content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def kill_process(device, process="tcpdump"):
"""Kill any active process
:param device: lan or wan
:type device: Object
:param process: process to kill, defaults to tcpdump
:type process: String, Optional
:return: Console ouput of sync sendline command after kill process
:rtype: string
"""
device.sudo_sendline("killall %s" % process)
device.expect(device.prompt)
device.sudo_sendline("sync")
device.expect(device.prompt)
return device.before
|
8b892b79c07feff586ddd0576cc18ab92551c322
| 20,336
|
def mock_get_globus():
"""Mock get_globus()"""
class MockGlobusAuth:
def __init__(self):
self.authorizer = None
return MockGlobusAuth()
|
a823d43b9ddd5d6761819b5f83b4dd035e97bf2e
| 20,337
|
def to_wgs84(gdf):
"""Reprojects a GeoDataFrame to WGS84 reference system (EPSG:4326).
Args:
gdf (GeoDataFrame): The GeoDataFrame object to be exported.
Returns:
The transformed GeoDataFrame.
"""
if not ('init=epsg:4326' in gdf.crs.to_string()):
gdf = gdf.to_crs({'init': 'epsg:4326'}) # Set the crs to WGS84
return gdf
|
02505da7e0d4a7cb3d78b3ae60633d0dc1af1433
| 20,338
|
import json
def read_test_file(path):
"""Read a test file.
Parameters
----------
path : str
The path to a test file.
Returns
-------
typing.Tuple[str, typing.List[str]]
"""
with open(path) as f:
dct = json.load(f)
return dct['text'], dct['sentences']
|
a416a4031ff355134004dde233d741899a35b28b
| 20,339
|
import csv
def test_csv(data):
"""Test data to correct csv format."""
data.seek(0)
try:
_foo = csv.Sniffer().sniff(data.read(), delimiters=';')
return True
except csv.Error:
return False
|
0807c6340bcaa3f0cea2d5399152d4a7bcf462f9
| 20,340
|
def make_xml_name(attr_name):
""" Convert an attribute name to its XML equivalent by replacing
all '_' with '-'. CamelCase names are retained as such.
:param str attr_name: Name of the attribute
:returns: Attribute name in XML format.
"""
return attr_name.replace('_', '-')
|
f1463c4592edd40c20f030cbd9add83a3cf93577
| 20,342
|
import typing
def query_bt_info(
start: typing.Dict[str, typing.Any],
composition_key: str,
wavelength_key: str,
default_composition: str = "Ni"
) -> dict:
"""Query the necessary information for the PDFGetter."""
if composition_key in start:
composition = start[composition_key]
if isinstance(composition, dict):
composition_str = "".join(["{}{}".format(k, v) for k, v in composition.items()])
elif isinstance(composition, str):
composition_str = composition
else:
raise ValueError("Cannot parse composition: {}".format(type(composition)))
else:
composition_str = default_composition
if wavelength_key in start:
wavelength = float(start[wavelength_key])
else:
wavelength = None
return {
"composition": composition_str,
"wavelength": wavelength
}
|
520f006a9fdf479089230f6af123b2a9e8838de9
| 20,343
|
def other(player):
""" Returns the given player's opponent.
"""
if player == 'X':
return 'O'
return 'X'
|
e23ed765c5331ae47d284e71835b6c0897612b5c
| 20,345
|
def get_module(module_name: str):
"""
Retrieves a module.
"""
try:
# import importlib
# module = importlib.import_module(module_name)
# requiring parameter `fromlist` to get specified module
module = __import__(module_name, fromlist=[''])
return module
except ImportError:
return None
|
76d9ebd5b7a8a2450f4a740720152f85bf56ef76
| 20,346
|
import re
def check_package_name(package_name):
"""Check that package name matches convention
Args:
package_name: The package name to validate
Returns:
A boolean determining whether the package name is valid or not
"""
m = re.match('[a-z0-9_]{3,30}', package_name)
return (m != None and m.group(0) == package_name)
|
28d22f69d3926152aabbb835ada8bb8d31553a01
| 20,347
|
import random
def random_distr(l):
"""function that can be used to simulate the terminal symbol of an n-gram given
the previous values.
"""
r = random.uniform(0, 1)
s = 0
for item, prob in l:
s += prob
if s >= r:
return item
return l[-1]
|
88db100e09370da0bf5e9689a763316e6c822840
| 20,348
|
import random
def gen_ipaddr(ip3=False, ipv6=False, prefix=()):
"""Generate a random IP address.
You can also specify an IP address prefix if you are interested in
local network address generation, etc.
:param bool ip3: Whether to generate a 3 or 4 group IP.
:param bool ipv6: Whether to generate IPv6 or IPv4
:param list prefix: A prefix to be used for an IP (e.g. [10, 0, 1]). It
must be an iterable with strings or integers. Can be left
unspecified or empty.
:returns: An IP address.
:rtype: str
:raises: ``ValueError`` if ``prefix`` would lead to no random fields at
all. This means the length that triggers the ``ValueError`` is 4 for
regular IPv4, 3 for IPv4 with ip3 and 8 for IPv6. It will be raised in
any case the prefix length reaches or exceeds those values.
"""
# Set the lengths of the randomly generated sections
if ipv6:
rng = 8
elif ip3:
rng = 3
else:
rng = 4
prefix = [str(field) for field in prefix]
# Prefix reduces number of random fields generated, so subtract the length
# of it from the rng to keep the IP address have correct number of fields
rng -= len(prefix)
if rng == 0:
raise ValueError(
'Prefix {} would lead to no randomness at all'.format(
repr(prefix)))
elif rng < 0:
raise ValueError(
'Prefix {} is too long for this configuration'.format(
repr(prefix)))
random.seed()
if ipv6:
# StackOverflow.com questions: generate-random-ipv6-address
random_fields = [
'{0:x}'.format(random.randint(0, 2 ** 16 - 1)) for _ in range(rng)]
ipaddr = ':'.join(prefix + random_fields)
else:
random_fields = [str(random.randrange(0, 255, 1)) for _ in range(rng)]
ipaddr = '.'.join(prefix + random_fields)
if ip3:
ipaddr = ipaddr + '.0'
return ipaddr
|
173551883ab17f033f043dbbf5fe7f2c8e87c2ff
| 20,349
|
import aiohttp
async def msg_port(msg, blog, cid, time_code):
"""上传消息,包括文字、图片、混合消息"""
url = blog
data = {'token': 'qq',
'time_code': time_code,
'msg_type': 'text',
'mediaId': '1',
'content': msg,
'cid': cid,
'action': 'send_talk'}
async with aiohttp.ClientSession() as sess:
async with sess.post(url, data=data) as response:
if response.status == 200 and await response.text() == '1':
return 'biubiubiu~发送成功'
else:
return '发送失败惹~'
|
225d765b9b62af45b29554c313aea8345b290fe9
| 20,350
|
def is_composite(_):
"""
Always returns 'N'
"""
return "N"
|
a55cee38e26ab74c9e3b07fdce19cfc7f5b93f0a
| 20,352
|
def get_event_types(client, method, token):
"""
Call the client module to fetch event types using the input parameters
:param client: instace of client to communicate with server
:param method: Requests method to be used
:param token: server access token
:return: alert event types
"""
eTypeAlias = {}
params = {
'token': token
}
eventtypes_url = r'/api/v2/events/types'
eventTypes = client.get_event_types(method, eventtypes_url, params)
if eventTypes:
for eachone in eventTypes:
eTypeAlias[eachone['type']] = eachone.get('alias')
return eTypeAlias
|
6a9c382dc702d9545b8d6c27760e221a6baaea7a
| 20,355
|
import sys
import os
def run_platform_cmake():
"""Runs cmake build configuration
"""
if sys.platform == 'win32':
vs_version_year = '2015'
if 'VSVERSION' in os.environ:
vs_version_year = os.environ['VSVERSION']
if vs_version_year == '2015':
vs_version_numeral = '14'
elif vs_version_year == '2017':
vs_version_numeral = '15'
return run_cmake('Visual Studio {0} {1}'.format(
vs_version_numeral,
vs_version_year))
|
ffa69cb7463cd39b483f63aef7d58e258cfd6270
| 20,356
|
def determine_layers_below_above(layers, values, elevation):
"""Determine the layers below and above the current elevation
Args:
layers [<str>]: All the pressure layers to load for each parameter
values [<LayerInfo>]: All the interpolated layers information
elevation <float>: The elevation to determine the layers for
Returns
<str>: Below layer ID
<str>: Above layer ID
<int>: Index to the above layer
"""
index = 0
index_below = 0
index_above = len(layers) - 1
for layer in layers:
if values[layer].hgt >= elevation:
index_below = index - 1
index_above = index
break
index += 1
# Only need to check for the low height condition
# We should never have a height above our highest elevation
if index_below < 0:
index_below = 0
index_above = 1
return (layers[index_below], layers[index_above], index_above)
|
bc0b0846037fd9a415c091264213684ee088174c
| 20,357
|
def get_suffix_side(node, matcher):
"""Check if (not) adding char node to right syllable would cause creating word suffix.
