content
stringlengths
22
815k
id
int64
0
4.91M
def event_message(iden, event): """Return an event message.""" return {"id": iden, "type": "event", "event": event}
14,300
def match(command): """Match function copied from cd_mkdir.py""" return ( command.script.startswith('cd ') and any(( 'no such file or directory' in command.output.lower(), 'cd: can\'t cd to' in command.output.lower(), 'does not exist' in command.output.lower() )))
14,301
def db_remove_game(game: str, channel: str) -> bool: """Removes a game from the database, for a specific channel """ if db_check_game_exists(game, channel): cursor.execute( "DELETE FROM deathcount " "WHERE channel=(?) AND game=(?)", (channel.lower(), game.lower()) ) connection.commit() return True else: return False
14,302
def get_unique_id(): """Return an ID that will be unique over the current segmentation :return: unique_id :rtype: int """ global UNIQUE_ID UNIQUE_ID = UNIQUE_ID + 1 return UNIQUE_ID
14,303
def human_study_csv_entity(datadir, src, tgt, nsample): """process model output for the entity control experiment, and generate csv files for human study of entity control. This function will yield a `human_study_entity.csv` file in the `datadir` directory Args: datadir: the dataset directory src: the input src file tgt: the model generation file nsample: only use first `nsample` examples """ data = [] data_tmp = {} with open(src) as fsrc, \ open(tgt) as ftgt: for i, (lsrc, ltgt) in enumerate(zip(fsrc, ftgt)): if i % 2 == 0: cur = 'important' data_tmp = {} else: cur = 'unimportant' lsrc = lsrc.strip() ltgt = ltgt.strip() entity = lsrc.split(' => ')[0] source = ' => '.join(lsrc.split(' => ')[1:]) if entity in ltgt and entity.strip() != ltgt.strip(): data_tmp[cur] = {'id': i, 'entity': entity, 'article': source, 'summary': ltgt} if i % 2 != 0 and len(data_tmp) == 2: assert data_tmp['important']['article'] == data_tmp['unimportant']['article'] data.append({'id': data_tmp['important']['id'], 'article': data_tmp['important']['article'], 'important_keywords': data_tmp['important']['entity'], 'important_summary': data_tmp['important']['summary'], 'unimportant_keywords': data_tmp['unimportant']['entity'], 'unimportant_summary': data_tmp['unimportant']['summary']}) if len(data) < nsample: raise ValueError('valid examples are not enough') data = data[:nsample] data_frame = {key: [] for key in data[0].keys()} for d in data: for k, v in d.items(): data_frame[k].append(v) order = ['id', 'article', 'important_keywords', 'important_summary', 'unimportant_keywords', 'unimportant_summary'] data_frame = OrderedDict(sorted(data_frame.items(), key=lambda t: order.index(t[0]))) df = pd.DataFrame(data=data_frame) df.to_csv('human_study_entity.csv')
14,304
def logout_route(): """logout route""" logout_user() return redirect(url_for('app.index_route'))
14,305
def setup_command_line_parser(): """ Sets up command line argument parser. Additional arguments could be added easily. For example if the version needed to be passed in with -v you could add it as a positional argument like so: parser.add_argument("-v", "--version", help="Current version of application" """ parser = argparse.ArgumentParser() parser.add_argument("-d", "--debug", action='store_true', help="Run script in debug mode") args = parser.parse_args() return parser
14,306
def test_fenced_code_blocks_extra_03x(): """ Test case extra 03: variation of 1 where list already opened but no new list item NOTE: Small change to output to remove newline at pre/code at end. """ # Arrange source_markdown = """- ``` some text some other text ``` """ expected_tokens = [ "[ulist(1,1):-::2:: ]", "[fcode-block(1,3):`:3::::::]", "[text(2,3):some text:]", "[end-fcode-block:::True]", "[end-ulist:::True]", "[para(3,1):]", "[text(3,1):some other text:]", "[end-para:::False]", "[fcode-block(4,1):`:3::::::]", "[text(5,1)::]", "[end-fcode-block:::True]", ] expected_gfm = """<ul> <li> <pre><code>some text </code></pre> </li> </ul> <p>some other text</p> <pre><code></code></pre>""" # Act & Assert act_and_assert(source_markdown, expected_gfm, expected_tokens, show_debug=False)
14,307
def get_repo_name( name: str, in_mode: str, include_host_name: bool = False ) -> str: """ Return the full/short name of a Git repo based on the other name. :param in_mode: the values `full_name` or `short_name` determine how to interpret `name` """ repo_map = get_complete_repo_map(in_mode, include_host_name) dbg.dassert_in( name, repo_map, "Invalid name='%s' for in_mode='%s'", name, in_mode ) ret = repo_map[name] return ret
14,308
def uvSnapshot(aa=1,b="int",euv=1,ff="string",g="int",n="string",o=1,r="int",umx="float",umn="float",uvs="string",vmx="float",vmn="float",xr="int",yr="int"): """ http://help.autodesk.com/cloudhelp/2019/ENU/Maya-Tech-Docs/CommandsPython/uvSnapshot.html ----------------------------------------- uvSnapshot is NOT undoable, NOT queryable, and NOT editable. Builds an image containg the UVs of the selected objects. ----------------------------------------- Return Value: None ----------------------------------------- Flags: ----------------------------------------- aa : antiAliased [boolean] [] When this flag is set, lines are antialiased. ----------------------------------------- b : blueColor [int] [] Blue component of line drawing. Default is 255. ----------------------------------------- euv : entireUVRange [boolean] [] When this flag is set, the generated image will contain the entire uv range. Default is UV in 0-1 range. ----------------------------------------- ff : fileFormat [string] [] Output file format. Any of those keyword: "iff", "sgi", "pic", "tif", "als", "gif", "rla", "jpg" Default is iff. ----------------------------------------- g : greenColor [int] [] Green component of line drawing. Default is 255. ----------------------------------------- n : name [string] [] Name of the file to be created. ----------------------------------------- o : overwrite [boolean] [] When this flag is set, existing file can be ovewritten. ----------------------------------------- r : redColor [int] [] Red component of line drawing. Default is 255. ----------------------------------------- umx : uMax [float] [] Optional User Specified Max value for U. Default value is 1. This will take precedence over the "entire range" -euv flag. ----------------------------------------- umn : uMin [float] [] Optional User Specified Min value for U. Default value is 0. This will take precedence over the "entire range" -euv flag. ----------------------------------------- uvs : uvSetName [string] [] Name of the uv set to use. Default is the current one. ----------------------------------------- vmx : vMax [float] [] Optional User Specified Max value for V. Default value is 1. This will take precedence over the "entire range" -euv flag. ----------------------------------------- vmn : vMin [float] [] Optional User Specified Min value for V. Default value is 0. This will take precedence over the "entire range" -euv flag. ----------------------------------------- xr : xResolution [int] [] Horizontal size of the image. Default is 512. ----------------------------------------- yr : yResolution [int] Vertical size of the image. Default is 512. """
14,309
def binary_search_hi(a,d,lo,hi): """ Created for leetcode prob 34 """ if d!=a[lo]: raise Exception("d should be a[lo]") while hi>lo: mid=(lo+hi)//2+1 if a[mid]==d: lo=mid else: hi=mid-1 if a[hi]==d: return hi else: return lo
14,310
def log_to_file(csifile='csifile.dat'): """Implement log_to_file in Python""" f = open(csifile, 'wb') # show frequency count = 0 SLOW_MSG_CNT = 1 # /usr/include/linux/connector.h # #define CN_NETLINK_USERS 10 /* Highest index + 1 */ CN_NETLINK_USERS = 10 CN_IDX_IWLAGN = CN_NETLINK_USERS + 0xf # CN_VAL_IWLAGN = 0x1 # useless # /usr/include/linux/netlink.h # #define NETLINK_CONNECTOR 11 # #define NETLINK_ADD_MEMBERSHIP 1 socket.NETLINK_CONNECTOR = 11 NETLINK_ADD_MEMBERSHIP = 1 with socket.socket(socket.AF_NETLINK, socket.SOCK_DGRAM, socket.NETLINK_CONNECTOR) as s: # proc_addr s.bind((os.getpid(), CN_IDX_IWLAGN)) # kern_addr, useless, pass # And subscribe to netlink group s.setsockopt(270, NETLINK_ADD_MEMBERSHIP, CN_IDX_IWLAGN) while True: ret = s.recv(4096) # /usr/include/linux/netlink.h # struct nlmsghdr { # __u32 nlmsg_len; /* Length of message including header */ # __u16 nlmsg_type; /* Message content */ # __u16 nlmsg_flags; /* Additional flags */ # __u32 nlmsg_seq; /* Sequence number */ # __u32 nlmsg_pid; /* Sending process port ID */ # }; nlmsg_len, nlmsg_type, nlmsg_flags, nlmsg_seq, nlmsg_pid = struct.unpack("=LHHLL", ret[:16]) # /usr/include/linux/connector.h # struct cb_id { # __u32 idx; # __u32 val; # }; # struct cn_msg { # struct cb_id id; # __u32 seq; # __u32 ack; # __u16 len; /* Length of the following data */ # __u16 flags; # __u8 data[0]; # }; cnmsg_idx, cnmsg_val, cnmsg_seq, cnmsg_ack, cnmsg_len, cnmsg_flag = struct.unpack("=LLLLHH", ret[16:36]) # linux-80211n-csitool: /drivers/net/wireless/iwlwifi/iwl-connector.c # /** # * Sends the message over the kernel connector to a userspace program. # */ # void connector_send_msg(const u8 *data, const u32 size, const u8 code) # { # struct cn_msg *m; # u8 *buf; # u32 payload_size; # /* Payload + 1-byte "code" */ # payload_size = size + 1 + sizeof(struct cn_msg); # m = kmalloc(payload_size, GFP_ATOMIC); # if (m == NULL) { # printk(KERN_ERR "%s: malloc failed\n", __func__); # return; # } # buf = ((u8 *) m) + sizeof(struct cn_msg); # /* Set up message */ # memcpy(&m->id, &connector_id, sizeof(struct cb_id)); # m->seq = 0; # m->len = size + 1; # buf[0] = code; # memcpy(&buf[1], data, size); # /* Enqueue message -- may free on failure */ # connector_enqueue_msg(m); # return; # } cnmsg_data = ret[36:] if count % SLOW_MSG_CNT == 0: print("received %d bytes: id: %d val: %d seq: %d clen: %d" % (cnmsg_len, cnmsg_idx, cnmsg_val, cnmsg_seq, cnmsg_len)) # print("data: %s", bytes.decode(cnmsg_data)) l2 = struct.pack('!H', cnmsg_len) f.write(l2) ret = f.write(cnmsg_data) if count % 100 == 0: print('wrote %d bytes [msgcnt=%u]' % (ret, count)) count += 1 f.close()
