content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
import ssl
def generate_ssl_context(server_certificate, server_key, ca_cert):
"""This function generates an ssl context for Tornado handler"""
mySSLContex = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
mySSLContex.load_cert_chain(server_certificate, server_key)
mySSLContex.load_verify_locations(ca_cert)
mySSLContex.verify_mode = ssl.CERT_REQUIRED
return mySSLContex
|
29e8cd2bc49948e6e5b509dab312b049d0cc9aaa
| 699,067
|
def get_page(rb, cand, el_type):
"""
Функция принимает RoboBrowser с открытой страницей результатов голосования по какому-то УИКу rb,
кол-во кандидатов в выборах cand, а также тип выборов el_type и возвращает список, состоящий из номера УИКа,
кол-ва избирателей на УИКе, кол-во проголосовавших на дому и на участке, кол-во испорченных голосов,
а также кол-во голосов за каждого из избирателей.
"""
uik_result = []
main_table = rb.parsed.body('table')[2]('tr')[3].td
uik_result.append(int(main_table("table")[2]('tr')[1]('td')[1].string.split("№")[1]))
main_table = main_table("table")[el_type[0]]('tr')
try:
uik_result.append(int(main_table[0]('td')[2].b.string))
except IndexError:
for x in range(4+cand):
uik_result.append(-1)
return uik_result
for m in range(el_type[1],el_type[1]+3):
uik_result.append(int(main_table[m]('td')[2].b.string))
for l in range(-cand,0):
uik_result.append(int(main_table[l]('td')[2].b.string))
return uik_result
|
a4fecd2dc60d8438e20870d0e96ce876bb4c1902
| 699,068
|
def makeindexline(url, startpage, total, numonpage=10, pagesonscreen=5):
"""
Make a menu line for a given number of inputs, with a certain number per page.
Will look something like : ::
First Previous 22 23 24 25 26 27 28 29 30 31 32 Next Last
Each number or word will be a link to the relevant page.
url should be in the format : ``'<a href="script.py?startpage=%s">%s</a>'`` -
it will have the two ``%s`` values filled in by the function.
The url will automatically be put between ``<strong></strong>`` tags. Your
script needs to accepts a parameter ``start`` telling it which page to display.
``startpage`` is the page actually being viewed - which won't be a link.
``total`` is the number of total inputs.
``numonpage`` is the number of inputs per page - this tells makeindexline how
many pages to divide the total into.
The links shown will be some before startpage and some after. The amount of
pages links are shown for is ``pagesonscreen``. (The actual total number shown
will be *2 \* pagesonscreen + 1*).
The indexes generated are *a bit* like the ones created by google. Unlike
google however, next and previous jump you into the *middle* of the next set of
links. i.e. If you are on page 27 next will take you to 33 and previous to 21.
(assuming pagesonscreen is 5). This makes it possible to jump more quickly
through a lot of links. Also - the current page will always be in the center of
the index. (So you never *need* Next just to get to the next page).
"""
b = '<strong>%s</strong>'
url = b % url
outlist = []
last = ''
next = ''
numpages = total//numonpage
if total%numonpage:
numpages += 1
if startpage - pagesonscreen > 1:
outlist.append(url % (1, 'First'))
outlist.append(' ')
outlist.append(url % (startpage-pagesonscreen-1, 'Previous'))
outlist.append(' ')
index = max(startpage - pagesonscreen, 1)
end = min(startpage+pagesonscreen, numpages)
while index <= end:
if index == startpage:
outlist.append(b % startpage)
else:
outlist.append(url % (index, index))
index += 1
outlist.append(' ')
if (startpage+pagesonscreen) < numpages:
outlist.append(url % (startpage+pagesonscreen+1, 'Next'))
outlist.append(' ')
outlist.append(url % (numpages, 'Last'))
return ' '.join(outlist)
|
fdae2d9385f02e3c47fff516b2eb4fe1f931cec8
| 699,069
|
def get_db_path(spider_dir, db_id):
""" Return path to SQLite database file.
Args:
spider_dir: path to SPIDER benchmark
db_id: database identifier
Returns:
path to SQLite database file
"""
return f'{spider_dir}/database/{db_id}/{db_id}.sqlite'
|
9069b673df1b3c929c249319339a84eaaf398c33
| 699,070
|
def pop_indices(lst, indices):
"""
pop the lst given a list or tuple of indices.
this function modifies lst directly inplace.
>>> pop_indices([1,2,3,4,5,6], [0,4,5])
>>> [2, 3, 4]
"""
for n in sorted(indices, reverse=True):
lst.pop(n)
return lst
|
4cfeedfd211ba4578d877004acdec061c7727d78
| 699,071
|
def is_specific_hemorrhage(df):
"""If a specific hemorrhage present or suspected,
then hemorrhage NOS changed to absent."""
hemorrhages = [
"epidural_hemorrhage",
"subarachnoid_hemorrhage",
"subdural_hemorrhage",
]
present = ["present", "suspected"]
specific_hemorrhage = len(
df.loc[
(
(df["target_group"].isin(hemorrhages))
& (df["modifier_group"].isin(present))
)
]
)
modifiers = df.loc[
((df["target_group"] == "hemorrhage")), "modifier_phrase"
].str.cat(sep=", ")
if (specific_hemorrhage > 0) and (len(df["target_group"].isin(["hemorrhage"])) > 0):
df.loc[(df["target_group"] == "hemorrhage"), "modifier_group"] = "absent"
df.loc[(df["target_group"] == "hemorrhage"), "modifier_phrase"] = (
modifiers + ", is_specific_hemorrhage"
)
return df
|
404a8162e9225055bf1b3ea493d6529ea5e90767
| 699,072
|
def new_format_converter(df, logger):
"""Returns a dataframe."""
df = df.rename(columns={"Plant Name": "Hour"})
df["Hour"] = df["Hour"].astype(str)
df = df.reset_index(drop=True)
df = df.set_index("Hour")
total_index = df.columns.get_loc("Total (MW)")
df = df.iloc[:, total_index:]
try:
time_index = df.index.get_loc("24:00")
except KeyError:
raise RuntimeError(
"Structure of xlsm file for BD has altered, unable to parse."
)
df = df.iloc[: time_index + 1]
# check for new columns
if df.shape[1] != 12:
logger.warning(
"New data columns may be present xlsm file.", extra={"key": "BD"}
)
return df
|
d18178046e12a074fdfa05c8ad4dbdbe9993d003
| 699,073
|
def _BackslashEscape(s):
"""Double up backslashes.
Useful for strings about to be globbed and strings about to be IFS escaped.
