content
stringlengths
22
815k
id
int64
0
4.91M
def sample_targets_and_primes(targets, primes, n_rounds, already_sampled_targets=None, already_sampled_primes=None): """ Sample targets `targets` and primes `primes` for `n_rounds` number of rounds. Omit already sampled targets or primes which can be passed as sets `already_sampled_targets` and `already_sampled_primes`. `targets` and `primes` must be dicts with class -> [files] mapping (as delivered from `get_amp_images`. Will return a sample of size "num. of target classes * number of targets per class // `n_rounds`" as list of 4-tuples with: - target class - target file - prime class - prime file This function makes sure that you present N targets in random order split into R rounds, where each prime of each prime class is matched with a random target *per target class* by calling it as such: ``` # round 1: sample_round_1 = sample_targets_and_primes(targets, primes, Constants.num_rounds) # round 2: sample_round_2 = sample_targets_and_primes(targets, primes, Constants.num_rounds, already_sampled_targets=<targets from sample_round_1>) ... ``` """ # set defaults if not already_sampled_targets: already_sampled_targets = set() if not already_sampled_primes: already_sampled_primes = set() # make sure we have sets if not isinstance(already_sampled_targets, set): raise ValueError('`already_sampled_targets` must be a set.') if not isinstance(already_sampled_primes, set): raise ValueError('`already_sampled_primes` must be a set.') # get number of classes n_prime_classes = len(primes) n_target_classes = len(targets) if not n_prime_classes: raise ValueError('No target images found.') if not n_target_classes: raise ValueError('No prime images found.') # create a list of primes with 2-tuples: (class, file) # order of primes is random inside prime class primes_list = [] for primes_classname, class_primes in primes.items(): class_primes = list(set(class_primes) - already_sampled_primes) # omit already sampled primes # random order of primes inside class random.shuffle(class_primes) primes_list.extend(zip([primes_classname] * len(class_primes), class_primes)) n_primes = len(primes_list) targets_round = [] # holds the output list with 4-tuples # construct a sample of targets per target class for target_classname, class_targets in targets.items(): n_targets = len(class_targets) if n_targets % n_rounds != 0: raise ValueError('Number of targets in class (%d in "%s") must be a multiple of' ' number of rounds (%d)' % (n_targets, target_classname, n_rounds)) # omit already sampled targets class_targets = set(class_targets) - already_sampled_targets # get a sample of class targets as random sample without replacement of size "number of targets divided # by number of rounds" so that you can split targets into several rounds targets_sample = random.sample(class_targets, n_targets // n_rounds) n_targets_sample = len(targets_sample) if n_targets_sample % n_primes != 0: raise ValueError('Number of sampled targets in class (%d in "%s") must be a multiple of' ' number of primes (%d)' % (n_targets_sample, target_classname, n_primes)) # primes sample is the primes list repeated so that it matches the length of targets in this target class # this makes sure that for each target class all primes will be shown primes_sample = primes_list * (n_targets_sample // n_primes) primes_sample_classes, primes_sample_prime = list(zip(*primes_sample)) assert len(primes_sample) == n_targets_sample # add targets-primes combinations for this round targets_round.extend(zip([target_classname] * n_targets_sample, targets_sample, primes_sample_classes, primes_sample_prime)) # random order of targets-primes combinations random.shuffle(targets_round) return targets_round
21,100
def test_recurse(): """ Test to recurse through a subdirectory on the master and copy said subdirectory over to the specified path. """ name = "/opt/code/flask" source = "salt://code/flask" user = "salt" group = "saltstack" if salt.utils.platform.is_windows(): name = name.replace("/", "\\") ret = {"name": name, "result": False, "comment": "", "changes": {}} comt = ( "'mode' is not allowed in 'file.recurse'." " Please use 'file_mode' and 'dir_mode'." ) ret.update({"comment": comt}) assert filestate.recurse(name, source, mode="W") == ret mock_t = MagicMock(return_value=True) mock_f = MagicMock(return_value=False) mock_uid = MagicMock(return_value="") mock_gid = MagicMock(return_value="") mock_l = MagicMock(return_value=[]) mock_emt = MagicMock(side_effect=[[], ["code/flask"], ["code/flask"]]) mock_lst = MagicMock( side_effect=[CommandExecutionError, (source, ""), (source, ""), (source, "")] ) with patch.dict( filestate.__salt__, { "config.manage_mode": mock_t, "file.user_to_uid": mock_uid, "file.group_to_gid": mock_gid, "file.source_list": mock_lst, "cp.list_master_dirs": mock_emt, "cp.list_master": mock_l, }, ): # Group argument is ignored on Windows systems. Group is set to user if salt.utils.platform.is_windows(): comt = "User salt is not available Group salt is not available" else: comt = "User salt is not available Group saltstack is not available" ret.update({"comment": comt}) assert filestate.recurse(name, source, user=user, group=group) == ret with patch.object(os.path, "isabs", mock_f): comt = "Specified file {} is not an absolute path".format(name) ret.update({"comment": comt}) assert filestate.recurse(name, source) == ret with patch.object(os.path, "isabs", mock_t): comt = "Invalid source '1' (must be a salt:// URI)" ret.update({"comment": comt}) assert filestate.recurse(name, 1) == ret comt = "Invalid source '//code/flask' (must be a salt:// URI)" ret.update({"comment": comt}) assert filestate.recurse(name, "//code/flask") == ret comt = "Recurse failed: " ret.update({"comment": comt}) assert filestate.recurse(name, source) == ret comt = ( "The directory 'code/flask' does not exist" " on the salt fileserver in saltenv 'base'" ) ret.update({"comment": comt}) assert filestate.recurse(name, source) == ret with patch.object(os.path, "isdir", mock_f): with patch.object(os.path, "exists", mock_t): comt = "The path {} exists and is not a directory".format(name) ret.update({"comment": comt}) assert filestate.recurse(name, source) == ret with patch.object(os.path, "isdir", mock_t): comt = "The directory {} is in the correct state".format(name) ret.update({"comment": comt, "result": True}) assert filestate.recurse(name, source) == ret
21,101
def getsign(num): """input the raw num string, return a tuple (sign_num, num_abs). """ sign_num = '' if num.startswith('±'): sign_num = plus_minus num_abs = num.lstrip('±+-') if not islegal(num_abs): return sign_num, '' else: try: temp = float(num) if (temp < 0) and (sign_num == ''): sign_num = sign_negative elif (temp > 0) and (sign_num == ''): if ('+' in num): sign_num = sign_positive else: if num.startswith('-'): sign_num = sign_negative if num.startswith('+'): sign_num = sign_positive num_abs = num.lstrip('+-') except ValueError: raise return sign_num, num_abs
21,102
def _convert_actions_to_commands( subvol: Subvol, build_appliance: Subvol, action_to_names_or_rpms: Mapping[RpmAction, Union[str, _LocalRpm]], ) -> Mapping[YumDnfCommand, Union[str, _LocalRpm]]: """ Go through the list of RPMs to install and change the action to downgrade if it is a local RPM with a lower version than what is installed. Also use `local_install` and `local_remove` for _LocalRpm. See the docs in `YumDnfCommand` for the rationale. """ cmd_to_names_or_rpms = {} for action, names_or_rpms in action_to_names_or_rpms.items(): for nor in names_or_rpms: cmd, new_nor = _action_to_command( subvol, build_appliance, action, nor ) if cmd == YumDnfCommand.noop: continue if cmd is None: # pragma: no cover raise AssertionError(f"Unsupported {action}, {nor}") cmd_to_names_or_rpms.setdefault(cmd, set()).add(new_nor) return cmd_to_names_or_rpms
21,103
def fit_DBscan (image_X, eps, eps_grain_boundary, min_sample, min_sample_grain_boundary, filter_boundary, remove_large_clusters, remove_small_clusters, binarize_bdr_coord, binarize_grain_coord, ): """ Function to measure counts and average sizes of instances within an image args: image_X: np array containing a preporcessed image eps: float, parameter for the DBscan algorithm from sklearn eps_grain_boundary:float, parameter for the DBscan algorithm from sklearn min_sample: int, parameter for the DBscan algorithm from sklearn min_sample_grain_boundary: int float, parameter for the DBscan algorithm from sklearn filter_boundary:int, threshold to apply while finding the grain boundaries remove_large_clusters: int indicating how many of the largest clusters shall be removed remove_small_clusters:int indicating how many of the smallest clusters shall be removed binarize_bdr_coord: int for the binarization of the grain boundaries binarize_grain_coord:: int for the binarization of the grain interiors returns: m_CL: float, log10(mean (predicted cluster radius in pixels)) s_CL: float, log10(predicted cluster count) """ print('Finding grain boundaries') bdr_coord=np.array(binarize_array_high(image_X, binarize_bdr_coord)) bdr_coord=find_grain_boundaries(bdr_coord, eps=eps_grain_boundary, min_sample=min_sample_grain_boundary, filter_boundary=filter_boundary) bdr_coord_df=pd.DataFrame(bdr_coord) bdr_coord_df.columns=['X','Y'] bdr_coord_df['Z']=255 df_grain=pd.pivot_table(bdr_coord_df, index='X', columns='Y', values='Z', fill_value=0) df_grain=df_grain.to_numpy() print('Measuring grains') grain_coord = np.array(binarize_array(df_grain, binarize_grain_coord)) (m_CL, s_CL, clusters)=find_grains(grain_coord, eps, min_sample, remove_large_clusters, remove_small_clusters) return (m_CL, s_CL, clusters)
21,104
def get_today_timestring(): """Docen.""" return pd.Timestamp.today().strftime('%Y-%m-%d')
21,105
def load_json(filepath): """ Load a json file :param filepath: path to json file """ fp = Path(filepath) if not fp.exists(): raise ValueError("Unrecognized file path: {}".format(filepath)) with open(filepath) as f: data = json.load(f) return data
21,106
def handle(req): """handle a request to the function Args: req (str): request body """ r = requests.get("http://api.open-notify.org/astros.json") result = r.json() index = random.randint(0, len(result["people"]) - 1) name = result["people"][index]["name"] return "{} is in space".format(name)
21,107
def get_file_hashsum(file_name: str): """Generate a SHA-256 hashsum of the given file.""" hash_sha256 = hashlib.sha256() with open(file_name, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_sha256.update(chunk) return hash_sha256.hexdigest()
21,108
def predict_ch3(net, test_iter, n=6): """预测标签(定义见第3章)。""" for X, y in test_iter: break trues = d2l.get_fashion_mnist_labels(y) preds = d2l.get_fashion_mnist_labels(d2l.argmax(net(X), axis=1)) titles = [true + '\n' + pred for true, pred in zip(trues, preds)] d2l.show_images(d2l.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])
21,109
def getReviews(appid, savePath): """ This function returns a list of user reviews from Steamworks website, convert the reviews into Pandas dataframe, then export to .csv file to the savePath """ # Detailed reference for parameters setting, please visit: # https://partner.steamgames.com/doc/store/getreviews parameters = {"filter":"recent","language":"english", "num_per_page": 100} # the target url from which retrieve user reviews url = "http://store.steampowered.com/appreviews/" + appid + "?json=1" # make a request on api page given by Steamwork r = requests.get(url = url, params=parameters) # the list of reviews store in json format data = r.json() # retrieve the list of reviews reviews = data["reviews"] # convert the reviews from json to dataframe df = pd.DataFrame(reviews) # export df to .csv file df.to_csv(savePath)
21,110
def generate_primes(n): """Generates a list of prime numbers up to `n` """ global PRIMES k = PRIMES[-1] + 2 while k <= n: primes_so_far = PRIMES[:] divisible = False for p in primes_so_far: if k % p == 0: divisible = True break if not divisible: PRIMES.append(k) k += 2 return PRIMES
21,111
def Convex(loss, L2_reg): """ loss: src_number loss [loss_1, loss_2, ... loss_src_number] """ src_number = len(loss) lam = cp.Variable(src_number) prob = cp.Problem( cp.Minimize(lam @ loss + L2_reg * cp.norm(lam, 2)), [cp.sum(lam) == 1, lam >= 0] ) # prob.solve() prob.solve(solver="SCS") lam_optimal = lam.value return lam_optimal
21,112
