content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def frame_as_object(frame): """ Return a pandas DataFrame as NumPy `dtype` ``object``. Useful for casting from a categorical frame. """ return frame.apply(lambda x: x.astype('object'))
0d165e571e73ab320a25245ce9ab2e76ca1f8f97
27,489
def get_main(heads ): """Returns the indices of the tokens of the head of the sentence, or None if the sentence has 0 or several heads Not in use for now, but could be useful to design tasks""" r = [] s1 = False for i,h in enumerate(heads.split(" ")): l = int(h.strip("&;~")) if l == 0 : if s1 : # checks for tokens with head 0 after the end of first word return None s1 = s1 or ";" in h #";" marks the end of a word r.append(i) #account for multi-tokens words return r or None
055c7e868e1ad9bc33ff0cc1374c012439d3d948
27,491
from typing import Mapping from typing import Any from typing import List from typing import Iterable from typing import Tuple def all_key_pairs_dot_notation(dict_obj: Mapping) -> Mapping[str, Any]: """ Recursively iterate through a dictionary and return a dictionary of all key-value pairs in dot notation. keys are prefixed with the list of keys passed in as prefix. """ def _all_key_pairs_dot_notation(_dict_obj: Mapping, prefix: List[str] = []) -> Iterable[Tuple[str, Any]]: for key, value in _dict_obj.items(): if isinstance(value, dict): prefix.append(str(key)) yield from _all_key_pairs_dot_notation(value, prefix) prefix.pop() else: prefix.append(str(key)) yield ".".join(prefix), value prefix.pop() return {k: v for k, v in _all_key_pairs_dot_notation(dict_obj)}
7b1566676ff61ab1768b9387edb7d4701ebd8c7a
27,492
def index(m, val): """Return the indices of all ``val`` in m""" m = list(m) idx = [] if m.count(val) > 0: idx = [i for i, j in enumerate(m) if j == val] return idx
703d1eab466a622325648935f88bac0f72f62e7a
27,493
def parse_packet3(filp): """ Parse PKT3 commands from the given header file. """ packets = [] for line in filp: if not line.startswith('#define '): continue line = line[8:].strip() if line.startswith('PKT3_') and line.find('0x') != -1 and line.find('(') == -1: packets.append(line.split()[0]) return packets
c2b7a1cbe94f06c8a9b822bdeabc12a2e4a10518
27,494
import math def transform_features(df): """ Add log and sqrt values """ # add log values for ols linear regression df['log_star_ratings'] = df['star_ratings'].apply(lambda x: math.log(x+1, 10)) df['log_ticks'] = df['ticks'].apply(lambda x: math.log(x+1, 10)) df['log_avg_stars'] = df['avg_stars'].apply(lambda x: math.log(x+1, 10)) df['log_length'] = df['length_'].apply(lambda x: math.log(x+1, 10)) df['log_grade'] = df['grade'].apply(lambda x: math.log(x+2, 10)) df['log_on_to_do_lists'] = df['on_to_do_lists'].apply(lambda x: math.log(x+1, 10)) # Target # add sqrt values for Poisson regression df['sqrt_star_ratings'] = df['star_ratings'].apply(lambda x: math.sqrt(x)) df['sqrt_ticks'] = df['ticks'].apply(lambda x: math.sqrt(x)) df['sqrt_avg_stars'] = df['avg_stars'].apply(lambda x: math.sqrt(x)) df['sqrt_length'] = df['length_'].apply(lambda x: math.sqrt(x)) df['sqrt_grade'] = df['grade'].apply(lambda x: math.sqrt(x+1)) return df
6bed8b92e12cba62816dbd1a70c260d138f02ea4
27,496
import subprocess import os def guess_organization(): """ Guess the organization from `git config`. If that can't be found, fall back to $USER environment variable. """ try: stdout = subprocess.check_output('git config --get user.name'.split()) org = stdout.strip() except OSError: org = os.environ["USER"] return org
cef0ede8f728ffd38d90fbf772b2ba4a33ffa656
27,497
def devilry_user_verbose_inline(user): """ Returns the user wrapped in HTML formatting tags perfect for showing the user inline. """ return { 'user': user }
a44ca3efd53b9380dd85fe2e4b9908222d633c8d
27,500
def get_hidden_fields(form): """ Returns all the hidden fields of the form. """ return form.hidden_fields()
b7d0315a232ab0199e9b575a954664e478151ab2
27,501
def lines_into_traces (lines): """Convert a list of split ASCII text lines into traces (a list of lists of floats)""" traces = [] num_of_traces = len(lines[0]) #work out how many traces from the no of columns ## make an empty list for i in range(num_of_traces): traces.append([]) ## transpose lines into traces made from columns for line in lines: #print (line) for i in range (num_of_traces): #NEW AP #print (line[i]) try: traces[i].append (float(line[i])) except: #element is empty or not a number, so skip continue return traces
a14c1926b529b4bb198a12da7a6f7fab05373b8d
27,502
def extract_yyyy_mm_dd_hh_mm_ss_from_datetime64(dt64): """ Extract separate fields for year, monday, day, hour, min, sec from a datetime64 object Parameters ---------- dt64 : numpy.datetime64 a datetime64 object Returns ------- year, mon, day, hh, mm, ss : int """ s = str(dt64) year = int(s[0:4]) mon = int(s[5:7]) day = int(s[8:10]) hh = int(s[11:13]) mm = int(s[14:16]) ss = int(s[17:18]) #print year, mon, day, hh, mm, ss return year,mon,day,hh,mm,ss
1cfca13ae4472d99df131acb07483d82aa8040c4
27,503
def _dirname_is_valid(testname, includenames, excludenames): """includenames and excludenames are sequence types. If either is empty, nothing is excluded and/or all is included""" if ( (not includenames or testname in includenames) and testname not in excludenames ): return True else: return False
759cfe91ea8c7fe4ffede0a126f05d72256e21c2
27,504
import os import torch import sys def load_model(model,args,path="./train_test/trained_model/",name=None): """load the compressed model from input file path :param model: model to load :param args: argument user decided :param path: string file path where the model exists :param name: string filename to load """ name=f"comp_vmmodel_wRank{args.wRank}_uRank_{args.uRanks}_data_{args.data}\ _layer{args.layer_seed}_seed{args.seed}" if name is None else name file=path+name+".pkl" if os.path.exists(file): state_dict=torch.load(file) model.load_state_dict(state_dict) print("model restored from {file}") else: print(name+'pkl does not exists.') print("Testing can only be done when the trained model exists.") sys.exit() return model