14,311
def delete(task_id): """Remove task in db with given id.""" with _tasks_db(): tasks.delete(task_id)
14,312
def check_subscription(func): """Checks if the user signed up for a paid subscription """ @wraps(func) def wrapper(*args, **kwargs): if current_user.is_authenticated(): subscription = current_user.subscription if not subscription.active and subscription.plan.name != 'Free': return redirect(url_for('account.subscribe', plan_id=subscription.plan_id)) return func(*args, **kwargs) return wrapper
14,313
def spikesbetter(P): """ same as the custom cython function _dice6, a python implementation for easy use on other computers does spin selection procedure based on given array of probabilities -------------------------------------------------------------------- Inputs: P: probability of silence array. shape (loop, xmax, N) ------------------------------------------------------------------- Output: array of spin values in {0,1} with shape (loop, xmax, N) """ spikes=np.zeros(P.shape) for i in range(P.shape[0]): for j in range(P.shape[1]): for k in range(P.shape[2]): if np.random.rand() > P[i,j,k]: spikes[i,j,k] += 1 return spikes
14,314
def generate_edits(diff): """Generate edit commands from an RCS diff block. DIFF is a string holding an entire RCS file delta. Generate a tuple (COMMAND, INPUT_POS, ARG) for each block implied by DIFF. Tuples describe the ed commands: ('a', INPUT_POS, LINES) : add LINES at INPUT_POS. LINES is a list of strings. ('d', INPUT_POS, COUNT) : delete COUNT input lines starting at line INPUT_POS. In all cases, INPUT_POS is expressed as a zero-offset line number within the input revision.""" diff = msplit(diff) i = 0 while i < len(diff): m = ed_command_re.match(diff[i]) if not m: raise MalformedDeltaException('Bad ed command') i += 1 command = m.group(1) start = int(m.group(2)) count = int(m.group(3)) if command == 'd': # "d" - Delete command yield ('d', start - 1, count) else: # "a" - Add command if i + count > len(diff): raise MalformedDeltaException('Add block truncated') yield ('a', start, diff[i:i + count]) i += count
14,315
def questionnaire(): """ Questions to ask if no arguments given. """ mcc = questionnaire_3digit("MCC") mnc = questionnaire_3digit("MNC") device = scriptutils.questionnaire_device() bundles = utilities.i2b("CHECK BUNDLES?: ") if bundles: download = False upgrade = False export = False blitz = False else: export = utilities.i2b("EXPORT TO FILE?: ") download = utilities.i2b("DOWNLOAD?: ") upgrade = False if not download else utilities.i2b("Y=UPGRADE BARS, N=DEBRICK BARS?: ") blitz = False if not download else (utilities.i2b("CREATE BLITZ?: ") if upgrade else False) directory = os.getcwd() print(" ") carrierchecker_main(mcc, mnc, device, download, upgrade, directory, export, blitz, bundles, None, False)
14,316
def main(): """Entry point for gameoflife.""" # Command line argument parser parser = ArgumentParser(prog='gameoflife', description="Conway's Game of Life", epilog='Suggestions and bug reports are greatly ' 'appreciated: ' 'https://github.com/wlof/gameoflife/issues', add_help=False) parser.add_argument('--impl', '-i', type=str, default='normal', choices=['normal', 'light', 'numpy', 'numpy-light'], help='game implementation') parser.add_argument('--width', '-w', type=int, default=100, help='grid width') parser.add_argument('--height', '-h', type=int, default=100, help='grid height') parser.add_argument('--prob', '-p', type=float, default=0.5, help='initial population probability') parser.add_argument('--color', '-c', type=str, default='auto', choices=['auto', 'yes', 'no'], help='use colors') parser.add_argument('--version', action='version', version=__version__) parser.add_argument('--help', action='help', help='show this help message and exit') # Parse args args = parser.parse_args() # Parse numpy flag if args.impl in ('numpy', 'numpy-light'): try: imp.find_module('numpy') except ImportError: parser.error("can't find numpy module. " "Check if NumPy is installed correctly.") try: imp.find_module('scipy') except ImportError: parser.error("can't find scipy module. " "Check if SciPy is installed correctly.") # Parse dimensions if args.width <= 0: parser.error('width needs to be a positive integer') if args.height <= 0: parser.error('height needs to be a positive integer') # Parse probability if not 0.0 <= args.prob <= 1.0: parser.error('probability needs to be between 0.0 and 1.0') curses.wrapper(curses_wrapped_main, args)
14,317
def onUrlFound(__url): """ Called by onPacketFound, if the packet contains a url. """ _url_ = resolveUrl(_url) logger.info(_url_)
14,318
def t3x1_y(y): """ Translation in y. """ return t3x1(0.0, y, 0.0)
14,319
def write_primer_info(primers, prefix): """ Write tsv of primer metadata """ if primers is None: primers = {} outfile = prefix + '.tsv' header = ['primer_set', 'amplicon_size_consensus', 'amplicon_size_avg', 'amplicon_size_sd', 'primer_id', 'primer_type', 'sequence', 'length', 'degeneracy', 'degeneracy_3prime', 'position_start', 'position_end', 'Tm_avg', 'Tm_sd', 'GC_avg', 'GC_sd', 'hairpin_avg', 'hairpin_sd', 'homodimer_avg', 'homodimer_sd'] with open(outfile, 'w') as outF: outF.write('\t'.join(header) + '\n') for num in sorted(primers.keys(), key=lambda x: int(x)): for cat in primers[num].keys(): fwi = CAT_IDX[cat] for degen_seq in primers[num][cat].keys(): x = [ str(num), str(primers[num][cat][degen_seq]['amplicon_size_consensus']), str(primers[num][cat][degen_seq]['amplicon_size_avg']), str(primers[num][cat][degen_seq]['amplicon_size_sd']), '{}{}'.format(num, fwi), cat, degen_seq, str(primers[num][cat][degen_seq]['length']), str(primers[num][cat][degen_seq]['degeneracy']), str(primers[num][cat][degen_seq]['degeneracy_3p']), str(primers[num][cat][degen_seq]['start']), str(primers[num][cat][degen_seq]['end']), str(primers[num][cat][degen_seq]['Tm'][0]), str(primers[num][cat][degen_seq]['Tm'][1]), str(primers[num][cat][degen_seq]['GC'][0]), str(primers[num][cat][degen_seq]['GC'][1]), str(primers[num][cat][degen_seq]['hairpin'][0]), str(primers[num][cat][degen_seq]['hairpin'][1]), str(primers[num][cat][degen_seq]['homodimer'][0]), str(primers[num][cat][degen_seq]['homodimer'][1]), ] outF.write('\t'.join(x) + '\n') logging.info('File written: {}'.format(outfile))
14,320
def perm_data_time(x, indices): """ Permute data matrix, i.e. exchange node ids, so that binary unions form the clustering tree. """ if indices is None: return x N, M, Q = x.shape Mnew = len(indices) assert Mnew >= M xnew = np.empty((N, Mnew, Q)) for i,j in enumerate(indices): # Existing vertex, i.e. real data. if j < M: xnew[:, i, :] = x[:, j, :] # Fake vertex because of singeltons. # They will stay 0 so that max pooling chooses the singelton. # Or -infty ? else: xnew[:, i, :] = np.zeros((N, Q)) return xnew
14,321
def make_regress_files(regress_files, out_dir=None, regress_dir=None, clean=None): """ Copy ``regress_files`` from ``out_dir`` to ``regress_dir``, maintaining the relative directory structure. The ``clean`` parameter specifies a dict of rules for "cleaning" files so that uninteresting diffs are eliminated. Each dict key is the path name (corresponding to ``regress_files``) and the value is a 2-tuple of (match_regex, substitution_string). :param regress_files: list of relative path names :param out_dir: top-level directory for source of files :param regress_dir: top-level directory where files are copied :param clean: dict of regex substitution rules :returns: None """ if clean is None: clean = {} # Fall back on environment variables that are defined during package testing. if out_dir is None: out_dir = os.environ.get('TESTR_OUT_DIR') if regress_dir is None: regress_dir = os.environ.get('TESTR_REGRESS_DIR') # make sure these are paths regress_dir = Path(regress_dir) out_dir = Path(out_dir) # Make the top-level directory where files go if not regress_dir.exists(): os.makedirs(regress_dir) for regress_file in regress_files: with open(out_dir / regress_file, 'r') as fh: lines = fh.readlines() if regress_file in clean: for sub_in, sub_out in clean[regress_file]: lines = [re.sub(sub_in, sub_out, x) for x in lines] # Might need to make output directory since regress_file can # contain directory prefix. regress_path = regress_dir / regress_file regress_path_dir = regress_path.parent if not regress_path_dir.exists(): os.makedirs(regress_path_dir) with open(regress_path, 'w') as fh: fh.writelines(lines)
14,322
def test_auth_proj_no_token(): """Token required by endpoint decorator""" response = requests.get(dds_cli.DDSEndpoint.AUTH_PROJ) assert response.status_code == 400 response_json = response.json() assert response_json.get("message") assert "JWT Token not found in HTTP header" in response_json.get("message")
14,323
def check_chromium() -> bool: """Check if chromium is placed at correct path.""" return chromium_executable().exists()
14,324
def draw_lane(image, extracted_lane: Dict = {}, output_path: Optional[str] = None): """render extracted lane""" # TODO: refactor separate concern moving out the saving to a file lane_annotation_image = image.copy() if "right" in extracted_lane: lane_annotation_image = draw_lines( lane_annotation_image, [extracted_lane["right"]], color=(0, 255, 0), thickness=10) # right side in green if "left" in extracted_lane: lane_annotation_image = draw_lines( lane_annotation_image, [extracted_lane["left"]], color=(255, 0, 0), thickness=10) # left in red output_image = weighted_img(lane_annotation_image, image, .5, .5) save_status = None if output_path: save_status = plt.imsave( output_path, output_image ) # TODO: use cv2.imsave instead return output_image
14,325