Return 1 if char node should be added to right,
-1 if to left,
0 if cannot determine."""
if node.next.syllable is None or node.next.syllable.is_last() is False:
return 0
left_score = matcher.is_suffix(str(node.next.syllable))
right_score = matcher.is_suffix(str(node) + str(node.next.syllable))
return right_score - left_score
|
c46ed8605c0eef77059804802e7151b75b0388b0
| 20,358
|
import os
def dataset32(user_factory, post_factory, dataset32_model):
"""
Provides the dataset:
- 2 users as authors
- 2 posts, each post authored by each user
Each object has random shared hash assigned to dataset:
- author:
- username: user_{hash}
- password: user_{hash}
- post:
- author: author
- content: post_{author_N}_{hash}_content
- image: post_{author_N}_{hash}_image
- title: post_{author_N}_{hash}_title
"""
hash_ = os.urandom(4).hex()
authors = []
for i in "12":
username = f"user_{i}_{hash_}"
author = user_factory(username=username)
author.set_password(username)
author.save()
authors.append(author)
author1, author2 = authors
posts = [
post_factory(
author=author,
content=f"post_{i}_{hash_}_content",
image=f"post_{i}_{hash_}_image",
title=f"post_{i}_{hash_}_title",
)
for i, author in zip("12", authors)
]
dataset = dataset32_model(
author1=author1,
author2=author2,
post1=posts[0],
post2=posts[1],
)
return dataset
|
eae6c3a76c137517712e11c907a1689329afac6e
| 20,359
|
def _sanitize_git_config_value(value: str) -> str:
"""Remove quotation marks and whitespaces surrounding a config value."""
return value.strip(" \n\t\"'")
|
8945955e6ac4811a637d9df6eac0f7f29a5e55eb
| 20,360
|
def binpack(articles,bin_cap):
""" Write your heuristic bin packing algorithm in this function using the argument values that are passed
articles: a dictionary of the items to be loaded into the bins: the key is the article id and the value is the article volume
bin_cap: the capacity of each (identical) bin (volume)
Your algorithm must return two values as indicated in the return statement:
my_team_number_or_name: if this is a team assignment then set this variable equal to an integer representing your team number;
if this is an indivdual assignment then set this variable to a string with you name
bin_contents: A list of lists, where each sub-list indicates the dictionary keys for the items assigned to each bin.
Each sublist contains the item id numbers (integers) for the items contained in that bin. The integers refer to
keys in the items dictionary.
"""
myUsername = 'cango' # always return this variable as the first item
myNickname = 'CN' # name to appear on the leaderboard: to opt out specify ''
bin_contents = [] # use this list document the article ids for the contents of
# each bin, the contents of each is to be listed in a sub-list
#Sort the items descending by volume
item_sorted=[]
# items={}
# items={0:1,1:5,2:5,3:4,4:2}
for item in sorted(articles, key=articles.get, reverse=True):
item_sorted.append([item, articles[item],''])
# print(item_sorted)
#Initialize variables
bin_contents=[[]]
# bin_cap=5
cap_left=[bin_cap]
#Iterate through sorted items
#If the item is less than or equal to the remaining bin capacity, add the item to the bin
for i in range(len(item_sorted)):
for j in range(len(cap_left)):
if item_sorted[i][1]<=cap_left[j]:
bin_contents[j].append(item_sorted[i][0])
#item_sorted[i][2]=j
cap_left[j]-=item_sorted[i][1]
#bin+=1
break
#If the item does not fit in any of the bins, start a new bin
elif j==len(cap_left)-1:
bin_contents.append([item_sorted[i][0]])
#item_sorted[i][2]=len(cap_left)
cap_left.append(bin_cap - item_sorted[i][1])
break
# print(bin_contents)
# print(item_sorted)
# print(cap_left)
return myUsername, myNickname, bin_contents # use this return statement when you have items to load in the knapsack
|
8c4714e8358462d20342ac3d9206b7b0791ce2c4
| 20,361
|
def _get_statvfs(fh, result):
"""
Returns a tuple (f_type, f_bsize, f_blocks, f_bfree, f_bavail, f_files,
f_ffree, f_fsid, f_namelen, f_frsize)
The statvfs structure is given in the lines following the current line. If the
lines contain the information needed, the lines are read and the information
returned in a tuple. If the line is not of the expected format an exception is
raised.
"""
# initialize expected values.
f_type = ""
f_bsize = ""
f_blocks = ""
f_bfree = ""
f_bavail = ""
f_files = ""
f_ffree = ""
f_fsid = ""
f_namelen = ""
f_frsize = ""
skip_rest = False
# if the syscall returned an error, don't parse the statvfs structure
if result[0] != -1:
# first line:
# 2373: bsize=8192 frsize=1024 blocks=8139687 bfree=3830956
last_file_pos = fh.tell()
line = fh.readline()
if (line.find("bsize=") != -1 and line.find("frsize=") != -1 and
line.find("blocks=") != -1 and line.find("bfree=") != -1):
# parse the values from the line
f_bsize = line[line.find("bsize=")+6:line.find("frsize=")].strip()
f_frsize = line[line.find("frsize=")+7:line.find("blocks=")].strip()
f_blocks = line[line.find("blocks=")+7:line.find("bfree=")].strip()
f_bfree = line[line.find("bfree=")+6:].strip()
else:
# undo reading so that the next line will be read in the next
# iteration.
fh.seek(last_file_pos)
# if the first statvfs line is missing then so will all the other
# statvfs lines
skip_rest = True
if not skip_rest:
# second line:
# 2373: bavail=3749560 files=984256 ffree=797256 favail=797256
line = fh.readline()
if (line.find("bavail=") != -1 and line.find("files=") != -1 and
line.find("ffree=") != -1 and line.find("favail=") != -1):
# parse the values from the line
f_bavail = line[line.find("bavail=")+7:line.find("files=")].strip()
f_files = line[line.find("files=")+6:line.find("ffree=")].strip()
f_ffree = line[line.find("ffree=")+6:line.find("favail=")].strip()
else:
raise Exception("Unexpected format when translating second line "
"of statvfs: " + line)
if not skip_rest:
# third line:
# 2373: fsid=0x780000 basetype=ufs namemax=255
line = fh.readline()
if (line.find("fsid=") != -1 and line.find("basetype=") != -1 and
line.find("namemax=") != -1):
# parse the values from the line
f_fsid = line[line.find("fsid=")+5:line.find("basetype=")].strip()
f_type = line[line.find("basetype=")+9:line.find("namemax=")].strip()
f_namelen = line[line.find("namemax=")+8:].strip()
else:
raise Exception("Unexpected format when translating third line "
"of statvfs: " + line)
# translate to expected format.
# Example expected format:
# 7196 fstatfs(3, {f_type="EXT2_SUPER_MAGIC", f_bsize=4096,
# f_blocks=4553183, f_bfree=1919236, f_bavail=1687940,
# f_files=1158720, f_ffree=658797,
# f_fsid={-1853641883, -1823071587},
# f_namelen=255, f_frsize=4096}) = 0
f_type = "f_type=" + f_type
f_bsize = "f_bsize=" + f_bsize
f_blocks = "f_blocks=" + f_blocks
f_bfree = "f_bfree=" + f_bfree
f_bavail = "f_bavail=" + f_bavail
f_files = "f_files=" + f_files
f_ffree = "f_ffree=" + f_ffree
f_fsid = "f_fsid=" + f_fsid
f_namelen = "f_namelen=" + f_namelen
f_frsize = "f_frsize=" + f_frsize + "}"
return (f_type, f_bsize, f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_fsid,
f_namelen, f_frsize)
|
81b984c54cae16f7975df4047f4c9620acf6a1bb
| 20,363
|
import os
import zipfile
def download_data(competition: str = "nlp-getting-started") -> list:
"""To download and unzip from kaggle competition data.