5844dacfc48e8e3bd2cefd60597cfbba70a5124c
27,505
import importlib def import_term(name: str): """Return the fully qualified term Examples -------- >>> import_term("math.sin") # doctest: +SKIP <function math.sin(x, /)> """ try: module_name, attr_name = name.rsplit(".", 1) except ValueError: return importlib.import_module(name) module = importlib.import_module(module_name) return getattr(module, attr_name)
758c424c04a9faac74c88cf433dc0526adbca274
27,506
def prune_directed_edges(network): """removes edges that go against the direction of biosynthesis\n | Arguments: | :- | network (networkx object): biosynthetic network with directed edges\n | Returns: | :- | Returns a network with pruned edges that would go in the wrong direction """ nodes = list(network.nodes()) for k in nodes: for j in nodes: if network.has_edge(k,j) and (len(k)>len(j)): network.remove_edge(k,j) return network
fb6d9e348ee0a2bb87e1773cff7fa257b56699fa
27,507
import platform def extra_link_args() -> list: """Platform dependent extras Returns: list: Extra link arguments """ args = [] if platform.system() == 'Darwin': # Something with OS X Mojave causes libstd not to be found args += ['-stdlib=libc++', '-mmacosx-version-min=10.12'] return args
86a4f6615a3bd67dd6740bc84fe1f4e7b44c8ab6
27,508
import configparser def getConfig(configPath): """获取配置方法""" conf = configparser.ConfigParser() # import ConfigParser conf.read(configPath) return conf
41da127ab4ed5d7d20e57e23e65129bb622562f2
27,509
def forward(images, config, forward_fn, decode_fn, is_training=True, verbose=0): """Forward-pass for one stage. Returns a dictionnary of output Tensors. Args: inputs: Dictionnary of inputs configuration`: configuration dictionnary forward_fn: one of the backbone network decode_fn: one of the decoding functions (either with or without groups) is_training: Whether the model is in training mode (for batch norm) verbose: verbosity level """ embeddings = forward_fn(images, is_training=is_training, verbose=verbose, **config) outputs = { k: v for (k, v) in decode_fn(embeddings, is_training=is_training, verbose=verbose, **config) if v is not None} if verbose == 2: print('\n'.join(" \033[32m%s\033[0m: shape=%s, dtype=%s" % ( key, value.get_shape().as_list(), value.dtype) for key, value in outputs.items())) elif verbose == 1: print('\n'.join(" *%s*: shape=%s, dtype=%s" % ( key, value.get_shape().as_list(), value.dtype) for key, value in outputs.items())) return outputs
618210f6de43f1cafac5c53b1966398e99239905
27,510
def overlapping(bins): """ Given a sorted list bins, check whether any are overlapping [....{;;;]----}. Touching is OK: [....]{----}""" s, e = 0, 0 for b in bins: if s < b[1] and b[0] < e: return True s, e = b[0], b[1] return False
a05d299dc2e25bfdbe9e50aa9dfe509b32635cbb
27,512
def template_name(_template_name): """custom template filename""" def decorator(action_function): action_function.template_name = _template_name return action_function return decorator
cc843c23413f6fd29ff8cab947266ba9711d11f7
27,514
import numpy def getMSE(y, mean): """ Calculates the MSE (Mean Square Error) of the data given This is the impurity function used for regression trees """ # print("\nMY Y\n",mean) if len(y) == 0: # Done in order to avoid obtaining nan values if there are no elements contained in y return 0 mse = numpy.average((y-mean)**2) # print("mse\t",mse) return mse
706d6f92c2d240f6487ccb58b31a258f5f578c48
27,515
def _UTMLetterDesignator(Lat): """This routine determines the correct UTM letter designator for the given latitude returns 'Z' if latitude is outside the UTM limits of 84N to 80S Written by Chuck Gantz- chuck.gantz@globalstar.com""" if 84 >= Lat >= 72: return 'X' elif 72 > Lat >= 64: return 'W' elif 64 > Lat >= 56: return 'V' elif 56 > Lat >= 48: return 'U' elif 48 > Lat >= 40: return 'T' elif 40 > Lat >= 32: return 'S' elif 32 > Lat >= 24: return 'R' elif 24 > Lat >= 16: return 'Q' elif 16 > Lat >= 8: return 'P' elif 8 > Lat >= 0: return 'N' elif 0 > Lat >= -8: return 'M' elif -8> Lat >= -16: return 'L' elif -16 > Lat >= -24: return 'K' elif -24 > Lat >= -32: return 'J' elif -32 > Lat >= -40: return 'H' elif -40 > Lat >= -48: return 'G' elif -48 > Lat >= -56: return 'F' elif -56 > Lat >= -64: return 'E' elif -64 > Lat >= -72: return 'D' elif -72 > Lat >= -80: return 'C' else: return 'Z' # if the Latitude is outside the UTM limits
c632a1af990ffa4c26c9f14cc9bfa82bd4825891
27,516
from pathlib import Path def get_readme(): """ Retrieve content of projects readme file. Returns: str: The content of README.md as a string. """ readme_dir = Path(__file__).parent return (readme_dir / "README.md").read_text()
6e870a4b2026728de7163a5246f1144690b84fa2
27,517
def insert_usid_policy(database, lr_dst, rl_dst, lr_nodes, rl_nodes, table=None, metric=None, l_grpc_ip=None, l_grpc_port=None, l_fwd_engine=None, r_grpc_ip=None, r_grpc_port=None, r_fwd_engine=None, decap_sid=None, locator=None): """ Insert a uSID policy into the 'usid_policies' collection of a Arango database. :param database: Database where the uSID policy must be saved. :type database: arango.database.StandardDatabase :param lr_dst: Destination (IP address or network prefix) for the left-to-right path. :type lr_dst: str :param rl_dst: Destination (IP address or network prefix) for the right-to-left path. :type rl_dst: str :param lr_nodes: List of nodes (names or uN sids) making the left-to-right path. :type lr_nodes: list :param rl_nodes: List of nodes (names or uN sids) making the right-to-left path. :type rl_nodes: list :param table: FIB table where the policy must be saved. :type table: int, optional :param metric: Metric (weight) to be used for the policy. :type metric: int, optional :param l_grpc_ip: gRPC IP address of the left node, required if the left node is expressed numerically in the nodes list. :type l_grpc_ip: str, optional :param l_grpc_port: gRPC port of the left node, required if the left node is expressed numerically in the nodes list. :type l_grpc_port: str, optional :param l_fwd_engine: forwarding engine of the left node, required if the left node is expressed numerically in the nodes list. :type l_fwd_engine: str, optional :param r_grpc_ip: gRPC IP address of the right node, required if the right node is expressed numerically in the nodes list. :type r_grpc_ip: str, optional :param r_grpc_port: gRPC port of the right node, required if the right node is expressed numerically in the nodes list. :type r_grpc_port: str, optional :param r_fwd_engine: Forwarding engine of the right node, required if the right node is expressed numerically in the nodes list. :type r_fwd_engine: str, optional :param decap_sid: uSID used for the decap behavior (End.DT6). :type decap_sid: str, optional :param locator: Locator prefix (e.g. 