content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def normalize_column_name(column_name):
""" puts a CSV column name into a "normalized" form for comparison. """
norm_column_name = column_name
if norm_column_name is not None:
norm_column_name = norm_column_name.strip()
norm_column_name = norm_column_name.lower()
return norm_column_name
|
ef817bc16d3fea634fbdcde0cfb280902496018f
| 19,917
|
def get_entry(root_node: dict, entry_name: str, default_value):
"""Gets the entry from the root node or creates one with
the default value if none is existing in the root node
Arguments:
root_node {dict} -- Root node
entry_name {str} -- Entry name
default_value {[type]} -- Default value
Returns:
[type] -- Entry
"""
node = default_value
try:
node = root_node[entry_name]
except:
pass
return node
|
57c7ddb0dc546677ccf58f731dbc19e42e925dbb
| 19,920
|
import re
def replace_aea_add_statements(
content: str, old_string: str, new_string: str, type_: str
) -> str:
"""Replace statements of the type: 'aea add <type> <old_string>'."""
if type_ != "agents":
content = re.sub(
fr"aea +add +{type_} +{old_string}",
f"aea add {type_} {new_string}",
content,
)
return content
|
b0670f2ffc759266c2609be21efda86ca83a3ea1
| 19,921
|
import csv
def gete2wlandw2el(datafile):
"""Get dict inputs for the EM algorithm.
Parameters
----------
datafile: str
path to datafile. The data file itself must be a csv file with
3 columns: question, worker, answer
and the first row is the column names.
Returns
-------
dict
Indexed by question
Each value is a list of workers and labels assigned by them.
For example, e2wl['1'][3] -> ['4', '3']
means that questoin '1', was answered as '3' by worker '4'
dict
Indexed by worker name
Each value is a list of questions and labels assigned by the worker.
For example, w2el['4'][0] -> ['1', '3']
means that worker '4', when asked question '1', assigned the label '3'.
list
list of unique labels in the dataset
"""
e2wl = {}
w2el = {}
label_set = []
f = open(datafile, 'r')
reader = csv.reader(f)
next(reader)
for line in reader:
example, worker, label = line
if example not in e2wl:
e2wl[example] = []
e2wl[example].append([worker, label])
if worker not in w2el:
w2el[worker] = []
w2el[worker].append([example, label])
if label not in label_set:
label_set.append(label)
return e2wl, w2el, label_set
|
11af97514625b6750a14540bf9790c904d6cc141
| 19,922
|
def extract_info_attributes(turn):
"""Extract information attributes for current round using NLU annotations.
Args:
turn: Current round information
Returns:
get_attribute_matches: Information attributes
"""
user_annotation = eval(turn["transcript_annotated"])
assistant_annotation = eval(turn["transcript_annotated"])
annotation = user_annotation + assistant_annotation
# annotation = user_annotation
all_intents = [ii["intent"] for ii in annotation]
get_attribute_matches = []
for index, intent in enumerate(all_intents):
if any(
ii in intent
for ii in ("DA:ASK:GET", "DA:ASK:CHECK", "DA:INFORM:GET")
):
# If there is no attribute added, default to info.
if "." not in intent:
get_attribute_matches.append("info")
continue
attribute = intent.split(".")[-1]
if attribute == "info":
new_matches = [
ii["id"].split(".")[-1]
for ii in annotation[index]["slots"]
if "INFO" in ii["id"]
]
if len(new_matches):
get_attribute_matches.extend(new_matches)
else:
get_attribute_matches.append("info")
elif attribute != "":
get_attribute_matches.append(attribute)
return sorted(set(get_attribute_matches))
|
b995fbf439a7a3a7886e288319c680e45bba11cb
| 19,923
|
import os
def sys_kdialog_path():
""" Returns the path of kdialog if found in system $PATH
"""
steampath = os.environ['PATH'].split(':')
syspath = [x for x in steampath if 'steam-runtime' not in x]
for path in syspath:
kdialog_path = os.path.join(path, 'kdialog')
if os.path.exists(kdialog_path) and os.access(kdialog_path, os.X_OK):
return kdialog_path
return False
|
14794781e7249cd1956132fa2bad661ce9a4345f
| 19,924
|
def unIndex(i, n, trunc):
"""
Converts a 1-dimensional index ``i`` with truncation ``trunc`` and
number of modes ``n`` to a n-ary index.
"""
return [i // trunc**(n - 1 - m) % trunc for m in range(n)]
|
ef4d72e264de6225ea20eafc6d15f2f9721e2a9c
| 19,925
|
from typing import List
from typing import Tuple
def get_matching_rules(rules: List[Tuple[str, ...]], word_to_lemmatize: str) -> List[Tuple[str, ...]]:
"""
filter rules that do not have affix ending in given word to lemmatize
:param rules: list of rules
:param word_to_lemmatize: str
:return: list of filtered rules
"""
chopping_rules = list()
for rule in rules:
if word_to_lemmatize.endswith(rule[3].split('/')[0]):
chopping_rules.append(rule)
return chopping_rules
|
0fa32e06c8741825c0a2adedf8888844b51fa7df
| 19,927
|
def to_list(results):
"""
Purpose:
Simplify the ComputeSkipGrams result set
:param results:
a ComputeSkipsGrams result set
looks like this
[(u'Problems', u'installing'), (u'Problems', u'adobe'), (u'Problems', u'acrobat'), ... ,]
:return:
a list of results
looks like this
["Problems installing", "Problems adobe", "Problems acrobat", ... ,]
"""
the_list = []
for result in list(results):
the_list.append(" ".join(list(result)))
return the_list
|
8c6e245a61303fbbc035f1d2f4b36d6e17a66970
| 19,928
|
def recursive_string_find(pattern, string, start=0):
"""Recursive search function.
Returns list of indices of `pattern` in `string`.
"""
pos = string.find(pattern, start)
if pos == -1:
# Not found!
return []
# No need for else statement
return [pos] + recursive_string_find(pattern, string, pos + len(pattern))
|
e2c4d7daf39272cf738a3de3b08a40e3911c9ca2
| 19,929
|
def _est_transp_recursive(transp, name):
"""
Internal function used by `estimate_transposition`
"""
if isinstance(transp, int):
return transp
else:
try:
for pattern, result in transp:
if pattern.search(name) is not None:
# print('matching name to', name, pattern.pattern)
est = _est_transp_recursive(result, name)
return est
return None
except:
Exception(('Format error in TRANSPOSITIONS detected while '
'determining transposition for instrument "{0}"')
.format(name))
|
81833c255c67eecb8a1ea4b82ea675d660bbc6a5
| 19,931
|
def longest_common_prefix(string1, string2):
"""get the longest common prefix in two strings"""
i = 0
while i < len(string1) and len(string2) and string1[1] == string2[i]:
i += 1
return string1[:i]
|
3647752e9f953abc1fd63a4ed2b2c724faee3c1f
| 19,932
|
import math
def get_color(a,cmin,cmax):
"""\
Convert a float value to one of a continuous range of colors.
Rewritten to use recipe 9.10 from the Python Cookbook.
"""
try: a = float(a-cmin)/(cmax-cmin)
except ZeroDivisionError: a=0.5 # cmax == cmin
blue = min((max((4*(0.75-a),0.)),1.))
red = min((max((4*(a-0.25),0.)),1.))
green = min((max((4*math.fabs(a-0.5)-1.,0)),1.))
return '#%1x%1x%1x' % (int(15*red),int(15*green),int(15*blue))
|
d300ee2a93a89cea23b1379dff031d6fd117e700
| 19,934
|
from typing import List
def binary_search(arr: List[int], key: int) -> int:
"""Returns the index of a given key in a sorted array, or -1 if key not found.
