_tensor + depth_tensor
with tf.variable_scope("layer_1"):
layer = tfc.SignalConv2D(
num_filters, (5, 5), corr=True, strides_down=2, padding="same_zeros",
use_bias=True, activation=tf.nn.relu)
tensor = layer(tensor)
with tf.variable_scope("layer_2"):
layer = tfc.SignalConv2D(
num_filters, (5, 5), corr=True, strides_down=2, padding="same_zeros",
use_bias=False, activation=None)
tensor = layer(tensor)
return tensor
| 21,265
|
def boxPlot(med, quartiles, minmax, mean=None, outliers=None, name='boxplot', horiz=True, offset=0,
legendGroup='boxplot', showleg=False, plot=False, col='blue', width=8):
"""
Makes very light plotly boxplot. Unlike theirs, this can take externally calc'd values rather than just data to make it go much faster.
:param med:
:param quartiles:
:param minmax:
:param mean:
:param name:
:param horiz:
:param offset:
:param legendGroup:
:param plot:
:param col:
:return:
"""
show_indiv_leg=False #set to true for debug mode
if horiz:
wideaxis='x'
offsetaxis='y'
else:
wideaxis = 'y'
offsetaxis = 'x'
if mean:
text='Median=%.3e <br> Mean=%.3e <br> [Q1,Q2]=[%.3e,%.3e] <br> [min, max]=[%.3e,%.3e]' % \
(med,mean, *quartiles, *minmax)
else:
text = 'Median=%.3e <br> [Q1,Q2]=[%.3e,%.3e] <br> [min, max]=[%.2f,%.2f]' \
% (med, *quartiles, *minmax)
thickLine = [{wideaxis:quartiles, offsetaxis:[offset]*2,
'name':name, 'showlegend':showleg, 'legendgroup':legendGroup, 'type': 'scatter',
'line':{'color': col, 'width': width}, 'opacity':.4, 'hovertext':text, 'hoverinfo':'name+text',
}]
thinLine = [{wideaxis:minmax, offsetaxis:[offset]*2,
'name':name, 'showlegend':show_indiv_leg, 'legendgroup':legendGroup, 'type': 'scatter',
'line': {'color': col, 'width': 2}, 'opacity':.4, 'hovertext':text, 'hoverinfo':'name+text'}]
medPoint = [{wideaxis:[med], offsetaxis:[offset], 'hovertext':text, 'hoverinfo':'name+text',
'name':name, 'showlegend':show_indiv_leg, 'legendgroup':legendGroup, 'mode': 'markers',
'marker':{'color':'black', 'symbol':'square', 'size':8}, 'opacity':1}]
boxPlots = thickLine + thinLine + medPoint
if mean is not None:
meanPoint = [{wideaxis: [mean], offsetaxis: [offset], 'hovertext':text, 'hoverinfo':'name+text',
'name': name, 'showlegend': show_indiv_leg, 'legendgroup': legendGroup,
'mode': 'markers',
'marker': {'color': 'white', 'symbol': 'diamond', 'size': 8,
'line': {'color':'black', 'width':1}
},
'opacity': 1,
'line': {'color':'black'}}]
boxPlots += meanPoint
if outliers is not None:
outlierplot = [{wideaxis:outliers, offsetaxis:[offset]*len(outliers), 'name':name, 'legendgroup':legendGroup,
'mode':'markers', 'marker':dict(size = 2, color=col), 'hoverinfo': wideaxis+'+name'}]
boxPlots += outlierplot
fig = go.Figure(data=boxPlots)
# as boxPlot is used primarily as a subcomponent in other plots, its output is not simply plotOut(fig, plot)
if plot:
fig = go.Figure(data=boxPlots)
plotfunc = pyo.iplot if in_notebook() else pyo.plot
plotfunc(fig)
else:
return boxPlots
| 21,266
|
def hub_quantile_prediction_dict_validator(target_group_dict, prediction_dict):
"""
Does hub prediction_dict validation as documented in `json_io_dict_from_quantile_csv_file()`
"""
error_messages = [] # return value. filled next
valid_quantiles = target_group_dict['quantiles']
prediction_quantiles = prediction_dict['prediction']['quantile']
if set(valid_quantiles) != set(prediction_quantiles):
error_messages.append(f"prediction_dict quantiles != valid_quantiles. valid_quantiles={valid_quantiles}, "
f"prediction_quantiles={prediction_quantiles}")
return error_messages
| 21,267
|
def allclose_periodical(x, y, a, b, atol=1e-10):
"""
Checks np.allclose(x,y), but assumes both x and y are periodical with respect to interval (a,b)
"""
assert(len(x) == len(y))
period = b-a
x_p = np.remainder(x-a,period) # now in 0, b-a
y_p = np.remainder(y-a,period)
return all(np.isclose(x_p[i], y_p[i], atol=atol) or np.isclose(x_p[i], y_p[i]+period, atol=atol) or np.isclose(x_p[i], y_p[i]-period, atol=atol) for i in range(len(x_p)))
| 21,268
|
def get_categories_to_rows_ratio(df):
"""
Gets ratio of unique categories to number of rows
in the categorical variable; do this for each categorical
variable
:param df: pd.DataFrame
:return: array of tuples
"""
cat_columns = get_categorical_variable_names(df)
ratios = {col:len(df[col].unique()) / df[col].count() for col in cat_columns}
sorted_ratios = sorted(ratios.items(), key=operator.itemgetter(1), reverse=True)
return sorted_ratios
| 21,269
|
def _width_left_set(size: int, lsize: int, value: list, fmt: str, meta: dict) -> dict:
"""Width setting of paragraph with left repositioning."""
