content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
import operator
def get_max_queue(queues):
"""Retrieve a queue with max messages as tuple."""
queue, value = max(queues.items(), key=operator.itemgetter(1))
return (queue, value)
|
69b52a6bac89cc61e84f639fed06cffe7a0d697f
| 22,910
|
def set_gpu(gpu_mon, args):
"""
Sets the GPU visibility based on the passed arguments. Takes an already
initialized GPUMonitor object. Sets GPUs according to args.force_GPU, if
specified, otherwise sets first args.num_GPUs free GPUs on the system.
Stops the GPUMonitor process once GPUs have been set
If gpu_mon is None, this function does nothing
Args:
gpu_mon: An initialized GPUMonitor object or None
args: argparse arguments
Returns: The number of GPUs that was actually set (different from
args.num_GPUs if args.force_GPU is set to more than 1 GPU)
"""
num_GPUs = args.num_GPUs
if gpu_mon is not None:
if not args.force_GPU:
gpu_mon.await_and_set_free_GPU(N=num_GPUs, sleep_seconds=120)
else:
gpu_mon.set_GPUs = args.force_GPU
num_GPUs = len(args.force_GPU.split(","))
gpu_mon.stop()
return num_GPUs
|
09c7b4a9956bd0f82666046c890b3e86cfa9d6a9
| 22,911
|
def format_output_fname(current_theme):
"""Formatting output file name.
"""
output_fname = "_".join([word.capitalize() for word in current_theme.split(" ")])
return output_fname
|
ce915566acb74f0c89d100647f3cf20ab0696347
| 22,912
|
import warnings
import ctypes
def pack(ctypes_obj):
"""Convert a :mod:`ctypes` structure into a Python string.
Args:
ctypes_obj (ctypes.Structure): The :mod:`ctypes` structure to convert to a string.
Returns:
New Python string containing the bytes from memory holding *ctypes_obj*.
.. deprecated:: 1.5
This function is deprecated, use ``bytes(ctypes_obj)`` instead.
"""
warnings.warn(
"This function is deprecated and will be removed, use ``bytes(ctypes_obj)`` instead.",
DeprecationWarning,
stacklevel=2,
)
return ctypes.string_at(ctypes.addressof(ctypes_obj), ctypes.sizeof(ctypes_obj))
|
7ae5a320e93fbcbcec09b5d5ee587f266fa75f9e
| 22,913
|
import re
def norm_string(range_val):
"""
Look at a range value and if it's got characters that make range parsing unhappy
then put it in a q()
"""
re_badchars = re.compile(r'[\s\/]')
re_minus = re.compile(r'((\S)+ - (\S)+)+')
re_quoted = re.compile(r'^q\(.*\)$')
re_int_parens = re.compile(r'[\(\)]')
re_l_paren = re.compile(r'\(')
re_r_paren = re.compile(r'\)')
# Escape internal parms, wrap in a q() if they exist
if re_int_parens.search(range_val) and not re_quoted.match(range_val):
range_val = re_l_paren.sub(r'\(', range_val)
range_val = re_r_paren.sub(r'\)', range_val)
range_val = 'q(%s)' % range_val
# Look for spaces and slashes, if they exist, wrap in a q()
if re_badchars.search(range_val) and not re_quoted.match(range_val):
if not re_minus.match(range_val):
range_val = 'q(%s)' % range_val
return range_val
|
038d9648a2c15e911ad98246dc121cd50204f217
| 22,914
|
import torch
import math
def predict_sliding(model, image,
num_classes, crop_size,
overlap=0.25, # 控制 infer 数量
):
"""
滑窗 infer 大图
@param model:
@param image:
@param num_classes:
@param crop_size: 大图 crop 小图,crop_size = model input size
@param overlap:
@return:
"""
B, _, H, W = image.shape
# out_stirde 控制模型 输出 size, 开辟存储空间,保存输出
full_probs = torch.zeros((B, num_classes, H, W)).cuda()
cnt_preds = torch.zeros((B, num_classes, H, W)).cuda()
# row/col 滑窗范围
stride = int(math.ceil(crop_size * (1 - overlap))) # overlap -> stride
tile_rows = int(math.ceil((H - crop_size) / stride) + 1)
tile_cols = int(math.ceil((W - crop_size) / stride) + 1)
num_tiles = tile_rows * tile_cols
print("Need %i x %i = %i prediction tiles @ stride %i px" % (tile_cols, tile_rows, num_tiles, stride))
for row in range(tile_rows):
for col in range(tile_cols):
# bottom-right / left-top 保证右下有效,反推左上
x2, y2 = min(col * stride + crop_size, W), min(row * stride + crop_size, H)
x1, y1 = max(int(x2 - crop_size), 0), max(int(y2 - crop_size), 0)
# crop input img
img = image[:, :, y1:y2, x1:x2]
out = model(img)
probs = out.softmax(dim=1) # 使用 softmax 归一化后的 acc 更准确
# map image pos -> output pos
full_probs[:, :, y1:y2, x1:x2] += probs # C 维 prob 之和
cnt_preds[:, :, y1:y2, x1:x2] += 1 # 对应 pixel 估计次数
full_probs /= cnt_preds
return full_probs
|
0eb34038c9fe9bdee4f3f5881ca09eddf4912011
| 22,915
|
def pixel_to_terrain_type(pixel):
"""
Convert a RGBA pixel to a terrain type.
The B channel composes the lower 8 bits, the A channel composes the upper 8 bits.
Note that some images do not have an alpha channel.
"""
if len(pixel) > 3:
return pixel[2] & 0xff | ((pixel[3] & 0xff) << 8)
else:
return pixel[2] & 0xff
|
a7a5538756b0566b6a2e978bf3a8fd28cbb0258b
| 22,916
|
def get_gain(l_ch, r_ch):
"""
l_ch -> left channel, array of int values
r_ch -> right channel, array of int values
returns compare left and right channel in dBFS
"""
diff = abs(l_ch - r_ch)
return 0 if l_ch > r_ch else diff
|
0f7095c565e9d10619889ef0e26a2898be2a82ec
| 22,917
|
def armstrong_number(n: int) -> bool:
"""
Return True if n is an Armstrong number or False if it is not.
>>> armstrong_number(153)
True
>>> armstrong_number(200)
False
>>> armstrong_number(1634)
True
>>> armstrong_number(0)
False
>>> armstrong_number(-1)
False
>>> armstrong_number(1.2)
False
"""
if not isinstance(n, int) or n < 1:
return False
# Initialization of sum and number of digits.
sum = 0
number_of_digits = 0
temp = n
# Calculation of digits of the number
while temp > 0:
number_of_digits += 1
temp //= 10
# Dividing number into separate digits and find Armstrong number
temp = n
while temp > 0:
rem = temp % 10
sum += rem ** number_of_digits
temp //= 10
return n == sum
|
0a88312a08c7d5e6d3df660b164ed28e0a4a40d5
| 22,919
|
def remove_transition(net, trans):
"""
Remove a transition from a Petri net
Parameters
----------
net
Petri net
trans
Transition to remove
Returns
----------
net
Petri net
"""
if trans in net.transitions:
in_arcs = trans.in_arcs
for arc in in_arcs:
place = arc.source
place.out_arcs.remove(arc)
net.arcs.remove(arc)
out_arcs = trans.out_arcs
for arc in out_arcs:
place = arc.target
place.in_arcs.remove(arc)
net.arcs.remove(arc)
net.transitions.remove(trans)
return net
|
85283735ec41e76ff491e562f0b2d2d115fd4114
| 22,923
|
def orbstat(orb):
""""Return various status parameters about the orbserver"""
return orb.stat()
|
e834f8fd924a9d4ecff4f25c51e6072c59acec10
| 22,924
|
def get_full_intent(intent_json):
"""recovers the full intent json from standalized intent.
