content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def isPandigital(n): """ n: an int output: True if is a pandigital """ if len(str(n)) > 10: return False numStrList = list(str(n)) if len(str(n)) is 10: numList = list(range(10)) else: numList = list(range(1, len(str(n))+1)) for num in numList: if str(num) not in numStrList: return False return True
5da0d260389f10f6fdf2adf65af449a3664c3e2b
83,082
from typing import Tuple def count_bases(dna: str) -> Tuple[int, int, int, int]: """ Count each of the bases in DNA """ cnt_a, cnt_c, cnt_g, cnt_t = 0, 0, 0, 0 for base in dna: if base == 'A': cnt_a += 1 elif base == 'C': cnt_c += 1 elif base == 'G': cnt_g += 1 elif base == 'T': cnt_t += 1 return (cnt_a, cnt_c, cnt_g, cnt_t)
adb3bf95d0177cb3533cbdf2dcac9ba587205647
83,088
def dec_perc_convert(input_value, input_units): """ Convert from decimal to percent or percent to decimal. Parameters ---------- input_value : float Value to be converted. input_units : string Units of the input value. Enter either "percent" or "decimal" Returns ------- float Returns converted value in percent or decimal. """ if input_units == "percent": return input_value / 100 elif input_units == "decimal": return input_value * 100 else: raise Exception("Enter a valid unit value: decimal or percent")
5035b906bf7f25de482bd66b245e85dad3adae37
83,089
import shlex def splitLine(line): """ Split lines read from files and preserve paths and strings. """ splitLine = shlex.split(line) return splitLine
4d3956a0dc06d0d0345e07746dd6119daafde73c
83,092
def v3ToStr(v3): """ convert a vbase3 vector to a string like v0,v1,v2 :param v3: :return: """ return ','.join(str(e) for e in v3)
fa6aa3fda7b3248a98305cc1ed0a17d343469896
83,096
import math def get_indices(width, height, xpartition, ypartition, xinput, yinput): """ Function to get the indices for grid. Args: width (float): width of the pitch. height (float): height of the pitch. xpartition (int): number of rows in a grid ypartition (int): number of colimns in a grid. xinput (float): x-coordinate location. yinput (float): y-coordinate location. Returns: tuple: containing indices for the grid. """ ## calculate number of partitions in x and y x_step = width / xpartition y_step = height / ypartition ## calculate x and y values x = math.ceil((xinput if xinput > 0 else 0.5) / x_step) # handle border cases as well y = math.ceil((yinput if yinput > 0 else 0.5) / y_step) # handle border cases as well return ( ypartition - y, x - 1 )
a93aefb4f04106341b498844751e2bc61b1754d4
83,100
def split_off_tag(xpath): """ Splits off the last part of the given xpath :param xpath: str of the xpath to split up """ split_xpath = xpath.split('/') if split_xpath[-1] == '': return '/'.join(split_xpath[:-2]), split_xpath[-2] else: return '/'.join(split_xpath[:-1]), split_xpath[-1]
bcfc909839bae9181700534e7a57dc117605ff6c
83,101
def bss_host_nid(host): """ Retrieves the nid from the BSS host object """ return host["NID"]
0767db41eda4877e3e61cf137d7f7da1275b7261
83,104
import torch from typing import OrderedDict def load_model_state_from_checkpoint(checkpoint_path, net=None, prefix='model.'): """ Load model weights from Pytorch Lightning trainer checkpoint. Parameters ---------- net: nn.Module Instance of the PyTorch model to load weights to checkpoint_path: str Path to PL Trainer checkpoint prefix: str Prefix used in LightningModule for model attribute. Returns ------- nn.Module """ if net is None: # create new instance model raise NotImplementedError trainer_checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) # chop off the prefix from LitModule, e.g. `self.model = model` model_checkpoint = OrderedDict(((key[len(prefix):] if key.startswith(prefix) else key, value) for key, value in trainer_checkpoint['state_dict'].items())) net.load_state_dict(model_checkpoint) return net
60f45a8d3231eb828ab7886ee66339fefdac8873
83,107
import hmac import hashlib def sign(base: bytes, private_key: str) -> str: """Calculate callback signature""" return hmac.new( bytes(private_key, "utf-8"), base, hashlib.sha256 ).hexdigest()
1b56ca0ea319a6dbb86730c574c0536e67fce43f
83,108
import math def find_t(X1, X2, S1, S2, N1, N2): """X1 and X2 are means, S1 and S2 std devs, N1 and N2 are population sizes (and not degrees of freedom) """ #with this, the result between scipy and manual is the same N1 = N1 - 1 N2 = N2 - 1 above = (X1 - X2) below = math.sqrt( ((S1**2)/N1) + ((S2**2)/N2) ) return above/below
ce3a0d403a1ef844e52fcea7928213af8c87a994
83,110
def unzip(p, n): """Split a list-like object, 'p', into 'n' sub-lists by taking the next unused element of the main list and adding it to the next sub-list. A list of tuples (the sub-lists) is returned. Each of the sub-lists is of the same length; if p%n != 0, the shorter sub-lists are padded with 'None'. Example: >>> unzip(['a','b','c','d','e'], 3) [('a', 'd'), ('b', 'e'), ('c', None)] """ (mlen, lft) = divmod(len(p),n) # find length of longest sub-list if lft != 0: mlen += 1 lst = [[None]*mlen for i in range(n)] # initialize list of lists for i in range(len(p)): (j, k) = divmod(i, n) lst[k][j] = p[i] return map(tuple, lst)
b526d2f71303c739b68035e5ad6b5644f47c547a
83,118
import copy def rhyme_quality( p1, p2 ): """ Determine a numerical quality of the rhyme between two pronunciation lists. >>> rhyme_quality( ["A", "B", "C"], ["A", "B"] ) 0 >>> rhyme_quality( ["A", "B", "C"], ["B", "C"] ) 2 >>> rhyme_quality( ["A", "B"], ["A", "B"] ) 0 >>> rhyme_quality( ["B", "B", "C", "D"], ["A", "B", "C", "D"] ) #3 """ p1 = copy.deepcopy(p1) p2 = copy.deepcopy(p2) p1.reverse() p2.reverse() if p1 == p2: # G-Spot rocks the G-Spot return 0 quality = 0 for i, p_chunk in enumerate(p1): try: if p_chunk == p2[i]: quality += 1 if p_chunk != p2[i]: break except IndexError: break return quality