1. Get left and right indices.
2. Calculate the mid.
3. Depending on whether the key is bigger or smaller than mid,
update left of right.
Space: O(1)
Time: log(n)
:param arr: The sorted array to search
:param key: The key to search for
:return: The index of the key if found, -1 otherwise
"""
left = 0
right = len(arr)-1
while left <= right:
mid = left + (right-left)//2
if key > arr[mid]:
left = mid+1
elif key < arr[mid]:
right = mid-1
else:
return mid
# Key not found
return -1
|
ba3e268890eb0dbab8033df56bcf6941df08819c
| 19,936
|
def convert_image_name(cur,imgNum):
"""
Converts imgNum to image file name without extension, as used in adjacency2 table
Parameters:
-----------
cur : MySQLdb cursors
imgNum : str
IMG_Number field entry for table image
"""
sql = ("select IMG_File "
"from image "
"where IMG_Number = '%s' " %(imgNum))
cur.execute(sql)
return cur.fetchone()[0].split('.')[0]
|
ca1087422415115bd703859ad330673f9b893b42
| 19,938
|
import os
def enumerate_test_files():
"""Build a list of all test .py files within Course Builder."""
ret = []
for dirpath, dirnames, filenames in os.walk('.'):
for filename in filenames:
if (dirpath.startswith('./modules/') and (
filename.endswith('_test.py') or
filename.endswith('_tests.py')) or
(dirpath.startswith('./tests/') and filename.endswith('.py'))):
path = os.path.join(dirpath, filename)
ret.append(path)
return ret
|
f585a013f9af63e2ba19678506db200ddcc046d0
| 19,939
|
import os
def repo_with_submodule(git_identity, tempdir, checkouts, cc):
"""Repository with a submodule used to test detection of non-tracking
branches in submodules.
Will be created in a subdirectory of `tempdir`, whose path will be
returned."""
# Create a new repository:
d = os.path.join(tempdir, 'with-submodules')
os.mkdir(d)
system = 'git'
cc([system, 'init'], cwd=d)
# Add a remote repo as a submodule:
submodule_name = system + ' (submodule)'
remote = os.path.join(checkouts, system + '-clean')
cc([system, 'submodule', 'add', '-f', remote, submodule_name], cwd=d)
cc([system, 'commit', '-m', 'Initial commit with submodule.'], cwd=d)
# Create a non-tracking branch in the submodule:
submodule_dir = os.path.join(d, submodule_name)
cc([system, 'checkout', '-b', 'non-tracking'], cwd=submodule_dir)
return d
|
52a2cb7be0a01ac59a57b24a27d66081f8f90a08
| 19,940
|
def multiprocess_fn(pool, fn, input_list, opts=[]):
""" multiprocessing util tool
"""
results = [
pool.apply_async(fn, args=(x, ) + tuple(opts)) for x in input_list
]
results = [p.get() for p in results]
return results
|
eb716aa83de582d904f7e75ba47de8b437e33c0e
| 19,943
|
def force_num(string, output="int"):
"""
Input: string that ideally can be converted to a number
Returns: converted number or 0 if conversion isn't possible
"""
convert_dict = {"int": int, "float": float}
try:
return convert_dict[output](string)
except:
return 0
|
73c2129f0ff26c718d650d87f7d5bf9177651a0d
| 19,944
|
def horner(c,x):
"""
horner(c,x)
Evaluate a polynomial whose coefficients are given in descending order in `c`, at the point `x`, using Horner's rule.
"""
n = len(c)
y = c[0]
for k in range(1,n):
y = x*y + c[k]
return y
|
f5e161ad1694cc76dea3026af594f026f6d8e606
| 19,945
|
import re
def sanitize(text):
""" Remove non-urls word by word. """
text = text.strip()
text = re.sub('\s\s+', ' ', text)
tmp = ''
for i in text.split(' '):
if len(i) >= 5:
if i.find('www.') != -1 or i.find('http') != -1: tmp += i + ' '
tmp = tmp.strip()
tmp2 = ''
for i in tmp.split(' '):
if (i[0] == '(' and i[-1] == ')') or (i[0] == '[' and i[-1] == ']') or (i[0] == '<' and i[-1] == '>') or (i[0] == '{' and i[-1] == '}'):
# First and last character is one of ()[]{}<>
tmp2 += i[1:-1:1] + ' '
else: tmp2 += i + ' '
tmp2 = tmp2.strip();
tmp = ''
for i in tmp2.split(' '):
if i.find('www.') == 0: tmp += 'http://' + i + ' '
else: tmp += i + ' '
tmp = tmp.strip();
out = tmp;
return out;
|
f2d524678648c8b7bea88631bfa49dadded96f98
| 19,946
|
from typing import Tuple
from typing import Type
from typing import Any
def get_types_filter(desired_types: Tuple[Type[Any], ...]):
"""Returns a value filter that only keeps values with the given types."""
return lambda arg_value: arg_value.type in desired_types
|
a245199b6d7bfa7203828b45d32cd62e1900e811
| 19,947
|
def _tf(word_occured_in_doc: int, total_words_in_doc: int) -> float:
"""Term frequency of a word in certain document.
See: https://bit.ly/3zEDkMn
"""
assert word_occured_in_doc <= total_words_in_doc
return word_occured_in_doc / total_words_in_doc
|
32bd03d0b068ad229b7d9871bf3665643d35021e
| 19,948
|
def a_max(f, lst):
"""Finds max"""
val_max = lst[0]
for l in lst:
if f(l) > f(val_max):
val_max = l
return val_max
|
69fb35c9a5fc7ab7e26fa0eb0d36c8ced03d242d
| 19,949
|
def pcmatrixrow(matrix, form, trans):
"""
Returns the row for the specified form and transposition level.
Parameters
----------
matrix : tuple
A pitch class matrix created by pcmatrix().
form : 'p' | 'r' | 'i' | 'ri'
The row form to return: 'p' is prime, 'r' is retrogade, 'i' is inversion, and 'ri' is retrograde-inversion.
trans : pc
The pitch class transposition level of the row to return.
Returns
-------
A tuple containing the pitch classes for the given form and transposition.
"""
size = len(matrix)
assert 0 <= trans < size, "Not a valid transposition level: {}.".format(trans)
row = col = 0
if form in ['p', 'r']:
while row < size:
if matrix[row][col] == trans:
break
row += 1
assert row < size, "Not a valid row transposition: {}.".format(row)
return matrix[row] if form == 'p' else matrix[row][::-1]
elif form in ['i', 'ri']:
while col < size:
if matrix[row][col] == trans:
break
col += 1
assert col < size, "Not a valid row transposition: {}.".format(col)
rng = range(0, size) if form == 'i' else reversed(range(0, size))
return tuple(matrix[r][col] for r in rng)
else:
raise Exception("Not a valid row form: {}".format(form))
|
76a149cefcb9c3420cfb0c569c17687b4c49cba1
| 19,952
|
def _return_kwargs(dummy_req, **kwargs):
"""A dummy api call that simply returns its keyword arguments."""
return kwargs
|
fa43ffcd84ee2016f24441306a2b92c37e6484c8
| 19,953
|
def apply_options(args):
"""Apply options"""
if args.notifications:
args.notifications = [
{"uid": notification} for notification in args.notifications
]
return args
|
f0570990a9372179a5d54de29996bb5b20553fe9
| 19,954
|
from typing import Dict
from typing import Callable
def map_dict(d1: Dict, d2: Dict, f: Callable) -> Dict:
"""
Return f(d1.k, d2.k), a function of two dicts, matching on key.