Basically we will add fields that are omitted becauase their values are
all or 2 back to the intent json.
"""
# dep/ret time
if 'departure_time' not in intent_json:
intent_json['departure_time'] = 'all'
if 'return_time' not in intent_json:
intent_json['return_time'] = 'all'
# class
if 'class' not in intent_json:
intent_json['class'] = 'all'
# max_connections
if 'max_connections' not in intent_json:
intent_json['max_connections'] = 2
# airline_preference
if 'airline_preference' not in intent_json:
intent_json['airline_preference'] = 'all'
return intent_json
|
3565c36a9bd07f4f84efb4542dc5132ee76b28cb
| 22,925
|
def getBestCols(Matrix, numCols):
#expects matrix of floats, except header
#no row names
"""
given a matrix of estimated proportions for each sample, returns
the indices of the columns with the highest average values
"""
outMat = []
TotalValues = [0.0] * len(Matrix[1])
for line in Matrix[1:]:
for i in range(len(line)):
TotalValues[i] += float(line[i])
for line in Matrix:
outLine = []
SortedValues = sorted(TotalValues)[::-1]
MaxIndices = []
for MaxVal in SortedValues[:numCols]:
MaxIndices.append(TotalValues.index(MaxVal))
TotalValues[TotalValues.index(MaxVal)] = -1
return MaxIndices
|
f18aa701b16e001bcceedd2a9d1271fbd5902b58
| 22,928
|
import platform
import ntpath
import os
import shlex
def path_info(path_str):
"""
Retrieve basic information about the given path.
Parameters
----------
path_str : str
The path from which to extract information.
Returns
-------
tuple
base dir, file name, list of args
"""
if platform.system() == "Windows":
os_path_mod = ntpath
else:
os_path_mod = os.path
dir_name, other_parts = os_path_mod.split(path_str)
split = shlex.split(other_parts)
file_name = split.pop(0)
args = split
return dir_name, file_name, args
|
fdc38f5ae4b4fca60731716a50104af1f3f0c98a
| 22,929
|
def dim_up_down_up_sequence(gamut, idex, frames):
"""
up color intensity to full
"""
# initial compiled list is size 512
cseq = gamut[idex:] + gamut[::-1] + gamut[0:idex]
# adjust size
reframed = []
ratio = 512.0 / frames
for frameidx in range(frames):
gamut_pos = int(round(frameidx * ratio))
reframed.append(cseq[gamut_pos])
return reframed
|
9aaf7318a0c339767e9165e34a04a96f776c84d5
| 22,931
|
def check_translations(translations, mention_text, base_word="please"):
"""
Iterates over the translated words and checks whether any exist within the text.
Does not yet deal with alternate encoding.
:param translations: A list of translations
:param mention_text: The tweet text
:param base_word: The word being translated. Must exist within the translations struct.
:return: True if any of the translated words exist within the text
"""
if base_word not in translations["translations"]:
raise Exception("Baseword '%s' does not exist in the translation struct"%base_word)
for translation in translations["translations"][base_word]:
translation = translation.lower()
if translation in mention_text:
return True
return False
|
8573356bc0bbecde9daac03795d34b1be2b7b797
| 22,932
|
from typing import Iterable
from typing import Any
def gimplies(anteponents: Iterable[Any], postnents: Iterable[Any]) -> bool:
"""
Logical implication
P_1 ^ P2 ^ P3 ^ ... P^N => Q1 ^ Q2 ^ Q3 ^ ... ^ QM
The formula is false only when P is true and Q is false
:param anteponents: the left hand side of the implication. Implicitly concatenatied by "and"
:param postnents: the right hand side of the implication. Implicitly concatenated by "and"
:return:
"""
if all(anteponents) and not all(postnents):
return False
else:
return True
|
81b12972f4004621d711e0423d2c3abe231a784f
| 22,933
|
def upper(string):
"""
Return string converted to upper case.
"""
return str(string).upper()
|
fa2bfe354e3308aec8ee37635a0594b1d5699d6e
| 22,935
|
def quote_sh_string(string):
"""Make things that we print shell safe for copy and paste."""
return "\\'".join("'" + p + "'" for p in string.split("'"))
|
a6a770fb39ef0e23127ea2c007cacaf4e8a13116
| 22,937
|
def take_state(dim2, vet_board, empty, o, x):
"""Representação dos Estados possíveis do tabuleiro"""
somatorio = 0
for i in range(dim2):
if vet_board[i] == empty:
digit = 0
elif vet_board[i] == o:
digit = 1
else:
digit = 2
somatorio = somatorio + digit * (3**i)
state = somatorio
return state
|
e6111737632df277febdcdbcdb04eff8be5cb25b
| 22,938
|
import glob
import os
def get_stats(ptrn, collect_stats=True):
"""
Returns the size of the files (matched by the ptrn) occupied.
Also returns the list of files Sorted by the Descending order of creation time & size
"""
files = glob.glob(ptrn)
file_stats = []
total_size = 0
for file in files:
file_size = os.path.getsize(file)
if collect_stats:
file_stats.append((os.path.getmtime(file), file_size, file))
total_size += file_size
if collect_stats:
# Sort by the Descending order of file_creation_time, size_of_file
file_stats = sorted(file_stats, key=lambda sub: (-sub[0], sub[1], sub[2]))
return (file_stats, total_size)
|
0771042443a31d73995010744fc1c71429bf159f
| 22,939
|
def get_file_extension(meta_data):
"""
get file extension for cards on webapp
:return: string
"""
file_ext = meta_data["downloadable_items"][0]["doc_type"]
return file_ext
|
31e44510b36d6bac79992e44eb5b8bdc75db3bbe
| 22,940
|
def user_session(request):
"""Add user session information to the template context."""
return {
'chaospizza_user': {
'name': request.session.get('username', None),
'is_coordinator': request.session.get('is_coordinator', False),
'coordinated_order_slug': request.session.get('order_slug', None),
}
}
|
6e98c21cc30508db793dc79ef580757d71e9d6c4
| 22,941
|
def getEventTime(cursor, event_id=None, event_time=None, order="DESC"):
"""Get the event time.
If the event_time is specified, simply return. Else if the event_id is
specified, return its time. Else return the most recent event.
Args:
cursor: Database cursor.
event_id: Event id.
event_time: Event time.
order: ASC or DESC.
Returns:
The event time string.
