content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def task_11_list_customers_starting_from_11th(cur): """ List all customers starting from 11th record Args: cur: psycopg cursor Returns: 11 records """ cur.execute("""SELECT * FROM Customers WHERE customerid > 11""") return cur.fetchall()
d85c7d28c172b8d84118160efaf67ad5225fe220
82,779
from typing import Union from typing import List def get_attribute(object, name: Union[List[str], str]): """Return an attribute of an object.""" components = name.split(".") if isinstance(name, str) else name for component in components: object = getattr(object, component) return object
95ad52ba6614449fc2968f43317a9b2f5f181fec
82,781
def calcPv(D, H): """ Calculate geometric albedo given asteroid diameter and H magnitude. Parameters ---------- D : float or `~numpy.ndarray` (N) Asteroid diameter in meters. H : float or `~numpy.ndarray` (N) Absolute H magnitude. Returns ------- float or `~numpy.ndarray` (N) Geometric albedo. """ return (1.329e6 / (D * 10**(H / 5)))**2
fb91ab6be9f389f1754514b940fc96b4c999a9f8
82,786
def get_machines_by_vnet_interface_name(config, ifname): """ Returns a list of machine that use a particular VNet interface :param dict config: The config generated by get_config() :param str ifname: The interface to check for :return: list of VNet machines using that interface """ machines = [] for m_name, m_data in config["machines"].items(): for int_data in m_data["interfaces"].values(): if int(int_data["bridge"]) == int(ifname[-1]): machines.append(m_name) return machines
9f26b01243664f0af596db2eaf0d067d481076e6
82,788
def _parse_results(results): """ Split the keys into a list of each key and the date that the data covers Args: results (dict): Dictionary of search results Returns: list (tuple): List of date, data key list pairs """ date_keys = {} for key in results.keys(): keys = sorted(results[key]) start_key = keys[0] end_key = keys[-1] # Get the first and last dates from the keys in the search results start_date = start_key.split("/")[-1].split("_")[0] end_date = end_key.split("/")[-1].split("_")[-1] dates_covered = start_date + "_" + end_date date_keys[key] = {"dates": dates_covered, "keys": keys} return date_keys
4da151d517b2d60445c97cb6dd1414a142d02c55
82,790
def figure_format(fig_width='3.4',fig_height='2.1'): """ Parameter --------- fig_width : float figure width in inches e.g. 3.4 fig_height : float figure height in inches e.g. 3.4 Returns ------- A tuple with: - Float corresponding to figure width and height - A dictionary containing several parameters, such as fontsize , etc. If fig_width is not set, the default value is 3.4 inch, corresponding to the width of a column in a double colomn paper. """ golden_ratio = 1.618 # Aesthetic ratio fig_size = [fig_width,fig_height] fontsize = 10 linewidth = 0.5 params = {'backend': 'ps', 'axes.labelsize': fontsize, 'axes.titlesize': fontsize, 'font.size': fontsize, 'legend.frameon': False, 'legend.fontsize': fontsize, 'legend.loc': 'best', 'lines.linewidth': linewidth, 'xtick.labelsize': fontsize, 'ytick.labelsize': fontsize, 'xtick.direction': 'in', 'ytick.direction': 'in', 'xtick.top': True, 'ytick.right': True, 'xtick.major.size': linewidth*4, 'xtick.major.top': True, 'xtick.major.width': 0.5, 'xtick.minor.size': linewidth*2, 'xtick.minor.top': True, 'xtick.minor.width': 0.5, 'ytick.major.size': linewidth*4, 'ytick.major.width': 0.5, 'ytick.minor.size': linewidth*2, 'ytick.minor.width': 0.5, 'figure.figsize': fig_size, 'pgf.texsystem': 'pdflatex', 'font.family': 'serif', 'text.usetex': True, 'pgf.rcfonts': False, 'ps.usedistiller': 'xpdf'} return(fig_width,fig_height,params)
0ee9cba83111ef335e76ca3d39e5ce1aa8b20fcf
82,792
def get_label(audio_config): """Returns label corresponding to which features are to be extracted e.g: audio_config = {'mfcc': True, 'chroma': True, 'contrast': False, 'tonnetz': False, 'mel': False} get_label(audio_config): 'mfcc-chroma' """ features = ["mfcc", "chroma", "mel", "contrast", "tonnetz"] label = "" for feature in features: if audio_config[feature]: label += f"{feature}-" return label.rstrip("-")
