content
stringlengths
22
815k
id
int64
0
4.91M
def main(*args: Tuple[str, ...]): """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. :param args: command line arguments """ app = ArticleEditor(*args) app.run()
14,100
def parse_field_pubblicazione(field): """ Extracts year, place and publisher from the field `pubblicazione` by applying a cascade of regexps. """ exp2 = r'^(?P<place>\D+)(?:\s?\W\s?)(?P<publisher>.*?)\D{1}?(?P<year>\d+)?$' exp1 = r'^(?P<place>.*?)(?::)(?P<publisher>.*?)\D{1}?(?P<year>\d+)?$' exp3 = r'(?:.*?)?(?P<year>\d{4})' exp4 = r'^(?P<place>\D{3,})$' not_matched = 0 partly_matched = 0 result = {} result1 = re.match(exp1,field) if(result1 is None): result2 = re.match(exp2,field) if(result2 is None): result3 = re.match(exp3,field) if(result3 is None): result4 = re.match(exp4,field) if(result4 is None): not_matched += 1 else: result = result4.groupdict() else: result = result3.groupdict() else: result = result2.groupdict() else: result = result1.groupdict() return result
14,101
def test_change_node_prop_DNE(loaded_lpg): """Test that we get error if we try to change a property that DNE.""" loaded_lpg.add_node_props('Charlie', kidneys=1) with pytest.raises(AttributeError): loaded_lpg.change_node_prop('Charlie', 'horn', 1)
14,102
def test_invalid_landscape(): """Invalid landscape type must raise error""" with pytest.raises(ValueError): BioSim(island_map="WWW\nWRW\nWWW", ini_pop=[], seed=1, vis_years=0)
14,103
def docker_login(ip: str) -> None: """ Login-in to docker on the server to avoid docker rate limit quota violation Args: ip: The ip of the server that should be logged in """ docker_username = os.environ.get('DOCKERHUB_USER') docker_password = os.environ.get('DOCKERHUB_PASSWORD') container_engine_type = 'podman' if is_redhat_instance(ip) else 'docker' try: check_output( f'ssh {SSH_USER}@{ip} cd /home/demisto && sudo -u demisto {container_engine_type} ' f'login --username {docker_username} --password-stdin'.split(), input=docker_password.encode()) except Exception: logging.exception(f'Could not login to {container_engine_type} on server {ip}')
14,104
def test_api_calendar(): """Return a test calendar object used in API responses.""" return TEST_API_CALENDAR
14,105
def apply_custom_colormap(image_gray, cmap=plt.get_cmap("seismic")): """ Implementation of applyColorMap in OpenCV using colormaps in Matplotlib. """ assert image_gray.dtype == np.uint8, "must be np.uint8 image" if image_gray.ndim == 3: image_gray = image_gray.squeeze(-1) # Initialize the matplotlib color map sm = plt.cm.ScalarMappable(cmap=cmap) # Obtain linear color range color_range = sm.to_rgba(np.linspace(0, 1, 256))[:, 0:3] # color range RGBA => RGB color_range = (color_range * 255.0).astype(np.uint8) # [0,1] => [0,255] color_range = np.squeeze( np.dstack([color_range[:, 2], color_range[:, 1], color_range[:, 0]]), 0 ) # RGB => BGR # Apply colormap for each channel individually channels = [cv2.LUT(image_gray, color_range[:, i]) for i in range(3)] return np.dstack(channels)
14,106
def _cond_with_per_branch_args(pred, true_operand, true_fun: Callable, false_operand, false_fun: Callable): """Conditionally apply ``true_fun`` or ``false_fun``. Has equivalent semantics to this Python implementation:: def cond(pred, true_operand, true_fun, false_operand, false_fun): if pred: return true_fun(true_operand) else: return false_fun(false_operand) Pred has to be a scalar type, collection types (list, tuple) are not supported """ if not (callable(true_fun) and callable(false_fun)): raise TypeError("lax.cond: true_fun and false_fun arguments should be callable.") return _cond(pred, lambda op: true_fun(op[0]), lambda op: false_fun(op[1]), (true_operand, false_operand))
14,107
def msgSet(key, notUsed, queryString, body): """no treatment on the body (we send exactly the body like we received it)""" dict = urllib.parse.parse_qs(body.decode('utf-8')) #sendSMS.writeRawMsg(body) user = dict['user'][0] print(dict) sendSMS.writeMsgUser(dict['msg'][0], user) return "Message sent to " + user
14,108
def example_2(): """Example with hierarchical basis functions""" ############# # settings: # ############# basis = Hat # Hat or, Gauss level = 1 # highest level of basis functions eval_num = 60 # number of function evaluations # evaluation coordinates input = torch.linspace(0, 1, eval_num) # function evaluations target = torch.linspace(0, 1, eval_num).apply_(f) ############# # compute number of basis functions bf_num = 2**(level + 1) - 1 # create 1D basis with hierarchical basis functions bf = basis.hierarchical(level) # create model model = Model(bf, bf_num) # create solver solver = Solver(model, input, target) # solve linear equation / least squares solver.le() # plot plot(model, f, name='Example 2')
14,109
def _strip_build_number(api_version): """Removes the build number component from a full api version string.""" match = re.match(r"^([A-Z]+-)?([0-9]+)(\.[0-9]+){2}$", api_version) if match: return api_version[:match.start(3)] # if there aren't exactly 3 version number components, just leave it unchanged return api_version
14,110
def get_me(): """サインインしている自分自身の情報を取得""" jia_user_id = get_user_id_from_session() return {"jia_user_id": jia_user_id}
14,111
def dec_file(name, out=None, **kwargs): """ This is a helper function to decrypt a file and return its contents. You can provide an optional output file using `out` `name` can be a local file or when not using `salt-run` can be a url like `salt://`, `https://` etc. CLI Examples: .. code-block:: bash salt-run nacl.dec_file name=/tmp/id_rsa.nacl salt-call nacl.dec_file name=salt://crt/mycert.nacl out=/tmp/id_rsa salt-run nacl.dec_file name=/tmp/id_rsa.nacl box_type=secretbox \ sk_file=/etc/salt/pki/master/nacl.pub """ kwargs["opts"] = __opts__ return salt.utils.nacl.dec_file(name, out, **kwargs)
14,112
async def conversation_steps(month: int = Query(default=1, ge=2, le=6), current_user: User = Depends(Authentication.get_current_user_and_bot)): """ Fetches the number of conversation steps that took place in the chat between the users and the agent """ return Utility.trigger_history_server_request( current_user.get_bot(), f'/api/history/{current_user.get_bot()}/metrics/conversation/steps', {'month': month} )
14,113
def off(app: str) -> dict: """ Switches the app offline, if it isn't already. :param app: The name of the Heroku app in which you want formation :return: dictionary containing information about the app """ return Herokron(app).off()
14,114
def put_pets_pet_id( pet_id: str = Path(..., alias='petId'), body: PetForm = None ) -> None: """ update a pet """ pass
14,115
def test_invalid_getter_and_setter( assert_errors, parse_ast_tree, default_options, code, mode, ): """Testing that wrong use of getter/setter is prohibited.""" tree = parse_ast_tree(mode(code)) visitor = WrongClassBodyVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ UnpythonicGetterSetterViolation, UnpythonicGetterSetterViolation, ])
14,116
def parse_csv_from_response(response): """ Convenience function for working with CSV responses. Parses the CSV rows and returns a list of dicts, using the keys as columns """ file_from_string = io.StringIO(response.content.decode("utf-8")) parsed_rows = [] reader = csv.DictReader(file_from_string) for row in reader: logger.debug(row) parsed_rows.append(row) return parsed_rows
14,117
def log_handler(handler: Any) -> None: """Override tornado's logging.""" # log only errors (status >= 500) if handler.get_status() >= 500: access_log.error( '{} {}'.format(handler.get_status(), handler._request_summary()) )
14,118
def count_weekday(start, stop, wd_target=0): """ Returns the number of days between start and stop inclusive which is the first day of the month and is the specified weekday, with 0 being Monday. """ counter = 0 while start != stop + timedelta(days=1): if start.weekday() == wd_target and start.day == 1: counter += 1 start += timedelta(days=1) return counter
14,119
def _get_ngrams(segment, max_order): """Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred. """ ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i+order]) ngram_counts[ngram] += 1 return ngram_counts
14,120
def update_template_resource(template, resource, bucket_name, bucket_dir, resource_param='CodeUri', s3_object=None, s3_uri=None): """Legacy -> Will be moved to the SAMTemplate class.""" if s3_object: s3_uri = f's3://{bucket_name}/{bucket_dir}/{s3_object}' template['Resources'][resource]['Properties'][resource_param] = s3_uri
14,121
def test_second_generator() -> None: """ important remarks on secp256-zkp prefix for compressed encoding of the second generator: https://github.com/garyyu/rust-secp256k1-zkp/wiki/Pedersen-Commitment """ H = ( 0x50929B74C1A04954B78B4B6035E97A5E078A5A0F28EC96D547BFEE9ACE803AC0, 0x31D3C6863973926E049E637CB1B5F40A36DAC28AF1766968C30C2313F3A38904, ) assert H == pedersen.second_generator(secp256k1, sha256) _ = pedersen.second_generator(secp256r1, sha256) _ = pedersen.second_generator(secp384r1, sha384)
14,122
def pkg_topics_list(data_dict): """ Get a list of topics """ pkg = model.Package.get(data_dict['id']) vocabulary = model.Vocabulary.get('Topics') topics = [] if vocabulary: topics = pkg.get_tags(vocab=vocabulary) return topics
14,123
def get_adrill_cdbs(adrill_user_cfg, adrill_shared_cfg=None): """Return the names and locatinos of all user defined MSC Adams Drill databases (cdbs) Parameters ---------- adrill_user_cfg : str Full path to an Adams Drill user configuration file. This hould be in the users HOME directory. adrill_shared_cfg : str Full path to an Adams Drill shared configuration file. This should be in the Adams Drill installation directory. (the default is None, which means that only user cdbs will be returned.) Returns ------- dict A dictionary in which the cdb names are keys and the cdb locations are values. """ cdbs = {} with open(adrill_user_cfg,'r') as fid: for line in fid: if line.startswith('DATABASE'): # try: cdb_name = re.split('[\t ]+',line.lstrip())[1] cdb_loc = thornpy.utilities.convert_path(re.split('[\t ]+', line, maxsplit=2)[-1].replace('\n','').replace('$HOME', os.path.expanduser('~'))) cdbs[cdb_name] = cdb_loc # except: # raise cdbError('The following line in {} could not be interpreted.\n\n{}'.format(adrill_user_cfg,line)) if adrill_shared_cfg: top_dir = os.path.split(os.path.split(adrill_shared_cfg)[0])[0] with open(adrill_shared_cfg,'r') as fid: for line in fid: if line.startswith('DATABASE'): # try: cdb_name = re.split('[\t ]+', line, maxsplit=2)[1] cdb_loc = thornpy.utilities.convert_path(re.split('[\t ]+', line, maxsplit=2)[-1].replace('\n','').replace('$HOME', os.path.expanduser('~')).replace('$topdir', top_dir)) cdbs[cdb_name] = cdb_loc # except: # raise cdbError('The following line in {} could not be interpreted.\n\n{}'.format(adrill_shared_cfg,line)) return cdbs