"""
if event_id == None:
cursor.execute("SELECT id FROM Event ORDER BY time %s"%order)
event_id = int(cursor.fetchone()["id"])
if event_time == None:
cursor.execute("SELECT time FROM Event WHERE id=%d"%event_id)
event_time = str(cursor.fetchone()["time"])
return event_time
|
0e662d92f8da79ce154bd4951bb247b083b09345
| 22,943
|
import os
import subprocess
import signal
def _is_process_running(pid):
"""Whether the process with given PID is running."""
if os.name == 'nt':
return str(pid) in subprocess.check_output([
'tasklist',
'/fi',
f'PID eq {pid}',
]).decode()
try:
# os.kill throws OSError if the process with PID pid is not running.
# signal.SIG_DFL is one of two standard signal handling options, it will
# simply perform the default function for the signal.
os.kill(pid, signal.SIG_DFL)
except OSError:
return False
return True
|
c234bf97b8a65d83eecb7ae223ae9c229adfe073
| 22,944
|
def get_simproducts(indice_masterproduct, dfproducts, sim_matrix):
"""
returns dataframe of products similar to product nb <indice_masterproduct>
"""
# indices and similarity scores of products similar to master product
start = sim_matrix.indptr[indice_masterproduct]
stop = sim_matrix.indptr[indice_masterproduct + 1]
indices_simproducts = sim_matrix.indices[start:stop]
similarities = sim_matrix.data[start:stop]
# extracting dataframe of similar products and appending column of similarity
dfsimproducts = dfproducts.iloc[indices_simproducts]
dfsimproducts['sim'] = similarities
return dfsimproducts
|
87e2665952dc6f8e73638aee55b2c637ef06b38a
| 22,947
|
def get_indent(line):
"""
get indent length
:param line:
:return:
"""
index = 0
for i in line:
if i == " ":
index += 1
else:
break
return index
|
feb8e00bd9c7e0198b088acceb529100438af961
| 22,948
|
import re
from datetime import datetime
def extract_date(str_date):
""" Find the first %Y-%m-%d string
and return any legitimate datetime
with the remainder of the string
"""
rgx = re.compile(r'((\d{4})-(\d{2})-(\d{2}))')
o_match = rgx.search(str_date)
if o_match is not None:
lng_day = int(o_match.group(4))
lng_month = int(o_match.group(3))
lng_year = int(o_match.group(2))
# These digits may not give a legitimate combination of Y M D
try:
dte = datetime(lng_year, lng_month, lng_day)
except ValueError:
# Use today's values as defaults, and use any part that does work
dte = datetime.now()
# Start with day=1 in case the month is feb and the day 30 etc
dte = datetime.replace(dte, day=1, hour=0, minute=0, \
second=0, microsecond=0)
try:
dte = datetime.replace(dte, year=lng_year)
except ValueError:
pass
try:
dte = datetime.replace(dte, month=lng_month)
except ValueError:
pass
try:
dte = datetime.replace(dte, day=lng_day)
except ValueError:
pass
i_start = o_match.start()
tpl_date_rest = (dte, str_date[0:i_start] + ' ' + \
str_date[i_start + 10:])
else:
tpl_date_rest = (None, str_date)
return tpl_date_rest
|
fb7729e8a631a69d0e7eda4f6b62aff0589f39e4
| 22,949
|
import gzip
def read_compressed(path):
"""
Write a compressed (gzipped) file from `path`.
"""
with gzip.open(path, 'rb') as f:
return f.read()
|
b5806c8606fa6344a8b00fb3e52042c5f9cb49db
| 22,950
|
def __has_value(cell):
"""Checks if a cell value from a Pandas dataframe is a valid string
The following are treated as invalid:
* empty cell (None)
* empty string ('')
* zero (0)
* type = nan OR type = None
* 'null' OR 'NULL'
* 'none' OR 'NONE'
Args:
cell (Any): Value of a cell from pandas dataframe
Returns:
Boolean: Whether or not value is valid string
"""
# Falsy values are FALSE
if not cell:
return False
# nan values FALSE
if not isinstance(cell, str):
return False
# strings == 'none' or 'null' or '0' are also FALSE
if (
cell.lower() == "none"
or cell.lower() == "null"
or cell.lower() == "nan"
or cell == "0"
):
return False
return True
|
3c0e406bac02013b4f80787970715c535337b772
| 22,951
|
def get_pred_and_suc(value, times):
"""
Return the predecessor and the successor of the value as well as the predecessor of the predecessor of the value
in the array times.
:param value: float
:param times: SortedSet
:return:
"""
if len(times) == 2:
return times[0], times[0], times[1]
id_before = times.bisect_left(value)
if value == times[id_before]:
pred = value
suc = times[id_before + 1]
if id_before - 1 < 0:
pred_pred = times[0]
else:
pred_pred = times[id_before - 1]
else:
pred = times[id_before - 1]
suc = times[id_before]
if id_before - 2 < 0:
pred_pred = times[0]
else:
pred_pred = times[id_before - 2]
return pred_pred, pred, suc
|
899f2e7484bcada4b65e17ac23358a558e002e35
| 22,952
|
from typing import List
def get_origin_position_factor(matrix: List[List[float]]):
"""
Calculate average distance between stops.
:matrix: list of lists containing all to all distances
return float
"""
# NOTE: matrix is processed to integers for solver (d * 100)
distance_factor = (sum(matrix[0]) / 100) / len(matrix[0][1:])
return distance_factor
|
daa1ab06ec8a32bf72cf87814edc22e77271cfce
| 22,953
|
def map_to_filtered(rev):
"""Gets hash of rev after filtering.
If rev hasn't been filtered (yet), returns None.
Equivalent to the `map` function exposed by git-filter-branch, except that
function returns rev if the revision hasn't yet been filtered, and that this
function raises an error if rev maps to multiple commits.
"""
#if not workdir:
# raise RuntimeError("workdir environment variable is empty?")
mapfile = '../map/%s' % rev
try:
with open(mapfile, 'r') as f:
lines = f.read().strip().split('\n')
if len(lines) != 1:
raise RuntimeError("mapfile %s doesn't contain a single line: %s" % (mapfile, str(lines)))
return lines[0]
except IOError:
return None
|
0ebbcb04881435c2a0a1ca217b52155ef6e0ad7f
| 22,954
|
from pathlib import Path
import os
def load_noimage_user():
"""ユーザーのNoImage画像を取得します"""
noimage_user_path = (
Path(os.path.dirname(__file__)) / "app/static/noimage_user.png"
)
with open(noimage_user_path, "rb") as f:
noimage_user = f.read()
return noimage_user
|
37912b907bb67d81059bafa43da31813a37b7ff3
| 22,956
|
def get_hyperparameters(args):
"""
Store all arguments in `main.py`, except `SM_CHANNEL`
and `model`, in a dictionary
return:
Dictionary of selected arguments passed to `main.py`
"""
return {param : val for param, val in args.__dict__.items()
if (not param.endswith('_dir')) and param != 'model'}
|
daeb40eaed3dca172226d29ebd1afcd8345b8802
| 22,957
|
import base64
def decode_attachment_payload(message):
"""Decodes a message from Base64, if fails will outputs its str(message)
"""
msg = message.get_payload()
try:
# In some cases the body content is empty and cannot be decoded.
msg_info = base64.b64decode(msg)
except TypeError:
msg_info = str(msg)
return msg_info
|
633ab2a9572ba481bc5a348ca6717d948b4ffa06
| 22,958
|
import torch
def species_split(dataset, train_valid_species_id_list=[3702, 6239, 511145,
7227, 10090, 4932, 7955],
test_species_id_list=[9606]):
"""
Split dataset based on species_id attribute
:param dataset:
:param train_valid_species_id_list:
:param test_species_id_list:
:return: train_valid dataset, test dataset
"""
# NB: pytorch geometric dataset object can be indexed using slices or
# byte tensors. We will use byte tensors here
train_valid_byte_tensor = torch.zeros(len(dataset), dtype=torch.uint8)
for id in train_valid_species_id_list:
train_valid_byte_tensor += (dataset.data.species_id == id)
test_species_byte_tensor = torch.zeros(len(dataset), dtype=torch.uint8)
for id in test_species_id_list:
test_species_byte_tensor += (dataset.data.species_id == id)
assert ((train_valid_byte_tensor + test_species_byte_tensor) == 1).all()
train_valid_dataset = dataset[train_valid_byte_tensor]
test_valid_dataset = dataset[test_species_byte_tensor]
return train_valid_dataset, test_valid_dataset
|
3693eb9122baf79e41b404755fb500fcbaed7c6c
| 22,959
|
import subprocess
def branch_has_commit(upstream: str, branch: str, commit: str) -> bool:
"""
Returns True if the commit is actually present in the branch
"""
ret = subprocess.call(['git', 'merge-base', '--is-ancestor',
commit, upstream + '/' + branch],
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL)
return ret == 0
|
d8b0dc4f22201d7a084047af4bd61da3d3622fad
| 22,960
|
def spawn(school: list[int], cycles: int, memo: dict[int, int]):
"""Simulates fish reproduction when not already stored."""
school_size: int = len(school)
for fish in school:
if fish not in memo:
spawned_fish: list[int] = []
day: int = fish
day += 9
while day <= cycles:
spawned_fish.append(day)
day += 7
memo[fish], memo = spawn(spawned_fish, cycles, memo)
school_size += memo[fish]
return school_size, memo
|
5e13e8b139db201adddafeb66695ef0fd7583bcc
| 22,961
|
def merge(struct_a, struct_b):
"""
Merges two struct files.
Parameters
----------
struct_a, struct_b : pandas.DataFrame
Dataframes containing 4 columns of metabolite ID, formula, SMILES, and InChI.
Returns
-------
struct : pandas.DataFrame
"""
return struct_a.append(struct_b, ignore_index=True)
|
31b42c2507dddc65294fb7138e05a26e4b239e04
| 22,964
|
def skip_punishment(player, table, lied_card=None, turns_to_wait=0):
"""
Function used to punish player with turns to skip.
:param player: Player object
:param table: list with cards on table
:param lied_card: tuple with last lied card
:param turns_to_wait: integer value of take card punishment
:return: tuple with last lied card, integer value of turns to skip
"""
player.turns_to_skip = turns_to_wait - 1
player.print_foo(f'{player.name} will have to skip this and next {player.turns_to_skip} turns.')
turns_to_wait = 0
if lied_card:
table.append(lied_card)
lied_card = None
return lied_card, turns_to_wait
|
a3f141243d78eb1919536c414c278fa1ea92637f
| 22,965
|
import torch
def mask_iou(lhs_mask, rhs_mask):
"""Compute the Intersection over Union of two segmentation masks.
Args:
lhs_mask (torch.FloatTensor): A segmentation mask of shape (B, H, W)
rhs_mask (torch.FloatTensor): A segmentation mask of shape (B, H, W)
Returns:
(torch.FloatTensor): The IoU loss, as a torch scalar.
"""
batch_size, height, width = lhs_mask.shape
assert rhs_mask.shape == lhs_mask.shape
sil_mul = lhs_mask * rhs_mask
sil_add = lhs_mask + rhs_mask
iou_up = torch.sum(sil_mul.reshape(batch_size, -1), dim=1)
iou_down = torch.sum((sil_add - sil_mul).reshape(batch_size, -1), dim=1)
iou_neg = iou_up / (iou_down + 1e-10)
mask_loss = 1.0 - torch.mean(iou_neg)
return mask_loss
|
d9d9a79176117bab0caa5198b20b304eb111a141
| 22,966
|
def get_facetview_link(facetview_url, objectid, system_version=None):
"""Return link to objectid in FacetView interface."""
if system_version is None:
q = '{"query":{"query_string":{"query":"_id:%s"}}}' % objectid
b64 = q.encode('utf-8')
else:
q = '{"query":{"query_string":{"query":"_id:%s AND system_version:%s"}}}' % (objectid, system_version)
b64 = q.encode('utf-8')
if facetview_url.endswith('/'):
facetview_url = facetview_url[:-1]
return '%s/?base64=%s' % (facetview_url, b64)
|
3a4e4255cf6c05279be0acab73c97728a751bb73
| 22,967
|
from numpy import where, concatenate, repeat
from numpy.random import choice, permutation
def balance_samples(X, Y):
"""
Balances the number of positive and negative samples by duplicating samples from the smaller
one.
"""
n_pos = Y.sum() # number of positive samples
n_neg = len(Y) - n_pos # number of negative samples
if n_pos == n_neg: return X, Y
# Add either n_pos-n_neg negative samples or n_neg-n_pos positive samples
Y = concatenate((Y, repeat(n_neg>n_pos, abs(n_pos-n_neg))))
i,(d,r) = (where(~Y),divmod(n_pos, n_neg)) if n_neg < n_pos else where(Y),divmod(n_neg, n_pos)
i = concatenate((repeat(i, d-1), choice(i, r, False)))
X = concatenate((X, X.take(i, 0)), 0)
# Shuffle the data so all of the new samples aren't at the end
ii = permutation(len(Y))
return X.take(ii, 0), Y.take(ii)
|
38848890b75b9b70fd53129a99c92782c9aa8d42
| 22,968
|
def calc_f1(precision: float, recall: float) -> float:
"""
Compute F1 from precision and recall.
"""
return 2 * (precision * recall) / (precision + recall)
|
4a20816b0f5b2457826c146da52e352c39b88b16
| 22,969
|
def selectivity(weights, thresh=0.1):
"""Computes normalized selectivity of a set of `weights`.
This is something like "peakiness" of the distribution.
Currently, this is computed by looking at how many weights
are above the given `thresh`.
The result is normalized by the length of `weights`.
"""
return len([w for w in weights if w > thresh])/float(len(weights))
|
b526070770d42f5923c410f6cc4087f858d7c265
| 22,970
|
import argparse
def parse_args(input_args=None):
"""
Parse command-line arguments.
Parameters
----------
input_args : list, optional
Input arguments. If not provided, defaults to sys.argv[1:].