@param d1: dictionary A
@param d2: dictionary B (must have same keys as d1)
@param f: function
@return: dictionary where the values are an arbitrary function of the values of two input dictionaries
"""
assert d1.keys() == d2.keys()
ks = d1.keys()
D = {}
for k in ks:
D[k] = f(d1[k], d2[k])
return D
|
12b38bff20d88567fd26fe7026084ad047df5f32
| 19,956
|
def get_A_door_270_f_i():
"""階層fにおける単位住戸iの主開口方位から時計回りに270°の方向に面した玄関ドア面積…………式(13d)
Args:
Returns:
float: 階層fにおける単位住戸iの主開口方位から時計回りに270°の方向に面した玄関ドア面積(m2)
"""
return 0.0
|
d3559b7bdcb14c1755a9d67decc145f6bcf208a7
| 19,958
|
def html_code__macro_confluence(text):
"""
Wrap into html macro
:param text:
:return:
"""
return ('''\
<ac:structured-macro ac:name="html" ac:schema-version="1">
<ac:plain-text-body><![CDATA[{text}]]></ac:plain-text-body>
</ac:structured-macro>
''').format(text=text)
|
93d23f282657375d9b9443da3a0c3e7534338076
| 19,959
|
def get_clk_name(clk):
"""Return the appropriate clk name
"""
if clk == 'main':
return 'clk_i'
else:
return "clk_{}_i".format(clk)
|
1204f7db18b74ede3afa72ed2aa434f9b2dac984
| 19,960
|
def people_at_risk_without_test(tx):
"""
Method that queries the database for collecting all people that appeared in a covid exposure but haven't done
the test yet
:param tx: session
:return nodes of person
"""
query = (
"MATCH(i:Person)-[inf: COVID_EXPOSURE]->(p:Person) "
"WHERE NOT EXISTS { MATCH (i)-[inf: COVID_EXPOSURE]->(p), (p3:Person)-[m: MAKE_TEST]->(:Test) "
"WHERE m.date >= inf.date AND id(p) = id(p3) } "
"RETURN p , ID(p)"
)
result = tx.run(query).data()
return result
|
eb8e28fa9e3a72aa28e047372b27e95fe0ba8c8b
| 19,963
|
import os
import hashlib
import mmap
def file_checksum(fname):
"""Return md5 checksum of file.
Note: only works for files < 4GB.
Parameters
----------
filename : str
File used to calculate checksum.
Returns
-------
checkum : str
"""
size = os.path.getsize(fname)
with open(fname, "r+") as f:
checksum = hashlib.md5(mmap.mmap(f.fileno(), size)).hexdigest()
return checksum
|
d50c93cf8d860b7f0ea0d6b2cda5132e4bebd134
| 19,964
|
def remove_xenon(te_img, xe_img, te_iso, xe_iso, clamp_neg=True):
"""
Based on the abundances of the Xe and Te isotopes in question, and the Xe
images, calculates the expected component the Te image that actually comes
from Xe and subtracts it.
By default the function assumes any pixels that become negative after
subtraction contain no tellurium and so clamps them to 0.
"""
# Percentage abundance of different Xe isotopes
xe_abundances = {'124': 0.095,
'126': 0.089,
'128': 1.910,
'129': 26.401,
'130': 4.071,
'131': 21.232,
'132': 26.909,
'134': 10.436,
'136': 8.857}
"""
Checks that the isotope requested is xenon contaminated.
Returns the input array if not, and prints a warning.
"""
if str(te_iso)not in xe_abundances:
print('{0} is not contaminated with Xe. Input image returned.'.format(str(te_iso)))
return te_img
ratio = xe_abundances[str(te_iso)] / xe_abundances[str(xe_iso)]
scaled_xe = xe_img * ratio
subtracted = te_img - scaled_xe
# Clamp negative pixels to zero if clamp_neg
if clamp_neg:
subtracted[subtracted < 0] = 0
return subtracted
|
25c1f3d8d8f600290c1d41b520458dc6a00fc54a
| 19,965
|
def remove_utc(time_string):
""" Removes UTC from end of time string.
The purpose is to clean up time strings so they can be converted to
Numpy datetime64 objects, since datetime64 cannot be initialized if
if the input string includes the UTC marker.
Args:
- time_string (string): timestamp string from Purple Air
dataset.
Returns:
- (string): the cleaned-up timestamp string (without "UTC")
"""
if time_string.endswith("UTC"):
return time_string[:-3].strip()
else:
return time_string
|
f1f4a1cb6f8a1068a48610b4a821ef1eac3c7fb8
| 19,967
|
def get_partial_source(source, begin, end, marks=None, nb_digits=None):
"""Extracts a few relevant lines from a source file.
If the number of lines would exceed a certain limit (currently 7)
the function is called recursively to only show the a few lines
at the beginning and at the end.
"""
if nb_digits is None:
nb_digits = len(str(end))
no_mark = " {:%d}: " % nb_digits
with_mark = " -->{:%d}: " % nb_digits
continuation = " ..."
if marks is None:
marks = []
result = []
if end - begin > 7:
# Suppose the source spans line numbers 1 to 12. Splitting it to show
# partial result would show lines 1 to 3, followed by 10 to 12.
# If we want the indentation of the first part to match the indentation
# of the second part, we must specify the length of the
# indentation of the first part.
# See the traceback for MismatchedBracketsError in the
# documentation for an example.
result.append(
get_partial_source(
source, begin, begin + 2, marks=marks, nb_digits=nb_digits
)
)
result.append(continuation)
result.append(get_partial_source(source, end - 2, end, marks=marks))
else:
lines = source.split("\n")
for index, line in enumerate(lines, start=1):
if index < begin:
continue
if index > end:
break
if index in marks:
result.append(with_mark.format(index) + line)
else:
result.append(no_mark.format(index) + line)
return "\n".join(result)
|
e0b2e57ba169f3ee0824e25e5c210a12224d53e4
| 19,968
|
from typing import Literal
import os
def shareable_scope(fixture_name, config) -> Literal["session", "function"]:
"""Return either session of function scope, depending on TEST_SHARED_FIXTURES envvar.
This function can be used as a scope like this:
@pytest.fixture(scope=shareable_scope)
def myfixture(...)
...
"""
return 'function' if os.environ.get('TEST_SHARED_FIXTURES') is None else 'session'
|
7ad890b8a835739e4b08c2675310f3f00fd1adc9
| 19,969
|
def get_max_length(graphs):
""" Get the max length among sequences. """
max_length = 0
for cascade_id in graphs:
# traverse the graphs for max length sequence
for sequence in graphs[cascade_id]:
max_length = max(max_length, len(sequence[0]))
return max_length
|
2dfa82526a291c08bfef0c8e5edb06b693caa224
| 19,970
|
def YUVtoYDbDr(Y, U, V):
""" convert YUV (PAL) to RGB color
:param Y: Y value (0;1)
:param U: U value (-0.436-0.436)
:param V: V value (-0.615-0.615)
:return: YDbDr tuple (Y0;1 D-1.333-1.333) """
Db = 3.059 * U
Dr = -2.169 * V
return Y, Db, Dr
|
0977b91b6621d39c64ede773a44e3b15f3d52c0c
| 19,971
|
def get_hyperparams():
""" Returns a list of hyperparams to run."""