"""
return s.replace('\\', '\\\\')
# Similar to GlobEscape and splitter.Escape().
escaped = ''
for c in s:
if c == '\\':
escaped += '\\'
escaped += c
return escaped
|
4c107203117d699c65fd00158913914ae6530b97
| 699,074
|
import collections
def _collect_traces(raw_traces, trace_factory):
"""Postprocesses pytype's opcode traces."""
out = collections.defaultdict(list)
for op, symbol, data in raw_traces:
out[op.line].append(trace_factory(op.name, symbol, data))
return out
|
6f656073c17c9c5c1d6a33c37dd6a23a5525aa64
| 699,075
|
def intrange(arg):
""" convert a command-line argument to a list of integers """
acceptable_chars = [str(x) for x in range(10)]
acceptable_chars.append("-")
partial = []
first = None
msg = "Could not convert {0} to index range.".format(arg)
err = TypeError(msg)
for char in arg:
if char not in acceptable_chars:
raise err
if char == "-":
if len(partial) == 0:
raise err
elif first is None:
first = int("".join(partial))
partial = []
else: # this means there's a second -, which is not ok
raise err
else:
partial.append(char)
second = None
if first is None:
first = int("".join(partial))
elif len(partial) == 0:
raise err
else:
second = int("".join(partial))
if second is None:
return [first]
elif second - first >= 0:
return range(first, second+1)
else:
return range(first, second-1, -1)
|
8d3bbe9b32207ae2c18080601761b84c9e87ec9f
| 699,076
|
import subprocess
def s3_addition(bucket_name, region):
"""
add a new s3
"""
output = subprocess.getstatusoutput("aws s3api create-bucket --bucket {0} --region {1} --create-bucket-configuration LocationConstraint={1}".format(bucket_name,region))
return output
|
ae08985c1b34446fb54d1ef547420c4ca15d6456
| 699,077
|
import re
def read_accounts_file(account_file):
""" Process each line in the specified account file looking for account
definitions. An account definition is a line containing the word
'account' followed by a valid account name, e.g:
account Expenses
account Expenses:Utilities
All other lines are ignored.
"""
accounts = []
pattern = re.compile("^\s*account\s+([:A-Za-z0-9-_ ]+)$")
with open(account_file, "r", encoding='utf-8') as f:
for line in f.readlines():
mo = pattern.match(line)
if mo:
accounts.append(mo.group(1))
return accounts
|
f917958201cd66f6b04bd9307611bb282b25f3f6
| 699,078
|
def forceresolution( numgridptscuberoot,
lengthcuberoot ) :
"""
returns the force resolution of the PM part in units of
the input boxsize
args:
numgridptscuberoot:
lengthcuberoot :
return :
force resolution (distance) in units usef for the
box size
"""
return lengthcuberoot/numgridptscuberoot
|
d14760ac863bd1409b9df40fe0ff19ff44b508ca
| 699,080
|
def set_up_folder_name_1M ( model_file , date_run ):
"""
Produce log_file, plot_folder based on model_file (file name ending with _sd.pt)
If model_file is epoch_1_sd.pt, date_run is 0913: plot_folder 'plot_2d_epoch_1', log file 'log_0913_2d_epoch_1'
"""
# if model_file == '': model_pure = f'ep{ep_ind}'
model_pure = model_file[:model_file.rfind('_sd.pt')]
plot_folder = f'plot_2d_{model_pure}'
log_file = f'log_{date_run}_2d_{model_pure}' # .out This is the log file, recording the printing
return log_file, plot_folder
|
d7dd24789476279ea8d5fe0b32627aa049731ef7
| 699,081
|
from typing import List
import glob
def get_all_file_from_directory(directory: str, file_dsc: str) -> List[str]:
""" Get paths of all files matching file_dsc in directory """
template = f"{directory}{file_dsc}"
file_paths = glob.glob(template)
return file_paths
|
7a3115793a5a59bc8f6ee655315ea87857338c47
| 699,082
|
def naked(val):
""" Given a string strip off all white space & quotes """
return val.strip(' "\'\t')
|
1875b38f05fa0c8b540ece0265354293f275b3ea
| 699,083
|
def handler(store, default=True, internal=False, passive=False):
""" Decorator for setting up a handler.
This puts the handler into the handler store which can then be used
to look up all handlers and information about them such as which are default,
passive, etc.
Currently there are two handler stores, one for connection handlers in
nogotofail.mitm.connection.handlers.connection.store and one for data handlers
in nogotofail.mitm.connection.handlers.data.store
Arguments:
store -- the HandlerStore to store information about the handler in
default -- if the handler should be used by default
internal -- if the handler is used internally. These are always added and not displayed
in --help or sent to the client.
passive -- if the handler is passive and does no modification.
"""
def wrapper(cls):
cls.passive = passive
if internal:
store.internal.append(cls)
else:
store.map[cls.name] = cls
store.all.append(cls)
if default:
store.default.append(cls)
return cls
return wrapper
|
cf7c4c8847539be57c5680d87f80414bb6ab0164
| 699,085
|
import sys
def ref_c_2(obj):
"""+ 2"""
return sys.getrefcount(obj)
|
aafb6caded13abcf9a3c72f5f932e4215556b2ea
| 699,086
|
def human_readable_filesize(size):
"""Convert file size in bytes to human readable format
Args:
size (int): Size in bytes
Returns:
str: Human readable file-size, i.e. 567.4 KB (580984 bytes)
"""
if size < 1024:
return "{} bytes".format(size)
remain = float(size)
for unit in ["B", "KB", "MB", "GB", "TB"]:
if remain < 1024.0:
return "{:.1f} {} ({:d} bytes)".format(remain, unit, size)
remain /= 1024.0
|
c8eefdf9145bfb5c937b740fec9e6b437704aa5b
| 699,087
|
def interchanging_key_and_value(x):
"""creating a function for interchanging key and value"""
return(x[1],x[0])
|
6478d48d698bb741ff2a24634b5b833ef624f79f
| 699,088
|
import re
def tokenize(s):
"""
tokenize
"""
#数字替换为<num>
s = re.sub('\d+', '<num>', s).lower()
tokens = s.split(' ')
return tokens
|
0f76b68c75c474a4f4ee692ae1124127b93ebf6e
| 699,089
|
import sys
def get_outputfile(argument):
"""
Gets the outputfile from the raw argument.
"""
if argument != None:
return open(argument, 'w')
return sys.stdout
|
173428cd10bdbae812ea29aed42b92155f567db3
| 699,090
|
from typing import Generator
def to_list(x, repeat=1):
"""convert x to list object
Args:
x: any object to convert
repeat: if x is to make as [x], repeat `repeat` elements in the list
"""
if isinstance(x, (Generator, tuple, set)):
return list(x)
elif isinstance(x, list):
return x
elif isinstance(x, dict):
return list(x.values())
elif x is not None:
return [x] * repeat
else:
return []
|
79841d76cd0eba5a2e92fc0992516f59113c3f9b
| 699,091
|
def try_key(dict_to_try, key_for_dict):
"""Either returns key value or empty string."""
if key_for_dict not in dict_to_try:
return ''
return dict_to_try[key_for_dict]
|
a7486bd4933301278941fb7ee2001890221fcbd9
| 699,092
|
import sys
def utf8_replace(txt):
""" Replace unsupported characters in unicode string, returns unicode. """
sse = sys.stdout.encoding
txt = txt.encode(sse, "replace").decode("utf8", "ignore")
return txt
|
935731ba5d5b5cb42958ff2b79649a9641fcbc13
| 699,093
|
def covariance_matrix(X):
"""
Args:
X (ndarray) (m, n)
Return:
cov_mat (ndarray) (n, n):
covariance matrix of X
"""
m = X.shape[0]
return (X.T @ X) / m
|
128d9bfe12169cb344c150bf9f8f05565b5a8831
| 699,094
|
def sigmoid_deriv(x):
"""
Calculates the sigmoid derivative for the given value.