bc2f8189202ce29d818d942e6ad7b16a82ffe4f1
83,121
def _get_labels(model, X): """Get labels from a trained sklearn-like model""" try: y = model.labels_ except AttributeError: y = model.predict(X) return y
6bc2f20b18554a7aa7c0c676f520d434852e7085
83,125
import requests import json def get_response(url, data, headers): """ Return the response from Elsevier :param url: <str> base_url :param data: <dict> data parameters :param headers: <dict> headers :return: response """ response = requests.put(url, data=json.dumps(data), headers=headers) response = response.text.replace('false', 'False').replace('true', 'True') try: response = eval(response) except BaseException: print(response) return response
9f702ab9c5aa1cd42a6fd66307d4ca27787c4b29
83,129
def fix_sanitizer_crash_type(crash_type): """Ensure that Sanitizer crashes use generic formats.""" # General normalization. crash_type = crash_type.lower().replace('_', '-').capitalize() # Use more generic types for certain Sanitizer ones. crash_type = crash_type.replace('Int-divide-by-zero', 'Divide-by-zero') return crash_type
a2971f209e380f7b50d4234876e7421249737d44
83,133
def get_ardupilot_url(vehicle): """Return a formatted url to target a .xml on the ardupilot auto test server""" return "http://autotest.ardupilot.org/Parameters/{0}/apm.pdef.xml".format(vehicle)
077ab98b1130ab2ebf84369a3a0df88bf74ec6c2
83,137
def get_evens(lst): """ Returns a list of only even numbers from lst """ out = [] for val in lst: if val % 2 == 0: out += [val] return out
75389aada6f6168266292e2ac74b99909d595d0f
83,139
def zscore_normalize(image, mask): """ https://github.com/jcreinhold/intensity-normalization/blob/master/intensity_normalization/normalize/zscore.py Normalize a target image by subtracting the mean of the vertebra and dividing by the standard deviation Args: image: target volume mask: mask for image Returns: normalized: image with mean at norm_value """ logical_mask = mask == 1 # force the mask to be logical type mean = image[logical_mask].mean() std = image[logical_mask].std() normalized = (image - mean) / std return normalized
6eddb0bf2afd355f7a63e04ff104ed4e214ae7de
83,148
def is_empty_json_response(context): """Check if the JSON response is empty (but not None).""" return context.response.json() == {}
c7b002f7695c364ce152ad9ad14291f6b0c31719
83,163
def get_signature_def_by_key(meta_graph_def, signature_def_key): """Utility function to get a SignatureDef protocol buffer by its key. Args: meta_graph_def: MetaGraphDef protocol buffer with the SignatureDefMap to look up. signature_def_key: Key of the SignatureDef protocol buffer to find in the SignatureDefMap. Returns: A SignatureDef protocol buffer corresponding to the supplied key, if it exists. Raises: ValueError: If no entry corresponding to the supplied key is found in the SignatureDefMap of the MetaGraphDef. """ if signature_def_key not in meta_graph_def.signature_def: raise ValueError("No SignatureDef with key '%s' found in MetaGraphDef." % signature_def_key) return meta_graph_def.signature_def[signature_def_key]
961f3742cf65ef2c06cbb7dc2cbc784ae1cd892d
83,164
import math def get_num_tiles(rows, cols, row_tile_size, col_tile_size): """ Obtain the number of vertical and horizontal tiles that an image can be divided into given a row tile size and a column tile size. Args: rows: Number of rows. cols: Number of columns. row_tile_size: Number of pixels in a tile row. col_tile_size: Number of pixels in a tile column. Returns: Tuple consisting of the number of vertical tiles and the number of horizontal tiles that the image can be divided into given the row tile size and the column tile size. """ num_row_tiles = math.ceil(rows / row_tile_size) num_col_tiles = math.ceil(cols / col_tile_size) return num_row_tiles, num_col_tiles
9f3517aa3a0293fbd1d43e03da1dc5357e54ee5a
83,165
import re def flatMapFunc(document): """ Before we returned a list of words and used the map and reduce fucntions to determine how many times each word occurred (regardless of document ID). Now we want to know how many different documents contain the word. This function should create a list of items which we will then run various transformations on to eventually create a count of documents per word. document[0] is the document ID (distinct for each document) document[1] is a string of all text in that document You will need to modify this code. """ documentID = document[0] words = re.findall(r"\w+", document[1]) ret = [] for i in words: ret.append((i, documentID)) return ret
5f56910461f16dfe1a95527d691f3b3f626866d0
83,172
def wait(self, dtime="", **kwargs): """APDL Command: /WAIT Causes a delay before the reading of the next command. Parameters ---------- dtime Time delay (in seconds). Maximum time delay is 59 seconds. Notes ----- You should consider using ``time.sleep(dtime)`` The command following the /WAIT will not be processed until the specified wait time increment has elapsed. Useful when reading from a prepared input file to cause a pause, for example, after a display command so that the display can be reviewed for a period of time. Another "wait" feature is available via the *ASK command. This command is valid in any processor. """ command = f"/WAIT,{dtime}" return self.run(command, **kwargs)
394587ee3e96f1f945c99aedda8b493b7d2129e3
83,174