14,124
def copy_assets(app, exception): """ Copy asset files to the output """ if "getLogger" in dir(logging): log = logging.getLogger(__name__).info # pylint: disable=no-member warn = logging.getLogger(__name__).warning # pylint: disable=no-member else: log = app.info warn = app.warning builders = get_compatible_builders(app) if exception: return if app.builder.name not in builders: if not app.config["sphinx_tabs_nowarn"]: warn( "Not copying tabs assets! Not compatible with %s builder" % app.builder.name ) return log("Copying tabs assets") installdir = Path(app.builder.outdir) / "_static" / "sphinx_tabs" for path in FILES: source = resource_filename("sphinx_tabs", path) dest = installdir / path destdir = dest.parent if not destdir.exists(): destdir.mkdir(parents=True) copyfile(source, dest)
14,125
def five_five(n): """ This checks if n is a power of 2 (or 0). This is because the only way that n and (n-1) have none of the same bits (the & check) is when n is a power of 2, or 0. """ return ((n & (n-1)) == 0)
14,126
async def send_message(user_id: int, text: str, buttons: Optional[list[dict[str, str]]] = None, disable_notification: bool = False) -> bool: """ Safe messages sender :param user_id: :param text: :param buttons: List of inline buttons in format [{'text': 'text', 'callback_data': 'callback_data', **kwargs}]. A button can have all the same keys that InlineKeyboardButton() take :param disable_notification: :return: """ from main import bot try: await bot.send_message(user_id, text, reply_markup=InlineKeyboardMarkup( row_width=2, resize_keyboard=True, one_time_keyboard=True, ).add( *[InlineKeyboardButton(**button) for button in buttons]) if buttons else None, disable_notification=disable_notification) log.info(f"Sent message to target [ID:{user_id}]") except exceptions.BotBlocked: log.error(f"Target [ID:{user_id}]: blocked by user") except exceptions.ChatNotFound: log.error(f"Target [ID:{user_id}]: invalid user ID") except exceptions.RetryAfter as e: log.error(f"Target [ID:{user_id}]: Flood limit is exceeded. Sleep {e.timeout} seconds.") await asyncio.sleep(e.timeout) return await send_message(user_id, text, buttons) # Recursive call except exceptions.UserDeactivated: log.error(f"Target [ID:{user_id}]: user is deactivated") except exceptions.TelegramAPIError: log.exception(f"Target [ID:{user_id}]: failed") else: log.info(f"Target [ID:{user_id}]: success") return True return False
14,127
def convert_bytes_to_size(some_bytes): """ Convert number of bytes to appropriate form for display. :param some_bytes: A string or integer :return: A string """ some_bytes = int(some_bytes) suffix_dict = { '0': 'B', '1': 'KiB', '2': 'MiB', '3': 'GiB', '4': 'TiB', '5': 'PiB' } counter = 0 while some_bytes > 1 and counter <= 5: tmp = some_bytes / 1024 if tmp < 1: break else: some_bytes = tmp counter += 1 return str(format(some_bytes, '.2f')) + ' ' + str(suffix_dict[str(counter)])
14,128
def create_bbregister_func_to_anat(fieldmap_distortion=False, name='bbregister_func_to_anat'): """ Registers a functional scan in native space to structural. This is meant to be used after create_nonlinear_register() has been run and relies on some of it's outputs. Parameters ---------- fieldmap_distortion : bool, optional If field map-based distortion correction is being run, FLIRT should take in the appropriate field map-related inputs. name : string, optional Name of the workflow. Returns ------- register_func_to_anat : nipype.pipeline.engine.Workflow Notes ----- Workflow Inputs:: inputspec.func : string (nifti file) Input functional scan to be registered to MNI space inputspec.anat_skull : string (nifti file) Corresponding full-head scan of subject inputspec.linear_reg_matrix : string (mat file) Affine matrix from linear functional to anatomical registration inputspec.anat_wm_segmentation : string (nifti file) White matter segmentation probability mask in anatomical space inputspec.bbr_schedule : string (.sch file) Boundary based registration schedule file for flirt command Workflow Outputs:: outputspec.func_to_anat_linear_xfm : string (mat file) Affine transformation from functional to anatomical native space outputspec.anat_func : string (nifti file) Functional data in anatomical space """ register_bbregister_func_to_anat = pe.Workflow(name=name) inputspec = pe.Node(util.IdentityInterface(fields=['func', 'anat_skull', 'linear_reg_matrix', 'anat_wm_segmentation', 'bbr_schedule', 'fieldmap', 'fieldmapmask' ]), name='inputspec') inputNode_echospacing = pe.Node( util.IdentityInterface(fields=['echospacing']), name='echospacing_input') inputNode_pedir = pe.Node(util.IdentityInterface(fields=['pedir']), name='pedir_input') outputspec = pe.Node(util.IdentityInterface(fields=['func_to_anat_linear_xfm', 'anat_func']), name='outputspec') wm_bb_mask = pe.Node(interface=fsl.ImageMaths(), name='wm_bb_mask') wm_bb_mask.inputs.op_string = '-thr 0.5 -bin' register_bbregister_func_to_anat.connect(inputspec, 'anat_wm_segmentation', wm_bb_mask, 'in_file') def bbreg_args(bbreg_target): return '-cost bbr -wmseg ' + bbreg_target bbreg_func_to_anat = pe.Node(interface=fsl.FLIRT(), name='bbreg_func_to_anat') bbreg_func_to_anat.inputs.dof = 6 register_bbregister_func_to_anat.connect(inputspec, 'bbr_schedule', bbreg_func_to_anat, 'schedule') register_bbregister_func_to_anat.connect(wm_bb_mask, ('out_file', bbreg_args), bbreg_func_to_anat, 'args') register_bbregister_func_to_anat.connect(inputspec, 'func', bbreg_func_to_anat, 'in_file') register_bbregister_func_to_anat.connect(inputspec, 'anat_skull', bbreg_func_to_anat, 'reference') register_bbregister_func_to_anat.connect(inputspec, 'linear_reg_matrix', bbreg_func_to_anat, 'in_matrix_file') if fieldmap_distortion: def convert_pedir(pedir): # FSL Flirt requires pedir input encoded as an int conv_dct = {'x': 1, 'y': 2, 'z': 3, '-x': -1, '-y': -2, '-z': -3} if not isinstance(pedir, str): raise Exception("\n\nPhase-encoding direction must be a " "string value.\n\n") if pedir not in conv_dct.keys(): raise Exception("\n\nInvalid phase-encoding direction " "entered: {0}\n\n".format(pedir)) return conv_dct[pedir] register_bbregister_func_to_anat.connect(inputNode_pedir, ('pedir', convert_pedir), bbreg_func_to_anat, 'pedir') register_bbregister_func_to_anat.connect(inputspec, 'fieldmap', bbreg_func_to_anat, 'fieldmap') register_bbregister_func_to_anat.connect(inputspec, 'fieldmapmask', bbreg_func_to_anat, 'fieldmapmask') register_bbregister_func_to_anat.connect(inputNode_echospacing, 'echospacing', bbreg_func_to_anat, 'echospacing') register_bbregister_func_to_anat.connect(bbreg_func_to_anat, 'out_matrix_file', outputspec, 'func_to_anat_linear_xfm') register_bbregister_func_to_anat.connect(bbreg_func_to_anat, 'out_file', outputspec, 'anat_func') return register_bbregister_func_to_anat
14,129
def pointShiftFromRange(dataSize, x = all, y = all, z = all, **args): """Calculate shift of points given a specific range restriction Arguments: dataSize (str): data size of the full image x,y,z (tuples or all): range specifications Returns: tuple: shift of points from original origin of data to origin of range reduced data """ if isinstance(dataSize, str): dataSize = self.dataSize(dataSize) dataSize = list(dataSize) d = len(dataSize) rr = [] if d > 0: rr.append(toDataRange(dataSize[0], r = x)) if d > 1: rr.append(toDataRange(dataSize[1], r = y)) if d > 2: rr.append(toDataRange(dataSize[2], r = z)) if d > 3 or d < 1: raise RuntimeError('shiftFromRange: dimension %d to big' % d) return [r[0] for r in rr]
14,130
def callparser(): """Parses a group of expressions.""" def cull_seps(tokens): return tokens[0] or tokens[1] return RepeatParser(exprparser() + OptionParser(dlmparser(',')) ^ cull_seps)
14,131
def write_section(section_name, section, keys, writer) -> bool: """ Saves the specified section to the specified writer starting at the current point in the writer. It will not throw an exception. On error (IO exception or not being able to write the section) it will return false. WARNING: It can not scan the destination to see if this section has already been written, so typically this method is called when writing out an entire configuration with multiple sections in sequence. Returns True on success and False on failure. """ keys = keys if keys else section.keys() ret = False # OBSOLETE with io.TextIOWrapper(writer) as writer2: try: writer.write(section_name + ":\n") for k in keys: val = section.get(k) if val: output = " " + k + _COLONSPACE + val + "\n" writer.write(output) ret = True except OSError as err: _printerr(err) # Just return false return ret
14,132
def _rotation_270(image): """Rotate an image with 270 degrees (clockwise). Parameters ---------- image : np.ndarray Image to rotate with shape (y, x, channels). Returns ------- image_rotated : np.ndarray Image rotated with shape (y, x, channels). """ image_rotated = _flip_v(image) image_rotated = _transpose(image_rotated) return image_rotated
14,133
def classification_id_for_objs(object_id: str, url: str, token: str): """ Get classification id for a given object Arguments ---------- object_id : str Object id to get classification id for url : str Skyportal url token : str Skyportal token Returns ---------- status_code : int HTTP status code data : list List of classification ids and their author ids """ classifications = api( "GET", f"{url}/api/sources/{object_id}/classifications", token=token, ) data = {} if classifications.status_code == 200: data = { "id": classifications.json()["data"][0]["id"], "author_id": classifications.json()["data"][0]["author_id"], } return classifications.status_code, data
