content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def load_file(path): """Load contents of a file""" with open(path) as inf: data = inf.read() return data
9398d26379532d6c3ed407335ade608e9f52d18a
23,041
from operator import add def neighbour(c, direction): """ Get the neighbour in the direction of the cube. :param c: A cube coord x, z, y. :param direction: THe direction the of the neighbour. :return: The neighbouring cube coord in the specified direction. """ return add(c, direction)
0da5e9e037ad996b495412b96b6b2880c0c7e479
23,042
import string import random def strings(n, chars=string.ascii_letters): """ Return random string of N characters, sampled at random from `chars`. """ return ''.join([random.choice(chars) for i in range(n)])
bc7e2cab22b4d0a98b3e93a7199c1ec2b326ee68
23,043
def search_caches(key, cache_list, raise_error=True): """Find UUID if it is in the cache_list dicts Parameters ---------- key : str the UUID we're looking for cache_list : mapping or list of mapping caches that the objects are stored in (will be searched in order of the list). Mapping is {uuid: object} raise_error : bool whether to raise a KeyError if UUID not found; default True. If False, object not found returns None Returns ------- object or None the object with the given UUID, or ``None`` if the object is not found and ``raise_error`` is ``False``. """ if key is None: return None # some objects allow UUID to be None if not isinstance(cache_list, list): cache_list = [cache_list] obj = None for cache in cache_list: if key in cache: obj = cache[key] break if obj is None and raise_error: raise KeyError("Missing key: " + str(key)) return obj
e2996e37604e26c937a046dc5f88674060aba738
23,045
def grayscale(rgb): """Converts image to grayscale. """ return rgb.dot([0.299, 0.587, 0.114])
baf64556a5cdce8ad49023e96271f1358f618db7
23,048
import re def get_name_slug(name: str) -> str: """Get the stub of the organization's name. Arguments: name {str} -- Organization name. Returns: str -- Organization name stub. """ return '-'.join(re.split(r'\W', name.lower()))
ef3fce6346a7aabfcebcc6a6e72d1e718e0ed4d2
23,049
import os def _object_exists(uri: str): """Checks whether an object exists at specified directory.""" data_exists = os.path.isfile(os.path.join(uri, "data")) meta_exists = os.path.isfile(os.path.join(uri, "meta")) return all((os.path.isabs(uri), os.path.isdir(uri), data_exists, meta_exists))
40ca99d491de7760ccfd4be2e3826fc496f380fc
23,051
def is_task_list(fn): """Check if a function is a task list. Return: boolean: if a function is a task list. """ return getattr(fn, '__garcon__', {}).get('list')
6546df08c4b6736bc3b08a77e0064191ff64efe7
23,052
import os from glob import glob def can_folderise(folder): """ Check if corpus can be put into folders """ if os.path.isfile(folder): return False fs = glob(os.path.join(folder, '*.txt')) if len(fs) > 1: if not any(os.path.isdir(x) for x in glob(os.path.join(folder, '*'))): return True return False
a6e6a8ca9febd192ea0ca505169fe58891725986
23,053
def _mutateCommandline(context, commandline): """Adjust runscript to set a different value to the LLVM_PROFILE_FILE environment variable for each execution.""" profilefile = context.tmpBase + ".profraw" prefix = "env LLVM_PROFILE_FILE=%s " % profilefile context.profilefiles.append(profilefile) return prefix + commandline
d31a180c292dc087a6c6b7e6d7316c2cbba08fdf
23,055
import re def get_used_words(file_path, count): """ Count unique words in file, and return 'count' most used Args: file_path (str): path to file count (int): number of words to return Returns: dict(int, word): dictionary with usage, and word """ words = dict() with open(file_path, mode='r', encoding='utf-8') as fd: for line in fd: for word in re.findall(r'\b(\d*[a-zA-Z\']+\d*\w*)\b', line): words[word.lower()] = words.get(word.lower(), 0) + 1 return sorted(words.items(), key=lambda w: w[1], reverse=True)[0:count]
b42a03525893f5ddde57c92ce17a4b9dc45ac892
23,056
import pandas import logging def user_specify_time(times, voltages, end_time): """ Cuts off all time and voltage data that occurs after the user-specified end time. If the user does not specify an end time, this function will default to keeping the time array untrimmed. :param times: List of time data :param voltages: List of voltage data :param end_time: Time (in seconds) at which the data should end :return: Trimmed time and voltage lists """ try: if pandas.isnull(end_time) or type(end_time) is bool: raise ValueError end_time = float(end_time) if end_time < 0 or end_time > max(times): raise ValueError except ValueError: logging.warning("End time not valid: {}".format(end_time)) logging.warning("Using default end time by not trimming data at all.") return times, voltages ret_times = [] ret_voltages = [] for index, time in enumerate(times): if time <= end_time: ret_times.append(time) ret_voltages.append(voltages[index]) else: break return ret_times, ret_voltages
22f119e704161876dee1a0d917a179b13b1fcc51
23,057
import sys def get_size(ds): """ Gets the sum of sizes of each object in vars(ds). """ return sum(sys.getsizeof(getattr(ds, it)) for it in vars(ds).keys())
12c026e8c3a706dada38e5cd752582e6a6fd41e6
23,059
def reverseCompliment(sequence): """ Returns the reverse compliment of the DNA sequence """ complimentMatrix = {'A':'T', 'T':'A', 'G':'C', 'C':'G'} complimentArray = [] DNAarray = list(sequence.upper()) for bp in reversed(DNAarray): complimentArray.append(complimentMatrix[bp]) compliment = ''.join(complimentArray) return compliment
24fd3cf55a62988d2d942eb53ca33f910cd635e0
23,061
import torch def squash(s, dim=-1, constant=1, epsilon=1e-8): """ It drives the length of a large vector to near 1 and small vector to 0 :params s: N-dim tenser :params dim: the dimension to squash :params constant: (0, 1] :return: The same shape like `s` """ norm_2 = torch.norm(s, p=2, dim=dim, keepdim=True) scale = norm_2**2 / (constant + norm_2**2) / (norm_2 + epsilon) return scale * s
2c457a6782143061814cedab70420738f5b8c469
23,062
from typing import Dict def count_vertically_most_common_bits(numbers) -> Dict[int, Dict[str, int]]: """ For each position in list of binary numbers count number 0 and number 1. Result save into nested dictionary. Eg. [11, 01] -> {0: {'0': 1, '1': 1}, 1: {'0': 0, '1': 2}} Args: numbers (list): list of numbers in binary format Returns: Dict[int, Dict[str, int]]: keys are numbered positions, values are dictionaries, with 2 keys ('0' and '1') and counts as values. """ bits_in_lines = {} for digit in [*range(len(numbers[0]))]: bits_in_lines[digit] = {"0": 0, "1": 0} for number in numbers: for i, bit in enumerate(number): bits_in_lines[i][bit] += 1 return bits_in_lines