'fcbb:bbbb::'). :type locator: str, optional :return: True. :rtype: bool :raises arango.exceptions.arango.exceptions.DocumentInsertError: If insert fails. """ # Build a dict-representation of the uSID policy policy = { 'lr_dst': lr_dst, 'rl_dst': rl_dst, 'lr_nodes': lr_nodes, 'rl_nodes': rl_nodes, 'table': table, 'metric': metric, 'l_grpc_ip': l_grpc_ip, 'l_grpc_port': l_grpc_port, 'l_fwd_engine': l_fwd_engine, 'r_grpc_ip': r_grpc_ip, 'r_grpc_port': r_grpc_port, 'r_fwd_engine': r_fwd_engine, 'decap_sid': decap_sid, 'locator': locator } # Get the uSID policy collection # This returns an API wrapper for "usid_policies" collection usid_policies = database.collection(name='usid_policies') # Insert the policy # The parameter silent is set to True to avoid to return document metadata # This allows us to sav resources return usid_policies.insert(document=policy, silent=True)
c44e20e010b3c146e4eebe729a7bb8cadbda0646
27,518
def isArgumentlessJavaOption(line): """ Determine whether a given line contains a command line option that does not take arguments. Parameters ---------- line : str A line of the build output Returns ------- bool True if the line contains an option that doesn't take arguments """ argumentlessOptions = ["agentlib", "agentpath", "disableassertions", "D", "da", "enableassertions", "ea", "enablesystemassertions", "esa", "disablesystemassertions", "dsa", "javaagent", "jre-restrict-search", "no-jre-restrict-search", "showversion", "splash", "verbose", "version", "X"] for a in argumentlessOptions: if line.startswith("-{}".format(a)): return True return False
3e967cecba22413e25022e9e36154e2a78f7ad13
27,520
def rssError(yArr,yHatArr): """ 计算预测误差大小(均方误差) INPUT: yArr:实际值(数组) yHatArr:预测值(数组) OUTPUT: ((yArr-yHatArr)**2).sum():均方误差 """ return ((yArr-yHatArr)**2).sum()
cd5fc94e1120db8e5e23455eb4aa4dd110c02660
27,521
import random def handle_float(x): """ handle_float returns a random float between 0 and 2x. """ return x * random.uniform(0, 2)
7f0ba1521e5afde3d7bd75cd03a8e3cc76a72dcf
27,523
def curl(vect, coord_sys): """ Returns the curl of a vector field computed wrt the base scalars of the given coordinate system. Parameters ========== vect : Vector The vector operand coord_sys : CoordSysCartesian The coordinate system to calculate the curl in Examples ======== >>> R = CoordSysCartesian('R') >>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k >>> curl(v1, R) 0 >>> v2 = R.x*R.y*R.z*R.i >>> curl(v2, R) R.x*R.y*R.j + (-R.x*R.z)*R.k """ return coord_sys.delop.cross(vect).doit()
18af3e538e3d7a6d9970d2bc6f5c2e72b2ebb6c7
27,525
def substract(a,b): """Subtracts b from a and returns the result.""" return a - b
8c8c4ba7692671ea1c26ba8faceed0b04d5c16d7
27,526
import os import json def __is_nikerun_valid(file_path): """Check if it is a valid format for activity files. Parameters ---------- file_path : str Path to the file to be read. Returns ------- It returns True if the it is a valid format for activities handling. """ _, ext = os.path.splitext(file_path) if ext not in [".json"]: return False with open(file_path) as json_file: activity = json.load(json_file) if not activity.get("metrics"): return False metrics = [ metric["type"] for metric in activity["metrics"] if metric["type"] in ["latitude", "longitude"] ] if len(metrics) != 2: return False return True
a88f7b23b69d67d1a60184f166f2d4876dc45574
27,527
def get_module_pkg_release(kernelPackage, driverPackage): """In our scheme, we build up the kmod package release field from the kernel release field as well as the driver version.""" start = kernelPackage.release[:kernelPackage.release.rfind('.')] end = kernelPackage.release[kernelPackage.release.rfind('.'):] return start + '.r' + driverPackage.version + end
7e02dc20d30a27456eb13df3a26cb4bba71bb6d4
27,529
import itertools def _grouper(n, iterable, fillvalue=None): """Collects data into fixed-length chunks or blocks. This private function is wrapped in :func:`_show_mallet_document_topics()`. Args: n (int): Length of chunks or blocks iterable (object): Iterable object fillvalue (boolean): If iterable can not be devided into evenly-sized chunks fill chunks with value. Returns: n-sized chunks """ args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=fillvalue)
c8747931fa430791927f5706f5380717fd4d51f8
27,531
def a1000_fetch_child_metadata(a1000_fetch_function, interesting_children): """ :param a1000_fetch_function: this is a function that reads ticore result from a1000 for specific sha1 hash. function is called with only one parameter - sample sha1 hash. :param interesting_children: list of interesting_children :return: interesting_children with ticore results """ enriched_children = [] for child in interesting_children: child_meta = a1000_fetch_function(child.sha1) if child_meta: child.add_static_analysis(child_meta) enriched_children.append(child) return enriched_children
ad96b024f0397b63c525522c75a546b44c9310ff
27,532
def one_flash(lma_df, flash_id): """ Given a lma file and the flash id, it returns the lma dataframe with only the VHF sources with the specified flsah id. """ return lma_df[lma_df.flash_id == flash_id]
c9acea38ac399a8030b0616c74906ad3d6c1f915
27,534
def _mpas_to_netcdf_calendar(calendar): """ Convert from MPAS calendar to NetCDF4 calendar names. """ if calendar == 'gregorian_noleap': calendar = 'noleap' elif calendar != 'gregorian': raise ValueError('Unsupported calendar {}'.format(calendar)) return calendar