return Plain([RawInline(fmt, '<p style="text-align:left !important;'
'text-indent:0 !important;'
'position:relative;width:{0};left:{1}">'.
format(size, lsize))]
+ value + [RawInline(fmt, '</p>')])
| 21,270
|
def GetMappingKeyName(run, user):
"""Returns a str used to uniquely identify a mapping."""
return 'RunTesterMap_%s_%s' % (run.key().name(), str(user.user_id()))
| 21,271
|
def get_invitee_from_table(invite_code: str, table):
"""
Get a dictionary of the stored information for this invite code.
Args:
invite_code: The invitation code to search for
table: A DynamoDB table for querying
Returns:
A dictionary of information stored under the invite code
Throws:
UnknownInviteCodeError: If the invite code is not in the database
"""
response = table.query(
KeyConditionExpression=Key('invite_code').eq(invite_code)
)
items = response['Items']
if len(items) == 0:
# If there were no matches to the code then throw an error
raise UnknownInviteCodeError()
# The output will be a list, so we'll just use the first one since there
# should not be duplicates
items = items[0]
# DynamoDB cannot store empty strings, so we use null instead and convert
# between it as needed. At this point in time, we have no significance for
# null so this works fine.
items = {k: convert_null_to_empty_string(v) for k, v in items.items()}
return items
| 21,272
|
def load_game(filename: str):
"""
Deserialise the game data from a file. Filename does not include path to save folder.
"""
# read from json
with open(SAVE_PATH + filename + ".json", "r") as file:
save = json.load(file)
# check the version
if save["version"] != VERSION:
logging.warning(f"Loading data from a previous version, {save['version']}.")
# deserialise data
new_world = world.deserialise(save["world"])
store.deserialise(save["store"])
# set the data as the default world
world.move_world(new_world)
logging.info(f"Game loaded from {filename}.")
| 21,273
|
def minter(pid_type, pid_field, record):
"""Mint the given PID for the given record."""
if pid_field not in record.keys():
record[pid_field] = create_pid()
pid = PersistentIdentifier.get(
pid_type="recid",
pid_value=record[pid_field]
)
pid.status = PIDStatus.REGISTERED
pid.object_type = "rec"
pid.object_uuid = record.id
pid.pid_type = pid_type
| 21,274
|
def export_to_labelbox(
sample_collection,
ndjson_path,
video_labels_dir=None,
labelbox_id_field="labelbox_id",
label_field=None,
frame_labels_field=None,
):
"""Exports labels from the FiftyOne samples to Labelbox format.
This function is useful for loading predictions into Labelbox for
`model-assisted labeling <https://labelbox.com/docs/automation/model-assisted-labeling>`_.
You can use :meth:`upload_labels_to_labelbox` to upload the exported labels
to a Labelbox project.
You can use :meth:`upload_media_to_labelbox` to upload sample media to
Labelbox and populate the ``labelbox_id_field`` field, if necessary.
The IDs of the Labelbox DataRows corresponding to each sample must be
stored in the ``labelbox_id_field`` of the samples. Any samples with no
value in ``labelbox_id_field`` will be skipped.
When exporting frame labels for video datasets, the ``frames`` key of the
exported labels will contain the paths on disk to per-sample NDJSON files
that are written to ``video_labels_dir`` as follows::
video_labels_dir/
<labelbox-id1>.json
<labelbox-id2>.json
...
where each NDJSON file contains the frame labels for the video with the
corresponding Labelbox ID.
Args:
sample_collection: a
:class:`fiftyone.core.collections.SampleCollection`
ndjson_path: the path to write an NDJSON export of the labels
video_labels_dir (None): a directory to write the per-sample video
labels. Only applicable for video datasets
labelbox_id_field ("labelbox_id"): the sample field to lookup/store the
IDs of the Labelbox DataRows
label_field (None): optional label field(s) to export. Can be any of
the following:
- the name of a label field to export
- a glob pattern of label field(s) to export
- a list or tuple of label field(s) to export
- a dictionary mapping label field names to keys to use when
constructing the exported labels
By default, no labels are exported
frame_labels_field (None): optional frame label field(s) to export.