Args:
competition (str, optional): Competition name of which data needs to
be downloaded. Defaults to "nlp-getting-started".
Returns:
list: Provides list of all files downloaded.
"""
# Call kaggle download command to get data from platform.
os.system(f"kaggle competitions download -c {competition}")
# Unzip and move into data folder.
folder = os.path.join(os.getcwd(), "data")
with zipfile.ZipFile(f"{competition}.zip", "r") as zip_ref:
if not os.path.isdir("data"):
os.mkdir(folder)
zip_ref.extractall(folder)
# Delete zip file.
if len(os.listdir(folder)):
os.remove(f"{competition}.zip")
return os.listdir(folder)
|
f551bb3a3b6b5d39e74a94c84f962a0d25278730
| 20,364
|
def is_urn(s: str):
"""Test if is uuid string in urn format"""
return type(s) == str and s.startswith("urn:uuid:")
|
7f5bbf7dad8e86a687230c29a50f3218198a8286
| 20,366
|
def numdim(l):
"""
Returns number or dimensions of the list, assuming it has the same depth
everywhere.
"""
if not isinstance(l, (list, tuple)):
return 0
if not isinstance(l[-1], (list, tuple)):
return 1
else:
return 1 + numdim(l[-1])
|
e5e35e968e944d29b81261781959350eab900b78
| 20,367
|
import os
import sys
import json
def getProblemSet(ds, n_solutions_th, max_n_problems):
"""
Get list of problems satisfying required criteria:
- number of solutions is not less than threshold
- number of problems is not more than required
Parameters:
- ds - directory with tokenized dataset
- n_solutions_th - min number of solutions required for
selecting problems
- max_n_problems - max number of problems to return
If it is None or 0 return all problems
with sufficiently many solutions
Returns: Sorted list of pairs:
<problem, number of its solutions>,
sorted according to the number of problem solutions
If there are more problems with required number of
solutions, the problems with more solutions are returned
"""
_problem_data = f"{ds}/problems.json"
if not os.path.exists(_problem_data):
sys.exit(f"File {_problem_data} " +
"with a list of problems is not found")
with open(_problem_data, 'r') as _problem_json:
_all_problems = json.load(_problem_json)
_problems = [_p for _p in _all_problems.items()
if int(_p[1]) >= n_solutions_th]
if _problems:
_problems.sort(key = lambda _x: int(_x[1]), reverse=True)
if max_n_problems:
_problems = _problems[: max_n_problems]
return _problems
|
6932924075996f437db8a2e442ecdb30593c5f8b
| 20,368
|
def recommended_spacecharge_mesh(n_particles):
"""
! --------------------------------------------------------
! Suggested Nrad, Nlong_in settings from:
! A. Bartnik and C. Gulliford (Cornell University)
!
! Nrad = 35, Nlong_in = 75 !28K
! Nrad = 29, Nlong_in = 63 !20K
! Nrad = 20, Nlong_in = 43 !10K
! Nrad = 13, Nlong_in = 28 !4K
! Nrad = 10, Nlong_in = 20 !2K
! Nrad = 8, Nlong_in = 16 !1K
!
! Nrad ~ round(3.3*(n_particles/1000)^(2/3) + 5)
! Nlong_in ~ round(9.2*(n_particles/1000)^(0.603) + 6.5)
!
!
"""
if n_particles < 1000:
# Set a minimum
nrad = 8
nlong_in = 16
else:
# Prefactors were recalculated from above note.
nrad = round(3.3e-2 * n_particles ** (2 / 3) + 5)
nlong_in = round(0.143 * n_particles ** (0.603) + 6.5)
return {'nrad': nrad, 'nlong_in': nlong_in}
|
432689a85c26873cb9d255b7f119ccf06fc5301d
| 20,369
|
def integration_service(config, pin, global_service_fallback=False):
"""Compute the service name that should be used for an integration
based off the given config and pin instances.
"""
if pin.service:
return pin.service
# Integrations unfortunately use both service and service_name in their
# configs :/
elif "service" in config:
return config.service
elif "service_name" in config:
return config.service_name
elif global_service_fallback:
return config.global_config._get_service()
else:
return None
|
6d4b39f96672cdf0d903f2faca8e776f579ec7e1
| 20,370
|
def valid(brd, num, pos):
"""
Compares the suggested value against the row, column, and 3x3 grid to identify if entry is valid. If the number is
observed in either of these categories, the entry is invalid and the test fails. At that point, a new value is
determined and the process repeats. If the entry is valid, the process advances to the next empty position.
:param brd: Matrix input of the board needed to solve for the Sudoku problem.
:param num: The entry into the position that is under review for validation.
:param pos: Tuple row/column position of the position under review by the program.
:return: True if valid entry, False if invalid entry.
"""
# Check for row validation
for i in range(len(brd[0])):
if brd[pos[0]][i] == num and pos[1] != i:
return False
# Check for column validation
for j in range(len(brd)):
if brd[j][pos[1]] == num and pos[0] != j:
return False
# Check for 3x3 grid validation
box_x = pos[1] // 3
box_y = pos[0] // 3
for i in range(box_y * 3, box_y * 3 + 3):
for j in range(box_x * 3, box_x * 3 + 3):
if brd[i][j] == num and (i, j) != pos:
return False
return True
|
3efd7daa532fda71a0e8cd7521eae2f33b80b0b5
| 20,371
|
def get_snirf_measurement_data(snirf):
"""Returns the acquired measurement data in the SNIRF file."""
return snirf["nirs"]["data1"]["dataTimeSeries"][:]
|
2781c241aac66167e94f6873492d62a200081688
| 20,372
|
import json
def parse_sw(sw_file):
""" Parse stopword config. """
with open(sw_file, "r", encoding="utf-8") as sw_stream:
sw = json.load(sw_stream)
assert isinstance(sw["wordlist"], list)
for word in sw["wordlist"]:
assert isinstance(word, str)
stopword = sw["wordlist"]
return stopword
|
8dc46a61c195f0ff47bbc825dd816c780ef6f0b5
| 20,373
|
def num_ints(lst):
"""
Returns: the number of ints in the list
Example: num_ints([1,2.0,True]) returns 1
Parameter lst: the list to count
Precondition: lst is a list of any mix of types
"""
result = 0 # Accumulator
for x in lst:
if type(x) == int:
result = result+1
return result
|
cba6c06bc1618dae1b7a6f515e7f9b42ca88187b
| 20,375
|
def _escapeQuotes(key, _dict):
"""
Safely escape quotes of each item that goes in a row
@param key: The key of the dictionary to pull from.
@param _dict: The target dictionary holding the data
@return:
"""
value = _dict.get(key, '')
# if the key exists but has a None value, just use the empty string.
value = value if value is not None else ''
value = value if isinstance(value, str) else str(value)
value = value.replace('"', '""')
return value
|
681920670e06098f9b0f43a61c838044593b42c8
| 20,376
|
def without_keys(d: dict, *rm_keys):
"""Returns copy of dictionary with each key in rm_keys removed"""
return {k: v for k, v in d.items() if k not in rm_keys}
|
256597224426708c38369ba635b4fa1df15591be
| 20,377
|
def assemble_CohorteFromFile(fileName):
"""
-> Assemble discrete cohorte from cytokine data
-> fileName is the name of the dicrete reduce matrix file
(e. g DATA/CYTOKINES/RA_quantitativeMatrix_discrete.csv)
-> add diagnostic in vectors
-> Write index variable file in PARAMETERS folder
-> add "pX" prefix to scalar in vector
-> return a cohorte (array of arrays)
"""
cohorte = []
listOfVariable = []
data = open(fileName, "r")
fileNameInArray = fileName.split("/CYTOKINES/")
fileNameInArray = fileNameInArray[1].split("_")
diagnostic = fileNameInArray[0]
cmpt = 0
for line in data:
line = line.split("\n")
lineInArray = line[0].split(";")
vector = []
if(cmpt == 0):
for variable in lineInArray:
listOfVariable.append(variable)
else:
index = 1
for scalar in lineInArray:
newScalar = "p"+str(index)+"_"+scalar
vector.append(newScalar)
index += 1
vector.append(diagnostic)
cohorte.append(vector)
cmpt += 1
data.close()
# Write indexFile
indexFile = open("PARAMETERS/"+str(diagnostic)+"_variable_index.csv", "w")
cmpt = 1
for variable in listOfVariable:
indexFile.write("p"+str(cmpt)+";"+variable+"\n")
cmpt += 1
indexFile.close()
return cohorte
|
8f51cbfe71790fb757dc514635e7b0773b1a2e58
| 20,378
|
def retry_if(predicate):
"""
Create a predicate compatible with ``with_retry``
which will retry if the raised exception satisfies the given predicate.
