content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def commit_diff(c): """Return the set of changed files. Args: c (git.Commit) Returns: set[str]: a set of file paths (relative to the git repo's root directory). """ changed = set() def add_path(blob): if blob is not None: changed.add(blob.path) prev_c = c.parents[0] for x in c.diff(prev_c): add_path(x.a_blob) add_path(x.b_blob) return changed
de6d7a2a1dfbadec2c4237259670118b7538ce81
25,661
def sort_donors(donor_dict): """Sort the list of donors by total amount donated. Returns a list of only the donors' names. """ return sorted(list(donor_dict), key=lambda x: -sum(donor_dict[x]))
5fe6a6a426294a6c67dd808f39c04dfd6fe74daa
25,663
from typing import List import ast def get_class_names_in_files(path: str) -> List[str]: """Read all class names in file.""" with open(path) as file: module = ast.parse(file.read()) return [node.name for node in module.body if isinstance(node, ast.ClassDef)]
d72a4ea6570dc6a261f65e3b441e42b1e46852c3
25,664
import numpy def _encoder_checksum(modes: int) -> numpy.ndarray: """ Helper function for checksum_code that outputs the encoder matrix. Args: modes (int): matrix size is (modes - 1) x modes Returns (numpy.ndarray): encoder matrix """ enc = numpy.zeros(shape=(modes - 1, modes), dtype=int) for i in range(modes - 1): enc[i, i] = 1 return enc
616b1b5af552eae5eddf095275666401b0e3b3e7
25,665
import re def calc_query_pos_from_cigar(cigar, strand): """Uses the CIGAR string to determine the query position of a read The cigar arg is a string like the following: 86M65S The strand arg is a boolean, True for forward strand and False for reverse Returns pair of ints for query start, end positions """ cigar_ops = [[int(op[0]), op[1]] for op in re.findall('(\d+)([A-Za-z])', cigar)] order_ops = cigar_ops if not strand: # - strand order_ops = order_ops[::-1] qs_pos = 0 qe_pos = 0 q_len = 0 for op_position in range(len(cigar_ops)): op_len = cigar_ops[op_position][0] op_type = cigar_ops[op_position][1] if op_position == 0 and ( op_type == 'H' or op_type == 'S' ): qs_pos += op_len qe_pos += op_len q_len += op_len elif op_type == 'H' or op_type == 'S': q_len += op_len elif op_type == 'M' or op_type == 'I' or op_type == 'X': qe_pos += op_len q_len += op_len return qs_pos, qe_pos
a3a5366b52aefbf628a92155193684f91c60c208
25,666
def mesh_error(mesh1, mesh2): """Error (intersection over union) of the two meshes""" intersection = mesh1.intersection(mesh2) union = mesh1.union(mesh2) error = intersection.volume/union.volume return error
f6fb92b950020a7e5f0945179839838f5a613d44
25,667
from typing import List def split_filter(string: str, delim: str) -> List[str]: """Split the given string with the given delimiter. If the given string is empty, an empty list is returned. :param string: String to split. :param delim: Delimiter character. """ if not string: return [] return string.split(delim)
743b29818fb13b90e2f9eff9ddd7c778dbc1b3dc
25,668
from typing import Tuple def index_to_tuple(index: int, size: int) -> Tuple[int, int]: """ Returns a tuple to indicate 2d-array for the given index :param index: :param size: :return: """ assert 0 <= index < size * size, "Out of bound" return int(index / size), int(index % size)
d3f5af92671bf5680dd2328f0d0b1f4a53615964
25,669
def find_maxProfit(weights: "list[int]", profits: "list[int]", capacity: "int", greedy_method: "str" = "max") -> float: """Fractional Knapsack Problem Find maximum profit using greedy method Args: weights (List[int]): list/array of weights profits (List[int]): list/array of profits capacity (int): total capacity of knapsack greedy_method (str): "min " - find maximum profit by considering minimum values first "max" - find maximum profit by considering maximum values first "optimal" - find maximum profit by considering profit/weight Returns: float: Maximum profit """ if len(weights) != len(profits): print("Please provide correct values for profits and weights") return -1 # make items/objects items = [{"weight": w, "profit": p} for w, p in zip(weights, profits)] # sort the items if greedy_method == "min": items = sorted(items, key=lambda x: x['weight'], ) elif greedy_method == "max": items = sorted(items, key=lambda x: x['weight'], reverse=True) elif greedy_method == "optimal": items = sorted( items, key=lambda x: x['profit'] / x['weight'], reverse=True) else: raise Exception("please provide correct value for 'greedy_method' ") cur_weight, total_profit = 0, 0 for i in range(len(weights)): if (cur_weight + items[i]['weight']) <= capacity: cur_weight += items[i]['weight'] total_profit += items[i]['profit'] else: remains = capacity - cur_weight total_profit += items[i]['profit'] * (remains / items[i]['weight']) break return total_profit
75d12d63877bd792704fab00caf6690ff0e13f31
25,671
def replace_at(word, line, index): """ Replace the text in-line. The text in line is replaced (not inserted) with the word. The replacement starts at the provided index. The result is cliped to the input length Arguments --------- word : str The text to copy into the line. line : str The line where the copy takes place. index : int The index to start coping. Returns ------- result : str line of text with the text replaced. """ word_length = len(word) result = line[:index] + word + line[(index + word_length):] return result[:len(line)]
1587e97e4886d75d509ec6558aedd66759028b06
25,673
def check_positioners(positioner_ids, command, fps, initialised=False): """Checks if some of the positioners are not connected.""" if any([pid not in fps.positioners for pid in positioner_ids]): command.fail(error="some positioners are not connected.") return False if initialised: if any([not fps[pid].initialised for pid in positioner_ids]): command.fail(error="some positioners are not initialised.") return False return True
7f6da172cdde8afedd9a4027e3d9b3af407975f5
25,675
def coverage(comm,edge_attr=None): """ comm: community """ num,den = 0.,0. for e in comm.graph.es: w = 1 if edge_attr: w = e[edge_attr] den += w i = e.source j = e.target if comm.membership[i] == comm.membership[j]: num += w return num/den
5be108f8ccc8594e77db20b8d8c4eb7f4b58dbc7
25,677
def _normalize_string(text): """Trims the text, removes all the spaces from text and replaces every sequence of lines with a single line. Args: text (str): The schema definition. Returns: str: The normalized text. """ text = text.strip() result = "" whitespaces = [" ", "\t"] in_comment = False in_string = False string_char = None for c in text: if c == "#": in_comment = True if c == "\n": in_comment = False if c == '"' or c == "'": if in_string and c == string_char: in_string = False elif not in_string and not in_comment: in_string = True string_char = c if not in_comment and not in_string and c in whitespaces: continue if c == "\n" and result.endswith("\n"): continue result += c return result