def miniAOD_customizeIsolatedTracksFastSim(process): """Switch off dE/dx hit info on fast sim, as it's not available""" process.isolatedTracks.saveDeDxHitInfo = False return process
b552f353ef2068c0d5d076ae288865382580cf34
83,175
def push(trace, instructions, reg): """Push the content of *reg(* onto the stack""" instructions.append({"trace": trace, "op": "push", "reg": reg}) return instructions
14536be2f3997b4e29cb0206dd55e311dd6722a2
83,176
import pickle import base64 def unserialize(x): """ Unserialize a serialized object. :param x: Object to be unserialized :type x: string :return: Unserialized object :rtype: arbitrary (typically a dictionary) """ return pickle.loads(base64.b64decode(x.encode()))
2079175e8ad98863f478ca205ed28d831546f98e
83,178
def convert_c_to_f(temp_c): """Converts temp (C) to temp (F).""" try: temp_f = (temp_c * 1.8) + 32 temp_f = round(temp_f, 2) except TypeError: temp_f = False return temp_f
88b08f89c5d674a0220390aff91faa3db2e7e0be
83,183
def pip_safe_name(s: str): """ Return a name that is converted to pypi safe format. """ return s.lower().replace("-", "_").replace(" ", "_")
c4dc9b80c7341323947ef162590adeeb3ba87ec1
83,188
import requests import logging def geocode(key, language, address, latitude, longitude): """get latitude, longitude from address using google geocode api """ try: response = requests.get( "https://maps.googleapis.com/maps/api/geocode/json", params={ "address": address, "language": language, "latlng": "{},{}".format(latitude, longitude), "key": key }) response.raise_for_status() data = response.json() location = data["results"][0]["geometry"]["location"] components = [] for component in data["results"][0]["address_components"]: if component["types"][0] in [ "locality", "administrative_area_level_1" ]: components.append(component["short_name"]) address = ",".join(components) return location["lat"], location["lng"], address except Exception as e: logging.error(e, exc_info=True) return None
a1580289b262e62f8bdd1dc15bb0027e5cfd39bf
83,196
from typing import Set import inspect def get_subclasses(cls: type, include_abstract: bool = False) -> Set[type]: """ Collects all subclasses of the given class. :param cls: A base class :param include_abstract: Whether abstract base classes should be included :return: A set of all subclasses """ subclasses = set() queue = cls.__subclasses__() while queue: cls = queue.pop() if include_abstract or not inspect.isabstract(cls): subclasses.add(cls) queue += cls.__subclasses__() return subclasses
41004d5a360b681aaa9a962269b9aaf91c72fabf
83,198
def coords_to_index(coords, width): """ Converts x,y coordinates of an image (with (0,0) in in the top-left corner) to an index in a 1-D array of pixels :param coords: A tuple (x,y) :param width: The width of the image :return: The index of the corresponding pixel """ return coords[1] * width + coords[0]
71c752b73c1e45287c9e7ef66c3b400f70f7e2a1
83,200
def num_to_one(x: int) -> int: """Returns +1 or -1, depending on whether parm is +ve or -ve.""" if x < 0: return -1 else: return 1
b030af4e81b3c9fedbe5acbb02269e3ea33e95c8
83,203
import re def extract_bibtex_entries(master_bib_file, citekeys): """ Extract bibtex entries from master_bib_file that have certain citekeys. Return the entries sorted by citekey. """ if len(citekeys) == 0: return [] with open(master_bib_file, "r", encoding="utf-8") as file: master_bib = file.read() bibtex_entries = [] for citekey in citekeys: match = re.search( r"@.*?\{" + citekey + r"[\s\S]+?\n\}\n", master_bib, re.UNICODE ) if match is None: print(f"-> Citekey '{citekey}' was not found in {master_bib_file}") else: bibtex_entries.append((citekey, match.group(0))) return [entry[1] for entry in sorted(bibtex_entries)]
fbd036fee7ad89164eb375574a7672dac70f2b15
83,205
import math def kr_utility(x: float, mult: float = 10000) -> float: """ A logarithmic utilitly function based on köszegi rabin 2006 """ return mult * math.log(x)
f455f7938a0f3ff4ba920d7991a6fa67207a10e0
83,210
def _safe_read(filepath): """Returns the content of the file if possible, None otherwise.""" try: with open(filepath, 'rb') as f: return f.read() except (IOError, OSError): return None
4c5d32d4feff3c94e2411b072d5f03e51b08ecc8
83,212
def megabytes(x, pos): """Formatter for Y axis, values are in megabytes""" if x < 1024: return '%d B' % (x) elif x < 1024 * 1024: return '%1.0f KiB' % (x/1024) else: return '%1.0f MiB' % (x/(1024*1024))
f8103a8b1f1c12957e1561ed4aab389a3532c69b
83,217
def check_evals_initialized(conn): """Check that evals table has been created in a sqlite3 database Parameters ---------- conn : `sqlite3.Connection` connection to a sqlite3 database Returns ------- is_created : `bool` `True` if table was created and `False` otherwise """ cur = conn.execute( '''SELECT name FROM sqlite_master WHERE type='table' AND name=?''', ('evals',) ) return not (cur.fetchone() is None)
cfcee1ebe56edc5b8d9c0736d9d97a004761735f
83,218
def str_contains_all(string, items): """ Gets a string and a list of string and checks all of list items are in string """ for item in items: if not item in string: return False return True
264884e314571061e7a47c19203b3142cb30b0c9
83,219
