content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
import six def to_bytes(s): """Convert the string s to a unicode encoded byte string. Returns: The converted byte string """ if isinstance(s, bytes): return s elif isinstance(s, six.text_type): return s.encode('utf-8') return s
38523fd9a414903f1b6e561eec365eb48153f291
25,535
def parse_article(article): """ Parse article preview on newspage to extract title, link and time Parameters ---------- article : bs4.tag article tag to be parsed Returns ------- title, link, time : Tuple a tuple containing title, link and time of the article """ title = article.a.text link = article.a.get("href") time = " ".join([x.text for x in article.find_all("span")]) return title, link, time
cb00db924478e6e916caf5f6420ff7f742246737
25,536
def validate_comma_seperated_list(input): """Split the input string into an array. """ return input.split(',')
bcc524d78eeebd47739dc29a8b0ed3300309be31
25,537
def diffraction_scale_biconvex(paraxial_focus, lens, wavelength, rmax): """ Calculates the diffraction scale for a biconvex lens. """ diff_scale = (paraxial_focus - lens._z1 + lens._sep/2)*(wavelength*1e-6) /( 2*rmax) return diff_scale
225a254cb78fdd5604eef618627612f7355aaf24
25,538
import ast def get_function_class(module): """ get function from class module. """ funcs = [] for stm in module.body: # class define if isinstance(stm, ast.ClassDef): for stm2 in stm.body: if isinstance(stm2, ast.FunctionDef): funcs.append((stm2, stm.name)) return funcs
c6e3a8b415051e0ade661b4a55befa64f5770c95
25,539
def join_provenances(provenance1, provenance2): """ Given two provenances (lists of id strings) join them together """ # Use a dict to join them joined = dict( (p, True) for p in provenance1 ) joined.update( (p, True) for p in provenance2 ) return list(joined.keys())
3736c809f0cb76e5c31b8082f8bb9c3b9f594857
25,540
import typing def mark(foo=None, *, markers: typing.Iterable[str]): """ Add some markers to foo :param foo: any object :param args: some str markers :return: """ def deco(_foo): for x in markers: try: setattr(_foo, x, True) except AttributeError: raise return _foo return deco(foo) if foo is not None else deco
1825118a74994bfb11e42ebab1b95815514c4269
25,541
def get_workspace() -> str: """ get_workspace returns the TorchX notebook workspace fsspec path. """ return "memory://torchx-workspace/"
396b3f3444357d8beb2bad0e1462bee9e663cd8d
25,543
from typing import Dict from typing import Any def valid_config(config: Dict[str, Any]) -> bool: """ Determine whether or not given configuration fits requirements. """ valid = True # Test for requirements on num_minibatch, rollout_length, and num_processes detailed # in meta/storage.py (in this file, these conditions are checked at the beginning of # each generator definition, and an error is raised when they are violated) if ( config["architecture_config"]["recurrent"] and config["num_processes"] < config["num_minibatch"] ): valid = False if not config["architecture_config"]["recurrent"]: total_steps = config["rollout_length"] * config["num_processes"] if total_steps < config["num_minibatch"]: valid = False return valid
c7262fe497af00be79ccfa3c152f4d418c92d7ec
25,544
def impurity_decrease(y, membership, membership_true, membership_false, criterion): """ A general function that calculates decrease in impurity. Parameters ---------- y : array-like of shape (n_samples,) An array of labels. membership : array-like of shape (n_samples,) The old membership of each label. membership_true : array-like of shape (n_samples,) The new membership of each label. membership_false : array-like of shape (n_samples,) The complement of new membership of each label. criterion: callable The impurity function Returns ------- float : decrease of impurity measured by given criterion """ information_gain_ = criterion(y, membership) \ - (membership_true.sum() / membership.sum()) * criterion(y, membership_true) \ - (membership_false.sum() / membership.sum()) * criterion(y, membership_false) return information_gain_
3f01757bbd32b7c711ba0ed11e0824620f71b055
25,545
def invalid_refresh_token(refresh_token): """ Невалидный refresh-токен. Генерируется на основе валидного токена путем удаления одного символа. """ return refresh_token[:-1]
912a60758b46c4f892042a9cf2697e329cbc19f6
25,546
def search_by_language(s, language=None): """ Filter results by language Options: "_EN" : English, "_ES" : Spanish etc. """ url = 'https://enregistreur.prosodie.com/odigo4isRecorder/' \ 'EntryPoint?serviceName=CriteresMessagesHandler&lang=en' s.driver.get(url) if language: s.driver.ensure_element_by_name('criteres').send_keys(language) s.driver.ensure_element_by_id('button-1009').click() return s
5ee369f819780938c0ad4805b45f443c78473b75
25,547