5f8b0bbe9966fd50e34e5bdb23cf915970f2170f
82,793
def parse_hhmm_field_from_form(data_dict, key_root): """ Extracts and parses the hours and minutes inputs to create a parseable time of day string in HH:MM format. These times are displayed as two select fields designated with a name (key_root) and _hours or _minutes suffix. Parameters ---------- data_dict: dict Dictionary of posted form data key_root: string The shared part of the name attribute of the inputs to parse. e.g. 'issue_time' will parse and concatenate 'issue_time_hours' and 'issue_time_minutes' Returns ------- string The time value in HH:MM format. """ hours = int(data_dict[f'{key_root}_hours']) minutes = int(data_dict[f'{key_root}_minutes']) return f'{hours:02d}:{minutes:02d}'
fd4a29cf52ddeeafd076ea5a53bf33e7e4cebc60
82,797
def _model_columns(db_model): """Return the columns names from a given DB model. """ return [c.name for c in db_model.__table__.columns]
4e26f97ba7ee993c3034d5d185080fb7f6ba17d3
82,814
import torch def adam(parameters, args): """Build adam.""" return torch.optim.Adam( parameters, lr=args.lr, weight_decay=args.weight_decay, betas=(args.beta1, args.beta2), )
e51ca56e31cd8facd226398f4042853534d59969
82,819
def normalize_rect(rect): """ Make rectangle a rotated tall rectangle, which means y-size > x-size and the angle indicates the "tilt": rotation of the longer axis from vertical :param rect: OpenCV's rectangle object :return: OpenCV's rectangle object normalized as described rect[0] is the coordinates of the center of the rectangle rect[1] is tuple of the sizes (x, y) rect[2] is the tilt angle if width > height, in rect's internal means, then we turn it 90 degrees which means swap the sizes and turn cw or ccw depending on the previous value """ if rect[1][0] > rect[1][1]: # incoming rect can be a tuple so if swapping reassign the whole thing rect = ( rect[0], # same center coordinates (rect[1][1], rect[1][0]), # swap height with width rect[2] + 90.0 if rect[2] < 0.0 else -90.0 ) return rect
4796f4e14b16c3e78098fa74df868f18a684e229
82,826
def daterange_to_str(daterange): """ Takes a pandas DatetimeIndex created by pandas date_range converts it to a string of the form 2019-01-01-00:00:00_2019-03-16-00:00:00 Args: daterange (pandas.DatetimeIndex) Returns: str: Daterange in string format """ start = str(daterange[0]).replace(" ", "-") end = str(daterange[-1]).replace(" ", "-") return "_".join([start, end])
a57be32e5adf96ec44cfb80d0d3830d645c9817b
82,827
def resistivity_index(rt, ro): """ Archie Resistivity Index (I) Parameters ---------- rt : float True formation resistivity (ohm.m) ro : float Resistivity of water saturated formation (ohm.m) Returns ------- float Returns Archie resistivity index (I) """ return rt/ro
163cea9edeb51d319fe7756858296fc04409a481
82,829
def instance_get_uuid(instance): """ Retrieve the instance uuid """ return instance['id']
70d97fdcd56d344225d9d4294f2ab077e18a9db1
82,830
def conversion(amount, rates, output_currency=None): """ Converts amount from input currency to the output currency. If output currency is not defined, conversion is made for all supported currencies. Parameters ---------- amount : float Amount of money to be converted. rates : dict Conversion rates. output_currency : str, optional Currency for which conversion is made. Returns ------- dict Converted rates. """ result = { k: round(v * amount, 2) for k, v in rates.items() } # it is necessary to have float(amount)? if output_currency: result = {output_currency: result[output_currency]} return result
ad9f506d3597b22d54e612fe0ee572ee019732ef
82,835
def get_modified_files_list(diff): """Get list of modified or newly added files list""" file_list = [] for file in diff["files"]: if file["status"] == "modified" or file["status"] == "added": file_list.append(file["filename"]) return file_list