bdeaf343deeb4beb8c04654ab5104425396e98be
27,535
def aslist(item): """ aslist wraps a single value in a list, or just returns the list """ return item if type(item) == list else [item]
e9b3a9f189f74243d713e896dfbbd002e78abada
27,536
from typing import Any def is_operation(obj_or_type: Any) -> bool: """Return if object represents a resource operation.""" return getattr(obj_or_type, "_fondat_operation", None) is not None
57cd493fb99d0f0d54e6d032cf27c65f18f9c031
27,539
def edges_on_ring(ring): """ Get all the edges from a ring. :param ring: THe ring in which to obtain the edges. :return: A set of edges.. """ edges = set() prev = ring[-1] for c in ring: edges.add(frozenset({prev, c})) prev = c return edges
ab976c485f1424e7073f93bf429cfe4efdf65813
27,540
import re def get_sortable_version(version): """ Add leading zeros to version number components to ensure that 1.10.x is > 1.2.x """ version_components = re.findall(r"\d+", version) print(version_components) sortable = [] for component in version_components: sortable.append(format(int(component), "04d")) return ".".join(sortable)
9b275f62784218daeb4cfae7527be8f86e88a9f7
27,541
def rint(value): """ >>> rint(0.5) == 0 True >>> rint(0.501) == 1 True >>> rint(1.5) == 2 True """ ret = round(value) return 2.0 * round(value / 2.0) if abs(ret - value) == 0.5 else ret
e97253c1fb043ac5664489e7f80e945b787381b7
27,542
def negate(fn): """ negate(fn) -> not bool(fn) """ def wrap(*args, **kwargs): return not fn(*args, **kwargs) return wrap
532ab3e656ae4651a59be8ed735c3c35fdb447ba
27,543
import shlex import subprocess def execute_process(command, input=None): """ A helper function for subprocess. Args: command (str): The command line level syntax that would be written in a shell script or a terminal window Returns: dict: Results in a dictionary """ # Validate that command is not a string if not isinstance(command, str): raise TypeError("Command must be a str type") # Format the command command = shlex.split(command) # Run the command process = subprocess.Popen( command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False, universal_newlines=True ) if input: (stdout, stderr) = process.communicate(input=input) else: (stdout, stderr) = process.communicate() return { "stdout": (stdout).strip(), "stderr": (stderr).strip() if stderr != None else None, "exitcode": process.returncode, "success": True if process.returncode == 0 else False }
bc0232542523945b5ead595645de7245c3b2310c
27,544
def package_country_rollup_json(data): """ packages your dictionary nicely for writing out to json """ out = {} for k, d in data.items(): timseries = [] for y, v in d.items(): timseries.append({"year": y, "emissions": v}) out[k] = timseries return out
aee12b283bca8fee858bb117a98d78c52c98b00b
27,546
def obj_label_to_kitti_fmt(obj_label): """Converts an object label to kitti format [type, truncation, occlusion, alpha(observation angle), (x1, y1, x2, y2), (h, w, l), (x, y, z), ry, score] """ return [ obj_label.type, -1, -1, obj_label.alpha, obj_label.x1, obj_label.y1, obj_label.x2, obj_label.y2, obj_label.h, obj_label.w, obj_label.l, obj_label.t[0], obj_label.t[1], obj_label.t[2], obj_label.ry, obj_label.score ]
9f9c1545cd0c098055014f52b980115fd7469d98
27,547
def get_ranking16(): """ Return the ranking with ID 16. """ return [ ("COORD.PRoPHET", 0.475401), ("DF.PRoPHET", 0.472054), ("CnR.LTS", 0.380770), ("SimBetTS.L8", 0.380006), ("SimBetTS.L16", 0.379992), ("CnR.DestEnc", 0.379448), ("LSF-SnW.L16", 0.377400), ("DF.DestEnc", 0.373788), ("COORD.DestEnc", 0.373536), ("SimBetTS.L4", 0.372440), ("LSF-SnW.L8", 0.368945), ("DF.LTS", 0.366043), ("COORD.LTS", 0.365320), ("LSF-SnW.L4", 0.344986), ("CnF.PRoPHET", 0.344899), ("CnF.DestEnc", 0.340809), ("CnF.LTS", 0.336824), ("SnF.L8", 0.333813), ("SnF.L4", 0.331080), ("CnR.PRoPHET", 0.328371), ("SnF.L2", 0.328271), ("SnF.L16", 0.325965), ("SimBetTS.L2", 0.319820), ("LSF-SnW.L2", 0.283363), ("CnR.Enc", 0.253889), ("DF.Enc", 0.196428), ("COORD.Enc", 0.185271), ("Epidemic", 0.176182), ("Direct", 0.144637), ("EBR.L16", 0.144275), ("SnW.L16", 0.144196), ("EBR.L2", 0.139577), ("SnW.L2", 0.139347), ("SnW.L8", 0.137288), ("EBR.L8", 0.137283), ("EBR.L4", 0.136547), ("SnW.L4", 0.136425), ("CnF.Enc", 0.117134), ]
988d26f7a123da18f0adb025161bedc1be310876
27,548
import time def timestamp_from_objectid(objectid): """提取objectid中的时间戳""" result = 0 try: result = time.mktime(objectid.generation_time.timetuple()) + 28800 except: pass return result
2cc46ba7644a8075d624909b3722ab83f79d49c4
27,549
def annotations_to_lower(annotations): """ Recibe una lista de textos y los pasa a minuscula """ return [ann.lower() for ann in annotations]
f6175012ddf4acb973de70179eea5438894b4358
27,550
def task_release(): """Release wheel and source distribution to pypi""" return { "actions": ["python -m twine upload --repository pypi dist/*"], "task_dep": ['wheel', 'source'] }
a78f026a0a682eee94efe0cf940206bbb8eb8716
27,551
import re def _read_words_from_file(filename: str): """extract 'words' (space-separated) from file, return as string array""" with open(filename, 'r') as file: text = ''.join(file.readlines()) text = text.replace('\n', ' ').lower() text = re.sub(" +", " ", text) words = text.split(' ') return words
d5de6b5b20bcfd10cd4ec8d2b7f51267ea2edd3e
27,552
def do_func(args_dict, diy_func, modify=True): """ 执行自定义函数,一般用来修正某些入参 :param args_dict: :param diy_func: :param modify: :return: """ if not args_dict: return True, None if modify: for k in args_dict: if k in diy_func: args_dict[k] = diy_func[k](args_dict[k])
cbd18b1ab2201f35fd810d199cbf4cf58748eae9
27,554
import six def fix_keys(fix_func, conf): """Apply fix_func on every key of a dict""" return {fix_func(field): value for field, value in six.iteritems(conf)}
0329661b5f2ccb4e1f260a92dc8fe36d9c945d31
27,555