:param predicate: A one-argument callable which will be called with the
raised exception instance only. It should return ``True`` if a retry
should be attempted, ``False`` otherwise.
"""
def should_retry(exc_type, value, traceback):
if predicate(value):
return None
raise exc_type, value, traceback
return should_retry
|
e02401ba7eb9af88565e06c0013135bfcf711521
| 20,379
|
def list_diff(list1, list2, identical=False):
"""
API to get the differece in 2 lists
:param list1:
:param list2:
:param identical:
:return:
"""
result = list()
for value in list1:
if identical:
if value in list2:
result.append(value)
else:
if value not in list2:
result.append(value)
return result
|
e5ff6369b07514c91333330676afdf25a81377ad
| 20,382
|
import itertools
from functools import reduce
def rank_compounds(compounds, nst_model, stats_lexicon):
"""Return a list of compounds, ordered according to their ranks.
Ranking is being done according to the amount of affixes (the fewer the higher)
and the compound probability which is calculated as follows:
p((w1, tag1)..(wn, tag1)) = p(w1, tag1) ... * p(wn, tagn) * p(tag1, ...tagn)
e.g. p(clown+bil) = p(clown, NN) * p(bil, NN) * p(NN,NN)
"""
ranklist = []
for clist in compounds:
affixes = [affix[0] for affix in clist[0]]
for c in clist:
tags = list(itertools.product(*[affix[2] for affix in c]))
# Calculate probability score
word_probs = max(
reduce(lambda x, y: x * y, [(stats_lexicon.lookup_prob(i)) for i in zip(affixes, t)]) for t in tags)
tag_prob = max(nst_model.prob("+".join(t)) for t in tags)
score = word_probs * tag_prob
ranklist.append((score, c))
# Sort according to length and probability
ranklist.sort(key=lambda x: (len(x[1]), -x[0], x[1]))
return ranklist
|
341e02131f708b67e91d5c8de26a77517dc04689
| 20,385
|
def format_value(value):
"""Handles side effects of json.load function"""
if value is None:
return 'null'
if type(value) is bool:
return 'true' if value else 'false'
if type(value) is str:
return f'\'{value}\''
if type(value) is dict \
or type(value) is list:
return '[complex value]'
else:
return value
|
ccf3383d39fd1f745a505811b2cf7da335da1ae9
| 20,386
|
import requests
def twitter_api_request(url, parameters, token):
"""Returns a list of tweets"""
res = requests.get(
url,
params=parameters,
auth=token
)
tweets = res.json().get('statuses')
return tweets
|
67a9a901cca478ac94251165ab76ed1d00b54f42
| 20,387
|
def next_pow2(n):
""" Return first power of 2 >= n.
>>> next_pow2(3)
4
>>> next_pow2(8)
8
>>> next_pow2(0)
1
>>> next_pow2(1)
1
"""
if n <= 0:
return 1
n2 = 1 << int(n).bit_length()
if n2 >> 1 == n:
return n
else:
return n2
|
a94ee5064ae2f3540b65b03b85ab82290c26addd
| 20,388
|
def merge_annotations(interaction_dataframe, columns):
"""Merges the annotations for a protein-protein interaction.
Given two columns of a protein-protein interaction dataframe, each of
which contains a type of annotation data, this function returns the merged
set of those annotations.
E.g. Column 1: {IPR011333, IPR003131, IPR000210}
Column 2: {GO:0046872}
Result: {GO:0046872, IPR011333, IPR003131, IPR000210}
Parameters
----------
interaction_dataframe : DataFrame
DataFrame containing protein-protein interactions and annotations.
columns : list
A list of annotation columns to merge. Expects the column contents to
be array-like, not strings.
Returns
-------
pandas Series of sets
Array containing a set of annotations for each interaction (row).
"""
# replace NaNs with empty sets
for i in columns:
interaction_dataframe.loc[interaction_dataframe[
i].isnull(), i] = interaction_dataframe.loc[interaction_dataframe[
i].isnull(), i].apply(lambda x: set())
# join all sets in each supplied column
# the unpacking operator can accept an array of lists or sets
merged_annotations = interaction_dataframe[columns].apply(
lambda x: set().union(*x), axis=1)
""" Example usage
Row entry:
interpro_xref_A {IPR029199, IPR026667}
interpro_xref_B {IPR027417, IPR001889, IPR013672}
Name: 1, dtype: object
Lambda result:
{'IPR001889', 'IPR013672', 'IPR026667', 'IPR027417', 'IPR029199'}
"""
return merged_annotations
|
e5dcacc645e1110c1515f5630cd9197a8b7656bd
| 20,389
|
def Conjoin( matrix, stays, goes ):
""" Given a matrix and a row that stays and a row that goes
Condense the matrix
"""
#Each item in the matrix will have one spot that stays and one spot that goes.
# Take the average of item[stays] and item[goes] and store it in item stays
for i in range(len(matrix)):
#For each item in the matrix
if( i == stays or i == goes ):
continue
#Precondition, stays != goes, goes != i, stays != i
stay_spot = [stays,i]
stay_spot.sort()
#At this point, stay_spot is a tuple representing the spot to stay
goes_spot = [goes,i]
goes_spot.sort()
#At this point, goes_spot is a tuple representing the spot to go
#Since dealing with an upper triangular matrix, the sort accounts for this
#Create and store the average
first = matrix[stay_spot[0]][stay_spot[1]]
second = matrix[goes_spot[0]][goes_spot[1]]
matrix[stay_spot[0]][stay_spot[1]] = (first+second)/2.0
for i in matrix: #Remove the goes-th column
i.pop(goes)
matrix.pop(goes) #Remove the goes-th row
return matrix
|
d83b20cd2bf778adf193506b8ab2fda2c8f4b936
| 20,390
|
import re
def policy_set_pattern(policy_set: str) -> re.Pattern:
"""Return a regexp matching the policy set's name."""
final = policy_set.rsplit("/", maxsplit=1)[-1]
return re.compile(rf"^{final}_\d+$")
|
78c278ddf6cd98e4a69c248806334a7190cad1cd
| 20,392
|
def get_start_end_interval(ref, query, i = 0, j = -1):
"""
Return the start and end points in the query where the ref contig matches.
"""
#print 'start find interval'
#print ref
#print i,j
if i >= len(query):
return i, j
#print query[i][1] + '\tlen: ' + str(len(query))
#print ref + '\t' + query[i][1]
# If the current reference name matches the current query start, don't change anything!
if ref == query[i][1]:
# If the end point hasn't been set before, set it now.
if j == -1:
# While the ref contig equals query, increment the end position
j = 0
while ref >= query[j][1]:
j += 1
#print ref + '\t' + query[j][1]
while j < len(query) and ref >= query[j][1]:
#print ref + '\tvs.\t' + query[j][1]
#print ref + '\t' + query[j][1]
j += 1
#print 'Not changing anything!'
return i, j
#i = curr_start
#print "adjusting i"
while i < len(query) and ref > query[i][1]:
#print ref
#print query[i][1]
#print ref + '\t' + query[i][1]
i += 1
if i == len(query):
return i, i
j = i + 1
#print "adjusting j"
#print 'UH: ' + query[j][1]
# While the ref contig equals query, increment the end position
while j < len(query) and ref >= query[j][1]:
#print ref + '\tvs.\t' + query[j][1]
#print ref + '\t' + query[j][1]
j += 1
#print 'returning ',
#print i, j
return i, j
|
5490f5bde09fae861661d90eb903bb705d85e4f5
| 20,393
|
import math
def angle_between(pos1, pos2):
""" Computes the angle between two positions. """
diff = pos2 - pos1
# return np.arctan2(diff[1], diff[0])
return math.atan2(diff[1], diff[0])
|
ee69333fbd188fe977ac64f91275962b34246ed4
| 20,394
|
async def handle_update_identity(request, identity):
"""
Handler for updating an Identity. The request is expected to contain at
least a partial JSON representation of the Identity model object.