14,134
def ciede2000(Lab_1, Lab_2): """Calculates CIEDE2000 color distance between two CIE L*a*b* colors.""" C_25_7 = 6103515625 # 25**7 L1, a1, b1 = Lab_1[0], Lab_1[1], Lab_1[2] L2, a2, b2 = Lab_2[0], Lab_2[1], Lab_2[2] C1 = math.sqrt(a1**2 + b1**2) C2 = math.sqrt(a2**2 + b2**2) C_ave = (C1 + C2) / 2 G = 0.5 * (1 - math.sqrt(C_ave**7 / (C_ave**7 + C_25_7))) L1_, L2_ = L1, L2 a1_, a2_ = (1 + G) * a1, (1 + G) * a2 b1_, b2_ = b1, b2 C1_ = math.sqrt(a1_**2 + b1_**2) C2_ = math.sqrt(a2_**2 + b2_**2) if b1_ == 0 and a1_ == 0: h1_ = 0 elif a1_ >= 0: h1_ = math.atan2(b1_, a1_) else: h1_ = math.atan2(b1_, a1_) + 2 * math.pi if b2_ == 0 and a2_ == 0: h2_ = 0 elif a2_ >= 0: h2_ = math.atan2(b2_, a2_) else: h2_ = math.atan2(b2_, a2_) + 2 * math.pi dL_ = L2_ - L1_ dC_ = C2_ - C1_ dh_ = h2_ - h1_ if C1_ * C2_ == 0: dh_ = 0 elif dh_ > math.pi: dh_ -= 2 * math.pi elif dh_ < -math.pi: dh_ += 2 * math.pi dH_ = 2 * math.sqrt(C1_ * C2_) * math.sin(dh_ / 2) L_ave = (L1_ + L2_) / 2 C_ave = (C1_ + C2_) / 2 _dh = abs(h1_ - h2_) _sh = h1_ + h2_ C1C2 = C1_ * C2_ if _dh <= math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 elif _dh > math.pi and _sh < 2 * math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 + math.pi elif _dh > math.pi and _sh >= 2 * math.pi and C1C2 != 0: h_ave = (h1_ + h2_) / 2 - math.pi else: h_ave = h1_ + h2_ T = 1 - 0.17 * math.cos(h_ave - math.pi / 6) + 0.24 * math.cos(2 * h_ave) + 0.32 * math.cos(3 * h_ave + math.pi / 30) - 0.2 * math.cos(4 * h_ave - 63 * math.pi / 180) h_ave_deg = h_ave * 180 / math.pi if h_ave_deg < 0: h_ave_deg += 360 elif h_ave_deg > 360: h_ave_deg -= 360 dTheta = 30 * math.exp(-(((h_ave_deg - 275) / 25)**2)) R_C = 2 * math.sqrt(C_ave**7 / (C_ave**7 + C_25_7)) S_C = 1 + 0.045 * C_ave S_H = 1 + 0.015 * C_ave * T Lm50s = (L_ave - 50)**2 S_L = 1 + 0.015 * Lm50s / math.sqrt(20 + Lm50s) R_T = -math.sin(dTheta * math.pi / 90) * R_C k_L, k_C, k_H = 1, 1, 1 f_L = dL_ / k_L / S_L f_C = dC_ / k_C / S_C f_H = dH_ / k_H / S_H dE_00 = math.sqrt(f_L**2 + f_C**2 + f_H**2 + R_T * f_C * f_H) return dE_00
14,135
def ifft2c_new(data: torch.Tensor) -> torch.Tensor: """ Apply centered 2-dimensional Inverse Fast Fourier Transform. Args: data: Complex valued input data containing at least 3 dimensions: dimensions -3 & -2 are spatial dimensions and dimension -1 has size 2. All other dimensions are assumed to be batch dimensions. Returns: The IFFT of the input. """ if not data.shape[-1] == 2: raise ValueError("Tensor does not have separate complex dim.") data = ifftshift(data, dim=[-3, -2]) data = torch.view_as_real( torch.fft.ifftn( # type: ignore torch.view_as_complex(data), dim=(-2, -1), norm="ortho" ) ) data = fftshift(data, dim=[-3, -2]) return data
14,136
def _make_options(context, base): """Return pyld options for given context and base.""" options = {} if context is None: context = default_context() options['expandContext'] = context if base is not None: options['base'] = base return options
14,137
def datatable(table_config: DatatableConfig, table_id: str, class_name: str = ''): """ Deprecated, use instead <table id="{table_id}" data-datatable-url="{url}" class="{class_name}"></table> """ return { "rich_columns": table_config.enabled_columns, "search_box_enabled": table_config.search_box_enabled, "table_id": table_id, "class_name": class_name, "expand_client_renderer": table_config.expand_client_renderer }
14,138
def main(): #"""Prepare neuromorphic MNIST image datasets for use in caffe #Each dataset will be generated with different number of unique spikes #""" #initial_size = 1e6 #best to make this big enough avoid expensive re-allocation #test_dir = os.path.abspath('testFull') #train_dir = os.path.abspath('trainFull') #for num_spikes in range(150, 260, 10): # #test directory # image_dataset = generate_nmnist_dataset(initial_size, test_dir, num_spikes, 0.75) # output_lmdb = 'testlmdb' + str(num_spikes) # database = save_to_lmdb(image_dataset, output_lmdb) # #database.process_all_data(show_lmdb_datum) # #train directory # image_dataset = generate_nmnist_dataset(initial_size, train_dir, num_spikes, 0.75) # output_lmdb = 'trainlmdb' + str(num_spikes) # save_to_lmdb(image_dataset, output_lmdb) ##TD = ev.read_dataset(os.path.abspath('trainReduced/0/00002.bin')) """Prepare neuromorphic MNIST image datasets for use in caffe Datasets generated are for continuous spike processing by TrueNorth layers """ initial_size = 6e5 #best to make this big enough avoid expensive re-allocation test_dir = os.path.abspath('testFull') train_dir = os.path.abspath('trainFull') #test directory image_dataset = generate_nmnist_continuous_dataset(initial_size, test_dir) database = save_to_lmdb(image_dataset, 'testlmdb_continuous', True) save_to_mat(image_dataset, 'MNIST_continuous_test.mat'); #database.process_all_data(show_lmdb_datum) #train directory image_dataset = generate_nmnist_continuous_dataset(initial_size, train_dir) save_to_lmdb(image_dataset, 'trainlmdb_continuous', True) save_to_mat(image_dataset, 'MNIST_continuous_train.mat'); #TD = ev.read_dataset(os.path.abspath('trainReduced/0/00002.bin'))
14,139
def npelpt(point, ellipse): """npelpt(ConstSpiceDouble [3] point, ConstSpiceDouble [NELLIPSE] ellipse)""" return _cspyce0.npelpt(point, ellipse)
14,140
def register_module(): """Registers this module in the registry.""" # provide parser to verify verify.parse_content = content.parse_string_in_scope # setup routes courses_routes = [('/faq', utils_faq.FaqHandler),('/allresources', utils_allresources.AllResourcesHandler)] global custom_module custom_module = custom_modules.Module( 'Course', 'FAQ Module', [], courses_routes, notify_module_enabled = notify) return custom_module
14,141
def degreeList(s): """Convert degrees given on command line to a list. For example, the string '1,2-5,7' is converted to [1,2,3,4,5,7].""" l = [] for r in s.split(','): t = r.split('-') if len(t) == 1: l.append(int(t[0])) else: a = int(t[0]) b = int(t[1]) l.extend(range(a,b+1, (1 if a <= b else -1))) return sorted(l)
14,142
def _gen_simple_while_loop(base_dir): """Generates a saved model with a while loop.""" class Module(module.Module): """A module with a while loop.""" @def_function.function( input_signature=[tensor_spec.TensorSpec((), dtypes.float32)]) def compute(self, value): acc, _ = control_flow_ops.while_loop( cond=lambda acc, i: i > 0, body=lambda acc, i: (acc + i, i - 1), loop_vars=(constant_op.constant(0.0), value)) return acc to_save = Module() saved_model.save( to_save, export_dir=os.path.join(base_dir, "SimpleWhileLoop"))
14,143
def _get_corrected_msm(msm: pd.DataFrame, elevation: float, ele_target: float): """MSMデータフレーム内の気温、気圧、重量絶対湿度を標高補正 Args: df_msm(pd.DataFrame): MSMデータフレーム ele(float): 平均標高 [m] elevation(float): 目標地点の標高 [m] Returns: pd.DataFrame: 補正後のMSMデータフレーム """ TMP = msm['TMP'].values PRES = msm['PRES'].values MR = msm['MR'].values # 標高差 ele_gap = ele_target - elevation # 気温補正 TMP_corr = get_corrected_TMP(TMP, ele_gap) # 気圧補正 PRES_corr = get_corrected_PRES(PRES, ele_gap, TMP_corr) # 重量絶対湿度補正 MR_corr = get_corrected_mixing_ratio( MR=MR, TMP=TMP_corr, PRES=PRES_corr ) # 補正値をデータフレームに戻す msm = msm.copy() msm['TMP'] = TMP_corr msm['PRES'] = PRES_corr msm['MR'] = MR_corr # なぜ 気圧消すのか? # msm.drop(['PRES'], axis=1, inplace=True) return msm
14,144
def get_answers_by_qname(sim_reads_sam_file): """Get a dictionary of Direction Start CIGAR MDtag by ReadID (qname).""" answers_by_qname = {} reads_file = open(sim_reads_sam_file) reads_file.next() #skip header line for line in reads_file: id, dir, start, cigar, mdtag = line.strip().split('\t') answers_by_qname[id] = (dir, start, cigar, mdtag) reads_file.close() return answers_by_qname
14,145
def post_times(post: Post) -> html_tag: """Display time user created post. If user has edited their post show the timestamp for that as well. :param post: Post ORM object. :return: Rendered paragraph tag with post's timestamp information. """ p = tags.p(cls="small") p.add(f"{_('Posted')}: ") p.add(moment(post.created).fromNow()) if post.edited is not None: p.add(tags.br(), f"{_('Edited')}: ", moment(post.edited).fromNow()) return p
14,146
def read_articles_stat(path): """ 读取articles_stat文件,生成可以读取法条正负样本数量的字典列表 :param path: articles_stat文件位置 :return: ret: [{'第一条': (负样本数量, 正样本数量), ...}, {...}, ..., {...}] """ df = pd.read_csv(path, header=0, index_col=0) ret = [{} for i in range(4)] for index, row in df.iterrows(): ret[row['name']][row['number']] = (row['negatives'], row['positives']) # print(ret) return ret
14,147
def get_bounding_box(font): """ Returns max and min bbox of given truetype font """ ymin = 0 ymax = 0 if font.sfntVersion == 'OTTO': ymin = font['head'].yMin ymax = font['head'].yMax else: for g in font['glyf'].glyphs: char = font['glyf'][g] if hasattr(char, 'yMin') and ymin > char.yMin: ymin = char.yMin if hasattr(char, 'yMax') and ymax < char.yMax: ymax = char.yMax return ymin, ymax
14,148
def show_NativeMethods(dx) : """ Show the native methods :param dx : the analysis virtual machine :type dx: a :class:`VMAnalysis` object """ d = dx.get_vm() for i in d.get_methods() : if i.get_access_flags() & 0x100 : print i.get_class_name(), i.get_name(), i.get_descriptor()
14,149
def display_users_bill(): """display_users_bill(): This function is used to display the users shopping cart. The option to view the shopping cart has not been added for this program, but it can be achieved by adding code between lines 214 and 219 in a different function and this function can be called when the user types -h (--help): Helps the users with a certain short-key manual -l (--list): Displays teh users shopping cart in between each input statement """ global total_items global items_in_cart global users_cart global users_cart_cost global users_cart_quantity print(f"{bcolors.BOLD}Thank you for shopping with us today! {bcolors.ENDC}\n") # calculating the cost of all the items the user has added to his cart sum_cart = sum(users_cart_cost) print(f"Bill Amount: ₹{bcolors.OKBLUE}{sum_cart}{bcolors.ENDC}") print(f"Bill Amount: ₹{bcolors.OKBLUE}{sum_cart * 118/100}{bcolors.ENDC} (inc. GST)") sys.exit(0)