# test some initial hyperparams
# import itertools
# for lr, wd, a in itertools.product([1e-4, 1e-3, 1e-2], [0, 1e-6, 1e-4], ['flips', 'full']) :
# yield {'learning_rate': lr, 'weight_decay': wd, 'augmentation': a}
# test batch size with transposed
return [{'loss_function': 'tc-vae',
'beta_weight': 0.3}, {'loss_function': 'tc-vae', 'beta_weight': 1},
{'loss_function': 'tc-vae',
'beta_weight': 3}, {'loss_function': 'tc-vae', 'beta_weight': 10}]
|
663120b1cd80fb2020b38c0dc055915e6e46c2bf
| 19,972
|
def quantum_state_preparation_qiskit(circuit, parameters, n = 2):
"""
Parameters
----------
circuit: qiskit circuit
parameters: n*2 array
each row contains rx and ry parameters
Returns
-------
qiskit circuit
"""
q = circuit.qregs
for i in range(len(q)):
circuit.rx(parameters[i][0], q[i])
circuit.ry(parameters[i][1], q[i])
circuit.cx(q[1], q[0])
return circuit
|
5443d7a4c29c6ab003f71e345d5a07925f538c21
| 19,973
|
def check_existence(species, specieslist, speciesidmap):
"""
check if the produced species is new in the DSD system
:param species: produced species
:param specieslist: list of species in the system
:param speciesidmap: bi-directional map of species id and species canonical form
:return: specieslist, speciesidmap
"""
if not speciesidmap.inverse.__contains__(species.canonicalform):
species.set_id(len(specieslist) + 1)
specieslist.append(species)
speciesidmap.put(species.id, species.canonicalform)
pos = species.id
else:
pos = speciesidmap.inverse[species.canonicalform]
return specieslist, speciesidmap, pos
|
e9056fb9fd874b5223a3d1d7f06d6a67782612aa
| 19,974
|
def make_group(feature_df, key='friday_date'):
"""group maker for rank learning
"""
return feature_df.groupby(key).size().to_frame('size')['size'].to_numpy()
|
b4635ba8585dde070e4fe9cd147cad8b3ae0ad7f
| 19,976
|
def string_to_dict(string):
"""Return dictionary from string "key1=value1, key2=value2"."""
if string:
pairs = [s.strip() for s in string.split(",")]
return dict(pair.split("=") for pair in pairs)
|
bf9de94d8bd54a2f65fc44ebbf8388f8fda58999
| 19,979
|
def compare_match(server_names, certificate_sans):
"""
Compares if the certificate would secure this domain
:param server_names: list of ServerName values
:param certificate_sans: list of SAN's that would be secured by the certificate
:return:
"""
matches = []
for server_name in server_names:
# exception use case: sn: "www.test.fr" san: "*.test.de, *.test.fr"
for certificate_san in certificate_sans:
sans = []
if ',' in certificate_san:
sans.extend(certificate_san.split(','))
else:
sans.append(certificate_san)
# exception use case: sn: "FEDC:ba98:7654:3210:FEDC:BA98:7654:3210" san: "FEDC:BA98:7654:3210:FEDC:ba98:7654:3210"
if ':' in server_name and ':' in certificate_san:
if server_name == certificate_san:
matches.append(server_name)
else:
continue
for san in sans:
server_name = server_name.strip().lower()
san = san.strip().lower()
server_name_split = server_name.split('.')
san_split = san.split('.')
server_name_level = len(server_name_split)
san_level = len(san_split)
server_name_base = ".".join(server_name_split[-server_name_level+1:])
san_base = ".".join(san_split[-san_level+1:])
if server_name == san:
if server_name not in matches:
matches.append(server_name)
if server_name_level == san_level:
if san_split[0] == '*' and (server_name_base == san_base):
if server_name not in matches:
matches.append(server_name)
return matches
|
dd9916731a122abc75db0c817dfa4fb2584e12fd
| 19,980
|
def firstUniqChar_v3(s: str) -> int:
"""Slowest approach. Worst case complexity is O(n^2). Not much better than v2."""
for k, c in enumerate(s):
if s.find(c) == s.rfind(c):
return k
return -1
|
432012c1aa9681c320f26fc565925b379a13ffdc
| 19,981
|
def dicts_equal(d1: dict, d2: dict) -> bool:
"""
Checks, whether the contents of two dicts are equal
"""
if d1 and d2:
d2_keys = d2.keys()
for key1, value1 in d1.items():
if key1 not in d2_keys:
return False
if d2[key1] != value1:
return False
elif not d1 and not d2:
return True
else:
return False
return True
|
c5be29d9a9fd667bca7c1815e9141d2fb46a3691
| 19,982
|
from typing import List
def deduplicate(image_data: List[bytes]) -> List[bytes]:
"""
Remove any identical images.
"""
print(f'Size before de-duplication: {len(image_data)}')
uniques = []
for image in image_data:
if not any(image == unique_image for unique_image in uniques):
uniques.append(image)
print(f'Size after de-duplication: {len(uniques)}')
return uniques
|
fbb338ac70d306992fadb61e44e6e82553127819
| 19,983
|
def _submit_run(webclient, config):
"""
Submits a single run using the web interface of the VerifierCloud.
@return: the run's result
"""
run_result_future = webclient.submit_witness_validation(\
config.witness_file, config.program_file, config.configuration, config.cloud_user)
webclient.flush_runs()
return run_result_future.result()
|
fc0be1f88d9d5486b7a2ec141046d2eab99b3bc9
| 19,985
|
def get_expr_for_end_pos(field_prefix="v.", pos_field="start", ref_field="ref"):
"""Compute the end position based on start position and ref allele length"""
return "%(field_prefix)s%(pos_field)s + %(field_prefix)s%(ref_field)s.length - 1" % locals()
|
ecdb1a03d37105c92cca28d4d4ee5e3a9bdd542a
| 19,986
|
def cell_value(cell):
"""Returns cell value or an empty string."""
value = getattr(cell, 'value', '')
if value is None or str(value).startswith('='): # we don't calculate expressions
return ''
else:
return str(value)
|
8bce8818b0928042eab6b313ed4cd36e97ca90f5
| 19,987
|
def partition_app_list(app_list, n):
"""
:param app_list: A list of apps with models.
:param n: Number of buckets to divide into.
:return: Partition apps into n partitions, where the number of models in each list is roughly equal. We also factor
in the app heading.
"""
num_rows = sum([1 + len(x['models']) for x in app_list]) # + 1 for app title
num_rows_per_partition = num_rows / n
result = [[] for i in range(n)] # start with n empty lists of lists
partition = 0
count = 0
for a in app_list:
# will the app fit in this column or overflow?
c = len(a['models']) + 1 # the +1 is for the app title
# if we're not on the last partition, and the models list fits
# more on the next partition than this one, start the next partition.
if (partition < n - 1) and (count + c/2.0 > num_rows_per_partition):
partition += 1
count = 0
result[partition].append(a)
count += c
return result
|
8d29daab146c4888b831bb09b2932e056a743d66
| 19,990
|
def reward_function(params):
"""
Example of rewarding the agent to stay inside two borders
and penalizing getting too close to the objects in front
"""
all_wheels_on_track = params["all_wheels_on_track"]
distance_from_center = params["distance_from_center"]
track_width = params["track_width"]
objects_distance = params["objects_distance"]
_, next_object_index = params["closest_objects"]
objects_left_of_center = params["objects_left_of_center"]
is_left_of_center = params["is_left_of_center"]
# Initialize reward with a small number but not zero
# because zero means off-track or crashed
reward = 1e-3
# Reward if the agent stays inside the two borders of the track
if all_wheels_on_track and (0.5 * track_width - distance_from_center) >= 0.05:
reward_lane = 1.0
else:
reward_lane = 1e-3
# Penalize if the agent is too close to the next object
reward_avoid = 1.0
# Distance to the next object
distance_closest_object = objects_distance[next_object_index]
# Decide if the agent and the next object is on the same lane
is_same_lane = objects_left_of_center[next_object_index] == is_left_of_center
if is_same_lane:
if 0.5 <= distance_closest_object < 0.8:
reward_avoid *= 0.5
elif 0.3 <= distance_closest_object < 0.5:
reward_avoid *= 0.2
elif distance_closest_object < 0.3:
reward_avoid = 1e-3 # Likely crashed
# Calculate reward by putting different weights on
# the two aspects above
reward += 1.0 * reward_lane + 4.0 * reward_avoid
return reward
|
a9f1490f999abfe819df300e522e74820edb821e
| 19,991
|
def _parse_overscan_shape(rows, columns):
"""
Parse the number of overscan rows and columns into indices that can be used
to reshape arrays.