import argparse def _create_argument_parser(): """Create an argparse argument parser.""" parser = argparse.ArgumentParser( description="""\ al-btn-api, Alabama data API """, ) parser.add_argument( "-f", "--file", dest="file", type=str, default="", # nargs=1, help="Local data file.", ) parser.add_argument( "-p", "--print", dest="print", default=False, action="store_true", help="Print data to be uploaded, as valid JSON, without uploading the data.", ) # MongoDB name. parser.add_argument( "-d", "--database", dest="database", type=str, default="albtn", nargs=1, help="MongoDB database name.", ) # MongoDB connection string. parser.add_argument( "-c", "--connection", dest="connection", type=str, default="mongodb://localhost:27017/", nargs=1, help="MongoDB connection string.", ) # url to slurp parser.add_argument( "-u", "--url", dest="url", type=str, default="https://en.wikipedia.org/wiki/List_of_geographic_centers_of_the_United_States", nargs=1, help="Source URL containing centroid estimate data.", ) return parser
ea5278c8e24b5674204957ac0dda5ade5feab466
27,557
import logging import subprocess def _check_output(*args, **kwargs): """Wrapper for subprocess.check_output, with logging.""" logging.info("Running: %s, %s; cmdline: %s.", args, kwargs, " ".join(*args)) return subprocess.check_output(*args, **kwargs)
7c3f1b6cd26ff2060251cd3d6cded1af424ee137
27,558
import os def getCurrentFileName(): """ Will return the file name of file_Utils. Copy into file needed.""" return os.path.basename (__file__)
373339f1e0090d869fc3ae7e14fd7d688ecfbf50
27,560
def check_and_get_directory(files): """ Check if all provided files have the same directory and return it. :param files: A list of files to check and get directory from. :return: Base directory of the files. :raise: RuntimeException if files does not have same base directory. """ if not files: raise ValueError('Files must not be empty!') head, *tail = files if not tail: return head.parent tail_parent = check_and_get_directory(tail) if head.parent == tail_parent: return head.parent raise RuntimeError('Files do not have the same directory: {} != {}'.format(head.parent, tail_parent))
2e13d63fccaf18213c9b9108869774b15bdc801a
27,561
def subsetDf(data_input): """ Take a DataFrame and if it's under 500 unique objects, simply return it. If the DataFrame is over 500 unique objects, return the first 500 unique objects. """ unique_obj = data_input.index.unique() unique_obj_list = list(unique_obj) if len(unique_obj) <= 500: return data_input else: first500 = unique_obj_list[0:500] data_input = data_input[data_input.index.isin(first500)] return data_input
e077880b35941a3032cd799f43d979225f163bde
27,562
def create_response(status_code, status_description="", body=""): """Configure a response JSON object.""" response = {"isBase64Encoded": False, "headers": {"Content-Type": "text/html;"}} if not status_description: description = { 200: "200 OK", 400: "400 Bad Request", 401: "401 Unauthorized", 405: "405 Method Not Allowed", 500: "500 Internal Server Error", } status_description = description.get(status_code) response["statusCode"] = status_code response["statusDescription"] = status_description response["body"] = body return response
55732ec27a46dd0d971a1f5eccde33414de7af71
27,563
def stem_word(word: str) -> str: """ Stemming words :param word: word :return: stemmed word """ if len(word) < 4: return word # remove 'ට' if word[-1] == 'ට': return word[:-1] # remove 'ද' if word[-1] == 'ද': return word[:-1] # remove 'ටත්' if word[-3:] == 'ටත්': return word[:-3] # remove 'එක්' if word[-3:] == 'ෙක්': return word[:-3] # remove 'එ' if word[-1:] == 'ෙ': return word[:-1] # remove 'ක්' if word[-2:] == 'ක්': return word[:-2] # remove 'ගෙ' (instead of ගේ because this step comes after simplifying text) if word[-2:] == 'ගෙ': return word[:-2] # else return word
4f1f6897f553b864c6a3f626c5b5c1aac3fb5ff1
27,565
from typing import Counter def representative(table): """ Given a table with members of the same clonotype, return a representative as a dict. """ n = len(table) if n == 1: return table.iloc[0] elif n == 2: result = table.iloc[0] else: c = Counter() for row in table.itertuples(): c[row.VDJ_nt] += row.count most_common_vdj_nt = c.most_common(1)[0][0] result = table[table['VDJ_nt'] == most_common_vdj_nt].iloc[0] result.at['count'] = table['count'].sum() return result
e3ec73a47d77e1c0b9f5907c3d57bc2e244888cf
27,567
def get_foreground(prop): """ Foreground Color property """ return prop
fed76da4aabc3d93186bd4d413879c801ccaf784
27,568
def HV(in_: list): """ Outputs H-V, computes difference of first 2 elements of a list. """ out = in_[0] - in_[1] return out
ed58cc24297fbe1b7f6a28ed98b9ffa0dcb80050
27,569
import os def extract_images(post_block): """ Extracts image filename + uploaded image name for all images in a post/reference. Returns a list of objects containing filename + uploaded name """ images_container = post_block.find('div', 'images', recursive=False) if not images_container: return None # well laid out figs + figcaptions make life easy for images + image names images = images_container.findAll('figure', recursive=False) return [{ 'file': os.path.split(image.find('a')['href'])[1], # filename on disk 'name': image.find('figcaption').getText() # filename as posted } for image in images]
30f7dfcb76bd6a25953cad97ac9a639c49736e24
27,570
def should_attach_entry_state(current_api_id, session): """Returns wether or not entry state should be attached :param current_api_id: Current API selected. :param session: Current session data. :return: True/False """ return ( current_api_id == 'cpa' and bool(session.get('editorial_features', None)) )
c22c592c2b65f143d0df5c0735a0c21f7347ee71
27,573
def gen_sol(create, min_constraints, max_constraints): """ Generate a random individual for the population. """ return create(min_constraints, max_constraints)
75c0364b09a1a16d95ae28c1bead7685b54fdcf8
27,574