"""
parser = argparse.ArgumentParser()
parser.add_argument('input',
help='Input filename.')
parser.add_argument('-r', '--receptor', action='store_true',
help='Treat input as a receptor.')
parser.add_argument('-s', '--split', action='store_true',
help='Split output files into one file per molecule.')
return parser.parse_args(input_args)
|
1a21ac03affa8f5901490abfe465042a61e31631
| 22,971
|
def _format_size(size):
"""Copied from tracemalloc.py"""
for unit in ('B', 'KiB', 'MiB', 'GiB', 'TiB'):
if abs(size) < 100 and unit != 'B':
# 3 digits (xx.x UNIT)
return '%.1f %s' % (size, unit)
if abs(size) < 10 * 1024 or unit == 'TiB':
# 4 or 5 digits (xxxx UNIT)
return '%.0f %s' % (size, unit)
size /= 1024
|
fce40546aa6576c4f91f32b85f3aa260e0e6129d
| 22,973
|
def subone(bv):
"""
Subtract one bit from a bit vector
>>> print subone(BitVector(bitstring='1111'))
1110
>>> print subone(BitVector(bitstring='0010'))
0001
>>> print subone(BitVector(bitstring='0000'))
1111
@param bv: Bits to add one bit to the right side
@type bv: BitVector
@rtype: BitVector
"""
new = bv
r = range(1,len(bv)+1)
for i in r:
index = len(bv)-i
if 1==bv[index]:
new[index]=0
break
new[index]=1
return new
|
6f30489efb76dd27f8e7ca09003a97278d497c90
| 22,974
|
import requests
import json
def set_record(
airtable_key: str, base_id: str, data: dict, table_name: str = "submissions"
):
"""
Add event to Airtable with AIRTABLE_ID
specified in .env file
See https://airtable.com/api
for more details about Airtable APIs
Note that we have to edit Airtable to have the following fields
fullname, date, speaker, institution, id (submission_id)
>>> data = {
"records": [
{
"fields": {
"title": "How we make neuromatch conference",
"starttime": "2020-10-01T00:00:00Z",
"endtime": "2020-10-01T00:00:15Z",
"fullname": "Titipat A.",
"institution": "University of Pennsylvania",
"talk_format": "Short talk",
"id": "[put ID of the talk here]"
}
}
]
}
>>> output = add_data_airtable(data)
>>> print(output)
"""
headers = {
"Authorization": f"Bearer {airtable_key}",
"Content-Type": "application/json",
}
post_url = f"https://api.airtable.com/v0/{base_id}/{table_name}"
output = requests.post(post_url, data=json.dumps(data), headers=headers)
return output.json()
|
013037338eb94a02563c4e6eff398985cf1082cc
| 22,975
|
def ceiling_root(num, pwr):
"""
Returns the integer ``num ** (1. / pwr)`` if num is a perfect square/cube/etc,
or the integer ceiling of this value, if it's not.
"""
res = num ** (1. / pwr)
int_res = int(round(res))
if int_res ** pwr == num:
return int_res
else:
return int(res + 1)
|
3f36275e834ae32ef1bcae0cecc7b733d2e54a69
| 22,977
|
def _parse_fingerprint_terraform(line, host=None):
"""Parse SSH host fingerprint from terraform output line"""
fingerprint = None
if line.find('(remote-exec)') > 0:
host = line.split(' ')[0].split('.')[-1]
fingerprint = line.split(': ', 2)[1]
return host, fingerprint
|
ef57e8c0a505af88e583eb913c3049448bc5077e
| 22,979
|
def convertToObjs(headers, entries):
"""
"""
return [dict(zip(headers, entry)) for entry in entries]
|
3ace4e0054c9a19aaedf5b7dd6cb36163b9b100c
| 22,980
|
def _get_grounded_string(name, args):
""" We use the lisp notation (e.g. "(unstack c e)"). """
args_string = ' ' + ' '.join(args) if args else ''
return '(%s%s)' % (name, args_string)
|
391e0aa5eea12d4085efa570262d5b406d493cc0
| 22,981
|
def split_host_port(host_port):
"""Return a tuple containing (host, port) of a string possibly
containing both. If there is no port in host_port, the port
will be None.
Supports the following:
- hostnames
- ipv4 addresses
- ipv6 addresses
with or without ports. There is no validation of either the
host or port.
"""
colon_count = host_port.count(':')
if colon_count == 0:
# hostname or ipv4 address without port
return host_port, None
elif colon_count == 1:
# hostname or ipv4 address with port
return host_port.split(':', 1)
elif colon_count >= 2:
# ipv6 address, must be bracketed if it has a port at the end, i.e. [ADDR]:PORT
if ']:' in host_port:
host, port = host_port.split(']:', 1)
if host[0] == '[':
# for valid addresses, should always be true
host = host[1:]
return host, port
else:
# no port; may still be bracketed
host = host_port
if host[0] == '[':
host = host[1:]
if host[-1] == ']':
host = host[:-1]
return host, None
|
89fd98aee3a07406c478eca82922bdecf5cb7078
| 22,982
|
def import_class(cl: str):
"""Import a class by name"""
d = cl.rfind(".")
classname = cl[d+1:len(cl)]
m = __import__(cl[0:d], globals(), locals(), [classname])
return getattr(m, classname)
|
4a0929dee0c44ad1d30d91373db813d605c5fbb4
| 22,983
|
import os
def is_root():
"""Gets whether the current user is root"""
if os.name == 'nt':
return winapi.is_user_admin()
else:
return os.geteuid() == 0
|
0393a56bf0a87f1cbcc6bd532c6a8afa8ce5e3e7
| 22,984
|
import json
from typing import List
def load_encoding(path: str) -> List[str]:
"""
Load character table from OCR engine configuration
:param path: Path to OCR engine config file.
:return: array containing characters from encoding
"""
with open(path, "r") as f:
engine = json.load(f)
return engine['characters']
|
03d4836f1b4d792f3e7dae17e658df908feb24e3
| 22,986
|
def flatten_gear(gear_array):
"""the shape of the request data from the project wizard that
corresponds to the gears and process types are too deeply nested
and need to be flattened to match the other data elements. This
function takes the deeply nested dict and flattens each one into a
dictionary with just two elemnts: gear and proccess type.
"""
gears = []
for item in gear_array:
for ptype in item.get("process_types"):
tmp = {
"gear": item["gear"],
"process_type": ptype["process_type"],
}
gears.append(tmp)
return gears
|
88d851076a2bb5561b124016106ba143edeca7a8
| 22,987
|
import subprocess
def vocal_eq(infile, outfile):
"""
Tries to EQ a song so that vocals are more prominent.
Doesn't work very well.
"""
subprocess.call([
'sox',
infile,
outfile,
'bass',
'-32',
'200',
'vad',
'norm'
])
return outfile
|
5fb34b72ae3ee3141781d59420b0656f83ef92cf
| 22,988
|
def _get_mode(steps, mode):
""" Gets the correct mode step list by rotating the list """
mode = mode - 1
res = steps[mode:] + steps[:mode]
return res
|
920f416e0420ced6a12033c0cefb6ba1ccdbf986
| 22,989
|
def get_standard_action(params):
"""
Return the action that needs to be executed.