def state(new_state): """State decorator. Specify True (turn on) or False (turn off). """ def decorator(function): """Decorator function.""" # pylint: disable=no-member,protected-access def wrapper(self, **kwargs): """Wrap a group state change.""" from limitlessled.pipeline import Pipeline pipeline = Pipeline() transition_time = DEFAULT_TRANSITION # Stop any repeating pipeline. if self.repeating: self.repeating = False self.group.stop() # Not on and should be? Turn on. if not self.is_on and new_state is True: pipeline.on() # Set transition time. if ATTR_TRANSITION in kwargs: transition_time = kwargs[ATTR_TRANSITION] # Do group type-specific work. function(self, transition_time, pipeline, **kwargs) # Update state. self._is_on = new_state self.group.enqueue(pipeline) self.schedule_update_ha_state() return wrapper return decorator
21,113
def rotTransMatrixNOAD(axis, s, c, t): """ build a rotate * translate matrix - MUCH faster for derivatives since we know there are a ton of zeros and can act accordingly :param axis: x y or z as a character :param s: sin of theta :param c: cos of theta :param t: translation (a 3 tuple) :return: """ if axis == "Z" or axis == "z": return N.array([[c, -s, 0, c * t[0] - s * t[1]], [s, c, 0, s * t[0] + c * t[1]], [0, 0, 1, t[2]], [0, 0, 0, 1]]) elif axis == "Y" or axis == "y": return N.array([[c, 0, s, c * t[0] + s * t[2]], [0, 1, 0, t[1]], [-s, 0, c, c * t[2] - s * -t[0]], [0, 0, 0, 1]]) elif axis == "X" or axis == "x": return N.array([[1, 0, 0, t[0]], [0, c, -s, c * t[1] - s * t[2]], [0, s, c, s * t[1] + c * t[2]], [0, 0, 0, 1]]) else: print "Unsupported Axis:", axis raise NotImplementedError
21,114
def angular_diameter_distance(z, cosmo=None): """ Angular diameter distance in Mpc at a given redshift. This gives the proper (sometimes called 'physical') transverse distance corresponding to an angle of 1 radian for an object at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- angdist : astropy.units.Quantity Angular diameter distance at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.angular_diameter_distance(z)
21,115
def main(stdin): """ Take sorted standard in from Hadoop and return lines. Value is just a place holder. """ for line_num in stdin: # Remove trailing newlines. line_num = line_num.rstrip() # Omit empty lines. try: (line, num) = line_num.rsplit('\t', 1) print(("{line}\t{num}").format(line=line, num=num)) except ValueError: pass return None
21,116
def _ignore_module_import_frames(file_name, name, line_number, line): """ Ignores import frames of extension loading. Parameters ---------- file_name : `str` The frame's respective file's name. name : `str` The frame's respective function's name. line_number : `int` The line's index where the exception occurred. line : `str` The frame's respective stripped line. Returns ------- should_show_frame : `bool` Whether the frame should be shown. """ should_show_frame = True if file_name.startswith('<') and file_name.endswith('>'): should_show_frame = False elif file_name == EXTENSION_LOADER_EXTENSION_FILE_PATH: if name == '_load': if line == 'loaded = self._load_module()': should_show_frame = False elif name == '_load_module': if line == 'spec.loader.exec_module(module)': should_show_frame = False elif file_name == EXTENSION_LOADER_EXTENSION_LOADER_FILE_PATH: if name == '_extension_loader_task': if line in ( 'module = await KOKORO.run_in_executor(extension._load)', 'await entry_point(module)', 'entry_point(module)', ): should_show_frame = False elif name == '_extension_unloader_task': if line in ( 'await exit_point(module)', 'exit_point(module)', ): should_show_frame = False return should_show_frame
21,117
def test_i(name, expectation, limit_name, limit_value, result): """ Check for behaviour of I under different pipeline configurations. name Name of I, defines its output. expectation Test is expected to raise an error when names requires calculaion of total iterations (e.g. for 'm') and this number is not defined in pipeline (limit_value is None). limit_name 'n_epochs' or 'n_iters' limit_value Total numer of epochs or iteration to run. result Expected output of I. If None, I is expected to raise an error. """ kwargs = {'batch_size': 2, limit_name: limit_value, 'lazy': True} pipeline = (Dataset(10).pipeline() .init_variable('var', -1) .update(V('var', mode='w'), I(name)) .run(**kwargs) ) with expectation: _ = pipeline.next_batch() assert pipeline.get_variable('var') == result
21,118
def get_tf_tensor_data(tensor): """Get data from tensor.""" assert isinstance(tensor, tensor_pb2.TensorProto) is_raw = False if tensor.tensor_content: data = tensor.tensor_content is_raw = True elif tensor.float_val: data = tensor.float_val elif tensor.dcomplex_val: data = tensor.dcomplex_val elif tensor.int_val: data = tensor.int_val elif tensor.int64_val: data = tensor.int64_val elif tensor.bool_val: data = tensor.bool_val elif tensor.dtype == tf.int32: data = [0] elif tensor.dtype == tf.int64: data = [0] elif tensor.dtype == tf.float32: data = [0.] elif tensor.dtype == tf.float16: data = [0] elif tensor.string_val: data = tensor.string_val else: raise ValueError('tensor data not supported') return [is_raw, data]
21,119
def _createPhraseMatchList(tree1, tree2, matchList, doEquivNodes=False): """ Create the list of linked phrases between tree1 and tree2 """ phraseListTxt1 = tree1.getPhrases() phraseListHi1 = tree2.getPhrases() if PRINT_DEBUG or PRINT_DEBUG_SPLIT: print "\nPhrase 1 nodes:" printAllPhraseInfo(phraseListTxt1) print "\nPhrase 2 nodes:" printAllPhraseInfo(phraseListHi1) # Match phrases based on word content # match exact phrases first matchList.extend( _phraseMatchListExactText(phraseListTxt1, phraseListHi1) ) if PRINT_MATCH_LIST: print matchList print "Exact phrase matching:" printAllMatchListInfo(matchList) # match based on headwords matchList.extend(_phraseMatchListHeadwords(phraseListTxt1, phraseListHi1,stoplist=True)) matchList = refineML_TopLevelMatch(matchList) matchList = refineML_RemoveDuplicates(matchList) bestMatchList = matchList[:] # copy of matches we believe if PRINT_MATCH_LIST: print "*** raw match list, after identical phrases matched" printAllMatchListInfo(matchList) print "----------" # relatively safe matches are completed # now build up tree continueMatching = True watchdogLoopCounter = 0 while (continueMatching)>0: watchdogLoopCounter += 1 if watchdogLoopCounter > 10: raise ValueError,"watchdog for match list creation" _oldMLLength = len(matchList) # only for debugging, can compare to newML length newML = [] # Link parent nodes together as well # including stop words newML.extend(linkParentNodes(matchList, matchList)) if PRINT_MATCH_LIST: print "*** match list, after parent phrases matched" printAllMatchListInfo(newML) # Link equivalent higher nodes # generally this is no longer needed, now that we can contract trees # It is still needed if we are describing links to more than one target if doEquivNodes: mequiv = linkHigherEquivalentNodes(matchList) if PRINT_MATCH_LIST: print "*** equivalent nodes" printAllMatchListInfo(mequiv) # raise SystemExit newML.extend(mequiv) if PRINT_MATCH_LIST: printAllMatchListInfo(newML) newML.extend(linkParentNodesOfSingleChildren(matchList, phraseListTxt1, phraseListHi1 )) newML.extend(linkParentNodesOfSingleTargetChild(matchList, phraseListTxt1, phraseListHi1 )) newML.extend(linkParentNodesOfSingleLinkedChildren(matchList, phraseListTxt1, phraseListHi1 )) # Link child nodes that may not be independent phrases # but which do have identical word content # Working with highlights rather than sentences # as it's more important to match all the phrases of the highlight # nodesAlreadyMatched = [ n2 for (n1,n2) in matchList ] for (ph1, ph2) in matchList: if ph1.isLeaf() or ph2.isLeaf(): continue newML.extend(linkIdenticalNodes(ph1,ph2,matchList)) newML.extend(linkIdenticalWords(ph1,ph2,matchList)) if PRINT_MATCH_LIST: print "*** After further linking nodes" printAllMatchListInfo(newML) # Remove any rules that involve a change to top level phrase type # We think that the only rules worth learning keep the # top level phrase element the same newML = refineML_TopLevelMatch(newML) newML = refineML_RemoveDuplicates(newML) newML = refineML_RemoveKnownMatches(newML, matchList) # newML = refineML_RemoveMissedProperNouns(newML, matchList) matchList.extend(newML) matchList = topDownConsistency(tree1, tree2, matchList, bestMatchList) # check to see what this iteration has done newMLAcceptedLinks = [ m for m in newML if m in matchList ] if len(newMLAcceptedLinks)==0: continueMatching=False if PRINT_MATCH_LIST: print print "After refining matchList so top levels match" print "New matches:" printAllMatchListInfo(newML) print "New matches that were accepted:" printAllMatchListInfo(newMLAcceptedLinks) print "Full set of matches:" printAllMatchListInfo(matchList) # TODO: make a consistent tree # raise SystemExit,"End of while loop" matchListRefined = topDownConsistency(tree1, tree2, matchList, bestMatchList) matchList = matchListRefined if PRINT_MATCH_LIST: print print "After refining matchList after making consistent top down" printAllMatchListInfo(matchList) # raise SystemExit,"topDownConsistency" return matchList
21,120
def coth(x): """ Return the hyperbolic cotangent of x. """ return 1.0/tanh(x)
21,121
def rmtree_fixed(path): """Like :func:`shutil.rmtree` but doesn't choke on annoying permissions. If a directory with -w or -x is encountered, it gets fixed and deletion continues. """ if path.is_link(): raise OSError("Cannot call rmtree on a symbolic link") uid = os.getuid() st = path.lstat() if st.st_uid == uid and st.st_mode & 0o700 != 0o700: path.chmod(st.st_mode | 0o700) for entry in path.listdir(): if stat.S_ISDIR(entry.lstat().st_mode): rmtree_fixed(entry) else: entry.remove() path.rmdir()
21,122
def param_is_numeric(p): """ Test whether any parameter is numeric; functionally, determines if any parameter is convertible to a float. :param p: An input parameter :return: """ try: float(p) return True except ValueError: return False
21,123
def convert_graph_to_angular_abstract_graph(graph: Graph, simple_graph=True, return_tripel_edges=False) -> Graph: """Converts a graph into an abstract angular graph Can be used to calculate a path tsp Arguments: graph {Graph} -- Graph to be converted simple_graph {bool} -- Indicates if graph is simple return_tripel_edges {bool} -- Also return translation for original edges to abstract Returns: Graph -- Converted abstract graph """ # create a vertex for every edge in the original graph # For geometric instances, only one direction of edges is needed vertices = np.array([[u, v] for u, v in graph.edges if u < v]) edges = {} tripel_edges = {} for i, vertex in enumerate(vertices): ran = range(i+1, len(vertices)) if simple_graph else range(len(vertices)) for j in ran: if j == i: continue other = vertices[j] if np.intersect1d(vertex, other).size > 0: shared_vertex = np.intersect1d(vertex, other) non_shared = np.setdiff1d(np.hstack([vertex, other]), shared_vertex) edges[(i, j)] = get_angle( graph.vertices[shared_vertex], graph.vertices[non_shared[0]], graph.vertices[non_shared[1]] ) if return_tripel_edges: from_vertex = np.intersect1d(vertex, non_shared) to_vertex = np.intersect1d(other, non_shared) edge = (*from_vertex, *to_vertex) tripel_edges[(*shared_vertex, *edge)] = (i, j) graph = Graph(vertices, edges.keys(), c=edges) if return_tripel_edges: return (tripel_edges, graph) return graph
21,124
def login_to_site(url, username, password, user_tag, pass_tag): """ :param url: :param username: :param password: :param user_tag: :param pass_tag: :return: :raise: """ browser = mechanize.Browser(factory=mechanize.RobustFactory()) browser.set_handle_robots(False) browser.set_handle_referer(True) browser.set_handle_refresh(True) browser.set_handle_robots(False) browser.open(url) # noinspection PyCallingNonCallable,PyCallingNonCallable,PyCallingNonCallable,PyCallingNonCallable browser.select_form(nr=0) browser["USER"] = username browser["password"] = password # noinspection PyCallingNonCallable browser.submit() # noinspection PyCallingNonCallable if "Case Search Login Error" in browser.response().get_data(): raise ValueError("Could not login to PACER Case Search. Check your " "username and password") print ("You are logged on to the Public Access to Court Electronic " "Records (PACER) Case Search website as " + username + ". All costs " "will be billed to this account.") return browser
21,125
async def test_db( service: Service = Depends(Service) ) -> HTTPSuccess: """Test the API to determine if the database is connected.""" if service.test().__class__ is not None: return { "message": "Database connected." } else: return {"message": "Database not connected." }
21,126