Only applicable to video datasets. Can be any of the following:
- the name of a frame label field to export
- a glob pattern of frame label field(s) to export
- a list or tuple of frame label field(s) to export
- a dictionary mapping frame label field names to keys to use
when constructing the exported frame labels
By default, no frame labels are exported
"""
is_video = sample_collection.media_type == fomm.VIDEO
# Get label fields to export
label_fields = sample_collection._parse_label_field(
label_field, allow_coersion=False, force_dict=True, required=False,
)
# Get frame label fields to export
if is_video:
frame_label_fields = sample_collection._parse_frame_labels_field(
frame_labels_field,
allow_coersion=False,
force_dict=True,
required=False,
)
if frame_label_fields and video_labels_dir is None:
raise ValueError(
"Must provide `video_labels_dir` when exporting frame labels "
"for video datasets"
)
etau.ensure_empty_file(ndjson_path)
# Export the labels
with fou.ProgressBar() as pb:
for sample in pb(sample_collection):
labelbox_id = sample[labelbox_id_field]
if labelbox_id is None:
logger.warning(
"Skipping sample '%s' with no '%s' value",
sample.id,
labelbox_id_field,
)
continue
# Compute metadata if necessary
if sample.metadata is None:
if is_video:
metadata = fom.VideoMetadata.build_for(sample.filepath)
else:
metadata = fom.ImageMetadata.build_for(sample.filepath)
sample.metadata = metadata
sample.save()
# Get frame size
if is_video:
frame_size = (
sample.metadata.frame_width,
sample.metadata.frame_height,
)
else:
frame_size = (sample.metadata.width, sample.metadata.height)
# Export sample-level labels
if label_fields:
labels_dict = _get_labels(sample, label_fields)
annos = _to_labelbox_image_labels(
labels_dict, frame_size, labelbox_id
)
etas.write_ndjson(annos, ndjson_path, append=True)
# Export frame-level labels
if is_video and frame_label_fields:
frames = _get_frame_labels(sample, frame_label_fields)
video_annos = _to_labelbox_video_labels(
frames, frame_size, labelbox_id
)
video_labels_path = os.path.join(
video_labels_dir, labelbox_id + ".json"
)
etas.write_ndjson(video_annos, video_labels_path)
anno = _make_video_anno(
video_labels_path, data_row_id=labelbox_id
)
etas.write_ndjson([anno], ndjson_path, append=True)
| 21,275
|
def zip_minibatch_iterate_info(arrays, minibatch_size, n_epochs=None, test_epochs = None):
"""
Iterate through minibatches of arrays and yield info about the state of iteration though training.
:param arrays:
:param arrays: A collection of arrays, all of which must have the same shape[0]
:param minibatch_size: The number of samples per minibatch
:param n_epochs: The number of epochs to run for
:param test_epochs: A list of epochs to test at.
:return: (array_minibatches, info)
arrays is a tuple of minibatches from arrays
info is an IterationInfo object returning information about the state of iteration.
"""
if n_epochs is None:
assert isinstance(test_epochs, (list, tuple, np.ndarray)), "If you don't specify n_epochs, you need to specify an array of test epochs."
n_epochs = test_epochs[-1]
for arrays, info in zip(
zip_minibatch_iterate(arrays, minibatch_size=minibatch_size, n_epochs='inf'),
iteration_info(n_samples=arrays[0].shape[0], minibatch_size=minibatch_size, test_epochs=test_epochs, n_epochs=n_epochs)
):
yield arrays, info
if info.done:
break
| 21,276
|
def d_beta_dr(radius, beta, mass_r, epsilon, pressure, h_r):
""" d_beta_dr """
return 2. * (1 - 2 * (mass_r/radius)) ** (-1.) * h_r * \
( -2. * math.pi * (5*epsilon + 9*pressure + f(epsilon, pressure)) + (3/radius**2.) + 2*(1 - 2 * mass_r / radius)**(-1) * \
((mass_r/radius) + 4 * math.pi*radius*pressure)**2 ) + (2 * beta/radius) *(1 - 2 * mass_r / radius)**(-1) * \
(-1 + mass_r/radius + 2 * math.pi * radius**2 * (epsilon - pressure))
| 21,277
|
def main(args=None):
"""Main function called by the `MPfspec` command line script."""