0bc387e7563a4c961a9fe189547c5146337899bc
25,680
def load(file, width, height, data_start, colors, color_depth, *, bitmap=None, palette=None): """Loads indexed bitmap data into bitmap and palette objects. :param file file: The open bmp file :param int width: Image width in pixels :param int height: Image height in pixels :param int data_start: Byte location where the data starts (after headers) :param int colors: Number of distinct colors in the image :param int color_depth: Number of bits used to store a value""" # pylint: disable=too-many-arguments,too-many-locals if palette: palette = palette(colors) file.seek(data_start - colors * 4) for value in range(colors): c_bytes = file.read(4) # Need to swap red & blue bytes (bytes 0 and 2) palette[value] = bytes(b''.join([c_bytes[2:3], c_bytes[1:2], c_bytes[0:1], c_bytes[3:1]])) if bitmap: minimum_color_depth = 1 while colors > 2 ** minimum_color_depth: minimum_color_depth *= 2 bitmap = bitmap(width, height, colors) file.seek(data_start) line_size = width // (8 // color_depth) if width % (8 // color_depth) != 0: line_size += 1 if line_size % 4 != 0: line_size += (4 - line_size % 4) chunk = bytearray(line_size) mask = (1 << minimum_color_depth) - 1 for y in range(height - 1, -1, -1): file.readinto(chunk) pixels_per_byte = 8 // color_depth offset = y * width for x in range(width): i = x // pixels_per_byte pixel = (chunk[i] >> (8 - color_depth*(x % pixels_per_byte + 1))) & mask bitmap[offset + x] = pixel return bitmap, palette
5d69ff0dc0188b3128be59c0c1b955e72256345b
25,683
import os def get_imu_csv_files(input_dir): """Generates a list of all csv files that start with imu""" imu_files = list() if os.path.exists(input_dir): for path, _, files in os.walk(input_dir): for filename in files: if filename[0:3] == 'imu' and os.path.splitext( filename)[1] == ".csv": imu_files.append(os.path.join(path, filename)) return imu_files
1bec4ed4f9549e5949962103058126c389a98b90
25,684
def normalize_rgb(rgb): """ Normalize rgb to 0~1 range :param rgb: the rgb values to be normalized, could be a tuple or list of tuples :return: """ if isinstance(rgb, tuple): return tuple([float(a)/255 for a in rgb]) elif isinstance(rgb, list): norm_rgb = [] for item in rgb: norm_rgb.append(normalize_rgb(item)) return norm_rgb else: raise NotImplementedError('Data type: {} not understood'.format(type(rgb)))
b2eecc75cdae5d26714768a26d888bad18adb548
25,685
def justReturn(inval): """ Really, just return the input. Parameters ---------- input : anything Returns ------- input : anything Just return whatever you sent in. """ return inval
9e7ae43cf4aa2456e67cbe12f08e01a6fbc682a9
25,687
def find_dialogue_event(dialogue_event_name, dialogue_event_defs): """ Find a dialogue event by name in a list of dialogue event definitions. :param dialogue_event_name: the name of the dialogue event to look for. :param dialogue_event_defs: a list of dialogue event definitions. :return: the dialogue_event_def with matching name, or None. """ for dialogue_event_def in dialogue_event_defs: if dialogue_event_def.name == dialogue_event_name: return dialogue_event_def return None
114ec4a2ee426d789ebcf76eb46756194e108d19
25,688
def split_by_pred(pred, iterable, constructor=list): """Sort elements of `iterable` into two lists based on predicate `pred`. Returns a tuple (l1, l2), where * l1: list of elements in `iterable` for which pred(elem) == True * l2: list of elements in `iterable` for which pred(elem) == False """ pred_true = constructor() pred_false = constructor() for item in iterable: if pred(item): pred_true.append(item) else: pred_false.append(item) return pred_true, pred_false
dc0c43cd5d34869566f283d92038aaa4a53d5c62
25,689
from typing import List def selection_sort(arr: List[int]) -> List[int]: """ sort i items from the end, and decrease i until 1 """ # if [9,7,6,4,1], then i would enumerate as 4,3,2,1 for i in range(len(arr) - 1, 0, -1): # if i = 4, then j would enumerate as 0,1,2,3 largest_j = i for j in range(i): if arr[largest_j] < arr[j]: largest_j = j arr[largest_j], arr[i] = arr[i], arr[largest_j] return arr
e3792982518312b158695873af1dafac5b22a92d
25,690
def add_size(string): """Helper function for tag creation.""" return str(len(string)) + ':' + string
bc740c0e91b2bd5879f684b522dce5bf3dc1da27
25,691
from typing import Dict def _map_dtypes(sql_dtypes: Dict[str, str]) -> Dict[str, type]: """ Create mapping from SQL data types to Python data types. :param sql_dtypes: A mapping from the column names in a SQL table to their respective SQL data types. Example: {"ct_id": int(10) unsigned NOT NULL AUTO_INCREMENT} :type sql_dtypes: Dict[str, str] :return: A mapping from the column names in a SQL table to their respective Python data types. Example: {"ct_id": int} :rtype: Dict[str, type] """ types: Dict[str, type] = {} for key, val in sql_dtypes.items(): if "int" in val: types[key] = int elif any(dtype in val for dtype in ("float", "double", "decimal", "numeric")): types[key] = float else: types[key] = str return types
70360c323f9193f49de40acf37ddaa58010467f8
25,692
def crc16(data): """ Calculate an ISO13239 CRC checksum of the input buffer. """ m_crc = 0xffff for this in data: m_crc ^= ord(this) for _ in range(8): j = m_crc & 1 m_crc >>= 1 if j: m_crc ^= 0x8408 return m_crc
41739f0c1e38b3e4c579634bfbbde0ae128b8146
25,693
from typing import Sequence from typing import Any from typing import Counter def sequence_equals(a: Sequence[Any], b: Sequence[Any]) -> bool: # pylint: disable=invalid-name """ Returns a value indicating whether two sequences contain the same elements. More specifically, returns ``True`` if the two sequences are of the same size, contain the same distinct elements, and each element has equal appearance frequency on both collections. This method runs in time proportional to the size of the arguments and uses extra space that is also proportional to the size of the arguments. :param Sequence[Any] a: one collection :param Sequence[Any] b: the other collection :return: ``True`` if ``a`` and ``b`` contain the same elements, otherwise ``False`` :rtype: bool """ if len(a) != len(b): return False if a is b: return True counter_a: Counter = Counter(a) counter_b: Counter = Counter(b) return counter_a == counter_b
bb4bc84e7be1491f49f7e3212e34d755298178ea
25,694
def _get_gpus_by_instance_type(instances, instance_type): """ Get gpus for the given instance type from the pricing file. :param instances: dictionary conatining the content of the instances file :param instance_type: The instance type to search for :return: the number of GPU for the given instance type :raise CriticalError if unable to find the given instance or whatever error. """ try: gpus = int(instances[instance_type]["gpu"]) return gpus except KeyError: # If instance has no GPU, return 0 return 0