14,150
def look_over(file_name): """ # 查看十六进制文件的内容 :param file_name: 文件的目录 :return: 文件的内容 """ with open(file_name, "rb") as f: print(binascii.hexlify(f.read()))
14,151
def untag_resource(ResourceArn=None, TagKeys=None): """ Deletes a tag key and value from an AppConfig resource. See also: AWS API Documentation Exceptions :example: response = client.untag_resource( ResourceArn='string', TagKeys=[ 'string', ] ) :type ResourceArn: string :param ResourceArn: [REQUIRED]\nThe ARN of the resource for which to remove tags.\n :type TagKeys: list :param TagKeys: [REQUIRED]\nThe tag keys to delete.\n\n(string) --\n\n :returns: AppConfig.Client.exceptions.ResourceNotFoundException AppConfig.Client.exceptions.BadRequestException AppConfig.Client.exceptions.InternalServerException """ pass
14,152
def create_user(client, profile, user, resend=False): """ Creates a new user in the specified user pool """ try: if resend: # Resend confirmation email for get back password response = client.admin_create_user( UserPoolId=profile["user_pool_id"], Username=user.email, MessageAction="RESEND", ) else: response = client.admin_create_user( UserPoolId=profile["user_pool_id"], Username=user.email, UserAttributes=[ {"Name": "email", "Value": user.email}, {"Name": "email_verified", "Value": "true"}, ], ) if response["ResponseMetadata"]["HTTPStatusCode"] == 200: if resend: print(f"Resend confirmation to user {user.email} successfully") else: print(f"User {user.email} was created successfully") return response except client.exceptions.UsernameExistsException as error: print(f"User {user.email} exists") return error.response except client.exceptions.ClientError as error: print(f"Fail to create user {user.email}: {error.response}") return error.response
14,153
def generate_move_probabilities( in_probs: np.ndarray, move_dirn: float, nu_par: float, dir_bool: np.ndarray ): """ create move probabilities from a 1d array of values""" out_probs = np.asarray(in_probs.copy()) if np.isnan(out_probs).any(): print('NANs in move probabilities!') out_probs = get_directional_probs(move_dirn * np.pi / 180.) out_probs = out_probs.clip(min=0.) out_probs[4] = 0. out_probs = [ix * float(iy) for ix, iy in zip(out_probs, dir_bool)] if np.count_nonzero(out_probs) == 0: out_probs = get_directional_probs(move_dirn * np.pi / 180.) #out_probs = np.random.rand(len(out_probs)) out_probs[4] = 0. out_probs = [ix * float(iy) for ix, iy in zip(out_probs, dir_bool)] if np.count_nonzero(out_probs) == 0: out_probs = get_directional_probs(move_dirn * np.pi / 180.) out_probs /= np.sum(out_probs) out_probs = np.power(out_probs, nu_par) out_probs /= np.sum(out_probs) return out_probs
14,154
def add_feed(feed_URL=None): """ Description: Adds to the feed to the database Argument(s): feed_URL - The http(s):// URL to the feed that you wish to pull from Returns: a composite string of tidy JSON to post to the channel if the addition was successful or not """
14,155
def test_body(query, selectors, expected): """Tests getting the patchable body from a selector""" sql = pgmock.sql(query, *selectors) assert sql == expected
14,156
def register_default_actions(): """Register default actions for Launcher""" api.register_plugin(api.Action, ProjectManagerAction) api.register_plugin(api.Action, LoaderAction)
14,157
def _is_diagonal(x): """Helper to identify if `LinearOperator` has only a diagonal component.""" return (isinstance(x, tf.linalg.LinearOperatorIdentity) or isinstance(x, tf.linalg.LinearOperatorScaledIdentity) or isinstance(x, tf.linalg.LinearOperatorDiag))
14,158
def index(): """Index Controller""" return render_template('login.html')
14,159
def match_twosided(desc1,desc2): """ Two-sided symmetric version of match(). """ matches_12 = match(desc1,desc2) matches_21 = match(desc2,desc1) ndx_12 = matches_12.nonzero()[0] # remove matches that are not symmetric for n in ndx_12: if matches_21[int(matches_12[n])] != n: matches_12[n] = 0 return matches_12
14,160
def parse_header_links(value): """Return a list of parsed link headers proxies. i.e. Link: <http:/.../front.jpeg>; rel=front; type="image/jpeg",<http://.../back.jpeg>; rel=back;type="image/jpeg" :rtype: list """ links = [] replace_chars = ' \'"' value = value.strip(replace_chars) if not value: return links for val in re.split(', *<', value): try: url, params = val.split(';', 1) except ValueError: url, params = val, '' link = {'url': url.strip('<> \'"')} for param in params.split(';'): try: key, value = param.split('=') except ValueError: break link[key.strip(replace_chars)] = value.strip(replace_chars) links.append(link) return links
14,161
def validate_term(fun): """Compares current local (node's) term and request (sender's) term: - if current local (node's) term is older: update current local (node's) term and become a follower - if request (sender's) term is older: respond with {'success': False} args: - data object received from other members returns: - True if term validation succeeds, False otherwise """ @functools.wraps(fun) def wrapped(self, data): logger.debug(f'{self.id} validate_term() start.') if self.storage['term'] < data['term']: self.storage.update({'term': data['term']}) if not isinstance(self, Follower): self.to_follower() logger.debug(f'{self.id} validate_term() done, bad term, moved to Follower.') return False if self.storage['term'] > data['term'] and not data['type'].endswith('_response'): response = { 'success': False, 'term': self.storage['term'], 'type': f'{data["type"]}_response', } sender = self.raft.members.get(data['sender_id']) host = sender[0] port = sender[1] asyncio.ensure_future( self.raft.send(data=response, dest_host=host, dest_port=port), loop=self.loop ) logger.debug(f'{self.id} validate_term() done, bad term, responded with False.') return False logger.debug(f'{self.id} validate_term() done, good term.') return fun(self, data) return wrapped
14,162
def test_dict_comprehension_func(template, value): """Test running a dict comprehension in a declarative function. """ source = template.format('{i: %s for i in range(10)}' % value) win = compile_source(source, 'Main')() assert win.call()
14,163
def rsync_sitemaps(dry_run=None, remote_host='ves-pg-a4'): """ Copy cached sitemaps from local folder to remote one. """ sitemaps_path = os.path.join(settings.PROJECT_PATH, 'rnacentral', 'sitemaps') cmd = 'rsync -avi{dry_run} --delete {src}/ {remote_host}:{dst}'.format( src=sitemaps_path, dst=sitemaps_path, remote_host=remote_host, dry_run='n' if dry_run else '', ) local(cmd) slack("Rsynced sitemaps to %s" % remote_host)
14,164
def _friends_bootstrap_radius(args): """Internal method used to compute the radius (half-side-length) for each ball (cube) used in :class:`RadFriends` (:class:`SupFriends`) using bootstrapping.""" # Unzipping. points, ftype = args rstate = np.random # Resampling. npoints, ndim = points.shape idxs = rstate.randint(npoints, size=npoints) # resample idx_in = np.unique(idxs) # selected objects sel = np.ones(npoints, dtype='bool') sel[idx_in] = False idx_out = np.where(sel)[0] # "missing" objects if len(idx_out) < 2: # edge case idx_out = np.append(idx_out, [0, 1]) points_in, points_out = points[idx_in], points[idx_out] # Construct KDTree to enable quick nearest-neighbor lookup for # our resampled objects. kdtree = spatial.KDTree(points_in) if ftype == 'balls': # Compute distances from our "missing" points its closest neighbor # among the resampled points using the Euclidean norm # (i.e. "radius" of n-sphere). dists, ids = kdtree.query(points_out, k=1, eps=0, p=2) elif ftype == 'cubes': # Compute distances from our "missing" points its closest neighbor # among the resampled points using the Euclidean norm # (i.e. "half-side-length" of n-cube). dists, ids = kdtree.query(points_out, k=1, eps=0, p=np.inf) # Conservative upper-bound on radius. dist = max(dists) return dist
14,165
def _parametrize_plus(argnames=None, # type: Union[str, Tuple[str], List[str]] argvalues=None, # type: Iterable[Any] indirect=False, # type: bool ids=None, # type: Union[Callable, Iterable[str]] idstyle=None, # type: Optional[Union[str, Callable]] idgen=_IDGEN, # type: Union[str, Callable] auto_refs=True, # type: bool scope=None, # type: str hook=None, # type: Callable[[Callable], Callable] debug=False, # type: bool **args): """ :return: a tuple (decorator, needs_inject) where needs_inject is True if decorator has signature (f, host) and False if decorator has signature (f) """ # first handle argnames / argvalues (new modes of input) argnames, argvalues = _get_argnames_argvalues(argnames, argvalues, **args) # argnames related initial_argnames = ','.join(argnames) nb_params = len(argnames) # extract all marks and custom ids. # Do not check consistency of sizes argname/argvalue as a fixture_ref can stand for several argvalues. marked_argvalues = argvalues has_cust_ids = (idgen is not _IDGEN or len(args) > 0) or (ids is not None) p_ids, p_marks, argvalues, fixture_indices, mod_lvid_indices = \ _process_argvalues(argnames, marked_argvalues, nb_params, has_cust_ids, auto_refs=auto_refs) # idgen default if idgen is _IDGEN: # default: use the new id style only when some keyword **args are provided and there are no fixture refs idgen = AUTO if (len(args) > 0 and len(fixture_indices) == 0 and ids is None) else None if idgen is AUTO: # note: we use a "trick" here with mini_idval to get the appropriate result (argname='', idx=v) def _make_ids(**args): for n, v in args.items(): yield "%s=%s" % (n, mini_idval(val=v, argname='', idx=v)) idgen = lambda **args: "-".join(_make_ids(**args)) # noqa # generate id if idgen is not None: if ids is not None: raise ValueError("Only one of `ids` and `idgen` should be provided") ids = _gen_ids(argnames, argvalues, idgen) if len(fixture_indices) == 0: # No fixture refernce: fallback to a standard pytest.mark.parametrize if debug: print("No fixture reference found. Calling @pytest.mark.parametrize...") print(" - argnames: %s" % initial_argnames) print(" - argvalues: %s" % marked_argvalues) print(" - ids: %s" % ids) # handle infinite iterables like latest pytest, for convenience ids = resolve_ids(ids, marked_argvalues, full_resolve=False) # no fixture reference: shortcut, do as usual (note that the hook wont be called since no fixture is created) _decorator = pytest.mark.parametrize(initial_argnames, marked_argvalues, indirect=indirect, ids=ids, scope=scope) if indirect: return _decorator, False else: # wrap the decorator to check if the test function has the parameters as arguments def _apply(test_func): if not safe_isclass(test_func): # a Function: raise a proper error message if improper use s = signature(test_func) for p in argnames: if p not in s.parameters: raise ValueError("parameter '%s' not found in test function signature '%s%s'" "" % (p, test_func.