def main(ctx): """Show ids of accounts defined in `my_accounts` config var. The format is suitable for BITSHARESD_TRACK_ACCOUNTS= env variable to use in docker-compose.yml for running docker image bitshares/bitshares-core:latest """ if not ctx.config['my_accounts']: ctx.log.critical('You need to list your accounts in "my_accounts" config variable') sys.exit(1) ids = '' for account_name in ctx.config['my_accounts']: account = Account(account_name, bitshares_instance=ctx.bitshares) ids += '"{}" '.format((account['id'])) print(ids)
21,127
def model_fit_predict(): """ Training example was implemented according to machine-learning-mastery forum The function takes data from the dictionary returned from splitWindows.create_windows function https://machinelearningmastery.com/stateful-stateless-lstm-time-series-forecasting-python/ :return: np.array of predictions """ X, y, test_input = windows_dict['X'], windows_dict['y'], windows_dict['X_test'] # Predictions are stored in a list predictions = [] with tqdm(total=X.shape[0], desc="Training the model, saving predictions") as progress_bar: # Save model History in order to check error data history = History() # build model framework current_model = model_builder(X) # Make predictions for each window for i in range(X.shape[0]): # TRAIN (FIT) model for each epoch # history = current_model.fit( # input_X[i], target_X[i], # epochs=_epochs, batch_size=batch, # verbose=0, shuffle=False, validation_split=0.1, # callbacks=[history] # ) # print(X[i].shape, X[i].dtype, y[i].shape, y[i].dtype) for e in range(epochs): current_model.fit( X[i], y[i], epochs=1, batch_size=batch, verbose=0, shuffle=False, callbacks=[history] ) current_model.reset_states() # PREDICT and save results predictions.append( current_model.predict(test_input[i], batch_size=batch_test, verbose=0) ) progress_bar.update(1) return np.asarray(predictions)
21,128
def mp_variant_annotations(df_mp, df_split_cols='', df_sampleid='all', drop_hom_ref=True, n_cores=1): """ Multiprocessing variant annotations see variantAnnotations.process_variant_annotations for description of annotations This function coordinates the annotation of variants using the multiprocessing library. Parameters --------------- df_mp: pandas df, required VCF DataFrame df_split_cols: dict, optional key:FORMAT id value:#fields expected e.g. {'AD':2} indicates Allelic Depth should be split into 2 columns. df_sampleid: list, required list of sample_ids, can be 'all' drop_hom_ref: bool, optional specifies whether to drop all homozygous reference variants from dataframe. FALSE REQUIRES LARGE MEMORY FOOTPRINT n_cores: int, optional Number of multiprocessing jobs to start. Be careful as memory is copied to each process, RAM intensive """ from functools import partial import multiprocessing as mp import gc print('starting multiprocessing') pool = mp.Pool(int(n_cores)) # tasks = np.array_split(df_mp.copy(), int(n_cores)) #breaks with older # pandas/numpy dfs = df_split(df_mp.copy(), int(n_cores)) mp_process = partial(process_variant_annotations, sample_id=df_sampleid, split_columns=df_split_cols, drop_hom_ref=drop_hom_ref) results = [] del df_mp gc.collect() r = pool.map_async(mp_process, \ dfs, callback=results.append) r.wait() pool.close() pool.join() pool.terminate() print('multiprocessing complete') res_df = pd.concat([df for df in results[0] if len(df) > 0]) cat_cols = ['vartype1', 'vartype2', 'a1', 'a2', \ 'GT1', 'GT2', 'GT','sample_ids', 'zygosity'] res_df.loc[:, cat_cols] = res_df[cat_cols].astype('category') return res_df
21,129
async def wiki(wiki_q): """ For .wiki command, fetch content from Wikipedia. """ match = wiki_q.pattern_match.group(1) try: summary(match) except DisambiguationError as error: await wiki_q.edit(f"Disambiguated page found.\n\n{error}") return except PageError as pageerror: await wiki_q.edit(f"Page not found.\n\n{pageerror}") return result = summary(match) if len(result) >= 4096: file = open("output.txt", "w+") file.write(result) file.close() await wiki_q.client.send_file( wiki_q.chat_id, "output.txt", reply_to=wiki_q.id, caption="`Output too large, sending as file`", ) if os.path.exists("output.txt"): os.remove("output.txt") return await wiki_q.edit("**Search:**\n`" + match + "`\n\n**Result:**\n" + result) if BOTLOG: await wiki_q.client.send_message( BOTLOG_CHATID, f"Wiki query `{match}` was executed successfully")
21,130
def find_attachments(pattern, cursor): """Return a list of attachments that match the specified pattern. Args: pattern: The path to the attachment, as a SQLite pattern (to be passed to a LIKE clause). cursor: The Cursor object through which the SQLite queries are sent to the Zotero database. Returns: A list of (parentItemID, path) pairs that match the specified pattern. The returned list is empty if no matches are found. """ query = 'SELECT parentItemID, path FROM itemAttachments WHERE path LIKE ?' cursor.execute(query, (pattern,)) return list(cursor)
21,131
def generate_symmetric_matrix(n_unique_action: int, random_state: int) -> np.ndarray: """Generate symmetric matrix Parameters ----------- n_unique_action: int (>= len_list) Number of actions. random_state: int Controls the random seed in sampling elements of matrix. Returns --------- symmetric_matrix: array-like, shape (n_unique_action, n_unique_action) """ random_ = check_random_state(random_state) base_matrix = random_.normal(scale=5, size=(n_unique_action, n_unique_action)) symmetric_matrix = ( np.tril(base_matrix) + np.tril(base_matrix).T - np.diag(base_matrix.diagonal()) ) return symmetric_matrix
21,132
def sanitizer_update(instrument_name: str | None): """Update sanitizers with new data""" from .service.sanitize import update_tablesanitizer if instrument_name: items = (instrument_name,) else: listing = app.get_local_source_listing( defaults.source_dir, defaults.blob_from_instrument_name ) items = tuple(l.name for l in listing) click.secho() for name in items: table = app.load_unsanitizedtable( name, defaults.blob_from_instrument_name, ) table_sanitizer = app.load_table_sanitizer( name, defaults.sanitizer_dir_from_instrument_name, ) updates = update_tablesanitizer(table, table_sanitizer) if updates: click.secho("Updating sanitizers for {}".format(click.style(name, fg="bright_cyan"))) for u in updates: if u.new: click.secho(" Creating new sanitizer {} ({}) items".format(u.name, len(u.rows))) else: click.secho(" Updating sanitizer {} ({}) items".format(u.name, len(u.rows))) app.update_sanitizer( name, updates, defaults.sanitizer_dir_from_instrument_name ) click.secho()
21,133
def model_fields_map(model, fields=None, exclude=None, prefix='', prefixm='', attname=True, rename=None): """ На основании переданной модели, возвращает список tuple, содержащих путь в орм к этому полю, и с каким именем оно должно войти в результат. Обрабатываются только обычные поля, m2m и generic сюда не войдут. ARGUMENTS: :param model: модель или инстанс модели, на основе которой будет формироваться список полей :param None | collections.Container fields: список полей, которые будут забраны из модели :param None | collections.Container exclude: список полей, которые не будут забираться :param str prefix: ORM путь, по которому будут распологаться модель в запросе :param str prefixm: префикс, который будет добавлен к имени поля :param bool attname: использовать имя name (model) или attname(model_id) эти поля отличаются для внешних ключей :param dict rename: словарь переименования полей :rtype: list[tuple[str]] """ data = [] rename = rename or {} attribute = 'attname' if attname else 'name' for f in model._meta.concrete_fields: if fields and f.attname not in fields and f.name not in fields: continue if exclude and f.attname in exclude and f.name not in exclude: continue param_name = getattr(f, attribute) new_param_name = rename[param_name] if param_name in rename else param_name data.append(('{}{}'.format(prefix, param_name), '{}{}'.format(prefixm, new_param_name))) return data
21,134
def test_setext_headings_extra_90x(): """ Test case extra 90: SetExt heading with full image with backslash in label """ # Arrange source_markdown = """a![foo\\#bar][bar]a --- [bar]: /url 'title'""" expected_tokens = [ "[setext(2,1):-:3::(1,1)]", "[text(1,1):a:]", "[image(1,2):full:/url:title:foo#bar:::bar:foo\\#bar:::::]", "[text(1,18):a:]", "[end-setext::]", "[BLANK(3,1):]", "[link-ref-def(4,1):True::bar:: :/url:: :title:'title':]", ] expected_gfm = """<h2>a<img src="/url" alt="foo#bar" title="title" />a</h2>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens)
21,135
def scaffold_to_smiles(mols: Union[List[str], List[Chem.Mol]], use_indices: bool = False) -> Dict[str, Union[Set[str], Set[int]]]: """ Computes the scaffold for each SMILES and returns a mapping from scaffolds to sets of smiles (or indices). Parameters ---------- mols: A list of SMILES strings or RDKit molecules. use_indices: Whether to map to the SMILES's index in :code:`mols` rather than mapping to the smiles string itself. This is necessary if there are duplicate smiles. Returns ------- A dictionary mapping each unique scaffold to all SMILES (or indices) which have that scaffold. """ scaffolds = defaultdict(set) for i, mol in tqdm(enumerate(mols), total=len(mols)): scaffold = generate_scaffold(mol) if use_indices: scaffolds[scaffold].add(i) else: scaffolds[scaffold].add(mol) return scaffolds
21,136
def encontrar_passwords(): """ Probar todas las combinaciones de 6 letras, hasheando cada una para ver si coinciden con los hashes guardados en los /etc/shadow Para el tema de equipos, basicamente fui probando con copiar y pegar contenido en texto de distintas paginas de wikipedia en el archivo equipos.txt, hasta que con la NBA funciono. """ hashes = [ ('ox', 'ox45K6RsEUfmQ', generar_palabras()), # fido ('$1$42dJ1xYh', '$1$42dJ1xYh$MfrRke8/Ej3h5.vMtNEhC.', leer_palabras('./colores.txt')), # white ('$6$SZGpKoPi', '$6$SZGpKoPi$GGGqHYKy6PO/H5nvV0AmaGB/5krnxVuz2k2uX81O.CF5nYctE5RlR/rzJQCL3ZsF8yratCRbSR2ZuwKzvve.D0', leer_palabras('./equipos.txt')), # knicks ] encontradas = [] for algo_y_salt, hash_resultado, origen_passwords in hashes: for password in origen_passwords: if crypt(password, algo_y_salt) == hash_resultado: encontradas.append(password) break return encontradas
21,137
def save(fileref, data=None, metadata=None, compression_level=None, order='C'): """saves the data/metadata to a file represented by `fileref`.""" if isinstance(fileref, (str, bytes, _PathLike)): fileref = check_suffix(fileref) with open(fileref, 'wb') as dest: save(dest, data=data, metadata=metadata, order=order) return # otherwise: assume fileref to be a IOBase if not isinstance(data, _np.ndarray): data = _np.array(data) metadict = metadata_dict.from_data(data=data, metadata=metadata, arrayorder=order) metabin = codec.encode_metadata_dict(metadict) metasiz = calc_metadata_size(metabin) databin = codec.encode_data(data, order, compression_level=compression_level) fileref.write(databin) fileref.write(metabin) fileref.write(codec.encode_metadata_size(metasiz))
21,138
def queue_merlin_study(study, adapter): """ Launch a chain of tasks based off of a MerlinStudy. """ samples = study.samples sample_labels = study.sample_labels egraph = study.dag LOG.info("Calculating task groupings from DAG.") groups_of_chains = egraph.group_tasks("_source") # magic to turn graph into celery tasks LOG.info("Converting graph to tasks.") celery_dag = chain( chord( group( [ expand_tasks_with_samples.s( egraph, gchain, samples, sample_labels, merlin_step, adapter, study.level_max_dirs, ).set(queue=egraph.step(chain_group[0][0]).get_task_queue()) for gchain in chain_group ] ), chordfinisher.s().set( queue=egraph.step(chain_group[0][0]).get_task_queue() ), ) for chain_group in groups_of_chains[1:] ) LOG.info("Launching tasks.") return celery_dag.delay(None)
21,139
def sphere_mass(density,radius): """Usage: Find the mass of a sphere using density and radius""" return density*((4/3)*(math.pi)*radius**3)
21,140
def generate_stats_table(buildings_clust_df): """ Generate statistical analysis table of building types in the area Args: buildings_clust_df: building footprints dataframe after performed building blocks assignment (HDBSCAN) Return: stat_table: statistical analysis results which contains means and standard deviations values for every building type in the area """ # Count count_table = buildings_clust_df.groupby('building_types')[['building_types']].size().to_frame('count').reset_index() # Mean mean_table = buildings_clust_df.groupby('building_types')[['building_types','surface_area','rectangularity']].mean().reset_index() mean_table.columns = ['building_types','mean_surface_area','mean_rectangularity'] # Standard deviation sd_table=buildings_clust_df.groupby('building_types')[['surface_area','rectangularity']].agg(np.std, ddof=0).reset_index() # Rename columns sd_table.columns = ['building_types','sd_surface_area','sd_rectangularity'] stat_table = count_table.merge(mean_table).merge(sd_table) # Reorder columns stat_table = stat_table[stat_table.columns[[0,1,3,2,4,5]]] return stat_table