9219d0e4f41ee9aa9b64e0a9867a6a90c679dc02
82,836
def constant_stiffness(x, y): """Constant coefficient S{lambda}(x,y)=1.0 for wave equation""" return 1.0
304312c8679350bc60c6be40d9c10735ad6a4bf8
82,837
import unicodedata def remove_accents(s): """remove accents from a piece of text. Examples: >>> _s = 'âbĉ' >>> remove_accents(_s) 'abc' """ s = unicodedata.normalize('NFD', s) output = [] for c in s: if unicodedata.category(c) == 'Mn': continue output.append(c) return ''.join(output)
839c0f8f7ad08850cbc6080095d1230c680ea414
82,840
def get_min_max_range(arr_1d, std_factor=2): """Get min max ranges for array, defined as so many standard deviations +/- from the mean Args: arr_1d (numpy.array): Numpy array over which values are calculated. std_factor (int, optional): The min / max ranges returned are this many std +/- the mean. Defaults to 3. Returns: double, double: min and max calculated values """ arr_mean = arr_1d.mean() arr_std = arr_1d.std() min_val = arr_mean - arr_std * std_factor max_val = arr_mean + arr_std * std_factor return min_val, max_val
f5561d39f9f5f94045a9979ca0c391a9d29a4218
82,845
def encontrar_mayor(entrada: list) -> int: """ Encontrar el elemento mayor Parámetros: entrada (list): La lista de números que se desea buscar Retorno: int: El número más grande en la lista, si está vacía -1. """ mayor = -1 for numero in entrada: if numero > mayor: mayor = numero return mayor
e7be0b9183316db876681096acfbffefd876fb13
82,848
def remove_unwanted_files(workdir, files): """ Remove files from the list that are to be ignored by the looping job algorithm. :param workdir: working directory (string). Needed in case the find command includes the workdir in the list of recently touched files. :param files: list of recently touched files (file names). :return: filtered files list. """ _files = [] for _file in files: if not (workdir == _file or "pilotlog" in _file or ".lib.tgz" in _file or ".py" in _file or "pandaJob" in _file): _files.append(_file) return _files
ddb70a98de34ef162d56e1569cf2580ee5a38907
82,849
def extract_type_from_nnlm(data): """ Extract the version for the NNLM collection of Language Models https://tfhub.dev/google/collections/nnlm/1 """ return data['lm'].str.extract(r'nnlm-(e.-.*)-w.*')
5a7da10bfb32551107056052bb2aac49d39f01ea
82,850
from typing import Tuple from typing import List from typing import Any def _deduplicate_labels( handles_labels: Tuple[List[Any], List[str]]) -> Tuple[List[Any], List[str]]: """Deduplicate legend handles and labels. Parameters ---------- handles_labels : Tuple[List[Any], List[str]] Legend handles and labels. Returns ------- (new_handles, new_labels) : Tuple[List[Any], List[str]] Deduplicated legend handles and labels """ new_handles = [] new_labels = [] for handle, label in zip(*handles_labels): if label not in new_labels: new_handles.append(handle) new_labels.append(label) return (new_handles, new_labels)
37133c689aa6bccde7f56ac550b7b6a3c73cba23
82,853
def get_variants_from_log(trace_log, attribute_key="concept:name"): """ Gets a dictionary whose key is the variant and as value there is the list of traces that share the variant Parameters ---------- trace_log Trace log attribute_key Field that identifies the attribute (must be provided if different from concept:name) Returns ---------- variant Dictionary with variant as the key and the list of traces as the value """ variants = {} for trace in trace_log: variant = ",".join([x[attribute_key] for x in trace if attribute_key in x]) if not variant in variants: variants[variant] = [] variants[variant].append(trace) return variants
02ef93e06f29bf9c8b3c9c8f88975a9a584ebc74
82,854
def qte(lne): """Quotes the given string""" return "'" + lne + "'"
309b462ab5eff1ea3b8e8b949cbc06ee3e884247
82,856
def speak_excitedly(message, num_exclamations=1, enthusiasm=False): """Return a message followed by some exclamations points, possibly capitalized.""" message += '!' * num_exclamations if not enthusiasm: return message return message.upper()