:param rows:
The number of overscan rows.
:type rows:
int
:param columns:
The number of overscan columns.
:type columns:
int
"""
if rows == 0 and columns == 0:
return (0, 0)
if rows == 0 and columns > 0:
return (-1, columns)
if rows > 0 and columns == 0:
return (rows, -1)
if rows > 0 and columns > 0:
return (rows, columns)
|
e3b6bb9c5d5837e9628fcd226f2484d44d4ce454
| 19,992
|
import numpy
def get_pdf_value(hist, edges, pos):
"""Get the value of a pdf for a given x
:param hist: list of histogram values
:param edges: list of bins
:param pos: position on the support
:return: pdf value
"""
ed = numpy.digitize(pos, edges).tolist()
if ed > len(hist) - 1:
return hist[-1]
return hist[ed]
|
fb09eebed11e1f95c1cb9d27dc87c3dc6a758dc0
| 19,995
|
def get_window_context(idx, tree, size):
"""Return a list of words within a 2*size window around the idx position."""
return [node.token for node in
tree[max(0, idx-size) : idx] + tree[idx+1 : idx+size+1]]
|
7e61105f278757505dbcff0f98a3f144844476be
| 19,997
|
def _form_function_call(node):
"""
Reconstructs function call strings when making attribute access calls.
"""
node_vals = node.value
output = "."
for x, param in enumerate(node_vals[3::]):
if param.dumps()[0] == "(":
output = output[0:-1] + param.dumps()
return output
else:
output += param.dumps() + "."
|
19b47c3fc27e1b514ce6673503b847d8df89fc7f
| 19,998
|
def value_in(value, choices):
"""Raise an exception if a value doesn't match one of the given choices."""
if value not in choices:
raise ValueError("Expected one of %s, received %r." % (", ".join([repr(choice) for choice in choices]), value)) # pragma: no cover
return value
|
98abbbcc09c3b042a4ccd359986ae9325d96c442
| 19,999
|
import collections
def cal_frac_aneu(ploidy, ploidy_list):
"""
Calculate percentage of aneiploidy for each ploidy list
Examples
--------
>>> ploidy = [0, 1, 2, 4, 4]
>>> ploidy_list = [0, 1, 2, 3, 4]
>>> cal_frac_aneu(ploidy, ploidy_list)
[0.2, 0.2, 0.2, 0, 0.4]
Parameters
----------
ploidy :
a list of ploidy
ploidy_list :
a list of ploidy
Returns
-------
a list of ploidy fractions
"""
total = len(ploidy)
counts = collections.Counter(ploidy)
frac = []
for dos in ploidy_list:
if counts[dos]:
frac.append(round(counts[dos]/total, 2))
else:
frac.append(0)
return frac
|
3940e750d2cd309ba6e341c0f13c42e9b911e0ea
| 20,000
|
import torch
def signal_framing(signal, frame_length, frame_step, dim=-1):
""" Framing with stride tricks
(https://git-lium.univ-lemans.fr/Larcher/sidekit/-/blob/master/frontend/features.py)
"""
dim = dim % signal.dim()
shape = list(signal.size())
nframes = (shape[dim] - frame_length + frame_step) // frame_step
if nframes > 0:
shape = shape[:dim] + [nframes, frame_length] + shape[dim+1:]
strides = list(signal.stride())
strides.insert(dim, frame_step*strides[dim])
return torch.as_strided(signal, size=shape, stride=strides)
else:
return signal.unsqueeze(dim=dim)
|
d4fdf578816fe4804350747660b76f8c3d528757
| 20,001
|
def build_texts_from_movies(path_to_movie_dat):
"""
Extracts genre text from movies.dat to create semantic embeddings
:param path_to_movie_dat:
:return: dict of text list keyed by movie_id
"""
texts = {}
with open(path_to_movie_dat, "r", encoding="ISO-8859-1") as f:
for line in f:
movie_id, title_and_year, genres = line.strip("\n").split("::")
title = title_and_year[:-7]
# year = title_and_year[-5:-1]
sorted_genres = sorted(genres.split("|"))
texts[movie_id] = [title] + sorted_genres
return texts
|
e98a8e5eedee7a983431246f0e4968d6f4daaa40
| 20,002
|
import copy
def override_repo_refs(repos, override_ref=None, overrides=None):
"""
Returns a new `repos` dictionary with the CLI overrides applied.
"""
overrides = overrides or {}
if not override_ref and not overrides:
return repos
repos_copy = copy.deepcopy(repos)
for repo, repo_data in repos.items():
if not repo_data:
continue
release_data = repo_data.get("openedx-release")
if not release_data:
continue
local_override = overrides.get(str(repo), override_ref)
if local_override:
repos_copy[repo]["openedx-release"]["ref"] = local_override
return repos_copy
|
83df5d47b6ceba385d05e2c94341fec9c559ea0d
| 20,003
|
import csv
def get_entities(entities_file):
"""Returns an array of Medical Entities
:param entities_file: Entities file csv
:return: Array<[term:str, score:int]>
"""
entities = []
with open(entities_file, encoding='utf8') as ds1_file:
csv_reader = csv.reader(ds1_file, delimiter=',')
for row in csv_reader:
entities.append([str(row[0]), row[1]])
return entities
|
038b3b04aa43906149e7d6799ac66ba9f7d719c0
| 20,005
|
import os
import json
def unset_pending(version_folder):
"""Modify pending alert level to match true alert level.
:param version_folder:
Folder containing event.json file which needs to be unset.
:returns:
True if Changed, False If Alert_level Already Matches True_alert_level.
"""
eventfile = os.path.join(version_folder, 'json', 'event.json')
f = open(eventfile, 'rt')
jdict = json.load(f)
f.close()
if jdict['pager']['alert_level'] == jdict['pager']['true_alert_level']:
return False
jdict['pager']['alert_level'] = jdict['pager']['true_alert_level']
f = open(eventfile, 'wt')
json.dump(jdict, f)
f.close()
return True
|
2619a71481f307d32f5b9200753096e1e9f7603a
| 20,007
|
def some_different(instructions,bitpos):
"""Return True if there are ones and zeros and no don't cares,
nonterminals or operand deciders"""
zero = '0'
one= '1'
zeros = 0
ones = 0
for i in instructions:
if i.ipattern.bits[bitpos].value == zero:
zeros += 1
elif i.ipattern.bits[bitpos].value == one:
ones += 1
if zeros > 0 and ones > 0:
return True
return False
|
3efe01a1dffac42d3ab3c2bdfe3fdb090d063733
| 20,008
|
def secondsToMMSS(secs):
"""Convert number of seconds to the string ``mm:ss``.
Note: If the number of minutes is greater than 100, it will
be displayed as such.
Args:
secs (int): Number of seconds.
Returns
str: String in the format of ``mm:ss``.