:param x: Values whose derivatives should be calculated
:return: Derivatives for given values
"""
return x * (1. - x)
|
8a7a1005fafb1b34c17c6ce4a8a04f80334e396a
| 699,095
|
from typing import Mapping
def UpdateDict( target, override ):
"""Apply the updates in |override| to the dict |target|. This is like
dict.update, but recursive. i.e. if the existing element is a dict, then
override elements of the sub-dict rather than wholesale replacing.
e.g.
UpdateDict(
{
'outer': { 'inner': { 'key': 'oldValue', 'existingKey': True } }
},
{
'outer': { 'inner': { 'key': 'newValue' } },
'newKey': { 'newDict': True },
}
)
yields:
{
'outer': {
'inner': {
'key': 'newValue',
'existingKey': True
}
},
'newKey': { newDict: True }
}
"""
for key, value in override.items():
current_value = target.get( key )
if not isinstance( current_value, Mapping ):
target[ key ] = value
elif isinstance( value, Mapping ):
target[ key ] = UpdateDict( current_value, value )
else:
target[ key ] = value
return target
|
a07a3d7989e227ff1759271248777e167b7e5467
| 699,096
|
from pathlib import Path
import uuid
def get_filename(filename):
"""CKEditor - Filename Generator"""
extension = Path(filename).suffix
return '{0}{1}'.format(uuid.uuid4(), extension)
|
50988191c0145e686b38306a6f1bfd686d4dff25
| 699,097
|
def dss_target(request):
"""
This is a parameterized fixture. Its value will be set with the different DSS target (DSS7, DSS8 ...) that are specified in the configuration file.
It returns the value of the considered DSS target for the test. Here it is only used by other fixtures, but one could use it
as a test function parameter to access its value inside the test function.
Args:
request: The object to introspect the “requesting” test function, class or module context
Returns:
The string corresponding to the considered DSS target for the test to be executed
"""
return request.param
|
0aa9f85160280032dfdea872b7c9a147a5717523
| 699,098
|
import re
def _clean_name(name):
"""
This function sets the name of a recipe to the standard naming
convention specified
"""
name = re.sub(r'\s', "_", name)
return name.lower()
|
940792220aa6eabfcf067c6450f30bca66d1b214
| 699,099
|
def label_data(dictionary, images):
"""
Labels the data depending on patient's diagnosis
Parameters
----------
dictionary: Dict with patient information
images: Names of images to label
Returns
-------
Labeled data
"""
data = []
last_patient = ''
aux = []
for img in images:
patientid = img[5:15]
if last_patient == '':
last_patient = patientid
aux.append(img)
continue
if patientid == last_patient:
aux.append(img)
else:
last_date = aux[-1][16:22]
if last_patient + last_date in dictionary:
dx = dictionary[last_patient + last_date]
for a in aux:
data.append((a, dx))
aux = [img]
last_patient = patientid
return data
|
01eb965d4cff7a8d4242eeb57e43fe3d72ee74f9
| 699,100
|
def gym_size(gym):
"""Returns the size of the gym."""
return len(gym)
|
b31a46a7b56e973da8dfa0cac9950fad14b48622
| 699,101
|
import os
def GetFileList(root):
"""Gets a normalized list of files under |root|."""
assert not os.path.isabs(root)
assert os.path.normpath(root) == root
file_list = []
for base, _, files in os.walk(root):
paths = [os.path.join(base, f) for f in files]
file_list.extend(x.lower() for x in paths)
return sorted(file_list)
|
2a81659a26683f7118dfa18e93c1ee18e03ee59f
| 699,102
|
def is_call_id_in_video_state(log, ad, call_id, video_state):
"""Return is the call_id is in expected video_state
Args:
log: logger object
ad: android_device object
call_id: call id
video_state: valid VIDEO_STATE
Returns:
True is call_id in expected video_state; False if not.
"""
return video_state == ad.droid.telecomCallVideoGetState(call_id)
|
d0da323a21a23d461fc2aec06ac5d0bebac7cbef
| 699,103
|
def _extract_spots_outside_foci(cell_cyt_mask, spots_out_foci):
"""
Extract spots detected outside foci, in a specific cell.
Parameters
----------
cell_cyt_mask : np.ndarray, bool
Binary mask of the cell with shape (y, x).
spots_out_foci : np.ndarray, np.int64
Coordinate of the spots detected outside foci, with shape
(nb_spots, 4). One coordinate per dimension (zyx coordinates) plus a
default index (-1 for mRNAs spotted outside a foci).
Returns
-------
spots_out_foci_cell : np.ndarray, np.int64
Coordinate of the spots detected outside foci in the cell, with shape
(nb_spots, 4). One coordinate per dimension (zyx coordinates) plus the
index of the foci.
"""
# get coordinates of rna outside foci
mask_spots_to_keep = cell_cyt_mask[spots_out_foci[:, 1],
spots_out_foci[:, 2]]
spots_out_foci_cell = spots_out_foci[mask_spots_to_keep]
return spots_out_foci_cell
|
d4e06d9ad14ced3b8984b71c32d9d3b1e0cebaae
| 699,104
|
import os
def read_markdown(*path):
"""folder_path,...,file_name"""
try:
path_com = os.path.join(*path)
if os.path.isfile(path_com):
with open(path_com, 'r', encoding='utf-8') as file:
content = file.read()
print(path_com, 'read.')
return content
else:
print("File name error!")
return None
except Exception as e:
print("failed to read")
print(Exception, ":", e)
return None
|
6c0fd2e4b09e9a30c00de632e758034f01334b45
| 699,105
|
import io
def get_custom_stopwords(stop_words_file):
"""
创建停用词list,
:param stop_words_file: 停用词文件
:return:
"""
with io.open(stop_words_file, encoding='utf-8')as f:
stopwords = f.read()
stopwords_list = stopwords.split('\n')
custom_stopwords_list = [i for i in stopwords_list]
return custom_stopwords_list
|
d2e25e44815b6769688493a96852cc537d1127bf
| 699,106
|
def extract_image_number(filename: str, from_file: bool) -> int:
"""
finds the number of the image from the original images of LITIV 2014 dataset.
:param filename: name of the image file.
:param from_file: filename is read from a ground-truth file or not.
:return: number.
"""
number = filename[-8:-4]
if from_file:
number = filename[-9:-5]
if not number.isdigit():
number = number[-3:]
if not number.isdigit():
number = number[-2:]
return int(number)
|
e55431beffb02959907106a01596310812ba7363
| 699,107
|
def subarraySum(nums, k):
"""
Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.