9b7b1b4ea56091294d49f60212b30d0fd819f2d3
23,064
def has_permission_to_view(page, user): """ Check whether the user has permission to view the page. If the user has any of the page's permissions, they have permission. If the page has no set permissions, they have permission. """ if page.permissions.count() == 0: return True for perm in page.permissions.all(): perm_label = '%s.%s' % (perm.content_type.app_label, perm.codename) if user.has_perm(perm_label): return True return False
a61337ac64e7f300a1439fb04c55ab5d89d6303d
23,065
def guessseat(seatids): """ Our seat is the seat which id is not in the least but which previous & next one is in. """ for seat in seatids: if seat + 1 not in seatids and seat + 2 in seatids: return seat + 1
eaee3147223ec1f177694dc6b6d32191df589cd7
23,066
import torch def get_v_coords(p_range, v_size, v_indices): """ Args: p_range: [x_min, y_min, z_min, x_max, y_max, z_max] v_size: [vx, vy, vz] v_indices : [M, 4] -> [bs, z_i, y_i, x_i] Returns: v_coords: [M, 4] -> [bs, x, y, z] """ with torch.no_grad(): v_size = torch.tensor(v_size).unsqueeze(0).to(v_indices.device) min_range = torch.tensor(p_range[0:3]).unsqueeze(0).to(v_indices.device) v_xyz_idx = v_indices[:, [3, 2, 1]] v_bs = v_indices[:, [0]].float() v_xyz = (v_indices[:, [3, 2, 1]].float() + 0.5) * v_size + min_range v_coords = torch.cat([v_bs, v_xyz], dim = 1) return v_coords
9d2870720f902d343577a85d797b72a277fe7673
23,067
def split_data(arrays, test_size=0.2): """ """ splitted_arrays = { 'train': {}, 'test': {} } for name, array in arrays.items(): t_steps = array.shape[0] cut_point = int(t_steps * test_size) splitted_arrays['train'][name] = array[:-cut_point, :] splitted_arrays['test'][name] = array[-cut_point:, :] return splitted_arrays
ae27085fb22c2351d1b2481ff59f707431223374
23,068
def alternate(seq): """ Splits *seq*, placing alternating values into the returned iterables """ return seq[::2], seq[1::2]
ef4ed2b352e411f0fb3af1774e066c74f2ff9c28
23,069
from typing import Any def measure_overlap(lhs: Any, rhs: Any) -> float: """ Given two objects with "start" and "end" attributes, return the % of their overlapped time with regard to the shorter of the two spans. .""" lhs, rhs = sorted([lhs, rhs], key=lambda item: item.start) overlapped_area = lhs.end - rhs.start if overlapped_area <= 0: return 0. dur = min(lhs.end - lhs.start, rhs.end - rhs.start) return overlapped_area / dur
760df7f8ec3f4ab59063ded4e9b4508c170c9898
23,070
def get_identity_credentials(aip): """Returns a dictionary containing a mapping from publickey to identity""" agent_map = aip.get_agent_identity_to_uuid_mapping() agent_credential_map = {} for agent in agent_map: agent_credential = aip.get_agent_keystore(agent_map[agent]).public agent_credential_map[agent_credential] = agent return agent_credential_map
3201345db020d3f8e88c83c330900627a0b9bdb4
23,071
def find_file_in_content_dict(content_dict, file_name): """ Check if a file exists in the content dictionary """ file_name_search_key = file_name.upper() for uber_file_name in iter(content_dict): vs_filter_dict = content_dict[uber_file_name] for vs_filter_name in iter(vs_filter_dict): source_files = vs_filter_dict[vs_filter_name] for source_file in source_files: if source_file.upper() == file_name_search_key: return True # Handle the (posix) case if file_name is in a different folder than the context root if source_file.upper().endswith('/'+file_name_search_key): return True # Handle the (dos) case if file_name is in a different folder than the context root if source_file.upper().endswith('\\'+file_name_search_key): return True return False
8f030d88f1fb3f3d219000e4265b5d620d7584c0
23,072
def clut8_rgb565(i): """RBG565 CLUT for wasp-os. This CLUT implements the same palette as :py:meth:`clut8_888` but outputs RGB565 pixels. .. note:: This function is unused within this file but needs to be maintained alongside the reference clut so it is reproduced here. :param int i: Index (from 0..255 inclusive) into the CLUT :return: 16-bit colour in RGB565 format """ if i < 216: rgb565 = (( i % 6) * 0x33) >> 3 rg = i // 6 rgb565 += ((rg % 6) * (0x33 << 3)) & 0x07e0 rgb565 += ((rg // 6) * (0x33 << 8)) & 0xf800 elif i < 252: i -= 216 rgb565 = (0x7f + (( i % 3) * 0x33)) >> 3 rg = i // 3 rgb565 += ((0x4c << 3) + ((rg % 4) * (0x33 << 3))) & 0x07e0 rgb565 += ((0x7f << 8) + ((rg // 4) * (0x33 << 8))) & 0xf800 else: i -= 252 gr6 = (0x2c + (0x10 * i)) >> 2 gr5 = gr6 >> 1 rgb565 = (gr5 << 11) + (gr6 << 5) + gr5 return rgb565
1f651c381e1995ac80300f60bd686b296abcdb17
23,073
import threading import atexit def call_repeatedly(func, interval, *args, **kwargs): """ Call a function at interval Returns both the thread object and the loop stopper Event. """ main_thead = threading.current_thread() stopped = threading.Event() def loop(): while not stopped.wait(interval) and main_thead.is_alive(): # the first call is in `interval` secs func(*args, **kwargs) return timer_thread = threading.Thread(target=loop, daemon=True) timer_thread.start() atexit.register(stopped.set) return timer_thread, stopped.set
65c33039212463f13dd2f72e0be41f921bf98d0c
23,074
def beautifulTriplets(d, arr): """ Returns the number of triplets in arr where i < j < k and a[j] - a[i] = a[k] - a[j] = d """ beautiful_count = 0 # if the array contains any values where the value plus d and plus 2 * d are # also in the array, the value is beautiful. This approach yields an average # time complexity of O(n ** 2) due to the "in" operator. for _ in range(len(arr)): if arr[_] + d in arr and arr[_] + 2 * d in arr: beautiful_count += 1 return beautiful_count
6484b9fde450e2c5d3ec4814e8213b225f120112
23,078
def _to_space_separated_string(l): """ Converts a container to a space-separated string. INPUT: - ``l`` -- anything iterable. OUTPUT: String. EXAMPLES:: sage: import sage.geometry.polyhedron.misc as P sage: P._to_space_separated_string([2,3]) '2 3' """ s = ''; for x in l: if len(s)>0: s += ' ' s += repr(x) return s
1a14fee5bdc86c52c1c9687f922c0d077bf859bb
23,079
def _obtain_weights_CSVLogger_filenames(body_backbone_CNN, image_backbone_CNN): """Obtains the polished filenames for the weights and the CSVLogger of the model. # Arguments model_name: String to declare the name of the model # Returns Two strings that will serve as the filenames for the weights and the CSVLogger respectively. """ prefix= 'trained_models/emotic_vad_' suffix= '_weights_tf_dim_ordering_tf_kernels.h5' weights_filename = prefix + body_backbone_CNN + suffix CSVLogger_filename = 'emotic_vad_'+body_backbone_CNN+'_training.csv' return weights_filename, CSVLogger_filename