"""
id = request.match_info["id"]
identity.id = id
await identity.save()
return 200, {"data": identity}
|
74712d4381c82395f9b31d194e2bcc1f5600b3ac
| 20,395
|
from pandas import DataFrame
def _is_aligned(frame, other):
"""
Helper to check if a DataFrame is aligned with another DataFrame or Series.
"""
if isinstance(other, DataFrame):
return frame._indexed_same(other)
else:
# Series -> match index
return frame.columns.equals(other.index)
|
8381ff297a858d32f539f1deeef57f32d9ab0c4d
| 20,396
|
def concat_url(num_of_pics,item_type,org):
"""[summary]
This concats our full API url
Args:
num_of_pics ([INT]): [How many pictures wanted, the hitsPerPage in our case]
item_type ([STR]): [This is what type of item we want from request]
org ([STR]): [The org we want pictures from]
"""
endpoint = 'http://www.kulturarvsdata.se/ksamsok/api'
fields = 'serviceOrganization,thumbnail,itemType'
endpoint_fields = F'?&x-api=test&method=search&hitsPerPage={num_of_pics}&recordSchema=xml'
#All the "OR NOT" in the query is photos that resembles objects something we dont want when item_type is photo
query = F'thumbnailExists="j" AND itemType="{item_type}" AND serviceOrganization="{org}" OR NOT itemSpecification="Dokumentationsbild" OR NOT itemSpecification="ID-bild" OR NOT itemSpecification="Placeringsbild" OR NOT itemSpecification="Presentationsbild" OR NOT itemName="föremålsbild"'
req_url = F'{endpoint}{endpoint_fields}&query={query}&fields={fields}&startRecord='
return req_url,query
|
3214b98e387731251fbe9e4d9cd01e248f2f8b62
| 20,397
|
def not_none(elem):
"""Check if an element is not None."""
return elem is not None
|
f91a28efc42e3d50515bb783d3f16a64cdcf9490
| 20,398
|
def format_weather_header_for_HELP(itype, iunits, city, lat=None):
"""
Prepare the header for the precipitation, air temperature and
global solar radiation input weather datafile for HELP. The format of the
header is defined in the subroutine READIN of the HELP Fortran source code.
"""
fheader = [['{0:>2}'.format(itype)], # 3: data was entered by the user.
['{0:>2}'.format(iunits)], # 1 for IP and 2 for SI
['{0:<40}'.format(city[:40])],
]
if lat is not None:
# Append the latitude if the data are solar radiation.
fheader.append(['{0:>6.2f}'.format(lat)])
else:
fheader.append([])
return fheader
|
7d848481b7316cef4094c2d24b9978665a1c2e1d
| 20,399
|
import os
def is_c_file(fn):
"""
Return true iff fn is the name of a C file.
>>> is_c_file("a/b/module.c")
True
>>> is_c_file("a/b/module.h")
True
>>> is_c_file("a/b/module.c~")
False
>>> is_c_file("a/b/.module.c")
False
>>> is_c_file("a/b/module.cpp")
False
"""
fn = os.path.split(fn)[1]
# Avoid editor temporary files
if fn.startswith(".") or fn.startswith("#"):
return False
ext = os.path.splitext(fn)[1]
return ext in {".c", ".h", ".i", ".inc"}
|
5a106c70f034b89737d46261a0973670305f1631
| 20,400
|
import os
def get_case_name(case_path, inst_path):
"""extract case name from case path."""
return case_path.replace(os.path.join(
inst_path, "cases"), "")[1:].replace("\\", "/")
|
f585f1ceb469664ac7c5407e69ce1387cd59ecb2
| 20,401
|
def __TeardropLength(track, via, hpercent):
"""Computes the teardrop length"""
n = min(track.GetLength(), (via[1] - track.GetWidth()) * 1.2071)
n = max(via[1]*(0.5+hpercent/200.0), n)
return n
|
6f2e0f9980e5d47e4c52b1a7bf4b6f20d62d2e94
| 20,402
|
import numpy
def spikelist2spikematrix(DATA, N, N_time, dt):
"""
Returns a matrix of the number of spikes during simulation.
Is of the shape of N x N.
The spike list is a list of tuples (rel time, neuron_id) where the
location of each neuron_id is given by the NEURON_ID matrix, which
is in a standardized way [[ (N*i+j) ]] where i and j are line and
column respectively.
For instance, for a 4x4 population:
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]
"""
DATA=numpy.array([[int(k), int(v)] for k,v in DATA])
spikematrix=numpy.zeros((N,N))
if DATA.size > 0:
neuron_id=DATA[:,1]
for i_id in numpy.unique(neuron_id):
column = numpy.mod(i_id,N)
line = numpy.floor(i_id/N)
where_i_id_fired = [int(index) for index in numpy.where(neuron_id==i_id)[0] ]
spikematrix[line,column] = sum(where_i_id_fired )
return spikematrix / N_time * dt
|
f179f69149ba6a57a6e8c01615ceb16988596b7b
| 20,404
|
def decode_selected_indices(decode_fn, features):
"""Decode selected indices from features dict."""
inputs = features.get("inputs", None)
selected_ids = features.get("selected_ids", None)
num_inputs = features.get("num_inputs", None)
if inputs is None or selected_ids is None or num_inputs is None:
raise ValueError("Insufficient input fields.")
if len(inputs.shape) != 2:
raise ValueError("Expected prediction['inputs'] to have two dimensions.")
return "".join([
"%d: %s\n" % (i, decode_fn(inputs[i]))
for i in selected_ids
if i >= 0 and i < num_inputs
])
|
3e09c349551a740bf994055205463cedf1d25cdd
| 20,406
|
def wilight_to_hass_hue(value):
"""Convert wilight hue 1..255 to hass 0..360 scale."""
return min(360, round((value * 360) / 255, 3))
|
5a9021185f7bbb9bf1351b2df55207063ee49f9a
| 20,407
|
def convert_triggers(events, return_event_ids=False):
"""Function to convert triggers to failed and successful inhibition.
Trigger codes:
stop_signal: 11,
go: 10,
response: 1,
stop_signal_only: 12,
failed_inhibition_response: 2,
failed_inhibition: 37,
successful_inhibition: 35
Parameters
----------
events : numpy array
The original events
return_event_id: bool
If true return event_id that matches the new triggers.
Returns
-------
converted_events
The converted events.
"""
events_tmp = events.copy()
for idx, line in enumerate(events_tmp):
if line[2] == 20:
if events_tmp[idx + 1][2] == 1:
events_tmp[idx][2] = 30 # go_before_stop
elif (events_tmp[idx + 1][2] == 11) and (events_tmp[idx + 2][2] != 1):
events_tmp[idx][2] = 35 # successful inhibition
elif (events_tmp[idx + 1][2] == 11) and (events_tmp[idx + 2][2] == 1):
events_tmp[idx][2] = 37 # failed inhibition
events_tmp[idx + 2][2] = 2 # failed inhibition response
event_id = {
"stop_signal": 11,
"go": 10,
"response": 1,
"stop_signal_only": 12,
"failed_response": 2,
"failed_inhibition": 37,
"successful_inhibition": 35,
}
if return_event_ids:
return (
events_tmp,
event_id,
)
else:
return events_tmp
|
69eca81afe81c4f161ee69e3a02f2e5706c1c5ee
| 20,408
|
import random
def intRndPct(n, pct=20):
"""
Randomize an integer
Parameters
----------
n : int
pct : int, optional
Randomization factor in %. The default is 20.