0360a668eaa8fbab9863d32cccbd2145ce8da32b
82,860
def is_post_code(tag): """ Usage: if is_post_code(tag): ... Returns whether the key value of tag element is of type post code. """ return tag.attrib['k'] in ["addr:postcode", "postcode", "postal_code"]
3f903d7a227f1870be3567f401cfba2fae8f96b4
82,861
def split_iativer(version_str): """Split an IATIver-format version number into numeric representations of its components. Args: version_str (string): An IATIver-format string. Returns: list of int: A list containing numeric representations of the Integer and Decimal components. """ integer_component = int(version_str.split('.')[0]) decimal_component = int(version_str.split('.')[1]) return [integer_component, decimal_component]
bcdfe21de01dea172bdf19c4c9af01c58e2aede5
82,867
from typing import Tuple def convert_tile_string(tile_pos_string: str) -> Tuple[int, int]: """ Convert a tile position string to (x, y) """ _x, _y = tile_pos_string.split(",") x = int(_x) # str to int y = int(_y) return x, y
1911cc90b7ca935de3e3180e49b93d6949e72dcd
82,875
def image_rescale(I, im_size, n_uv): """ Rescale the obtained image Args: I (np.narray): summed up image im_size (int): the image size, it is to be noted that this is before the image cropping n_uv (int): the number of visibibility data """ return I*im_size*im_size/n_uv
94d0478d8e33fc65331498d278f669e112a8a857
82,876
def create_window_array(window, season_lag=None): """ Create a sliding window array (i.e. a array of True and False values that is used to determine what past values should be used to to forecast the next value). Args: window: An integer that is converted into its binary representation which corresponds to the sliding window. For example, a input of 9 would correspond to a window of [1, 0, 0, 1]. season_lag: If value is present three values surrounding the lag are included into the sliding window. For example, a a window of 1 (i.e. only the last value) and a season lag of 5 leads to a window [1, 0, 0, 1, 1, 1]. Returns: The sliding window array. """ window = [int(digit) for digit in bin(window)[2:]] if season_lag: window += [0] * (season_lag - len(window) - 2) + [1, 1, 1] return window
1075578a6ade128a2ce3fcb64f7548de02557908
82,877
def check_recent_timestamps(times, ref_time): """Checks if the input time is too recent and precludes all measurements Args: times (list): list of times, in seconds float, in which recordings were made ref_time (float): input reference time in seconds Returns: bool: returns True if there are more recent measurements than ref_time """ # Get last recorded time last_time = times[-1] # If the time is less recent than the ref_time if last_time < ref_time: return False else: return True
089a71a564ed0d2d300f33fd32b30da24cbca784
82,884
def interpreted_fact(n): """Computes n!""" if n <= 1: return 1 return n * interpreted_fact(n - 1)
900de74b5d279635df5bb85ef289e374bc2d24e8
82,886
def kw(**kwargs): """Return a dictionary of the provided keyword arguments.""" return kwargs
23ccaa71533c8bcad784ab60cdd600416734a35b
82,891
def get_template(path_to_template): """ Helper function to return the string representation of a template file. """ f = open(path_to_template, 'r') template_str = "" for line in f: template_str = f"{template_str}{line}" f.close() return template_str
c2a20944d7590c4d78f06bb35e9818abe2c72a86
82,893