98815be219066eee4db7aaa6788fad79db0a1193
23,081
def build_from_clause(sources): """Given a list of table names, connects them with JOINs""" from_clause = [sources[0]] for join_to in sources[1:]: from_clause.append('JOIN {} ON ({}. = {}.)'.format(join_to, sources[0], join_to)) return '\n'.join(from_clause)
8d07ad5ae09a75bd6d56467f8e24e86825fa884d
23,082
def build_grid(input_lines, size): """Builds grid""" grid = [] for y in range(size): row = [] for x in range(size): row.append('.') grid.append(row) input_length = len(input_lines[0]) start_x = start_y = (size / 2) - (input_length / 2) for y in range(input_length): for x in range(len(input_lines[y])): grid[start_y + y][start_x + x] = input_lines[y][x] return grid
d7ad2fffb039c8bb90c7edee0088d685d45e9a76
23,083
def download_boiler(info): """ Boiler plate text for On-Demand Info for downloads :param info: values to insert into the boiler plate :param info: dict :return: formatted string """ boiler = ('\n==========================================\n' ' {title}\n' '==========================================\n' 'Total number of ordered scenes downloaded through ESPA order interface order links: {tot_dl}\n' 'Total volume of ordered scenes downloaded (GB): {tot_vol}\n') return boiler.format(**info)
ccdfa8c27590634413a8ff0e9c8572c8f00fbd76
23,084
from typing import Tuple def intersectCmp(a: dict, b: dict) -> Tuple[bool, str]: """Return true if the common keys have the same values. E.g.: Taking {"foo": 0, "bla": "test"} and {"foo": 1, "bar": true, "bla": "test"}, the intersected keys are "foo" and "bla", and the values are not equal. If there are no common keys, returns False. The same comparison applies to nested dictionaries Args: a, b: Dictionaries to intersect and compare. Returns: A tuple with the comparison result and a diff text, if different. """ common_keys = a.keys() & b.keys() if not common_keys: return False, "got %s, wanted %s" % (a.keys(), b.keys()) for k in common_keys: x = a[k] y = b[k] if isinstance(x, dict) and isinstance(y, dict): cmp, diff = intersectCmp(x, y) if not cmp: return False, diff else: if x != y: return False, "key %s: %s != %s" % (k, x, y) return True, ""
f03b888d9c0a833e440f7ed4f178edb9aa2da52c
23,086
def _invalidWin32App(pywinerr): """ Determine if a pywintypes.error is telling us that the given process is 'not a valid win32 application', i.e. not a PE format executable. @param pywinerr: a pywintypes.error instance raised by CreateProcess @return: a boolean """ # Let's do this better in the future, but I have no idea what this error # is; MSDN doesn't mention it, and there is no symbolic constant in # win32process module that represents 193. return pywinerr.args[0] == 193
302b32f350267c13ebe992f980b941d1cd638769
23,088
def month_to_number(month_string): """Converts the name of a month to the month number""" m = '' if month_string == 'JAN' or month_string == 'JANUARY': m = '01' elif month_string == 'FEB' or month_string == 'FEBRUARY': m = '02' elif month_string == 'MAR' or month_string == 'MARCH': m = '03' elif month_string == 'APR' or month_string == 'APRIL': m = '04' elif month_string == 'MAY': m = '05' elif month_string == 'JUN' or month_string == 'JUNE': m = '06' elif month_string == 'JUL' or month_string == 'JULY': m = '07' elif month_string == 'AUG' or month_string == 'AUGUST': m = '08' elif month_string == 'SEP' or month_string == 'SEPTEMBER': m = '09' elif month_string == 'OCT' or month_string == 'OCTOBER': m = '10' elif month_string == 'NOV' or month_string == 'NOVEMBER': m = '11' elif month_string == 'DEC' or month_string == 'DECEMBER': m = '12' return m
daebf08cd2109fa35af1e3256cde26ae7f964f33
23,090
def illuminant_scotopic_luminance(L_A, CCT): """ Returns the approximate scotopic luminance :math:`L_{AS}` of the illuminant. Parameters ---------- L_A : numeric Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`. CCT : numeric Correlated color temperature :math:`T_{cp}` of the illuminant. Returns ------- numeric Approximate scotopic luminance :math:`L_{AS}`. Examples -------- >>> illuminant_scotopic_luminance(318.31, 6504.0) # doctest: +ELLIPSIS 769.9376286... """ CCT = 2.26 * L_A * ((CCT / 4000) - 0.4) ** (1 / 3) return CCT
33f2969722ab34d823d5aa59a7f8e72e2f5c625a
23,091
def read_iteration(): """ 自己相関係数の計算で使用する、「ずらす回数」を読み込む。 Output ------ iteration : ずらす回数 Raises ------ iterationに数字以外が入力されたとき。 """ print("計算回数を入力してください: ", end="") iteration = input() try: iteration = int(iteration) # 数字以外はexceptへ except: print("計算回数には、数字を入力してください。") exit() return iteration
2c3bc4eec925f1c9bb3bed87d06994aac9de3756
23,093
def evaluateBoard(currentBoard, symbolToEvaluate, currentPlayer): """Takes as parameters: a board, a symbol to evaluate and the current symbol moving. Evaluate the board and returns 1 if the board is a win for the symbol to evaluate, returns 0 if the board is a draw or returns -1 if the board is a loss. If it is neither of these options, plays all available moves and recursively calls itself to evaluate resulting boards.""" nextPlayer = 'o' if currentPlayer == 'x' else 'x' winner = currentBoard.hasWinner() #Evaluate if game was win (1), loss(-1) or draw(0) if winner: if winner[0] == symbolToEvaluate: return 1 else: return -1 elif len(currentBoard.availableTiles()) == 0: return 0 #If evaluation is not immediate, use recursion to make all possible moves and evalute those else: evaluations = list() for tile in currentBoard.availableTiles(): gameBoardCopy = currentBoard.makeCopy() gameBoardCopy.makeMove(tile,currentPlayer) evaluations.append(evaluateBoard(gameBoardCopy,symbolToEvaluate,nextPlayer)) if symbolToEvaluate == currentPlayer: return max(evaluations) else: return min(evaluations)
1bf1055d1ef7cd56aaad92f4c66a131fc9a7ff0b
23,094
import math def f_arenstorf(x, y, rpar): """The system of differential equations. """ amu, amup = rpar r1 = (y[0]+amu)**2+y[1]**2 r1 = r1*math.sqrt(r1) r2 = (y[0]-amup)**2+y[1]**2 r2 = r2*math.sqrt(r2) f2 = y[0]+2*y[3]-amup*(y[0]+amu)/r1-amu*(y[0]-amup)/r2 f3 = y[1]-2*y[2]-amup*y[1]/r1-amu*y[1]/r2 return [y[2], y[3], f2, f3]
d32d6ba08150546cba0d8fd0b4230a48d8eff3a2
23,096