import argparse
description = ('Create frequency spectra (PDS, CPDS, cospectrum) '
'starting from well-defined input ligthcurves')
parser = argparse.ArgumentParser(description=description)
parser.add_argument("files", help="List of light curve files", nargs='+')
parser.add_argument("-b", "--bintime", type=float, default=1/4096,
help="Light curve bin time; if negative, interpreted" +
" as negative power of 2." +
" Default: 2^-10, or keep input lc bin time" +
" (whatever is larger)")
parser.add_argument("-r", "--rebin", type=int, default=1,
help="(C)PDS rebinning to apply. Default: none")
parser.add_argument("-f", "--fftlen", type=float, default=512,
help="Length of FFTs. Default: 512 s")
parser.add_argument("-k", "--kind", type=str, default="PDS,CPDS,cos",
help='Spectra to calculate, as comma-separated list' +
' (Accepted: PDS and CPDS;' +
' Default: "PDS,CPDS")')
parser.add_argument("--norm", type=str, default="Leahy",
help='Normalization to use' +
' (Accepted: Leahy and rms;' +
' Default: "Leahy")')
parser.add_argument("--noclobber", help="Do not overwrite existing files",
default=False, action='store_true')
parser.add_argument("-o", "--outroot", type=str, default=None,
help='Root of output file names for CPDS only')
parser.add_argument("--loglevel",
help=("use given logging level (one between INFO, "
"WARNING, ERROR, CRITICAL, DEBUG; "
"default:WARNING)"),
default='WARNING',
type=str)
parser.add_argument("--nproc",
help=("Number of processors to use"),
default=1,
type=int)
parser.add_argument("--back",
help=("Estimated background (non-source) count rate"),
default=0.,
type=float)
parser.add_argument("--debug", help="use DEBUG logging level",
default=False, action='store_true')
parser.add_argument("--save-dyn", help="save dynamical power spectrum",
default=False, action='store_true')
args = parser.parse_args(args)
if args.debug:
args.loglevel = 'DEBUG'
numeric_level = getattr(logging, args.loglevel.upper(), None)
logging.basicConfig(filename='MPfspec.log', level=numeric_level,
filemode='w')
bintime = args.bintime
fftlen = args.fftlen
pdsrebin = args.rebin
normalization = args.norm
do_cpds = do_pds = do_cos = do_lag = False
kinds = args.kind.split(',')
for k in kinds:
if k == 'PDS':
do_pds = True
elif k == 'CPDS':
do_cpds = True
elif k == 'cos' or k == 'cospectrum':
do_cos = True
do_cpds = True
elif k == 'lag':
do_lag = True
do_cpds = True
calc_fspec(args.files, fftlen,
do_calc_pds=do_pds,
do_calc_cpds=do_cpds,
do_calc_cospectrum=do_cos,
do_calc_lags=do_lag,
save_dyn=args.save_dyn,
bintime=bintime,
pdsrebin=pdsrebin,
outroot=args.outroot,
normalization=normalization,
nproc=args.nproc,
back_ctrate=args.back,
noclobber=args.noclobber)
| 21,278
|
def handle_signals():
"""
typing the interrupt character (probably Ctrl-C) causes SIGINT to be sent
typing the quit character (probably Ctrl-\) sends SIGQUIT.
hanging up the phone (modem) sends SIGHUP
typing the stop character (probably Ctrl-Z) sends SIGSTOP.
"""
LOG.info('Setting up signal handlers.')
if platform.uname()[0] != 'Windows':
signal.signal(signal.SIGHUP, SigHupHandler)
signal.signal(signal.SIGINT, SigIntHandler)
signal.signal(signal.SIGTERM, SigTermHandler)
| 21,279
|
def test_ndcg_after_2_perfect():
"""
ndcg with top 2 classes removed
"""
y_true = np.array([[1, 1, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 1],
[0, 1, 1, 1, 1, 1],
[0, 1, 1, 0, 1, 1],
[0, 0, 1, 1, 1, 1]])
y_prob = np.array([[0.5, 0.9, 0.8, 0.4, 0.2, 0.2],
[0.9, 0.8, 0.2, 0.5, 0.2, 0.4],
[0.2, 0.9, 0.8, 0.4, 0.6, 0.5],
[0.2, 0.7, 0.8, 0.4, 0.6, 0.9],
[0.2, 0.2, 0.8, 0.5, 0.3, 0.9]])
expected = 1.0
actual = metriks.ndcg(y_true, y_prob, 2)
np.testing.assert_allclose([actual], [expected])
| 21,280
|
def score(capstone, student_api):
"""
Calculates the score of the students' API model
:param student_api: StudentApi object
:return: score as a float
"""
# Check which simulators have datapoints with outcomes outcomes
simulator_ids = []
for simulator in capstone.simulators.all():
if simulator.datapoints.exclude(outcome="").count() > 0:
simulator_ids.append(simulator.id)
if len(simulator_ids) == 0:
raise RuntimeError("No simulators with outcomes found.")