"""
count = 0
s = 0
for i in range(len(nums)):
s += nums[i]
if s % k == 0:
count += 1
return count
|
6bbad5ec5511f8563fc951aa916f76a6297946ba
| 699,108
|
def fail_on_npm_install():
"""
Used to simulate an error when executing "npm install"
"""
return 1
|
ea0b2b14487acf8b9833e84374de469a1b22b61a
| 699,109
|
def calculateNetIncome(gross, state):
"""
Calculate the net income after federal and state tax
:param gross: Gross Income
:param state: State Name
:return: Net Income
"""
state_tax = {'LA': 10, 'SA': 0, 'NY': 9}
# Calculate net income after federal tax
net = gross - (gross * .10)
# Calculate net income after state tax
if state in state_tax:
net = net - (gross * state_tax[state]/100)
print("Your net income after all the heavy taxes is: " + str(net))
return net
else:
print("State not in the list")
return None
|
915528d8bfd15c18003eaeb8f6b3f1e8ad5565a0
| 699,110
|
def field_size(field_label):
"""
Helper function to determine the size of a binary
table field
Parameters
----------
field_label : PVLModule
The field label
Returns
-------
int :
The size of the one entry in bytes
"""
data_sizes = {
'Integer' : 4,
'Double' : 8,
'Real' : 4,
'Text' : 1
}
return data_sizes[field_label['Type']] * field_label['Size']
|
afaff70bc18d4d9d023fb7c89d45560f1a691bcf
| 699,111
|
def leading_by(agents, player):
"""Determine difference between player's score and closest opponent."""
scores = [a.score() for a in agents]
player_score = scores[player]
scores.sort()
if player_score == scores[-1]:
return player_score - scores[-2]
else:
return player_score - scores[-1]
|
e97aa0a1109bb2ba5f276f34030ea1f93022046f
| 699,113
|
def get_bid2sid(offsets, stc_lens):
"""
:param offsets: list of 1 tensor, offsets by doc
:param stc_lens: list of 1 list, stc length
:return: bid2sid: dict of int, blank id 2 stc id, both start from 0
"""
bid2sid, acc_len = dict(), 0
sid = 0
for bid, offset in enumerate(offsets[0]):
while offset >= acc_len + stc_lens[0][sid]:
acc_len += stc_lens[0][sid]
sid += 1
if acc_len <= offset < acc_len + stc_lens[0][sid]:
bid2sid[bid] = sid
return bid2sid
|
a5a96d3ea6c7fcb17a97df706799fe0716ae659b
| 699,114
|
def mk_seealso(
function_name: str,
role: str = "func",
prefix: str = "\n\n",
module_location: str = ".",
) -> str:
"""
Returns a sphinx `seealso` pointing to a function.
Intended to be used for building custom fitting model docstrings.
.. admonition:: Usage example for a custom fitting model
:class: dropdown, tip
See the usage example at the end of the :class:`~ResonatorModel` source-code:
.. literalinclude:: ../quantify_core/analysis/fitting_models.py
:pyobject: ResonatorModel
Parameters
----------
function_name
name of the function to point to
role
a sphinx role, e.g. :code:`"func"`
prefix
string preceding the `seealso`
module_location
can be used to indicate a function outside this module, e.g.,
:code:`my_module.submodule` which contains the function.
Returns
-------
:
resulting string
"""
return f"{prefix}.. seealso:: :{role}:`~{module_location}{function_name}`\n"
|
0165599829e8edd3f75adcda9402069066a0381a
| 699,115
|
def mock_xibo_api(mocker):
"""Return a mock XiboApi."""
return mocker.MagicMock()
|
8c2ad1566ad716d9fb4dd680a624e59f89950a0a
| 699,117
|
def get_corpus_archive_name(cycle: int) -> str:
"""Returns a corpus archive name given a cycle."""
return 'corpus-archive-%04d.tar.gz' % cycle
|
3068ce88bd85f2c21819da697a2b1147f547c509
| 699,118
|
def array_replace(space, w_arr, args_w):
""" Replaces elements from passed arrays into the first array """
for i, w_arr in enumerate(args_w):
if w_arr.tp != space.tp_array:
space.ec.warn("array_replace_recursive(): Argument #%d "
"should be an array" % (i+1))
return space.w_Null
for w_arg in args_w:
with space.iter(w_arg) as w_iter:
while not w_iter.done():
w_key, w_value = w_iter.next_item(space)
w_arr = space.setitem(w_arr, w_key, w_value)
return w_arr
|
bab04d17733a12418b248e6f72e9dc053b263ac7
| 699,119
|
import re
def extract_airlines_from_flight_text(flight_text):
"""
:param flight_text: Raw flight text string, e.g.,
"3:45 PM – 8:15 PM+1\nUnited\n13h 30m\nSFO–PVG\nNonstop\n$4,823",
"12:51 PM – 4:50 PM+1\nDelta\nChina Southern\n12h 59m\nSEA–PVG\nNonstop\n$4,197",
"2:10 AM – 1:25 PM+1\nSeparate tickets booked together\nEVA Air, Spring\n20h 15m\nSEA–PVG\n1 stop\n6h 15m TPE\n$1,194"
:return: A list of airlines, e.g., ["United"], ["Delta", "China Southern"], ["EVA Air", "Spring"]
"""
airlines = []
# We escape flight_text.split("\n")[0] which indicates flight time range.
for airline_candidate in flight_text.split("\n")[1:]:
if airline_candidate == "Separate tickets booked together":
continue
if re.match(r"(\d+h )?\d+m", airline_candidate):
# The flight time length indicates the end of airline info.
break
airlines.extend(airline_candidate.split(","))
return airlines
|
188f040c15e62f4eace72cb90ef74825c4b803fc
| 699,120
|
def get_inputs(inputs, mask=None):
"""Extract and normalize the arrays from inputs"""
gmax = inputs[0][:,:,1].max()
o = inputs[0][:,:,0]/gmax
n = inputs[1][:,:,0]/gmax
return o,n
|
329dfce70d65dec8d5f177239b7f88c977519867
| 699,121
|
import torch
def _bbox_pre_decode(points: torch.Tensor, bbox_pred: torch.Tensor,
stride: torch.Tensor):
"""compute real bboxes."""
points = points[..., :2]
bbox_pos_center = torch.cat([points, points], dim=-1)
bboxes = bbox_pred * stride + bbox_pos_center
return bboxes
|
27aec66f69c31e1147dc544808f4ce10954b1272
| 699,122
|
def formatTime(t):
"""Check if hour, minute, second variable has format hh, mm or ss if not change format.
:param t: string time hh, mm or ss
:return: string time in correct format eg. hh=02 instead of hh=2
"""
if len(t) < 2:
t = "0" + t
return t
|
8011fc25a001964af1f1e0b0cb4e54f7d7aec721
| 699,123
|
def song_value(songtitle, artist, chart):
""" Returns the value of a song in a chart
Run through one billboard chart objekt and return the "value" of the song
with the specified title and artist in this chart.
If the song is not on the chart 0 is returend.
Songtitle and artist should be normalized with normalize_str!