def linearization(X, Jfun, P): """Transform a covariance matrix via linearization Arguments: X: the point to linearize about, (n,) numpy array Jfun: function which takes the state and returns the (n x n) Jacobian of the function, f, which we want to transform the covariance by. It should return an (n x n) matrix df1dx1 df1dx2 ... df1dxn df2dx1 df2dx2 ... df2dxn ... ... ... ... dfndx1 dfndx2 ... dfndxn P: covariance matrix to transform Returns: P_prime: transformed covariance matrix """ A = Jfun(X) P_prime = A.dot(P.dot(A.T)) return P_prime
c24c4d0815842cc70ac31f0ba9f505bc0d743036
23,097
def check_guess(life_point, input_guess, current_guess): """ Checking the new guess alphabet can be found in latest guess or not, and reduce 1 point if its not. :param life_point: int, the current number of guess left. :param input_guess: str, the new guess alphabet input. :param current_guess: str, the replaced hint of latest guess. :return: the latest number of guess left. """ if current_guess.find(input_guess) != -1: print("You are correct!") return life_point print("There is no " + input_guess + "'s in the word.") return life_point - 1
8b483662fae5d6167d6aa40fd565b2b276025352
23,098
import tempfile import os import atexit def temp_file(suffix=""): """ Get a temporary file path that will be cleaned up on exit. Simpler than NamedTemporaryFile--- just a file path, no open mode or anything. :return: """ f = tempfile.mktemp(suffix=suffix) def permissive_ignore(file_): if os.path.exists(file_): os.remove(file_) atexit.register(permissive_ignore, f) return f
7ecb5dd3ddfb79163dbf900d82678c16ad4b4bb0
23,100
from math import floor def _special_round(num): """ Returns the round number: - if decimal is equal or higher than .85 it is rounded up - else it is rounded down. """ num_int = floor(num) decimal = num - num_int if num_int < 1: return 1 else: if decimal >= 0.85: return num_int + 1 else: return num_int
d55691f781a53f4e4227caeac9f1c04b7edeb3be
23,102
def ensure_bytes(value): """Helper function to ensure all inputs are encoded to the proper value utf-8 value regardless of input type""" if isinstance(value, bytes): return value return value.encode('utf-8')
12a0f933c0db1d01c8682dc2c8f73db53d816880
23,104
import collections import itertools def string2(fml): """ convert formula dictionary to formula string with ones when appropriate """ fml = collections.OrderedDict(sorted(fml.items())) fml_str = ''.join(map(str, itertools.chain.from_iterable(fml.items()))) return fml_str
8ed4f1e4996038f4cc2bb28d7f7d2737e6fae0c3
23,105
def number_unique(row: int, column: int): """return number of unique shortest paths from start to finish""" if row == 1 or column == 1: # base case return 1 else: return number_unique(row - 1, column)\ + number_unique(row, column - 1)
51a6b372f7a74ffaa64fc058e7d9f05e3dca8feb
23,106
def construction_formule(dep,indep): """ Construit une formule de modèle à partir d'une liste de variables """ return dep + " ~ " + " + ".join([i for i in indep])
f3ac730378e1437dce6ecef3bbe73005eab0d60e
23,108
from typing import Union from datetime import datetime def datetime_to_iso_8601(obj: Union[datetime, str, int]) -> str: """ Convert a datetime to ISO 8601. For use when serializing the credentials dict. :param obj: a datetime object :return: the ISO 8601 representation of the datetime """ if isinstance(obj, datetime): return obj.isoformat() raise TypeError(f"{type(obj)} is not serializable")
13cdd05c9dda84405c650c1275b0bad41f5eddc1
23,114
def index(request): """Just a help page; the action is at static/index.html""" return {}
a131861f587e23ec86281f2bca4472ec974b7a0c
23,115
def getFootprintByReference(board, reference): """ Return a footprint by with given reference """ for f in board.GetFootprints(): if f.GetReference() == reference: return f raise RuntimeError(f"Footprint with reference '{reference}' not found")
e0bf71531834cf6318aaa37e5bc70a4c17c1363b
23,116
from typing import List def fmt_filter(items: List[str]) -> str: """Filters use comma-separated values, but these are encoded as query-value, and we are lazy, so we directly encode the commas""" return "%2C".join(items)
1b5ebb69a3ee00b64a7bca4ada9e148fcb7ca20d
23,117
import pandas def write_output_spreadsheet( quotes, primer_sequences, fragment_quotes, errors, part_sequences, construct_parts, construct_sequences, target="output.xlsx", ): """Write the result of DNA construction plan computations as a spreadsheet. :param quotes: The dictionary of DNAWeaver quote id :param primer_sequences: The dictionary of primer sequences :param fragment_quotes: PCR fragments of the dictionary :param errors: List of errors as a dictionary :param part_sequences: The sequences of all the parts :param construct_parts: The assembled parts sequences :param construct_sequences: The assembled sequence :param target: The path to the output file :type quotes: dict :type primer_sequences: dict :type fragment_quotes: dict :type errors: dict :type part_sequences: dict :type construct_parts: dict :type construct_sequences: dict :type target: str :rtype: None :return: None """ # HELPER FUNCTIONS def list_to_spreadsheet(spreadsheet_name, column_names, mylist): """Writes the provided list as a sheet of an Excel spreadsheet. """ records = [dict(zip(column_names, row)) for row in mylist] dataframe = pandas.DataFrame.from_records( records, index=column_names[0], columns=column_names ) dataframe.to_excel(writer, sheet_name=spreadsheet_name) def quote_components_ids(quote): """Return the list of ids of all fragments or primers in a quote.""" def _subquote_to_id(subquote): "Return the ID of either the quote or the re-used sequence" if subquote.source.operation_type == "library": return subquote.metadata["part_name"] else: return subquote.id return [ _subquote_to_id(subquote) for loc, subquote in quote.assembly_plan.items() ] # WRITE THE CONSTRUCTS PARTS SPREADSHEET writer = pandas.ExcelWriter(target) parts_per_construct = [ (name, " + ".join(parts)) for name, parts in construct_parts.items() ] list_to_spreadsheet( "construct_parts", ["construct", "parts"], parts_per_construct ) # WRITE THE CONSTRUCT SEQUENCES SPREADSHEET list_to_spreadsheet( "construct_sequences", ["construct", "sequence"], construct_sequences.items(), ) # WRITE THE PRIMERS SEQUENCES SPREADSHEET list_to_spreadsheet( "primer_sequences", ["primer", "sequence"], sorted(primer_sequences.items()), ) # WRITE THE PARTS SEQUENCES SPREADSHEET list_to_spreadsheet( "part_sequences", ["part", "sequence"], sorted(part_sequences.items()) ) # WRITE THE PCR_EXTENSIONS SPREADSHEET fragments_list = [ ( fragment, quote.metadata["subject"], " + ".join(quote_components_ids(quote)), quote.sequence, ) for fragment, quote in fragment_quotes.items() ] list_to_spreadsheet( "fragment_extensions", ["fragment_id", "part", "primers", "fragment_sequence"], fragments_list, ) # WRITE THE ASSEMBLY PLAN SPREADSHEET assembly_plan = [ (construct, quote.source.name, " + ".join(quote_components_ids(quote))) for construct, quote in quotes.items() ] list_to_spreadsheet( "assembly_plan", ["construct", "method", "fragments"], assembly_plan, ) # WRITE THE ERRORED CONSTRUCTS SPREADSHEET list_to_spreadsheet("errors", ["construct", "error"], list(errors.items())) writer.close()