def get_household_income_columns(): """Returns column names of SAIPE fields and their descriptions.""" return { 'COUNTY': 'County FIPS Code', 'GEOCAT': 'Summary Level', 'GEOID': 'State+County FIPS Code', 'SAEMHI_LB90': 'Median Household Income Lower Bound for 90% Confidence Interval', 'SAEMHI_MOE': 'Median Household Income Margin of Error', 'SAEMHI_PT': 'Median Household Income Estimate', 'SAEMHI_UB90': 'Median Household Income Upper Bound for 90% Confidence Interval', 'SAEPOVALL_LB90': 'All ages in Poverty, Count Lower Bound for 90% Confidence Interval', 'SAEPOVALL_MOE': 'All ages in Poverty, Count Margin of Error', 'SAEPOVALL_PT': 'All ages in Poverty, Count Estimate', 'SAEPOVALL_UB90': 'All ages in Poverty, Count Upper Bound for 90% Confidence Interval', 'SAEPOVRTALL_LB90': 'All ages in Poverty, Rate Lower Bound for 90% Confidence Interval', 'SAEPOVRTALL_MOE': 'All ages in Poverty, Rate Margin of Error', 'SAEPOVRTALL_PT': 'All ages in Poverty, Rate Estimate', 'SAEPOVRTALL_UB90': 'All ages in Poverty, Rate Upper Bound for 90% Confidence Interval', 'SAEPOVU_ALL': 'All Ages in Poverty Universe', 'STABREV': 'Two-letter State Postal abbreviation', 'STATE': 'FIPS State Code', 'YEAR': 'Estimate Year', }
eccfbed620678f2d9bf97a9caad3e2211c3bfc07
25,548
import os def newer(src, dst): """Returns whether the first path is newer than the second""" if not os.path.exists(dst): return True else: return os.stat(src).st_ctime > os.stat(dst).st_ctime
5324847852454d2759f869a64e3d7fe3cc727f9d
25,549
def tamiz3(m): """Algoritmo alternativo""" found, numbers, i = [], [], 2 while (i <= m): if i not in numbers: found.append(i) for j in range(i, m+1, i): numbers.append(j) i += 1 return found
00cc77fddaef6885787c0ff2702a2e4291f96b32
25,550
def down_sample(x, sample_rate, k=2): """ Performs down sampling on the audio signal. It takes ever kth sample of the signal and returns the resulting audio signal and the resulting sample rate. :param x: the audio signal of shape N x C, where N is the number of samples, and C is the number of channels :param k: the number of every k samples to return :return: a tuple of sample rate and the audio signal down-sampled to include ever kth sample. """ if len(x.shape[0]) < 2: return sample_rate / k, x[::k] return sample_rate / k, x[:, ::k]
c688acabd77289f074a0a95eb1a315edb58568d0
25,551
def _check_for_setattr(instance): """ Check if there's any setattr method inside an instance. If so, return True. """ module = instance.get_parent_until() try: stmts = module.used_names['setattr'] except KeyError: return False return any(instance.start_pos < stmt.start_pos < instance.end_pos for stmt in stmts)
9675a9236ff3de158e0f0149981bcd63f9beedd8
25,552
def blob_exists(storage_client, bucket_name, filename): """Checks if a file exists in the bucket.""" bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(filename) return (blob.exists())
4f5fa78328401930ce6399a5cea6cdcecc10a173
25,553
def check_legal_input(user_input, input_type): """ :param user_input: Self explanatory :param input_type: Either 'lang' for language, 'semester' etc :return: The user input is returned as is """ legal_dict = { 'lang': ['he', 'en'], 'semester': [str(num) for num in range(1, 4)], 'urls': ['y', 'n'] } if user_input not in legal_dict[input_type]: exit('Illegal input!') return user_input
ebeddecb2b2393116978e5bc2db6c9ebc35ef0b0
25,554
def get_int_from_prompt(msg, default): """ Return integer from prompt input Args: :msg: (str) Message to print :default: (int) Default value Returns: :value: (int) Integer from prompt """ while True: value = input(msg) if not value: return default else: try: value = int(value) return value except ValueError: print("Invalid input, try again...")
ea5c9988a25e646e81e966a10d07dffa6cd93eb2
25,555
def extract_actions_from_category(json_object): """ returns the actions from a json representation Args: @param json_object: JSON representation """ if json_object.has_key('actions'): items = json_object['actions'] actions = "" for item in items: actions += item + "," actions = actions[:-1] else: actions = None return actions
f71a150e2e89f3e15abfef61b541f460f479228b
25,556
import torch def a2c_policy_loss(logps: torch.Tensor, advs: torch.Tensor) -> torch.Tensor: """ Loss function for an A2C policy. $-(logp(\pi(a|s)) * A_t)$ Args: - logps (torch.Tensor): Log-probabilities of selected actions. - advs (torch.Tensor): Advantage estimates of selected actions. Returns: - a2c_loss (torch.Tensor): A2C loss term. """ a2c_loss = -(logps * advs).mean() return a2c_loss
294ae812a3f1d0363fb0ac4f292113e9db521c51
25,557
import random def augment_volume(wav, rate_lower=0.7, rate_upper=1.3): """ Increase or decrease a waveform's volume by a randomly selected rate. :param wav: a waveform. :param rate_lower: lower bound of rate :param rate_upper: upper bound of rate :return: """ return wav * random.uniform(rate_lower, rate_upper)
5b0934a20423d744a8a5d63ad46846c0e14444d9
25,558
def do_something(x): """ Do something so we have something to test. >>> do_something(3) 16 >>> do_something(7) 24 """ return (x+5)*2
d3185823bb098929f1330e7f477beff04dc2eced
25,559
import os def extract_labels(files): """Extract the labels as the directory in which the files reside.""" # Initialise result result = list() # Loop over all files for file in files: # Extract directory name result.append(os.path.split(os.path.dirname(file))[-1]) # Return result return result
0fb2dca0314d80e3e6f67694343a22f7377218ff
25,560
import requests import json import logging def claim_intersight_device(AUTH, CLAIM_CODES, CLAIM_CONFIG): """ Claim Device to Intersight """ response = requests.post( CLAIM_CONFIG['intersight_base_url'] + 'asset/DeviceClaims', data=json.dumps(CLAIM_CODES), auth=AUTH ) logging.info(response.text) response_json = response.json() logging.info(response_json["Device"]["Moid"]) return response_json["Device"]["Moid"]