Example: song_value('songtitle', 'artistname', chart)
"""
for song_tuple in chart:
if len(songtitle) >= 4:
if (songtitle in song_tuple[1]) and (artist in song_tuple[2]):
return song_tuple[0]
else:
if (songtitle == song_tuple[1]) and (artist in song_tuple[2]):
return song_tuple[0]
return 0
|
637b5a83938729e1ecf131804c12f38f7aba6247
| 699,124
|
def _create_connection(network, ip_address, mac_address, ip_allocation_mode,
primary_interface=False, nic_order=0):
"""
repack fields to dict
"""
return {'network': network,
'ip_address': ip_address,
'mac_address': mac_address,
'ip_allocation_mode': ip_allocation_mode,
'primary_interface': primary_interface,
'nic_order': nic_order}
|
da2c38d853ab9ba458031265e6ca6d33f2a54185
| 699,125
|
def remove_signature(message):
"""Remove the 3 Letter signature and the '/' found at the beginning of a valid message"""
return message[1:]
|
a802dc5abfea09e05fad51936dd76e17719900e7
| 699,126
|
def find_adv_chunk(doc):
"""
Returns a dictionary representing a adverb chunk
with a subject, a verb and an adverb
"""
for noun_chunk in doc.noun_chunks:
# print("noun_chunk is {}".format(noun_chunk))
if noun_chunk.root.dep_ != 'nsubj':
continue
subj = noun_chunk.root
if subj.head.dep_ == 'ROOT':
verb = subj.head
# print("verb is {}".format(verb))
for child in verb.children:
# print("child is {}".format(child))
# print("child dep is {}".format(child.dep_))
if child.dep_ == "advmod":
adverb = child
adverb_chunk = {
"subject": subj,
"verb": verb,
"adverb": adverb
}
return adverb_chunk
return None
|
64775754733a6b5a3ce342b1f0475b188cb00319
| 699,127
|
import textwrap
def get_comment_from_location(location):
"""Return comment text from location.
Args:
location: descriptor_pb2.SourceCodeInfo.Location instance to get
comment from.
Returns:
Comment as string.
"""
return textwrap.dedent(location.leading_comments or
location.trailing_comments)
|
d86213ddee50128c8363d2a31a740c5677244612
| 699,128
|
def check_scale_xsmode(xsmode):
"""checking if the scale of xsmode assumes ESLOG(log) or ESLIN(linear)
Args:
xsmode: xsmode
Return:
ESLOG/ESLIN/UNKNOWN
"""
if xsmode=="lpf" or xsmode=="LPF" or xsmode=="modit" or xsmode=="MODIT" or xsmode=="redit" or xsmode=="REDIT":
print("xsmode assumes ESLOG: mode=",xsmode)
return "ESLOG"
elif xsmode=="dit" or xsmode=="DIT":
print("xsmode assumes ESLIN: mode=",xsmode)
return "ESLIN"
else:
return "UNKNOWN"
|
db6097abc196677063cb6851ce6036fb6e9b61f9
| 699,130
|
def get_name(test):
"""Gets the name of a test.
PARAMETERS:
test -- dict; test cases for a question. Expected to contain a key
'name', which either maps to a string or a iterable of
strings (in which case the first string will be used)
RETURNS:
str; the name of the test
"""
if type(test['name']) == str:
return test['name']
return test['name'][0]
|
e9d5a5013b062077c499e0351786819c9bd6bd90
| 699,131
|
def check_if_points_escape_box(u, box_boundaries):
"""
Determine if points u in 2D plane have escaped from box_boundaries limits.
Parameters
----------
u : ndarray, shape(n, 2),
Points in plane.
box_boundaries : list of 2 tuples of floats,
Values are interpreted as [[x_min,x_max], [y_min, y_max]].
Returns
-------
u_indices : ndarray of bools, shape(n, 2),
True/False for points inside/outside the box_boundaries respectively.
"""
x, y = u.T
# Escape condition
box_x_min, box_x_max = box_boundaries[0]
box_y_min, box_y_max = box_boundaries[1]
u_indices = (x >= box_x_min) & (x <= box_x_max) & (y >= box_y_min) & (y <= box_y_max)
return u_indices
|
41b04b72821bc39f387c7557be1b11f14e65c71d
| 699,132
|
from typing import Any
import random
def assign_new_ids(items: dict[str, Any]) -> list[str]:
"""
Assigns new IDs to any item ID that starts with "NEW:" or is an empty
string. Will modify the dict in place. Will return a list of new item IDs
assigned.
"""
new_items = []
for item_id in items:
if item_id in ('', 'NEW') or item_id.startswith('NEW:'):
new_items.append(item_id)
for i, item_id in enumerate(new_items):
item_range = (10 ** (max(len(str(len(items))), 5) + 1)) - 1
item_range_l = len(str(item_range))
new_id: str = ''
while not new_id or new_id in items:
new_id = str(random.randint(0, item_range)).zfill(item_range_l)
items[new_id] = items.pop(item_id)
new_items[i] = new_id
return new_items
|
4fb3466566f0fd9981e1c99cb429da629c843dab
| 699,133
|
def isatty(stream):
"""Check if a stream is attached to a console.
Args:
stream (:obj:`io.IOBase`):
Stream to check.
Returns:
:obj:`bool`
"""
return stream.isatty() if hasattr(stream, "isatty") else False
|
4ec38e35413f0f8af76da5e2681f5502acf3d61e
| 699,134
|
def remove_whitespace(string: str) -> str:
"""
This function replace whitespaces for void string -> ''
Input: string with (or without) whitespace
Output: string without whitespace
"""
try:
if len(string) == 0 or (len(string) == 1 and string != ' '):
return string.lower()
else:
new_string = string.replace(' ', '').replace('(', '').replace(')', '').replace('.', '').replace(',', '')
return new_string.lower()
except TypeError:
exit('Invalid entry...')
|
6c5db5739913a9c31d70797a220e65ba511e7567
| 699,135
|
def parameter_indices(*params):
"""
Parameter indices
"""
param_inds = dict([("P_kna", 0), ("g_K1", 1), ("g_Kr", 2), ("g_Ks", 3),\
("g_Na", 4), ("g_bna", 5), ("g_CaL", 6), ("g_bca", 7), ("g_to", 8),\
("K_mNa", 9), ("K_mk", 10), ("P_NaK", 11), ("K_NaCa", 12), ("K_sat",\
13), ("Km_Ca", 14), ("Km_Nai", 15), ("alpha", 16), ("gamma", 17),\
("K_pCa", 18), ("g_pCa", 19), ("g_pK", 20), ("Buf_c", 21), ("Buf_sr",\
22), ("Ca_o", 23), ("K_buf_c", 24), ("K_buf_sr", 25), ("K_up", 26),\
("V_leak", 27), ("V_sr", 28), ("Vmax_up", 29), ("a_rel", 30),\
("b_rel", 31), ("c_rel", 32), ("tau_g", 33), ("Na_o", 34), ("Cm",\
35), ("F", 36), ("R", 37), ("T", 38), ("V_c", 39), ("stim_amplitude",\
40), ("stim_duration", 41), ("stim_period", 42), ("stim_start", 43),\
("K_o", 44)])
indices = []
for param in params:
if param not in param_inds:
raise ValueError("Unknown param: '{0}'".format(param))
indices.append(param_inds[param])
if len(indices)>1:
return indices
else:
return indices[0]
|
6012452a48fc770b6da28a6ac09817a3c299282b
| 699,136
|
def egcd(a, b):
"""
Calculate the extended Euclidean algorithm. ax + by = gcd(a,b)
Args:
a (int): An integer.
b (int): Another integer.
Returns:
int: Greatest common denominator.
int: x coefficient of Bezout's identity.
int: y coefficient of Bezout's identity.