def plot_edges(lattice : Lattice, labels : np.ndarray = 0, color_scheme : np.ndarray = ['k','r','b'], subset : np.ndarray = slice(None, None, None), directions : np.ndarray = None, ax = None, arrow_head_length = None, **kwargs): """ Plot the edges of a lattice with optional arrows. This uses matplotlib.collections.LineColection under the hood and you may pass in any keyword to be passed along to it. Note that arrays for alpha or linestyle don't currently work since they would have to be tiled correctly, and are not currently. If directions is not none, arrows are plotted from the first vertex to the second unless direction[i] == -1 :param lattice: The lattice to use. :type lattice: Lattice :param labels: int or array of ints specifying the colors, defaults to 0. May be the same size as the vertices or of the subset. :type labels: np.ndarray, optional :param color_scheme: List or array of colors, defaults to ['black', ] :type color_scheme: np.ndarray, optional :param subset: An array of indices, boolean array or slice that selects which elements to plot, defaults to plotting all. :type subset: np.ndarray, optional :param directions: An array of arrow directions +/-1, defaults to None. :type directions: np.ndarray, optional :param ax: The axis to plot on, defaults to plt.gca() :type subset: axis, optional """ labels, colors, color_scheme, subset, ax, transform = _process_plot_args(lattice, ax, labels, color_scheme, subset, lattice.n_edges) edge_colors = np.tile(colors, 9) edge_vertices = lattice.vertices.positions[lattice.edges.indices[subset]] edge_vertices[:, 0, :] -= lattice.edges.crossing[subset] unit_cell_vectors = generate_point_array(np.array([0,0]), padding = 1)[:, None, None, :] #shape (9, 2) -> (9, 1, 1, 2) replicated_edges = edge_vertices[None,...] + unit_cell_vectors #shape (n_edges, 2, 2) -> (9, n_edges, 2, 2) replicated_edges = replicated_edges.reshape((-1,2,2)) #shape (9, n_edges, 2, 2) -> (9*n_edges, 2, 2) vis = _lines_cross_unit_cell(replicated_edges) | _line_fully_in_unit_cell(replicated_edges) # print(edge_colors.shape, replicated_edges.shape, vis.shape) lc = LineCollection(replicated_edges[vis, ...], colors = edge_colors[vis], transform = transform, path_effects=[path_effects.Stroke(capstyle="round")], **kwargs) ax.add_collection(lc) if directions is not None: directions = _broadcast_args(directions, subset, lattice.n_edges, dtype = int) directions = np.tile(directions, 9) _plot_edge_arrows(ax, edge_colors[vis],replicated_edges[vis, ...],directions[vis], lc, lattice.unit_cell, arrow_head_length = arrow_head_length) return ax
14,326
def menu_items_api(restaurant_id): """Route handler for api endpoint retreiving menu items for a restaurant. Args: restaurant_id: An int representing the id of the restaurant whose menu items are to be retrieved Returns: response: A json object containing all menu items for a given restaurant """ menu_items = ( session.query(MenuItem).filter_by(restaurant_id=restaurant_id).all() ) response = jsonify( menu_items=[menu_item.serialize for menu_item in menu_items] ) return response
14,327
def run(indata): """indata: event detection DataArray or DataSet""" if isinstance(indata, xr.DataArray): events = indata else: events = indata["Event_ID"] logging.info("events array defined.") # turn events into time x space by stacking lat & lon: events_stacked = events.stack(z=("lat", "lon")) logging.info("Stacked events.") # events_stacked is [time, z] # make sure to only have integers for the event IDs: zint = events_stacked.values.astype(int) logging.info(f"Convert events to integers. Result is shape {zint.shape}.") # should still be [time, z] mx = np.max(zint) logging.info(f"Max number of events is {mx}; output dimesion size (add one for zeros).") ids, ndx, dur = theloop(zint) logging.info("Loop done.") logging.info(f"kind of ids: {type(ids)}\n ndx: {type(ndx)}, shape: {ndx.shape}\n dur: {type(dur)}") # use ndx to go back to 'time' and construct array of datetimes dates = np.full(ndx.shape, np.datetime64('NaT'), dtype='datetime64[D]') # fill value should be numpy's "not a time" value. (what if time is in cftime, though?); dtype needs to be set with correct unit (D = days) for loc in tqdm(np.arange(ndx.shape[0]), desc="Dates Loop"): last_event = ids[loc, :].max() dates[loc, 0:last_event] = indata.time[ndx[loc, 0:last_event]] # loc: int; dates: datetime; ndx: int logging.info("Finished the initial dates reconstruction.") # dates[:, 1:] = np.ma.masked_where(ndx[:, 1:] == 0, dates[:, 1:], copy=False) # mask where eventID == 0 # Convert resulting numpy arrays to Xarray DataArrays ids_da = xr.DataArray(ids, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) ndx_da = xr.DataArray(ndx, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) cnt_da = xr.DataArray(dur, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) dates_da = xr.DataArray(dates, coords={"z":events_stacked['z'], 'events':np.arange(1,mx+2)}, dims=("z", "events")) ids_da.name = "Event_ID" ndx_da.name = "initial_index" cnt_da.name = "duration" dates_da.name = 'initial_date' logging.info("DataArray are made") ids_da = ids_da.unstack() ndx_da = ndx_da.unstack() cnt_da = cnt_da.unstack() dates_da = dates_da.unstack() logging.info("Unstacked.") return xr.merge([ids_da, ndx_da, cnt_da, dates_da])
14,328
def goto_location(session: Session, args: Any) -> None: """https://scalameta.org/metals/docs/integrations/new-editor/#goto-location""" if isinstance(args, list) and args: open_location(session.window, args[0])
14,329
def format_trace_id(trace_id: int) -> str: """Format the trace id according to b3 specification.""" return format(trace_id, "032x")
14,330
def get_count_name(df): """Indicate if a person has a 'Name' Parameters ---------- df : panda dataframe Returns ------- Categorical unique code """ # Feature that tells whether a passenger had a cabin on the Titanic df['Words_Count'] = df['Name'].apply(lambda x: len(x.split())).astype(int) return df
14,331
def register_action(request): """ 从这个django.contrib/auth.models 库里倒入里User方法。(其实User是orm方式操作用户表的实例) 然后我们直接用User.objects.create_user方法生成一个用户,参数为用户名和密码。然后保存这个生成的用户 就是注册成功了 但是如果用户表中已存在这个用户名,那么,这个生成语句就会报错。所以我们用try来捕获这个异常,如果发送错误那就是“用户已经存在”,如实给用户返回这句话。如果没问题,那么就返回 注册成功 :param request: :return: """ u_name = request.GET['username'] p_word = request.GET['password'] # 开始 联通 django 用户库,查看用户名密码是否正确 from django.contrib.auth.models import User try: user = User.objects.create_user(username=u_name, password=p_word) user.save() return HttpResponse('注册成功') except: return HttpResponse('注册失败~用户名好像已经存在了~')
14,332
async def run_blocking_io(func: Callable, *args, **kwargs) -> Any: """|coro| Run some blocking function in an event loop. If there is a running loop, ``'func'`` is executed in it. Otherwise, a new loop is being created and closed at the end of the execution. Example: .. code-block:: python3 def make_image(): ... # long code of creating an image # somewhere in an async function: await run_blocking_io(make_image) """ loop = acquire_loop(running=True) asyncio.set_event_loop(loop) return await loop.run_in_executor(None, functools.partial(func, *args, **kwargs))
14,333
def parse_config(cfg, section): """ parse config data structure, return data of required section """ def is_valid_section(s): valid_sections = ["info", "project", "variables", "refdata"] return s in valid_sections cfg_data = None if is_valid_section(section): try: cfg_data = cfg[section] except KeyError: log.critical(cfg.keys()) log.critical("Section <%s> not found in config" % section) exit(1) else: log.critical("Section <%s> not a valid name" % section) exit(1) return cfg_data
14,334
def _predict_states(freqs): """Use frequencies to predict states across a chromosome. Normalize so heterozygote blocks are assigned state 0 and homozygous are assigned state 1. """ from hmmlearn import hmm freqs = np.column_stack([np.array(freqs)]) model = hmm.GaussianHMM(2, covariance_type="full") model.fit(freqs) states = model.predict(freqs) freqs_by_state = collections.defaultdict(list) for i, state in enumerate(states): freqs_by_state[state].append(freqs[i]) if np.median(freqs_by_state[0]) > np.median(freqs_by_state[1]): states = [0 if s == 1 else 1 for s in states] return states
14,335
def save_npz_dict(save_list=None, name='model.npz'): """Input parameters and the file name, save parameters as a dictionary into .npz file. Use ``tl.files.load_and_assign_npz_dict()`` to restore. Parameters ---------- save_list : list of parameters A list of parameters (tensor) to be saved. name : str The name of the `.npz` file. """ if save_list is None: save_list = [] save_list_names = [tensor.name for tensor in save_list] save_list_var = tf_variables_to_numpy(save_list) save_var_dict = {save_list_names[idx]: val for idx, val in enumerate(save_list_var)} np.savez(name, **save_var_dict) save_list_var = None save_var_dict = None del save_list_var del save_var_dict logging.info("[*] Model saved in npz_dict %s" % name)
14,336
def test_add_constant(): """Test the add_constant function.""" a = rs.randn(10, 5) wanted = np.column_stack((a, np.ones(10))) got = stat.add_constant(a) assert_array_equal(wanted, got)
14,337
def tp(*args) -> np.ndarray: """Tensor product. Recursively calls `np.tensordot(a, b, 0)` for argument list `args = [a0, a1, a2, ...]`, yielding, e.g., tp(a0, a1, a2) = tp(tp(a0, a1), a2) Parameters ---------- args : sequence Sequence of tensors Returns ------- np.ndarray Tensor product Examples -------- >>> a = np.random.rand(2, 3, 4) ... b = np.random.rand(7, 8, 9) ... c = tp(a, b) # c_ijkmno = a_ijk b_mno ... c.shape == (2, 3, 4, 7, 8, 9) """ temp = args[0] for i in range(1, len(args)): temp = np.tensordot(temp, args[i], 0) return temp
14,338
def main(): """Run a simple test """ version = get_version() if version: print('Found tesseract OCR version %s' % version) print('Available languages:', get_list_of_langs()) else: print('Tesseract is not available')
14,339
def delete(): """Remove the current user's avatar image.""" user = _get_current_user_or_404() try: avatar_service.remove_avatar_image(user.id) except ValueError: # No avatar selected. # But that's ok, deletions should be idempotent. flash_notice(gettext('No avatar image is set that could be removed.')) else: flash_success(gettext('Avatar image has been removed.'))