"""
secs = int(secs)
minutes, seconds = divmod(secs, 60)
return '{:02d}:{:02d}'.format(minutes, seconds)
|
6cf218ac1b45e2a338bd97bc28472f08077cbcf2
| 20,009
|
def image_property_delete(client, prop_ref, image_ref, session=None):
"""
Used internally by _image_property_create and image_property_update
"""
return client.image_property_delete(prop_ref=prop_ref, image_ref=image_ref)
|
d50fdc0d9b01fb49d3d5246c346d1982fd99fc18
| 20,010
|
def pad_to_max_seq_length(ls, max_seq_length, pad_idx=0, pad_right=True, check=True):
"""Apply padding to an input sequence.
Args:
ls: sequence to pad.
max_seq_length: max length up to which to apply padding.
pad_idx: element to use for padding.
pad_right: True if padding is applied to right side of sequence, False to pad on left side.
check: True if result length should be checked as under the max sequence length.
Returns:
Sequence with specified padding applied.
"""
padding = [pad_idx] * (max_seq_length - len(ls))
if pad_right:
result = ls + padding
else:
result = padding + ls
if check:
assert len(result) == max_seq_length
return result
|
687954fcda10e14e93b994df2c43e320b29731fd
| 20,011
|
import os
def at_top_worktree(git_worktree):
""" Return True if we are at the root of the worktree """
return os.getcwd() == git_worktree.root
|
8793b674fc3d2c2b33624287e27ab554edc44dbc
| 20,012
|
from subprocess import call
import os
import copy
def load_ifortenv(ifortdir=None, x86=False):
""" Load environment variables """
if ifortdir is None:
if os.path.isdir('C:/Program Files (x86)/IntelSWTools/compilers_and_libraries'
'/windows/bin/'):
# ver18?? or generic?
ifortdir = ('C:/Program Files (x86)/IntelSWTools/compilers_and_libraries'
'/windows/bin/')
elif os.path.isdir('C:/Program Files (x86)/IntelSWTools/compilers_and_libraries_2017'
'/windows/bin/'):
# ver17
ifortdir = ('C:/Program Files (x86)/IntelSWTools/compilers_and_libraries_2017'
'/windows/bin/')
elif os.path.isdir('C:/Program Files (x86)/IntelSWTools/compilers_and_libraries_'
'2016/windows/bin/'):
# ver16
ifortdir = ('C:/Program Files (x86)/IntelSWTools/compilers_and_libraries_2016'
'/windows/bin/')
elif os.path.isdir('C:/Program Files (x86)/Intel/Composer XE 2013 SP1/'):
# ver14
ifortdir = 'C:/Program Files (x86)/Intel/Composer XE 2013 SP1/'
elif os.path.isdir('C:/Program Files (x86)/Intel/Composer XE 2013/'):
# ver14
ifortdir = 'C:/Program Files (x86)/Intel/Composer XE 2013/'
if ifortdir is None:
return -1
if x86:
configstr = 'ia32'
else:
configstr = 'intel64'
with open('tempbat.bat', 'w') as p:
p.write('call "{}/ifortvars.bat" {}'.format(ifortdir, configstr))
p.write('\nset > tempenvs.txt')
# run the wrapper batch file, creates tempenvs.txt
call('tempbat.bat')
# import the variables to the current ennvironment
with open('tempenvs.txt', 'r') as f:
lines = f.read().splitlines()
# cleanup
os.remove('tempenvs.txt')
os.remove('tempbat.bat')
_env = copy.deepcopy(os.environ)
for line in lines:
pair = line.split('=', 1)
_env[pair[0]] = pair[1]
return _env
|
87524f513aa272d2840c4aa72dbac77775f77c60
| 20,013
|
def get_languages(project_data):
"""
Get the available languages for the crowdin project.
Parameters
----------
project_data : dict
Crowdin project data.
Returns
-------
dict
Available languages on crowdin.
"""
result = {}
for language in project_data["targetLanguages"]:
result[language["locale"]] = {"id": language["id"], "name": language["name"]}
return result
|
87d4c845e2d64e90d93add2600eae99c25960864
| 20,014
|
def get_list_of_revisions():
"""List of known Raspberry Pi Revisions.
Provides a list of known Raspberry Pi CPU IDs and the corresponding
Raspberry Pi model name ("revision").
Args:
Returns:
dict: dictionary of Raspberry Pi Revisions
"""
known_revisions = {'0002': 'Model B R1',
'0003': 'Model B R1',
'0004': 'Model B R2',
'0005': 'Model B R2',
'0006': 'Model B R2',
'0007': 'Model A',
'0008': 'Model A',
'0009': 'Model A',
'000d': 'Model B R2',
'000e': 'Model B R2',
'000f': 'Model B R2',
'0010': 'Model B+',
'0011': 'Compute Module',
'0012': 'Model A+',
'a01041': 'Pi 2 Model B',
'a21041': 'Pi 2 Model B',
'900092': 'Pi Zero',
'900093': 'Pi Zero',
'a02082': 'Pi 3 Model B',
'a22082': 'Pi 3 Model B',
'9000c1': 'Pi Zero W',
'c03111': 'Pi 4 Model B',
'abcdef': 'TestModel',
'0000': 'Unknown'}
return known_revisions
|
74020870f657d6a9b472577df64fada9f1ef161d
| 20,015
|
def name(who):
"""Return the name of a player."""
return "Player {0}".format(who)
|
ab75e42a9dc70217a148475d32779da0b1e81d75
| 20,018
|
import random
def process_field(form, field):
"""
sample
"""
try:
field_name = field.get("name")
field_type = field.get("type")
field_value = field.get("value")
types = ["hidden", "submit", "button", "file", "reset"]
if field_name is not None:
if field_type is not None and field_type not in types:
if ":" in field_name:
name = field_name.split(":")
field_name = name[-1]
return field_type + " " + field_name
return
if field_type == "hidden":
return Field(field_name, field_type, field_value)
elif field_type == "text":
try:
if field_name != "j_captcha_response":
fuzz_pattern = ""
name = field_name.split(":")
final_name = name[len(name) - 1]
if final_name == "studentNumber":
fuzz_pattern = "19"
elif final_name == "documentIdNumber":
fuzz_pattern = "0123456789"
elif final_name == "email":
fuzz_pattern = "mail@ist.utl.pt"
return Field(field_name, field_type, fuzz_pattern)
except AttributeError:
# Some input attributes are blank or aren't of type
# 'string', which can't be coerced; so, we just ignore
# the errors.
pass
elif field_type == "radio":
radio_options = form.find_all("input", {"type": "radio"})
selected = radio_options[random.randrange(len(radio_options))]
return Field(selected.get("name"), field_type, selected.get("value"))
elif field_type == "checkbox":
checkboxes = form.find_all("input", {"type": "checkbox"})
selected = checkboxes[random.randrange(len(checkboxes))]
if selected.has_attr("value"):
return Field(selected.get("name"), field_type, selected.get("value"))
else:
return Field(selected.get("name"), field_type, "on")
elif field_type == "date":
pass
elif field_type == "email":
return Field(field_name, field_type, "example@example.com")
elif field_type == "search":
pass
except AttributeError:
# Some input attributes are blank or aren't of type 'string', which
# can't be coerced; so, we just ignore the errors.
pass
|
6c832dc172fda33a27db99d52a86e1bca614e9a8
| 20,019
|
def tv(five_year_fcf, wacc, g= 0.03):
"""Returns terminal value using Gordon Growth formula."""
last_fcf = five_year_fcf[-1]
return last_fcf*(1+g) / (wacc - g)
|
965175a6d83687cf22d477d6e2aa4755fc48228e
| 20,020
|
import torch
from typing import Optional
from typing import Union
from typing import List
from typing import Dict
from typing import Any
from typing import Iterable
def _get_param_id_to_param(
model: torch.nn.Module,
optim_input: Optional[Union[
List[Dict[str, Any]], Iterable[torch.nn.Parameter],
]] = None,
) -> List[torch.nn.Parameter]:
"""
Constructs a mapping from parameter IDs to parameters. This may be used
both for models with ``FlatParameter`` s and without.