qs = DueDatapoint.objects.filter(
simulator_id__in=simulator_ids,
student=student_api.student,
)
outcomes = []
predictions = []
sensitive_class_race = {}
sensitive_class_sex = {}
for ddp in qs: # loop through each entry in DueDataPoint
outcome = bool(json.loads(ddp.datapoint.outcome))
data = json.loads(ddp.datapoint.data)
if ddp.response_status != 200: # Missing or bad response
predictions.append(not outcome)
outcomes.append(outcome)
else:
try:
prediction = json.loads(ddp.response_content)["prediction"]
except (json.JSONDecodeError, KeyError):
predictions.append(not outcome)
outcomes.append(outcome)
else:
sex = data["sex"].lower()
if sex not in sensitive_class_sex:
sensitive_class_sex[sex] = {
"outcomes": [],
"predictions": [],
}
sensitive_class_sex[sex]["outcomes"].append(outcome)
sensitive_class_sex[sex]["predictions"].append(prediction)
race = data["race"].lower()
if race not in sensitive_class_race:
sensitive_class_race[race] = {
"outcomes": [],
"predictions": [],
}
sensitive_class_race[race]["outcomes"].append(outcome)
sensitive_class_race[race]["predictions"].append(prediction)
if not isinstance(prediction, bool):
predictions.append(not outcome)
else:
predictions.append(prediction)
outcomes.append(outcome)
logger.info(student_api.student)
f1_score = metrics.f1_score(outcomes, predictions, pos_label=True)
logger.info("f1_score %s" % f1_score)
race_diff = fairness_score_precision(sensitive_class_race)
sex_diff = fairness_score_precision(sensitive_class_sex)
is_fair = race_diff < 0.2 and sex_diff < 0.2
logger.info("race_diff %s" % race_diff)
logger.info("sex_diff %s" % sex_diff)
logger.info("is_fair %s" % is_fair)
if not is_fair:
f1_score -= 0.1
return f1_score
| 21,281
|
def clean_lhdf(df: pd.DataFrame):
"""
Removes unneccessary columms from the location history data frame and computes new required columns
Parameters
----------
df : pandas.DataFrame
DataFrame to process
Returns
-------
Copy of `df`, altered the following way:
* Colums removed
* `activity`
* `altitude`
* `heading`
* Columns expected in `df`
* `time`
* `latitudeE7`
* `longitudeE7`
* Columns added
* `date` (Format `YYYY-MM-DD`)
* `weekday` (Format: `0-6`; 0 = Sunday)
* `daytime` (Format: HH:ii, 24h style)
* `lat` (Format: dd.ddddd)
* `lon` (Format: dd.ddddd)
"""
df = df.copy()
# Drop unneccessary cols
df.drop(labels=["activity", "altitude", "heading"], axis=1, inplace=True)
# compute time cols
df.loc[:, "date"] = df.time.dt.strftime("%Y-%m-%d")
df.loc[:, "weekday"] = df.time.dt.strftime("%w") #was: %u
df.loc[:, "daytime"] = df.time.dt.strftime("%H:%M")
df.loc[:,"lat"] = pd.to_numeric(df.latitudeE7) / 1e7
df.loc[:,"lng"] = pd.to_numeric(df.longitudeE7) / 1e7
return df
| 21,282
|
def year_from_operating_datetime(df):
"""Add a 'year' column based on the year in the operating_datetime.
Args:
df (pandas.DataFrame): A DataFrame containing EPA CEMS data.
Returns:
pandas.DataFrame: A DataFrame containing EPA CEMS data with a 'year'
column.
"""
df['year'] = df.operating_datetime_utc.dt.year
return df
| 21,283
|
def is_thrift(target):
"""Returns True if the target has thrift IDL sources."""
return isinstance(target, JavaThriftLibrary)
| 21,284
|
def print_events_unified(success_result: dict):
"""Print the results of `getevents`, in one table"""
elist = success_result["events"]
for event in elist:
event["time"] = datetime.datetime.fromisoformat(event["time"])
lowest_time = min(event["time"] for event in elist)
for event in elist:
offset_time = event["time"] - lowest_time
event["offset_time"] = offset_time
print(cf.bold("{:>14} {} {}".format("Time", "Thread", "Event")))
for event in sorted(elist, key=itemgetter("offset_time")):
time = dim(str(event["offset_time"]))
name = event["event"]
thread = event["thread"]
data = event["data"] if len(event["data"]) else ""
print(f"{time:>16} {thread:^7} {name} {data}")
| 21,285
|
def get_instance(value, model):
"""Returns a model instance from value. If value is a string, gets by key
name, if value is an integer, gets by id and if value is an instance,
returns the instance.
"""
if not issubclass(model, db.Model):
raise TypeError('Invalid type (model); expected subclass of Model.')
if isinstance(value, basestring):
return model.get_by_key_name(value)
elif isinstance(value, (int, long)):
return model.get_by_id(value)
elif isinstance(value, model):
return value
else:
raise TypeError('Invalid type (value); expected string, number or '
'%s.' % model.__name__)
| 21,286
|
def add_badfit_estimates(results, base_estimate_label="default", estimate_types=('wildcard',),
badFitThreshold=None, opt_args=None, evaltree_cache=None,
comm=None, memLimit=None, verbosity=0):
"""
Add any and all "bad fit" estimates to `results`.