135036a3da7b606da50b47d436604d2ac68b36e2
25,561
import imp def LoadExtraSrc(path_to_file): """Attempts to load an extra source file, and overrides global values. If the extra source file is loaded successfully, then it will use the new module to override some global values, such as gclient spec data. Args: path_to_file: File path. Returns: The loaded module object, or None if none was imported. """ try: global GCLIENT_SPEC_DATA global GCLIENT_SPEC_ANDROID extra_src = imp.load_source('data', path_to_file) GCLIENT_SPEC_DATA = extra_src.GetGClientSpec() GCLIENT_SPEC_ANDROID = extra_src.GetGClientSpecExtraParams() return extra_src except ImportError: return None
32ec066cd79d928528385aae3cc88272f4ccec32
25,563
from typing import OrderedDict def polymorphic_child_forms_factory(formset_children, **kwargs): """ Construct the forms for the formset children. This is mostly used internally, and rarely needs to be used by external projects. When using the factory methods (:func:`polymorphic_inlineformset_factory`), this feature is called already for you. """ child_forms = OrderedDict() for formset_child in formset_children: child_forms[formset_child.model] = formset_child.get_form(**kwargs) return child_forms
b647d0936b7c9d06bdb1bd6aadf767c0881f2e41
25,566
def get_top_k_results(sorted_data): """ Compute the top K precisions. Args: sorted_data: A numpy array of sorted data. Returns: A list of top K precisions. """ results = [] for k in [10, 20, 50, 100, 200]: results.append("P@" + str(k) + ": " + str(sorted_data[:k][:, -1].sum())) return results
700b8fff9ded8b46bb45e3054714a7422b03bba6
25,567
def get_slurm_script_gpu(train_dir, command, time): """Returns contents of SLURM script for a gpu job.""" return """#!/bin/bash #SBATCH -N 1 #SBATCH --ntasks-per-node=1 #SBATCH --ntasks-per-socket=1 #SBATCH --gres=gpu:tesla_p100:1 #SBATCH --cpus-per-task=8 #SBATCH --mem=128000 #SBATCH --output={}/slurm_%j.out #SBATCH -t {} module load anaconda3 cudatoolkit/10.0 cudnn/cuda-10.0/7.3.1 source activate yumi {} """.format(train_dir, time, command)
85bce0f8f0ba1e3613b1656492e8c12c82e7b2e4
25,568
def _name_or_asname(alias): """Take alias node from AST and return the name bound to import""" return alias.asname if alias.asname else alias.name
fd4a9e4ab4cf543f91ec452e7b6280a4592cd86d
25,569
import os from pathlib import Path def expand_files(sources, record_type): """ Return a list of all the files from a potentially mixed list of files and directories. Expands into the directories and includes their files in the output, as well as any input files. """ # separate files = [Path(f) for f in sources if os.path.isfile(f) and record_type in f] dirs = [Path(d) for d in sources if os.path.isdir(d)] # expand and extend expanded = [f for ls in [Path(d).glob(f"*{record_type}*") for d in dirs] for f in ls] files.extend(expanded) return files
9c7f1ac6a5e75429cc398c9d5a9ab4819a3ffb25
25,570
def cleanup_content(sourcepage, remove_emails, codify_paths, clean_code_tags): """Run several cleaners on the content we get from perl files.""" content = sourcepage.rstcontent if not sourcepage.path.endswith('.pan'): for func in ['remove_emails', 'codify_paths', 'clean_code_tags']: if func: content = globals()[func](content) sourcepage.rstcontent = content return sourcepage
7ac12f6e499fab2f90a4842fad4db96e7f3788c7
25,572
import os def get_root_directory(): """ Gets the root directory of the project. Source: https://www.kite.com/python/answers/how-to-get-the-path-of-the-root-project-structure-in-python """ root_level_file = "../requirements.txt" root_dir = os.path.dirname(os.path.abspath(root_level_file)) return root_dir
a21429a7ad422dd68dcb351683fed918a16989bc
25,573
def _ylab(to_plot): """Returns the y-label for the plot given the type of plot. Parameters ---------- to_plot : string Type of thing to plot. Can be 'pmf', 'cdf', 'fid', or 'wern'. Returns ------- string The y-label for the plot. """ labels_dict = { 'pmf' : "$\\Pr(T_n = t)$", 'cdf' : "$\\Pr(T_n \\leq t)$", 'fid' : "$F_n(t)$", 'wern' : "$W_n(t)$" } return labels_dict[to_plot]
58b7217269bbf2f75cd0c378896ead0cb3bcc1be
25,574
import yaml def _ordereddict_representer(dumper, data): """ Generate a YAML representation for Python ``collections.OrderedDict`` objects. This converts the ordered dictionary into a YAML mapping node, preserving the ordering of the dictionary. :param dumper: A YAML dumper. :type dumper: ``yaml.Dumper`` :param data: The data to represent. :type data: ``collections.OrderedDictionary`` :returns: A mapping node, with keys in the specified order. :rtype: ``yaml.MappingNode`` """ return yaml.MappingNode( u'tag:yaml.org,2002:map', [ (dumper.represent_data(key), dumper.represent_data(value)) for key, value in data.items() ] )
32c77b72e9610bb8688e7690997b181a90003461
25,575