21,141
def make_multisat(nucsat_tuples): """Creates a rst.sty Latex string representation of a multi-satellite RST subtree (i.e. merge a set of nucleus-satellite relations that share the same nucleus into one subtree). """ nucsat_tuples = [tup for tup in nucsat_tuples] # unpack the iterable, so we can check its length assert len(nucsat_tuples) > 1, \ "A multisat relation bundle must contain more than one relation" result = "\dirrel\n\t" first_relation, remaining_relations = nucsat_tuples[0], nucsat_tuples[1:] relname, nuc_types, elements = first_relation first_nucleus_pos = current_nucleus_pos = nuc_types.index('N') result_segments = [] # add elements (nucleus and satellite) from first relation to resulting (sub)tree for i, nuc_type in enumerate(nuc_types): element = elements[i] if is_edu_segment(element): element = wrap_edu_segment(element) if nuc_type == 'N': result_segments.append(NUC_TEMPLATE.substitute(nucleus=element)) else: result_segments.append(SAT_TEMPLATE.substitute(satellite=element, relation=relname)) # reorder elements of the remaining relation and add them to the resulting (sub)tree for (relname, nuc_types, elements) in remaining_relations: for i, nuc_type in enumerate(nuc_types): if nuc_type == 'N': # all relations share the same nucleus, so we don't need to reprocess it. continue else: element = elements[i] if is_edu_segment(element): element = wrap_edu_segment(element) result_segment = SAT_TEMPLATE.substitute(satellite=element, relation=relname) if i < first_nucleus_pos: # satellite comes before the nucleus result_segments.insert(current_nucleus_pos, result_segment) current_nucleus_pos += 1 else: result_segments.append(result_segment) return result + '\n\t'.join(result_segments)
21,142
def plot_to_image(figure): """Converts the matplotlib figure to a PNG image.""" # The function is adapted from # github.com/tensorflow/tensorboard/blob/master/docs/image_summaries.ipynb # Save the plot to a PNG in memory. buf = io.BytesIO() plt.savefig(buf, format="png") # Closing the figure prevents it from being displayed directly. plt.close(figure) buf.seek(0) # Convert PNG buffer to TF image image = tf.image.decode_png(buf.getvalue(), channels=4) # tf.summary.image requires 4-D inputs. [num_samples, height, weight, color]. image = tf.expand_dims(image, 0) return image
21,143
def create_connection(db_config: Box = None) -> None: """Register a database connection Args: db_config: Yapconf-generated configuration object Returns: None """ global motor_db motor_conn = MotorClient( host=db_config.connection.host, port=db_config.connection.port, ) motor_db = motor_conn[db_config.name]
21,144
async def getDiscordTwitchAlerts(cls:"PhaazebotDiscord", guild_id:str, alert_id:int=None, limit:int=0, offset:int=0) -> list: """ Get server discord alerts, if alert_id = None, get all else only get one associated with the alert_id Returns a list of DiscordTwitchAlert(). """ sql:str = """ SELECT `discord_twitch_alert`.*, `twitch_user_name`.`user_name` AS `twitch_channel_name` FROM `discord_twitch_alert` LEFT JOIN `twitch_user_name` ON `discord_twitch_alert`.`twitch_channel_id` = `twitch_user_name`.`user_id` WHERE `discord_twitch_alert`.`discord_guild_id` = %s""" values:tuple = ( str(guild_id), ) if alert_id: sql += " AND `discord_twitch_alert`.`id` = %s" values += (alert_id,) if limit: sql += f" LIMIT {limit}" if offset: sql += f" OFFSET {offset}" res:list = cls.BASE.PhaazeDB.selectQuery(sql, values) if res: return [DiscordTwitchAlert(x) for x in res] else: return []
21,145
def is_visible_dir(file_info): """Checks to see if the file is a visible directory. @param file_info: The file to check @type file_info: a gnomevfs.FileInfo """ return is_dir(file_info) and not is_hidden(file_info)
21,146
def add_model_components(m, d, scenario_directory, subproblem, stage): """ :param m: :param d: :return: """ # Import needed availability type modules required_availability_modules = get_required_subtype_modules_from_projects_file( scenario_directory=scenario_directory, subproblem=subproblem, stage=stage, which_type="availability_type", ) imported_availability_modules = load_availability_type_modules( required_availability_modules ) # First, add any components specific to the availability type modules for op_m in required_availability_modules: imp_op_m = imported_availability_modules[op_m] if hasattr(imp_op_m, "add_model_components"): imp_op_m.add_model_components(m, d, scenario_directory, subproblem, stage) def availability_derate_rule(mod, g, tmp): """ :param mod: :param g: :param tmp: :return: """ # TODO: make the no_availability type module, which will be the # default for the availability type param (it will just return 1 as # the derate) availability_type = mod.availability_type[g] return imported_availability_modules[ availability_type ].availability_derate_rule(mod, g, tmp) m.Availability_Derate = Expression(m.PRJ_OPR_TMPS, rule=availability_derate_rule)
21,147
def read_file(item): """Read file in key path into key image """ item['image'] = tf.read_file(item['path']) return item
21,148
def make_joint(withdraw, old_password, new_password): """Return a password-protected withdraw function that has joint access to the balance of withdraw. >>> w = make_withdraw(100, 'hax0r') >>> w(25, 'hax0r') 75 >>> make_joint(w, 'my', 'secret') 'Incorrect password' >>> j = make_joint(w, 'hax0r', 'secret') >>> w(25, 'secret') 'Incorrect password' >>> j(25, 'secret') 50 >>> j(25, 'hax0r') 25 >>> j(100, 'secret') 'Insufficient funds' >>> j2 = make_joint(j, 'secret', 'code') >>> j2(5, 'code') 20 >>> j2(5, 'secret') 15 >>> j2(5, 'hax0r') 10 >>> j2(25, 'password') 'Incorrect password' >>> j2(5, 'secret') "Your account is locked. Attempts: ['my', 'secret', 'password']" >>> j(5, 'secret') "Your account is locked. Attempts: ['my', 'secret', 'password']" >>> w(5, 'hax0r') "Your account is locked. Attempts: ['my', 'secret', 'password']" >>> make_joint(w, 'hax0r', 'hello') "Your account is locked. Attempts: ['my', 'secret', 'password']" """ "*** YOUR CODE HERE ***" x = withdraw(0, old_password) if type(x) == str: return x else: def withdraw_r(amount, code): if code == new_password: # print('password is new') return withdraw(amount, old_password) elif code != new_password: return withdraw(amount, code) return withdraw_r
21,149
def should_parse(config, file): """Check if file extension is in list of supported file types (can be configured from cli)""" return file.suffix and file.suffix.lower() in config.filetypes
21,150
def gui_main(): """Главное окно программы""" layout_range = 20 layout_distance = 20 sg.theme(GUI_THEME) # Применение темы интерфейса layout_main_window = [ [sg.Text('Производитель принтера:', size=(20, 1), pad=((0, 0), (10, layout_range))), sg.DropDown(print_programs, size=(max([len(i) for i in print_programs]) + 3, 1), key='#ProgramSelection', enable_events=True, pad=((0, layout_distance), (10, layout_range))), sg.Button('Установить пакет поддержки', size=(26, 1), key='#InstallPack', pad=((0, layout_distance + 151), (10, layout_range))), sg.Button('Шрифт InconsolataCyr.ttf', size=(24, 1), key='#InstallFont', pad=((0, 0), (10, layout_range))) ], [sg.Text('Файл данных:', size=(20, 1), pad=((0, 0), (0, layout_range))), sg.InputText('', size=(93, 1), key='#FilePath', pad=((0, layout_distance + 2), (0, layout_range))), sg.FileBrowse('Открыть', size=(8, 1), key='#OpenFile', target='#FilePath', pad=((2, 0), (0, layout_range))) ], [sg.Button('Обработать', size=(15, 2), key='#ProcFile', pad=((0, 33), (0, 10))), sg.Button('Импорт', size=(9, 2), key='#Import', pad=((0, 473), (0, 10))), sg.Button('Справка', size=(9, 2), key='#Man', pad=((0, 33), (0, 10))), sg.Button('Выход', size=(10, 2), key='#Exit', pad=((0, 0), (0, 10))) ] ] window = sg.Window('{0}, версия {1}'.format(__progName__, __version__), layout_main_window) while True: event, values = window.read() print(event, values) if event in (None, '#Exit'): break if event == '#ProgramSelection': if not prog_installed_check(values['#ProgramSelection']): prog_installed_flag = False sg.PopupError( """Программное обеспечение для печати не установлено""", title='Ошибка!', keep_on_top=True) else: prog_installed_flag = True import_file_path = os.path.join( gpd('Программы', 'KEY', values['#ProgramSelection'] )['data_path'], gpd('Программы', 'KEY', values['#ProgramSelection'] )['transfer_file_name']) if not pack_installed_check(values['#ProgramSelection']): pack_installed_flag = False sg.PopupError( """Пакет поддержки программы печати не установлен или повреждён. Для установки пакета нажмите кнопку \"Установить пакет поддержки\"""", title='Ошибка!', keep_on_top=True) else: pack_installed_flag = True elif event == '#InstallPack': if values['#ProgramSelection'] == '': sg.Popup( """Выберите производителя принтера""", title='Ошибка!', keep_on_top=True) elif not prog_installed_flag: sg.PopupError( """Программное обеспечение для печати не установлено""", title='Ошибка!', keep_on_top=True) else: if install_pack(values['#ProgramSelection']): sg.Popup( """Пакет поддержки программы печати успешно установлен.""", title='Успех!', keep_on_top=True) pack_installed_flag = True else: sg.PopupError( """Не удалось установить пакет поддержки программы печати""", title='Ошибка!', keep_on_top=True) elif event == '#InstallFont': fontfile = gpd('Пути', 'KEY', 'VALUE')['font'] if os.path.exists(fontfile): os.startfile(fontfile) else: sg.PopupError( """Не найден файл шрифта. Переустановите программу MarkV""", title='Ошибка!', keep_on_top=True) elif event == '#ProcFile': if values['#ProgramSelection'] == '': sg.Popup( """Выберите производителя принтера""", title='Ошибка!', keep_on_top=True) elif not prog_installed_flag: sg.PopupError( """Программное обеспечение для печати не установлено""", title='Ошибка!', keep_on_top=True) elif values['#FilePath'] == '': sg.Popup( """Выберите файл данных маркировки""", title='Ошибка!', keep_on_top=True) elif not os.path.exists(values['#FilePath']): sg.PopupError( """Указанный файл данных не найден""", title='Ошибка!', keep_on_top=True) else: # try: ret = proc_mark_file(values['#FilePath'], import_file_path) # except: # ret = 'Неизвестная ошибка формата данных' if ret == 0: if sg.PopupYesNo( """Файл данных успешно обработан.\n Сформирован и сохранён трансферный файл.\n\n Открыть трансферный файл для просмотра?\n""", title='Успех!', keep_on_top=True) == 'Yes': # Открытие трансферного файла для проверки os.startfile(import_file_path) else: sg.Popup(ret, title='Ошибка!', keep_on_top=True) elif event == '#Import': if values['#ProgramSelection'] == '': sg.Popup( """Выберите производителя принтера""", title='Ошибка!', keep_on_top=True) elif not prog_installed_flag: sg.PopupError( """Программное обеспечение для печати не установлено""", title='Ошибка!', keep_on_top=True) elif not pack_installed_flag: sg.PopupError( """Пакет поддержки программы печати не установлен или повреждён. Для установки нажмите кнопку \"Установить пакет поддержки\"""", title='Ошибка!', keep_on_top=True) elif not os.path.exists(import_file_path): sg.PopupError( """Не найден трансферный файл. Чтобы его сформировать выберите файл данных и нажмите кнопку \'Обработать\"""", title='Ошибка!', keep_on_top=True) else: prog_string = '"{0}"'.format(gpd('Программы', 'KEY', values['#ProgramSelection'] )['program_path']) param_string = '"{0}"'.format(gpd('Программы', 'KEY', values['#ProgramSelection'] )['param_path']) call_string = ' '.join([prog_string, param_string]) print(call_string) subprocess.Popen(call_string, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) elif event == '#Man': manfile = gpd('Пути', 'KEY', 'VALUE')['man'] if os.path.exists(manfile): os.startfile(manfile) else: sg.PopupError( """Не найден файл справки. Переустановите программу MarkV""", title='Ошибка!', keep_on_top=True) # subprocess.call('Acrobat.exe /A page=3 {0}'.format(manfile)) window.close()
21,151
def _get_pipeline_per_subband(subband_name: str): """ Constructs a pipeline to extract the specified subband related features. Output: sklearn.pipeline.Pipeline object containing all steps to calculate time-domain feature on the specified subband. """ freq_range = FREQ_BANDS_RANGE[subband_name] order = FREQ_BANDS_ORDERS[subband_name] assert len( freq_range) == 2, "Frequency range must only have 2 elements: [lower bound frequency, upper bound frequency]" bounds = [freq / NYQUIST_FREQ for freq in freq_range] b, a = butter(order, bounds, btype='bandpass') def filter_epochs_in_specified_subband(epochs): return epochs.copy().filter( l_freq=bounds[0], h_freq=bounds[1], method='iir', n_jobs=1, iir_params={ 'a': a, 'b': b }, verbose=False) return Pipeline([ ('filter', FunctionTransformer(filter_epochs_in_specified_subband, validate=False)), ('get-values', FunctionTransformer(get_data_from_epochs, validate=False)), ('mean-energy', FunctionTransformer( get_transformer(_get_signal_mean_energy), validate=True )), ])