1bf94f9c9eada0021c69bd56cfee3505ae586b97
23,118
def checkNodeInObstacle(node, img): """ To check the color of the image at a particular Node :param node: node to check :type node: Node type :param img: the image to check in :type img: np.array :return: Boolean of True or False :rtype: Boolean """ if img[node.y, node.x][0] == 0 and img[node.y, node.x][1] == 0 and img[node.y, node.x][2] == 0: return True return False
0701fef8bbe1dba57486ea50e0eab22b3aef51cb
23,121
def reciprocal_rank(predicted_bin_list, k): """ Reciprocal rank = 1/rank of first 'hit', i.e. first 1 in predicted_bin_list[:k]. If there is no hit, it is 0.""" predicted_bin_list_k = predicted_bin_list[:k] # Keep only 1s and 0s, discard 2s (2s are useful only for dcg). predicted_bin_list_k = [1 if entry>0 else 0 for entry in predicted_bin_list_k] # Get the index of the first 1 try: # +1 as index starts with 0. rr = 1 / (predicted_bin_list_k.index(1) + 1) return rr except ValueError: return 0
38f2ad4f40225c7ed75f39f79bc0ff56e4c70862
23,122
def span(text): """ Wraps text around formatting tag (That's how the web editor handles font sizes for some reason) """ return '''<span style="font-size: 16px;">'''+text+"</span>"
1c82dda9907879ad5367b8bc281b983b50cef747
23,124
def naive_max_perm(M, A=None): """ >>> M = [2, 2, 0, 5, 3, 5, 7, 4] >>> print(naive_max_perm(M)) {0, 2, 5} """ if A is None: A = set(range(len(M))) if len(A) == 1: return A B = {M[i] for i in A} C = A - B if C: A.remove(C.pop()) return naive_max_perm(M, A) return A
f265e83a304d328adaadd4b1bd407ee6ddc06df0
23,125
def seqToGenbankLines(seq): """ chunk sequence string into lines each with six parts of 10bp, return as a list >>> seqToGenbankLines("aacacacatggtacacactgactagctagctacgatccagtacgatcgacgtagctatcgatcgatcgatcgactagcta") ['aacacacatg gtacacactg actagctagc tacgatccag tacgatcgac gtagctatcg', 'atcgatcgat cgactagcta'] """ # first chunk into 10bp parts parts = [seq[i:i+10] for i in range(0, len(seq), 10)] # put into lines of 6*10 bp lines = [] for i in range(0, len(parts), 6): lines.append(" ".join(parts[i:i+6])) return lines
f0e290cf3d666980edc18acc50523f45ab18e24a
23,126
import math def recreate_2DFES(FES, icount, coords, xinc, xmin, xmax, yinc, ymin, ymax, E): """ Receive and returns an array that recreates the FES. Parameters: ----------- FES : Array of floats Energy values corresponding to x location on x dimension icount : Array of integers Stores number of counts sampled at each location coord : float location of walker xinc : float increment of grid xmin : float minimum value in grid xmax : float maximum value in grid yinc : float increment of grid ymin : float minimum value in grid ymax : float maximum value in grid E : float Energy value to be stored Returns: -------- FES : Array of floats Energy values corresponding to x location on x dimension (updated) icount : Array of integers Number of counts sampled at each location (updated) """ xindex = int(round((round(coords[0], int(abs(math.log10(xinc)))) + (0 - xmin)) / xinc)) yindex = int(round((round(coords[1], int(abs(math.log10(yinc)))) + (0 - ymin)) / yinc)) if (coords[0] > xmin and coords[0] < xmax and coords[1] > ymin and coords[1] < ymax): FES[yindex, xindex] = ((FES[yindex, xindex] * (icount[yindex, xindex]) + E) / (icount[yindex, xindex] + 1)) icount[yindex, xindex] = icount[yindex, xindex] + 1 return (FES, icount)
ad5f0938903a32c9fdf264a9a42c6d1eb316adf2
23,128
def magic_index(array: list)-> int: """binary search + tweak left search: take the min(m-1, array[m]) right search: take the max(m+1, array[m]) """ l,r = 0, len(array)-1 while l<=r: m = (l+r)//2 print(f'status: l: {l}, r: {r}, m: {m}, array_m: {array[m]}') if array[m] == m: return m if array[m] < m: l = max(m+1, array[m]) else: r = min(m-1, array[m]) raise KeyError('Not found')
d1166784e51ad8d56f7a7af0b55396a988f19e77
23,129
def _get_from_email_(message: dict) -> str: """ Returns the email address of the from message :param message: a dict that represents a message :return: an string containing the email or an empty string """ if message.get("@msg_from"): email = message["@msg_from"].get("emailAddress") else: email = "" return email
14c364470cb3ad0ed46d3d6e19f81e0e0d7dffd5
23,130
def get_poem_title(poem_container_soup): """Read in a soup object containing a poem and return the poem's title""" poem_title = "" title_soup = poem_container_soup.findAll("span", { "class" : "mw-headline" } )[0] title = ''.join(title_soup.findAll(text=True)) return title
e6fff5425d052c09dead9d1865f5c3652c0c8f6b
23,131
from typing import List def get_task_names(path: str, use_compound_names: bool = False) -> List[str]: """ Gets the task names from a data CSV file. :param path: Path to a CSV file. :param use_compound_names: Whether file has compound names in addition to smiles strings. :return: A list of task names. """ index = 2 if use_compound_names else 1 with open(path) as f: task_names = f.readline().strip().split(',')[index:] return task_names
f97af21dbb2f8cdeb6e24de25f529ad875310135
23,132
def calculate_mem_limit(machine_data, host_data): """Calculate real memory limit for container""" mem_limit = host_data["spec"]["memory"]["limit"] mem_limit_host = machine_data["memory_capacity"] if mem_limit > mem_limit_host: mem_limit = mem_limit_host return mem_limit
bf7df27ba12364b159446f4a83fa124cffd27ed4
23,133
from typing import List def is_doubled(arr: List[str]) -> bool: """ Checks whether a segment array of strings is doubled. That is, the first half contains the same elements as the second half. :param arr: List of strings. :return: True if array is doubled, False otherwise. """ if len(arr) % 2 != 0: return False first = 0 second = int(len(arr) / 2) while second < len(arr): if arr[first] != arr[second]: return False first += 1 second += 1 return True
3e13dc4c035fa31136e20f30e9c3913c10f90a26
23,135