Returns
-------
int
Randomized integer
"""
return int(n * (100.0 + random.uniform(-pct, pct)) / 100.0)
|
5ef784b83d7e9e5c033932ec41d5426b775ece35
| 20,410
|
def kind(o):
"""
returns a suitable table name for an object based on the object class
"""
n = []
for c in o.__class__.__name__:
if c.isalpha() or c == '_':
if c.isupper() and len(n):
n.append('_')
n.append(c.lower())
return ''.join(n)
|
420041fd2369fdcdee48ac433a81be2dc07c1563
| 20,412
|
def user_index_by_id(slack_id, users):
"""
Returns index of user in users list, based on it's Slack id
:param slack_id:
:param users:
:return: Index in users or False
"""
found_users = [user for user in users if user['id'] == slack_id]
if len(found_users) == 0:
# not found
return False
elif len(found_users) == 1:
return users.index(found_users[0])
else:
# found more than one, this should never happen
return False
|
ec5fb9b382f71f1df4fa7778285679307c634c39
| 20,413
|
def isoformat(date):
""" Convert a datetime object to asmx ISO format """
return date.isoformat()[:-3] + "Z"
|
c2c94c1957f251622998af723aab354116b7fd55
| 20,415
|
from pathlib import Path
import json
def load_json(path: Path):
"""
Loads authentification keys/tokens.
:param path: JSON file to load the keys from
:return: Dictionary containing the key-file information
"""
with open(path, mode='r', encoding='utf8') as file:
return json.load(file)
|
e7368431970682451669603098d56c1c991750a5
| 20,416
|
def normalize_md(txt):
"""Replace newlines *inside paragraphs* with spaces.
Consecutive lines of text are considered part of the same paragraph
in Markdown. So this function joins those into a single line to make the
test robust to changes in text wrapping.
NOTE: This function doesn't attempt to be 100% grammatically correct
Markdown! It's just supposed to be "correct enough" for tests to pass. For
example, when we guard "\n\n" from being converted, we really should be
guarding for RegEx("\n\n+") instead. But that doesn't matter for our tests.
"""
# Two newlines in a row should NOT be replaced with a space.
txt = txt.replace("\n\n", "OMG_NEWLINE")
# Lists should NOT be replaced with a space.
txt = txt.replace("\n*", "OMG_STAR")
txt = txt.replace("\n-", "OMG_HYPHEN")
# Links broken over two lines should not get an extra space.
txt = txt.replace("]\n(", "OMG_LINK")
# Convert all remaining newlines into spaces.
txt = txt.replace("\n", " ")
# Restore everything else.
txt = txt.replace("OMG_NEWLINE", "\n\n")
txt = txt.replace("OMG_STAR", "\n*")
txt = txt.replace("OMG_HYPHEN", "\n-")
txt = txt.replace("OMG_LINK", "](")
return txt.strip()
|
3d3383607c7b5957ce75888266326f03f7dc7be2
| 20,417
|
def find(node):
"""
Find the UFSet of given node by return the root of this UFSet
With path compression
"""
if node.parent != node:
node.parent = find(node.parent)
return node.parent
|
5c671b02cf8a7c7df82480a16eab3006139b1d8e
| 20,418
|
import json
def parse_station_info_json(station_info_json):
"""
解析沿途停靠站点信息
:param station_info_json: 车站信息json
:return: [简略火车车次, 起点站名, 终点站名]
"""
json_text = json.loads(station_info_json)
data = json_text['data']['data']
start_station_name = data[0]['start_station_name']
station_train_code = data[0]['station_train_code']
train_class_name = data[0]['train_class_name']
service_type = data[0]['service_type']
end_station_name = data[0]['end_station_name']
# for d in data:
# arrive_time = d['arrive_time']
# station_name = d['station_name']
# start_time = d['start_time']
# stopover_time = d['stopover_time']
# station_no = d['station_no']
return [station_train_code, start_station_name, end_station_name]
|
a9d80a47db9864662c33fadbf623218af2ece04e
| 20,419
|
def process_data(df, stable=True):
"""Process raw data into useful files for model."""
# Fix the category for both
bat_hand = {'R': 1, 'L': 0, 'B': 2}
df['bats'] = df['bats'].map(bat_hand)
pit_hand = {'R': 1, 'L': 0, 'S': 0}
df['throws'] = df['throws'].map(pit_hand)
df = df.dropna(subset=['PlayerID'])
df = df.set_index('PlayerID')
return df
|
90d6f91821420b22341ef542f71f9a0521fbb5f8
| 20,420
|
def validate_key_parse(data):
"""
Validate key is a numerical value string and parse it.
:param dict data: Data to be validated
"""
validated_data = {int(key): str(value) for key, value
in data.items() if key.isdigit()}
return validated_data if len(validated_data) == len(data) else None
|
79c973b2892caabd6249366423bc229384f80f5a
| 20,421
|
import re
def tsv_string_to_list(s, func=lambda x : x, sep='|^|'):
"""Convert a TSV string from the sentences_input table to a list,
optionally applying a fn to each element"""
if s.strip() == "":
return []
# Auto-detect separator
if re.search(r'^\{|\}$', s):
split = re.split(r'\s*,\s*', re.sub(r'^\{\s*|\s*\}$', '', s))
else:
split = s.split(sep)
# split and apply function
return [func(x) for x in split]
|
3bc223b7d685a0245d4dad98eeac81c39a315a77
| 20,422
|
def resource_count(entries=[]):
"""
Count for each type of resource
count = [{resourceType: instances}, ...]
:param entries:
:return: counts: dictionary of counts
"""
count = {}
for e in entries:
if "resourceType" in e:
if e['resourceType'] in count:
val = count[e['resourceType']]
count.update([(e['resourceType'], val + 1)])
else:
count.update([(e['resourceType'], 1)])
return count
|
2518f016fbdd515e25e005905948b84fdc923c60
| 20,424
|
def replicate_config(cfg, num_times=1):
"""Replicate a config dictionary some number of times
Args:
cfg (dict): Base config dictionary
num_times (int): Number of repeats
Returns:
(list): List of duplicated config dictionaries, with an added 'replicate' field.
"""
# Repeat configuration settings across replicates
configs = []
for replicate in range(num_times):
_config = cfg.copy()
_config.update({"replicate": replicate})
configs.append(_config)
return configs
|
8b4d43002c22d20c6d2238c2309086a21d560c5c
| 20,425
|
import torch
def gradient(func, idx, tensors):
"""Take the gradient of func
w.r.t. tensors[idx].
func is
Args:
func (Callable):
assumed to be the function of *tensors.
idx (int):
index of the tensor w.r.t which
the gradient is taken
tensors (list or tuple ):
sequence of tensors of sizes [n, di]
where di is the dims of ith tensor
Returns:
[type]: [description]
"""
# variable to take grad
X = tensors[idx]
if X.is_leaf:
X.requires_grad = True
func_values = func(*tensors)
func_sum = torch.sum(func_values)
Gs = torch.autograd.grad(func_sum, X,
retain_graph=True,
only_inputs=True,
create_graph=True,
)
G = Gs[0]
# n, dx = X.shape
# assert G.shape[0] == n
# assert G.shape[1] == dx
assert G.shape == X.shape
return G
|
a537186507101e63fb47bee9e62b56de309ebb60
| 20,427
|
def count_items(column_list):
"""Function to consolidade the count by user type
Args:
column_list: The list to perform the consolidation
Returns:
Lists with user types and count items
"""
type_count = {}
for type in set(column_list):
type_count[type] = column_list.count(type)
item_types = list(type_count.keys())
count_items = list(type_count.values())
return item_types, count_items
|
e3872c88145aa259402ced51c3783b9a4ea1bab3
| 20,428
|
import shutil
def header(overrides) -> str:
"""Create header for experiment."""
# Get terminal number of columns
try:
columns, _ = shutil.get_terminal_size((80, 20))
except Exception: # pylint: disable=broad-except
columns = 80
# Join key-values and truncate if needed
content = ", ".join(f"{key}={value}" for key, value in overrides.items())
if len(content) >= columns - 2:
content = content[: columns - 2 - 3] + "." * 3
content = f"[{content}]"
# Add padding
padding = "=" * max((columns - len(content)) // 2, 0)
return f"{padding}{content}{padding}"
|
d870bc643c65b9a717e2a8004c6381e3e743e676
| 20,429
|
def get_best_algorithm_hyperparameter_onestep(results_df):
"""
Combines get_best_algorithm_hyperparameter() and
get_best_hyperparam_all() into one function.