21,152
def add_default_area(apps, schema_editor): """Use a dummy area for progress with no areas """ Area = apps.get_model('goals', 'Area') Progress = apps.get_model('goals', 'Progress') prgs = Progress.objects.filter(area=None) if len(prgs): area = Area.objects.first() for progress in prgs: progress.area = area progress.save()
21,153
def get_credentials_interactively() -> Credentials: """ Gets credentials for the bl interactively """ return ("placeholder-user", "placeholder-pass")
21,154
def reynolds(find="Re", printEqs=True, **kwargs): """ Reynolds Number = Inertia / Viscosity """ eq = list() eq.append("Eq(Re, rho * U * L / mu)") return solveEqs(eq, find=find, printEq=printEqs, **kwargs)
21,155
def data_app(): """ Data Processer and Visualizer """ st.title("Data Cake") st.subheader("A to Z Data Analysis") file = ['./dataset/Ac1',[0,1]] def file_selector(): filename = st.file_uploader("Upload Excel File", type=['xls','xlsx']) if filename is not None: sheetnames = pd.ExcelFile(filename).sheet_names sheet = st.selectbox("Sheet Sheet", sheetnames) return [filename, sheet] file = file_selector() # Read Data try : df = pd.read_excel(file[0], sheet_name = file[1]) except Exception as e: st.info("Please upload Excel file") # Show Datas try: if st.checkbox("Show Dataset"): number = st.number_input("Number of Rows to View",5,10) st.dataframe(df.head(number)) except Exception as e: st.info("Please upload Excel file") # Show Columns try: if st.button("Column Names"): st.write(df.columns) except Exception as e: st.info("Please upload Excel file") # Show Shape try: if st.checkbox("Shape of Dataset"): st.write(df.shape) except Exception as e: st.info("Please upload Excel file") # Select Columns try: if st.checkbox("Select Columns To Show"): all_columns = df.columns.tolist() selected_columns = st.multiselect("Select",all_columns) new_df = df[selected_columns] st.dataframe(new_df) except Exception as e: st.info("Please upload Excel file") # Show Datatypes try: if st.button("Data Types"): st.write(df.dtypes) except Exception as e: st.info("Please upload Excel file") # Show Summary try: if st.checkbox("Summary"): st.write(df.describe().T) except Exception as e: st.info("Please upload Excel file") ## Plot and Visualization st.subheader("Data Visualization") # Correlation # Seaborn Plot if st.checkbox("Correlation Plot[Seaborn]"): st.write(sns.heatmap(df.corr(),annot=True)) st.pyplot() # Pie Chart if st.checkbox("Pie Plot"): all_columns_names = df.columns.tolist() if st.button("Generate Pie Plot"): st.success("Generating A Pie Plot") st.write(df.iloc[:,-1].value_counts().plot.pie(autopct="%1.1f%%")) st.pyplot() # Count Plot if st.checkbox("Plot of Value Counts"): st.text("Value Counts By Target") all_columns_names = df.columns.tolist() primary_col = st.selectbox("Primary Columm to GroupBy",all_columns_names) selected_columns_names = st.multiselect("Select Columns",all_columns_names) if st.button("Plot"): st.text("Generate Plot") if selected_columns_names: vc_plot = df.groupby(primary_col)[selected_columns_names].count() else: vc_plot = df.iloc[:,-1].value_counts() st.write(vc_plot.plot(kind="bar")) st.pyplot() #Contour Plot if st.checkbox("Contour Plot "): st.text("3D Contour Plot") all_columns_names = df.columns.tolist() X = st.selectbox("Select X axis",all_columns_names) Y = st.selectbox("Select Y axis",all_columns_names,index = 1) VS = st.selectbox("Select Z axis",all_columns_names,index =2) Z_F = df.pivot_table(index=X, columns=Y, values=VS).T.values X_unique = np.sort(df[X].unique()) Y_unique = np.sort(df[Y].unique()) X_F, Y_F = np.meshgrid(X_unique, Y_unique) pd.DataFrame(Z_F).round(3) pd.DataFrame(X_F).round(3) pd.DataFrame(Y_F).round(3) fig,ax=plt.subplots(1,1) cp = ax.contourf(X_F, Y_F, Z_F) fig.colorbar(cp) # Add a colorbar to a plot st.pyplot(fig=fig) # Customizable Plot try: st.subheader("Customizable Plot") all_columns_names = df.columns.tolist() type_of_plot = st.selectbox("Select Type of Plot",["area","bar","line","hist","box","kde"]) selected_columns_names = st.multiselect("Select Columns To Plot",all_columns_names) if st.button("Generate Plot"): st.success("Generating Customizable Plot of {} for {}".format(type_of_plot,selected_columns_names)) # Plot By Streamlit if type_of_plot == 'area': cust_data = df[selected_columns_names] st.area_chart(cust_data) elif type_of_plot == 'bar': cust_data = df[selected_columns_names] st.bar_chart(cust_data) elif type_of_plot == 'line': cust_data = df[selected_columns_names] st.line_chart(cust_data) # Custom Plot elif type_of_plot: cust_plot= df[selected_columns_names].plot(kind=type_of_plot) st.write(cust_plot) st.pyplot() if st.button("Ready to ML !"): st.balloons() except: st.info("Please upload Excel file") st.sidebar.header("Data Cake") st.sidebar.info("Built by Veera Ragavan")
21,156
def merge_clusters_for_nodes(nodes_to_merge: List[NNCFNode], clusterization: Clusterization): """ Merges clusters to which nodes from nodes_to_merge belongs. :param nodes_to_merge: All nodes are clusters for which should be merged. :param clusterization: Clusterization of nodes to work with. """ if len(nodes_to_merge) <= 1: return # Will merge cluster with highest importance with others pairwise max_importance_node_id = None max_importance = 0 for node in nodes_to_merge: importance = clusterization.get_cluster_containing_element(node.node_id).importance if importance > max_importance: max_importance_node_id = node.node_id max_importance = importance max_importance_cluster_id = clusterization.get_cluster_containing_element(max_importance_node_id).id for node in nodes_to_merge: if node.node_id != max_importance_node_id: current_node_cluster_id = clusterization.get_cluster_containing_element(node.node_id).id if current_node_cluster_id != max_importance_cluster_id: clusterization.merge_clusters(max_importance_cluster_id, current_node_cluster_id)
21,157
def derivative(x, y, order=1): """Returns the derivative of y-coordinates as a function of x-coodinates. Args: x (list or array): 1D array x-coordinates. y (list or array): 1D array y-coordinates. order (number, optional): derivative order. Returns: x and y arrays. """ if order<0: raise ValueError('order must be a positive integer.') x = np.array(x) y = np.array(y) x_diff = np.diff(x) y_diff = np.diff(y)/x_diff for i in range(order-1): y_diff = np.diff(y_diff)/x_diff[:len(x_diff)-(i+1)] for i in range(order): x = moving_average(x, n=2) return x, y_diff
21,158
def get_ff_parameters(wc_params, molecule=None, components=None): """Get the parameters for ff_builder.""" ff_params = { 'ff_framework': wc_params['ff_framework'], 'ff_molecules': {}, 'shifted': wc_params['ff_shifted'], 'tail_corrections': wc_params['ff_tail_corrections'], 'mixing_rule': wc_params['ff_mixing_rule'], 'separate_interactions': wc_params['ff_separate_interactions'] } if molecule is not None: ff_params['ff_molecules'] = {molecule['name']: molecule['forcefield']} if components is not None: for value in components.get_dict().values(): ff = value['forcefield'] #pylint: disable=invalid-name ff_params['ff_molecules'][value['name']] = ff return Dict(dict=ff_params)
21,159
def healpix_header_odict(nside,nest=False,ordering='RING',coord=None, partial=True): """Mimic the healpy header keywords.""" hdr = odict([]) hdr['PIXTYPE']=odict([('name','PIXTYPE'), ('value','HEALPIX'), ('comment','HEALPIX pixelisation')]) ordering = 'NEST' if nest else 'RING' hdr['ORDERING']=odict([('name','ORDERING'), ('value',ordering), ('comment','Pixel ordering scheme, either RING or NESTED')]) hdr['NSIDE']=odict([('name','NSIDE'), ('value',nside), ('comment','Resolution parameter of HEALPIX')]) if coord: hdr['COORDSYS']=odict([('name','COORDSYS'), ('value',coord), ('comment','Ecliptic, Galactic or Celestial (equatorial)')]) if not partial: hdr['FIRSTPIX']=odict([('name','FIRSTPIX'), ('value',0), ('comment','First pixel # (0 based)')]) hdr['LASTPIX']=odict([('name','LASTPIX'), ('value',hp.nside2npix(nside)-1), ('comment','Last pixel # (0 based)')]) hdr['INDXSCHM']=odict([('name','INDXSCHM'), ('value','EXPLICIT' if partial else 'IMPLICIT'), ('comment','Indexing: IMPLICIT or EXPLICIT')]) hdr['OBJECT']=odict([('name','OBJECT'), ('value','PARTIAL' if partial else 'FULLSKY'), ('comment','Sky coverage, either FULLSKY or PARTIAL')]) return hdr
21,160
def hello(): """Test endpoint""" return {'hello': 'world'}
21,161
def get_config_data(func_name: str, config_file_name: str = "config.json")\ -> tuple[str, str, str, str] | str | tuple[str, str]: """Extracts the data pertaining to the covid_news_handling module from the provided config file. A try except is used to get the encoding style to be used, and to check if a valid/present config file has been provided. If one hasn't been provided the event is logged and the dashboard is shutdown. Otherwise, the encoding style is extracted (data loaded as a json and the value of the 'encoding' key is found). The config file is opened again with the required encoding style, loaded as a json, with the data relating to the 'covid_news_handling' key being found and the required values being extracted. A while loop is used to ensure all values are present in the config file, if they aren't, the event is logged and the dashboard is shutdown, and each value is returned to the respective functions. Args: func_name (str): The name of the function data is being returned to, given as a string. This allows for certain values to be returned to certain functions (no wasted variables). config_file_name (str): The name of the config file data is being taken from, given as a string. This allows for data in the config file to be used throughout the module and to customise the program. Returns: tuple[str, str, str, str]: (queries, language, sort_by, news_api_key). The parameters to be used in the news API call, returned as a tuple of strings. This allows the user to change the parameters used within the news API call (further customise the dashboard). str: displayed_content. The data from the article to be displayed in the content section of the news article widgets on the dashboard. This again lets the user customise the news section of the dashboard. tuple[str, str]: (num_displayed_articles, no_articles_message). The number of news articles to display on each page and the message that is displayed when there are no unremoved articles remaining, returned as a tuple of strings, allowing the user to change the number of displayed articles and the no articles message via the config file. """ logging.debug("Entering the get_config_data function.") # Get the encoding style to be used throughout the module. try: get_encoding = open(config_file_name, 'r') except FileNotFoundError: logging.critical("Config file missing or cannot be located.") # Loads the json data and gets the value of the 'encoding' key. data = json.load(get_encoding) program_encoding = data['encoding'] get_encoding.close() # Opens the file with the given encoding to get the rest of the data. with open(config_file_name, 'r', encoding=program_encoding) as\ configuration_file: data = json.load(configuration_file) json_news_data = data['covid_news_handling'] queries = json_news_data['queries'] language = json_news_data['language'] sort_by = json_news_data['sort_by'] displayed_content = json_news_data['displayed_content'] num_displayed_articles = json_news_data['num_displayed_articles'] no_articles_message = json_news_data['no_articles_message'] news_api_key = json_news_data['news_api_key'] # Ensures a complete config file is provided before progressing. while (queries and language and sort_by and displayed_content and num_displayed_articles and no_articles_message and news_api_key) is not None: # Returns different values depending on the function calling it. if func_name == 'news_API_request': logging.info("Exiting get_config_data function as intended") return (queries, language, sort_by, news_api_key) if func_name == 'news_processor': logging.info("Exiting get_config_data function as intended") return displayed_content if func_name == 'remove_and_limit_news_articles': logging.info("Exiting get_config_data function as intended") return (num_displayed_articles, no_articles_message) logging.error("Incomplete config file provided, dashboard stopped.")