14,340
def aws_aws_page(): """main endpoint""" form = GenericFormTemplate() return render_template( 'aws_page.html', form=form, text=util.get_text(module_path(), config.language), options=g.user.get_options(), )
14,341
def popen_program(cmd, minimized=False, pipe=False, shell=False, **kwargs): """Run program and return a subprocess.Popen object.""" LOG.debug( 'cmd: %s, minimized: %s, pipe: %s, shell: %s', cmd, minimized, pipe, shell, ) LOG.debug('kwargs: %s', kwargs) cmd_kwargs = build_cmd_kwargs( cmd, minimized=minimized, pipe=pipe, shell=shell, **kwargs) try: # pylint: disable=consider-using-with proc = subprocess.Popen(**cmd_kwargs) except FileNotFoundError: LOG.error('Command not found: %s', cmd) raise LOG.debug('proc: %s', proc) # Done return proc
14,342
def precompute(instr): """ Args: instr: Returns: """ qecc = instr.qecc if qecc.name == '4.4.4.4 Surface Code' and qecc.circuit_compiler.name == 'Check2Circuits': precomputed_data = code_surface4444(instr) elif qecc.name == 'Medial 4.4.4.4 Surface Code' and qecc.circuit_compiler.name == 'Check2Circuits': precomputed_data = code_surface4444medial(instr) else: raise Exception('Can only handle the non-medial surface code!') return precomputed_data
14,343
def remove_url(txt): """Replace URLs found in a text string with nothing (i.e. it will remove the URL from the string). Parameters ---------- txt : string A text string that you want to parse and remove urls. Returns ------- The same txt string with url's removed. """ return " ".join(re.sub("([^0-9A-Za-z \t])|(\w+:\/\/\S+)", "", txt).split())
14,344
def use_database(fn): """ Ensure that the correct database context is used for the wrapped function. """ @wraps(fn) def inner(self, *args, **kwargs): with self.database.bind_ctx(self.models): return fn(self, *args, **kwargs) return inner
14,345
def write_csv(obj, filename): """ Convert dictionary items to a CSV file the dictionary format: :: {'result category 1': [ # 1st line of results {'header 1' : value_xxx, 'header 2' : value_yyy}, # 2nd line of results: same headers, different results {'header 1' : value_www, 'header 2' : value_zzz} ], 'result_category 2': [ {},{} ] } The generated csv file will be: :: result_category 1 header 1 header 2 value_xxx value_yyy value_www value_zzz result_category 2 ... """ with open(filename, 'w', encoding='utf-8') as f: w = writer(f) for data_key, data_list in obj.items(): # main header w.writerow([data_key]) # sub headers: headers = [_ for _ in data_list[0].keys()] w.writerow(headers) for data_dict in data_list: w.writerow([_ for _ in data_dict.values()])
14,346
def format_help(title, lines, os_file): """Nicely print section of lines. :param title: help title, if exist :param lines: strings to format :param os_file: open filehandle for output of RST file """ close_entry = False if title: os_file.write("**" + title + ":**" + "\n\n") continued_line = '' for line in lines: if not line or line[0] != ' ': break # We have to handle these cases: # 1. command Explanation # 2. command # Explanation on next line # 3. command Explanation continued # on next line # If there are more than 8 spaces, let's treat it as # explanation. if line.startswith(' '): # Explanation xline = continued_line + quote_rst(line.lstrip(' ')) continued_line = '' # Concatenate the command options with "-" # For example: # see 'glance image- # show' if xline.endswith('-'): continued_line = xline continue # check niceness if len(xline) > (MAXLINELENGTH - 2): xline = xline.replace(' ', '\n ') os_file.write(" " + xline + "\n") continue # Now we have a command or parameter to handle split_line = extract_options(line) if not close_entry: close_entry = True else: os_file.write("\n") xline = split_line[0] # check niceness work around for long option name, glance xline = xline.replace('[<RESOURCE_TYPE_ASSOCIATIONS> ...]', '[...]') os_file.write("``" + xline + "``\n") if len(split_line) > 1: # Explanation xline = continued_line + quote_rst(split_line[1]) continued_line = '' # Concatenate the command options with "-" # For example: # see 'glance image- # show' if xline.endswith('-'): continued_line = xline continue # check niceness if len(xline) > (MAXLINELENGTH - 2): # check niceness xline = xline.replace(' ', '\n ') os_file.write(" " + xline + "\n") os_file.write("\n") return
14,347
def getImapMailboxEmail(server, user, password, index, path="INBOX", searchSpec=None): """ imap_headers(server, user, password, index, path="INBOX", searchSpec=None) Load specified email header from an imap server. index starts from 0. Example WITH RECURSIVE cnt(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM cnt WHERE x<imap_count("127.0.0.1","jj","pass","test")) select x-1 as num, imap_email("127.0.0.1","jj","pass",x-1,"test") as message FROM cnt; See also https://gist.github.com/robulouski/7441883 https://oracle-base.com/articles/10g/utl_mail-send-email-from-the-oracle-database https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.create_aggregate """ try: import imaplib, email, email.header with imaplib.IMAP4_SSL(server) as M: M.login(user,password) typ, data=M.select(path) if(data[0]==b'0'): print ("*SELECT*FAILED",path,typ,data) return "ERR NO MAILBOX:"+path if searchSpec== None: typ, data = M.search(None, 'ALL') else: typ, data = M.search(None, searchSpec) if len(data[0].split()) >0: id2fetch= (data[0].split())[index] typ, data = M.fetch(id2fetch, '(RFC822)') msg_return=data[0][1] else: msg_return=None M.logout() return msg_return except Exception as e: raise SqliteFunctionException( e )
14,348
def trace(msg, html=False, attachment=None, launch_log=False): """Write the message to the log file using the ``TRACE`` level.""" write(msg, "TRACE", html, attachment, launch_log)
14,349
def test_lj2atomen(): """Test om de potentiaal tussen 2 atomen te berekenen""" afstand = 1.5 pot = 4*((1/afstand)**12 - (1/afstand)**6) potf = f90.ljpot2atomen(afstand) assert round(pot, 7) == round(potf, 7)
14,350
def create_storage(uri=None): """factory to create storage based on `uri`, the ANYVAR_STORAGE_URI environment value, or in-memory storage. The URI format is one of the following: * in-memory dictionary: `memory:` Remaining URI elements ignored, if provided * Python shelf (dbm) persistence `file:///full/path/to/filename.db` `path/to/filename` The `file` scheme permits only full paths. When scheme is not provided, the path may be absolute or relative. * Redis URI `redis://[[username]:[password]]@localhost:6379/0` `rediss://[[username]:[password]]@localhost:6379/0` `unix://[[username]:[password]]@/path/to/socket.sock?db=0` The URIs are passed as-is to `redis.Redis.from_url()` """ uri = uri or os.environ.get("ANYVAR_STORAGE_URI", default_storage_uri) parsed_uri = urlparse(uri) if parsed_uri.scheme == "memory": _logger.warning("Using memory storage; stored data will be discarded when process exits") storage = dict() elif parsed_uri.scheme in ("", "file"): from .shelf import ShelfStorage storage = ShelfStorage(parsed_uri.path) elif parsed_uri.scheme == "redis": import redis from .redisobjectstore import RedisObjectStore storage = RedisObjectStore(redis.Redis.from_url(uri)) else: raise ValueError(f"URI scheme {parsed_uri.scheme} is not implemented") _logger.debug(f"create_storage: {uri} → {storage}") return storage
14,351
def test_python_module_ctia_positive_malware( module_headers, module_tool_client): """Perform testing for malware entity of custom threat intelligence python module ID: CCTRI-164-056ef37c-171d-4b1d-ae3d-4601aaa465bb Steps: 1. Send POST request to create new malware entity using custom python module 2. Send GET request using custom python module to read just created entity back. 3. Send same GET request, but using direct access to the server 4. Compare results 5. Update malware entity using custom python module 6. Repeat GET request using python module and validate that entity was updated 7. Delete entity from the system Expectedresults: Malware entity can be created, fetched, updated and deleted using custom python module. Data stored in the entity is the same no matter you access it directly or using our tool Importance: Critical """ malware = module_tool_client.private_intel.malware payload = { 'type': 'malware', 'schema_version': SERVER_VERSION, 'name': 'TinyZBot', 'labels': ['malware'] } # Create new entity using provided payload post_tool_response = malware.post(payload=payload, params={'wait_for': 'true'}) values = { key: post_tool_response[key] for key in [ 'name', 'labels', 'type', 'schema_version' ] } assert values == payload entity_id = post_tool_response['id'].rpartition('/')[-1] # Validate that GET request return same data for direct access and access # through custom python module get_tool_response = malware.get(entity_id) get_direct_response = ctia_get_data( target_url=MALWARE, entity_id=entity_id, **{'headers': module_headers} ).json() assert get_tool_response == get_direct_response # Update entity values put_tool_response = delayed_return( malware.put( id_=entity_id, payload={'name': 'XBot', 'labels': ['malware']} ) ) assert put_tool_response['name'] == 'XBot' get_tool_response = malware.get(entity_id) assert get_tool_response['name'] == 'XBot' # Delete the entity and make attempt to get it back to validate it is # not there anymore delayed_return(malware.delete(entity_id)) with pytest.raises(HTTPError): malware.get(entity_id)
14,352