def create_flanking_regions_fasta(genome, dataframe, flanking_region_size): """ Makes batch processing possible, pulls down small region of genome for which to design primers around. This is based on the chromosome and position of input file. Each Fasta record will contain: >Sample_Gene_chr:pos__ Seq of flanking region Args: genome (list): genome list of tuples (header, seq). dataframe (pandas object): dataframe with sample info. flanking_region_size (int): length of sequence upstream and downstream of input coordindate position to pull as sequence to design primers around. Returns: output (list): list of tuples with (header, seq) where seq is flanking region and header is sample ID. """ output = [] for headers, seqs in genome: chrm = str(headers) seq = str(seqs) for gene, sample, chrom, pos in zip(dataframe.Gene, dataframe.Sample, dataframe.Chr, dataframe.Pos): if str(chrom) == chrm: header = str(str(sample)+"_"+str(gene)+"_"+str(chrom)+":"+str(pos)+"__") flank_seq = seq[int(pos)-int(flanking_region_size):\ int(pos)+int(flanking_region_size)] output.append((header, flank_seq.upper())) return output
82a09f847c4533e95f7de542fc80654e19a96bf6
27,575
import random def get_random_choice(word_dist): """ Given a word distribution, pick one at random based on how common it is. Args: word_dist (FreqDist) - a frequency distribution of words Returns: string - a random word from word_dist """ total_samples = word_dist.N() random_sample = random.randint(0, total_samples) running_total = 0 # iterate over all the possible bins for word_bin in word_dist.most_common(word_dist.B()): # add the number of incidences of the current word to the total running_total += word_bin[1] # if the random number falls into the current bucket, return this word if random_sample <= running_total: return word_bin[0]
23f72c57fb7bbac8e896621fcd4e235c2efa9008
27,578
def sizesim(sizeA, sizeB): """ Calculate the size similarity pct for the two entries compares the longer of entryA's two alleles (REF or ALT) backwards compat """ return min(sizeA, sizeB) / float(max(sizeA, sizeB)), sizeA - sizeB
1bde43c34a61d2b1bf8aeff56bda31b453c81085
27,579
import re def replace_argument(string, *, command_infos, command_id, **_): """Replaces links to other arguments in the same command.""" def replace(match): argument_name = match.group(1).lstrip("-") matching_args = [ arg for info in command_infos if info['id'] == command_id for arg in info['arguments'] if arg['flags'][0].lstrip("-") == argument_name ] if len(matching_args) != 1: raise TypeError( "{} argument{} named {} in {}".format( "more than one" if len(matching_args) > 0 else "no", "" if len(matching_args) > 0 else "s", argument_name, command_id, ) ) arg = matching_args[0] return "[{}](#{})".format(arg['flags'][0], arg['id']) return re.sub(r"@argument\(([^)]*)\)", replace, string)
51fde687e40176489eac9e43b429eb63dc441649
27,580
def sum_list(list_of_list): """Concatenates a list of python list.""" final_list = [] for l in list_of_list: final_list += l return final_list
243cc9e88f62a2b0323335703204c4e2b416a5e1
27,581
import pickle def pickleload(pkl_file): """ Load objects from file with pickle """ with open(pkl_file, 'rb') as output: data2 = pickle.load(output) return data2
4e4e8e97840fd3f1ab4933132c88b38a9618f8dd
27,582
def decode_to_string(obj): """ Convert any type to string """ if isinstance(obj, bytes): return obj.decode() return str(obj)
a55f9e0246a5eb3a84e7363f478962e134eb386a
27,584
def create_url_with_query_parameters(base_url: str, params: dict) -> str: """Creates a url for the given base address with given parameters as a query string.""" parameter_string = "&".join(f"{key}={value}" for key, value in params.items()) url = f"{base_url}?{parameter_string}" return url
e148540316cc38e344228ed82d7e5f9769de5fe6
27,586
def get_patched_get_url(patched_urlopen, testcase=None): """Get the URL of the GET request made to the patched urlopen() function. Expects that the patched function should have been called a single time with the url as the only positional argument and no keyword arguments. :param patched_urlopen: value returned when entering the context manager created by patch_urlopen. :type patched_urlopen: unittest.mock.Mock :param testcase: Test case currently being run, which is used to make asserts :type testcase: unittest.TestCase """ args, kwargs = patched_urlopen.call_args if testcase is not None: testcase.assertEqual(patched_urlopen.call_count, 1) testcase.assertEqual(len(args), 1) testcase.assertEqual(len(kwargs), 0) return args[0]
6d03cb418214d0f5d463a9cfe3fd6d8c31c7830e
27,588
def looks_like_sql(s: str) -> bool: """ Determine if string `s` looks like an SQL query. :param str s: The string to detect. :return: True if the string looks like an SQL, False otherwise. """ sql_keywords = {'select', 'update', 'union', 'delete', 'from', 'table', 'insert', 'into'} s = s.lower() for k in sql_keywords: if k in s: k_index = s.find(k) # what's before k? is it a whitespace if it's not empty? if k_index > 0: before = s[k_index - 1] if before not in " /;": continue # what's after k? is it a whitespace? following = s[k_index + len(k) : ] if not following or following.startswith(" "): return True return False
e7c89d9f1d36aad38cdd3b8e282ecfb528580f04
27,589
def serialize_dict(the_dict, full=True, offset='small'): """serialize_dict.""" if the_dict: text = [] for key in sorted(the_dict): if offset == 'small': line = '%10s: %s' % (key, the_dict[key]) elif offset == 'large': line = '%25s: %s' % (key, the_dict[key]) elif offset == 'very_large': line = '%50s: %s' % (key, the_dict[key]) else: raise Exception('unrecognized option: %s' % offset) line = line.replace('\n', ' ') if full is False: if len(line) > 100: line = line[:100] + ' ... ' + line[-20:] text.append(line) return '\n'.join(text) else: return ""
15b3fe46043d28c5a2a5c4e802b289b22704d9b1
27,590