Based on the module parameters specified a given action
needs to be executed. The process to determine this action
can be quite verbose. In order to facilitate the reading
of the modules code, we externalize this decision process.
"""
non_determistic_params = ['dci_login', 'dci_password', 'dci_cs_url',
'dci_client_id', 'dci_api_secret', 'embed',
'mime', 'state', 'where', 'active']
deterministic_params = {k: v for k, v in params.items()
if k not in non_determistic_params}
non_empty_values = [item for item in deterministic_params
if deterministic_params[item] is not None]
if 'state' in params and params['state'] == 'absent':
return 'delete'
elif 'status' in non_empty_values:
return 'status'
elif not non_empty_values:
return 'list'
elif non_empty_values == ['id']:
return 'get'
elif 'id' in non_empty_values:
return 'update'
return 'create'
|
f8d972ee9305d030bdc52cc8bb6f9210e8dac595
| 22,990
|
import subprocess
def cmd_exists(cmd):
"""
Determine if the command defined by cmd can be executed in a shell.
Returns a tuple (rc, msg), where rc==0 indicates that the command can be
executed, and otherwise rc is the command (or shell) return code and
msg is an error message.
"""
proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
out, _ = proc.communicate()
rc = proc.returncode
if rc == 0:
msg = None
else:
msg = out.strip()
return rc, msg
|
2acdc289a72d512c3a1a3cf6655ac6a5643a28eb
| 22,991
|
def countKey(theDict, name):
""" Return the number of times the given par exists in this dict-tree,
since the same key name may be used in different sections/sub-sections. """
retval = 0
for key in theDict:
val = theDict[key]
if isinstance(val, dict):
retval += countKey(val, name) # recurse
else:
if key == name:
retval += 1
# can't break, even tho we found a hit, other items on
# this level will not be named "name", but child dicts
# may have further counts
return retval
|
6542b6ebe2e9cf22c5204c7b4819a1958a029a44
| 22,993
|
def clear_data(path, start="M107", end='M82', cut=None):
"""
:param path: Pfad zur G-Code-Datei
:param start: Teilstring, der den Beginn der Daten markiert (wird übersprungen)
:param end: Teilstring, der das Ende der Daten markiert
:param cut: String, der aus den Daten gelöscht werden soll
:return: Stringliste, die nur G-Code Anweisungen enthält
"""
# öffne die Datei zeilenweise
with open(path) as file:
# entferne die Zeilenumbrüche
raw_lines = [f.strip('\n') for f in file.readlines()]
# finde den Startpunkt des G-Codes
start_idx = [raw_lines.index(i) for i in raw_lines if start in i][0]
# finde das Ende des G-Codes
end_idx = [raw_lines.index(i, start_idx) for i in raw_lines if end in i][0]
# trimme die Daten
cut_lines = raw_lines[start_idx+1: end_idx]
skirts = [i for i, x in enumerate(cut_lines) if x == ';TYPE:SKIRT']
outer_walls = [i for i, x in enumerate(cut_lines) if x == ';TYPE:WALL-OUTER']
if skirts:
# falls es mehrere Skirts gibt, müsste man die Routine hier anpassen
del cut_lines[skirts[0]:(outer_walls[0]-1)]
# lösche die Typenbezeichnungen
if cut is None:
uncommented_lines = cut_lines
else:
uncommented_lines = [i for i in cut_lines if all(c not in i for c in cut)]
cleared_lines = [l for l in uncommented_lines if l != '']
return cleared_lines
|
8c1b8e1e9583a0619f12cae8c988f07ba7156f56
| 22,994
|
def _format_lazy(format_string, *args, **kwargs):
"""
Apply str.format() on 'format_string' where format_string, args,
and/or kwargs might be lazy.
"""
return format_string.format(*args, **kwargs)
|
2ae51537ee38af02bcbd1c952d92a702192d5866
| 22,995
|
def isiterable(obj):
"""
Return whether an object is iterable
"""
# see https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
try:
iter(obj)
return True
except:
return False
|
6c6cc1af2eccaf8e10809da964271471720abdf4
| 22,997
|
def kel2c(tempK):
"""Convert a temperature in Kelvin to degrees Celsius."""
return tempK - 273.15
|
91604c71fc5d7aaceea1f435ae1e5781d0dce169
| 22,998
|
from bs4 import BeautifulSoup
def convert_to_beautifulsoup(data):
"""
用于将传过来的data数据包装成BeautifulSoup对象
:param data: 对应网页的html内容数据
:return: 对应data的BeautifulSoup对象
"""
bs = BeautifulSoup(data, "html.parser")
return bs
|
9e44b97e6ecff48e7365f450a8ce1005dd0dc42b
| 22,999
|
import subprocess
def run_command(cmd: list[str]) -> subprocess.CompletedProcess:
"""Run command and capture output with string encoding
Args:
cmd (list[str]): list describing command to be run
Returns:
subprocess.CompletedProcess: return value from run
"""
return subprocess.run(cmd, encoding='utf-8', capture_output=True)
|
fc41f251d14d92205a516549675c0ab23c92e0b3
| 23,000
|
def aslist(value):
"""
Return a list of strings, separating the input based on newlines.
"""
return list(filter(None, [x.strip() for x in value.splitlines()]))
|
249419c02d92d22d4c7cf0a7788ed09dc3bd19ce
| 23,002
|
import random
def uusi_pakka(pakkojen_lkm=1):
"""Palauttaa korttipakan satunnaisesss järjestyksessä.
Yksittäinen kortti on esimerkiksi (12, '♥')
Parametrit
----------
pakkojen_lkm : int
Kuinka monta 52 kortin pakkaa sekoittaa yhteen. Oletus 1.
Palauttaa
---------
array of (int, str)
"""
maat = ['♠', '♥', '♦', '♣']
arvot = list(range(1, 14))
pakka = pakkojen_lkm * [(arvo, maa) for maa in maat for arvo in arvot] # Kortit ovat järjestyksessä
random.shuffle(pakka) # Sekoita pakka
return pakka
|
4be7987e0e4fe156bfa66305b1a607ce3328e6bd
| 23,004
|
def opening_exceptions_cleaned():
"""Prepare data that should match with the response."""
opening_exceptions = [
{
"title": "Future holidays",
"is_open": False,
"start_date": "2100-02-11",
"end_date": "2100-02-12",
},
{
"title": "Future holidays",
"is_open": False,
"start_date": "2100-03-01",
"end_date": "2100-03-06",
}
]
return opening_exceptions
|
0369f160a335507c4349c6e859a27225ce2895b5
| 23,005
|
def get_apigateway_profile_groups_from_header(groups_header: str) -> list:
"""
Extracts apigateway consumer groups from header
:param groups_header:
:return:
"""
if groups_header not in (None, ''):
return list(map(str.strip, groups_header.split(',')))
return []
|
bc3f1b49892df78574d471e58b2c8ffb47b2584f
| 23,006
|
import os
def path_coutwildrnp_shp(data_dir):
"""Path to ```coutwildrnp.shp``"""
return os.path.join(data_dir, 'coutwildrnp.shp')
|
7463c17af58acb365801388015fa4d4329a31509
| 23,007
|
import os
def verify_dir_has_perm(path, perm, levels=0):
"""
Verify that home directory has `perm` access for current user. If at
least one of them fails to have it the result will be False.