def is_fermat_probable_prime(n, base=2): """is_fermat_probable_prime(n [, base]) -> 0|1|2 Return a three-state flag (either 0, 1 or 2) that integer ``n `` is either a prime or Fermat pseudoprime, as witnessed by one or more integer bases. Arguments --------- n Integer to be tested for primality. base Optional integer base, or tuple of bases. (Defaults to 2.) Return result ------------- 0 Number is definitely non-prime. 1 Number is definitely prime. 2 Number is a weak probable prime or pseudoprime. ``is_fermat_probable_prime`` performs the Fermat primality test, which is a weak probabilistic test. If a number fails this test, it is definitely composite (there are no false negative tests): >>> is_fermat_probable_prime(99, 7) 0 However, if the number passes the test, it is provisional evidence that it may be a prime: >>> is_fermat_probable_prime(29, 7) # 29 actually is prime. 2 In this case we can state that "7 is a witness that 29 may be prime". As the Fermat test is probabilistic, composite numbers will sometimes pass a test, or even repeated tests. We call them pseudoprimes to some base: >>> is_fermat_probable_prime(3*11, 10) # 33 is a pseudoprime to base 10. 2 and we call 10 a "Fermat liar" for 33. A single passed test is not very convincing, but with more tests, we can gain more confidence. ``base`` must be a positive int between 1 and n-1 inclusive, or a tuple of such bases. 1 is permitted, but not very useful: it is a witness for all numbers. By default, base=2. >>> is_fermat_probable_prime(33, (10, 7)) 0 It may take an arbitrary number of Fermat tests to definitively prove a number is composite: >>> is_fermat_probable_prime(7*11*13*41, (17, 23, 356, 359)) 2 >>> is_fermat_probable_prime(7*11*13*41, (17, 23, 356, 359, 363)) 0 Unfortunately, there are some numbers which are composite but still pass *all* Fermat tests. These pseudoprime numbers are called the Carmichael numbers, and ``is_fermat_probable_prime`` cannot distinguish them from actual primes no matter how many tests you perform. For large enough ``n``, if a number passes ``k`` randomly chosen and independent Fermat tests, we can conclude that the probability that it is either prime or a Carmichael number is (on average) at least ``1 - (1/2**k)``. """ if not isinstance(base, tuple): base = (base,) # Deal with the simple deterministic cases first. if n < 2: return 0 # Certainly composite (or unity, or zero). elif n == 2: return 1 # Certainly prime. elif n % 2 == 0: return 0 # Now the Fermat test proper. for a in base: if pow(a, n-1, n) != 1: return 0 # n is certainly composite. return 2
eef79614d3884ef18bce24eceddffc7c3c72c5eb
82,894
def format_step(step, zero_prefix=False): """Return the step value in format suitable for display.""" if isinstance(step, int): return "{:06}".format(step) if zero_prefix else "{}".format(step) elif isinstance(step, tuple): return "{:04}:{:06}".format(*step) if zero_prefix else "{}:{}".format(*step)
ac0018b3aeb32fd61672c8e835e35692f2a1cc87
82,897
def str2bool(v): """Decoding string-encoded bool into Python objects. This function returns one of the following: * True if value decodes to true, * False if value decodes to false, * None otherwise. Based on: https://stackoverflow.com/a/715468""" value = str(v).lower() if value in ("yes", "true", "t", "1"): return True elif value in ("no", "false", "f", "0"): return False else: return None
562ba633f52bd845653b25c60bedb8e014027179
82,898
def get_samples(data, srate, idxes): """ Gets a sample of the wave with the indexes specified by idxes returns has a form of [{'dt' :, 'val':}, ...] """ return [{"dt": idx / srate, "val": data[idx]} for idx in idxes]
fc270f64c613c7842fe0233cc1f1eba2692d2e8b
82,905
def _sorted_photon_data(data_dict): """Return a sorted list of keys "photon_dataN", sorted by N. If there is only one "photon_data" key (with no N) it returns the list ['photon_data']. """ prefix = 'photon_data' keys = [k for k in data_dict.keys() if k.startswith(prefix)] if len(keys) > 1: sorted_channels = sorted([int(k[len(prefix):]) for k in keys]) keys = ['%s%d' % (prefix, ch) for ch in sorted_channels] return keys
461d84221aed991e72439f9d1bd3a7c8c7464f92
82,906
def stock_prices_1_brute_force(stock_prices): """ Solution: Brute force iterative solution compares each stock price with all subsequent stock prices. Complexity: Time: O(n^2) Space: O(1) """ if len(stock_prices) < 2: raise ValueError('stock price list must be at least 2 items long') highest_profit = None for i, stock_price_purchased in enumerate(stock_prices): for stock_price_sold in stock_prices[i + 1:]: profit = stock_price_sold - stock_price_purchased if not highest_profit or profit > highest_profit: highest_profit = profit return highest_profit