import copy import warnings def defCol(name: str, typ: str, *coll_sets): """ Legacy utility method for simplifying trust sets. >>> actual = defCol("a", "INTEGER", [1], [2], [1, 2, 3]) >>> expected = ("a", "INTEGER", {1, 2, 3}) >>> actual == expected True >>> actual = defCol("a", "INTEGER", 1, 2, 3) >>> expected = ("a", "INTEGER", {1, 2, 3}) >>> actual == expected True >>> actual = defCol("a", "INTEGER", 1) >>> expected = ("a", "INTEGER", {1}) >>> actual == expected True """ if not coll_sets: trust_set = set() else: first_set = coll_sets[0] trust_set = copy.copy({first_set} if isinstance(first_set, int) else set(first_set)) for ts in coll_sets[1:]: if isinstance(ts, int): ts_set = {ts} else: warnings.warn("Use of lists for trust sets is deprecated") ts_set = set(ts) trust_set |= ts_set return name, typ, trust_set
3c09c134a3f8b731cc4838802c660035b65a5871
83,222
def hamming(correct, observed): """ Calculates hamming distance between correct code and observed code with possible errors Args: correct: the correct code as list (binary values) observed: the given code as list (binary values) Returns: distance: the hamming distance between correct and observed code """ distance = 0 for i in range(len(correct)): if correct[i] != observed[i]: distance += 1 return distance
b77554125e5e7f963d7f896e34dab8d70a3cd824
83,228
import csv def read_base_maps(base_maps): """ Read all base map files and create a base map :param base_maps: list of filenames :return: a list like [("/bucket", "Server 1")] """ results = [] for filename in base_maps or []: with open(filename, 'r') as file: reader = csv.reader(file) for row in reader: if len(row) == 0: continue if len(row) != 2: raise ValueError(f"Read basemap row {row} has length {len(row)} (should be 2)") results.append((row[0], row[1])) return results
6bca5529401ba29851b47716163f22e2e8e9dbc5
83,233
def expand(path:list, conc_var:list) -> list: """ expand( path=[1, 2, 3], conc_var=[['a', 'c'], ['b', 'c']] ) ---> [[1, 'a', 2, 'c', 3], [1, 'b', 2, 'c', 3]] gives the detailed path! Parameters ---------- path : list The ids of formulas that form a path. conc_var : list the conected variables between two formulas. Returns ------- list The detailed path. """ ft = [] cv = [list(cc) for cc in list(conc_var)] for c in cv: w = [] p = path.copy() while c: w.append(p.pop()) w.append(c.pop()) w.append(p.pop()) ft.append(w[::-1]) return ft
33be48c324570d50ac62db2f25004f3ab8385fef
83,240
from typing import Sequence def map_context(index: int, context_count: int) -> Sequence[float]: """Get a one-hot encoding for the given context.""" context_vector = [0.0 for _ in range(context_count)] context_vector[index] = 1.0 return context_vector
f959e03fde3aa143d56754a1f3a34687cda9081b
83,247
def _request_get_json(response): """ Get the JSON from issuing a ``request``, or try to produce an error if the response was unintelligible. """ try: return response.json() except ValueError as e: return {"error": str(e)}
1b6a6d823c23f036ef3c2a06ed3a421544797bc5
83,249
def get_html_msg(color, tim, log_type, filename, lineno, msg): """ converts the message to html Parameters ---------- color : str the HTML color time : str the time for the message log_type : str the message type filename : str the filename the message came from lineno : int the line number the message came from message : str the message Returns ------- html_msg : str the HTML message """ # log_type, filename, lineno, msg html_msg = r'<font color="%s"> %s %s : %s:%i</font> %s <br>' % ( color, tim, log_type, filename, lineno, msg.replace('\n', '<br>')) return html_msg
0673b455a45ef559b6c6d5fd634e5af6b4be7e38
83,259
def upper(series): """Transform all text to uppercase.""" return series.str.upper()
dbd5a069d4251aebf94c02d994c74ff4e012e649
83,266
def is_valid_move(data, obstacles, proposed_move): """Function that validates if we can perform given action without hitting wall, self, or other snake""" if proposed_move["x"]<0 or proposed_move["y"]<0: return False board_height = data["board"]["height"] board_width = data["board"]["width"] if proposed_move["x"]==board_width or proposed_move["y"]==board_height: return False if proposed_move in obstacles: return False return True
955180a0adc95cc7c54a120f34ab9cc6025986b1
83,270
from typing import Mapping from typing import Sequence def iterate(mapping): """ Attempt to iterate over `mapping` such that key-values pairs are yielded per iteration. For dictionaries and other mappings, this would be the keys and values. For lists and other sequences, this would be the indexes and values. For other non- standard object types, some duck-typing will be used: - If `mapping` has callable ``mapping.items()`` attribute, it will be used. - If `mapping` has callable ``mapping.keys()`` and ``__getitem__`` attributes, then ``(key, mapping[key])`` will be used. - Otherwise, `iter(mapping)` will be returned. """ if isinstance(mapping, Mapping) or callable(getattr(mapping, "items", None)): return mapping.items() if isinstance(mapping, Sequence): return enumerate(mapping) if callable(getattr(mapping, "keys", None)) and hasattr(mapping, "__getitem__"): return ((key, mapping[key]) for key in mapping.keys()) return iter(mapping)
8b651ea8b239883f0323ab8542bd912319c78012
83,278
def parse_out_ips(message): """Given a message, parse out the ips in the answer""" ips = [] for entry in message.answer: for rdata in entry.items: ips.append(rdata.to_text()) return ips
a75489b1223f2a799fa0d54c80b3ce2e27494e99
83,283
def smiles(sid): """ SMILES string from a species ID """ smi = str.split(sid, '_')[0] return smi
8c47d163d9110027f9fa47903ab1a1abbaa54fe6
83,288
def get_common_path(paths): """ Find common path. For example, [/api/test, /api/hello] => /api :param paths: list of path :return: string of common path """ if len(paths) == 0: return '/' mini_paths = [path.strip('/').split('/') for path in paths] common_mini_paths = min(mini_paths) common_path = [] for common_mini_path in common_mini_paths: check_path = '/'.join(common_path) + common_mini_path exist_flag = True for path in paths: if not path.strip('/').startswith(check_path): exist_flag = False break if exist_flag: common_path.append(common_mini_path) else: break return '/' + '/'.join(common_path)