def get_weight_op(weight_schedule): """Returns a function for creating an iteration dependent loss weight op.""" return lambda iterations: weight_schedule(iterations)
c3f4a01159a6a4b3ed309bf094b1821a542ada32
23,137
import base64 def get_file_content_chrome(browser, uri): """ Use selenium [browser] to download blob [uri]. - Source https://stackoverflow.com/a/47425305/ """ result = browser.execute_async_script(""" var uri = arguments[0]; var callback = arguments[1]; var toBase64 = function(buffer){for(var r,n=new Uint8Array(buffer),t=n.length,a=new Uint8Array(4*Math.ceil(t/3)),i=new Uint8Array(64),o=0,c=0;64>c;++c)i[c]="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".charCodeAt(c);for(c=0;t-t%3>c;c+=3,o+=4)r=n[c]<<16|n[c+1]<<8|n[c+2],a[o]=i[r>>18],a[o+1]=i[r>>12&63],a[o+2]=i[r>>6&63],a[o+3]=i[63&r];return t%3===1?(r=n[t-1],a[o]=i[r>>2],a[o+1]=i[r<<4&63],a[o+2]=61,a[o+3]=61):t%3===2&&(r=(n[t-2]<<8)+n[t-1],a[o]=i[r>>10],a[o+1]=i[r>>4&63],a[o+2]=i[r<<2&63],a[o+3]=61),new TextDecoder("ascii").decode(a)}; var xhr = new XMLHttpRequest(); xhr.responseType = 'arraybuffer'; xhr.onload = function(){ callback(toBase64(xhr.response)) }; xhr.onerror = function(){ callback(xhr.status) }; xhr.open('GET', uri); xhr.send(); """, uri) if type(result) == int : raise Exception("Request failed with status %s" % result) return base64.b64decode(result)
284663653a94206775bca09b5fee643fd33e3dce
23,138
def get_average_quality(qualities): """ Calculates average quality as Phred quality score Parameters ---------- qualities: str Read qualities for a certain position Returns ------- float Average quality """ sum_quality = 0 for q in qualities: sum_quality += 1 - 10 **-((ord(q) - 33) / 10.0) return sum_quality / len(qualities)
821f4353d7371ba8a2f1e4f749978a75cb6bd851
23,139
def calc_lcoe_om(fom, vom, cf=1): """ :param fom: Fixed operation and maintentance costs as CURR/KWY :param vom: Variable cost in the form of CURR/ KWH :param cf: Capacity factor assumed for the plant, default is 1 :return: LCOE O&M component in CURR per KWh """ fixed = fom / (cf * 8600) om_lcoe = fixed + vom return om_lcoe
b847a8cdbfbffb4d8270fea7703cf3250cbff491
23,141
def extractAll(text, startText, endText): """ Extract all occurences of a string within text that start with startText and end with endText Parameters: text: the text to be parsed startText: the starting tokem endText: the ending token Returns an array containing all occurences found, with tabs and newlines removed and leading whitespace removed """ result = [] start = 0 pos = text.find(startText, start) while pos != -1: start = pos + startText.__len__() end = text.find(endText, start) result.append(text[start:end].replace('\n', '').replace('\t', '').lstrip()) pos = text.find(startText, end) return result
2357f7c0f0d1b35a20a23408f55ce88d3bb2d6ea
23,142
def package_names_first(dependency_names, package_names): """ Put package names first. """ dep_packages = sorted( [x for x in dependency_names if x in package_names]) dep_projects = sorted( [x for x in dependency_names if x not in package_names]) dep_packages.extend(dep_projects) return dep_packages
365fefa9b0855776baf9cee982c45c8a85bb6926
23,143
def get_float_from_str(str): """ 字符串转float """ r = 0 if str == "" else float(str) return r
0695e8214373ea72c5da0f86f5dc33aa198cf271
23,145
def logistic_rhs(t, x, r=2., k=2.): """ RHS evaluation of logistic ODE, returns f(t, x) = r * x * (1 - x/k) """ return r * x * (1. - x / k)
eb65d625a3ae1b544032e6f0efe0eb500aa256cf
23,146
import re def convert_to_api_url(url: str, netloc: str, api_netloc: str) -> str: """Support both regular and raw URLs""" match = re.search(f"https://{netloc}/(.*?)/(.*?)/(?:raw|src)/(.*)", url) if match: user, repo, path = match.groups() else: raise ValueError("Not a valid bitbucket URL: {url}") return f"https://{api_netloc}/2.0/repositories/{user}/{repo}/src/{path}"
a6835f3b7b1dcdaf6901ad5644a189dfc902caf8
23,147
def _get_criteria_interactions(xmltree, criteria_allowed): """In the returned dict 'interactions', the most outer key designates direction of the interaction effect (i.e. which criterion is affected), which is significant in case of 'antagonistic' interaction. """ interaction_types_allowed = ['strengthening', 'weakening', 'antagonistic'] path = 'criteriaValues[@mcdaConcept="criteriaInteractions"]/criterionValue' interactions = {} cvs = xmltree.xpath(path) if not cvs: raise RuntimeError("Wrong or missing definitions for criteria " "interactions.") for cv in cvs: interaction_type = cv.attrib.get('mcdaConcept') if interaction_type not in interaction_types_allowed: raise RuntimeError("Wrong interaction type '{}'." .format(interaction_type)) criteria_involved = cv.xpath('.//criterionID/text()') if len(criteria_involved) != 2: raise RuntimeError("Wrong number of criteria for '{}' interaction." .format(interaction_type)) for criterion in criteria_involved: if criterion not in criteria_allowed: raise RuntimeError("Unknown criterion '{}' for '{}' interaction." .format(criterion, interaction_type)) interaction_value = float(cv.find('./value//').text) if ((interaction_value > 0 and interaction_type == 'weakening') or (interaction_value < 0 and interaction_type in ('strengthening','antagonistic')) or (interaction_value == 0)): raise RuntimeError("Wrong value for '{}' interaction." .format(interaction_type)) if interaction_type == 'strengthening' and 'weakening' in interactions.keys(): for i in interactions['weakening']: if set(i[:2]) == set(criteria_involved): raise RuntimeError("'strengthening' and 'weakening' " "interactions are mutually exclusive.") elif interaction_type == 'weakening' and 'strengthening' in interactions.keys(): for i in interactions['strengthening']: if set(i[:2]) == set(criteria_involved): raise RuntimeError("'strengthening' and 'weakening' " "interactions are mutually exclusive.") c1, c2 = criteria_involved try: interactions[interaction_type].append((c1, c2, interaction_value)) except KeyError: interactions.update({interaction_type: [(c1, c2, interaction_value)]}) return interactions
b29baa719f55ac4eabd1319531b7b15b7092b586
23,150