Parameters
==========
results_df : DataFrame
DataFrame containing pipeline_ML results.
"""
# Set up
average_group_cols = ['algorithm', 'hyperparameters', 'label', 'recall', 'ignition_id']
best_hyperparam_group_cols = ['label', 'recall']
metric = 'precision_at_recall'
# Do
results_df['hyperparameters'] = results_df['hyperparameters'].astype(str)
average_folds = results_df.groupby(average_group_cols).mean().reset_index()
best_hyperparam = average_folds.loc[average_folds.groupby(best_hyperparam_group_cols)[metric].idxmax()]
return best_hyperparam
|
8065a6f51d2b4be557d6fc8816783bb2b18d6ce3
| 20,430
|
def get_user_config():
"""Reads the project configuration from the user.
Returns:
tuple: Returns a tuple, containing (project_name, is_flask_service)
"""
project = str(input("""Please give your project name: """))
flask_service = str(input(
"""Should "%s" contain a Flask service? (y/n) """ % project)
).lower().strip()
if flask_service:
flask_service = flask_service[0] == "y"
return project, flask_service
|
48f89636741887a103ecaa900d749068ac77cb24
| 20,431
|
def places(net):
""" build place vector definition """
_places = {}
offset = 0
for place in net.places:
_places[place] = {
'offset': offset,
'position': net.places[place].position,
'initial': net.places[place].marking
}
offset += 1
return _places
|
8ed3c3db0bfe77afb4028c68898b535057d1fc88
| 20,432
|
def gen_mock_env_info(*args, **kwargs) -> str:
"""构造并返回 mock 的 exec_command 查询到的 env_info"""
return "env1=xxx\nenv2=xxx\nenv3=xxx"
|
f7b3835ed151825969e8752ce6a975fe86708f7e
| 20,433
|
import argparse
def init_argparse():
"""
Initialize all possible arguments for the argument parser.
Returns:
:py:mod:`argparse.ArgumentParser`: ArgumentParser object with command line arguments for this script.
"""
argparser = argparse.ArgumentParser()
argparser.add_argument('--input',
help='Relation input data')
argparser.add_argument('--indir',
help="Directory to partioned data.")
argparser.add_argument('--outdir',
help='Output data directory')
argparser.add_argument('--partitions',
nargs=3,
help="Percentages of training / validation / testset")
argparser.add_argument('--uniqueness_check',
action="store_true",
help="Checks the uniqueness of input data triplets.")
argparser.add_argument('--set_check',
action="store_true",
help="Checks if relation in validation and test set appear at least once in training data.")
argparser.add_argument('--remove_clones',
action='store_true',
help="Removes clones while checking for uniqueness.")
argparser.add_argument('--whole',
action='store_true',
help="Partiton whole dataset or per relation..")
return argparser
|
98018f46668d8e87aa3571fbdcb22ca2381d4433
| 20,434
|
def in_order(tree):
"""
Function to which performs inorder for a tree iteratively.
Parameters:
tree (BinTreeNode) ; the tree for which inorder is to be performed.
Returns:
sortedArr (list); list of all elements in ascending order.
"""
sortedArr = []
currentNode = tree
stack = []
loopRunning = True
while loopRunning:
if currentNode != None:
stack.append(currentNode)
currentNode = currentNode.left #Keep going till the last left element of the tree
else:
if (len(stack) > 0): #If there are any pending nodes to visit
currentNode = stack.pop()
sortedArr.append(currentNode.value)
currentNode = currentNode.right
else:
loopRunning = False
return sortedArr
|
2d61a691854a5901b4140f3a22d689709cac7640
| 20,435
|
def create_table_sql(tablename, fields, geom_type, geom_srid):
"""
Create a SQL statement for creating a table. Based on a geoJSON
representation. For simplicity all fields are declared VARCHAR 255
(not good, I know, patches welcome)
"""
cols = []
for field in fields:
cols.append("%s VARCHAR(255)" % field)
statement = """CREATE TABLE %s (
id SERIAL,
%s,
geom GEOMETRY(%s, %s),
PRIMARY KEY (id)
)
""" %(tablename, ",\n".join(cols), geom_type, geom_srid)
return statement
|
1df5ff0472a0333f6dcc872030e3f253e4aeb940
| 20,436
|
import os
import sys
import stat
def get_stdin_data():
""" Helper function that returns data send to stdin or False if nothing is send """
# STDIN can only be 3 different types of things ("modes")
# 1. An interactive terminal device (i.e. a TTY -> sys.stdin.isatty() or stat.S_ISCHR)
# 2. A (named) pipe (stat.S_ISFIFO)
# 3. A regular file (stat.S_ISREG)
# Technically, STDIN can also be other device type like a named unix socket (stat.S_ISSOCK), but we don't
# support that in gitlint (at least not today).
#
# Now, the behavior that we want is the following:
# If someone sends something directly to gitlint via a pipe or a regular file, read it. If not, read from the
# local repository.
# Note that we don't care about whether STDIN is a TTY or not, we only care whether data is via a pipe or regular
# file.
# However, in case STDIN is not a TTY, it HAS to be one of the 2 other things (pipe or regular file), even if
# no-one is actually sending anything to gitlint over them. In this case, we still want to read from the local
# repository.
# To support this use-case (which is common in CI runners such as Jenkins and Gitlab), we need to actually attempt
# to read from STDIN in case it's a pipe or regular file. In case that fails, then we'll fall back to reading
# from the local repo.
mode = os.fstat(sys.stdin.fileno()).st_mode
stdin_is_pipe_or_file = stat.S_ISFIFO(mode) or stat.S_ISREG(mode)
if stdin_is_pipe_or_file:
input_data = sys.stdin.read()
# Only return the input data if there's actually something passed
# i.e. don't consider empty piped data
if input_data:
return str(input_data)
return False
|
604adcd395e48038caaa9d01bedbdf9b3efb90cf
| 20,437
|
def inherit(cls, *bases):
""" Inherits class cls from *bases
@note: cls needs a __dict__, so __slots__ is tabu
@param cls: The class to inherit from *bases
@type cls: C{class}
@param bases: The base class(es)
@type bases: C{list}
"""
newdict = dict([(key, value)
for key, value in cls.__dict__.items()
if key != '__module__'
])
cls = type(cls.__name__, tuple(bases), newdict)
setattr(cls, "_%s__decorator_class" % cls.__name__, cls)
return cls
|
96fdbd3bf0fbf669d8f25b4f1338c50fbf10de79
| 20,438
|
import math
def math_degrees(x):
"""Implement the SQLite3 math built-in 'degrees' via Python.
Convert value X from radians into degrees.
"""
try:
return math.degrees(x)
except:
pass
|
19ce54220c093b2b10de5f101dd11c4221a413fe
| 20,440
|
def extract_bold_bins(dataf):
"""
Returns the dataframe filtered to only rows with a BOLD BIN id, i.e.
excluding NaN values
:param dataf: Input dataframe
:return: Filtered dataframe
"""
return dataf.loc[dataf.bold_id==dataf.bold_id]
|
42637ae77bdc3966a3c95612eced79dd6c9358a8
| 20,442
|
import click
def _validate_count(value):
"""
Validate that count is 4 or 5, because EFF lists
only work for these number of dice.
:param value: value to validate
:return: value after it's validated
"""
# Use `set` ({x, y, z}) here for quickest result
if value not in {4, 5}:
raise click.BadParameter(
'Words in word lists limit number of dice to 4 or 5.'