f47989f6d17fe185c15b742d8d1f3ac615a20240
25,697
from bs4 import BeautifulSoup def process_sitemap(s): """ :param s: Sitemap content in xml format :return: A list of URLs of all the web sites listed in site map """ soup = BeautifulSoup(s, features='html.parser') result = [] for loc in soup.findAll('loc'): result.append(loc.text) return result
a5bc184794284cba83705f418833093f1f7f7976
25,698
def backward_cross_entropy_loss(probabilities, labels): """ Compute the gradient of the cross entropy loss with respect to the probabilities. probabilities is of the shape (# classes) labels is of the shape (# classes) The output should be the gradient with respect to the probabilities. Returns: The gradient of the loss with respect to the probabilities. """ # *** START CODE HERE *** return -labels / probabilities # *** END CODE HERE ***
78c860d9acf6501826ff63fb24a9002dba616ae0
25,699
def pad_docket_by_year(y): """ year manipulation """ x = str(y) if len(x) == 7: return x # this might be an ought's 2000's case if len(x) == 6: return "0" + x # this might be an exactly 2000 case? if len(x) <= 5: return "00" + x return x
0a1db17338a50bff8fd6da4beb42516d431b78fd
25,700
def add_mixin(klass, *mixins): """ dynamically declare a new class with the name Extended{old_name} and return the inherited class object :param klass: the class to redeclare with mixins :param mixins: the mixins to use :return: object class """ new_name = 'Extended{}'.format(klass.__name__) return type(new_name, tuple(mixins), {})
6049bd876c5318d6b9a8f53e4ab8febd4368a802
25,701
import json def read_class_names(class_names_path: str): """Reads class names from text file. Supports .txt and .json. Args: class_names_path: `str`, path to json/txt file containing classes. Text file should contain one class name per line. Json file should contain only one dictionary, `Mapping[int, str]` """ names = {} if class_names_path.endswith('.txt'): with open(class_names_path, 'r') as data: for idx, name in enumerate(data): names[idx] = name.strip('\n') elif class_names_path.endswith('.json'): with open(class_names_path) as f: names = json.load(f) if type(list(names.keys())[0]) == str and type(list(names.values())[0]) == int: names = dict((v,k) for k,v in names.items()) else: raise NotImplementedError('File type is not .txt or .json, path %s' %class_names_path) if type(list(names.keys())[0]) != int: raise ValueError('Loaded dict %s has wrong key type %s' %( class_names_path, type(list(names.keys())[0]))) if type(list(names.values())[0]) != str: raise ValueError('Loaded dict %s has wrong value type %s' %( class_names_path, type(list(names.values())[0]))) return names
8808507206c491a297a1ad04d4a30f58b3977ca9
25,703
def validate_file_input(file: dict): """This fnx checks if file is correct type for code This fnx tales in a file and if it is not the one needed it returns an error and if it is it returns true. :param file:dictionary file :returns: str and error code or boolean and error code """ if not file: return "The input was not a correct file type", 400 return True, 200
0214b63abd91ec47e3722ed6b423b4eb57d7fe6f
25,704
import math def factorial(x): """Returns the factorial of x""" return math.factorial(x)
ad881ed82c3bc40fc726b15597563774286ba681
25,705
def pd_rolling_mean(series, window_size): """ Compute rolling mean on a Series with the given window_size and return only non-None rows, i.e. starning from row number window_size - 1 and until the end. """ rolling_mean = series.rolling(window_size).mean() return rolling_mean[window_size - 1:]
1f2b03d29b61c1f2d1bf1b98dfa92a9e852667a2
25,706
def bufsize_type_to_bufsize(bf_type): """ for a given bufsize type, return the actual bufsize we will read. notice that although 1 means "newline-buffered", we're reading a chunk size of 1024. this is because we have to read something. we let a StreamBufferer instance handle splitting our chunk on newlines """ # newlines if bf_type == 1: bufsize = 1024 # unbuffered elif bf_type == 0: bufsize = 1 # or buffered by specific amount else: bufsize = bf_type return bufsize
810e56c15871caa5df58518f586a721ae55b92ae
25,707
import os def PathExists(v): """Verify the path exists, regardless of its type.""" return os.path.exists(v)
36de7b06ca228e162244bb710f54d566e7707521
25,708
def kida_parser(kida_file): """ KIDA used a fixed format file so we read each line in the chunks they specify and use python built in classes to convert to the necessary types. NOTE KIDA defines some of the same reaction types to UMIST but with different names and coefficients. We fix that by converting them here. """ str_parse = lambda x: str(x).strip().upper() kida_contents = [ [3, {str_parse: 11}], [1, {"skip": 1}], [5, {str_parse: 11}], [1, {"skip": 1}], [3, {float: 10, "skip": 1}], [1, {"skip": 27}], [2, {int: 6, "skip": 1}], [1, {int: 2}], [1, {"skip": 11}], ] rows = [] with open(kida_file, "r") as f: f.readline() # throw away header for line in f: # then iterate over file row = [] for item in kida_contents: for i in range(item[0]): for func, count in item[1].items(): if func != "skip": a = line[:count] row.append(func(a)) line = line[count:] # Some reformatting required # KIDA gives CRP reactions in different units to UMIST if row[-1] == 1: # Amazingly both UMIST and KIDA use CRP but differently. # Translate KIDA names to UMIST if row[1] == "CRP": row[1] = "CRPHOT" # with beta=0 and gamma=1, the KIDA formulation of # CRPHOT reactions becomes the UMIST one row[10] = 1.0 elif row[1] == "CR": row[1] = "CRP" # UMIST alpha includes zeta_0 but KIDA doesn't. Since UCLCHEM # rate calculation follows UMIST, we convert. row[8] = row[8] * 1.36e-17 rows.append(row[:7] + row[8:-1]) elif row[-1] in [2, 3]: rows.append(row[:7] + row[8:-1]) elif row[-1] == 4: row[2] = "IONOPOL1" rows.append(row[:7] + row[8:-1]) elif row[-1] == 5: row[2] = "IONOPOL2" rows.append(row[:7] + row[8:-1]) return rows
e5c9484a9f4ccbc6549c7558ed5087f85ec2571a
25,709
import itertools def flatten(iterable): """Flatten the input iterable. >>> list(flatten([[0, 1], [2, 3]])) [0, 1, 2, 3] >>> list(flatten([[0, 1], [2, 3, 4, 5]])) [0, 1, 2, 3, 4, 5] """ return itertools.chain.from_iterable(iterable)
6860f65582952819ae56178cf97cd2eb2133bbf1
25,710
def build_url(url, store_name, key): """This method combine the different parts of the urls to build the url to acces the REST-API. Parameters ---------- url : str the base url store_name : str the name of the voldemort store key : str the url part which represents the key or keys Returns ------- str the combined url of the REST-API """ return "%s/%s/%s" % (url, store_name, key)