21,162
def test_get_sorted_filenames(): """ Checking sorted filenames returned by util function """ with TempDirectory() as tempdir: tempdir.write((tempdir.path + "/a.txt"), (bytes(1))) tempdir.write((tempdir.path + "/b.txt"), (bytes(1))) tempdir.write((tempdir.path + "/c.txt"), (bytes(1))) expected = [ tempdir.path + "/a.txt", tempdir.path + "/b.txt", tempdir.path + "/c.txt", ] actual = util.get_sorted_filenames_in_dir(tempdir.path, "txt") assert expected == actual
21,163
def compare_gaussian_classifiers(): """ Fit both Gaussian Naive Bayes and LDA classifiers on both gaussians1 and gaussians2 datasets """ for f in ["gaussian1.npy", "gaussian2.npy"]: # Load dataset X, y = load_dataset(f"../datasets/{f}") # Fit models and predict over training set naive = GaussianNaiveBayes() lda = LDA() lda.fit(X, y) naive.fit(X, y) naive_pred = naive.predict(X) lda_pred = lda.predict(X) # Plot a figure with two subplots, showing the Gaussian Naive # Bayes predictions on the left and LDA predictions # on the right. Plot title should specify dataset used and # subplot titles should specify algorithm and accuracy # Create subplots from IMLearn.metrics import accuracy fig = make_subplots(1, 2, subplot_titles=[f"Gaussian Naive Bayes, accuracy " f"{accuracy(y, naive_pred)}", f"LDA, accuracy " f"{accuracy(y, lda_pred)}"]) fig.update_layout(title={"text": f}) # naive fig.add_scatter(x=X[:, 0], y=X[:, 1], mode="markers", marker=dict(color=naive_pred, symbol=y), text=f"Gaussian Naive Bayes, accuracy " f"{accuracy(y, naive_pred)}", row=1, col=1) # LDA fig.add_scatter(x=X[:, 0], y=X[:, 1], mode="markers", marker=dict(color=lda_pred, symbol=y), xaxis="x", row=1, col=2) fig.update_xaxes(title_text="Feature 1", row=1, col=1) fig.update_xaxes(title_text="Feature 1", row=1, col=2) fig.update_yaxes(title_text="Feature 2", row=1, col=1) fig.update_yaxes(title_text="Feature 2", row=1, col=2) # Add `X` dots specifying fitted Gaussians' means fig.add_scatter(x=lda.mu_[:, 0], y=lda.mu_[:, 1], mode="markers", marker=dict(color="black", symbol="x"), row=1, col=1) fig.add_scatter(x=naive.mu_[:, 0], y=naive.mu_[:, 1], mode="markers", marker=dict(color="black", symbol="x"), row=1, col=2) # Add ellipses depicting the covariances of the fitted Gaussians fig.add_trace(get_ellipse(lda.mu_[0], lda.cov_), col=2, row=1) fig.add_trace(get_ellipse(lda.mu_[1], lda.cov_), col=2, row=1) fig.add_trace(get_ellipse(lda.mu_[2], lda.cov_), col=2, row=1) fig.add_trace(get_ellipse(naive.mu_[0], np.diag(naive.vars_[0])), col=1, row=1) fig.add_trace(get_ellipse(naive.mu_[1], np.diag(naive.vars_[1])), col=1, row=1) fig.add_trace(get_ellipse(naive.mu_[2], np.diag(naive.vars_[2])), col=1, row=1) fig.show()
21,164
def permute_channels(n_channels, keep_nbr_order=True): """Permute the order of neighbor channels Args: n_channels: the total number of channels keep_nbr_order: whether to keep the relative order of neighbors if true, only do random rotation and flip if false, random permutation """ ch_idx = np.arange(1, n_channels) if keep_nbr_order: # rotate and flip ch_idx = np.roll(ch_idx, np.random.randint(n_channels-1)) if np.random.randint(2) == 1: ch_idx = ch_idx[::-1] else: # random permute np.random.shuffle(ch_idx) ch_idx = np.concatenate([[0], ch_idx]) return ch_idx
21,165
def checkHdf5CorrelationNan(frags_dict, fragList, atmList, jsonfile): """Check cor energies are not error. Cor energies that were not calculated are 0.0 and nan if error.""" with open('correlation-nan.txt', 'w') as w: for key, dict_ in frags_dict.items(): if np.isnan(dict_['os']): w.write(f"{key}\n") geometryFromListIds(key.split('-'), fragList, atmList, jsonfile, newDir="nan-cor")
21,166
def test_merging_recipes(): """Test recipes can be merged and merging results in a valid minimal DAG.""" A, B = generate_recipes() # Merging empty recipes returns original recipe C = A.merge(None) assert A == C C = workflows.recipe.Recipe().merge(A) assert A == C C = A.merge(workflows.recipe.Recipe()) assert A == C C = A.merge(B) # Merge function should not modify original recipes assert A, B == generate_recipes() # Result will have 6 nodes: start, error, A1, A2, B1, B2 assert len(C.recipe) == 6 # Start node contains two different pointers to 'A service' assert "start" in C.recipe assert len(C.recipe["start"]) == 2 assert C.recipe["start"][0] == (1, {}) assert C.recipe["start"][1] == (mock.ANY, {}) assert C.recipe["start"][0][0] != C.recipe["start"][1][0] assert C.recipe[C.recipe["start"][0][0]]["service"] == "A service" assert C.recipe[C.recipe["start"][1][0]]["service"] == "A service" # Error node points to 'B service' assert "error" in C.recipe assert len(C.recipe["error"]) == 1 assert C.recipe[C.recipe["error"][0]]["service"] == "B service" # There is a 'C service' assert any( map( lambda x: (isinstance(x, dict) and x.get("service") == "C service"), C.recipe.values(), ) )
21,167
def from_file(file,typcls): """Parse an instance of the given typeclass from the given file.""" s = Stream(file) return s.read_value(typcls._ep_typedesc)
21,168
def test_supersmoother_multiband(N=100, period=1): """Test that results are the same with/without filter labels""" t, y, dy = _generate_data(N, period) periods = np.linspace(period / 2, period * 2, 100) model = SuperSmoother() P_singleband = model.fit(t, y, dy).score(periods) filts = np.ones(N) model_mb = SuperSmootherMultiband() P_multiband = model_mb.fit(t, y, dy, filts).score(periods) assert_allclose(P_multiband, P_singleband) tfit = [1.5, 2, 2.5] assert_allclose(model.predict(tfit, period=period), model_mb.predict(tfit, 1, period=period)) assert_raises(ValueError, model_mb.predict, tfit, 2)
21,169
def read_test_ids(): """ Read sample submission file, list and return all test image ids. """ df_test = pd.read_csv(SAMPLE_SUBMISSION_PATH) ids_test = df_test['img'].map(lambda s: s.split('.')[0]) return ids_test
21,170
def chuseok(year=None): """ :parm year: int :return: Thanksgiving Day of Korea """ year = year if year else _year return LunarDate(year, 8, 15).toSolarDate()
21,171
def _run(): """Makes event-attribution schematics for 2019 tornado-prediction paper. This is effectively the main method. """ file_system_utils.mkdir_recursive_if_necessary( directory_name=OUTPUT_DIR_NAME) # Interpolation with merger. figure_object, axes_object = _plot_interp_two_times( storm_object_table=_get_data_for_interp_with_merger()[0], tornado_table=_get_data_for_interp_with_merger()[1], legend_font_size=SMALL_LEGEND_FONT_SIZE, legend_position_string='upper right' ) axes_object.set_title('Interpolation with merger') this_file_name = '{0:s}/interp_with_merger_standalone.jpg'.format( OUTPUT_DIR_NAME) print('Saving figure to: "{0:s}"...'.format(this_file_name)) figure_object.savefig( this_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) plotting_utils.label_axes(axes_object=axes_object, label_string='(a)') panel_file_names = ['{0:s}/interp_with_merger.jpg'.format(OUTPUT_DIR_NAME)] print('Saving figure to: "{0:s}"...'.format(panel_file_names[-1])) figure_object.savefig( panel_file_names[-1], dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) pyplot.close(figure_object) # Interpolation with split. figure_object, axes_object = _plot_interp_two_times( storm_object_table=_get_data_for_interp_with_split()[0], tornado_table=_get_data_for_interp_with_split()[1], legend_font_size=DEFAULT_FONT_SIZE, legend_position_string='upper left' ) axes_object.set_title('Interpolation with split') this_file_name = '{0:s}/interp_with_split_standalone.jpg'.format( OUTPUT_DIR_NAME) print('Saving figure to: "{0:s}"...'.format(this_file_name)) figure_object.savefig( this_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) plotting_utils.label_axes(axes_object=axes_object, label_string='(b)') panel_file_names.append( '{0:s}/interp_with_split.jpg'.format(OUTPUT_DIR_NAME) ) print('Saving figure to: "{0:s}"...'.format(panel_file_names[-1])) figure_object.savefig( panel_file_names[-1], dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) pyplot.close(figure_object) # Simple successors. figure_object, axes_object = _plot_attribution_one_track( storm_object_table=_get_track_for_simple_succ(), plot_legend=True, plot_x_ticks=True, legend_font_size=SMALL_LEGEND_FONT_SIZE, legend_location='lower right' ) this_file_name = '{0:s}/simple_successors_standalone.jpg'.format( OUTPUT_DIR_NAME) print('Saving figure to: "{0:s}"...'.format(this_file_name)) figure_object.savefig( this_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) plotting_utils.label_axes(axes_object=axes_object, label_string='(c)') axes_object.set_title('Linking to simple successors') panel_file_names.append( '{0:s}/simple_successors.jpg'.format(OUTPUT_DIR_NAME) ) print('Saving figure to: "{0:s}"...'.format(panel_file_names[-1])) figure_object.savefig( panel_file_names[-1], dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) pyplot.close(figure_object) # Simple predecessors, example 1. figure_object, axes_object = _plot_attribution_one_track( storm_object_table=_get_track1_for_simple_pred(), plot_legend=True, plot_x_ticks=False, legend_font_size=DEFAULT_FONT_SIZE, legend_location=(0.28, 0.1) ) axes_object.set_title('Simple predecessors, example 1') this_file_name = '{0:s}/simple_predecessors_track1_standalone.jpg'.format( OUTPUT_DIR_NAME) print('Saving figure to: "{0:s}"...'.format(this_file_name)) figure_object.savefig( this_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) plotting_utils.label_axes(axes_object=axes_object, label_string='(d)') axes_object.set_title('Linking to simple predecessors, example 1') panel_file_names.append( '{0:s}/simple_predecessors_track1.jpg'.format(OUTPUT_DIR_NAME) ) print('Saving figure to: "{0:s}"...'.format(panel_file_names[-1])) figure_object.savefig( panel_file_names[-1], dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) pyplot.close(figure_object) # Simple predecessors, example 2. figure_object, axes_object = _plot_attribution_one_track( storm_object_table=_get_track2_for_simple_pred(), plot_legend=False, plot_x_ticks=False ) axes_object.set_title('Simple predecessors, example 2') this_file_name = '{0:s}/simple_predecessors_track2_standalone.jpg'.format( OUTPUT_DIR_NAME) print('Saving figure to: "{0:s}"...'.format(this_file_name)) figure_object.savefig( this_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) plotting_utils.label_axes(axes_object=axes_object, label_string='(e)') axes_object.set_title('Linking to simple predecessors, example 2') panel_file_names.append( '{0:s}/simple_predecessors_track2.jpg'.format(OUTPUT_DIR_NAME) ) print('Saving figure to: "{0:s}"...'.format(panel_file_names[-1])) figure_object.savefig( panel_file_names[-1], dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) pyplot.close(figure_object) # Concatenate all panels into one figure. concat_file_name = '{0:s}/attribution_schemas.jpg'.format(OUTPUT_DIR_NAME) print('Concatenating panels to: "{0:s}"...'.format(concat_file_name)) imagemagick_utils.concatenate_images( input_file_names=panel_file_names, output_file_name=concat_file_name, num_panel_rows=2, num_panel_columns=3) imagemagick_utils.resize_image( input_file_name=concat_file_name, output_file_name=concat_file_name, output_size_pixels=CONCAT_FIGURE_SIZE_PX)