def nmatches_mem(txt, pat, t, p, mem): """Find number of matches with recursion + memoization using a dictionary (this solution will also crash when recursion limit is reached) nmatches_mem(text, pattern, len(text), len(pattern), {}) """ if (t,p) in mem: return mem[t, p] if p==0: return 1 if t==0: return 0 matches = 0 for i in range(t, 0, -1): if txt[t-i] == pat[p-1]: matches += nmatches_mem(txt, pat, t-i, p-1, mem) mem[t, p] = matches return matches
14,353
def get_size_stats(args): """ Calculate size for each of the iterator. It recusively iterate though a directory to find a specific extension file and report their size in preferred format. """ lang_size_dict = {} for (dirpath, dirnames, filenames) in os.walk(args.data_folder_path): for filename in filenames: if not (filename.startswith(args.name_prefix) and filename.endswith(args.extension_name)): continue full_file_path = os.path.join(dirpath, filename) lang_size = subprocess.check_output("du -s {}".format(full_file_path), shell=True) lang_size = int(lang_size.decode("utf-8").split("\t")[0]) if args.size_format == 'KB': _conv = 1 elif args.size_format == 'MB': _conv = 1024 elif args.size_format == 'GB': _conv = 1024 * 1024 elif args.size_format == 'TB': _conv = 1024 * 1024 * 1024 lang_size_ = round(lang_size / float(_conv), 2) lang_size_dict[full_file_path] = lang_size_ return lang_size_dict
14,354
def main(): """ main with an infinite loop""" username, password, address = get_conf() checker = Checker(username, password, address) while True: checker.store_next_events() checker.print_next_events() checker.notify_if_in_less(hours=20) time.sleep(60 * DEFAULT_CHECK_PERIOD_IN_MINUTES)
14,355
def data_get(): """ Get shared data from this server's local store. """ consistency = request.json["consistency"] name = request.json["name"] field = request.json["field"] value = "" error = "ok" if consistency == "strict": store = globalvars.get_data_store(globalvars.STRICT_CENTRALIZED) with store_lock: try: value = store.get(name, field) except AttributeError as ex: error = str(ex) res = { "value" : value, "error" : error, } return jsonify(res)
14,356
def pad_sequences(sequences, maxlen=None, value=0): """ pad sequences (num_samples, num_timesteps) to same length """ if maxlen is None: maxlen = max(len(x) for x in sequences) outputs = [] for x in sequences: x = x[:maxlen] pad_range = (0, maxlen - len(x)) x = np.pad(array=x, pad_width=pad_range, mode='constant', constant_values=value) outputs.append(x) return np.array(outputs)
14,357
def test_ct(): """Test if Ct calculation work""" sample_time = np.loadtxt('ref.txt', usecols=[0]) reference_ct = np.loadtxt('ref.txt', usecols=[1]) instance = trial.xixihaha.Kubo(delta=1 , tau=1) calculate_ct = instance.calculate_Ct(time=sample_time)[:,1] assert np.allclose(calculate_ct , reference_ct)
14,358
def test_filter_by_patron(app, patron_pid, qs, should_raise): """Test the function filter_by_patron.""" search = RecordsSearch() if should_raise: with pytest.raises(UnauthorizedSearchError): _filter_by_patron(patron_pid, search, qs) else: _search, _qs = _filter_by_patron(patron_pid, search, qs) term = _search.to_dict()["query"]["bool"]["filter"][0]["term"] assert term == {"patron_pid": patron_pid}
14,359
def reset_password(): """ Three main states of this controller 1. by default just show the email field 2. in a second step, also show the field for the code and new password 3. in a third step, if code is correct, redirect to login :return: template to be rendered """ form = flask.request.form email = form.get("email", "") code = form.get("code", "") password = form.get("password", "") if email and not code: #generate_code_and_send_email(email) account_management.request_code(email) flash("Now check your inbox for a one-time code") return flask.render_template("account/reset_pass.html", code_active=True, email=email) if email and code and password: try: account_management.reset_password(code, email, password) flash("Password was reset successfully!") return flask.redirect('login') except APIException as e: flash(e.message) traceback.print_exc(file=sys.stdout) return flask.render_template("account/reset_pass.html", message=True) flash("This will be fast. We promise.") return flask.render_template("account/reset_pass.html")
14,360
def download(request, path): """ Downloads a file. This is inspired by django.views.static.serve. ?disposition={attachment, inline} """ decoded_path = urllib.unquote(path) if path != decoded_path: path = decoded_path if not SHOW_DOWNLOAD_BUTTON.get(): return serve_403_error(request) if not request.fs.exists(path): raise Http404(_("File not found: %(path)s.") % {'path': escape(path)}) if not request.fs.isfile(path): raise PopupException(_("'%(path)s' is not a file.") % {'path': path}) content_type = mimetypes.guess_type(path)[0] or 'application/octet-stream' stats = request.fs.stats(path) mtime = stats['mtime'] size = stats['size'] if not was_modified_since(request.META.get('HTTP_IF_MODIFIED_SINCE'), mtime, size): return HttpResponseNotModified() # TODO(philip): Ideally a with statement would protect from leaks, but tricky to do here. fh = request.fs.open(path) # Verify read permissions on file first try: request.fs.read(path, offset=0, length=1) except WebHdfsException, e: if e.code == 403: raise PopupException(_('User %s is not authorized to download file at path "%s"') % (request.user.username, path)) else: raise PopupException(_('Failed to download file at path "%s": %s') % (path, e)) if REDIRECT_DOWNLOAD.get() and hasattr(fh, 'read_url'): response = HttpResponseRedirect(fh.read_url()) setattr(response, 'redirect_override', True) else: response = StreamingHttpResponse(file_reader(fh), content_type=content_type) response["Last-Modified"] = http_date(stats['mtime']) response["Content-Length"] = stats['size'] response['Content-Disposition'] = request.GET.get('disposition', 'attachment; filename="' + stats['name'] + '"') if _can_inline_display(path) else 'attachment' request.audit = { 'operation': 'DOWNLOAD', 'operationText': 'User %s downloaded file %s with size: %d bytes' % (request.user.username, path, stats['size']), 'allowed': True } return response
14,361
def spacegroup_a_to_spacegroup_b(atoms, spgroup_a, spgroup_b, target_b_contribution, create_replicas_by, min_nb_atoms=None, target_nb_atoms=None, max_diff_nb_atoms=None, radius=None, target_replicas=None, max_rel_error=0.01, **kwargs): """Remove central atoms for bcc to sc""" # get number of replicas replicas = nb_of_replicas(atoms, create_replicas_by=create_replicas_by, min_nb_atoms=min_nb_atoms, target_nb_atoms=target_nb_atoms, max_diff_nb_atoms=max_diff_nb_atoms, radius=radius, target_replicas=target_replicas) atoms = standardize_cell(atoms, **kwargs) # make a spgroup_a-type supercell before removing atoms atoms_a = atoms.copy() atoms_a = atoms_a * replicas # check initial spacegroup mg_structure = AseAtomsAdaptor.get_structure(atoms) finder = SpacegroupAnalyzer(mg_structure) init_spgroup = finder.get_space_group_symbol() if init_spgroup == spgroup_a: logger.debug('Initial spacegroup is {0} as expected'.format(init_spgroup)) else: raise Exception("Initial spacegroup is {0} " "while the expected spacegroup is {1}".format(init_spgroup, spgroup_a)) # initially the mix structure has all the spgroup_a atoms atoms_mix = atoms_a.copy() idx_remove_list = [] TOL = 1e-03 if spgroup_a == 'Im-3m' and spgroup_b == 'Pm-3m': # from bcc to simple cubic for idx in range(atoms.get_number_of_atoms()): # deleting all atoms from spgroup_a to go in spgroup_b # removing the atoms that are in position (0.0, 0.0, 0.0) if (abs(atoms.positions[idx][0]) <= TOL and abs(atoms.positions[idx][1]) <= TOL and abs( atoms.positions[idx][2]) <= TOL): pass else: idx_remove_list.append(idx) elif spgroup_a == 'Fd-3m' and spgroup_b == 'Fm-3m': # from diamond to fcc for idx in range(atoms.get_number_of_atoms()): # deleting all atoms from spgroup_a to go in spgroup_b # removing the atoms that are "inside" the cube # keep only the atoms that have one coordinate which is # 1/2 of the cell length or position (0.0, 0.0, 0.0) cell_length = atoms.get_cell_lengths_and_angles()[0] if abs(atoms.positions[idx][0] - cell_length / 2.0) <= TOL or abs( atoms.positions[idx][1] - cell_length / 2.0) <= TOL or abs( atoms.positions[idx][2] - cell_length / 2.0) <= TOL: pass elif (abs(atoms.positions[idx][0]) <= TOL and abs(atoms.positions[idx][1]) <= TOL and abs( atoms.positions[idx][2]) <= TOL): pass else: idx_remove_list.append(idx) else: raise NotImplementedError("Transformation from spacegroup {0} to spacegroup {1}" "is not implemented".format(spgroup_a, spgroup_b)) # delete all the indices added to the list del atoms[[atom.index for atom in atoms if atom.index in idx_remove_list]] atoms_b = atoms * replicas # check final spacegroup mg_structure = AseAtomsAdaptor.get_structure(atoms_b) finder = SpacegroupAnalyzer(mg_structure) final_spgroup = finder.get_space_group_symbol() if final_spgroup == spgroup_b: logger.debug('Final spacegroup is {0} as expected'.format(final_spgroup)) else: logger.debug("Final spacegroup is {0}".format(final_spgroup)) logger.debug("Expected final spacegroup is {0}".format(spgroup_b)) raise Exception("The transformation provided does not give the expected final " " spacegroup. Expected: {0}; obtained: {1}".format(spgroup_b, final_spgroup)) # find the rows that are in bcc-type supercell and not in sc atoms_a_rows = atoms_a.positions.view([('', atoms_a.positions.dtype)] * atoms_a.positions.shape[1]) atoms_b_rows = atoms_b.positions.view([('', atoms_b.positions.dtype)] * atoms_b.positions.shape[1]) a_b_diff_pos = np.setdiff1d(atoms_a_rows, atoms_b_rows).view(atoms_a.positions.dtype).reshape(-1, atoms_a.positions.shape[ 1]) atoms_a_only_ids = [] for idx in range(atoms_a.get_number_of_atoms()): for row_idx in range(a_b_diff_pos.shape[0]): if np.allclose(atoms_a.positions[idx], a_b_diff_pos[row_idx, :], rtol=1e-03): atoms_a_only_ids.append(idx) break else: pass # take a random subset of atoms to remove nb_atoms_to_rm = int(len(atoms_a_only_ids) * target_b_contribution) actual_b_contribution = nb_atoms_to_rm / len(atoms_a_only_ids) if target_b_contribution != 0.0: rel_error = abs(target_b_contribution - actual_b_contribution) / target_b_contribution if rel_error > max_rel_error: logger.warning("Difference between target and actual vacancy ratio " "bigger than the threshold ({0}%).\n" "Target/actual vacancy ratio: {1}%/{2}%.".format(max_rel_error * 100.0, target_b_contribution * 100.0, actual_b_contribution * 100.0)) # random sampling of the list without replacement atoms_a_only_ids_subset = random.sample(atoms_a_only_ids, nb_atoms_to_rm) # remove atoms from the bcc_atoms_only_ids del atoms_mix[[atom.index for atom in atoms_mix if atom.index in atoms_a_only_ids_subset]] return atoms_mix