ea5005cf1b74bf1cb75d59e7cd93721564bc08d8
83,289
def unit(v): """Return a unit vector""" return v/abs(v)
ade07b729a99a3f1016e755ee72a60b402356a83
83,292
def get_master_slaves(server, options=None): """Return the slaves registered for this master. In order to ease the navigation through the result set, a named tuple is always returned. Please, look up the `SHOW SLAVE HOSTS` in the MySQL Manual for further details. :param server: MySQL Server. :param options: Define how the result is formatted and retrieved. See :meth:`~mysql.fabric.server.MySQLServer.exec_stmt`. """ if options is None: options = {} options["columns"] = True options["raw"] = False return server.exec_stmt("SHOW SLAVE HOSTS", options)
ab4c5fc265a373e057551940f1b929e11d3bb63c
83,297
def get_conf_property(conf, name, expected_type=None): """ Check that configuration properties dictionary contains the given configuration property and return its value. :param conf: Dictionary. :param name: Configuration property string. :param expected_type: Check that given value has an expected type. :return: Configuration property value. """ if name in conf: if expected_type and not isinstance(conf[name], expected_type): raise TypeError("Expect configuration property '{}' to be set with a '{}' value but it has type '{}'". format(name, str(expected_type), str(type(conf[name])))) return conf[name] else: return None
a72995fa5780d960aee626979f0c6a1277ef8234
83,300
import re def indent(code, indentation): """ Indent code by 'indentation' spaces. For example, indent('hello\nworld\n', 2) -> ' hello\n world\n'. """ if len(code) == 0: return code if isinstance(indentation, int): indentation = ' ' * indentation elif not isinstance(indentation, str): raise TypeError(f'Supports only int or str, got {type(indentation).__name__}') # Replace every occurrence of \n, with \n followed by indentation, # unless the \n is the last characther of the string or is followed by another \n. # We enforce the "not followed by ..." condition using negative lookahead (?!\n|$), # looking for end of string ($) or another \n. return indentation + re.sub(r'\n(?!\n|$)', '\n' + indentation, code)
b9f234f83dc12035bce730ac43f49463b1d98e8f
83,302
def shQuote(text): """quote the given text so that it is a single, safe string in sh code. Note that this leaves literal newlines alone (sh and bash are fine with that, but other tools may mess them up and need to do some special handling on the output of this function). """ return "'%s'" % text.replace("'", r"'\''")
123c0f73157f6d37c5b6ec1900579f394773cd92
83,303
import io def load_vsp_pairs(path: str) -> dict: """ Parses a specific formatted VSP pairs file and returns the dictionary corresponding to the VSP pairs. :param path: The path of the file where the dictionary is stored. :return: The dictionary. """ vsp_pairs = dict() with io.open(file=path, mode="r", encoding="utf-8") as src_file: for line in src_file: content = line.split(':', 1) vsp_pairs[tuple(content[0].split(','))] = content[1] return vsp_pairs
cfe72778b6d9efb3b7f7cc88bdd867f88fba1a20
83,305
def listify(df, axis=1): """ Consdense text information across columns into a single list. Parameters ---------- df : :class:`pandas.DataFrame` Dataframe (or slice of dataframe) to condense along axis. axis : :class:`int` Axis to condense along. """ return df.copy(deep=True).apply(list, axis=axis)
a8361b3c44377a8f34d99b674269577a1104ab9c
83,307
import re def strip_nbsp(s): """ Replace '&nbsp' with spaces and then strip (beginning and end) spaces. An interior &nbsp; will remain an interior space""" return re.sub("&nbsp;", " ", s).strip()
69d61b9da69e090521800a464b2ec4b695758e2c
83,309
def find_first_entry(line, elements, start=0, not_found_value=-1): """ Find the index of the earliest position inside the `line` of any of the strings in `elements`, starting from `start`. If none are found, return `not_found_value`. """ first_entry=len(line) for e in elements: pos=line.find(e,start) if pos>0: first_entry=min(first_entry,pos) if first_entry==len(line): return not_found_value return first_entry
171f0f1cbbc9fbaa3d65faacec7e6eca673eb378
83,311
def svmPredict(model, X): """ returns a vector of predictions using a trained SVM model. model is a svm model returned from svmTrain. X is a (m x n) matrix where there each example is a row. pred is a vector of predictions of {0, 1} values. """ # X: shape (n_samples, n_features) # For kernel=”precomputed”, # the expected shape of X is [n_samples_test, n_samples_train] pred = model.predict(X) return pred
f9fd6e28855f2a1fcb646d0eef64e047ed43e355
83,313
def convert_eq_to_dict(equationstring): """ Converts an equation string to a dictionary convert_eq_to_dict('1*Be12Ti->10*Be+1*Be2Ti+5*Be') -> {'products': {'Be': 15, 'Be2Ti': 1}, 'educts': {'Be12Ti': 1}} """ eq_dict = {'products': {}, 'educts': {}} product_dict = {} educt_dict = {} eq_split = equationstring.split('->') products = eq_split[1].split('+') educts = eq_split[0].split('+') for product in products: p_list = product.split('*') product_dict[p_list[-1]] = int(p_list[0]) + product_dict.get(p_list[-1], 0) for educt in educts: e_list = educt.split('*') educt_dict[e_list[-1]] = int(e_list[0]) + educt_dict.get(e_list[-1], 0) eq_dict['products'] = product_dict eq_dict['educts'] = educt_dict return eq_dict