6cf0c8e86721b139907dda491d92e413a913ae38
25,711
import math def generateParetoScaledVariate(rand, alpha, beta): """ F(x) = 1 - (b/x)^a, x >= b """ return beta / (math.pow((1 - rand), (1/alpha)))
5a3aaa7407a37b9837d3eaab8c5162df017b6511
25,712
import os def read_config(fin): """Reads search parameters from file fin""" APP_DATA = os.path.dirname(os.path.abspath(__file__)) res = {} with open(os.path.join(APP_DATA, fin), 'rb') as f: for line in f: line = line.decode('utf-8').lower().strip() if line == '' or line[0] == '#' or line[-1] == '=': continue key, val = line.split('=') res[key.strip()] = val.strip() return res
6bcc857b51ba35068ddc226291216f94109bdb4b
25,714
def interpret_numbers(user_range): """ :param user_range: A string specifying a range of numbers. Eg. interpret_numbers('4-6')==[4,5,6] interpret_numbers('4,6')==[4,6] interpret_numbers('4,6-9')==[4,6,7,8,9] :return: A list of integers, or None if the input is not numberic """ if all(d in '0123456789-,' for d in user_range): numbers_and_ranges = user_range.split(',') numbers = [n for lst in [[int(s)] if '-' not in s else range(int(s[:s.index('-')]), int(s[s.index('-')+1:])+1) for s in numbers_and_ranges] for n in lst] return numbers else: return None
dc3a156bdb392e8a54edf95fc4182dfd5965010a
25,716
def square_sum(numbers): """ Complete the square sum function so that it squares each number passed into it and then sums the results together. :param numbers: an array of integers. :return: the sum of all the square elements in the array. """ return sum(x ** 2 for x in numbers)
a9827057e287711dfc449d9169e9b6da7fd0e1da
25,717
from typing import Any from typing import Optional from typing import Dict from typing import Iterable def get_attributes( obj: Any, remap: Optional[ Dict[ str, str, ] ] = None, attrs: Optional[Iterable[str]] = None, ) -> Dict[str, Any]: """Extract a list of attributes from a Reddit object.""" if not remap and not attrs: raise ValueError("Must provide remap or attributes.") attributes = {} if remap: for key, value in remap.items(): if a := getattr(obj, key): attributes[value] = a if attrs: for attribute in attrs: if a := getattr(obj, attribute): attributes[attribute] = a return attributes
3437f373d911ba845e0acf0601128479db594404
25,719
from datetime import datetime def same_date(date1: datetime, date2: datetime) -> bool: """Check whether two given datetime object are in the same date""" return date1.day == date2.day and date1.month == date2.month and date1.year == date2.year
27abc8d14dfdc7e02f004696ceed028aef27aa0e
25,720
import numpy def iplanck(radiance, wavelength=10.25): """ Calculate the inverse of Planck's function for a given thermal radiance and central wavelength Reference: https://ncc.nesdis.noaa.gov/data/planck.html Parameters ---------- wavelength : float Central wavelength used for the calculation [micrometers]. Default is 10.25um radiance : float Thermal radiance of the black body with a given temperature at a given wavelength [W/m2]. Returns ------- float: Object temperature [Kelvin] """ h = 6.6260755e-34 c = 2.9979246e8 k = 1.380658e-23 cwl = wavelength * 1e-6 return h * c / (k * cwl) / numpy.log((2.0 * h * c * c) / (radiance * 1e6 * numpy.power(cwl, 5)) + 1.0)
3205f0e18fd68daad5cf1a7f1a25151e51d0f036
25,724
def find_metadata_end(raw_file): """Extract the metadata from the raw file.""" lines = raw_file.split("\n") start = None end = None for idx, line in enumerate(lines): if "---" in line and start is None: start = idx elif "---" in line and start is not None: return idx
87ade1898d0a6e227dee6e6ba1495453e0bd8098
25,727
def newton(f, df, x, tol=1e-12, n=0): """ RECURSIVE Parameters ========== f : callable, function df : callable, derivative of f x : initial value tol : tolerance n : number of steps Returns ======= x : root of f n : number of steps """ xn = x - f(x) / df(x) return (xn, n+1) if abs(x-xn) < tol or abs(f(xn)) < tol \ else newton(f, df, xn, tol, n+1)
c8a4bc23025cd5cc6552da3c66ff46dabd5e54ec
25,728
def cli(ctx, dataset_id, published=False): """Make a dataset publicly available or private. For more fine-grained control (assigning different permissions to specific roles), use the ``update_permissions()`` method. Output: Current roles for all available permission types. .. note:: This method can only be used with Galaxy ``release_19.05`` or later. """ return ctx.gi.datasets.publish_dataset(dataset_id, published=published)
44bfafc3fc5a1dcd28c0439f31e757b57d158d8b
25,730
import torch def simple_nms(scores, nms_radius: int): """ Fast Non-maximum suppression to remove nearby points """ assert (nms_radius >= 0) def max_pool(x): return torch.nn.functional.max_pool2d( x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius) zeros = torch.zeros_like(scores) max_mask = scores == max_pool(scores) for _ in range(2): supp_mask = max_pool(max_mask.float()) > 0 supp_scores = torch.where(supp_mask, zeros, scores) new_max_mask = supp_scores == max_pool(supp_scores) max_mask = max_mask | (new_max_mask & (~supp_mask)) return torch.where(max_mask, scores, zeros)
21a60b7be5f029a5be3e6d9d56fa6a576b111e8d
25,731
import numpy def AdamBashforth2Corrector(predicted, calculated, actual, timeStep): """ Implementation of Adam-Bashforth 2 correctorMethod. """ output = numpy.zeros((actual.size, )) summation = output[0] = actual[0] for i in range(1, actual.size): summation += (predicted[i] - calculated[i-1])*(1/2)* timeStep output[i] = summation return output
9515fe42e3a125b939c69f8b1636139a0ca79ee1
25,732
import random def random_hero_image(): """Random the image from hero folder and return the location use in static tag""" return f"img/hero/{random.randint(1, 43)}.jpg"
968cdc5f7b8910b05f9716442f5d331843f4dfcb
25,734
import math def _cuda_line_ellipsoid_intersection(r0, step, semiaxes): """Calculate the distance from r0 to an axis-aligned ellipsoid centered at origin along step. r0 must be inside the ellipsoid. Parameters ---------- r0 : numba.cuda.cudadrv.devicearray.DeviceNDArray step : numba.cuda.cudadrv.devicearray.DeviceNDArray semiaxes : numba.cuda.cudadrv.devicearray.DeviceNDArray Returns ------- float """ a = semiaxes[0] b = semiaxes[1] c = semiaxes[2] A = (step[0] / a) ** 2 + (step[1] / b) ** 2 + (step[2] / c) ** 2 B = 2 * ( a ** (-2) * step[0] * r0[0] + b ** (-2) * step[1] * r0[1] + c ** (-2) * step[2] * r0[2] ) C = (r0[0] / a) ** 2 + (r0[1] / b) ** 2 + (r0[2] / c) ** 2 - 1 d = (-B + math.sqrt(B ** 2 - 4 * A * C)) / (2 * A) return d
96c768a0073459b682eade39304550b4d5a7ae6a
25,735