14,362
def empty_surface(fill_color, size=None, flags=0): """Returns an empty surface filled with fill_color. :param fill_color: color to fill the surface with :type fill_color: pygame.Color :param size: the size of the new surface, if None its created to be the same size as the screen :type size: int-2-tuple """ if size is None: sr = pygame.display.get_surface().get_rect() surf = pygame.Surface((sr.w, sr.h), flags=flags) else: surf = pygame.Surface(size, flags=flags) surf.fill(fill_color) return surf
14,363
def getNetAddress(ip, netmask): """ Get the netaddress from an host ip and the netmask. :param ip: Hosts IP address :type ip: str :param netmask: Netmask of the network :type netmask: :returns: Address of the network calculated using hostIP and netmask :rtype: str """ return str(IPNetwork(ip + "/" + str(getPrefix(netmask))).network)
14,364
def wait_for_mysqld(config, mysqld): """Wait for new mysql instance to come online""" client = connect(config, PassiveMySQLClient) LOG.debug("connect via client %r", config['socket']) while mysqld.process.poll() is None: try: client.connect() client.ping() LOG.debug("Ping succeeded") except MySQLError: time.sleep(0.75) continue else: break client.disconnect()
14,365
def begin_operation(name: str) -> dict: """ Gets the stats for the current operation. Parameters ---------- name: str name of the operation Returns ------- dict dictionary with the operation stats Examples -------- >>> from pymove.utils.mem import begin_operation >>> operation = begin_operation('operation') >>> operation { 'process': psutil.Process( pid=103401, name='python', status='running', started='21:48:11' ), 'init': 293732352, 'start': 1622082973.8825781, 'name': 'operation' } """ process = psutil.Process(os.getpid()) init = process.memory_info()[0] start = time.time() return {'process': process, 'init': init, 'start': start, 'name': name}
14,366
def create_or_load_vocabulary(data_path,training_data_path,vocab_size,test_mode=False,tokenize_style='word',fine_tuning_stage=False,model_name=None): """ create or load vocabulary and label using training data. process as: load from cache if exist; load data, count and get vocabularies and labels, save to file. :param data_path: folder of data :param training_data_path: path of training data :param vocab_size: size of word vocabulary :param test_mode: if True only select few to test functional, else use all data :param tokenize_style: tokenize input as word(default) or character. :return: vocab_word2index, label2index """ print("create_or_load_vocabulary.data_path:",data_path,";training_data_path:",training_data_path,";vocab_size:",vocab_size,";test_mode:",test_mode,";tokenize_style:",tokenize_style) t1 = time.clock() if not os.path.isdir(data_path): # create folder if not exists. os.makedirs(data_path) # 1.if cache exists,load it; otherwise create it. if model_name is not None: cache_path =data_path+model_name+'vocab_label.pik' else: cache_path =data_path+'vocab_label.pik' print("cache_path:",cache_path,"file_exists:",os.path.exists(cache_path)) if os.path.exists(cache_path): with open(cache_path, 'rb') as data_f: print("going to load cache file.vocab of words and labels") return pickle.load(data_f) # 2.load and shuffle raw data file_object = codecs.open(training_data_path, mode='r', encoding='utf-8') lines=file_object.readlines() file_object.close() random.shuffle(lines) if test_mode: lines=lines[0:20000] else: lines = lines# [0:200*1000] # to make create vocabulary process more quicker, we only random select 200k lines. print("==total data==", len(lines)) # 3.loop each line,put to counter c_inputs=Counter() c_labels=Counter() for i,line in enumerate(lines): input_list,input_label=get_input_strings_and_labels(line, tokenize_style=tokenize_style) c_inputs.update(input_list) c_labels.update(input_label) if i % 1000 == 0: # print some information for debug purpose print(i,"create_or_load_vocabulary.line:",line) print(i,"create_or_load_vocabulary.input_label:",input_label,";input_list:",input_list) print() # 4.get most frequency words and all labels if tokenize_style=='char':vocab_size=6000 # if we are using character instead of word, then use small vocabulary size. vocab_list=c_inputs.most_common(vocab_size) vocab_word2index={} vocab_word2index[_PAD]=PAD_ID vocab_word2index[_UNK]=UNK_ID vocab_word2index[_CLS]=CLS_ID vocab_word2index[_MASK]=MASK_ID for i,tuplee in enumerate(vocab_list): word,freq=tuplee # if word in vocab_word2index: # continue vocab_word2index[word]=i+4 label2index={} label_list=c_labels.most_common() for i,tuplee in enumerate(label_list): label_name, freq = tuplee label_name=label_name.strip() label2index[label_name]=i # 5.save to file system if vocabulary of words not exists. if not os.path.exists(cache_path): with open(cache_path, 'ab') as data_f: print("going to save cache file of vocab of words and labels") pickle.dump((vocab_word2index, label2index), data_f) t2 = time.clock() print('create_vocabulary.ended.time spent for generate training data:', (t2 - t1)) print(vocab_word2index[_CLS], _CLS, CLS_ID, "===============================") return vocab_word2index, label2index
14,367
def diff( macros: List[str], citations: List[str], styles: Optional[str], ) -> Iterable[AtomicIterable]: """Display changes in local template files.""" raise NotImplementedError
14,368
def balance_intent_data(df): """Balance the data for intent detection task Args: df (pandas.DataFrame): data to be balance, should contain "Core Relations" column Returns: pandas.DataFrame: balanced data """ relation_counter = build_counter(df, "Core Relations") # augment each low resource label to average count avg_count = int( sum(relation_counter.values()) / len(relation_counter.values()) ) sample_df = df.sample(0) for k, v in relation_counter.items(): # only augment the low resource label if v >= avg_count: continue # to be sample amount sample_count = avg_count - v idx_of_label_k = df["Core Relations"].apply(lambda label: k in label) # if sample amount if larger, then sample all the value until it exceed the sample count while sample_count > relation_counter[k]: temp_df = df[idx_of_label_k].sample(relation_counter[k]) sample_df = pd.concat([sample_df, temp_df]) sample_count -= relation_counter[k] sample_df = pd.concat( [sample_df, df[idx_of_label_k].sample(sample_count)] ) balance_df = pd.concat([df.copy(), sample_df]) return balance_df
14,369
def ddm_iadd(a, b): """a += b""" for ai, bi in zip(a, b): for j, bij in enumerate(bi): ai[j] += bij
14,370
def plot_with_bbox(image, fv, size_correction = None): """ Graph the bounding boxes on an image Take the feature vectors, corresponding to the element class and parameters of the bounding box and plot it Parameters ---------- image : np.array 3 - Channel image numpy array. fv : np,array Feature vector containing n - bounding boxes with 5 elements (1 class + 4 parameters) """ print(fv) fig, ax = plt.subplots() for feature_vector in fv: # print(feature_vector[1]) [x, y, w, h] = feature_vector[-4:] plt.imshow(image * 255) (IH, IW) = image.shape[0:2] w = IW * w h = IH * h x = (IW * x) - w/2 y = (IH * y) - h/2 # Prepare the rect rect = patches.Rectangle((x, y), w, h, linewidth=1, edgecolor='r', facecolor='none') # Add the patch to the Axes ax.add_patch(rect) plt.show()
14,371
def npareamajority(values, areaclass): """ numpy area majority procedure :param values: :param areaclass: :return: """ uni,ind = np.unique(areaclass,return_inverse=True) return np.array([np.argmax(np.bincount(values[areaclass == group])) for group in uni])[ind]
14,372
def calcReward(eventPos, carPos, closeReward, cancelPenalty, openedPenalty): """ this function calculates the reward that will be achieved assuming event is picked up :param eventPos: position of events :param carPos: position of cars :param closeReward: reward if event is closed :param cancelPenalty: penalty if event is canceled (for now assuming events are not canceled) :param openedPenalty: penalty for time events are waiting (for now assuming events dont wait since they are picked up as spesific time) :return: rewardCarsToEvents - R_{cars,events}, rewardEventsToEvents - R_{events,events} """ nCars = carPos.shape[0] nEvents = eventPos.shape[0] distEventsToEvents = cdist(eventPos, eventPos, metric='cityblock') distCarsToEvents = cdist(carPos, eventPos, metric='cityblock') rewardCarsToEvents = -distCarsToEvents + np.ones(shape=(nCars, nEvents))*closeReward rewardEventsToEvents = -distEventsToEvents + np.ones(shape=(nEvents, nEvents))*closeReward timeEventsToEvents = distEventsToEvents timeCarsToEvents = distCarsToEvents return rewardCarsToEvents, rewardEventsToEvents, timeCarsToEvents, timeEventsToEvents