def total_aircraft(state,settings,geometry): """ This computes the total drag of an aircraft and stores that data in the conditions structure. Assumptions: None Source: N/A Inputs: settings. drag_coefficient_increment [Unitless] lift_to_drag_adjustment [Unitless] (.1 is 10% increase in L/D) state.conditions.aerodynamics.drag_breakdown. trim_corrected_drag [Unitless] spoiler_drag [Unitless] Outputs: aircraft_total_drag (drag coefficient) [Unitless] Properties Used: N/A """ # Unpack inputs conditions = state.conditions configuration = settings drag_coefficient_increment = configuration.drag_coefficient_increment trim_corrected_drag = conditions.aerodynamics.drag_breakdown.trim_corrected_drag spoiler_drag = conditions.aerodynamics.drag_breakdown.spoiler_drag aircraft_total_drag = 0.0 # Add drag_coefficient_increment aircraft_total_drag += trim_corrected_drag + drag_coefficient_increment + spoiler_drag conditions.aerodynamics.drag_breakdown.drag_coefficient_increment = drag_coefficient_increment # Add L/D correction aircraft_total_drag = aircraft_total_drag/(1.+configuration.lift_to_drag_adjustment) # Store to results conditions.aerodynamics.drag_breakdown.total = aircraft_total_drag conditions.aerodynamics.drag_coefficient = aircraft_total_drag return aircraft_total_drag
d5daa779a6ee7875af6101f5ad20bedfeb4fac15
25,576
def credentials_from_config(path): """ Retrieves the username and password from a config file for the Data API. DOES NOT raise an EnvironmentError if path is invalid. See also: credential_prompt """ username = None password = None return (username, password)
24e984bed51fd0061ed289e503978c91c18d6954
25,577
def trim_img(img, calc): """ trim_calcで計算されたパロメータによってトリミング実行 Parameters ---------- img : OpemCV image array OpenCVの画像配列 calc : [type] [description] Returns ------- result : OpemCV image array トリミングされた OpenCVの画像配列 """ return img[calc[0]:calc[1], calc[2]:calc[3], :]
ec2008c4760aecdbc3a91e7ef2e483d2fdd0295a
25,578
def get_in_shape(in_data): """Get shapes of input datas. Parameters ---------- in_data: Tensor input datas. Returns ------- list of shape The shapes of input datas. """ return [d.shape for d in in_data]
ae54409d425189c33fe9fe1bdb0487cc854f9510
25,579
def _normalize(options): """Return correct kwargs for setup() from provided options-dict. """ retval = { key.replace("-", "_"): value for key, value in options.items() } # Classifiers value = retval.pop("classifiers", None) if value and isinstance(value, str): classifiers = value.splitlines() while "" in classifiers: classifiers.remove("") retval["classifiers"] = classifiers # Long description from file description_file = retval.pop("long_description_file", None) if description_file: try: with open(description_file) as fdesc: retval["long_description"] = fdesc.read() except IOError: retval["long_description"] = "Read the accompanying {}".format( description_file ) return retval
174bf546559d38606e2e55270398c28b52218f7d
25,580
import subprocess from pathlib import Path def upload_server_image(): """ Build the upload server once for the test run. The image doesn't change. """ subprocess.run( ["docker", "build", "-t", "cog-test-upload-server", "."], cwd=Path(__file__).parent.parent / "upload_server", check=True, ) return "cog-test-upload-server"
41a805bf9ce59af783e32fffa86215d7167bce0e
25,583
def sanitize_for_path(value, replace=' '): """Replace potentially illegal characters from a path.""" il_text='<>\"?\\/*:' hm_text='<>˝?\/*:' for i,j in zip(*[il_text,hm_text]): value=value.replace(i,j) return value
a885cf2b801ab182033a2a436ea2069ab03e754d
25,584
def getCheckBoxState_ihe(request, form, number_of_ihe): """ Process the current state of IHE prediction filter (support function for the IHE web-page) """ for i in range(1, number_of_ihe + 1): form[str(i)] = "selected" if request.GET.get('prediction') == str(i) else "unselected" return form
17380c1fbdf98c8f1fbc16df3b19ef18ad0d7687
25,585
import random def translate_point_cloud(batch_data): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ negative = random.random() neg = 1 if negative > 0.5: neg = -1 translation = random.random() * random.randint(1, 5) * neg batch_data += translation return batch_data
8ad2e07ba4c4b72b840ef671541eb5b57d6df93f
25,586
def process_i_sco(input_value): """Return good type (i.sco) from input_value string.""" return input_value
f65b2f1dbc8b43043169ca5b68fae8550ba4a90b
25,588
import sys def tc(val_str, bytes): """ twos complement""" val = int(val_str, 2) b = val.to_bytes(bytes, byteorder=sys.byteorder, signed=False) return int.from_bytes(b, byteorder=sys.byteorder, signed=True)
42b7ada900b084e55352406dc9f8908e3a636679
25,589
import requests import io import csv def get(url, **kwargs): """ Read data from the requested resource. """ params = {} params.update(kwargs) response = requests.get(url, params=params, stream=True) response.raise_for_status() csv_stream = io.StringIO(response.text) return csv.DictReader(csv_stream)
5790dcc15d8ba028da046b0c882f23d6f99e3d94
25,591
def findSortList(item,mylist,num): """looks for the occurrence of an item in a given list, starting from num, and removes it. Helper function for PossCompl""" for i in range(num, len(mylist)): if mylist[i]==item: mylist.pop(i) return i-1 break #
13c808fe4dde6c52658769a66933497c68ad1f99
25,592
def _remove_links(row): """ Takes a row of the dataframe and returns True if the link is within the country. """ r = row.split("-") if r[0].split("_")[1].strip() == r[1].split("_")[1].strip(): return False else: return True