def safe_for_db_retry(f): """Enable db-retry for decorated function, if config option enabled.""" f.__dict__['enable_retry'] = True return f
824f66c2de035e69bb811e0aaf70a8df3b876c32
25,737
def get_targ_pairs(start_cond, end_cond): """Return boolean mask for paired target conditions. This function returns a mask indicating which start/end target conditions in the provided lists come from a paired set. For example, the entry for a a target condition 'T1 -> T5' will have a corresponding value of True if 'T5 -> T1' also exists in the data. Inputs: start_cond - List of strings indicating starting conditions end_cond - List of strings indicating ending conditions Returns: mask - List of boolean indicating whether each of the input elements is part of a pair """ # Define target pair and flipped target pair conditions cond = [''.join([s, e]) for s, e in zip(start_cond, end_cond)] filp_cond = [''.join([e, s]) for s, e in zip(start_cond, end_cond)] # If the flipped version of a target condition appears in the set of unique # target conditions, then the target has a matching condition uni_cond = set(cond) mask = [True if c in uni_cond else False for c in filp_cond] return mask
aa353dc9f5c17f210e1f82669d7fef24a43aa035
25,739
import argparse def make_parser(): """ Build the command line parser for the program. Returns ------- parser: ArgumentParser The parser """ parser = argparse.ArgumentParser(description='Program to compute tangles') parser.add_argument('-t', dest='dataset_name', action='store') parser.add_argument('-p', dest='preprocessing_name', action='store') parser.add_argument('-a', dest='agreement', action='store', type=int) parser.add_argument('-o', dest='percentile_orders', action='store', type=int) parser.add_argument('-s', dest='seed', action='store', type=int) # SBM parser.add_argument('--sbm_bs', dest='sbm_bs', nargs='+', type=int) parser.add_argument('--sbm_p', dest='sbm_p', action='store', type=float) parser.add_argument('--sbm_q', dest='sbm_q', action='store', type=float) # Gaussian + KNN parser.add_argument('--gauss_bs', dest='gauss_bs', nargs='+', type=int) parser.add_argument('--gauss_cs', dest='gauss_cs', nargs='+', type=float) parser.add_argument('--gauss_k', dest='gauss_k', action='store', type=int) # Mindsets parser.add_argument('--mind_sizes', dest='mind_sizes', nargs='+', type=int) parser.add_argument('--mind_questions', dest='mind_questions', action='store', type=int) parser.add_argument('--mind_useless', dest='mind_useless', action='store', type=int) parser.add_argument('--mind_noise', dest='mind_noise', action='store', type=float) # Questionaire parser.add_argument('--q_nb_samples', dest='q_nb_samples', action='store', type=int) parser.add_argument('--q_nb_features', dest='q_nb_features', action='store', type=int) parser.add_argument('--q_nb_mindsets', dest='q_nb_mindsets', action='store', type=int) parser.add_argument('--q_range_answers', dest='q_range_answers', nargs='+', type=int) # Preprocessing parser.add_argument('--nb_cuts', dest='nb_cuts', action='store', type=int) parser.add_argument('--lb_f', dest='lb_f', action='store', type=float) # ID parser.add_argument('--id', dest='unique_id', action='store', default=0) # Plotting parser.add_argument('--yes_plots', dest='no_plots', action='store_false', default=None) parser.add_argument('--no_plots', dest='no_plots', action='store_true', default=None) return parser
9e15ff5a6d93002e17357a451f8717e7252e2ac6
25,740
def fls(val: int, v6: bool) -> int: """Find last set - returns the index, counting from 0 (from the right) of the most significant set bit in `val`.""" # if b is zero, there is no first set bit if val == 0: return 0 # gradually set all bits right of MSB # this technique is called 'bit smearing' # if ipv6, max bit index we want to smear is 2^7=64, # otherwise it's 2^4=16 max_power_of_2 = 7 if v6 else 5 n = val | val >> 1 for i in range(1, max_power_of_2+1): n |= n >> 2**i # increment diff by one so that there's only # one set bit which is just before original MSB n += 1 # shift it so it's in the original position n >>= 1 # figure out the ordinal of the bit from LSB pos = 0 while (n & 1) == 0: n >>= 1 pos += 1 return pos
913127b72e3cab96423d5a7fcee8b5f5f1fb3f19
25,741
def water_evapotranspiration_flux(evap): """Water evapotranspiration flux ``evspsbl`` [mm]. Computes water evapotranspiration flux ``evspsbl`` from surface evaporation. """ return evap * (-1)
eb1233cfb26e8a08722e691cc3880fbdc37ebf13
25,743
def _canonize_validator(current_validator): """ Convert current_validator to a new list and return it. If current_validator is None return an empty list. If current_validator is a list, return a copy of it. If current_validator is another type of iterable, return a list version of it. If current_validator is a single value, return a one-list containing it. """ if not current_validator: return [] if isinstance(current_validator, (list, tuple)): current_validator = list(current_validator) else: current_validator = [current_validator] return current_validator
32c3df654e048c3551a1e665ff773b57e59524d6
25,744
def hexcolor_to_rgbcc(hexcolor): """ Converts an Hex color to its equivalent Red, Green, Blue Converse = hexcolor = (r << 16) + (g << 8) + b """ r = (hexcolor >> 16) & 0x7F g = (hexcolor >> 8) & 0x7F b = hexcolor & 0x7F return r, g, b
d8e58fc0e42bfa4bd987a0526c824735a80432ab
25,745
def ra_as_hours(ra_degrees, seconds_decimal_places=2): """ Takes Right Ascension degrees as float, returns RA string. TESTS OK 2020-10-24. :param ra_degrees: Right Ascension in degrees, limited to 0 through 360. [float] :param seconds_decimal_places: number of places at end of RA string (no period if zero). [int] :return: RA in hours/hex format. [string, or None if outside RA range] """ if (ra_degrees < 0) | (ra_degrees > 360): return None seconds_decimal_places = int(max(0, seconds_decimal_places)) # ensure int and non-negative. total_ra_seconds = ra_degrees * (3600 / 15) int_hours = int(total_ra_seconds // 3600) remaining_seconds = total_ra_seconds - 3600 * int_hours int_minutes = int(remaining_seconds // 60) remaining_seconds -= 60 * int_minutes if seconds_decimal_places > 0: seconds, fract_seconds = divmod(remaining_seconds, 1) int_fract_seconds = int(round(fract_seconds * 10 ** seconds_decimal_places)) else: seconds, fract_seconds, int_fract_seconds = round(remaining_seconds), 0, 0 int_seconds = int(seconds) if seconds_decimal_places > 0: if int_fract_seconds >= 10 ** seconds_decimal_places: int_fract_seconds -= 10 ** seconds_decimal_places int_seconds += 1 if int_seconds >= 60: int_seconds -= 60 int_minutes += 1 if int_minutes >= 60: int_minutes -= 60 int_hours += 1 if int_hours >= 24: int_hours -= 24 if seconds_decimal_places > 0: format_string = '{0:02d}:{1:02d}:{2:02d}.{3:0' + str(int(seconds_decimal_places)) + 'd}' else: format_string = '{0:02d}:{1:02d}:{2:02d}' ra_string = format_string.format(int_hours, int_minutes, int_seconds, int_fract_seconds) return ra_string