__name__, s)) else: # a Class: we cannot really perform any check. pass return _decorator(test_func) return _apply, False else: # there are fixture references: we will create a specific decorator replacing the params with a "union" fixture if indirect: warn("Using `indirect=True` at the same time as fixture references in `@parametrize` is not guaranteed to " "work and is strongly discouraged for readability reasons. See " "https://github.com/smarie/python-pytest-cases/issues/150") # First unset the pytest.param id we have set earlier in _process_argvalues: indeed it is only needed in # the case above where we were defaulting to legacy @pytest.mark.parametrize . # Here we have fixture refs so we will create a fixture union with several ParamAlternative, and their id will # anyway be generated with `mini_idvalset` which tackles the case of lazy_value used for a tuple of args for i in mod_lvid_indices: p_ids[i] = None if p_marks[i]: marked_argvalues[i] = ParameterSet(values=marked_argvalues[i].values, id=None, marks=p_marks[i]) else: marked_argvalues[i] = argvalues[i] # we can even remove the pytest.param wrapper if indirect: raise ValueError("Setting `indirect=True` is not yet supported when at least a `fixure_ref` is present in " "the `argvalues`.") if debug: print("Fixture references found. Creating references and fixtures...") param_names_str = '_'.join(argnames).replace(' ', '') # Are there explicit ids provided ? explicit_ids_to_use = False ids = resolve_ids(ids, argvalues, full_resolve=False) if isinstance(ids, list): explicit_ids_to_use = True # First define a few functions that will help us create the various fixtures to use in the final "union" def _create_params_alt(fh, test_func, union_name, from_i, to_i, hook): # noqa """ Routine that will be used to create a parameter fixture for argvalues between prev_i and i""" # is this about a single value or several values ? if to_i == from_i + 1: i = from_i del from_i # If an explicit list of ids was provided, slice it. Otherwise use the provided callable if ids is not None: _id = ids[i] if explicit_ids_to_use else ids(argvalues[i]) else: _id = None return SingleParamAlternative.create(new_fixture_host=fh, test_func=test_func, param_union_name=union_name, argnames=argnames, i=i, argvalue=marked_argvalues[i], id=_id, hook=hook, debug=debug) else: # If an explicit list of ids was provided, slice it. Otherwise the provided callable will be used later _ids = ids[from_i:to_i] if explicit_ids_to_use else ids return MultiParamAlternative.create(new_fixture_host=fh, test_func=test_func, param_union_name=union_name, argnames=argnames, from_i=from_i, to_i=to_i, argvalues=marked_argvalues[from_i:to_i], ids=_ids, hook=hook, debug=debug) def _create_fixture_ref_alt(union_name, test_func, i): # noqa # If an explicit list of ids was provided, slice it. Otherwise use the provided callable if ids is not None: _id = ids[i] if explicit_ids_to_use else ids(argvalues[i]) else: _id = None # Get the referenced fixture name f_fix_name = argvalues[i].fixture if debug: print(" - Creating reference to existing fixture %r" % (f_fix_name,)) # Create the alternative f_fix_alt = FixtureParamAlternative(union_name=union_name, fixture_ref=argvalues[i], decorated=test_func, argnames=argnames, param_index=i, id=_id) # Finally copy the custom id/marks on the FixtureParamAlternative if any if is_marked_parameter_value(marked_argvalues[i]): f_fix_alt = ParameterSet(values=(f_fix_alt,), id=get_marked_parameter_id(marked_argvalues[i]), marks=get_marked_parameter_marks(marked_argvalues[i])) return f_fix_alt def _create_fixture_ref_product(fh, union_name, i, fixture_ref_positions, test_func, hook): # noqa # If an explicit list of ids was provided, slice it. Otherwise the provided callable will be used _id = ids[i] if explicit_ids_to_use else ids # values to use: param_values = argvalues[i] # Create a unique fixture name p_fix_name = "%s_%s_P%s" % (test_func.__name__, param_names_str, i) p_fix_name = check_name_available(fh, p_fix_name, if_name_exists=CHANGE, caller=parametrize) if debug: print(" - Creating new fixture %r to handle parameter %s that is a cross-product" % (p_fix_name, i)) # Create the fixture _make_fixture_product(fh, name=p_fix_name, hook=hook, caller=parametrize, fixtures_or_values=param_values, fixture_positions=fixture_ref_positions) # Create the corresponding alternative p_fix_alt = ProductParamAlternative(union_name=union_name, alternative_name=p_fix_name, decorated=test_func, argval=argvalues[i], argnames=argnames, param_index=i, id=_id) # copy the custom id/marks to the ParamAlternative if any if is_marked_parameter_value(marked_argvalues[i]): p_fix_alt = ParameterSet(values=(p_fix_alt,), id=get_marked_parameter_id(marked_argvalues[i]), marks=get_marked_parameter_marks(marked_argvalues[i])) return p_fix_alt # Then create the decorator per se def parametrize_plus_decorate(test_func, fixtures_dest): """ A decorator that wraps the test function so that instead of receiving the parameter names, it receives the new fixture. All other decorations are unchanged. :param test_func: :return: """ test_func_name = test_func.__name__ # first check if the test function has the parameters as arguments if safe_isclass(test_func): # a test class: not supported yet raise NotImplementedError("@parametrize can not be used to decorate a Test class when the argvalues " "contain at least one reference to a fixture.") old_sig = signature(test_func) for p in argnames: if p not in old_sig.parameters: raise ValueError("parameter '%s' not found in test function signature '%s%s'" "" % (p, test_func_name, old_sig)) # The name for the final "union" fixture # style_template = "%s_param__%s" main_fixture_style_template = "%s_%s" fixture_union_name = main_fixture_style_template % (test_func_name, param_names_str) fixture_union_name = check_name_available(fixtures_dest, fixture_union_name, if_name_exists=CHANGE, caller=parametrize) # Retrieve (if ref) or create (for normal argvalues) the fixtures that we will union fixture_alternatives = [] prev_i = -1 for i, j_list in fixture_indices: # noqa # A/ Is there any non-empty group of 'normal' parameters before the fixture_ref at <i> ? If so, handle. if i > prev_i + 1: # create a new "param" fixture parametrized with all of that consecutive group. # Important note: we could either wish to create one fixture for parameter value or to create # one for each consecutive group as shown below. This should not lead to different results but perf # might differ. Maybe add a parameter in the signature so that users can test it ? # this would make the ids more readable by removing the "P2toP3"-like ids p_fix_alt = _create_params_alt(fixtures_dest, test_func=test_func, hook=hook, union_name=fixture_union_name, from_i=prev_i + 1, to_i=i) fixture_alternatives.append(p_fix_alt) # B/ Now handle the fixture ref at position <i> if j_list is None: # argvalues[i] contains a single argvalue that is a fixture_ref : add the referenced fixture f_fix_alt = _create_fixture_ref_alt(union_name=fixture_union_name, test_func=test_func, i=i) fixture_alternatives.append(f_fix_alt) else: # argvalues[i] is a tuple, some of them being fixture_ref. create a fixture refering to all of them prod_fix_alt = _create_fixture_ref_product(fixtures_dest, union_name=fixture_union_name, i=i, fixture_ref_positions=j_list, test_func=test_func, hook=hook) fixture_alternatives.append(prod_fix_alt) prev_i = i # C/ handle last consecutive group of normal parameters, if any i = len(argvalues) # noqa if i > prev_i + 1: p_fix_alt = _create_params_alt(fixtures_dest, test_func=test_func, hook=hook, union_name=fixture_union_name, from_i=prev_i + 1, to_i=i) fixture_alternatives.append(p_fix_alt) # if fixtures_to_union has length 1, simplify ? >> No, we leave such "optimization" to the end user # Handle the list of alternative names. Duplicates should be removed here fix_alt_names = [] for alt in fixture_alternatives: if is_marked_parameter_value(alt): # wrapped by a pytest.param alt = get_marked_parameter_values(alt, nbargs=1) assert len(alt) == 1, "Error with alternative please report" alt = alt[0] if alt.alternative_name not in fix_alt_names: fix_alt_names.append(alt.alternative_name) else: # non-unique alt fixture names should only happen when the alternative is a fixture reference assert isinstance(alt, FixtureParamAlternative), "Created fixture names not unique, please report" # Finally create a "main" fixture with a unique name for this test function if debug: print("Creating final union fixture %r with alternatives %r" % (fixture_union_name, UnionFixtureAlternative.to_list_of_fixture_names(fixture_alternatives))) # use the custom subclass of idstyle that was created for ParamAlternatives if idstyle is None or isinstance(idstyle, string_types): _idstyle = ParamIdMakers.get(idstyle) else: _idstyle = idstyle # note: the function automatically registers it in the module _make_fixture_union(fixtures_dest, name=fixture_union_name, hook=hook, caller=parametrize, fix_alternatives=fixture_alternatives, unique_fix_alt_names=fix_alt_names, idstyle=_idstyle, scope=scope) # --create the new test function's