import six def _check_input(idadf, target, features, ignore_indexer=True): """ Check if the input is valid, i.e. if each column in target and features exists in idadf. Parameters ---------- target: str or list of str A column or list of columns to be used as target features: str or list of str A column or list of columns to be used as feature ignore_indexer: bool, default: True If True, remove the indexer from the features set, as long as an indexer is defined in idadf """ #import pdb ; pdb.set_trace() if target is not None: if isinstance(target, six.string_types): if target not in idadf.columns: raise ValueError("Unknown target column %s"%target) target = [target] else: if hasattr(target, '__iter__'): target = list(target) for x in target: if x not in idadf.columns: raise ValueError("Unknown target column %s"%x) if features is not None: if isinstance(features, six.string_types): if features not in idadf.columns: raise ValueError("Unknown feature column %s"%features) features = [features] else: if hasattr(features, '__iter__'): features = list(features) for x in features: if x not in idadf.columns: raise ValueError("Unknown feature column %s"%x) if target is None: if len(features) == 1: raise ValueError("Cannot compute correlation coefficients of only one"+ " column (%s), need at least 2"%features[0]) else: if target is not None: if len(target) == 1: features = [x for x in idadf.columns if x not in target] else: features = list(idadf.columns) else: features = list(idadf.columns) ## Remove indexer from feature list # This is useless and expensive to compute with a primary key if ignore_indexer is True: if idadf.indexer: if idadf.indexer in features: features.remove(idadf.indexer) # Catch the case where users ask for the correlation between the two same columns #import pdb ; pdb.set_trace() if target == features: if len(target) == 1: raise ValueError("The correlation value of two same columns is always maximal") if target is None: if features is None: target = list(idadf.columns) else: target = features return target, features
1f133839bf0c10396bdcf036db30251d71c7ff3f
27,591
from typing import Iterable def _n_name(invars: Iterable[str]) -> str: """Make sure that name does not exist in invars""" name = "n" while name in invars: name = "n" + name return name
fc3b5da0e762e1b212248c403ceda66c311a60f9
27,592
def _rub_str_ ( bins ) : """Printout for RooUniformBinning""" l = bins. lowBound () h = bins.highBound () n = bins.numBoundaries () - 1 x = bins.GetName() if not x : return "RooUniformBinning(%s,%s,%d)" % ( l , h , n ) return "RooUniformBinning(%s,%s,%d,'%s')" % ( l , h , n , x )
d2ffdbf12e63dcc1f038f670a92ec1cf13da3fd7
27,593
import re def get_NT_from_str(string): """ Given a string of a snippet, return the NT of that snippet. in: '[1, cython_backup] <RE>' out: '<RE>' :param string: A string defining a snippet. :return: The NT of that snippet. """ # Get index portion of string index = re.findall("\<.+\>", string) return index[0]
3d62f7171e5a053a5f69b8dffb406ae7df215494
27,595
import re def find_map_surroundings(room_name, all_corners=False): """ :param room_name: 방이름 이 방이름 근방 상하좌우 또는 대각선까지 포함해서 지도목록 반환. :param all_corners: 대각선방도 반환? 아니면 4면만 :return: [방이름들] """ # 방 제대로 들어옮? if (room_name.includes('E') or room_name.includes('W')) \ and (room_name.includes('S') or room_name.includes('N')): if room_name.includes('E'): garo = 'E' else: garo = 'W' if room_name.includes('S'): sero = 'S' else: sero = 'N' room_nums = re.split(r'[EWSN]', room_name) room_nums = list(filter(None, room_nums)) arranged_room_nums = [] # 0일때 동거 숫자 돌리고 있고 1일때 북거. counter = 0 for r in room_nums: if r: for n in range(-1, 2): # 초기화 int_ = int(r) # 0이면 현 방이니 통과 if n == 0: continue # 포문에 따라 -1, +1 int_ += n # 0보다 적을경우 change_map_name = False if int_ < 0: change_map_name = True if counter == 0: if 'E' in garo: garo = 'W' else: garo = 'E' else: if 'S' in sero: sero = 'N' else: sero = 'S' int_ += 1 # 카운터가 0일땐 W/E 부분을 세고있다. 한마디로 S/N부분이 고정. # 저 int_ 빼고는 나머지는 다 똑같아야 함... if counter == 0: result = garo + str(int_) + sero + room_nums[1] arranged_room_nums.append(result) else: result = garo + room_nums[0] + sero + str(int_) arranged_room_nums.append(result) # 이름 바꿨으면 초기화 if change_map_name: if counter == 0: if 'E' in garo: garo = 'W' else: garo = 'E' else: if 'S' in sero: sero = 'N' else: sero = 'S' counter += 1 return arranged_room_nums
f3a790c7d5ffad301ea19204dc80ce51662383b8
27,596
def andlist(list,conjunction="and"): """Turn list of strings into English text.""" if len(list) == 0: return "(empty list!)" if len(list) == 1: return list[0] elif len(list) == 2: return (' '+conjunction+' ').join(list) else: return ', '.join(list[:-1]+[conjunction+' '+list[-1]])
068197cf3a972f5a79fa259885fde2e8cdc7bfbb
27,597
import torch def inference_agent(model, env, s_init, supp_init, device='cpu'): """ s_init (3,96,96) cuda supp_init (2,) cuda """ model.eval() s_curr = s_init.clone().unsqueeze(0).to(device) supp_curr = supp_init.clone().unsqueeze(0) with torch.no_grad(): act = torch.argmax(model(s_curr), dim=1) s_curr, supp_curr, reward = env.step(s_curr, supp_curr, act) return s_curr, supp_curr, reward, act
29580f57b540cbba442b0751c718ff4a5c082008
27,598
from typing import List from typing import Dict from typing import Any from typing import Set def get_human_readable_headers(outputs: List[Dict]) -> List[Any]: """ Retrieves all of the keys that their value is not dict recursively Args: outputs (List[Dict]): Input list of dictionaries. Returns: List with all of the keys that don't have inner dictionaries. """ def contains_dict(entry: Any) -> bool: if isinstance(entry, dict): return True elif isinstance(entry, list): return any(contains_dict(item) for item in entry) return False human_readable_keys: List[Set] = [{k for k, v in output.items() if not contains_dict(v)} for output in outputs] if not human_readable_keys: return [] return list(set.intersection(*human_readable_keys))
e1236b9b99dea9dd926a268a2b9210a78e8bd971
27,599
from typing import Sequence def _count_run(li: Sequence, lo: int, hi: int) -> int: """Count the length of the run beginning at lo, in the slice [lo, hi). lo < hi is required on entry. """ # "A run" is either the longest non-decreasing sequence, or the longest strictly # decreasing sequence. `descending` is False in the former case, True in the latter. # Note: This function is not required by tim_sort(), so we make it internal. assert lo < hi # descending = False lo += 1 if lo == hi: return 1 n = 2 # run count if li[lo] < li[lo-1]: # descending = True for lo in range(lo+1, hi): if li[lo] >= li[lo-1]: break n += 1 else: for lo in range(lo+1, hi): if li[lo] < li[lo-1]: break n += 1 return n