TODO: docstring
"""
printer = _objs.VerbosityPrinter.build_printer(verbosity, comm)
base_estimate = results.estimates[base_estimate_label]
lsgstLists = results.circuit_structs['iteration']
mdl_lsgst_list = base_estimate.models['iteration estimates']
mdl_start = base_estimate.models['seed']
target_model = base_estimate.models['target']
ds = results.dataset
parameters = base_estimate.parameters
if evaltree_cache is None: evaltree_cache = {} # so tree gets cached
if badFitThreshold is not None and \
base_estimate.misfit_sigma(evaltree_cache=evaltree_cache, use_accurate_Np=True, comm=comm) <= badFitThreshold:
return # fit is good enough - no need to add any estimates
objective = parameters.get('objective', 'logl')
validStructTypes = (_objs.LsGermsStructure, _objs.LsGermsSerialStructure)
rawLists = [l.allstrs if isinstance(l, validStructTypes) else l
for l in lsgstLists]
circuitList = rawLists[-1] # use final circuit list
mdl = mdl_lsgst_list[-1] # and model
assert(parameters.get('weights', None) is None), \
"Cannot perform bad-fit scaling when weights are already given!"
for badfit_typ in estimate_types:
new_params = parameters.copy()
new_final_model = None
if badfit_typ in ("robust", "Robust", "robust+", "Robust+"):
new_params['weights'] = get_robust_scaling(badfit_typ, mdl, ds, circuitList,
parameters, evaltree_cache, comm, memLimit)
if badfit_typ in ("Robust", "Robust+") and (opt_args is not None):
mdl_reopt = reoptimize_with_weights(mdl, ds, circuitList, new_params['weights'],
objective, opt_args, printer - 1)
new_final_model = mdl_reopt
elif badfit_typ == "wildcard":
new_params['unmodeled_error'] = get_wildcard_budget(mdl, ds, circuitList, parameters,
evaltree_cache, comm, memLimit, printer - 1)
elif badfit_typ == "do nothing":
continue # go to next on-bad-fit directive
else:
raise ValueError("Invalid on-bad-fit directive: %s" % badfit_typ)
# In case we've computed an updated final model, Just keep (?) old estimates of all
# prior iterations (or use "blank" sentinel once this is supported).
models_by_iter = mdl_lsgst_list[:] if (new_final_model is None) \
else mdl_lsgst_list[0:-1] + [new_final_model]
results.add_estimate(target_model, mdl_start, models_by_iter,
new_params, base_estimate_label + "." + badfit_typ)
#Add gauge optimizations to the new estimate
for gokey, gaugeOptParams in base_estimate.goparameters.items():
if new_final_model is not None:
add_gauge_opt(results.estimates[base_estimate_label + '.' + badfit_typ], gaugeOptParams,
target_model, new_final_model, comm, printer - 1)
else:
# add same gauge-optimized result as above
go_gs_final = base_estimate.models[gokey]
results.estimates[base_estimate_label + '.' + badfit_typ].add_gaugeoptimized(
gaugeOptParams.copy(), go_gs_final, None, comm, printer - 1)
| 21,287
|
def clean_infix(token, INFIX):
"""
Checks token for infixes. (ex. bumalik = balik)
token: word to be stemmed for infixes
returns STRING
"""
if check_validation(token):
return token
for infix in INFIX_SET:
if len(token) - len(infix) >= 3 and count_vowel(token[len(infix):]) >= 2:
if token[0] == token[4] and token[1: 4] == infix:
INFIX.append(infix)
return token[4:]
elif token[2] == token[4] and token[1: 3] == infix:
INFIX.append(infix)
return token[0] + token[3:]
elif token[1: 3] == infix and check_vowel(token[3]):
INFIX.append(infix)
return token[0] + token[3:]
return token
| 21,288
|
def test_catalog_size(test_catalog):
"""Passes if catalog.size matches the length of data"""
assert test_catalog.size == len(test_catalog.data)
| 21,289
|
def seq_to_encoder(input_seq):
"""从输入空格分隔的数字id串,转成预测用的encoder、decoder、target_weight等
"""
input_seq_array = [int(v) for v in input_seq.split()]
encoder_input = [PAD_ID] * \
(input_seq_len - len(input_seq_array)) + input_seq_array
decoder_input = [GO_ID] + [PAD_ID] * (output_seq_len - 1)
encoder_inputs = [np.array([v], dtype=np.int32) for v in encoder_input]
decoder_inputs = [np.array([v], dtype=np.int32) for v in decoder_input]
target_weights = [np.array([1.0], dtype=np.float32)] * output_seq_len
return encoder_inputs, decoder_inputs, target_weights
| 21,290
|
def SendEmailNotificationSuccess():
""" Sends a successful email notification to the EmailNotice attribute"""
global gVoOutput
global gSitesMissingData
subject = "GRATIA-APEL interface for %s - SUCCESS (%s)" % (gDateFilter,gRunTime)
contents = """The interface from Gratia to the APEL (WLCG) database was successful."""
if len(gWarnings) == 0:
contents = contents + "\nNo warning conditions detected."
else:
contents = contents + "\n\nWarning conditions have been detected and a separate email will be sent."
if len(gSitesMissingData) == 0:
contents = contents + "\nAll sites are reporting.\n"
else:
contents = contents + "\nSites missing data for more than %s days:" % gParams["MissingDataDays"]
sites = gSitesMissingData.keys()
for site in sites:
contents = contents + "\n" + site + ": " + str(gSitesMissingData[site])
SendEmailNotification(subject,contents)
| 21,291
|
def getMergers(tree, map_strain2species, options):
"""merge strains to species.
returns the new tree with species merged and
a dictionary of genes including the genes that have been merged.