"""
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
|
87b35ff4e28529d1de2a6fb0063b69cee5dfec74
| 699,137
|
import os
def maybe_add_extension(filename):
"""add .tex extension if needed"""
if os.path.exists(filename):
return filename
elif os.path.exists(filename + '.tex'):
return filename + '.tex'
|
e72a0a2905b2be5a09c9c3e1c7d8fd17b9fb05d9
| 699,138
|
def old(sym):
""" Return the "old" version of symbol "sym", that is, the one
representing "sym" in the pre_state.
"""
return sym.prefix('old_')
|
4cc24bd0448195ee1c373106679177ce428e5937
| 699,139
|
import os
def validate_file(parser, arg):
"""Check that the files provided exist."""
if not os.path.exists(arg):
parser.error("The file %s doesn't exist" % arg)
else:
return arg
|
9bc53d22d0a4a2447be31bee5a9f7ab60f8bc7a7
| 699,141
|
import os
def reported_news(file_paths):
"""Check if Misc/NEWS has been changed."""
return os.path.join('Misc', 'NEWS') in file_paths
|
95416284bbb0913d8edf4075f4577b56b9dee5ea
| 699,142
|
import sys
def cont_from_future(future):
"""Create continuation from `Future` object
"""
def cont_from_future(out_done, out_error):
def done_callback(future):
try:
out_done(future.result())
except Exception:
out_error(sys.exc_info())
future.add_done_callback(done_callback)
return cont_from_future
|
9b12c4c20a6ce4f9027ca49f8d9369fd374fe32b
| 699,143
|
def _remove_stopwords(line, nlp):
""" Helper function for removing stopwords from the given text line. """
line_nlp = nlp(line)
line_tokens = [tok.text for tok in line_nlp]
filtered_line = list()
# Filter
for tok in line_tokens:
lexeme = nlp.vocab[tok]
if not lexeme.is_stop:
filtered_line.append(tok)
return ' '.join(filtered_line)
|
58932dc254874ea7a9e93e7e8d7fbf9f306f740b
| 699,144
|
def dict_fetch_all_by_month(cursor):
"""
We need the data in this format
data = [
Month: "jan", "type1": value , "type2": value,
Month: "feb", "type1": value , "type2": value,
......
]
do the below code helps to build the dictionary on that method
"""
collectors = []
is_the_data_empty = True
cursor_fetch = cursor.fetchall()
types = [rows[0] for rows in cursor_fetch]
# built a template of dictionary
for col in cursor.description:
temp_collector = {}
if col[0] != 'Type':
temp_collector['month'] = col[0]
for type in types:
temp_collector[type] = ''
collectors.append(temp_collector)
# Now populate the row
for rows in cursor_fetch:
type = None
index = 0
for row in rows:
if index == 0:
type = row
else:
if row > 0:
is_the_data_empty = False
collectors[index-1][type] = row
index = index + 1
return [{
'collectors': collectors,
'is_the_data_empty': is_the_data_empty
}]
|
e1056dd16310915d6acb3ae5570df85920681da3
| 699,145
|
from typing import Dict
def dict_from_text_file(fpath: str) -> Dict[str, float]:
"""Parse a two-column CSV file into a dictionary of string keys and float values.
Will fail an assertion if the second column contains values which are not valid floats.
Args:
fpath (str): Path to file to parse.
Returns:
Dict[str, float]: Dictionary of string keys and float values.
"""
out_dict: Dict[str, float] = {}
with open(fpath, "r") as fp:
for line in fp:
comps = list(map(lambda elem: elem.strip(), line.strip().split(",")))
assert(len(comps) == 2)
key = comps[0]
val = comps[1]
out_dict[key] = float(val)
return out_dict
|
5baf29832e0a44c8131a97168cde796757c05bfa
| 699,146
|
def get_PSF_model(psf_models, n_psf, current_idx):
"""Get a single PSF model from the model(s) previously instantiated
Parameters
----------
psf_model : list
list of PSF model(s)
n_psf : int
number of PSF model(s)
current_idx : int
Returns
-------
lenstronomy.PSF instance
a single PSF model
"""
return psf_models[current_idx%n_psf]
|
3848ff065fecea79be7e13ed2ace692f855d3a4d
| 699,147
|
import posixpath
def get_fuzzer_benchmark_covered_regions_filestore_path(
fuzzer: str, benchmark: str, exp_filestore_path: str) -> str:
"""Returns the path to the covered regions json file in the |filestore| for
|fuzzer| and |benchmark|."""
return posixpath.join(exp_filestore_path, 'coverage', 'data', benchmark,
fuzzer, 'covered_regions.json')
|
f999a81c53d961a2ed38a7941d7dd6912dae9621
| 699,148
|
def breakdown(data):
"""Break down each row into context-utterance pairs.
Each pair is labeled to indicate truth (1.0) vs distraction (0.0).
Output is a native array with format : [context, utterance, label]"""
output = []
for row in data:
context = row[0]
ground_truth_utterance = row[1]
output.append([list(context), ground_truth_utterance, 1.0])
for i in range(2,11):
output.append([list(context), row[i], 0.0])
return output
|
613cc8ca3d65d8eb22631114a88a934f67f37867
| 699,149
|
def string_escape(text: str) -> str:
"""Escape values special to javascript in strings.
With this we should be able to use something like:
elem.evaluateJavaScript("this.value='{}'".format(string_escape(...)))
And all values should work.
"""
# This is a list of tuples because order matters, and using OrderedDict
# makes no sense because we don't actually need dict-like properties.
replacements = (
('\\', r'\\'), # First escape all literal \ signs as \\.
("'", r"\'"), # Then escape ' and " as \' and \".
('"', r'\"'), # (note it won't hurt when we escape the wrong one).
('\n', r'\n'), # We also need to escape newlines for some reason.
('\r', r'\r'),
('\x00', r'\x00'),
('\ufeff', r'\ufeff'),
# https://stackoverflow.com/questions/2965293/
('\u2028', r'\u2028'),
('\u2029', r'\u2029'),
)
for orig, repl in replacements:
text = text.replace(orig, repl)
return text
|
f85d02527f3a9fdb9373f2359c2fce86b86a5a89
| 699,150
|
def check_permutation(str1, str2):
""" 1.2 Check Permutation: Given two strings, write a method to decide if
one is a permutation of the other.