21,172
def plot_order(generation_idx, obs, out_path=None): """Plot generation coordinate list. A star on the curve denotes the pixel generated last. obs is a three-tuple of input image dimensions, (input-channels-unused, num_rows, num_cols)""" plt.figure(figsize=(3, 3)) plt.hlines(np.arange(-1, obs[1])+0.5, xmin=-0.5, xmax=obs[2]-0.5, alpha=0.5) plt.vlines(np.arange(-1, obs[2])+0.5, ymin=-0.5, ymax=obs[1]-0.5, alpha=0.5) rows, cols = zip(*generation_idx) plt.plot(cols, rows, color="r") plt.scatter([cols[-1]], [rows[-1]], marker="*", s=100, c="k") plt.xticks(np.arange(obs[1])) plt.axis("equal") plt.gca().invert_yaxis() if out_path: plt.savefig(out_path) else: plt.show()
21,173
def distribute(iterable, layout: ModelLayout): """ Of each group of layout.n_replicas successive items from the iterable, pick the one with index `layout.replica_idx`. Makes sure that the underlying iterator is advanced at the same pace no matter what replica_idx is. """ it = iter(iterable) try: while True: for i in range(layout.replica_idx): next(it) ret = next(it) for i in range(layout.n_replicas - layout.replica_idx - 1): next(it) yield ret except StopIteration: return
21,174
def DELETE(request): """Delete a user's authorization level over a simulation.""" # Make sure required parameters are there try: request.check_required_parameters( path={ 'simulationId': 'int', 'userId': 'int' } ) except exceptions.ParameterError as e: return Response(400, e.message) # Instantiate an Authorization authorization = Authorization.from_primary_key(( request.params_path['userId'], request.params_path['simulationId'] )) # Make sure this Authorization exists in the database if not authorization.exists(): return Response(404, '{} not found.'.format(authorization)) # Make sure this User is allowed to delete this Authorization if not authorization.google_id_has_at_least(request.google_id, 'OWN'): return Response(403, 'Forbidden from deleting {}.'.format(authorization)) # Delete this Authorization authorization.delete() return Response( 200, 'Successfully deleted {}.'.format(authorization), authorization.to_JSON() )
21,175
def process_query(data): """ Concat query, question, and narrative then 'preprocess' :data: a dataframe with queries in rows; query, question, and narrative in columns :return: 2d list of tokens (rows: queries, columns: tokens) """ lst_index = [] lst_words = [] for index, row in data.iterrows(): tmp = preprocess(row["query"] +" "+ row["question"]+ " "+row["narrative"]) lst_words.append(tmp) lst_index.append(row["number"]) return lst_words
21,176
def test_ssl_cert_search_command_success(mocker_http_request, client): """ When "ssl-cert-search" command executes successfully then context output and response should match. """ from PassiveTotal_v2 import ssl_cert_search_command # Fetching expected raw response from file with open('test_data/SSL/ssl_cert_resp.json', encoding='utf-8') as f: json_file = json.load(f) expected_res = json_file.get('success') mocker_http_request.return_value = expected_res # Fetching expected entry context details from file with open("test_data/SSL/ssl_cert_ec.json", encoding='utf-8') as f: expected_ec = json.load(f) # Fetching expected entry context details from file with open("test_data/SSL/ssl_cert_hr.md") as f: expected_hr = f.read() result = ssl_cert_search_command(client, SSL_ARGS) assert result.raw_response == expected_res assert result.outputs == expected_ec assert result.readable_output == expected_hr assert result.outputs_key_field == 'sha1' assert result.outputs_prefix == 'PassiveTotal.SSL'
21,177
def parameter_parser(): """ A method to parse up command line parameters. The default hyperparameters give a high performance model without grid search. """ parser = argparse.ArgumentParser(description="Run SimGNN.") parser.add_argument("--dataset", nargs="?", default="AIDS700nef", # AIDS700nef LINUX IMDBMulti help="Dataset name. Default is AIDS700nef") parser.add_argument("--gnn-operator", nargs="?", default="gin", # gcn gin gat help="Type of GNN-Operator. Default is gcn") parser.add_argument("--epochs", type=int, default=350, help="Number of training epochs. Default is 350.") parser.add_argument("--filters-1", type=int, default=64, help="Filters (neurons) in 1st convolution. Default is 64.") parser.add_argument("--filters-2", type=int, default=32, help="Filters (neurons) in 2nd convolution. Default is 32.") parser.add_argument("--filters-3", type=int, default=32, ## help="Filters (neurons) in 3rd convolution. Default is 32.") parser.add_argument("--tensor-neurons", type=int, default=16, help="Neurons in tensor network layer. Default is 16.") parser.add_argument("--bottle-neck-neurons", type=int, default=16, help="Bottle neck layer neurons. Default is 16.") parser.add_argument("--batch-size", type=int, default=128, help="Number of graph pairs per batch. Default is 128.") parser.add_argument("--bins", type=int, default=16, help="Histogram Similarity score bins. Default is 16.") parser.add_argument("--dropout", type=float, default=0, help="Dropout probability. Default is 0.") parser.add_argument("--learning-rate", type=float, default=0.001, help="Learning rate. Default is 0.001.") parser.add_argument("--weight-decay", type=float, default=5 * 10 ** -4, help="Adam weight decay. Default is 5*10^-4.") parser.add_argument("--histogram", dest="histogram", action="store_true") parser.add_argument("--diffpool", dest="diffpool", action="store_true", help="Enable differentiable pooling.") parser.add_argument("--plot-loss", dest="plot_loss", action="store_true") parser.add_argument("--notify", dest="notify", action="store_true", help="Send notification message when the code is finished (only Linux & Mac OS support).") # TODO device selection #parser.add_argument("--device", # nargs="?", # default='cpu', # torch.device('cuda' if torch.cuda.is_available() else 'cpu'), # help="Select to run with gpu or cpu. Default depends on existing CUDA installation.") parser.add_argument("--use-lsh", dest="use_lsh", action="store_true", help="Specify if LSH will be utilized. Default choice is to train WITH LSH.") parser.set_defaults(histogram=False) # True False parser.set_defaults(use_lsh=False) # True False parser.set_defaults(diffpool=False) # True False parser.set_defaults(plot_loss=False) # True False parser.set_defaults(notify=False) # TODO add lsh variables as arguments conditional on --use-lsh return parser.parse_args()
21,178
def nb_view_patches(Yr, A, C, S, b, f, d1, d2, YrA=None, image_neurons=None, thr=0.99, denoised_color=None, cmap='jet'): """ Interactive plotting utility for ipython notebook Args: Yr: np.ndarray movie A,C,b,f: np.ndarrays outputs of matrix factorization algorithm d1,d2: floats dimensions of movie (x and y) YrA: np.ndarray ROI filtered residual as it is given from update_temporal_components If not given, then it is computed (K x T) image_neurons: np.ndarray image to be overlaid to neurons (for instance the average) thr: double threshold regulating the extent of the displayed patches denoised_color: string or None color name (e.g. 'red') or hex color code (e.g. '#F0027F') cmap: string name of colormap (e.g. 'viridis') used to plot image_neurons """ # PREPROCESSING nr, T = C.shape nA2 = np.ravel(np.power(A, 2).sum(0)) if type( A) == np.ndarray else np.ravel(A.power(2).sum(0)) b = np.squeeze(b) f = np.squeeze(f) if YrA is None: Y_r = np.array(spdiags(old_div(1, nA2), 0, nr, nr) * (A.T * np.matrix(Yr) - (A.T * np.matrix(b[:, np.newaxis])) * np.matrix(f[np.newaxis]) - A.T.dot(A) * np.matrix(C)) + C) else: Y_r = C + YrA x = np.arange(T) if image_neurons is None: image_neurons = A.mean(1).reshape((d1, d2), order='F') coors = get_contours(A, (d1, d2), thr) cc1 = [cor['coordinates'][:, 0] for cor in coors] cc2 = [cor['coordinates'][:, 1] for cor in coors] c1 = cc1[0] c2 = cc2[0] # PLOTTING fig, axes = plt.subplots(2) axes[0].imshow(image_neurons, cmap = 'gray') axes[0].set_title('Neural map') axes[1].plot(C[0], label = 'C: raw traces', c = 'blue') axes[1].plot(Y_r[0], label = 'Y_r: residuals', c = 'red') axes[1].plot(S[0], label = 'S: deconvolved activity', c = 'green') plt.legend() axes[1].set_xlabel('t [frames]') # WIDGETS neuron_nr_slider = IntSlider(description = 'Neuron Number', value = 0, min = 0, max = len(C) - 1) def neuron_nr_handler(*args): i = neuron_nr_slider.value axes[1].clear() axes[1].plot(C[i], label = 'C: raw traces', c = 'blue') axes[1].plot(Y_r[i], label = 'Y_r: residuals', c = 'red') axes[1].plot(S[i], label = 'S: deconvolved activity', c = 'green') plt.legend() axes[1].set_xlabel('t [frames]') neuron_nr_slider.observe(neuron_nr_handler, 'value') widgets = [neuron_nr_slider] return fig, widgets
21,179
def menu(): """Manda el Menú \n Opciones: 1: Añadir a un donante 2: Añadir a un donatario 3: Revisar la lista de donantes 4: Revisar la lista de donatarios 5: Realizar una transfusion 6: Estadisticas 7: Salir Returns: opc(num):Opcion del menu """ print("\nBienvenido a el sistema de Donacion de Sangre. Elige la accion que deseas realizar.\n1.Añadir Donante de Sangre\n2.Añadir Donatario de Sangre\n3.Revisar lista de Donantes\n4.Revisar Lista de Donatarios\n5.Realizar una transfusion\n6.Estadisticas\n7.Salir") opc=int(input("Seleccionar: ")) return opc
21,180
def get_engine(hass, config): """Set up Pico speech component.""" if shutil.which("pico2wave") is None: _LOGGER.error("'pico2wave' was not found") return False return PicoProvider(config[CONF_LANG])
21,181
def test_optional_fields(data, fld): """Verify that the FN028 item is created without error if an optional field is omitted Arguments: - `data`: """ data[fld] = None item = FN028(**data) assert item.project_id == data["project_id"]
21,182