Currently, only binary merges are supported.
"""
n = TreeTools.GetSize(tree) + 1
all_strains = map_strain2species.keys()
all_species = map_strain2species.values()
genes = []
for x in range(n):
g = {}
for s in all_strains:
g[s] = set()
genes.append(g)
# build list of species pairs that can be joined.
map_species2strain = IOTools.getInvertedDictionary(map_strain2species)
pairs = []
for species, strains in map_species2strain.items():
for x in range(len(strains)):
for y in range(0, x):
pairs.append((strains[x], strains[y]))
# map of genes to new genes
# each entry in the list is a pair of genes of the same species
# but different strains to be joined.
map_genes2new_genes = []
# dictionary of merged genes. This is to ensure that no gene
# is merged twice
merged_genes = {}
def count_genes(node_id):
"""record number of genes per species for each node
This is done separately for each strain. The counts are aggregated for each species
over strains by taking the maximum gene count per strain. This ignores any finer
tree structure below a species node.
"""
node = tree.node(node_id)
if node.succ:
this_node_set = genes[node_id]
# process non-leaf node
for s in node.succ:
# propagate: terminated nodes force upper nodes to terminate
# (assigned to None).
if not genes[s]:
this_node_set = None
break
# check if node merges genes that are not part of the positive
# set
for strain in all_strains:
if strain in map_strain2species:
# merge genes from all children
this_node_set[strain] = this_node_set[
strain].union(genes[s][strain])
if len(this_node_set[strain]) > 1:
# more than two genes for a single species, so no
# join
this_node_set = None
break
elif strain not in map_strain2species and \
this_node_set[strain] > 0:
this_node_set = None
break
if this_node_set is None:
genes[node_id] = None
return
for strain_x, strain_y in pairs:
if len(this_node_set[strain_x]) == 1 and len(this_node_set[strain_y]) == 1:
species = map_strain2species[strain_x]
gene_x, gene_y = tuple(this_node_set[strain_x])[0], tuple(
this_node_set[strain_y])[0]
# check if these to genes have already been merged or are
# merged with other partners already
# The merged genes are assigned the same node_id, if they have
# been already merged.
key1 = strain_x + gene_x
key2 = strain_y + gene_y
if key1 > key2:
key1, key2 = key2, key1
merge = False
if key1 in merged_genes and key2 in merged_genes:
if merged_genes[key1] == merged_genes[key2]:
merge = True
elif key1 not in merged_genes and key2 not in merged_genes:
merge = True
merged_genes[key1] = node_id
merged_genes[key2] = node_id
if merge:
map_genes2new_genes.append(
(node_id, species, strain_x, gene_x, strain_y, gene_y))
# once two genes have been joined, they can not be remapped
# further
genes[node_id] = None
return
else:
# process leaf
strain, t, g, q = parseIdentifier(node.data.taxon, options)
if strain in map_strain2species:
genes[node_id][strain].add(g)
else:
# do not process nodes that do not need to be mapped
genes[node_id] = None
tree.dfs(tree.root, post_function=count_genes)
return map_genes2new_genes
| 21,292
|
def convolve_with_gaussian(
data: np.ndarray, kernel_width: int = 21
) -> np.ndarray:
"""
Convolves a 1D array with a gaussian kernel of given width
"""
# create kernel and normalize area under curve
norm = stats.norm(0, kernel_width)
X = np.linspace(norm.ppf(0.0001), norm.ppf(0.9999), kernel_width)
_kernnel = norm.pdf(X)
kernel = _kernnel / np.sum(_kernnel)
return np.convolve(data, kernel, mode="same")
| 21,293
|
def post_netspeed(event, context):
"""
Speed test data ingestion handler
"""
return process_reading(event['query'], NETSPEED_SQL)
| 21,294
|
def notify_host_disabled(token, host_name):
"""
Notify OpenStack Nova that a host is disabled
"""
url = token.get_service_url(OPENSTACK_SERVICE.NOVA, strip_version=True)
if url is None:
raise ValueError("OpenStack Nova URL is invalid")