14,373
def b64encode(s: Any, altchars: Any = None) -> bytes: """Encode bytes using the standard Base64 alphabet. Argument ``s`` is a :term:`bytes-like object` to encode. Optional ``altchars`` must be a byte string of length 2 which specifies an alternative alphabet for the '+' and '/' characters. This allows an application to e.g. generate url or filesystem safe Base64 strings. The result is returned as a :class:`bytes` object. """ if altchars is not None: altchars = _get_bytes(altchars) assert len(altchars) == 2, repr(altchars) return builtin_encode(s, altchars)
14,374
def select_programs(args, filter_paused=True, force=False): """ Return a list of selected programs from command line arguments """ if not (args.all ^ bool(args.names)): if args.all: log.error("You may not specify a program name when you use the -a/--all option (See -h/--help for more details)") else: log.error("You must select at least one program from the command line (See -h/--help for more details)") raise SystemExit(1) if args.all: programs = list(Program.find_for_user(force=force)) if filter_paused: programs = [prog for prog in programs if not prog.is_paused] else: programs = [Program(name, force=force) for name in args.names] erorrs = 0 for program in programs: if not program.exists(): erorrs += 1 log.error("Program '%s' does not exist" % program.name) if erorrs: raise SystemExit(1) return list(programs)
14,375
def test_mat_lu_det(): """Test that the mat_lu() function returns correctly a matrix determinant""" my_mats = [ [[2, 4, 6, 8], [1, 9, 2, 0], [7, 1, 2, 3], [8, 11, 3, 2]], [[3, 6, 3], [8, 2, 1], [5, 3, 2]], [[4, 1], [3, 2]], [[0, 3, 2, 1], [0, 0, 3, 6], [0, 0, 0, 18], [0, 0, 0, 12]], [[9, 2, 1, 6, 2], [6, 3, 9, 0, 1], [3, 1, 9, 2, 2], [8, 2, 3, 1, 0], [9, 2, 2, 2, 0]], [[0, 0], [0, 0]] ] expected_dets = [round(np.linalg.det(np.array(my_mat)), 9) for my_mat in my_mats] calculated_dets = [round(mat_lu(my_mat)[2], 9) for my_mat in my_mats] assert calculated_dets == expected_dets
14,376
def three_comp_two_objective_functions(obj_vars, hz: int, ttes: SimpleTTEMeasures, recovery_measures: SimpleRecMeasures): """ Two objective functions for recovery and expenditure error that get all required params as arguments :param obj_vars: values that define the three comp agent [anf, ans, m_ae, m_anf, m_ans, theta, gamma, phi] :param hz: estimations per second for agent :param ttes: time to exhaustion tests to use :param recovery_measures: recovery trials to compare to :return: tte_nrmse and rec_nrmse values to minimise (the smaller the better) """ # differences in exhaustion times determine fitness tte_se = [] # TTE standard errors ttes_exp = [] # TTEs that are expected (original) rec_se = [] # Recovery standard errors recs_exp = [] # Recovery ratios expected (original) three_comp_agent = ThreeCompHydAgent(hz=hz, a_anf=obj_vars[0], a_ans=obj_vars[1], m_ae=obj_vars[2], m_ans=obj_vars[3], m_anf=obj_vars[4], the=obj_vars[5], gam=obj_vars[6], phi=obj_vars[7]) # compare tte times for tte_t, tte_p in ttes.iterate_pairs(): # use the simulator try: tte = ThreeCompHydSimulator.do_a_tte(agent=three_comp_agent, p_exp=tte_p) except UserWarning: tte = 5000 # square time difference tte_se.append(pow(tte - tte_t, 2)) ttes_exp.append(tte_t) # get NRMSE (Normalised Root Mean Squared Error) tte_nrmse = math.sqrt(sum(tte_se) / len(tte_se)) / np.mean(ttes_exp) # compare all available recovery ratio measures for p_exp, p_rec, t_rec, expected in recovery_measures.iterate_measures(): # use the simulator try: achieved = ThreeCompHydSimulator.get_recovery_ratio_wb1_wb2(three_comp_agent, p_exp=p_exp, p_rec=p_rec, t_rec=t_rec) except UserWarning: achieved = 200 # add the squared difference rec_se.append(pow(expected - achieved, 2)) recs_exp.append(expected) # get NRMSE rec_nrmse = math.sqrt(sum(rec_se) / len(rec_se)) / np.mean(recs_exp) # determine return value return tte_nrmse, rec_nrmse
14,377
def scale(data, new_min, new_max): """Scales a normalised data series :param data: The norrmalised data series to be scaled :type data: List of numeric values :param new_min: The minimum value of the scaled data series :type new_min: numeric :param new_max: The new maximum of the scaled data series :type new_max: numeric :return: A scaled data series :rtype: list """ return [(x*(new_max-new_min))+new_min for x in data]
14,378
def default_config() -> ClientConfig: """ :return: Default configuration for the experiment """ simulation_config = SimulationConfig(render=False, sleep=0.8, video=True, log_frequency=1, video_fps=5, video_dir=default_output_dir() + "/videos", num_episodes=1000, gifs=True, gif_dir=default_output_dir() + "/gifs", video_frequency = 1) env_name = "idsgame-v3" client_config = ClientConfig(env_name=env_name, attacker_type=AgentType.RANDOM.value, defender_type=AgentType.DEFEND_MINIMAL_VALUE.value, mode=RunnerMode.SIMULATE.value, simulation_config=simulation_config, output_dir=default_output_dir(), title="RandomAttacker vs DefendMinimalDefender") return client_config
14,379
def get_same_padding(kernel_size: int, stride: int, dilation: int) -> int: """Calculates the padding size to obtain same padding. Same padding means that the output will have the shape input_shape / stride. That means, for stride = 1 the output shape is the same as the input, and stride = 2 gives an output that is half of the input shape. Args: kernel_size : convolution kernel size. Only tested to be correct with odd values. stride : convolution stride dilation : convolution dilation Raises: ValueError: Only stride or dilation may be greater than 1 Returns: padding value to obtain same padding. """ if stride > 1 and dilation > 1: raise ValueError("Only stride OR dilation may be greater than 1") if dilation > 1: return (dilation * (kernel_size - 1) + 1) // 2 return kernel_size // 2
14,380
def move_child_position(context, request): """ Move the child from one position to another. :param context: "Container" node in which the child changes its position. :type context: :class:kotti.resources.Node or descendant :param request: Current request (of method POST). Must contain either "from" and "to" params or a json_body that contain(s) the 0-based old (i.e. the current index of the child to be moved) and new position (its new index) values. :type request: :result: JSON serializable object with a single attribute ("result") that is either "success" or "error". :rtype: dict """ data = request.POST or request.json_body if ("from" in data) and ("to" in data): max_pos = len(context.children) - 1 try: old_position = int(data["from"]) new_position = int(data["to"]) if not ((0 <= old_position <= max_pos) and (0 <= new_position <= max_pos)): raise ValueError except ValueError: return {"result": "error"} # sqlalchemy.ext.orderinglist takes care of the "right" sequence # numbers (immediately consecutive, starting with 0) for us. context.children.insert(new_position, context.children.pop(old_position)) result = "success" else: result = "error" return {"result": result}
14,381
def test_hawk_tail(): """Test module hawk_tail.py by downloading hawk_tail.csv and testing shape of extracted data has 838 rows and 2 columns """ test_path = tempfile.mkdtemp() x_train, metadata = hawk_tail(test_path) try: assert x_train.shape == (838, 2) except: shutil.rmtree(test_path) raise()
14,382
def get_current_version(package: str) -> str: """ Query PyPi index to find latest version of package :param package: str - name of pacahe :return: str - version if available """ url = f'{PYPI_BASE_URL}/pypi/{package}/json' headers = { 'Content-Type': 'application/json' } response = requests.get(url=url, headers=headers) if response.status_code == 200: data = response.json() if 'info' in data and 'version' in data['info']: # only return version if everything went OK, otherwise, too bad! return data['info']['version'] return None
14,383
def get_model_path(model_name): """ Returns path to the bird species classification model of the given name. Parameters ---------- model_name : str Name of classifier model. Should be in format ``<model id>_<taxonomy version>-<taxonomy md5sum>``. *v0.3.1 UPDATE: model names with taxonomy md5 checksum 2e7e1bbd434a35b3961e315cfe3832fc or beb9234f0e13a34c7ac41db72e85addd are not available in this version but are restored in v0.3.1 for backwards compatibility. They will no longer be supported starting with v0.4. Please use model names with taxonomy md5 checksums 3c6d869456b2705ea5805b6b7d08f870 and 2f6efd9017669ef5198e48d8ec7dce4c (respectively) instead.* Returns ------- model_path : str Path to classifier model weights. Should be in format ``<BirdVoxClassify dir>/resources/models/<model id>_<taxonomy version>-<taxonomy md5sum>.h5`` """ # Python 3.8 requires a different model for compatibility if sys.version_info.major == 3 and sys.version_info.minor == 8: model_name = model_name.replace(MODEL_PREFIX, MODEL_PREFIX + '-py3pt8') if model_name.endswith("2e7e1bbd434a35b3961e315cfe3832fc"): warnings.warn(f"The version of taxonomy with md5 " f"checksum 2e7e1bbd434a35b3961e315cfe3832fc has been " f"deprecated and will be removed in v0.4. Please use " f"model names with " f"3c6d869456b2705ea5805b6b7d08f870 instead.", DeprecationWarning, stacklevel=2) elif model_name.endswith("beb9234f0e13a34c7ac41db72e85addd"): warnings.warn(f"The version of taxonomy with md5 " f"checksum beb9234f0e13a34c7ac41db72e85addd has been " f"deprecated and will be removed in v0.4. Please use " f"model names with " f"2f6efd9017669ef5198e48d8ec7dce4c instead.", DeprecationWarning, stacklevel=2) path = os.path.join(os.path.dirname(__file__), "resources", "models", model_name + '.h5') # Use abspath to get rid of the relative path return os.path.abspath(path)