e56d7018885fe27e488b1d1557e18013048a310a
82,912
def listify(obj): """ Make sure the given object is a list :param obj: Any object - either None, a list of objects or a single object :return: The given object formatted as list """ if obj is None: # When the object is None, an empty list will be returned return [] elif isinstance(obj, list): # When the object is already a list, that list will be returned return obj else: # When a single object is passed to the method, a list with the # object as single item will be returned return [obj]
357e6448175129d0036f8a27659ad00bf6130538
82,914
def get_first_content(el_list, alt=None, strip=True): """ Return content of the first element in `el_list` or `alt`. Also return `alt` if the content string of first element is blank. Args: el_list (list): List of HTMLElement objects. alt (default None): Value returner when list or content is blank. strip (bool, default True): Call .strip() to content. Returns: str or alt: String representation of the content of the first element \ or `alt` if not found. """ if not el_list: return alt content = el_list[0].getContent() if strip: content = content.strip() if not content: return alt return content
652e2bb89f87db25bec39cc832b37bfcadab8089
82,918
def div(format, data): # HTML formatting utility function """Wraps 'data' inside a div of class 'format' for HTML printing.""" d = '<div class="{}">{}</div>' # Basic div template return d.format(format, data)
0596217cabfeb13b0b77a91697ebcfc42888e6b0
82,919
def parent(a, b): """ Tests if `a` is a parent of `b` in the Williams & Beer lattice of antichains. Parameters ---------- a : iterable of iterables One antichain. b : iterable of iterables Another antichain. Returns ------- parent : bool True if, for each set in `b`, there exists a set in `a` which is a subset of that set. """ return all(any(frozenset(aa) <= frozenset(bb) for aa in a) for bb in b)
70751848734ae89dfbca8969b083fd4814b876b6
82,921
def remove_decorator(srccode: str, decorator: str) -> str: """remove decorator from return value of `inspect.getsource`. :param srccode: return value of `inspect.getsource` :param decorator: remove target ex: '@snippet' :return srccode_without_decorator: srccode removed decorator """ # no decorator remained if srccode.find(decorator) != 0: return srccode.strip() len_deco = len(decorator) # no option if srccode[len_deco] != '(': return srccode[len_deco:].strip() stack = [] stack.append('(') i = len_deco + 1 while stack: top = stack[-1] nchr = srccode[i] if top == '(': if nchr == ')': stack.pop() elif nchr == "'" or nchr == '"': stack.append(nchr) elif top == "'": if nchr == "'": stack.pop() elif top == '"': if nchr == '"': stack.pop() i += 1 return srccode[i:].strip()
95565a2467f4e615bfe32c8e3060e5279ce3212f
82,922
import torch def create_edge_index_attribute(adj_matrix): """ Given an adjacency matrix, this function creates the edge index and edge attribute matrix suitable to graph representation in PyTorch Geometric. """ rows, cols = adj_matrix.shape[0], adj_matrix.shape[1] edge_index = torch.zeros((2, rows * cols), dtype=torch.long) edge_attr = torch.zeros((rows * cols, 1), dtype=torch.float) counter = 0 for src, attrs in enumerate(adj_matrix): for dest, attr in enumerate(attrs): edge_index[0][counter], edge_index[1][counter] = src, dest edge_attr[counter] = attr counter += 1 return edge_index, edge_attr, rows, cols
0d7b38b8fafee06221683e6fa1fa62596f6fa468
82,926
def str_grep(S, strs): """Returns a list of strings wherein the substring S is found.""" return [s for s in strs if s.find(S) >= 0]
4976f13595b71680d7991e0b4ec7d53e23bdd90e
82,929