e23cce78633cdb4d182babe095cf13b351ddf68f
25,747
def instrumentState(actor, cmd, user, instrument=None, state="up"): """set the state of an instrument""" if state == "down": actor.instrumentDown[instrument] = True for a in actor.activeAlerts: if instrument in a.instruments: a.disable(user) else: actor.instrumentDown[instrument] = False for a in actor.disabledAlerts: if not a.instDown: a.enable() actor.broadcastActive() actor.broadcastDisabled() actor.broadcastAll() actor.broadcastInstruments() cmd.setState(cmd.Done, '{} set to {}'.format(instrument, state)) return False
ae1db62cd4ccde1bd8929de4f158973ea4058799
25,749
def str_block(block): # pragma: nocover """ Get title based on block type The default `__str__` methods do not operate within migrations :return: model title """ if block.type == 'static': return '-'.join((block.type, block.node.title)) elif block.type == 'menu': return '-'.join((block.type, block.menu_item.title)) elif block.type == 'signal': return '-'.join((block.type, block.signal)) return block.type
5eaa2a5a4329ba2f3a064dfdc4c2ab8f6ac5bba9
25,751
def add(x: int, y: int): """A function to add stuff. :param x: A number, x :param y: A number, y :return: A number, x + y """ return x + y
3358800af03e094463b22296b393f6e935bf154c
25,752
def to_title(str): """returns a string formatted as a title""" return str.replace("_", " ").capitalize()
13336936174445f61d5209ce1fabd19d7ae66fa2
25,753
def _read_count_normalize(X): """Read depth normalization by sample. Assumes samples are columns and guides are rows.""" return (X / X.sum(axis=0)) * 1e6
799b5b7b4c207a6e89da68775c8f708acd1feb7f
25,754
def compFirstFivePosInt(iset={1, 2, 3, 4, 5}): """ task 0.5.5 a comprehension over the given set whose value is the set consisting of the squares of the first five positive integers """ return {2**x for x in iset}
472e8e4d36d34ec47429be15c65c45341ab3f3a8
25,755
import struct from functools import reduce def fix(d): """Turn mono data into stereo""" line=d n=2 return ''.join([line[i:i+n]*2 for i in range(0, len(line), n)]) shorts = struct.unpack('<' + 'h' * (len(d)/2), d) dbl = reduce(lambda x,y: x+y, zip(shorts, shorts)) return struct.pack('<' + 'h' * len(d), *dbl)
4a644d151d67f851280911680495ba32df059c61
25,756
def flat_cell(cell): """ flat dictionarys in celss """ if isinstance(cell, dict): value_cell = list(cell.values())[0] else: value_cell = cell return value_cell
d6a3e1bdcc1416c078759a62c6f5af1bb3768509
25,757
def _mock_kwargs_from_env(**kwargs): """ Method to mock docker.utils.kwargs_from_env method. """ return {'base_url': None}
ffc7f994efbf08b154e23378e1f7231227399a0b
25,758
def assignOrder(order): """ Static method that adds the order attribute to a function. :param order: Order in which the function will be called """ def dstFunc(srcFunc): srcFunc.order = order return srcFunc return dstFunc
d8f15e0e21c227a000b1d1e2d4179e5d9b2eed1f
25,759
def partial_positionals(func, fix_args, **fix_kwargs): """Like functools.partial, but with positionals as well""" def wrapper(*args, **kwargs): arg = iter(args) return func( *( fix_args[i] if i in fix_args else next(arg) for i in range(len(args) + len(fix_args)) ), **{**fix_kwargs, **kwargs}, ) return wrapper
a3efcfb126e506656f87d36d781a8a0b4f512083
25,760
import os def load_required(key: str) -> str: """ Load value from env, fails if not found. Args: key: key to lookup Returns: the found value Raises: EnvironmentError: key not found """ value = os.getenv(key, None) if value is None: raise EnvironmentError(f"Missing envioroment varible {key!r}") return value
26f02615a29b72025305b1887b96b0a990cc1501
25,761
def get_key_value_from_tokens(tokens): """ Converts a list of tokens into a single key/value pair. :param tokens: The tokens, as strings. :type tokens: [str] :returns: (key, value) :rtype: (string, string) """ key_tokens = [] value_tokens = [] found_equals_sign = False for token in tokens: # Mark and skip the equals sign. if token == "=": found_equals_sign = True continue if not found_equals_sign: key_tokens.append(token) else: value_tokens.append(token) # Combine the tokens into a string if len(key_tokens) == 0: key = None else: key = "".join(key_tokens) if len(value_tokens) == 0: value = None else: value = "".join(value_tokens) return (key, value)
3af0003992a07fb8daf70c17cbaa3a414a59a9e0
25,763
def attributes_present(variables, attr_map): """Returns a list of the relevant attributes present among the variables. """ return [attr for attr in attr_map if any(v.attributes[attr] for v in variables)]
ade75f103ede7f74c8b67cdaf23497d1983169eb
25,764
def is_consecutive(l): """ Determines whether a list contains consecutive numbers. If it does, the sum of the numbers should be the same as n * (min + max) / 2 (where n is num elements) :param l: A set of numbers :return: True or False """ total = sum(l) mathsum = len(l) * (min(l) + max(l)) / 2 return total == mathsum
ec74d48eead8c3bf9eb300ee2135968eaac65d48
25,765
import requests import json def number_of_subscribers(subreddit): """api call to reddit to get the number of subscribers """ base_url = 'https://www.reddit.com/r/' headers = { 'User-Agent': 'Mozilla/5.0 (Windows; U; Windows NT 5.1; de; rv:1.9.2.3) \ Gecko/20100401 Firefox/3.6.3 (FM Scene 4.6.1)' } # grab info about all users url = base_url + '{}/about.json'.format(subreddit) response = requests.get(url, headers=headers) resp = json.loads(response.text) try: # grab the info about the users' tasks data = resp.get('data') subscribers = data.get('subscribers') except: return 0 if subscribers is None: return 0 return int(subscribers)
05964f0f8a8b3c1901b5ad7667fbbeb19f25ff78
25,766
def parse_squad(dataset): """ Parses SQUAD database into more readable format. In this case I only care about question/answers pairs in order to make a seq2seq model that would generate questions out of a paragraph. Inputs: dataset: squad dataset in json format Returns: squad_json: parsed squad dataset in json format """ total_topics = 0 total_questions = 0 squad_json = [] # Iterate through every topic in the dataset for topic in dataset: total_topics += 1 # Iterate through every text passage in the topic for passage in topic['paragraphs']: # Iterate through every question/answer pairs in the passage for qas in passage['qas']: total_questions += 1 text_question_pair = {} # Append the title text_question_pair['topic'] = topic['title'] # Append the text paragraph text_question_pair['paragraph'] = passage['context'] # Append the question text_question_pair['question'] = qas['question'] # Iterate through available answers answers = [] for answer in qas['answers']: answers.append(answer['text']) # And append them all together text_question_pair['answers'] = answers # Append found dictionary to the full parsed dataset array squad_json.append(text_question_pair) print('Found ' + str(total_topics) + ' topics in total.') print('Found ' + str(total_questions) + ' questions in total.') return squad_json