14,384
def mconcat(xs : [a]) -> a: """ mconcat :: (Monoid m) => [m] -> m Fold a list using the monoid. """ return Monoid[xs[0]].mconcat(xs)
14,385
def maybe_zero_out_padding(inputs, kernel_size, nonpadding_mask): """If necessary, zero out inputs to a conv for padding positions. Args: inputs: a Tensor with shape [batch, length, ...] kernel_size: an integer or pair of integers nonpadding_mask: a Tensor with shape [batch, length] Returns: Tensor of the same shape as inputs. """ if (kernel_size != 1 and kernel_size != (1, 1) and nonpadding_mask is not None): while nonpadding_mask.get_shape().ndims < inputs.get_shape().ndims: nonpadding_mask = tf.expand_dims(nonpadding_mask, -1) return inputs * nonpadding_mask return inputs
14,386
def display_json(value): """ Display input JSON as a code """ if value is None: return display_for_value(value) if isinstance(value, str): value = json.loads(value) return display_code(json.dumps(value, indent=2, ensure_ascii=False, cls=DjangoJSONEncoder))
14,387
def get_rgba_from_color(rgba): """Return typle of R, G, B, A components from given color. Arguments: rgba - color """ r = (rgba & 0xFF000000) >> 24 g = (rgba & 0x00FF0000) >> 16 b = (rgba & 0x0000FF00) >> 8 a = (rgba & 0x000000FF) return r, g, b, a
14,388
def beauty_factor(G): """Return the "beauty factor" of an arbitrary graph, the minimum distance between a vertex and a non-incident edge.""" V, E = G[0], G[1] dists = [] for (i, u) in enumerate(V): for (j, k) in E: if i == j or i == k: continue v, w = V[j], V[k] a, b = u-v, w-v proj = (a.real*b.real+a.imag*b.imag) / abs(b) # scalar projection if 0 <= proj <= abs(b): dists.append(abs(a - b * proj / abs(b))) else: dists.extend((abs(a), abs(u-w))) return min(dists)
14,389
def simulationTwoDrugsVirusPopulations(): """ Run simulations and plot graphs examining the relationship between administration of multiple drugs and patient outcome. Plots of total and drug-resistant viruses vs. time are made for a simulation with a 300 time step delay between administering the 2 drugs and a simulations for which drugs are administered simultaneously. """ runSim(100, 150, 0, 150)
14,390
def line_plane_cost(line, plane): """ A cost function for a line and a plane """ P = normalised((line|plane)*I5) L = normalised(meet(P, plane)) return line_cost_function(L, line)
14,391
def run_covid_update(update_name: str) -> None: """Enacts a scheduled update and either repeats or deletes it. Updates COVID data for the area specified in config.json, and schedules a new update if the update repeats, otherwise the update is removed. Args: update_name: The identifier of the update. """ nation, ltla, interval = read_config( "covid_nation", "covid_local", "covid_update_interval_seconds") covid_API_request(location=ltla, location_type="ltla") covid_API_request(location=nation, location_type="nation") logging.info("COVID update '%s' completed.", update_name) if covid_updates[update_name]["repeats"]: schedule_covid_updates(interval, update_name) repeat_log = "COVID update '%s' scheduled to repeat." logging.info(repeat_log, update_name) else: covid_updates.pop(update_name) logging.info("COVID update '%s' removed.", update_name)
14,392
def register_document_to_documentsbundle(bundle_id, payload): """ Relaciona documento com seu fascículo(DocumentsBundle). Utiliza a endpoint do Kernel /bundles/{{ DUNDLE_ID }} """ try: response = hooks.kernel_connect( "/bundles/%s/documents" % bundle_id, "PUT", payload) return response except requests.exceptions.HTTPError as exc: raise LinkDocumentToDocumentsBundleException(str(exc)) from None
14,393
def test_alt(): """Setup input for running Alternate Live Load. Inputs the Alternate loading with the following inputs: span_lengths = [5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,16.0, 18.0,20.0,24.0,28.0,32.0,36.0,40.0,45.0,50.0,55.0, 60.0,70.0,80.0,90.0,100.0,120.0,140.0,160.0,180.0, 200.0,250.0,300.0,350.0,400.0] axle_spacing_alt = [5.00, 6.00, 5.00] axle_wt_alt = [100.00, 100.00, 100.00, 100.00] space_to_trailing_load_alt = 0.0 distributed_load_alt = 0.0 num_user_nodes = 21 Args: None Returns: None Notes: Outputs results """ span_lengths = [5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,16.0, 18.0,20.0,24.0,28.0,32.0,36.0,40.0,45.0,50.0,55.0, 60.0,70.0,80.0,90.0,100.0,120.0,140.0,160.0,180.0, 200.0,250.0,300.0,350.0,400.0] axle_spacing_alt = [5.00, 6.00, 5.00] axle_wt_alt = [100.00, 100.00, 100.00, 100.00] space_to_trailing_load_alt = 0.0 distributed_load_alt = 0.0 num_user_nodes = 21 vehicle_type = "Alternate" max_moment_alt = [62.50,75.00,87.50,100.00,117.36,140.63, 164.20,188.02,212.83,250.30,325.27,400.24, 475.00,668.75,866.07,1064.06,1262.50,1461.25, 1710.00,1959.00] max_moment_qtr_pt_alt = [46.88,56.25,68.75,87.50,106.25,125.00, 143.75,162.50,181.25,200.00,250.00, 318.79,362.50,500.00,650.00,800.00, 950.00,1100.00,1287.48,1481.05] max_shear_end_alt = [50.00,58.33,64.29,68.75,72.22,75.00,77.27, 83.33,88.46,92.86,100.00,111.11,120.00, 133.33,142.86,150.00,155.56,160.00,164.44] max_shear_qtr_pt_alt = [None,37.50,39.29,43.75,47.23,50.00, 52.28,54.17,55.76,57.14,62.50,68.05, 72.50,83.33,92.86,100.00,105.56, 110.00,114.45,118.42,120.91,123.33] max_shear_ctr_alt = [25.00,25.00,25.00,25.00,25.00,25.00, 27.28,29.17,30.76,32.14,34.38,36.11, 37.50,41.67,46.43,50.00,55.56,60.00, 64.45,68.00,70.91,73.33,77.14,80.00, 82.22,84.00] max_pier_reac_alt = [50.00,58.33,71.43,81.25,88.89,95.00, 100.00,108.33,115.39,121.43,131.25, 138.89,145.00,154.17] run_vehicle(vehicle_type, span_lengths, axle_spacing_alt, axle_wt_alt, num_user_nodes, space_to_trailing_load_alt, distributed_load_alt, max_moment_alt, max_moment_qtr_pt_alt, max_shear_end_alt, max_shear_qtr_pt_alt, max_shear_ctr_alt, max_pier_reac_alt)
14,394
def let_it_roll(path): """ takes a list of image files and returns a video """ pass
14,395
def test_save_unregistered_email(mock_email_address_qs): """ If the provided email address doesn't exist in the system, saving should do nothing. """ address = "test@example.com" mock_email_address_qs.get.side_effect = models.EmailAddress.DoesNotExist data = {"email": address} serializer = serializers.PasswordResetRequestSerializer(data=data) assert serializer.is_valid() result = serializer.save() assert result is None assert serializer.data == data assert mock_email_address_qs.get.call_args[1] == { "address__iexact": address, "is_verified": True, }
14,396
def force_full_index(dataframe: pd.DataFrame, resampling_step: int = None, resampling_unit: str = "min", timestamp_start: int = None, timestamp_end: int = None) -> pd.DataFrame: """ forces a full index. Missing index will be replaced by Nan. Note: resampling should be done before to benefit from sampling strategies. Args: dataframe(dataframe): data frame containing NaN values resampling_step (int, 8): This is the desired time step of final dataframe. resampling_unit (str, 't'): unit of desired time step timestamp_start (string, none): index at which the dataframe starts timestamp_end (string, none): index at which the dataframe ends Returns dataframe(pandas.Dataframe): dataframe with full index """ if timestamp_start is None: print("start index was not provided") timestamp_start = dataframe.first_valid_index() if timestamp_end is None: print("end index is not provided") timestamp_end = dataframe.last_valid_index() freq = str(resampling_step) + resampling_unit new_index = pd.date_range(start=timestamp_start, end=timestamp_end, freq=freq) new_index = new_index.astype(numpy.int64) // 10 ** 9 delta_time_tmp = dataframe.reindex(index=new_index, fill_value=numpy.nan) return delta_time_tmp
14,397
def legislature_to_number(leg): """ Takes a full session and splits it down to the values for FormatDocument.asp. session = '49th-1st-regular' legislature_to_number(session) --> '49Leg/1s' """ l = leg.lower().split('-') return '%sLeg/%s%s' % (l[0][0:2], l[1][0], l[2][0])
14,398
def pin_tags(pb, config_file): """ Tag every item in pinboard with the name of it's originating website """ all_bookmarks = pb.posts.all() # Boolean to determine wheter to do additional filtering # Only run if filter config file exists domain_map = None if config_file and os.path.isfile(config_file): f = open(config_file, "r") domain_map = yaml.safe_load(f)['domains'] for bookmark in all_bookmarks: url = bookmark.url tags = bookmark.tags parsed = urlparse(url).netloc parsed = parsed[:parsed.rfind('.')] parsed = replace_stuff(parsed) parsed = process_domain_assoc(parsed, domain_map) if parsed not in tags: print("=============================================") print("Bookmark: {}".format(bookmark.description)) print("Tags to add: {}".format(parsed)) print("Current tags: {}".format(tags)) tags = [parsed] + tags bookmark.tags = tags print("New tags: {}".format(bookmark.tags)) bookmark.save() print("=============================================")
14,399