bf93346487d275152f221971ab1bd4d678cdf290
27,600
import os def is_directory(b): """ Return if the given buffer is a directory """ return os.path.isdir(b.name)
0b88a016a6aabcf7bd3a6a8d16101afd798f7531
27,601
import torch def get_taylor_criterion(W): """ Get the pruning criterion based on taylor expansion. It requires that W.grad is accessible. """ assert isinstance(W, torch.Tensor) assert W.grad is not None assert W.dim() == 4 # first-order term of the taylor expansion C = torch.mul(W.grad, W) # L1-norm taken on the taylor criterion C = torch.abs(C).sum(dim=(2, 3)) return C
9d1d748e458a68451a1ad7b12cf845a4edf9d442
27,603
import torch def k_nearest_neighbour_accuracy(y_pred, y): """Calculates k-NN accuracy. # Arguments: y_pred: Prediction categories [size, categories] y: Ground truth categories. Must have shape [size,] """ # 取最多的类别: y_pred, _ = torch.mode(y_pred, dim=1) return torch.eq(y_pred, y).sum().item() / y_pred.shape[0]
67e0a3231ae94bdfb648707e35813ee76f112066
27,604
def get_ith_minibatch_ixs(i, num_data, batch_size): """Split data into minibatches. @param i: integer iteration index @param num_data: integer number of data points @param batch_size: integer number of data points in a batch @return batch_slice: slice object """ num_minibatches = num_data / batch_size + ((num_data % batch_size) > 0) i = i % num_minibatches start = i * batch_size stop = start + batch_size return slice(start, stop)
2583cada078a0725e2dfe40c48111696bef48f8f
27,606
import tempfile import base64 def unpack_resource(data): """Convert base64 encoded data into a file handle, and a temporary file name to access the data""" file_handle = tempfile.NamedTemporaryFile() file_handle.write(base64.b64decode(data)) file_handle.seek(0) return (file_handle,file_handle.name)
372d1e48e8e67e71f3f0bbdd1e15e9cbc9369973
27,611
def has_same_letter_repeated(box, times): """Check if box has any letter repeated number of times.""" return any( box.count(letter) == times for letter in box )
9b0450d3ab8f276facde656dad9f9938d9fd1c20
27,612
def flatten_(structure): """Combine all leaves of a nested structure into a tuple. The nested structure can consist of any combination of tuples, lists, and dicts. Dictionary keys will be discarded but values will ordered by the sorting of the keys. Args: structure: Nested structure. Returns: Flat tuple. """ if isinstance(structure, dict): result = () for key in sorted(list(structure.keys())): result += flatten_(structure[key]) return result if isinstance(structure, (tuple, list)): result = () for element in structure: result += flatten_(element) return result return (structure,)
6d085c290603116d91d400a4e974956b6adc265e
27,613
def help_for_command(command): """ generate help doc for command """ help = command.description() if command.options(): help += '\n\nOptions:' for option in command.options(): if option.long and option.short: option_flag = option.long + '/' + option.short elif option.longName: option_flag = option.long else: option_flag = option.short help += '\n ' + option_flag + ' ' if option.type.__name__ == 'str_to_bool': help += '<' + str(option.dest) + '>; Type: bool' else: help += '<' + str(option.dest) + '>; Type: ' + option.type.__name__ help += '; ' + option.help return help
6cca7088b9a5a71dd14a3e60f47e9d06cb120da3
27,614
def replace_tree_marks(key, arguments): """ Replace TREE markers from key to proper argument :param key: The currently processed key from .yaml file :param arguments: Arguments already typed for command :return: Key string with replaced marks """ tree_mark_index = key.find('TREE~') while tree_mark_index >= 0: tree_index = -int(key[tree_mark_index+5]) key = key[:tree_mark_index] \ + arguments[tree_index] \ + key[tree_mark_index+6:] tree_mark_index = key.find('TREE~') return key
58b5fa36a2f95665d585608f1103ec00f3c47218
27,615
def get_groups(groups_collection): """Returns a list of group names :param groups_collection: Mongo collection that maintains groups :return: List of group names """ groups = groups_collection.find() return list(groups)
75ff224e383eaf2f4fd9e4d345231aa4a7ea587f
27,617
def invert_angle(angle): """ Inverts the steering angle for the flip_img() :param angle: :return: inverted angle """ return angle * -1.0
8628d1b745b32a2b4cdf94b11a9453c87b2e6c2e
27,619
def channels(channel): """Return a mock of channels.""" return [channel("level", 8), channel("on_off", 6)]
fab1959c3f8f6f3f219c7f3c0b401707e9cbb5af
27,620
def solve(puzzle, row, col, num): """If we find same num in the same row or same column or in the specific 3*3 matrix, ‘false’ will be returned.""" # Check for same number in row for x in range(9): if puzzle[row][x] == num: return False # Check for same number in column for x in range(9): if puzzle[x][col] == num: return False # Check for same number matrix start_row = row - row % 3 start_col = col - col % 3 for i in range(3): for j in range(3): if puzzle[i + start_row][j + start_col] == num: return False return True
fea9b13ff7816478d9dd4fcab5c9bfe5682b1ef2
27,621
def compute_mol_ids(job_id, n_jobs, total_n_molecules): """ assume job_id is 0-indexed """ # construct batch indices for all jobs batch_size = int(total_n_molecules / n_jobs) batches = [] current_batch = [] for i in range(total_n_molecules): if (len(current_batch) >= batch_size) or (i == (total_n_molecules - 1)): batches.append(current_batch) current_batch = [] else: current_batch.append(i) # get the batch indices for the current job this_job = batches[job_id] return this_job
10c6ae9a064bdafe4ccfb134bf3945979e48673e
27,623
import random def randrequest(): """Generates random request type from list.""" request_list = ["GET", "POST"] return random.choice(request_list)
17d55b6a49dad352cc0a6b8003fecd5b8da62cad
27,626
def demo_2(x, y) -> bool: """ Demo function which writes output to file >>> demo_2(3, 5) 16 """ sum = x + y if sum < 100: sum = sum * 2 elif sum < 50: sum = sum * 3 else: sum = sum * 4 return sum
30cb5dd2c2b397b6a21fe23f1ef5d9c19414332d
27,627