28447e84230a42d329fa340b72d8a7a503826ede
25,593
def normalize_z_score(data): """Normalizes data around 0.""" mean = data.mean() std = data.std() data = (data - mean) / std return data, mean, std
e61f6bc47693a5cfb2052ea613283d739da6621e
25,594
import os def get_kernel_path(): """ function that returns the location of the CUDA kernels on disk :returns: the location of the CUDA kernels :rtype: string """ path = "/".join(os.path.dirname(os.path.realpath(__file__)).split('/')[:-1]) return path+'/km3net/kernels/'
b8060d1f7e67e1fc01df381c84c3fa107279ddb5
25,595
import time def timeit(function): """ Decorator to measure time take to execute a function """ def wrapper(*args): """ Wrapper definition for the function """ start_time = time.process_time() output = function(*args) print( "Module: {} took: {}s".format( function.__name__, time.process_time() - start_time)) return output return wrapper
c099166f12536bd253fcaed9a14a6f14f0825661
25,596
def quoted_object(schema, rest): """ All objects that pgbedrock works with will be double-quoted after the schema. Anything we work with in our test suite needs to behave similarly. """ return '{}."{}"'.format(schema, rest)
3acf69512c7b164319fd8c8b1054787cc1187d75
25,597
def CMDdisconnected(parser, args): """Lists disconnected slaves.""" _, args, buildbot = parser.parse_args(args) if args: parser.error('Unrecognized parameters: %s' % ' '.join(args)) for slave in buildbot.slaves: if not slave.connected: print(slave.name) return 0
9466d40e2cfb59c7a916978f3f296fb6b6734bda
25,598
def bottomFraction(image, fraction=0.05): """ Return bottom fraction of image Args: image: image fraction: float (default: 0.05) """ return image[int((1 - fraction) * image.shape[0]):]
f650966040b90d90a86fe42e172cc137d8c5eae4
25,599
def normalize_data(data, maxv, minv): """ Normalizes the data given the maximum and minimum values of each variable. Parameters ---------- data: numpy n x m Numpy array comprising n realisations (instances) of m variables. maxv, minv: numpy m The maximum and minimum values of each variable. One and zero, resp. if the variable is categorical. Returns ------- data: numpy n x m The normalized data. """ data = data.copy() for v in range(data.shape[1]): if maxv[v] != minv[v]: data[:, v] = (data[:, v] - minv[v])/(maxv[v] - minv[v]) return data
41873142cd9ba0d25d12c2e89783d8097b2fd9e0
25,600
def _checkCatMatch(msgCat, filtCat): """ """ return ( msgCat.__name__ == filtCat.__name__ )
522f0ae9e3df47a7396005927ff421f59d75df1a
25,601
from typing import List import random def generate_random_sequences(length: int, number: int, alphabet: str) -> List[str]: """Generate random sequences of particular length.""" return [ "".join([random.choice(alphabet) for _ in range(length)]) for _ in range(number) ]
eec4be8e90441e7476f0eed8162759cf8aeea843
25,603
def rev_query(users, project, args): """ Get revision length, user, and page """ return []
99d5ac7e7a8b058c221d52f417b954545a3868c1
25,606
def load_graph_from_file(path): """ Function opens the file with given path and returns all lines. File must contain all graph's edges separated with newline.\n Edge format is: vertex1,vertex2,weight """ file = open(path) return file.read().splitlines()
f0e23b67a3ab7979a94a53e928d9b7cc58a5b9fd
25,607
def set_element_type(entity, dtype, shape=None): """Indicates that the entity is expected hold items of specified type. This function is a no-op. Its presence merely marks the data type of its argument. The staged TensorFlow ops will reflect and assert this data type. Args: entity: A Tensor or TensorArray. dtype: TensorFlow dtype value to assert for entity. shape: Optional shape to assert for entity. Returns: The value of entity, unchanged. """ del dtype del shape return entity
95b4476240a384eb08467e29f5013ac4cf9b8ed6
25,609
def geom(x, p): """ 【函数说明】 功能:几何分布的概率密度函数(Geometry Distribution) 参数: + x:[int 整型] 在第x次尝试取得第1次成功 + p:[float 浮点型] 成功的概率 返回值: + [float 浮点型] 该样本点(x)处的概率密度 """ y = (1-p)**(x-1) * p return y
341aa227584fe38d8200558d4effc74274446055
25,610
import os import base64 def generate_password(): """ Generate a password with 80 bits of entropy """ # Take a random 10 char binary string (80 bits of # entropy) and encode it as lower cased base32 (16 chars) random_bytes = os.urandom(10) password = base64.b32encode(random_bytes).decode('ascii').rstrip('=').lower() return password
96fe46086f41293125b1fb20ccf355ffb841d446
25,611
def toobject(thrift, tobj, cls=None): """Convert thrift object `tobj` to Python object (with optional type `cls`). """ if cls is not None and isinstance(tobj, cls): return tobj tcls = globals().get(type(tobj).__name__) if tcls is not None: return tcls.toobject(thrift, tobj, cls=cls) if cls is not None: return cls(tobj) return tobj
b13d58ad32f388f35d0763a82c6052a0c21b680e
25,614
def verify_workflow(workflow): """Verifies if the workflow can be executed, and specifies where the error occurs and why. """ result = workflow.verify() return result
d2158949f9088692aed85fc52725bd9938f1130b
25,615
def is_unique_bis(x): """Do exactly what is_unique() does. Args: x ([list]): The list you want to test Returns: [bool]: True if every element in the list occurs only once """ return len(set(x)) == len(x)