15971b1bd8dd241af5e458fafe363b8859303e4f
25,767
import glob import os def get_file_fullname(searching_root, file_name): """ :param searching_root: directory in which file is going to be searched :param file_name: name of a file without extension :return: file name with it's extension """ output = glob.glob(os.path.join(searching_root, file_name + '.*')) if output: choice = output[0] dots = output[0].count('.') for possible in output: if possible.count('.') < dots: dots = possible.count('.') choice = possible return choice output = glob.glob(os.path.join(searching_root, file_name)) if output: return output[0] output = glob.glob(os.path.join(searching_root, file_name + '.local.*')) if output: choice = output[0] dots = output[0].count('.') for possible in output: if possible.count('.') < dots: dots = possible.count('.') choice = possible return choice output = glob.glob(os.path.join(searching_root, file_name + '.local')) if output: return output[0]
01ef995f4396bd843b073ca9157f24bc45a35fce
25,769
def get_current(isamAppliance): """ Get permitted features for current user """ return isamAppliance.invoke_get("Get permitted features for current user", "/permissions/v1")
60f540471e45813c8fddab3a24726915f76cf9b9
25,770
import os def _get_ssh_config_file(opts): """ :return: Path to the .ssh/config file - usually <home>/.ssh/config """ ssh_config_file = opts.get("ssh_config_file") if not os.path.isfile(ssh_config_file): raise IOError("Cannot find SSH config file") if not os.access(ssh_config_file, os.R_OK): raise IOError("Cannot access SSH config file: {}".format(ssh_config_file)) return ssh_config_file
f0edb7ad1e716d60fc28d49b3c0c42598015d00a
25,772
def nbi_growth(nbi, nvi, nb, nb0, nv, C, f, R, g, c0, alpha, e, pv, eta): """ Single clone growth rate for bacteria. Inputs: nbi : 1D vector in time of bacteria clone sizes nvi : 1D vector in time of corresponding phage clone sizes nb : 1D vector in time of total bacteria population size nb0 : 1D vector in time of number of bacteria without spacers nv : 1D vector in time of total phage population size C : 1D vector in time of total nutrients f, g, c0, alpha, e, pv, eta : simulation parameters Output: s : 1D vector of phage clone growth rate per bacterial generation (not multiplied by population size) """ F = f*g*c0 r = R*g*c0 s = g*C - F - r - alpha*pv*(nv - e*nvi) + alpha*eta*nb0*nvi*(1-pv)/nbi return s/(g*c0)
b647bdbdda973407854e59ab98b9d290d00a2961
25,773
def strip_if_first_match(data): """ If we have a keyword and we start with that keyword in the text, remove the match. """ def maybe_strip_match(item): for key, value in item.items(): value_str = str(value).lower() key_str = key.lower() if not value_str.startswith(key_str): yield (key, value) continue index = value_str.find(key_str) + len(key_str) new_value = value[index:] # optionally remove : and trailing space if new_value and new_value[0] == ":": new_value = new_value[1:] while new_value and new_value[0] == " ": new_value = new_value[1:] yield (key, new_value) return dict(maybe_strip_match(data))
8205d28890d2f0cda73ec8b63b9cbb6a52e522c8
25,774
def write_aed2_eco_configs(config_dict, out_path, config_type): """Write zoo / pathogen / phyto configs""" block_name = '&'+config_dict.keys()[0]+"\n" first_level = config_dict.keys()[0] second_level = config_dict[first_level].keys()[0] real_keys = config_dict[first_level][second_level].keys() if config_type != 'zoo': first_line_prefix = 'pd = ' else: first_line_prefix = '' with open(out_path, 'w') as out_handle: out_handle.write(block_name) out_handle.write(first_line_prefix) for idx, rk in enumerate(real_keys): real_value = config_dict[first_level][second_level][rk] real_string = ",\t".join(real_value) + "\n" if idx != 0 and config_type != 'zoo': out_handle.write("\t"+real_string) else: out_handle.write(real_string) out_handle.write("/") return 0
fa077e0fb9a37009bb8df1767ca343be70b90aa6
25,775
import copy def chain(*renderables): """Chains renderable objects pgmock allows renderable objects (selectors and patches) to be chained to one another like so:: pgmock.statement(0).table('table').patch(...) Sometimes this syntax is undesirable, especially when working with multiple patches. This function essentially implements that syntax. For example, calling:: pgmock.patch('patch1').patch('patch2') is equivalent to calling:: chain(pgmock.patch('patch1'), pgmock.patch('patch2')) Raises: `TypeError`: When no renderables are supplied `SelectorChainingError`: When the selectors are not compatible for chaining """ if not renderables: # pragma: no cover raise TypeError('At least one renderable must be given to chain()') chained = copy.deepcopy(renderables[0]) for renderable in renderables[1:]: chained.chain(renderable) return chained
6957a677aaf2d1a931613b14517378a18c33bc7c
25,776
import json def load_ee_params(filepath): """ Loads parameters for a posteriori error estimation for the PINN from the json file provided via param filepath. returns - K: as used for trapezoidal rule - mu: smoothing parameter for delta function - L_f: Lipschitz constant or spectral abscissa - delta_mean: average deviation of approximated ODE/PDE from target ODE/PDE """ with open(filepath, "r") as jsonfile: data = json.load(jsonfile) jsonfile.close() return float(data['K']), float(data['mu']), float(data['L_f']), float(data['delta_mean'])
9c226d39e1c14d66ff1da1ea4afd99a5a9498e7a
25,777
import math def euclidean_distance(xyz1, xyz2): """ Simple function for calculating euclidean distance between two points. """ dist = [(a - b)**2 for a,b in zip(xyz1, xyz2)] return math.sqrt(sum(dist))
eb14ec300a4e4eab65a725b8d6b013f33ca09ae5
25,778
def contenttypes_uuid(obj): """ function for Issue models to generate the content_str by models app label + model name and object primary key easy to filter in queryset """ return f"{obj._meta.app_label}|{obj._meta.model_name}|{obj.pk}"
db5bea9dcfd6f384591e336902ae8fc0ed379d1f
25,785
import functools import traceback def wrap_exceptions(target_exception): """ Wrap exceptions into generic exception (for RPC transport) """ # def _decorator(func): _target_exception = target_exception # @functools.wraps(func) def _decorated(*_args, **_kvargs): try: return func(*_args, **_kvargs) except BaseException as exception_data: if isinstance(exception_data, _target_exception): raise exception_data raise _target_exception(traceback.format_exc()) # return _decorated # return _decorator