signature that we want to expose to pytest # it is the same than existing, except that we want to replace all parameters with the new fixture # first check where we should insert the new parameters (where is the first param we remove) _first_idx = -1 for _first_idx, _n in enumerate(old_sig.parameters): if _n in argnames: break # then remove all parameters that will be replaced by the new fixture new_sig = remove_signature_parameters(old_sig, *argnames) # finally insert the new fixture in that position. Indeed we can not insert first or last, because # 'self' arg (case of test class methods) should stay first and exec order should be preserved when possible new_sig = add_signature_parameters(new_sig, custom_idx=_first_idx, custom=Parameter(fixture_union_name, kind=Parameter.POSITIONAL_OR_KEYWORD)) if debug: print("Creating final test function wrapper with signature %s%s" % (test_func_name, new_sig)) # --Finally create the fixture function, a wrapper of user-provided fixture with the new signature def replace_paramfixture_with_values(kwargs): # noqa # remove the created fixture value encompassing_fixture = kwargs.pop(fixture_union_name) # and add instead the parameter values if nb_params > 1: for i, p in enumerate(argnames): # noqa try: kwargs[p] = encompassing_fixture[i] except TypeError: raise Exception("Unable to unpack parameter value to a tuple: %r" % encompassing_fixture) else: kwargs[argnames[0]] = encompassing_fixture # return return kwargs if not isgeneratorfunction(test_func): # normal test or fixture function with return statement @wraps(test_func, new_sig=new_sig) def wrapped_test_func(*args, **kwargs): # noqa if kwargs.get(fixture_union_name, None) is NOT_USED: # TODO why this ? it is probably useless: this fixture # is private and will never end up in another union return NOT_USED else: replace_paramfixture_with_values(kwargs) return test_func(*args, **kwargs) else: # generator test or fixture function (with one or several yield statements) @wraps(test_func, new_sig=new_sig) def wrapped_test_func(*args, **kwargs): # noqa if kwargs.get(fixture_union_name, None) is NOT_USED: # TODO why this ? it is probably useless: this fixture # is private and will never end up in another union yield NOT_USED else: replace_paramfixture_with_values(kwargs) for res in test_func(*args, **kwargs): yield res # move all pytest marks from the test function to the wrapper # not needed because the __dict__ is automatically copied when we use @wraps # move_all_pytest_marks(test_func, wrapped_test_func) # With this hack we will be ordered correctly by pytest https://github.com/pytest-dev/pytest/issues/4429 try: # propagate existing attribute if any wrapped_test_func.place_as = test_func.place_as except: # noqa # position the test at the original function's position wrapped_test_func.place_as = test_func # return the new test function return wrapped_test_func return parametrize_plus_decorate, True
14,166
def _clip_grad(clip_value, grad): """ Clip gradients. Inputs: clip_value (float): Specifies how much to clip. grad (tuple[Tensor]): Gradients. Outputs: tuple[Tensor], clipped gradients. """ dt = ops.dtype(grad) new_grad = nn.ClipByNorm()(grad, ops.cast(ops.tuple_to_array((clip_value,)), dt)) return new_grad
14,167
def sample_cast(user, name='David'): """Creates a sample Cast""" return Cast.objects.create(user=user, name=name)
14,168
def sort_special_vertex_groups(vgroups, special_vertex_group_pattern='STYMO:', global_special_vertex_group_suffix='Character'): """ Given a list of special vertex group names, all with the prefix of special_vertex_group_pattern, selects all that start with global_special_vertex_group_suffix and puts them at the start of the list. This enables e.g. to easily define top-level vertex groups that always go first, followed by details that overwrite top level assignments. """ global_vg_name_pattern = special_vertex_group_pattern + \ global_special_vertex_group_suffix first = [] last = [] for g in vgroups: if re.match(global_vg_name_pattern, g) is not None: first.append(g) else: last.append(g) first.sort() last.sort() first.extend(last) return first
14,169
def set_players(): """Set players pawns and name before start the party""" if "" in [p1_pawn.get(), p1_name.get(), p2_pawn.get(), p2_name.get()]: # check if any empty entry showerror("Error", "A entry is blank !") # Show a warning elif p1_pawn.get() == p2_pawn.get(): # Check if players pawns are same showerror("Error", "Players pawns are identical !") # Show a warning elif p1_name.get() == p2_name.get(): # Check if players names are same showerror("Error", "Players names are identical !") # Show a warning else: # If everything is fine players.destroy()
14,170
def _GetFullDesktopName(window_station, desktop) -> str: """Returns a full name to a desktop. Args: window_station: Handle to window station. desktop: Handle to desktop. """ return "\\".join([ win32service.GetUserObjectInformation(handle, win32service.UOI_NAME) for handle in [window_station, desktop] ])
14,171
def decrypt(plain_text: str, a: np.ndarray, b: np.ndarray, space: str) -> str: """Decrypts the given text with given a, b and space :param plain_text: Text you want to decrypt :type plain_text: str :param a: An integer that corresponds to the A parameter in block cypher :type a: np.ndarray :param b: An integer that corresponds to the B parameter in block cypher :type b: np.ndarray :param space: Target space :type space: str :return: Decrypted text in string form :rtype: str """ result = [] t = math_utils.get_inverse_matrix(a) pairs = cryption_utils.get_pairs_of_int_two_from_text(plain_text, space) for pair in pairs: c = math_utils.create_nested_list_from_flat_list(pair) subtracted_matrix = math_utils.sub_matrices(c, b) dot_product = math_utils.dot_product_with_multiple_matrices( [t, np.array(subtracted_matrix)] ) result_list = space_utils.convert_nested_ints_to_char(dot_product, space) result.append("".join(result_list)) return "".join(result)
14,172
def merge_rois(roi_list: List, temporal_coefficient: float, original_2d_vol: np.ndarray, roi_eccentricity_limit=1.0, widefield=False): # TODO is this the most efficient implementation I can do """ Merges rois based on temporal and spacial overlap Parameters ---------- roi_list List of Rois in format: [[np.array of pixels roi 1], [np.array of pixels roi 2] ... ] temporal_coefficient The coefficient limiting merging based of temporal information, 0 merge all 1 merge none original_2d_vol Volume of each pixel's time trace Returns ------- List of new rois in format: [[np.array of pixels roi 1], [np.array of pixels roi 2] ... ] """ A = np.zeros([original_2d_vol.shape[0], len(roi_list)], dtype=int) # create 2d # matrix of zeros with dims number of pixels in image by number of rois # Change pixels of each roi to 1 for num, roi in enumerate(roi_list): A[roi, num] = 1 # Create graph of which rois have pixels which intersect with each other. A_graph = np.matmul(A.transpose(), A) connected_rois = np.nonzero(A_graph) # print(A_graph) timetraces = [np.mean(original_2d_vol[roi], axis=0) for roi in roi_list] A_graph_new = np.identity(A_graph.shape[0], dtype=float) # print(list(zip(*connected_rois))) for x in list(zip(*connected_rois)): # applies a 10% overlap condition to the rois. if x[0] != x[1] and (widefield or ( A_graph[x[0], x[1]] > len(roi_list[x[1]]) * .1 and A_graph[ x[0], x[1]] > len(roi_list[x[0]]) * .1)): A_graph_new[x[0], x[1]] = compare_time_traces(timetraces[x[0]], timetraces[x[1]]) # print(A_graph_new[x[0],x[1]]) A_graph_new[x[1], x[0]] = A_graph_new[x[0], x[1]] A_graph[x[0], x[1]] = False A_graph[x[1], x[0]] = False A_components_to_merge = A_graph_new >= temporal_coefficient A_csr = csr_matrix(A_components_to_merge) # Use connected components to group these rois together connected = connected_components_graph(A_csr, False, return_labels=True) # processes connected components putting each group of rois into roi_groups list roi_groups = [[] for _ in range(len(roi_list))] for num in range(len(roi_list)): roi_groups[connected[1][num]].append(roi_list[num]) new_rois = [] for group in roi_groups: if len(group) != 0: # combine those rois that should be merged with first roi. first_roi = list(reduce(combine_rois, group)) new_rois.append(np.array(first_roi)) return new_rois
14,173
def well2D_to_df1D(xlsx_path, sheet, data_col): """ Convert new 2D output format (per well) to 1D dataframe :param str xlsx_path: path to the xlsx file :param str sheet: sheet name to load :param str data_col: new column name of the linearized values :return dataframe df: linearized dataframe """ df = pd.read_excel(xlsx_path, sheet_name=sheet, index_col=0) df = df.unstack().reset_index(name=data_col) # unpivot (linearize) the table df.rename(columns={'level_1': 'row_id', 'level_0': 'col_id'}, inplace=True) df['well_id'] = df.row_id + df.col_id.map(str) df = df[['well_id', data_col]] return df
14,174
def obtain_file_hash(path, hash_algo="md5"): """Obtains the hash of a file using the specified hash algorithm """ hash_algo = hashlib.sha256() if hash_algo=="sha256" else hashlib.md5() block_size = 65535 with open(path, 'rb') as f: for chunk in iter(lambda: f.read(block_size),b''): hash_algo.update(chunk) return hash_algo.hexdigest()
14,175
def b_q_bar(z_c): """Result of integrating from z_c to 1/2 of the hard collinear part of the quark splitting function""" b_q_zc = CF * (-3. + 6. * z_c + 4.* np.log(2. - 2.*z_c))/2. return b_q_zc
14,176
def _prepare_libarchive() -> None: # coverage: ignore """ There are some well documented issues in MacOS about libarchive. Let's try to do things ourselves... https://github.com/dsoprea/PyEasyArchive """ if sys.platform != "darwin": return if "LA_LIBRARY_FILEPATH" in os.environ: return command = ["brew", "info", "--json=v1", "libarchive"] try: result = subprocess.check_output(command) except Exception as e: logging.error("Could not lookup 'libarchive' package info", e) info = json.loads(result) installed_versions = info[0]["installed"] if len(installed_versions) == 0: logging.warning("libarchive is not currently installed via Brew") return version = installed_versions[0]["version"] command = ["brew", "--cellar", "libarchive"] package_path = subprocess.check_output(command)[:-1] library_path = os.path.join(package_path.decode(), version, "lib") os.environ["LA_LIBRARY_FILEPATH"] = os.path.join( library_path, "libarchive.dylib" ) return