a4b70463e89fcd95cf6d2562f41c1b6c9db304c9
25,616
def filter_deployments_using_secret(secret_names, deployments_as_yaml): """Return a dictionary of deployments using the secret we are filtering on.""" deployments_using_secrets = {} for deployment in deployments_as_yaml: found_secret = False containers = deployment['spec']['template']['spec']['containers'] for container in containers: if found_secret: break if 'env' not in container: continue env_vars = container['env'] for env_var in env_vars: if 'valueFrom' not in env_var or 'secretKeyRef' not in env_var['valueFrom']: continue if env_var['valueFrom']['secretKeyRef']['name'] in secret_names: deployments_using_secrets[deployment['metadata']['name']] = deployment found_secret = True break return deployments_using_secrets
6fbf70689862269710039344531a45d866fb54f6
25,617
from typing import Counter def count_chars(molecule): """Find most and least common character""" c = Counter(molecule) most = c.most_common()[0][1] least = c.most_common()[-1][1] return most, least
8c9c8a0eea03b108b9aa8e1c6503de565f1c6437
25,618
def oui_ou_non(question): """Pose une question jusqu'à ce que le joueur réponde O pour oui ou N pour non La fonction retourne vrai (True) si la réponse était oui""" # Une boucle infinie dont nous ne sortirons avec `return ...' uniquement # si nous avons une réponse qui nous convient: while True: reponse = input(question).upper() if reponse in "ON": return reponse == 'O'
30d88d363062d2b6454dda2f526b94bc813f297b
25,619
def _is_namespace_param(namespace: str) -> bool: """Returns whether a dataset namespace is a parameter""" return namespace.lower().startswith("param")
c6e4a847d0d5d60bd670cd2a1004f83d4b89324d
25,620
from pathlib import Path import os def parent_dir(fn): """ Get parent directory of existed filename """ return str(Path(fn).parent.absolute()) + os.sep
112577e355fa84485e65f44665a9e405fa252b28
25,621
def common_filenames(file_list1, file_list2): """ Find elements common in 2 lists :param file_list1: a list to compare :param file_list2: a list to compare :return: list of common items """ return set(file_list1).intersection(file_list2)
29ecd33dd09a33ec42bcad796a96e184377273ef
25,622
def insertion_sort_recursive(integers): """Performs insertion sort recursively.""" integers_clone = list(integers) def helper(arr, n): if n > 0: helper(arr, n-1) while arr[n] < arr[n-1] and n > 0: arr[n], arr[n-1] = arr[n-1], arr[n] n -= 1 helper(integers_clone, len(integers_clone) - 1) return integers_clone
7045b07c93a00970d9df10880e4460a0ecc8118b
25,623
import os def check_previous_sim(name, output_path): """ Makes sure that a previous simulation exists. """ while True: # break the loop if the simulation exists, otherwise try to get correct name if os.path.isdir(output_path + name): break else: print("No directory exists with name/path: " + output_path + name) name = input("\nPlease type the correct name of the simulation or type \"exit\" to exit: ") print() if name == "exit": exit() return name
21483663ff93b4a659b4dc7a03de35588a49cc18
25,624
import subprocess def has_changes() -> bool: """ Invoke git in a subprocess to check if we have any uncommitted changes in the local repo. Returns: bool: True if uncommitted changes, else False. """ status = ( subprocess.run( "git status --porcelain", shell=True, check=True, stdout=subprocess.PIPE, ) .stdout.decode() .strip() ) return len(status) > 0
b36ec35bb7d44c2e7e3ce6fa3bf096c751389fd5
25,626
import torch def gaussian_similarity_penalty(x_hat, context, eps=1e-4): """ Penalizes generators which can be approximated well by a Gaussian Parameters ---------- x_hat: torch.tensor generated data context: torch.tensor context data Returns ------- torch.tensor """ x = torch.cat([x_hat, context], dim=1) mean = x.mean(0, keepdim=True) cov = x.t().mm(x) / x.size(0) - mean.t().mm(mean) + eps * torch.rand_like(x[0]).diag() gaussian = torch.distributions.MultivariateNormal(mean.detach(), cov.detach()) loglik = gaussian.log_prob(x).mean() return loglik
fa898f45ba59c856a9f50dd459b3453ad424c090
25,628
import requests def _test_webservice(route_root='http://0.0.0.0:5000/'): """Test the webservice. Note: Of course, first launch it!""" def get_json_response_for(url_suffix='', json_payload=None): method = 'POST' if json_payload else 'GET' r = requests.request(method, url=route_root + url_suffix, json=json_payload) try: return r.json() except: return r assert get_json_response_for('?attr=pong') == {'_result': 'pong'} assert get_json_response_for('?attr=pong&x=10') == {'number': 10, 'thing': 'pongs'} # can also put x in the json: assert get_json_response_for('?attr=pong', json_payload={'x': 10}) == {'number': 10, 'thing': 'pongs'} assert get_json_response_for('?attr=pong&x=10', json_payload={'arr': [1, 2, 3]}) == { 'something': {'0': 'boo', '1': 'boo', '2': 'boo'}, 'vm': {'0': 11, '1': 12, '2': 13}} assert get_json_response_for('?attr=pong&x=10&arr=1,2,3') == {'something': {'0': 'boo', '1': 'boo', '2': 'boo'}, 'vm': {'0': 11.0, '1': 12.0, '2': 13.0}}
f1b91266b5c5763295f141185d00e5d95565f759
25,629