def test_robot_maps(robot): """ Test robot maps. Test robot maps """ assert(robot.maps() == [{ 'active_pmapv_details': { 'active_pmapv': { 'child_seg_xfer_seq_err': 0, 'create_time': 1570282549, 'creator': 'user', 'last_user_pmapv_id': '134043T209849', 'last_user_ts': 1570282549, 'pmap_id': 'en12a9_lTglkpPqazxDWED', 'pmapv_id': '134043T209849', 'proc_state': 'OK_Processed' }, 'map_header': { 'create_time': 1570282549, 'id': 'en12a9_lTglkpPqazxDWED', 'learning_percentage': 100, 'name': 'Appartement', 'resolution': 0.10500000417232513, 'user_orientation_rad': 0.0, 'version': '134043T209849' }, 'regions': [ { 'id': '1', 'name': 'Living Room', 'region_type': 'living_room' }, { 'id': '2', 'name': 'Kitchen', 'region_type': 'kitchen' }, { 'id': '3', 'name': 'Foyer 1', 'region_type': 'foyer' }, { 'id': '4', 'name': 'BedRoom 1', 'region_type': 'bedroom' }, { 'id': '5', 'name': 'BedRoom 2', 'region_type': 'bedroom' }, { 'id': '6', 'name': 'BathRoom', 'region_type': 'bathroom' }, { 'id': '7', 'name': 'Custom', 'region_type': 'custom' } ] }, 'active_pmapv_id': '134043T209849', 'create_time': 1570276098, 'last_pmapv_ts': 1571613652, 'merged_pmap_ids': [], 'pmap_id': 'en12a9_lTglkpPqazxDWED', 'robot_pmapv_id': '191020T232046', 'state': 'active', 'user_pmapv_id': '134043T209849', 'visible': True }])
21,183
def load_cp() -> Tuple[List[str], List[List[float]]]: """ Loads cloud point data; target values given in Celsius Returns: Tuple[List[str], List[List[float]]]: (smiles strings, target values); target values have shape (n_samples, 1) """ return _load_set('cp')
21,184
async def test_browse_media_single_source_no_identifier( hass: HomeAssistant, dms_device_mock: Mock, device_source_mock: None ) -> None: """Test browse_media without a source_id, with a single device registered.""" # Fast bail-out, mock will be checked after dms_device_mock.async_browse_metadata.side_effect = UpnpError # No source_id nor media_id with pytest.raises(BrowseError): await media_source.async_browse_media(hass, f"media-source://{DOMAIN}") # Mock device should've been browsed for the root directory dms_device_mock.async_browse_metadata.assert_awaited_once_with( "0", metadata_filter=ANY ) # No source_id but a media_id # media_source.URI_SCHEME_REGEX won't let the ID through to dlna_dms dms_device_mock.async_browse_metadata.reset_mock() with pytest.raises(BrowseError, match="Invalid media source URI"): await media_source.async_browse_media( hass, f"media-source://{DOMAIN}//:media-item-id" ) assert dms_device_mock.async_browse_metadata.await_count == 0
21,185
def walk_up(directory_path): """ Implementation by Michele Pasin https://gist.github.com/zdavkeos/1098474#gistcomment-2943865 Mimic os.walk, but walk 'up' instead of down the directory tree. """ directory_path = path.realpath(directory_path) # get files in current dir try: names = os.listdir(directory_path) except Exception as e: print(e) return dirs, non_dirs = [], [] for name in names: if path.isdir(path.join(directory_path, name)): dirs.append(name) else: non_dirs.append(name) yield directory_path, dirs, non_dirs new_path = path.realpath(path.join(directory_path, '..')) # see if we are at the top if new_path == directory_path: return for x in walk_up(new_path): yield x
21,186
def look_up(f, *args, **kwargs): """ :param f: :type f: :param args: :type args: :param kwargs: :type kwargs: :return: :rtype:""" ag_hash = hash(args) + make_hash(kwargs) if f in global_table: if ag_hash in global_table[f]: return global_table[f][ag_hash] res = global_table[f][ag_hash] = f(*args, **kwargs) return res global_table[f] = {} res = global_table[f][ag_hash] = f(*args, **kwargs) return res
21,187
def getenv(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. """ return environ.get(key, default)
21,188
def test_list_nmtokens_min_length_nistxml_sv_iv_list_nmtokens_min_length_1_4(mode, save_output, output_format): """ Type list/NMTOKENS is restricted by facet minLength with value 5. """ assert_bindings( schema="nistData/list/NMTOKENS/Schema+Instance/NISTSchema-SV-IV-list-NMTOKENS-minLength-1.xsd", instance="nistData/list/NMTOKENS/Schema+Instance/NISTXML-SV-IV-list-NMTOKENS-minLength-1-4.xml", class_name="NistschemaSvIvListNmtokensMinLength1", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
21,189
def read_tag(request, tid, *args, **kwargs): """read_tag(tid) returns ...""" s = api.read_tag(request, tid, *args, **kwargs) return render_to_response('read/tag.html', s)
21,190
def ber_img(original_img_bin, decoded_img_bin): """Compute Bit-Error-Rate (BER) by comparing 2 binary images.""" if not original_img_bin.shape == decoded_img_bin.shape: raise ValueError('Original and decoded images\' shapes don\'t match !') height, width, k = original_img_bin.shape errors_bits = abs(original_img_bin - decoded_img_bin).sum() errors_bits = errors_bits.flatten() total_bits = np.prod(original_img_bin.shape) ber = errors_bits / total_bits return(ber)
21,191
def get_fractal_patterns_WtoE_NtoS(fractal_portrait, width, height): """ get all fractal patterns from fractal portrait, from West to East, from North to South """ fractal_patterns = [] for x in range(width): # single fractal pattern f_p = get_fractal_patterns_zero_amounts() for y in range(height): if fractal_portrait[x][y] != EMPTY_PLACE: f_p[fractal_portrait[x][y]] += 1 if any(v > 0 for v in f_p.values()): fractal_patterns.append(f_p) return fractal_patterns
21,192
def test_process_entry_array_user(jobs): """Providing a user shorts the checks for existing jobs.""" jobs.process_entry( { "AllocCPUS": "1", "Elapsed": "00:00:00", "JobID": "14729857_[737-999]", "JobIDRaw": "14729857", "MaxRSS": "", "NNodes": "1", "REQMEM": "50Gn", "State": "PENDING", "TotalCPU": "00:00:00", }, user_provided=True, ) expected_job = Job("14729857", "14729857_[737-999]", None) expected_job.state = "PENDING" assert jobs.jobs == {"14729857_[737-999]": expected_job}
21,193
def rating(date=None): """P2peye comprehensive rating and display results. from https://www.p2peye.com Args: date: if None, download latest data, if like '201812', that download month data. Returns: DataFrame """ start = time.time() if date is None: date = str(pd.to_datetime(datetime.datetime.now())-pd.DateOffset(months=1))[:7].replace('-', '') assert (isinstance(date, str) and len(date)==6), "`date` shoule format '201812' or None" url_txt = 'https://raw.githubusercontent.com/Hourout/datasets/master/report/p2peye/rating/p2peye_rating'+date+'.txt' s = requests.get(url_txt).content data = pd.read_csv(io.StringIO(s.decode('utf-8'))) print('p2peye rating dataset download completed, run time %d min %.2f sec' %divmod((time.time()-start), 60)) return data
21,194
def crop_image(src, box, expand=0): """Read sensor data and crop a bounding box Args: src: a rasterio opened path box: geopandas geometry polygon object expand: add padding in percent to the edge of the crop Returns: masked_image: a crop of sensor data at specified bounds """ #Read data and mask try: left, bottom, right, top = box.bounds expand_width = (right - left) * expand /2 expand_height = (top - bottom) * expand / 2 #If expand is greater than increase both size if expand >= 0: expanded_left = left - expand_width expanded_bottom = bottom - expand_height expanded_right = right + expand_width expanded_top = top+expand_height else: #Make sure of no negative boxes expanded_left = left+expand_width expanded_bottom = bottom+expand expanded_right = right-expand_width expanded_top = top-expand_height window = rasterio.windows.from_bounds(expanded_left, expanded_bottom, expanded_right, expanded_top, transform=src.transform) masked_image = src.read(window=window) except Exception as e: raise ValueError("sensor path: {} failed at reading window {} with error {}".format(src, box.bounds,e)) #Roll depth to channel last masked_image = np.rollaxis(masked_image, 0, 3) #Skip empty frames if masked_image.size ==0: raise ValueError("Empty frame crop for box {} in sensor path {}".format(box, src)) return masked_image
21,195
def add_msgpack_support(cls, ext, add_cls_methods=True): """Adds serialization support, Enables packing and unpacking with msgpack with 'pack.packb' and 'pack.unpackb' methods. If add_method then enables equality, reading and writing for the classs. Specificly, adds methods: bytes <- obj.to_binary() obj <- cls.from_binary(bytes) boolean <- obj1 == obj2 Args: cls: class ext: an unique code for the msgpack's Ext hook """ def enc(obj): return packb(obj.__dict__) def dec(data): obj = cls.__new__(cls) obj.__dict__.update(unpackb(data)) return obj def eq(a, b): if type(a) != type(b): return NotImplemented return a.__dict__ == b.__dict__ if add_cls_methods: if cls.__eq__ is object.__eq__: cls.__eq__ = eq cls.to_bytes = enc cls.from_bytes = staticmethod(dec) _pack_reg[cls] = (ext, enc) petlib.pack.register_coders(cls, ext, enc, dec)
21,196
def main(): """Run the models with each preprocessor using multiple_experiments.""" for preproc in preprocs: for model in spaces: multiple_experiments(model, 'full', spaces[model], 5, preproc)
21,197
def test_plot_glass_brain(testdata_3d, tmpdir): # noqa:F811 """Smoke tests for plot_glass_brain with colorbar and negative values.""" img = testdata_3d['img'] plot_glass_brain(img, colorbar=True, resampling_interpolation='nearest') # test plot_glass_brain with negative values plot_glass_brain(img, colorbar=True, plot_abs=False, resampling_interpolation='nearest')
21,198
def parse_conf(): """(Dictionary) Function that parses the config file and/or environment variables and returns dictionary.""" # Following tuple holds the configfile/env var versions of each config ALL_CONFIGS = ( # Name of the variable in code, Path to config in the config file(section + value), name of environment variable, default value) ("data_store", "default", "path_to_result", "WEATHER_PATH_TO_RESULT", "data"), ("geocoder", "default", "geocoder", "WEATHER_GEOCODER", "YES"), ("lat", "default", "lat", "WEATHER_LAT", "0"), ("lon", "default", "lon", "WEATHER_LON", "0"), ("api_key", "credentials", "openweather_api", "") ) # Initialize return dictionary ret = {} # Attempt to read config file path_to_config = os.getenv("WEATHER_CONFIG", "weather.conf") config = configparser.ConfigParser() config.read(path_to_config) debug("Config sections loaded: " + str(config.sections())) for t in ALL_CONFIGS: tmp_env = os.getenv(t[3]) if tmp_env != None: ret[t[0]] = tmp_env debug("Environment variable loaded for " + t[0] + " is " + str(tmp_env)) elif t[1] in config and t[2] in config[t[1]]: debug("Config file value loaded for " + t[0] + " is " + config[t[1]][t[2]]) ret[t[0]] = config[t[1]][t[2]] else: debug("Couldn't not find a config file value nor Environment variable for " + t[0]) debug("Default value for " + t[0] + " is " + t[4]) ret[t[0]] = t[4] return ret
21,199