e467daf79a30d09a1c535b87d8e08c90fa862498
83,315
def new(sym): """ Return the "new" version of symbol "sym", that is, the one representing "sym" in the post_state. """ return sym.prefix('new_')
9d47dc6edf92fad115d92850e78b3eeeb43834e0
83,319
def parse_binvox_header(fp): """ Read the header from a binvox file. Spec available: https://www.patrickmin.com/binvox/binvox.html Parameters ------------ fp: file-object File like object with binvox file Returns ---------- shape : tuple Shape of binvox according to binvox spec translate : tuple Translation scale : float Scale of voxels Raises ------------ IOError If invalid binvox file. """ line = fp.readline().strip() if hasattr(line, 'decode'): binvox = b'#binvox' space = b' ' else: binvox = '#binvox' space = ' ' if not line.startswith(binvox): raise IOError('Not a binvox file') shape = tuple( int(s) for s in fp.readline().strip().split(space)[1:]) translate = tuple( float(s) for s in fp.readline().strip().split(space)[1:]) scale = float(fp.readline().strip().split(space)[1]) fp.readline() return shape, translate, scale
8ecf24aee98bd80270904f912cedab0dda384d0c
83,321
def _remove_keys(obj, keys_to_remove): """Remove the given fields from a JSON-like object. Traverses `obj` and removes the given keys at any nesting depth. Examples: _strip_keys({'a': [{'a': 0, 'b': 1}], 'b': 2}, ['a']) == {'b': 2} _strip_keys({'a': [{'a': 0, 'b': 1}], 'b': 2}, ['b']) == {'a': [{'a': 0}]} Args: obj: A JSON-like object keys_to_remove: A list of keys Returns: A copy of `obj` with the given fields removed at any nesting depth. """ if isinstance(obj, list): return [_remove_keys(item, keys_to_remove) for item in obj] elif isinstance(obj, dict): return { key: _remove_keys(value, keys_to_remove) for key, value in obj.items() if key not in keys_to_remove} else: return obj
ccfd89df496ad29045608227c0533b559a204157
83,324
from typing import Any def coalesce(*values: Any, default=None) -> Any: """Get the first non-``None`` value in a list of values""" return next((v for v in values if v is not None), default)
46afe01e33071df235447896d902647ea20959b5
83,325
def generate_filename(in_path, output_dir): """ Create the filename of the new test video clip. Parameters ---------- in_path : str Full path of input video. output_dir : str Directory of output video. Returns ------- out_path : str Full path of output video. """ if in_path.count('.') >= 2: raise Exception('Filename has multiple full stops') output_video = in_path.split('/')[-1].replace('.', '_test.') out_path = output_dir + output_video return out_path
63baa6fa4a8afc4368f4a3d093b063f7f4a966c7
83,326
def _get_fwxm_boundary(data, max_val): """ Returns sample position and height for the last sample which amplitude is below the specified value. If no sample can be found returns position and value of last sample seen. Note: For FWHM we assume that we start at the maximum. """ ind = None s = None for i, d in enumerate(data): if d <= max_val: ind = i s = d return ind, s return len(data)-1, data[-1]
d536da3b983540b8f2424d8580b0220c553f794e
83,327
import string import random def generate_token(length=30, allowed_chars=''.join([string.ascii_letters, string.digits])): """Generates random CSRF token :param length: Length of CSRF token, defaults to 30 :param allowed_chars: Characters to use, defaults to 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' :return: Token string """ return ''.join(random.choice(allowed_chars) for i in range(length))
07c4a66149f6f7eccd51217462405620cd6b86b3
83,329
def household_as_of(reference_date, returning=None, return_expectations=None): """ Return information about the household to which the patient belonged as of the reference date. This is inferred from address data using an algorithm developed by TPP (to be documented soon) so the results are not 100% reliable but are apparently pretty good. Options for `returning` are: pseudo_id: An integer identifier for the household which has no meaning other than to identify individual members of the same household (0 if no household information available) household_size: the number of individuals in the household (0 if no household information available) Examples: household_id=patients.household_as_of( "2020-02-01", returning="pseudo_id" ) household_size=patients.household_as_of( "2020-02-01", returning="household_size" ), """ return "household_as_of", locals()
cea12e916ed3e1fddd13eadf987abdd3d8ecb791
83,330
from typing import List from typing import Tuple def prepare_image_type_choices() -> List[Tuple[str, str]]: """ Returns image type choices for the prompt. :return: list of 2-len tuples """ return [ ("Distribution only", "distribution"), ("Application only", "application"), ("All available images", "all"), ]
2e376bd94befc9a1a7d5c6a251d9b3d08de3207c
83,331
from typing import Dict from typing import List import copy def get_neighbors(state: Dict[int, List[int]]) -> List[Dict[int, List[int]]]: """given a state, return its neighbors for each processor, move its task to another processor and add it as neighbor :param state: the root state :return: list of all neighbors """ neighbors = [] for source in range(len(state)): for task_id in range(len(state[source])): for destination in range(len(state)): # moving a task to its source is useless if destination == source: continue # creating the neighbor neighbors.append(copy.deepcopy(state)) # removing the task task = neighbors[-1][source].pop(task_id) # add it to the other processor new_tasklist = neighbors[-1][destination][:] new_tasklist.append(task) neighbors[-1][destination] = sorted(new_tasklist) return neighbors