)
return value
|
79f17c061af41e71f0f2f82d4a6a21fe2e09abfa
| 20,443
|
def get_vplex_device_parameters():
"""This method provide the parameters required for the ansible
device module on VPLEX
"""
return dict(
cluster_name=dict(type='str', required=True),
geometry=dict(type='str', required=False, default='raid-1',
choices=['raid-0', 'raid-1', 'raid-c']),
stripe_depth=dict(type='str', required=False),
device_name=dict(type='str', required=True),
extents=dict(type='list', required=False, elements='str'),
extent_state=dict(type='str', required=False, choices=[
'present-in-device', 'absent-in-device']),
new_device_name=dict(type='str', required=False),
state=dict(type='str', required=True, choices=['present', 'absent']),
mirror_name=dict(type='str', required=False),
mirror_state=dict(type='str', required=False, choices=[
'present-in-device', 'absent-in-device']),
target_cluster=dict(type='str', required=False),
transfer_size=dict(type='int', required=False)
)
|
f6d0e5892f3b1e770f1ef10b78ec290e14d33e76
| 20,444
|
def totalSeconds(td):
"""totalSeconds(td) -> float
Return the total number of seconds contained in the given Python
datetime.timedelta object. Python 2.6 and earlier do not have
timedelta.total_seconds().
Examples:
>>> totalSeconds( toLocalTime(86400.123) - toLocalTime(0.003) )
86400.12
"""
if hasattr(td, "total_seconds"):
ts = td.total_seconds()
else:
ts = (td.microseconds + (td.seconds + td.days * 24 * 3600.0) * 1e6) / 1e6
return ts
|
20ef54d7107ec910582a0fb904902788d93a2de4
| 20,445
|
import typing
def read_data_from_txt_file(txt_path: str) -> typing.List[str]:
"""从单个txt文本中按行读取,并返回结果
"""
with open(txt_path, 'r', encoding='utf-8') as f:
contents = [i.strip() for i in f]
return contents
|
725d4566198c61b383b2ef973dd1f0f66b627ff8
| 20,446
|
async def get_ladders(database, platform_id, ladder_ids):
"""Get platform ladders."""
query = 'select id, platform_id, name from ladders where platform_id=:platform_id and id = any(:ladder_ids)'
values = {'platform_id': platform_id, 'ladder_ids': ladder_ids}
return list(map(dict, await database.fetch_all(query, values=values)))
|
b1bbdbd51b72c45dd14ac696b3c4b841b39e72e9
| 20,447
|
def NLSYMBNDRY(NSPV,ISPV,VSPV,GLK,GLKG,NDF=4):
"""Establish the boundary condition in the global matrices
Args:
NSPV (int): Number of primary boundary conditions
ISPV (array): Position of primary boundary conditions
VSPV (array): Value of primary boundary conditions
GLK (array): Global stiffness matrix of the system
GLKG (array): Global geometrical matrix of the system
NDF (int,optional): Number of degrees of freedom
Returns:
Arrays
"""
# Primary degrees of freedom
if NSPV != 0:
for NB in range(NSPV):
FDF = (ISPV[NSPV][0]-1)*NDF+ISPV[NB][1]
GLK[:][FDF] = 0
GLK[FDF][:] = 0
GLK[FDF][FDF] = 1
GLKG[:][FDF] = 0
GLKG[FDF][:] = 0
GLKG[FDF][FDF] = 1
return GLK, GLKG
|
e379a73e93b0d02db7c91d2d69ad55105abc8339
| 20,448
|
import torch
def compute_content_loss(a_C, a_G):
"""
Compute the content cost
Arguments:
a_C -- tensor of dimension (1, n_C, n_H, n_W)
a_G -- tensor of dimension (1, n_C, n_H, n_W)
Returns:
J_content -- scalar that you compute using equation 1 above
"""
m, n_C, n_H, n_W = a_G.shape
# Reshape a_C and a_G to the (m * n_C, n_H * n_W)
a_C_unrolled = a_C.view(m * n_C, n_H * n_W)
a_G_unrolled = a_G.view(m * n_C, n_H * n_W)
# Compute the cost
J_content = 1.0 / (4 * m * n_C * n_H * n_W) * torch.sum((a_C_unrolled - a_G_unrolled) ** 2)
return J_content
|
51894aedd2a7cfce5db3be3b43f8689ecdf78bf6
| 20,449
|
def id_sort_key(entity):
"""
Sort key for ``DiscordEntity``-s.
Parameters
----------
entity : ``DiscordEntity``
The discord entity to get identifier of.
Returns
-------
entity_id : `int`
The entity's identifier.
"""
return entity.id
|
320468d39064f49c9a118ca5a3591e68227d9bbe
| 20,450
|
def filter_table_from_column(table,column,value):
"""
Return a view into the 'table' DataFrame, selecting only the rows where
'column' equals 'value'
"""
return table[table[column] == value]
|
2b0642d8a2a7959614ef99f1fdc12148ddd294f7
| 20,451
|
def strip_specific_magics(source, magic):
"""
Given the source of a cell, filter out specific cell and line magics.
"""
filtered=[]
for line in source.splitlines():
if line.startswith(f'%{magic}'):
filtered.append(line.lstrip(f'%{magic}').strip(' '))
if line.startswith(f'%%{magic}'):
filtered.append(line.lstrip(f'%%{magic}').strip(' '))
else:
filtered.append(line)
return '\n'.join(filtered)
|
3c2722b86b6fc8e40c8dd51edd06d7edb28e2945
| 20,452
|
def build_docker_package_install(package, version):
"""Outputs formatted dockerfile command to install a specific version
of an R package into a docker image
Parameters
----------
package : string
Name of the R package to be installed
version : string
Version number of the desired package
"""
return 'RUN R -e \"require(\'devtools\');install_version(\'' + \
package + '\', version=\'' + version + '\', repos=\'http://cran.rstudio.com\')\"\n'
|
3d323377ce22225fdeea767550eedc57542631df
| 20,453
|
def recall_powerlaw_fits_to_full_models():
"""fits may be recomputed by evaluating the .ipynb associated with fitting powerlaws to the full models.
here, w=M*q**m, and Delta_X is the maximum disagreement one could expect to observe with 95% confidence.
here, we observe Delta_X concerns disagreements between statistically independent measurements of X.
Example Usage:
wjr=recall_powerlaw_fits_to_full_models()
print(*wjr)
"""
# Recall powerlaw fits to full models
# Fenton-Karma(PBC)
m, Delta_m, M, Delta_M = 1.8772341309722325, 0.02498750277237229, 5.572315674840435, 0.3053120355191732
wjr={
'fk_pbc':{'m':m, 'Delta_m':Delta_m, 'M':M, 'Delta_M':Delta_M}
}
# Luo-Rudy(PBC)
m, Delta_m, M, Delta_M = 1.6375562704001745, 0.017190912126700632, 16.73559858353835, 0.8465090320196467
wjr['lr_pbc']={'m':m, 'Delta_m':Delta_m, 'M':M, 'Delta_M':Delta_M}
return wjr
|
441177ede4f5a9b093522ce8dc799307e714ee0d
| 20,455
|
def center_crop(im):
"""assumes im.shape = (x, y, colors)"""
im_dim = min(im.shape[:2])
im_x0 = int((im.shape[0] - im_dim)/2)
im_y0 = int((im.shape[1] - im_dim)/2)
return im[im_x0:im_x0+im_dim, im_y0:im_y0+im_dim]
|
29251fd1a000c5c6ff5d81a6688685d7ac010a76
| 20,456
|
def fatorial(num=1, show=False):
"""
-> Calcula a fatorial de um número.
:param num: Número a ser calculado fatorial.
:param show: (opcional) Mostrar ou não a conta.
:return: valor da fatorial do número.
*Desenvolvido por Lucas Souza, github.com/lucashsouza *.
"""
fat = 1
for cnt in range(num, 0, -1):
if show:
print(f'{cnt}', end='')
if cnt > 1:
print(' x ', end='')
else:
print(' = ', end='')
fat *= cnt
return fat
|
39245c46ae6d9551dcd1fdd9c161575c8e5c21dd
| 20,457
|
def get_column_from_file(data_path, column_index, sep=None):
"""
:param data_path:
:param column_index:
:param sep:
:return:
"""
with open(data_path, 'r', encoding="utf8") as f:
contents = f.readlines()
data = []
sep_data = []
for content in contents:
content = content.strip()
if content:
if sep is not None:
content = content.split(sep)[column_index]
else:
content = content.split()[column_index]
data.append(content)
else:
if data:
sep_data.append(data)
data = []
return sep_data
|
a7aa673f594a2f4bd4939330c30971e3f60c7aa4
| 20,458
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.