:param path: Path to test
:param perm: Access rights. Possible values are os' R_OK, W_OK and X_OK or
the result of a bitwise "|" operator applied a combination of them.
:param levels: Depth levels to test
"""
if not os.path.exists(path):
raise RuntimeError('%s does NOT exist!' % path)
path = os.path.normpath(path)
pdepth = len(path.split(os.path.sep))
pathaccess = os.access(path, perm)
# 0th level
if not levels or not pathaccess:
return pathaccess
# From 1st to `levels`th
for root, dirs, files in os.walk(path):
currentlevel = len(root.split(os.path.sep)) - pdepth
if currentlevel > levels:
break
elif ".git" in dirs:
dirs.remove(".git")
for file_path in (os.path.join(root, f) for f in dirs + files):
if os.path.exists(file_path):
if not os.access(file_path, perm):
#print('No permissions for "%s".' % file_path)
return False
return True
|
cb1d5c901d7c58ad04c4270d6043d09fe42a6cef
| 23,008
|
def format_dict(d, dict_define):
"""根据dict格式定义进行value转换"""
for k in dict_define.keys():
# 原值
v = d.get(k, '')
# 目标转换格式
v_format = dict_define.get(k, None)
if v_format is None:
continue
if 'C' in v_format:
str_len = int(v_format.replace('C', ''))
new_v = '{}{}'.format(' ' * (str_len - len(v)), v)
d.update({k: new_v})
continue
elif "N" in v_format:
v_format = v_format.replace('N', '')
if '.' in v_format:
int_len, float_len = v_format.split('.')
int_len = int(int_len)
float_len = int(float_len)
str_v = str(v)
new_v = '{}{}'.format(' ' * (int_len - len(str_v)), str_v)
else:
int_len = int(v_format)
str_v = str(v)
new_v = '{}{}'.format(' ' * (int_len - len(str_v)), str_v)
d.update({k: new_v})
return d
|
3b302a55662314288487edd549c6006e08585912
| 23,009
|
import json
def _bad_401_return_code_hack(response):
"""Check if 401 response includes valid json response.
Under certain circumstanses the SCM may incorrectly return a 401.
"""
if response.status_code != 401:
return False
if response.headers.get("Content-Type", "").startswith("application/json"):
try:
decoded_json = response.json()
except json.JSONDecodeError:
return False
if isinstance(decoded_json, dict) and "error" in decoded_json:
return False
return True
|
5da54b8e4947ac0b71009d5050a5fc9e11358aba
| 23,010
|
import os
def resolve_full_path(relative_file_path):
""" find a relative file and return it's json object based on the content """
full_file_path = os.path.join (os.path.dirname(__file__), relative_file_path)
return full_file_path
|
bc58f365a9429b7fa65ba70c516489ba443d2653
| 23,012
|
def copy_dict(source_dict, diffs):
"""Returns a copy of source_dict, updated with the new key-value pairs in diffs."""
result = dict(source_dict)
result.update(diffs)
return result
|
971ea9e79d5a3b279d69d578464d767988891494
| 23,013
|
def rejection_resample(class_func, target_dist, initial_dist=None, seed=None):
"""A transformation that resamples a dataset to achieve a target distribution.
**NOTE** Resampling is performed via rejection sampling; some fraction
of the input values will be dropped.
Args:
class_func: A function mapping an element of the input dataset to a scalar
`tf.int32` tensor. Values should be in `[0, num_classes)`.
target_dist: A floating point type tensor, shaped `[num_classes]`.
initial_dist: (Optional.) A floating point type tensor, shaped
`[num_classes]`. If not provided, the true class distribution is
estimated live in a streaming fashion.
seed: (Optional.) Python integer seed for the resampler.
Returns:
A `Dataset` transformation function, which can be passed to
`tf.data.Dataset.apply`.
"""
def _apply_fn(dataset):
"""Function from `Dataset` to `Dataset` that applies the transformation."""
return dataset.rejection_resample(
class_func=class_func,
target_dist=target_dist,
initial_dist=initial_dist,
seed=seed)
return _apply_fn
|
392eac7e4aecdc50a9155b4b1d3a0a96ff6b5866
| 23,015
|
def get_dict_from_df( df, key_col: str = 'Key', val_col: str = 'Value' ) -> dict:
"""for a dataframe with keys and values, return a dictionary"""
dict_mapping = {}
for i in range(len(df)):
dict_mapping[ df.loc[i, key_col] ] = df.loc[i, val_col]
return dict_mapping
|
d3c83fc444d264bcbe7f036db820f0b278c9e7b2
| 23,017
|
import math
def get_normalized_pv_value(t):
"""
Expects a value between 0 and 1 (0 -> 00:00:00 || 1 -> 24:00:00) and returns the normalized
simulated photovoltaic output at that time, according to the graph on the challenge paper.
The formula can be examinated on https://www.desmos.com/calculator
The formula used is this one:
\max\left(\max\left(-\frac{\left(x-7\right)^{2}}{10}+1,\ -\frac{\left(x-6.3\right)^{2}}{100}+.2\right),\ 0\right)
It tries to mimic the Graph as normalized values.
f(0) = photovoltaic output at 00:00:00
f(PI*4) = photovoltaic output at 24:00:00
"""
x = t * math.pi * 4
normalized_photovoltaic_value = max(
-(math.pow(x - 7 , 2) / 10 ) + 1,
-(math.pow(x - 6.3, 2) / 100) + 2
)
normalized_photovoltaic_value = max(
normalized_photovoltaic_value,
0
)
return normalized_photovoltaic_value
|
c5b619719fbe5c0ab16d5c1e8d66464c2609d619
| 23,018
|
def extend_rsltdict(D, key, val, Extend=False):
"""Helper for form_delta()
---
Given a result dictionary D, extend it, depending on
the setting of Boolean Extend. For some dictionaries,
duplicates mean "extend"; for others, that means error.
This is a crucial helper used by "form_delta".
"""
if Extend:
if key in D:
D[key] = D[key] | set({ val })
else:
D[key] = set({ val })
else:
assert(key not in D
),("Error: Duplicate map at key " + str(key) +
"; duplicates: " + str(D[key]) + " and " + str(val)
)
D[key] = val # don't make a set
return D
|
44eeac575351b24db25c1c117abf545d189fe25d
| 23,019
|
import setuptools
def find_packages_under(path):
""" Recursive list all of the packages under a specific package."""
all_packages = setuptools.find_packages()
packages = []
for package in all_packages:
package_split = package.split(".")
if package_split[0] == path:
packages.append(package)
return packages
|
5a6f1bfe757559c75341cc15d1a7f6dd44019163
| 23,020
|
def get_marker(request, name):
"""
Needs to keep compatible between different pytest versions
Parameters
----------
request: _pytest.fixtures.SubRequest
name: str
Returns
-------
Optional[_pytest.mark.structures.MarkInfo | _pytest.mark.structures.Mark]
"""
try:
marker = request.node.get_marker(name)
except AttributeError:
marker = request.node.get_closest_marker(name)
return marker
|
8f93a90d886911ac4c66889988b8e1a07e86f931
| 23,021
|
import math
def fnCalculate_MinTargetHeight(target_range,Re,H):
"""
Calculate the minimum target height that is visible by the radar.