def get_descendants(manager, resource, pathway_id, pathway_name): """Generate d3 dendrogram structure by using BFS starting from the starting from a parent (root) node to the last descendants. :param manager: ComPath manager :param str resource: resource name :param str pathway_id: pathway identifier in the resource :param str pathway_name: pathway name :return: parent-children data structure :rtype: list[dict] """ # Create the entry dictionary of the pathway (node). d3_dendrogram = dict( children=[], name=pathway_name.replace(' - Homo sapiens (human)', ''), # Replace KEGG Suffixes pathway_id=pathway_id, resource=resource ) # Get direct descendents for the pathway. descendent_mappings = manager.get_decendents_mappings_from_pathway_with_is_part_of_relationship( resource, pathway_id, pathway_name ) # Return the entry dict with no children if the node got no descendants. if not descendent_mappings: return d3_dendrogram # Do the recusive call for each child. for mapping in descendent_mappings: pathway = mapping.get_complement_mapping_info(resource, pathway_id, pathway_name) d3_dendrogram["children"].append( get_descendants( manager, pathway[0], pathway[1], pathway[2] ) ) return d3_dendrogram
ad94c144a78e180b8a06c3af851cae8c2a1aea2f
23,151
def _get_offset_ann_map(ann_objs, restrict_types=None, ignore_types=None): """Helper function for search. Given annotations, returns a dict mapping offsets in text into the set of annotations spanning each offset. """ # treat None and empty list uniformly restrict_types = [] if restrict_types is None else restrict_types ignore_types = [] if ignore_types is None else ignore_types offset_ann_map = {} for ann_obj in ann_objs: for t in ann_obj.get_textbounds(): if t.type in ignore_types: continue if restrict_types != [] and t.type not in restrict_types: continue for t_start, t_end in t.spans: for o in range(t_start, t_end): if o not in offset_ann_map: offset_ann_map[o] = set() offset_ann_map[o].add(t) return offset_ann_map
577b85fb627278c090658f594047fb0e1e3c7781
23,152
from datetime import datetime def createTrunk(name): """ Creates a trunk name for data in data_vault corresponding to the current date. Arguments: name (str) : the name of the client. Returns: (*str) : the trunk to create in data_vault. """ date = datetime.now() trunk1 = '{0:d}_{1:02d}_{2:02d}'.format(date.year, date.month, date.day) trunk2 = '{0:s}_{1:02d}:{2:02d}'.format(name, date.hour, date.minute) return ['', str(date.year), '{:02d}'.format(date.month), trunk1, trunk2]
c4b1967468159cc13a551afcb142b05a510174ad
23,153
def PERDA_DESLIZAMENTO_ANCORAGEM(P_IT0, SIGMA_PIT0, A_SCP, L_0, DELTA_ANC, E_SCP): """ Esta função determina a perda de protensão por deslizamento da armadura na anco- ragem. Entrada: P_IT0 | Carga inicial de protensão | kN | float SIGMA_PIT0 | Tensão inicial de protensão | kN/m² | float A_SCP | Área de total de armadura protendida | m² | float L_0 | Comprimento da pista de protensão | m | float DELTA_ANC | Previsão do deslizamento do sistema de ancoragem | m | float E_SCP | Módulo de Young do aço protendido | kN/m² | float Saída: DELTAPERC | Perda percentual de protensão | % | float P_IT1 | Carga final de protensão | kN | float SIGMA_PIT1 | Tensão inicial de protensão | kN/m² | float """ # Pré-alongamento do cabo DELTAL_P = L_0 * (SIGMA_PIT0 / E_SCP) # Redução da deformação na armadura de protensão DELTAEPSILON_P = DELTA_ANC / (L_0 + DELTAL_P) # Perdas de protensão DELTASIGMA = E_SCP * DELTAEPSILON_P SIGMA_PIT1 = SIGMA_PIT0 - DELTASIGMA DELTAP = DELTASIGMA * A_SCP P_IT1 = P_IT0 - DELTAP DELTAPERC = (DELTAP / P_IT0) * 100 return DELTAPERC, P_IT1, SIGMA_PIT1
6218ea2e328e05e56e9a8c13828152067f988550
23,154
from typing import List def get_possible_stride_sizes(image_size: int, padding_size: int, filter_size: int) -> List[int]: """Get possible stride sizes as list of Integers Args: image_size (int): input image size padding_size (int): padding size filter_size (int): filter/kernel size Returns: int: all possible stride sizes """ resultant_srides = [] total_value = (image_size+2*padding_size - filter_size) print(f"{total_value=}") for i in range(1, total_value): if total_value % i == 0: resultant_srides.append(i) return resultant_srides
4b9f1413b11ad4430bcebdc3df4b82fab07f849b
23,155
def build_error_msg(error, code=10): """Builds an error message to add to the queue""" msg = { 'jsonrpc': '2.0', 'error': { 'code': code, 'message': f'{error}' }, 'id': 'app_error' } return msg
2e4f9be31defe675738d7c2cbaa591a65f5abdcf
23,158
import re def remove_state_keys(state, keys_regex): """Remove keys from state that match a regex""" regex = re.compile(keys_regex) return {k: v for k, v in state.items() if not regex.findall(k)}
d1ec89b5da23f866cb8bec8d03a14cc2deba8b5f
23,160
import requests def list_measurement_defintion(measurement=None): """ Given a measurment type from one of the available GLOS stations return its defintion ie. what is it? to the user. """ response = requests.get( "https://seagull-api.glos.org/api/v1/parameter-configurations" ) data_types = {} for i in response.json(): data_types[i["display_name"]["en"]] = i if measurement != None: return data_types[measurement] return data_types
6d6c7cdebd8fe4af054fe152faf329a1489300bf
23,162
def get_value_assigned_to_user(user_data, key): """ Try to retrieve (attribute) value assigned to an user. In practise it will be certificate or key. KeyError will be raised in case of improper payload format or when the attribute for given key does not exist. """ d = user_data["user"] return d[key]
f6e5155612e048ae3d52aa6759e96bb823ebbaca
23,163
def fib(n): """ input: positive integer 'n' returns the n-th fibonacci term , indexing by 0 """ # precondition assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0" tmp = 0 fib1 = 1 ans = 1 # this will be return for i in range(n-1): tmp = ans ans += fib1 fib1 = tmp return ans
89ec5eeecf80a2f802297198de147ff94f750e87
23,164
import base64 def read_file(file: str) -> str: """ Reads the given file and returns the contents as a base64 string @param file: Path to a file @return: base64 string containing the file bytes """ with open(file, "rb") as f: return base64.b64encode(f.read()).decode()
08ce5bec02c55aa1a4934605bd27c8f083308591
23,165
import csv def load_labels(abs_path): """ loads relative path file as dictionary Args: abs_path: absolute path Returns dictionary of mappings """ label_tsv = open(abs_path) labels = list(csv.reader(label_tsv, delimiter="\t")) return labels
091fe644d8d9a8aef26a1905497dcc8d5e7921ce
23,168
def user_roles(value): """List all roles for a given user""" return list(value.groups.all().values_list("communityrole__role_name", flat=True))
76bafdc492742734fe65cbb5668dd8a05f1c8e59
23,169