3cc0ffaf8b87ef44f05702e9776aa327c9582d7b
25,787
import fnmatch import click def _match_pattern(what, items, pattern): """ Match given pattern against given items. Parameters ---------- what: str Describes what is filterd. items: Iterable[str] Items to be filtered include_pattern: str Comma separated items which should be included. Can contain glob patterns. """ result = set() for part in pattern.split(","): found = set(fnmatch.filter(items, part.strip())) if not found: raise click.UsageError( "Could not find {what} {part}".format(what=what, part=part) ) result |= found return result
9688e8677d2206876d93e36abe17a336ea2be92a
25,788
def move_row_to_bottom(i,arrayIn): """" Moves a specified row (just one) to the bottom of the matrix, then rotates the rows at the bottom up. For example, if we had a matrix with 5 rows, and we wanted to push row 2 to the bottom, then the resulting row order would be: 1,3,4,5,2 """ arrayOut = arrayIn.copy() numRows = arrayOut.shape[0] # Push the specified row to the bottom. arrayOut[numRows-1] = arrayIn[i,:] # Now rotate the bottom rows up. index = 2 while (numRows-index) >= i: arrayOut[numRows-index,:] = arrayIn[numRows-index+1] index = index + 1 return arrayOut
890d77cf619eb59473dce5e4cd5f14f2aa1f78cf
25,790
def n_gal(zc, params): """ Number density of detected HI galaxies in a given redshift bin, n ~ Mpc^-3. """ return 1e-4
c4ed3f99e646f92c971ae7e46b8880504a16a099
25,791
def get_shipping_voucher_discount(voucher, total_price, shipping_price): """Calculate discount value for a voucher of shipping type.""" voucher.validate_min_amount_spent(total_price) return voucher.get_discount_amount_for(shipping_price)
be3538f219d219d0ec7c4d343d0dee5a62573bfc
25,792
def _define_tabledict_keys(header, fields, separator): """ Define the keys for the tabledict dictionary. Note: this function is only used by parse_table_from_file(). :param header: header string. :param fields: header content string. :param separator: separator character (char). :return: tabledict (dictionary), keylist (ordered list with dictionary key names). """ tabledict = {} keylist = [] if not header: # get the dictionary keys from the header of the file for key in fields: # first line defines the header, whose elements will be used as dictionary keys if key == '': continue if key.endswith('\n'): key = key[:-1] tabledict[key] = [] keylist.append(key) else: # get the dictionary keys from the provided header keys = header.split(separator) for key in keys: if key == '': continue if key.endswith('\n'): key = key[:-1] tabledict[key] = [] keylist.append(key) return tabledict, keylist
6c41aa138597ca5b0915df0409381ea3caa17d94
25,793
import math def _calc_degrees(opposite, adjacent): """ Calculates angle in degrees with inverse tangens based on length of opposite and adjacent sides """ return math.degrees(math.atan(abs(opposite) / abs(adjacent)))
28b0a49194ad2d95f377960b349cde03a762049d
25,795
def read_gene_subsets2(fns): """Read gene names from a single txt file or multiple files. Only unique gene names are kept""" names=[] for fn in fns: name=[] for line in open(fn,'r'): try: name.append(line.strip().split()[0]) except IndexError: # sometimes null line was parsed and null array is returned, in this case, just pass pass # include only uniq ids name = list(set(name)) names.append(name) return names
6230d155cf9efb6bde2204983591f20be9a0a4f0
25,797
def pv_efficiency(eta_PVref, beta, NOCT, NOCT_ref, NOCT_sol, T_amb, I): """ Calculates time resolved PV efficiency [-] :param eta_PVref: Reference PV efficiency under NOCT [-] :param beta: Temperature coefficient [-] :param NOCT: Nominal operating cell temperature [deg C] :param NOCT_ref: Reference temperature [deg C] :param NOCT_sol: Reference irradiance [W/m2] :param T_amb: Ambient temperature [deg C] :param I: Irradiance on panel [W/m2]. 8760 time series :return: Time resolved PV efficiency [-], 8760 entries """ horizon = len(T_amb) etapv = [0.0] * horizon for i in range(0, horizon): Tpv = T_amb[i] + ((NOCT - NOCT_ref) / NOCT_sol) * I[i] etapv[i] = eta_PVref * (1 - beta * (Tpv - 25)) return etapv
7b9c34811c0a17d734f1b707789fa188ab15014b
25,798
def is_tonghao(num1, num2): """用于判断两个数是否同号""" is_both_positive = num1 > 0 and num2 > 0 is_both_negative = num1 < 0 and num2 < 0 return is_both_positive or is_both_negative
abca78a01970feec3138c336535421bcb9774cbd
25,799
def getSectionByName(sections, name, key="name", default=None): """identify the first section with matching key among 'sections'""" for s in sections: if name == s.get(key): return s return default
0bcdb02956fbc97ed63851ae33c0ffc138d3c9b4
25,801
def ip_exists(ip_address, client): """Determines whether an IP address already exists in database Args: ip_address client: pymongo client used to connect to mongodb database Return: exists: boolean indicating whether an IP address exists in database """ user_collection = client.db.user exists = bool(user_collection.find_one({'ipAddress': ip_address})) return exists
91ef98dbda81cb7272ec5641e80d5176cb0c3af6
25,805
from typing import List def ibo1_to_bio(sequence_label: List[str]) -> List[str]: """ IBO1 的序列标签格式转换成 bio 格式。ibo1格式是指 "I-Label" 作为一个序列的开始, 直到遇到 O。 "B-Label" 是指连续 "I-Label" 是多个 span 的时候,除了第一个span,其他都是 "B-Label"。 另外 BIO 的格式也兼容,比如 "B-Lable", "I-Label" 这种BIO格式也是正确的。 例子如下: "I-Label1 I-Label1 O I-Label1 I-Label1 I-Label2 I-Label2 O I-Label1 I-Label1 B-Label1 I-Label1 O B-Label I-Label" 这里包含的spans: "[I-Label1 I-Label1] O [I-Label1 I-Label1] [I-Label2 I-Label2] O [I-Label1 I-Label1] [B-Label1 I-Label1] O [B-Label I-Label"] :param sequence_label: :return: """ bio: List[str] = list() idel_state = 0 span_state = 1 state = idel_state for i, label in enumerate(sequence_label): if state == idel_state: if label == "O": state = idel_state bio.append(label) elif label[0] == "I": state = span_state # 将 I-label 转换成 B-label b_label = "B" + label[1:] bio.append(b_label) elif label[0] == "B": # 这种情况是 BIO 标注,认为是对的 state = span_state bio.append(label) elif state == span_state: if label == "O": state = idel_state bio.append(label) elif label[0] == "I": if bio[-1][1:] == label[1:]: # 与先前的相同,也就是 I-label1 I-label1 的情况,所以直接append即可 state = span_state bio.append(label) else: # 与先前不一样说明是新的,也就是 I-label1 I-label2 的情况 state = span_state b_label = "B" + label[1:] bio.append(b_label) elif label[0] == "B": # 这是新的了 也就是 I-label1 B-label1 情况 state = span_state bio.append(label) else: raise RuntimeError(f"非法的状态: {state}") return bio
3d7b870a570e8cedea3f7a8e91faaa197d41a17b
25,806