14,177
def getsize(store, path=None): """Compute size of stored items for a given path.""" path = normalize_storage_path(path) if hasattr(store, 'getsize'): # pass through return store.getsize(path) elif isinstance(store, dict): # compute from size of values prefix = _path_to_prefix(path) size = 0 for k in listdir(store, path): try: v = store[prefix + k] except KeyError: pass else: try: size += buffer_size(v) except TypeError: return -1 return size else: return -1
14,178
def split_2DL5AB(GL, cursor, log): """ splits the KIR2DL5 GL-string into 2 separate GL strings for 2DL5A and 2DL5B :param GL: GL-string for KIR2DL5, combining both A and B :param cursor: cursor to a connection to the nextype archive :param log: logger instance """ log.info("Splitting 2DL5-alleles...") proc_name = "GL_STRINGS_MGMT.SPLIT_GL_STRING_2DL5@ngsa" proc_params = [GL] proc_params2 = [2, 'KIR', 'J', 'J', '2DL5', 'J', '2DL5', 'N'] success, values = call_procedure(proc_name, proc_params, 2, proc_params2, cursor, log) if success: log.info("\t=> Success!") [part1, part2] = values if "2DL5A" in part1: A = part1 B = part2 else: A = part2 B = part1 A_alleles = A.replace("2DL5A*", "") B_alleles = B.replace("2DL5B*", "") else: log.info("\t=> Procedure call did not work. :-(") A_alleles = "" B_alleles = "" return A_alleles, B_alleles
14,179
def set_system_bios(context, settings, system_id=None, workaround=False): """ Finds a system matching the given ID and sets the BIOS settings Args: context: The Redfish client object with an open session settings: The settings to apply to the system system_id: The system to locate; if None, perform on the only system workaround: Indicates if workarounds should be attempted for non-conformant services Returns: The response of the PATCH """ # Locate the system system = get_system(context, system_id) # Get the BIOS resource and determine if the settings need to be applied to the resource itself or the settings # object if "Bios" not in system.dict: raise RedfishSystemBiosNotFoundError("System '{}' does not support representing BIOS".format(system.dict["Id"])) bios_uri = system.dict["Bios"]["@odata.id"] bios = context.get(bios_uri) etag = bios.getheader("ETag") if "@Redfish.Settings" in bios.dict: bios_settings = get_system_bios_settings(context, bios, system.dict["Id"], workaround) bios_uri = bios_settings.dict["@odata.id"] etag = bios_settings.getheader("ETag") # Update the settings payload = {"Attributes": settings} headers = None if etag is not None: headers = {"If-Match": etag} response = context.patch(bios_uri, body=payload, headers=headers) verify_response(response) return response
14,180
def geometric_augmentation(images, flow = None, mask = None, crop_height = 640, crop_width = 640, probability_flip_left_right = 0.5, probability_flip_up_down = 0.1, probability_scale = 0.8, probability_relative_scale = 0., probability_stretch = 0.8, probability_rotation = 0.0, probability_relative_rotation = 0.0, probability_crop_offset = 0.0, min_bound_scale = -0.2, max_bound_scale = 0.6, max_strech_scale = 0.2, min_bound_relative_scale = -0.1, max_bound_relative_scale = 0.1, max_rotation_deg = 15, max_relative_rotation_deg = 3, max_relative_crop_offset = 5, return_full_scale=False): """Applies geometric augmentations to an image pair and corresponding flow. Args: images: Image pair of shape [2, height, width, channels]. flow: Corresponding forward flow field of shape [height, width, 2]. mask: Mask indicating which positions in the flow field hold valid flow vectors of shape [height, width, 1]. Non-valid poisitions are encoded with 0, valid positions with 1. crop_height: Height of the final augmented output. crop_width: Width of the final augmented output. probability_flip_left_right: Probability of applying left/right flip. probability_flip_up_down: Probability of applying up/down flip probability_scale: Probability of applying scale augmentation. probability_relative_scale: Probability of applying scale augmentation to only the second frame of the the image pair. probability_stretch: Probability of applying stretch augmentation (scale without keeping the aspect ratio). probability_rotation: Probability of applying rotation augmentation. probability_relative_rotation: Probability of applying rotation augmentation to only the second frame of the the image pair. probability_crop_offset: Probability of applying a relative offset while cropping. min_bound_scale: Defines the smallest possible scaling factor as 2**min_bound_scale. max_bound_scale: Defines the largest possible scaling factor as 2**max_bound_scale. max_strech_scale: Defines the smallest and largest possible streching factor as 2**-max_strech_scale and 2**max_strech_scale. min_bound_relative_scale: Defines the smallest possible scaling factor for the relative scaling as 2**min_bound_relative_scale. max_bound_relative_scale: Defines the largest possible scaling factor for the relative scaling as 2**max_bound_relative_scale. max_rotation_deg: Defines the maximum angle of rotation in degrees. max_relative_rotation_deg: Defines the maximum angle of rotation in degrees for the relative rotation. max_relative_crop_offset: Defines the maximum relative offset in pixels for cropping. return_full_scale: bool. If this is passed, the full size images will be returned in addition to the geometrically augmented (cropped and / or resized) images. In addition to the resized images, the crop height, width, and any padding applied will be returned. Returns: if return_full_scale is False: Augmented images, flow and mask (if not None). if return_full_scale is True: Augmented images, flow, mask, full_size_images, crop_h, crop_w, pad_h, and pad_w. """ # apply geometric augmentation if probability_flip_left_right > 0: images, flow, mask = random_flip_left_right( images, flow, mask, probability_flip_left_right) if probability_flip_up_down > 0: images, flow, mask = random_flip_up_down( images, flow, mask, probability_flip_up_down) if probability_scale > 0 or probability_stretch > 0: images, flow, mask = random_scale( images, flow, mask, min_scale=min_bound_scale, max_scale=max_bound_scale, max_strech=max_strech_scale, probability_scale=probability_scale, probability_strech=probability_stretch) if probability_relative_scale > 0: images, flow, mask = random_scale_second( images, flow, mask, min_scale=min_bound_relative_scale, max_scale=max_bound_relative_scale, probability_scale=probability_relative_scale) if probability_rotation > 0: images, flow, mask = random_rotation( images, flow, mask, probability=probability_rotation, max_rotation=max_rotation_deg, not_empty_crop=True) if probability_relative_rotation > 0: images, flow, mask = random_rotation_second( images, flow, mask, probability=probability_relative_rotation, max_rotation=max_relative_rotation_deg, not_empty_crop=True) images_uncropped = images images, flow, mask, offset_h, offset_w = random_crop( images, flow, mask, crop_height, crop_width, relative_offset=max_relative_crop_offset, probability_crop_offset=probability_crop_offset) # Add 100 / 200 pixels to crop height / width for full scale warp pad_to_size_h = crop_height + 200 pad_to_size_w = crop_width + 400 if return_full_scale: if pad_to_size_w: uncropped_shape = tf.shape(images_uncropped) if images.shape[1] > uncropped_shape[1] or images.shape[ 2] > uncropped_shape[2]: images_uncropped = images uncropped_shape = tf.shape(images_uncropped) offset_h = tf.zeros_like(offset_h) offset_w = tf.zeros_like(offset_w) if uncropped_shape[1] > pad_to_size_h: crop_ht = offset_h - (200 // 2) crop_hb = offset_h + crop_height + (200 // 2) crop_hb += tf.maximum(0, -crop_ht) crop_ht -= tf.maximum(0, -(uncropped_shape[1] - crop_hb)) crop_ht = tf.maximum(crop_ht, 0) crop_hb = tf.minimum(crop_hb, uncropped_shape[1]) offset_h -= crop_ht images_uncropped = images_uncropped[:, crop_ht:crop_hb, :, :] if uncropped_shape[2] > pad_to_size_w: crop_wt = offset_w - (400 // 2) crop_wb = offset_w + crop_width + (400 // 2) crop_wb += tf.maximum(0, -crop_wt) crop_wt -= tf.maximum(0, -(uncropped_shape[2] - crop_wb)) crop_wt = tf.maximum(crop_wt, 0) crop_wb = tf.minimum(crop_wb, uncropped_shape[2]) offset_w -= crop_wt images_uncropped = images_uncropped[:, :, crop_wt:crop_wb, :] uncropped_shape = tf.shape(images_uncropped) # remove remove_pixels_w from the width while keeping the crop centered pad_h = pad_to_size_h - uncropped_shape[1] pad_w = pad_to_size_w - uncropped_shape[2] with tf.control_dependencies([ tf.compat.v1.assert_greater_equal(pad_h, 0), tf.compat.v1.assert_greater_equal(pad_w, 0) ]): images_uncropped = tf.pad(images_uncropped, [[0, 0], [pad_h, 0], [pad_w, 0], [0, 0]]) images_uncropped = tf.ensure_shape(images_uncropped, [2, pad_to_size_h, pad_to_size_w, 3]) return images, flow, mask, images_uncropped, offset_h, offset_w, pad_h, pad_w return images, flow, mask
14,181
def test_rmse(): """Test to check RMSE calculation""" data_url = ('https://raw.githubusercontent.com/jonescompneurolab/hnn/' 'master/data/MEG_detection_data/yes_trial_S1_ERP_all_avg.txt') if not op.exists('yes_trial_S1_ERP_all_avg.txt'): urlretrieve(data_url, 'yes_trial_S1_ERP_all_avg.txt') extdata = np.loadtxt('yes_trial_S1_ERP_all_avg.txt') exp_dpl = Dipole(times=extdata[:, 0], data=np.c_[extdata[:, 1], extdata[:, 1], extdata[:, 1]]) hnn_core_root = op.join(op.dirname(hnn_core.__file__)) params_fname = op.join(hnn_core_root, 'param', 'default.json') params = read_params(params_fname) expected_rmse = 0.1 test_dpl = Dipole(times=extdata[:, 0], data=np.c_[extdata[:, 1] + expected_rmse, extdata[:, 1] + expected_rmse, extdata[:, 1] + expected_rmse]) avg_rmse = _rmse(test_dpl, exp_dpl, tstop=params['tstop']) assert_allclose(avg_rmse, expected_rmse)
14,182