049e5d6fedcdbb8dd506567c2201ab8dc50bff8d
83,333
import io import json def load(filename): """Load a JSON object from file.""" with io.open(filename, mode='r', encoding='utf-8') as file: return json.load(file)
7c578fac5e4d41a1afb9f2734ffef322f704e683
83,334
import re def block_contains(pattern, cell): """Returns True for non-empty notebook code block that contains pattern""" if cell['cell_type'] != 'code': return False src = cell['source'] if len(src) == 0 : return False check_all = [re.search(f'^.*{pattern}.*$', line, re.IGNORECASE) for line in src] if all(check is None for check in check_all): return False else: return True
f1c24f21c653c0d58e1da6467c19c9d0670fc29d
83,335
def get_allowed_tokens(config): """Return a list of allowed auth tokens from the application config""" return [token for token in (config.get('AUTH_TOKENS') or '').split(':') if token]
e046e369ef949501deaf91f6629a768af9416c75
83,336
def calculate_q_debye_linear(eps_fluid, lambda_d, zeta): """ Calculate the charge accumulated in the Debye layer (Adjari, 2006) units: Coulombs Notes: """ q = -eps_fluid * zeta / lambda_d return q
1b49d1cab7154496c8b342b9f349efe08f64f015
83,337
def largest_product_horizontally(matrix): """ Computes the largest product horizontally (line by line) on a given matrix """ largest_product = 1 for line in range(0, matrix.shape[0]): for column in range(0, matrix.shape[1]-3): product = int(matrix[line, column] * matrix[line, column+1] * matrix[line, column+2] * matrix[line, column+3]) if product > largest_product: largest_product = product return largest_product
3cd7c17483729a17ba6c9fcc131e562286eb0528
83,338
def check_num_rows_of_parameter_array(param_array, correct_num_rows, title): """ Ensures that `param_array.shape[0]` has the correct magnitude. Raises a helpful ValueError if otherwise. Parameters ---------- param_array : ndarray. correct_num_rows : int. The int that `param_array.shape[0]` should equal. title : str. The 'name' of the param_array whose shape is being checked. Results ------- None. """ if param_array.shape[0] != correct_num_rows: msg = "{}.shape[0] should equal {}, but it does not" raise ValueError(msg.format(title, correct_num_rows)) return None
fad20c61b1b972fcb483a349bc808463478ece1a
83,342
def create_collection_filename(user: str, ext: str = "csv") -> str: """Return a filename for a collection.""" return f"export_collection_{user}.{ext}"
5313a7abcadf8ecacef4a17758dbe40d32f96cd9
83,349
def get_item(dictionary, key): """ :param dictionary: the dictionary where you want to access the data from :param key: the key of the dictionary where you want to access the data from :return: the content of the dictionary corresponding to the key entry or None if the key does not exists """ return dictionary.get(key, None)
5a17f4c733f327a83dfa43bba659a555c4d9e2f6
83,350
import math def _int_32_value(client, value): """Converts a value to a protocol buffer Int32 wrapper. Args: client: A google.ads.google_ads.client.GoogleAdsClient instance. value: A number to wrap, truncated to the nearest integer. Returns: The value wrapped in a google.ads.googleads_v2.types.Int32. """ int_32_val = client.get_type('Int32Value', version='v3') int_32_val.value = math.trunc(value) return int_32_val
48682ff6757d9a17d89856784fd51e3337e24e74
83,354
from typing import Dict from typing import Any def user_data() -> Dict[str, Any]: """Get user data to instantiate a User.""" return dict( username="viniarck", first_name="Vinicius", last_name="Arcanjo", email="viniarck@gmail.com", password="sup3rs3cr3t!", )
6c730fd969baaa3350e78babbb398da35f50f53d
83,365
def compute_moments_weights_pairs_std(neighbors, weights): """ Computes the expectations of the local pair-wise test statistic This version assumes variables are standardized, and so the moments are actually the same for all pairs of variables """ N = neighbors.shape[0] K = neighbors.shape[1] # Calculate E[G] EG = 0 # Calculate E[G^2] EG2 = 0 # Get the x^2*y^2 terms for i in range(N): for k in range(K): wij = weights[i, k] EG2 += (wij**2)/2 return EG, EG2
6ada14ecc23355b24181cb5a0352a52efbfee29a
83,368
def parse_none(http_response, response): """If the body is not empty, convert it to a python object and set as the value of response.body. http_response is always closed if no error occurs. :param http_response: the http_response object returned by HTTPConnection.getresponse() :type http_response: httplib.HTTPResponse :param response: general response object which will be returned to the caller :type response: baidubce.BceResponse :return: always true :rtype bool """ body = http_response.read() if body: response.body = body http_response.close() return True
ea9f50fa1f7667a247c7be20914414c810a45c78
83,370
import json def jsonify(data): """ Type safe JSON dump """ return json.dumps(data, default=str)
2207893d5801e2e355b0c7b04e7844869ea53fc7
83,378
def shrink(line, bound=50, rep='[...]'): """Shrinks a string, adding an ellipsis to the middle""" l = len(line) if l < bound: return line if bound <= len(rep): return rep k = bound - len(rep) return line[0:k / 2] + rep + line[-k / 2:]
14e70c452d8d9fdb85c61b45449ea6a0ef91ab65
83,380
from typing import Callable def decorate_validation_errors(func: Callable) -> Callable: """ Decorator that wraps the output of `func` with separators if validation errors are found. """ def wrapper(*args, **kwargs): # All conditions were met: let's not print anything around the output if all(value is None for value in args[0]): return print("=" * 60) func(*args, **kwargs) print("=" * 60) return wrapper