Complexity: O(n) time, O(n) space
"""
h = {}
for c in str1:
if c not in h:
h[c] = 0
h[c] += 1
for c in str2:
if c not in h:
return False
h[c] -= 1
for (_, count) in h.items():
if count != 0:
return False
return True
|
4da48752e963c05115b3255b03749e8579a9f8ff
| 699,151
|
def climb_stairs(n: int) -> int:
"""
Args:
n: number of steps of staircase
Returns:
Distinct ways to climb a n step staircase
Raises:
AssertionError: n not positive integer
"""
fmt = "n needs to be positive integer, your input {}"
assert isinstance(n, int) and n > 0, fmt.format(n)
if n == 1:
return 1
dp = [0] * (n + 1)
dp[0], dp[1] = (1, 1)
for i in range(2, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
|
71ac88a1f475e8fe2da8e525f7924e289dbf28e4
| 699,152
|
import pandas as pd
from os import listdir
def sipakmed_to_csv(s_path):
"""
This function creates a single .csv file from individual .dat files
Inputs: containing folder string
"""
sipakmed_df = pd.DataFrame() #initialize empty dataframe
for file in listdir(s_path)[0:]:
if file.endswith(".dat"):
df2 = pd.read_table(s_path+file, sep=',',header=None)
# add features
if 'NUC' in file:
df2[28] = 'NUC'
else:
df2[28] = 'nuc'
df2[29] = file[0].lower()
if file[0].lower() in 'sp':
df2[30] = 1
else:
df2[30] = 0
# concatenate
sipakmed_df = pd.concat([sipakmed_df,df2])
# create headers
sipakmed_df.columns = ['cluster_id','image_id','area','major_axis_length','minor_axis_length','eccentricity','orientation','equivalent_diameter','solidity','extent','meanI_R','meanC_R','smooth_R','moment-3-R','uniformity-R','entropy-R','meanI_G','meanC_G','smooth_G','moment-3-G','uniformity-G','entropy-G','meanI_B','meanC_B','smooth_B','moment-3-B','uniformity-B','entropy-B','Nucleus/Cytoplasm','Class','Normal']
# save to file
sipakmed_df.to_csv('../data/processed/Sipakmed_existing_database.csv')
return sipakmed_df
|
6b9ef7e7e9602a59ff63e6cdb6d4de1ae4dc2e4d
| 699,154
|
import codecs
def raw_buffered_line_counter(path, encoding="utf-8", buffer_size=1024 * 1024):
"""
Fast way to count the number of lines in a file.
:param Path path: Path to file.
:param str encoding: Encoding used in file.
:param int buffer_size: Size of buffer for loading.
:return: int
"""
# Open file
f = codecs.open(str(path), encoding=encoding, mode="r")
# Reader generator
def _reader_generator(reader):
b = reader(buffer_size)
while b:
yield b
b = reader(buffer_size)
# Reader used
file_read = f.raw.read
# Count lines
line_count = sum(buf.count(b'\n') for buf in _reader_generator(file_read)) + 1
return line_count
|
700135dc1a5b5bf4a807469e34f56213d7b1265a
| 699,155
|
def check_aggregate(
df, variable, components=None, exclude_on_fail=False, multiplier=1, **kwargs
):
"""Check whether the timeseries values match the aggregation
of sub-categories
Parameters
----------
df : IamDataFrame
args : passed to :meth:`IamDataFrame.check_aggregate`
kwargs : used for downselecting IamDataFrame
passed to :meth:`IamDataFrame.filter`
"""
fdf = df.filter(**kwargs)
if len(fdf.data) > 0:
vdf = fdf.check_aggregate(
variable=variable,
components=components,
exclude_on_fail=exclude_on_fail,
multiplier=multiplier,
)
df.meta["exclude"] |= fdf.meta["exclude"] # update if any excluded
return vdf
|
969dbd8e221c89e172fcdde0d6a91469bfead1d8
| 699,156
|
def consider_trip_number(trip_strategy, total_trips, trip_num):
"""Determines if the vehicle should charge given trip strategy and current trip
:param int trip_strategy: a toggle that determines if should charge on any trip or only after last trip (1-anytrip number, 2-last trip)
:param int total_trips: total trips that the vehicle makes
:param int trip_num: the trip number of the current trip
:return: (*bool*) -- boolean that represents if the vehicle should charge
"""
if trip_strategy == 1:
return True
elif trip_strategy == 2:
return total_trips == trip_num
|
b2fe3a43b95fead4ebf65981cfba39857d1bee3c
| 699,157
|
import pathlib
def as_pathlib(path):
"""
Converts the supplied path to an pathlib.Path object
:param path: The path to convert
:return: The path converted to pathlib.Path
"""
return pathlib.Path(path)
|
88129771be8c3277320c813502efbcfee6abdc84
| 699,158
|
import re
def remove_non_alpha_numeric(input_string):
"""
return string by removing non alpha numric characters from it
"""
return re.sub(r'\W+', '', input_string)
|
fc7b203e4937a7a5a80f0d3dc9a2d7bca5de6b45
| 699,159
|
from typing import List
from typing import Tuple
def find_all_comment_segments(src: str) -> List[Tuple[int, int]]:
"""
Find all comment segments in a database starting from a position
return a list of pairs [ (comment start pos, comment end pos) ]
where start pos is inclusive and end pos is exclusive
"""
comment_segments = []
pos = 0
comment_level = 0
current_start = None
while pos < len(src):
next_comment_open = src.find("$(", pos)
next_comment_close = src.find("$)", pos)
if next_comment_open != -1:
if next_comment_open < next_comment_close or next_comment_close == -1:
pos = next_comment_open + 2
comment_level += 1
if comment_level == 1:
current_start = next_comment_open
continue
if next_comment_close != -1:
if next_comment_close < next_comment_open or next_comment_open == -1:
pos = next_comment_close + 2
assert comment_level != 0, f"incorrectly nested comment at next_comment_close"
comment_level -= 1
if comment_level == 0:
assert current_start is not None
comment_segments.append((current_start, pos))
current_start = None
continue
break
assert comment_level == 0, f"unclosed comment at EOF"
return comment_segments
|
eec33aae79caa029186d3b320f90682b5a9bebd6
| 699,161
|
import os
def files_in_subdirs(dir_name):
"""list all files in a dir with all sub dirs.
Args:
dir_name (str): path to a dir
Returns:
list: files in a dir.
"""
ret = []
for r, _, f in os.walk(dir_name):
for file in f:
ret.append(os.path.abspath(os.path.join(r, file)))
return ret
|
cb632d839909c991bf0736e9e34c2edcf63f9242
| 699,162
|
def extract_text(tweet):
"""Gets the full text from a tweet if it's short or long (extended)."""
def get_available_text(t):
if t['truncated'] and 'extended_tweet' in t:
# if a tweet is retreived in 'compatible' mode, it may be
# truncated _without_ the associated extended_tweet
#eprint('#%s' % t['id_str'])
return t['extended_tweet']['full_text']
else:
return t['full_text'] if 'full_text' in t else t['text']
if 'retweeted_status' in tweet:
rt = tweet['retweeted_status']
return 'RT @%s: %s' % (rt['user']['screen_name'], extract_text(rt))
if 'quoted_status' in tweet:
qt = tweet['quoted_status']
return get_available_text(tweet) + " --> " + extract_text(qt)
return get_available_text(tweet)
|
41660b71e3b020bc25309821b46471e88d79aa49
| 699,163
|
def search_linearf(a, x):
"""
Returns the index of x in a if present, None elsewhere.
"""
for i in range(len(a)):
if a[i] == x:
return i
return None
|
949cb93218381a1a45002be03c6b8ca4d00092bf
| 699,164
|
def modules():
"""Entry point for getting the pyxll modules.
Returns a list of module names."""
return [
__name__
]
|
2f53cd00387c7533404b8e97a8da34fb3c5811e9
| 699,165
|
def gamma_corr(clip, gamma):
""" Gamma-correction of a video clip """
def fl(im):
corrected = 255 * (1.0 * im / 255) ** gamma
return corrected.astype("uint8")
return clip.fl_image(fl)
|
d98d411c63d932b068d80bef63d42289cb0d8468
| 699,166
|
def connected_components(graph):
"""
Given an undirected graph (a 2d array of indices), return a set of
connected components, each connected component being an (arbitrarily
ordered) array of indices which are connected either directly or indirectly.