def inject(*components): """Injects web components. >>> inject( >>> '<snap>a</snap>', >>> '<snap>b</snap>' >>> ) >>> <snap>a</snap><snap>b</snap> Args: components (WebComponents): The web components to inject. Returns: str: The string with injected web components. """ return ''. join(map(str, filter(None, components)))
5052fcf9dd6b161a7bd0d473c997b8315ed31ba5
25,630
def split_str(single_str: str) -> list: """Function used to split the single string for the property data (no of bedrooms, bathrooms etc.)""" return single_str.split("·")
8576c4b047c9319effc66ed744143433b06787e4
25,632
import uuid import os def gen_random_name(): """Return a random name for temp file""" return uuid.UUID(bytes=os.urandom(16), version=4).hex
b3981ede7f8d7bd87904f17b6cb5bd3bb40d6f8c
25,635
import json def generate_device_update_payload(input_record): """Dynamically build the device update payload This function looks at the device record information passed from the input file and looks to see which keys are populated. The JSON payload does not include empty keys.""" payload = {} for key, value in input_record.items(): # Here we are verifying that the value in the device record is not empty and that it is # not the serial_number. We want to check for empty values because the blueprint_id, user, # and asset_tag keys cannot be empty in the in the json payload sent to Kandji. If these # keys are sent as empty or NULL Kandji will return an error. if value != "" and key not in ["serial_number", "blueprint_name", "username"]: payload.update([(key, value)]) return json.dumps(payload)
0e00572153059e14fc6d0435f8d9f2e38e5d6c00
25,636
import random def spread(topic): """ Return a fictional spread in bps, tight triangular distribution in most cases, except for Fabrikam where the spreads are more scattered, higher, and with a longer tail. """ if topic.startswith("Fabrikam"): if " 1Y CDS Spread" in topic: return random.triangular(140, 280, 180) elif " 3Y CDS Spread" in topic: return random.triangular(200, 400, 300) else: assert False else: if " 1Y CDS Spread" in topic: return random.triangular(140, 150) elif " 3Y CDS Spread" in topic: return random.triangular(150, 160) else: assert False
7c1f559c516396564ac618767f79630f6ce515b8
25,637
def create_dim(a, dim=''): """create dimension array for n-nested array example: >>> create_dim([[1,2],[3,4],[5,6,[7,8],]]) [['0-0', '0-1'], ['1-0', '1-1'], ['2-0', '2-1', ['2-2-0', '2-2-1']]] >>> create_dim(5) '' >>> create_dim([5,5]) ['0', '1'] """ if isinstance(a, list): if dim: prefix = dim + '-' else: prefix = '' return([create_dim(a_, prefix + str(i)) for i, a_ in enumerate(a)]) else: return(dim)
2a5fbea0ad0a26c81d90551a1e907a31c6362192
25,638
import logging def get_meas_func(self, meas_func): """ Function that dynamically generates property getters for measurement functions defined in hp4284A.MEAS_FUNCS Parameters ---------- meas_func : str Name of measurement function; all keys of self.MEAS_FUNCS are valid """ def property_getter(self): """ Generate the property getter function Returns ------- tuple Tuple of floats; primary and secondary measurment quantities according to the respective *meas_func* Raises ------ KeyError *meas_func* is unkown aka not a key of self.MEAS_FUNCS RuntimeError The measurement status indicates an error """ # Check if *meas_func* is valid if meas_func not in self.MEAS_FUNCS: raise KeyError(f"Unknown measurment function {meas_func}") # Check current function; if needed change functions if meas_func != self.get_meas_func().strip(): logging.info(f"Setting measurement function to {meas_func}") self.set_meas_func(meas_func) # Check if a manual trigger is needed and trigger if so self._check_trigger() # Get primary and secondary measurement quantities as well as the measurement status primary_meas, secondary_meas, meas_status = self.get_value().strip().split(',') # Check status if meas_status != '+0': if meas_status not in self.ERROR_STATES: err_msg = f"Unknown measurement status {meas_status} retrieved" else: err_msg = self.ERROR_STATES[meas_status] raise RuntimeError(err_msg) return (float(primary_meas), float(secondary_meas)) return property_getter
1e106589ff1a8b72870065a38659d5e4653da931
25,639
import copy def dict_path(from_d,to_d={},l=[]): """ Returns a dictionary with the path in which each of the keys is found Parameters: from_d : dict Dictionary that contains all the keys, values to_d : dict Dictionary to which the results will be appended Example: dict_path({'level1':{'level2':{'level3':'value'}}}) Returns {'level1': [], 'level2': ['level1'], 'level3': ['level1', 'level2'] } """ for k,v in list(from_d.items()): if isinstance(v,dict): to_d[k]=l _l=copy.deepcopy(l) _l.append(k) to_d=dict_path(from_d[k],to_d,_l) else: to_d[k]=l _to_d=to_d.copy() to_d={} return _to_d
a80363e99deb199111c9e4b3d4bcd9d3c65d4a67
25,640
def get_article_templates(article, user): """ example of functions to get custom templates It may depend on article or user """ return ( ('standard.html', 'Standard'), ('homepage.html', 'Homepage'), ('blog.html', 'Blog'), ('standard_en.html', 'English'), )
3a6d27e6046b81407d66de9ed5bc76cdf2f8ec20
25,641