def main(): """Function gets google assistant request, handle it and returns answer.""" _ = set(variables['Targets_Commands'].split(' ')) targets, commands = _ & {'pc', 'laptop'}, _ - {'pc', 'laptop'} for target in targets: for command in commands: send_given_reqest(target, command) action_thread = Thread(target=wait_for_request) action_thread.start() action_thread.join(timeout=20) stop_event.set() if not google_assistant_reply: google_assistant_reply.append("Sorry, server is unreachable.") print(google_assistant_reply) variables[ "Google_assistant_answers" ] = google_assistant_reply
14,183
def edit_distance_between_seqs(seq1, seq2): """Input is two strings. They are globally aligned and the edit distance is returned. An indel of any length is counted as one edit""" aln1, aln2 = _needleman_wunsch(seq1, seq2) return edit_distance_from_aln_strings(aln1, aln2)
14,184
def sentence_prediction(sentence): """Predict the grammar score of a sentence. Parameters ---------- sentence : str The sentence to be predicted. Returns ------- float The predicted grammar probability. """ tokenizer = config.TOKENIZER.from_pretrained( config.MODEL_PATH, local_files_only=True ) model = config.MODEL.from_pretrained(config.MODEL_PATH, local_files_only=True) max_len = config.MAX_LEN sentence = str(sentence) sentence = " ".join(sentence.split()) inputs = tokenizer.encode_plus( sentence, add_special_tokens=True, max_length=max_len, pad_to_max_length=True, return_attention_mask=True, return_tensors="pt", truncation=True, ) ids = torch.LongTensor(inputs["input_ids"][0]).unsqueeze(0) mask = torch.LongTensor(inputs["attention_mask"][0]).unsqueeze(0) ids = ids.to(DEVICE) mask = mask.to(DEVICE) model.to(DEVICE) outputs = model(ids, token_type_ids=None, attention_mask=mask, return_dict=True) outputs = torch.sigmoid(outputs.logits).cpu().detach().numpy() return outputs[0][0]
14,185
def DB(): """Create a DB wrapper object connecting to the test database.""" db = pg.DB(dbname, dbhost, dbport) if debug: db.debug = debug return db
14,186
def build_seq(variants, phased_genotype, ref, pre_start, ref_end=None): """ Build or extend the haplotype according to provided genotype. We marked the start position iterator of each haplotype and update with variant alternative base. """ seqs = "" position = pre_start for variant, phased in zip(variants, phased_genotype): if variant.start < pre_start: if variant.start == pre_start - 1 and phased != 0: # this only happen when pre pos is deletion and current pos is insertion ref_base = variant.reference_bases alt_base = variant.alternate_bases[phased - 1] if len(alt_base) > len(ref_base): # is an insertion # print ('has insertion and deletion overlap'.format(variant.start)) return alt_base[1:], position if phased != 0: # impossible # sometimes happen in true vcf return None, None else: return "", pre_start # do not do anything if 0 allele else: seqs += ref.query(pre_start, variant.start) allele = variant.reference_bases if phased == 0 else variant.alternate_bases[phased - 1] if phased == 0: allele = allele[0] position = variant.start + 1 seqs += allele # only add one ref base else: ref_base = variant.reference_bases alt_base = variant.alternate_bases[phased-1] ref_base, alt_base = remove_common_suffix(ref_base, [alt_base]) end = variant.start + len(ref_base) position = end seqs += alt_base[0] return seqs, position
14,187
def handle_str(x): """ handle_str returns a random string of the same length as x. """ return random_string(len(x))
14,188
def clean_profile(profile, sid, state_final, state_canceled): """ This method will prepare a profile for consumption in radical.analytics. It performs the following actions: - makes sure all events have a `ename` entry - remove all state transitions to `CANCELLED` if a different final state is encountered for the same uid - assignes the session uid to all events without uid - makes sure that state transitions have an `ename` set to `state` """ entities = dict() # things which have a uid if not isinstance(state_final, list): state_final = [state_final] for event in profile: uid = event['uid' ] state = event['state'] time = event['time' ] name = event['event'] # we derive entity_type from the uid -- but funnel # some cases into the session if uid: event['entity_type'] = uid.split('.',1)[0] else: event['entity_type'] = 'session' event['uid'] = sid uid = sid if uid not in entities: entities[uid] = dict() entities[uid]['states'] = dict() entities[uid]['events'] = list() if name == 'advance': # this is a state progression assert(state) assert(uid) event['event_name'] = 'state' if state in state_final and state != state_canceled: # a final state other than CANCELED will cancel any previous # CANCELED state. if state_canceled in entities[uid]['states']: del(entities[uid]['states'][state_canceled]) if state in entities[uid]['states']: # ignore duplicated recordings of state transitions # FIXME: warning? continue # raise ValueError('double state (%s) for %s' % (state, uid)) entities[uid]['states'][state] = event else: # FIXME: define different event types (we have that somewhere) event['event_name'] = 'event' entities[uid]['events'].append(event) # we have evaluated, cleaned and sorted all events -- now we recreate # a clean profile out of them ret = list() for uid,entity in entities.iteritems(): ret += entity['events'] for state,event in entity['states'].iteritems(): ret.append(event) # sort by time and return ret = sorted(ret[:], key=lambda k: k['time']) return ret
14,189
def _validate_and_apply_configs(app: Sphinx, config: Config): """Callback of `config-inited`` event. """ config.graphtik_default_graph_format is None or _valid_format_option( config.graphtik_default_graph_format )
14,190
def test_ap_bss_add_out_of_memory(dev, apdev): """Running out of memory while adding a BSS""" hapd2 = hostapd.add_ap(apdev[1], {"ssid": "open"}) ifname1 = apdev[0]['ifname'] ifname2 = apdev[0]['ifname'] + '-2' confname1 = hostapd.cfg_file(apdev[0], "bss-1.conf") confname2 = hostapd.cfg_file(apdev[0], "bss-2.conf") hapd_bss_out_of_mem(hapd2, 'phy3', confname1, 1, 'hostapd_add_iface') for i in range(1, 3): hapd_bss_out_of_mem(hapd2, 'phy3', confname1, i, 'hostapd_interface_init_bss') hapd_bss_out_of_mem(hapd2, 'phy3', confname1, 1, 'ieee802_11_build_ap_params') hostapd.add_bss(apdev[0], ifname1, confname1) hapd_bss_out_of_mem(hapd2, 'phy3', confname2, 1, 'hostapd_interface_init_bss') hapd_bss_out_of_mem(hapd2, 'phy3', confname2, 1, 'ieee802_11_build_ap_params') hostapd.add_bss(apdev[0], ifname2, confname2) hostapd.remove_bss(apdev[0], ifname2) hostapd.remove_bss(apdev[0], ifname1)
14,191
def get_process_causality_network_activity_query(endpoint_ids: str, args: dict) -> str: """Create the process causality network activity query. Args: endpoint_ids (str): The endpoint IDs to use. args (dict): The arguments to pass to the query. Returns: str: The created query. """ process_causality_id_list = args.get('process_causality_id', '') if not process_causality_id_list: raise DemistoException('Please provide a process_causality_id argument.') process_causality_id_list = wrap_list_items_in_double_quotes(process_causality_id_list) return f'''dataset = xdr_data | filter agent_id in ({endpoint_ids}) and event_type = NETWORK and actor_process_causality_id in ({process_causality_id_list}) | fields agent_hostname, agent_ip_addresses,agent_id, action_local_ip, action_remote_ip, action_remote_port, dst_action_external_hostname,dns_query_name, action_app_id_transitions, action_total_download, action_total_upload, action_country,action_as_data, actor_process_image_sha256, actor_process_image_name , actor_process_image_path,actor_process_signature_vendor, actor_process_signature_product, actor_causality_id,actor_process_image_command_line, actor_process_instance_id'''
14,192
async def validate_input(hass: core.HomeAssistant, data): """Validate the user input allows us to connect. Data has the keys from DATA_SCHEMA with values provided by the user. """ try: client = TickTick() client.login(data.get("username"), data.get("password")) except RequestException as exc: raise CannotConnect from exc except ValueError as exc: raise InvalidAuth from exc # Return some info we want to store in the config entry. return {"title": "TickTick"}
14,193
def _shard_batch(xs): """Shards a batch for a pmap, based on the number of devices.""" local_device_count = jax.local_device_count() def _prepare(x): return x.reshape((local_device_count, -1) + x.shape[1:]) return jax.tree_map(_prepare, xs)
14,194
def get_time_limit(component_limit, overall_limit): """ Return the minimum time limit imposed by the component and overall limits. """ limit = component_limit if overall_limit is not None: try: elapsed_time = util.get_elapsed_time() except NotImplementedError: returncodes.exit_with_driver_unsupported_error(CANNOT_LIMIT_TIME_MSG) else: remaining_time = max(0, overall_limit - elapsed_time) if limit is None or remaining_time < limit: limit = remaining_time return limit
14,195
def remove_alias(conn, alias): """ Removes a specific alias reference for all directories with that alias :param conn: the db connection :param alias: the alias to remove :return: """ with conn: c = conn.cursor() c.execute("""UPDATE projects SET alias = null WHERE alias = '%(alias)s' """ % locals())
14,196
def test_tetragonal_bravais(): """Tests initialization of a TetragonalBravais object.""" # parameters of Wulfenite # https://www.mindat.org/min-4322.html a, c = 5.433, 12.11 symbols = ["X"] center = "P" tetragonal = TetragonalBravais(a, c, symbols, center) assert tetragonal.n_atoms == 1 assert tetragonal.n_symbols == 1 with pytest.raises(NotImplementedError): tetragonal.reorient(np.identity(3)) with pytest.raises(NotImplementedError): tetragonal.repeat((1, 2, 3))
14,197
def keras_decay(step, decay=0.0001): """Learning rate decay in Keras-style""" return 1. / (1. + decay * step)
14,198
def get_swagger(): """ Request handler for the /swagger path. GET: returns the My Cars API spec as a swagger json doc. """ try: return _make_response(response=validator.get_swagger_spec()) except Exception as e: return _make_error(500, e.message)
14,199