ab949959dc0e9869e220110feae043278c859c94
83,382
from datetime import datetime def is_datetime_aware(dt: datetime) -> bool: """Returns if datetime `dt` is timezone-aware""" return dt.tzinfo is not None and dt.tzinfo.utcoffset(dt) is not None
e083bcc2d7e82e289c166fdfc901f1198023879e
83,387
def conv(value, fromLow=0, fromHigh=0, toLow=0, toHigh=0, func=None): """Re-maps a number from one range to another. That is, a value of fromLow would get mapped to toLow, a value of fromHigh to toHigh, values in-between to values in-between, etc. Does not constrain values to within the range, because out-of-range values are sometimes intended and useful. The constrain() function may be used either before or after this function, if limits to the ranges are desired. Note that the "lower bounds" of either range may be larger or smaller than the "upper bounds" so the conv() function may be used to reverse a range of numbers, for example y = conv(x, 1, 50, 50, 1) The function also handles negative numbers well, so that this example y = conv(x, 1, 50, 50, -100) is also valid and works well. :param value: the number to map :param fromLow: the lower bound of the value's current range :param fromHigh: the upper bound of the value's current range :param toLow: the lower bound of the value's target range :param toHigh: the upper bound of the value's target range :param func: function to be applied on result :return: The mapped value.""" result = (value - fromLow) * (toHigh - toLow) / (fromHigh - fromLow) + toLow if func is None: return result else: return func(result)
b24adeb98096be0a1421a0471ac501731fe48a03
83,390
def get_app_details_hr(app_dict): """ Prepare application detail dictionary for human readable in 'risksense-get-app-detail' command. :param app_dict: Dictionary containing application detail. :return: List containing application detail dictionary. """ return [{ 'Address': app_dict.get('uri', ''), 'Name': app_dict.get('name', ''), 'Network Name': app_dict.get('network', {}).get('name', ''), 'Network Type': app_dict.get('network', {}).get('type', ''), 'Discovered On': app_dict.get('discoveredOn', ''), 'Last Found On': app_dict.get('lastFoundOn', '') }, {}]
7b377ad3b98224c1ec14ad0ae481e1179ecf5a8d
83,393
def matrix_index(user): """ Returns the keys associated with each axis of the matrices. The first key is always the name of the current user, followed by the sorted names of all the correspondants. """ other_keys = sorted([k for k in user.network.keys() if k != user.name]) return [user.name] + other_keys
52e1c86de67bf4ceac432d931b5f65798b8b7c4f
83,395
import torch def cxcy_to_gcxgcy(cxcy, priors_cxcy): """ Encode bounding boxes (that are in center-size form) w.r.t. the corresponding prior boxes (that are in center-size form). For the center coordinates, find the offset with respect to the prior box, and scale by the size of the prior box. For the size coordinates, scale by the size of the prior box, and convert to the log-space. In the model, we are predicting bounding box coordinates in this encoded form. :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_priors, 4) :param priors_cxcy: prior boxes with respect to which the encoding must be performed, a tensor of size (n_priors, 4) :return: encoded bounding boxes, a tensor of size (n_priors, 4) """ # The 10 and 5 below are referred to as 'variances' in the original Caffe repo, completely empirical # They are for some sort of numerical conditioning, for 'scaling the localization gradient' # See https://github.com/weiliu89/caffe/issues/155 return torch.cat( [ (cxcy[:, :2] - priors_cxcy[:, :2]) / (priors_cxcy[:, 2:] / 10), # g_c_x, g_c_y torch.log(cxcy[:, 2:] / priors_cxcy[:, 2:]) * 5 ], 1)
e2d2f12709975c6151d3b78b1a598488baea590e
83,398
def multi_headers(data, column_id): """Get column names, except unique id.""" headers = [column for column in data.columns if column != column_id] return headers
1c7a0e00ace233207add1d7f85a8fc16853a319b
83,401
def interp_to_order(interp): """Convert interpolation string to order.""" if isinstance(interp, int): return interp order_map = {None: 0, "nearest": 0, "linear": 1, "quadratic": 2, "cubic": 3} return order_map.get(interp, None)
db18a038509c1283c57f6ec13a43cb27225d3887
83,405
import hashlib def hash_document(document): """Returns hash of document""" return hashlib.sha1(document).hexdigest()
5fa682f9d2e1e5bc2be6249c65c415ee20e868ce
83,409
def _colname_to_fname(colname): """ Turn column name 'colname' into a file name, replacing problematic characters that browsers may refuse. """ return colname.replace("%", "_pcnt").replace("/", "-to-")
dab8e174d245b908115575755b1c23b53b14fee7
83,411
def get_device_str(device_id, num_gpus): """Return a device string for multi-GPU setup.""" if num_gpus == 0: return "/cpu:0" device_str_output = "/gpu:%d" % (device_id % num_gpus) return device_str_output
dec2fd1b61916020c2b118714fe4997d00f753a3
83,417
def first(list_to_summarize): """Get the first item in a list. """ return list_to_summarize[0]
c2297cab3af4566687b8fe2b52f30fe475072196
83,418
def is_selected(context, name, value): """ Return "selected" if current request URL has a matching value for the query parameter. Used to add the "selected" attribute to a `<select><option>` based on the URL e.g. <option value="member" {% is_selected "role" "member" %}>{% trans "I am a member" %}</option> """ return "selected" if context["request"].GET.get(name) == value else ""
fd0c1ed125e217df4cab9f3f4eaa58b744d6c5a5
83,419