"""
def add_neighbors(el, seen=[]):
'''
Find all elements which are connected to el. Return an array which
includes these elements and el itself.
'''
#seen stores already-visited indices
if seen == []: seen = [el]
#iterate through the neighbors (x) of el
for x in graph[el]:
if x not in seen:
seen.append(x)
#Recursively find neighbors of x
add_neighbors(x, seen)
return seen
#Create a list of indices to iterate through
unseen = list(range(len(graph)))
sets = []
i = 0
while (unseen != []):
#x is the index we are finding the connected component of
x = unseen.pop()
sets.append([])
#Add neighbors of x to the current connected component
for y in add_neighbors(x):
sets[i].append(y)
#Remove indices which have already been found
if y in unseen: unseen.remove(y)
i += 1
return sets
|
e8299cc024dd27414a287ee0afa302ea64c18b68
| 699,167
|
def generateCards(numberOfSymb):
"""
Source: https://fr.wikipedia.org/wiki/Dobble
"""
nbSymByCard = numberOfSymb
nbCards = (nbSymByCard ** 2) - nbSymByCard + 1
cards = []
n = nbSymByCard - 1
t = []
t.append([[(i + 1) + (j * n) for i in range(n)] for j in range(n)])
for ti in range(n - 1):
t.append(
[
[t[0][((ti + 1) * i) % n][(j + i) % n] for i in range(n)]
for j in range(n)
]
)
t.append([[t[0][i][j] for i in range(n)] for j in range(n)])
for i in range(n):
t[0][i].append(nbCards - n)
t[n][i].append(nbCards - n + 1)
for ti in range(n - 1):
t[ti + 1][i].append(nbCards - n + 1 + ti + 1)
t.append([[(i + (nbCards - n)) for i in range(nbSymByCard)]])
for ti in t:
cards = cards + ti
return cards
|
5cf56864675668213f593395978fa511d0ed3784
| 699,168
|
def get_final_sorted_cavs(dict_all_info, filtered_cavities):
"""
Uses dict_all_info to rank cavities for further exploitation (FP, export as PDB...)
and exclude few more cavities
"""
# scores will contain the scores of filtered cavities
scores = []
# ori_order will contain the original indices of the cavities
# in filtered_cavities
ori_order = []
for keys, items in dict_all_info.items():
scores.append(dict_all_info[keys]["score"])
ori_order.append(keys)
order = sorted(range(len(scores)), key=lambda k: scores[k], reverse = True)
final_cavities = filtered_cavities[ori_order][order]
return final_cavities, [ori_order[x] for x in order]
|
01513b4e5c55c7f9ec1e48274103044d92ed2fd5
| 699,169
|
import math
import torch
def loglinspace(a, b, n=100, **kwargs):
"""Like :meth:`torch.linspace`, but spread the values out in log space,
instead of linear space. Different from :meth:`torch.logspace`"""
return math.e**torch.linspace(math.log(a), math.log(b), n, **kwargs)
|
ea456462a0d029f1ada1c4a9e40c9377b86e815d
| 699,170
|
def optional_function(func):
"""Only apply function if input value is not None.
Function must be unary.
"""
def wrapper(x, *args, **kwargs):
if x is None:
return None
return func(x, *args, **kwargs)
return wrapper
|
3db42719579fc6160b282af4e637f72f9df4781e
| 699,171
|
def purchaseQuantity_perDate_month(data):
"""
DOCSTRING: Creates a 'Purchase Quantity per Day' column based on 'Purchase Date' and 'Purchase Quantity' columns, to assist future aggregations and plotting computations. Another new column 'Purchase Quantity per Month' gets created based on 'Month' and 'Purchase Quantity'. These generated columns holds total items sold for each date and month respectively.
INPUT:
> data : Only accepts Pandas DataFrame or TextParser.
OUTPUT:
Pandas DataFrame or TextParser with a new column added for assessing total number of items sold per date and month.
"""
data["Purchase Quantity per Day"] = data.groupby("Purchase Date")["Purchase Quantity"].transform("sum")
data["Purchase Quantity per Month"] = data.groupby("Month")["Purchase Quantity"].transform("sum")
return data
|
9a4605e801ca7921065580059ef0309d312c8543
| 699,172
|
import argparse
def parser_selscan_norm_common(parser=argparse.ArgumentParser()):
"""
Build a parser to which arguments are added which are common to
several selscan functions.
"""
input_file_help_string = """A list of files delimited by whitespace for joint normalization.
Expected format for iHS/nSL files (no header):\n
<locus name> <physical pos> <freq> <ihh1/sL1> <ihh2/sL0> <ihs/nsl>
Expected format for XP-EHH files (one line header):
<locus name> <physical pos> <genetic pos> <freq1> <ihh1> <freq2> <ihh2> <xpehh>"""
parser.add_argument("inputFiles", help=input_file_help_string, nargs='+')
parser.add_argument('--bins', default=100, type=int,
help="""The number of frequency bins in [0,1] for score normalization (default: %(default)s)""")
parser.add_argument('--critPercent', default=-1.00, type=float,
help="""Set the critical value such that a SNP with iHS in the most extreme CRIT_PERCENT tails
(two-tailed) is marked as an extreme SNP. Not used by default (default: %(default)s)""")
parser.add_argument('--critValue', default=2.00, type=float,
help="""Set the critical value such that a SNP with |iHS| > CRIT_VAL is marked as an extreme SNP.
Default as in Voight et al. (default: %(default)s)""")
parser.add_argument('--minSNPs', default=10, type=int,
help="""Only consider a bp window if it has at least this many SNPs (default: %(default)s)""")
parser.add_argument('--qbins', default=20, type=int,
help="""Outlying windows are binned by number of sites within each
window. This is the number of quantile bins to use. (default: %(default)s)""")
parser.add_argument('--winSize', default=100000, type=int,
help="""GThe non-overlapping window size for calculating the percentage
of extreme SNPs (default: %(default)s)""")
parser.add_argument('--bpWin', default=False, action='store_true',
help='If set, will use windows of a constant bp size with varying number of SNPs')
return parser
|
a35fb2ccb4eedacbd480a2fd00d32f2ab5478aab
| 699,174
|
def HomePage ():
"""List all available api routes."""
return(
f"Available Routes are: <br/>"
f"<a href='/api/v1.0/precipitation'>Precipitation data</a><br/>"
f"<a href='/api/v1.0/stations'>List of all the stations</a><br/>"
f"<a href='/api/v1.0/tobs'>Last year's temperature for the most active station</a><br/>"
f"Temperature statistics since a specified date: <a href='/api/v1.0/2016-01-01'>/api/v1.0/<start_date></a><br/>"
f"Temperature statistics between date range: <a href='/api/v1.0/2016-01-01/2016-01-15'>/api/v1.0/<start_date>/<end_date></a><br/>"
f"<br/>"
f"*For dates, please use the format: (eg. 2016-01-01) <br/>"
)
|
6edc00ae7b85e1d885a27c99d248f7f0551fdfd7
| 699,175
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.