NOTE: We critically assume that, whether the optimizer input is a list of
parameters or a list of parameter groups, :class:`torch.optim.Optimizer`
enumerates the parameter IDs in order. In other words, for a parameter list
input, the parameter IDs should be in that list order, and for a parameter
groups input, the parameter IDs should be in order within each parameter
group and in order across parameter groups.
Args:
model (torch.nn.Module): Model whose parameters are passed into the
optimizer.
optim_input (Optional[Union[List[Dict[str, Any]],
Iterable[torch.nn.Parameter]]]): Input passed into the optimizer
representing either a :class:`list` of parameter groups or an
iterable of parameters; if ``None``, then this method assumes the
input was ``model.parameters()``. (Default: ``None``)
Returns:
List[torch.nn.Parameter]: Mapping from parameter IDs to parameters,
where the parameter ID is implicitly the index in the :class:`list`.
"""
# Assume the standard case of passing `model.parameters()` to the optimizer
# if `optim_input` is not specified
if optim_input is None:
return list(model.parameters())
try:
params = list(optim_input)
except TypeError:
raise TypeError(
"Optimizer input should be an iterable of Tensors or dicts, "
f"but got {optim_input}"
)
if len(params) == 0:
raise ValueError("Optimizer input should not be empty")
# Check if the optimizer input represents tensors or parameter groups
all_tensors = True
all_dicts = True
for param in params:
all_tensors &= isinstance(param, torch.Tensor)
all_dicts &= isinstance(param, dict)
if not all_tensors and not all_dicts:
raise TypeError(
"Optimizer input should be an iterable of Tensors or dicts"
)
if all_tensors:
return params # type: ignore[return-value]
assert all_dicts
param_id_to_param = []
for param_group in params:
has_params_key = "params" in param_group # type: ignore[operator]
assert has_params_key, \
"A parameter group should map \"params\" to a list of the " \
"parameters in the group"
for param in param_group["params"]: # type: ignore[index]
# Implicitly map `flat_param_id` (current length of the list) to
# `param`
param_id_to_param.append(param)
return param_id_to_param
|
78001b014d01c84e83ec8d19ab5df19aab7bea48
| 20,022
|
import re
def match_scene_name(scene_name):
"""
Args:
scene_name (str): FloorPlanXX-<random_seed(int) | default>
Returns a tuple of scene name and seed (or 'default') if we
can match the format."""
m = re.match("^FloorPlan[0-9]+-([0-9]+|default)$", scene_name)
if m is not None:
return m.group().split("-")
return None
|
d8d2de675e102984007e735992fb9c0696d4845c
| 20,023
|
def design_thick_spherical_transform_lens(n, w, f):
"""Choose radius of curvature and thickness for a Fourier transform with given focal length and working distance.
Args:
n: refractive index
w: working distance
f: transform focal length
Returns:
roc: radius of curvature
d: center thickness
"""
# Derivation p68 Dane's Fathom logbook #2
roc = f*(n - 1) + w*(n - 1)
d = (f - w)*n*roc/(f*(n - 1))
return roc, d
|
a3ebcdd19cb95a4d369252984e7342a6ee338c48
| 20,024
|
def arb_callable(n):
"""Arb callable for testing."""
return n * 2
|
1cac3ad2ab9ca74197e91d8404cf21f65b2aa74d
| 20,025
|
def _get_header_info(line):
"""
Get number of sequences and length of sequence
"""
header_parts = line.split()
num_seqs, length = list(map(int, header_parts[:2]))
is_interleaved = len(header_parts) > 2
return num_seqs, length, is_interleaved
|
be7fc522fb8d195af6e45c93e42867aecbd23fb6
| 20,026
|
from typing import List
def lcs_tabulated(first: str, second: str) -> int:
"""
Time Complexity: O(n*n)
"""
len_f: int = len(first)
len_s: int = len(second)
matrix: List[List[int]] = [[0] * (len_s + 1) for _ in range(len_f + 1)]
for f in range(1, len_f + 1):
for s in range(1, len_s + 1):
if first[f - 1] == second[s - 1]:
matrix[f][s] = matrix[f - 1][s - 1] + 1
else:
matrix[f][s] = max(matrix[f - 1][s], matrix[f][s - 1])
return matrix[len_f][len_s]
|
b24c07196a1a032b543b4cbb0f80dcd2c6c339fc
| 20,027
|
import json
def loadJsonArgs(fn):
"""
Load the .json file containing input values
Args:
fn: file name
Returns:
args: argument dictionary
"""
with open(fn) as data_file:
data = json.load(data_file)
args = {}
args['patient_id'] = data['Patient ID']
args['start_phase'] = data['Start Phase']
args['total_phase'] = data['Total Phase']
args['im_name'] = data["Image Name"]
args['model_output']=data["Output Surface Model Name"]
args['seg_name'] = data["Segmentation Name"]
args['im_top_dir'] = data["Image Top Dir"]
args['seg_folder_name'] = data["Segmentation Folder Name"]
args['im_folder_name'] = data["Image Folder Name"]
args['out_dir'] = data["Output Dir Name"]
args['num_interpolation']=data["Number of Interpolations"]
args['num_cycle'] = data["Number of Cardiac Cycles"]
args['duration'] = data["Cycle Duration (s)"]
args['edge_size'] = data["Mesh Size"]
args['mask_folder_name'] = data["Mask Folder Name"]
return args
|
51e8a0fdaf53836cf831701ff6921479a8d8e03f
| 20,030
|
import hashlib
def getMd5(input_str):
"""
:param str input_str: Unicode-objects must be encoded before hashing
:rtype: str
"""
hash_obj = hashlib.md5(input_str.encode("utf-8"))
return hash_obj.hexdigest()
|
dd72b9f173a26fe285b8eaa11be8ccd943085c9d
| 20,031
|
from pathlib import Path
def get_cwd() -> Path:
"""Determine the current working directory.
:return: The appropriate current working directory path
:rtype: ~pathlib.Path
"""
return Path.cwd()
|
3db9c2b613f02f0678cd0f994ad12701b9229a5a
| 20,032
|
def bswap(data):
"""
Byteswap data
"""
return data.byteswap()
|
1d0bf90f948e441514aa7bc0aff0cbe2ecd8283b
| 20,034
|
def qasplit(chars, sep=",", quote="'"):
"""
Quote aware split
"""
if sep == quote:
raise Exception("sep and quote cannot be the same character")
can_split = True
splitpoints = [-1]
last_c = None
for index, c in enumerate(chars):
if c == quote and last_c != "\\":
can_split = not can_split
elif c == sep and can_split:
splitpoints.append(index)
last_c = c
if not can_split:
raise ValueError("Unterminated quote")
splitpoints.append(len(chars))
slices = [chars[splitpoints[i]+1:splitpoints[i+1]] for i in range(len(splitpoints)-1)]
return slices
|
0e205b3ff1830c325a1c2f400471e6833664d9dc
| 20,037
|
import json
def _GetKeysAsDict(keys_input):
"""Converts |keys_input| into a dictionary.
Args:
keys_input: A dictionary or a string pointing to a JSON file. The contents
of either should be Skia Gold config data.
Returns:
A dictionary containing the Skia Gold config data.