# Get the service ID for the nova-compute service.
compute_service_id = get_host_service_id(token, host_name, 'nova-compute')
api_cmd = url + "/v2.1/%s/os-services/%s" % (token.get_tenant_id(),
compute_service_id)
api_cmd_headers = dict()
api_cmd_headers['Content-Type'] = "application/json"
api_cmd_headers['X-OpenStack-Nova-API-Version'] = NOVA_API_VERSION
api_cmd_payload = dict()
api_cmd_payload['forced_down'] = True
response = rest_api_request(token, "PUT", api_cmd, api_cmd_headers,
json.dumps(api_cmd_payload))
return response
| 21,295
|
def compute_moments_weights_slow(mu, x2, neighbors, weights):
"""
This version exaustively iterates over all |E|^2 terms
to compute the expected moments exactly. Used to test
the more optimized formulations that follow
"""
N = neighbors.shape[0]
K = neighbors.shape[1]
# Calculate E[G]
EG = 0
for i in range(N):
for k in range(K):
j = neighbors[i, k]
wij = weights[i, k]
EG += wij*mu[i]*mu[j]
# Calculate E[G^2]
EG2 = 0
for i in range(N):
EG2_i = 0
for k in range(K):
j = neighbors[i, k]
wij = weights[i, k]
for x in range(N):
for z in range(K):
y = neighbors[x, z]
wxy = weights[x, z]
s = wij*wxy
if s == 0:
continue
if i == x:
if j == y:
t1 = x2[i]*x2[j]
else:
t1 = x2[i]*mu[j]*mu[y]
elif i == y:
if j == x:
t1 = x2[i]*x2[j]
else:
t1 = x2[i]*mu[j]*mu[x]
else: # i is unique since i can't equal j
if j == x:
t1 = mu[i] * x2[j] * mu[y]
elif j == y:
t1 = mu[i] * x2[j] * mu[x]
else: # i and j are unique, no shared nodes
t1 = mu[i] * mu[j] * mu[x] * mu[y]
EG2_i += s * t1
EG2 += EG2_i
return EG, EG2
| 21,296
|
def sum_fn(fun, ndims=0):
"""Higher order helper for summing the result of fun."""
@functools.wraps(fun)
def wrapped(*args):
batch_loglik = fun(*args)
return jnp.sum(
batch_loglik.reshape((-1,) +
batch_loglik.shape[-ndims +
len(batch_loglik.shape):]),
axis=0)
return wrapped
| 21,297
|
def p_value_analysis(data, opts):
"""
p-value analysis with cumulative freq.
Only positive signals.
Negative ctools ts => 0
"""
# photometrics analysis
total = len(data)
positive_signals = [d for d in data if d['phm_excess'] > 0]
log.info(f' considered data: {len(data)}')
log.info(f'with positive signals: {len(positive_signals)}')
# data augmentation. add sqrt(ts) to data
for p in positive_signals:
# if False and p['ts'] < -1:
# raise Exception(f"negative ts {p['ts']:.2e} is not so tiny. {p}")
p['sqrt_ts'] = np.sqrt(p['ts']) if p['ts'] > 0 else 0
# ########
thresholds = np.linspace(0, 5, 11)
resulting_freq = compute_integral_frequency_distribution(
positive_signals,
keys=['phm_li_ma', 'li_ma', 'sqrt_ts'],
thresholds=thresholds,
total=total,
)
data_to_plot = [
{ 'x': thresholds,
'y': resulting_freq['phm_li_ma']['freq'],
'yerr': resulting_freq['phm_li_ma']['freq_err'],
'label': 'photometric Li&Ma',
'marker': '.',
'color': 'orange', },
{ 'x': thresholds,
'y': resulting_freq['sqrt_ts']['freq'],
'yerr': resulting_freq['sqrt_ts']['freq_err'],
'label': 'ctools sqrt(TS)',
'marker': '.',
'color': 'blue', },
# { 'x': thresholds,
# 'y': resulting_freq['li_ma']['freq'],
# 'label': 'Li&Ma over ctools data',
# 'marker': 'x',
# 'color': 'green', },
]
save_filename = None
if opts.save:
save_filename = f'empty_field_norm_{opts.tmax:04d}.png'
plot_frequency(data_to_plot, n=total, save=save_filename,
title=f't={opts.tmax} sec Np={len(positive_signals)} N={total}')
| 21,298
|
def get_control_policy_attachments(language: Optional[str] = None,
output_file: Optional[str] = None,
policy_type: Optional[str] = None,
target_id: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetControlPolicyAttachmentsResult:
"""
This data source provides the Resource Manager Control Policy Attachments of the current Alibaba Cloud user.
> **NOTE:** Available in v1.120.0+.
## Example Usage
Basic Usage
```python
import pulumi
import pulumi_alicloud as alicloud
example = alicloud.resourcemanager.get_control_policy_attachments(target_id="example_value")
pulumi.export("firstResourceManagerControlPolicyAttachmentId", example.attachments[0].id)
```
:param str language: The language. Valid value `zh-CN`, `en`, and `ja`. Default value `zh-CN`
:param str policy_type: The type of policy.
:param str target_id: The Id of target.
"""
__args__ = dict()
__args__['language'] = language
__args__['outputFile'] = output_file
__args__['policyType'] = policy_type
__args__['targetId'] = target_id
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('alicloud:resourcemanager/getControlPolicyAttachments:getControlPolicyAttachments', __args__, opts=opts, typ=GetControlPolicyAttachmentsResult).value
return AwaitableGetControlPolicyAttachmentsResult(
attachments=__ret__.attachments,
id=__ret__.id,
ids=__ret__.ids,
language=__ret__.language,
output_file=__ret__.output_file,
policy_type=__ret__.policy_type,
target_id=__ret__.target_id)
| 21,299
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.