def filter_param_cd(df, code): """Return df filtered by approved data """ approved_df = df.copy() params = [param.strip('_cd') for param in df.columns if param.endswith('_cd')] for param in params: #filter out records where param_cd doesn't contain 'A' for approved. approved_df[param].where(approved_df[param + '_cd'].str.contains(code), inplace=True) # drop any rows where all params are nan and return #return approved_df.dropna(axis=0, how='all', subset=params) return approved_df
7fe027e36e244442d35cc3ee314dc85d23807b4d
25,642
def keep_intersection_of_columns(train, test): """ Remove the columns from test and train set that are not in both datasets. params ------ train: pd.DataFrame containing the train set. test: pd.DataFrame containing the test set. return ------ train and test where train.columns==test.columns by keeping only columns that were present in both datasets. """ shared_cols = list(set(train.columns).intersection(set(test.columns))) return train[shared_cols], test[shared_cols]
750c17d874b7cfad3eb7e48b84323aa25fd251da
25,643
def rst_heading(value, arg): """Provides an underline for restructured text heading. Syntax:: {{ value|rst_heading:"=" }} Results in: ``value`` ``=====`` """ return ''.join([value, '\n', arg*len(value)])
5e6379dccd5c15b24e0688b8f95d181a7e8b1783
25,644
def isdigit(uni_ch): """判断一个 unicode 是否是十进制数字。""" if uni_ch >= u'\u0030' and uni_ch <= u'\u0039': return True else: return False
014141dd4e86af89cd8c07f5c49a4b00d45a238b
25,645
def summary_candidate_ranking_info(top_ks, found_info, data_size): """Get a string for summarizing the candidate ranking results Parameters ---------- top_ks : list of int Options for top-k evaluation, e.g. [1, 3, ...]. found_info : dict Storing the count of correct predictions data_size : int Size for the dataset Returns ------- string : str String summarizing the evaluation results """ string = '[strict]' for k in top_ks: string += ' acc@{:d}: {:.4f}'.format(k, found_info['top_{:d}'.format(k)] / data_size) string += ' gfound {:.4f}\n'.format(found_info['ground'] / data_size) string += '[molvs]' for k in top_ks: string += ' acc@{:d}: {:.4f}'.format( k, found_info['top_{:d}_sanitized'.format(k)] / data_size) string += ' gfound {:.4f}\n'.format(found_info['ground_sanitized'] / data_size) return string
877cbeaf6be01a0be8daf54ccdba88338c08343b
25,651
import typing import os def rec_join_path(path_list: typing.List[str]) -> str: """ Join components in to a path. Much like os.path.join(), but "recursively". """ if len(path_list) == 0: return '' if len(path_list) == 1: return path_list[0] path = path_list.pop(0) while len(path_list): path = os.path.join(path, path_list.pop(0)) return path
7424edf6b8fb93dcdee9946147aa00f807701c3b
25,652
import os def is_newer(file1, file2, strict=True): """ Determine if file1 has been modified after file2 Parameters ---------- file1 : str File path. May not exist, in which case False is returned. file1 : str File path. Must exist. strict : bool Use strict inequality test (>). If False, then returns True for files with the same modified time. Returns ------- newer : bool True if file1 is strictly newer than file 2 """ try: t1 = os.path.getmtime(file1) t2 = os.path.getmtime(file2) except FileNotFoundError: return False if strict: return t1 > t2 return t1 >= t2
23653223d132facfdb4f51ebe9c21a2bc8f54ffc
25,654
async def eval_issue_1(serialized_citation): """ Return 1 if the `npl_publn_id` is in the `when`field, else None See: https://github.com/cverluise/SciCit/issues/1 :param serialized_citation: dict :return: int or None """ if "when" in serialized_citation.keys(): return ( 1 if str(serialized_citation["npl_publn_id"]) in serialized_citation["when"] else None )
2bf50fe83c59a99181dcbbf9a16854d93cd0210f
25,655
def predict_churn_single(self, data): """ Essentially the run method of PredictTask """ pred_array = self.model.predict([data]) positive_prob = pred_array[0][-1] return positive_prob
de3c4ebbd6719a83305755300f895941bd1df515
25,656
def _require_positive_y(y): """Make targets strictly positive""" offset = abs(y.min()) + 1 y = y + offset return y
fa38ed8cc729e185ce97a6f63abd3a39bebcf6d9
25,657
def warmup(): """ handle warmup request to suppress warning into logs """ return 'OK'
e64007ac6656d771b34b9489fa7505de7d010fce
25,658
def list_to_ranges(s): """ >>> list_to_ranges([]) '' >>> list_to_ranges([1]) '1' >>> list_to_ranges([1,2]) '1-2' >>> list_to_ranges([1,2,3]) '1-3' >>> list_to_ranges([1,2,3,5]) '1-3,5' >>> list_to_ranges([1,2,3,5,6,7]) '1-3,5-7' >>> list_to_ranges(range(1,4001)) '1-4000' """ def f(): if last_start == last_end: return str(last_start) else: return "%d-%d" % (last_start, last_end) last_start = None last_end = None r = [] for i in sorted(s): if last_end is not None and i == last_end + 1: last_end += 1 else: if last_start is not None: r += [f()] last_start = i last_end = i if last_start is not None: r += [f()] return ",".join(r)
1adccba785970a025e6474631a4b8d4f21dd35ca
25,659
from typing import List def compute_grade(homework_scores: List[float], exam_scores: List[float]) -> float: """ pre: homework_scores or exam_scores pre: all(0 <= s <= 1.0 for s in homework_scores + exam_scores) post: 0 <= __return__ <= 1.0 """ # make exams matter more by counting them twice: all_scores = homework_scores + exam_scores + exam_scores return sum(all_scores) / len(all_scores)
f922b92473b42b244753685e6a348406bffd6b9e
25,660