"""
if isinstance(keys_input, dict):
return keys_input
assert isinstance(keys_input, str)
with open(keys_input) as f:
return json.load(f)
|
db5d8e1bc08d326754163bd183f51dea9e7ad499
| 20,038
|
def zfill(s, width):
"""
"""
if len(s) < width:
return ("0" * (width - len(s))) + s
else:
return s
|
ed004f3959107cbf800d00b316dcd7a31fc5c0cd
| 20,039
|
def query(conn, string: str):
"""Perform a query on titanic database and return result."""
curs = conn.cursor()
curs.execute(f'{string}')
result = curs.fetchall()
return result
|
11c51879cad2cd99d64a3c64dbafe5c95edf6fdd
| 20,041
|
import torch
def safe_log(x, eps=1e-7):
"""Avoid taking the log of a non-positive number."""
safe_x = torch.where(x <= eps, eps, x.double())
return torch.log(safe_x)
|
5d9029d51ee667bc69b0370e49e91fdf5f096c31
| 20,042
|
def puncify(s):
"""Replaces unicode characters with the appropriate ASCII punctuation"""
return s.replace(u'\xa0', u' ').replace(u'\u201c', '"').replace(u'\u201d', '"').replace(u'\u2019', "'").replace(u"&", '&').replace(u'\u2026', '...')
|
670db5ce03943365bd9683e4c75589418246a497
| 20,044
|
import re
def extract_episode(text, seg_search, eg_search):
"""
Extract episode number from metadata.
:param str text: Metadata containing episode number.
:param str seg_search: Regex for a `Super Easy German` episode.
:param str eg_search: Regex for an `Easy German` episode.
:return: Episode number and type.
:rtype: dict
"""
seg_match = re.search(seg_search, text, re.IGNORECASE)
if seg_match:
return {
'type': 'super_easy_german',
'number': seg_match.group().strip().replace('(', '').replace(
')', '')
}
eg_match = re.search(eg_search, text, re.IGNORECASE)
if eg_match:
return {
'type': 'easy_german',
'number': eg_match.group().strip()
}
|
2215ba4b1aacbf8f3cff8e02bd4814a279e147ca
| 20,045
|
def bslice(high, low=None):
"""
Represents: the bits range [high : low] of some value. If low is not given,
represents just [high] (only 1 bit), which is the same as [high : high].
"""
if low is None:
low = high
return slice(low, high + 1)
|
d3a3085f8da638ef63c7d0f65605543f6f3605b7
| 20,046
|
def cvt_pos(pos: list, cvt_mat_t: list):
"""
param:
pos: original coord, [x, y]
return:
x_map, y_map: new coord after transform
"""
u = pos[0]
v = pos[1]
x = (cvt_mat_t[0][0] * u + cvt_mat_t[0][1] * v + cvt_mat_t[0][2]) / (
cvt_mat_t[2][0] * u + cvt_mat_t[2][1] * v + cvt_mat_t[2][2])
y = (cvt_mat_t[1][0] * u + cvt_mat_t[1][1] * v + cvt_mat_t[1][2]) / (
cvt_mat_t[2][0] * u + cvt_mat_t[2][1] * v + cvt_mat_t[2][2])
x_map = round(x/10)
y_map = round(y/10)
return x_map, y_map
|
5ce4ad727f9ec7ffad9eda17c22cc0464ea0b2d7
| 20,048
|
def serialize_file_list(files: list, active_item_index: int = -1):
"""Returns a serialized file list, which JRiver requires in some API calls.
These are a not documented further, but form a string of comma seperated values.
These are, in order:
[0] The value '2', stating a serialization version. Only 2 is supported these days.
[1] The number of included keys
[2] The active element (?), -1 for none
[3]..[len(files + 3)]: The keys of the files.
"""
result = "2;" + str(len(files)) + ";" + str(active_item_index)
for file in files:
result += ";" + str(file["Key"])
return result
|
651df9d8cd228f10c9e0324a2d4b9cfc2e7adf10
| 20,049
|
def _edge_is_between_selections(edge, selection_a, selection_b):
"""
Returns ``True`` is the edge has one end in each selection.
Parameters
----------
edge: tuple[int, int]
selection_a: collections.abc.Container[collections.abc.Hashable]
selection_b: collections.abc.Container[collections.abc.Hashable]
Returns
-------
bool
"""
return (
(edge[0] in selection_a and edge[1] in selection_b)
or (edge[1] in selection_a and edge[0] in selection_b)
)
|
808ee767b44a05fb8258a2bef5621d22131e6467
| 20,050
|
from typing import Dict
from typing import Set
from typing import List
def construct_global_order(layers: Dict[str, Dict[str, str]], order: str) -> Dict[int, Set[int]]:
"""
Return a dictionary for each face which other faces are directly below it.
:param layers:
:param order:
:return:
"""
adjacency_dict: Dict[int, Set[int]] = {}
for _, layer_list in layers.items():
previous: List[int] = []
for layer_str in layer_list[order].split('|'):
layer: int = int(layer_str)
for face in previous:
if face not in adjacency_dict:
adjacency_dict[face] = set()
adjacency_dict[face].add(int(layer))
previous.append(layer)
return adjacency_dict
|
180a44fe94e30ad00ff9d6cb9934f741676d44ab
| 20,051
|
def fmt_section(prefix='', total='', new='', suffix=' · '):
"""Return formatted section"""
section = ''
if total or new:
section = '{}{}{}{}'.format(prefix, new, total, suffix)
return section
|
465df5096e9c17e9781139ac97276c6673bb5fde
| 20,053
|
import math
def _cuda_line_circle_intersection(r0, step, radius):
"""Calculate the distance from r0 to a circle centered at origin along step.
r0 must be inside the circle.
Parameters
----------
r0 : numba.cuda.cudadrv.devicearray.DeviceNDArray
step : numba.cuda.cudadrv.devicearray.DeviceNDArray
radius : float
Returns
-------
float
"""
A = step[0] ** 2 + step[1] ** 2
B = 2 * (r0[0] * step[0] + r0[1] * step[1])
C = r0[0] ** 2 + r0[1] ** 2 - radius ** 2
d = (-B + math.sqrt(B ** 2 - 4 * A * C)) / (2 * A)
return d
|
2e4bbfe58062ef033b01bba1174d7a1323a87ea2
| 20,055
|
def func_lef_right_capacities(k_idx):
"""Computes the expected value of the random variable capacitires of the left and right problems.
Computes E(C_lef) and E(C_right) according to expressions (43a) and (43b) in Theorem 19.
Args:
k_idx: Int. Knapsack capacity.
Returns:
cap_left_closed: Int. Expected capacity of left subproblem.
cap_right_closed: Int. Expected capacity of right subproblem
"""
kp = k_idx # Knapsack Capacity
mu = kp + 1 # Quantity of Items
deviation = mu * ((1 + 1 / kp) ** mu + (1 - 1 / kp) ** mu) / 4 - kp * (
(1 + 1 / kp) ** (mu + 1) - (1 - 1 / kp) ** (mu + 1)) / 4 # Deviation of the Knapsack capacities
# PILAS, CREO QUE ARRIBA LOS DENOMINADORES SON 8
sum_deviation = 0
for k in range(0, mu, 2):
sum_deviation = sum_deviation + k * (1 + 1 / kp) ** (k - 1) # Common sum for both terms
cap_left_closed = kp / 2 + sum_deviation / (2 * kp ** 2) + deviation
cap_right_closed = kp / 2 - sum_deviation / (2 * kp ** 2) - deviation
return cap_left_closed, cap_right_closed
|
52ef26b3088491229e4387f46297c638b8b821c9
| 20,056
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.