Ref: Wikipedia
Objects below this height are in the radar shadow.
"""
min_target_height = (target_range - math.sqrt(2.*H*Re))**2/(2.*Re);
return min_target_height
|
3c3b247b979f25af9cdfb6e0fdd2079f7744fe7a
| 23,022
|
def mostDerivedLast(classList):
"""pass in list of classes. sorts list in-place, with derived classes
appearing after their bases"""
class ClassSortKey(object):
__slots__ = 'classobj',
def __init__(self, classobj):
self.classobj = classobj
def __lt__(self, other):
return issubclass(other.classobj, self.classobj)
classList.sort(key=ClassSortKey)
|
da4983fa2c6cf6d5b7d5cd1fde3eb4559569f10e
| 23,025
|
def peek_indentation(stream):
"""
Counts but doesn't actually read indentation level on new line, returning the count or None if line is blank
"""
indentation = 0
while True:
ch = stream.text[stream.ptr + indentation]
if ch == "\n":
return None
if not ch.isspace():
return indentation
indentation += 1
|
7f123ab76491eab9bcdfb289e1f88575cd79f400
| 23,026
|
def __veja(soup):
"""
Gets the most read news from the Veja page
:param soup: the BeautifulSoup object
:return: a list with the most read news from the Veja Page
"""
news = []
headers = soup.find('section', class_='block most-read dark').find_all('h2')
for h2 in headers:
news.append(dict(title=h2.next.next.next.string,
link=h2.parent['href']))
return news
|
224f2b92711bff9baab8a40f89a2f2f0e9b83880
| 23,027
|
def get_gene_list(dataframe):
"""Helper fn, function to get gene list from the dataframe. Function is extended to return
the dictionary of genes and their variant type. """
if "type" in dataframe.columns:
new_df = dataframe[["HGNC_ID", "type", "var_type"]]
else:
new_df = dataframe[["HGNC_ID", "var_type"]]
new_df = new_df.drop_duplicates()
gene_list = new_df["HGNC_ID"].tolist()
gene_dict = new_df.to_dict('records')
gene_tuple = [tuple(r) for r in new_df.to_numpy()]
return gene_list, gene_dict, gene_tuple
|
8a6be23c0a97fe840aeddfe7c54303774c637588
| 23,028
|
def green(frame):
"""
gets the green channel of the frame
:param frame: the frame
:return: the green channel only (as a grayscale frame)
"""
return frame[:, :, 1]
|
86a26fc3462c69ff2fbec6a3df50527c1c14a9b9
| 23,029
|
def checkTupleAlmostEqualIn(tup, tupList, place):
"""
check if a tuple in a list of tuples in which float items only
need to be almost equal
:type tup: tuple
:param tup: tuple to be checked
:type tupList: list of tuples
:para tupList: list of tuples that tup need to be check with
:place: decimal places to round the values to compare
"""
for T in tupList:
length = len(tup)
if length != len(T):
continue
for i in range(length):
if type(tup[i]) is float:
if round(tup[i], place) != round(T[i], place):
break
else:
if tup[i] != T[i]:
break
if i == length - 1:
return True
return False
|
49dddd9c388243f201ffc003f7d2d275734a46b2
| 23,030
|
from json import dumps
def _app_post_json(self, url, params, **kwargs):
"""
To be injected into TestApp if it doesn't have an post_json method available
"""
params = dumps(params)
kwargs['content_type'] = 'application/json'
return self.post(url, params=params, **kwargs)
|
090c9c93496f20444ef1c155feea896bd914bf43
| 23,031
|
def filter_flash_errors(glm_data, LL_coords, UR_coords):
"""
There appears to be dense lines of erroneous flashes around 26 N on
10 Sep & 11 Sep from 1500-2100z. This function will remove these, but is unable
to distinguish if a flash is genuine or erroneous.
Parameters
----------
glm_data : list of str
List of GLM flash latitudes & longitudes
LL_coords : tuple of str
Lower lefthand coordinates of the bounding box contaning the area
of false flashes
UR_coords : tuple of str
Upper righthand coordinates of the bounding box contaning the area
of false flashes
Returns
-------
filtered_flashes : tuple of lists
Filtered GLM flash coordinates. Format: (flash_lons, flash_lats)
"""
filtered_lons = []
filtered_lats = []
lons = glm_data[0]
lats = glm_data[1]
min_lat = LL_coords[1]
max_lat = UR_coords[1]
min_lon = LL_coords[0]
max_lon = UR_coords[0]
for idx, lon in enumerate(lons):
lat = lats[idx]
if ((lat < min_lat or lat > max_lat) or (lon < min_lon or lon > max_lon)):
filtered_lons.append(lon)
filtered_lats.append(lat)
return (filtered_lons, filtered_lats)
|
5ff8ca4dbb82b633e36105527ac7bf18db7b5c94
| 23,032
|
def extract_subtypes(mappings, data_type):
"""Extract subtypes of given data types. e.g: for data type "alert", possible subtypes are "dlp", "policy" etc.
:param mapping_file: Path to JSON mapping file
:param data_type: data type for which subtypes are to be fetched
:return: extracted sub types
"""
taxonomy = mappings["taxonomy"].get(data_type, {})
return [subtype for subtype in taxonomy]
|
82db0ad6c9ac679be806678eaf1b5b21cc9d95c4
| 23,034
|
def dis_to_feature(x, feature_dict):
"""
Args:
x: 元素
feature_dict: 位置字典
Return:
字符串
"""
output_list = [0] * len(feature_dict)
if x not in feature_dict:
return ",".join([str(ele) for ele in output_list])
else:
index = feature_dict[x]
output_list[index] = 1
return ",".join([str(ele) for ele in output_list])
|
05c898657dababbce7c08d5658da80fa1637175f
| 23,036
|
def read_label(_label_file):
"""
label文件中的内容
:param _label_file: label文件的路径
:return:
"""
f = open(_label_file, "r")
lines = f.read()
f.close()
return lines
|
d860625dd9b81c992c3db66550d069564e3346b0
| 23,037
|
def wraa(data, lg_woba, scale):
"""Weighted Runs Above Average (wRAA)
wRAA = ((wOBA - league wOBA) / wOBA scale) * PA
:param
:returns:
"""
return ((data["woba"] - lg_woba) / scale) * data["pa"]
|
81568d3bd3ed3b3593e78192a0c3256a23b1efac
| 23,038
|
def allannotations(cls: type):
""" Get annotations dict for all the MRO of class `cls' in right («super-to-sub») order. """
return {k: v for i in cls.mro()[::-1] if hasattr(i, '__annotations__') for k, v in i.__annotations__.items()}
|
ecdebdab4dbe836c3d8114778af0e94dec9b8850
| 23,040
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.