def addMortonCondition(mortonRanges, mortonColumnName): """ Composes the predicate with the morton ranges. """ elements = [] for mortonRange in mortonRanges: elements.append('(' + mortonColumnName + ' between ' + str(mortonRange[0]) + ' and ' + str(mortonRange[1]) + ')') if len(elements) == 1: return elements[0] elif len(elements) > 1: return '(' + ' OR '.join(elements) + ')' return None
8157268dd9d051ddd767c8b5093771f0b5d79710
23,170
import os def path(filename): """ :param filename: :return: """ return os.path.join(os.path.dirname(__file__), filename)
6b22edbdd914d683dcf021798f3f126875b02e76
23,171
import pandas as pd def merge_dfs(dfs): """ Merge a list of dataframes where each contains one row showing all unique region-region pairs. Parameters ---------- dfs : list list of dataframes where each contains one row showing all unique region-region pairs Returns ------- out_df : pandas.core.frame.DataFrame merged dataframe where each row represents a unique scan """ out_df = pd.concat(dfs, copy=False, ignore_index=True) headers = list(out_df.columns.values) # if any of these columns exist in the dataframe, move them to the front if 'variant_id' in headers: headers.insert(0, headers.pop(headers.index('variant_id'))) if 'space_id' in headers: headers.insert(0, headers.pop(headers.index('space_id'))) if 'run_id' in headers: headers.insert(0, headers.pop(headers.index('run_id'))) if 'rec_id' in headers: headers.insert(0, headers.pop(headers.index('rec_id'))) if 'acq_id' in headers: headers.insert(0, headers.pop(headers.index('acq_id'))) if 'task_id' in headers: headers.insert(0, headers.pop(headers.index('task_id'))) if 'session_id' in headers: headers.insert(0, headers.pop(headers.index('session_id'))) if 'subject_id' in headers: headers.insert(0, headers.pop(headers.index('subject_id'))) out_df = out_df[headers] return out_df
e47cae67a51bb356b4e03bf22a8e7c81593ee909
23,172
def get_end_year(season): """ Returns the end year given a season in YYYY-YY format """ second_part = season.split("-")[1] first_part = "20" if second_part == "00" else season.split("-")[0][:2] year = f"{first_part}{second_part}" return int(year)
13b1094c47bbfdd388a2df627f3565bc3c326a04
23,173
def format_name(name): """Remove non alphanumeric/whitespace characers from user input or restaurant data """ return ''.join(chr for chr in name if chr.isalnum() or chr.isspace())
edbeaa643f1b721287aa722cd491d61a53bf7dff
23,175
from typing import Dict from typing import OrderedDict def generate_panelist_vs_panelist_results(panelists: Dict, panelist_appearances: Dict, show_scores: Dict ) -> Dict: """Generate panelist vs panelist results""" pvp_results = OrderedDict() for _, panelist_a in panelists.items(): panelist_a = panelist_a["slug"] pvp_results[panelist_a] = OrderedDict() for _, panelist_b in panelists.items(): panelist_b = panelist_b["slug"] if panelist_a != panelist_b: panelist_a_appearances = panelist_appearances[panelist_a] panelist_b_appearances = panelist_appearances[panelist_b] a_b_intersect = list(set(panelist_a_appearances) & set(panelist_b_appearances)) a_b_intersect.sort() pvp_results[panelist_a][panelist_b] = OrderedDict() wins = 0 draws = 0 losses = 0 for show in a_b_intersect: panelist_a_score = show_scores[show][panelist_a] panelist_b_score = show_scores[show][panelist_b] if panelist_a_score > panelist_b_score: wins = wins + 1 elif panelist_a_score == panelist_b_score: draws = draws + 1 else: losses = losses + 1 pvp_results[panelist_a][panelist_b]["wins"] = wins pvp_results[panelist_a][panelist_b]["draws"] = draws pvp_results[panelist_a][panelist_b]["losses"] = losses pvp_results[panelist_a][panelist_b]["total"] = wins + draws + losses return pvp_results
34dd140e28526479c149b517f01e02654ac4a390
23,178
def emulator_default_visibility(emulator): """The default visibility for this emulator.""" return emulator["default_visibility"]
d279920f4c401b8bf68bf1224432badec4658ebe
23,179
def local_path(epic, c): """ Returns file directory and filename of K2 target pixel files """ if len(str(c)) < 2: c_str = '0'+str(c) else: c_str = str(c) # get path to fits #mastDownload_path = '/home/rachel/Research/K2/mastDownload/' #fpath = mastDownload_path+'K2/ktwo%s-c%s_lc/ktwo%s-c%s_lpd-targ.fits.gz'%(epic, c_str, epic, c_str) #dir_path = mastDownload_path+'K2/ktwo%s-c%s_lc/'%(epic, c_str) #dir_path = '/home/rachel/.lightkurve-cache/mastDownload/K2/ktwo%s-c%s_lc/'%(epic, c_str) dir_path = '~/.lightkurve-cache/mastDownload/K2/ktwo%s-c%s_lc/'%(epic, c_str) fname = 'ktwo%s-c%s_lpd-targ.fits.gz'%(epic, c_str) return dir_path, fname
6111406ee934b0cafbd1c91742d30f16fd70167c
23,180
def replace_special_signs(str_to_change: str) -> str: """Replace special signs in given string""" replacements = { '*': '_', '.': '_', ',': '_', '-': '_', '__': '_', ' ': '' } replaced = str(str_to_change) for key, value in replacements.items(): replaced = replaced.strip(key).replace(key, value) return replaced
5ad7830f0a05dd52d8cb7027dd321083406c2f38
23,181
def get_Q_hs_max_CS_d_t(Q_hs_max_C_d_t, SHF_dash_d_t): """(25) Args: Q_hs_max_C_d_t: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房出力(MJ/h) SHF_dash_d_t: 日付dの時刻tにおける冷房負荷補正顕熱比(-) Returns: 日付dの時刻tにおける1時間当たりの熱源機の最大冷房顕熱出力(MJ/h) """ return Q_hs_max_C_d_t * SHF_dash_d_t
13005580427e38382d9d632a0cd1bbab56b68ff6
23,183
def is_even(n_digits) -> bool: """ Check if the number is even or not :param n_digits: :return: Bool """ if n_digits % 2 == 0: return True return False
3ada9b181ab3283fd8d5c3a67fde5004129cfc4c
23,184
def predict_with_neuron(model_class, X_train, y_train, X_valid, lrate, epochs, on_epoch_end_callback=None): """ Args: X_train (np.ndarray of shape (N, m): Features of the training set y_train (np.ndarray of shape (N,): Target values of the training set X_valid (np.ndarray of shape (V, m): Features of the validation set lrate (float): learning rate epochs (int): number of epochs on_epoch_end_callback (function): A function that accepts as an argument an integer (the index of current iterator) and a LinearNeuron object. This function can be used as a callback in order to perform some action at the end of every epoch Returns: The predictions of the trained neuron for X_valid and a np.ndarray vector with the parameters of the trained neuron. """ dims = X_train.shape[1] model = model_class(dims) model.fit(X_train, y_train, lrate, epochs, on_epoch_end_callback) predictions = model.predict(X_valid) parameters = model.theta return predictions, parameters
7c7b36474e46b4b4b8ee152f97e82b2e8e4770e9
23,185
def is_str(var): """ is this a string? """ # python2: # return isinstance(var, basestring) return isinstance(var, str)
91516d2d24dab235e374e0d77f184cdd59fc82ec
23,186