def find_next_unused_field_name(field_name, start_index, existing_collisions): """ Finds a unused field name in the provided table starting with field_name. If field_name is not taken then it will be returned, if it is taken then the next name appended with an _X where X is a positive integer which is free will be returned. :param existing_collisions: A set of existing field names to skip over when finding the next free field name. :param start_index: The number to start looking for fields from. :param field_name: The field_name to find a unused name for. :return: A free field name starting with field_name possibly followed by an _X where X is a positive integer. """ original_field_name = field_name i = start_index while True: field_name = f"{original_field_name}_{i}" i += 1 if field_name not in existing_collisions: break return field_name, i
daf104f12a251d0cf7a8988b9d06b34f532b5afa
82,932
def read_stream_and_display(stream, display): """Read from stream line by line until EOF, display, and capture the lines. """ output = [] while True: line = yield from stream.readline() if not line: break output.append(line) display(line) # assume it doesn't block return b''.join(output)
b8aa6b3199e62608330c2c94652fef201f65afbd
82,937
def get_atom_table(topology): """Convert the atom information to a dictionary.""" if 'atoms' not in topology: return None atoms = {} for atom in topology['atoms']: atoms[atom[0]] = atom return atoms
1cd079db4e249b45d9297212acf7b913793c356f
82,938
import re def yes(text): """True only if the given text expresses affirmative.""" return re.match('yes|true|ok', text, re.IGNORECASE)
2996a7cb038ead7b10c1c424f381a12d0f63bd0c
82,940
def get_tip_labels(tree_or_node): """Returns a `set` of tip labels for a node or tree.""" try: return {x.taxon.label for x in tree_or_node.leaf_node_iter()} except AttributeError: return {x.taxon.label for x in tree_or_node.leaf_iter()}
2d6edfb1e7bf9671cd3b78b73aa006339b21ee0c
82,942
def germano_tau(f, g, operator, scale=45, mask=False): """Small scale variance according to M. Germano 1990 paper where <tau>_ss = <f * g> - <f> * <g> and bracket terms are convolved inputs Scale is analogous to sigma if using a gaussian kernel. """ return operator(f * g, scale=scale, mask=mask) - (operator(f, scale=scale, mask=mask) * operator(g, scale=scale, mask=mask))
30adcda446817df1e235102e733b21d71257a23d
82,943
def load_text(file_name): """Reads text from file. Parameters ---------- file_name : string Path to file containing the subject text. Returns ------- string File text as a string. Examples -------- >>> load_text("text.txt") """ with open(file_name, "r") as f: text = f.read() return text
e792ee3206fef3f6ef4bcddd903e9bf3d94ab7e9
82,951
def split(line): """Input string as described in module docstring, return 2 sets of ints.""" set1 = {int(x) for x in (line.split(';')[0]).split(',')} set2 = {int(x) for x in (line.split(';')[1]).split(',')} return set1, set2
53bbebb0a64d91ee2014baebed8b2c62f4a55341
82,953
from typing import Union def clamp(value: Union[int, float], min_: Union[int, float], max_: Union[int, float]) -> Union[int, float]: """ Clamps the value between minimum and maximum values. :param value: number to clamp :param min_: minimum value :param max_: maximum value :return: clamped number """ # If inside the boundaries, return the actual value if min_ <= value <= max_: return value # When going over the boundary, return min/max elif value < min_: return min_ else: return max_
dbd79a8e27d79486e0a05827462ae5fd71fc6818
82,960
import inspect def get_classes(module, base_cls, include_base_cls=True): """Get specified classes form module. Args: module (module): Where to find classes. base_cls (type): The base class. include_base_cls (bool, optional): Defaults to True. Whether include base class. Returns: list: The specified classes. """ def is_class(c): return inspect.isclass(c) \ and issubclass(c, base_cls) \ and (include_base_cls or c != base_cls) return [c for _, c in inspect.getmembers(module, is_class)]
91f9ce7ecdc5491a153ad3e7b7bba1453c6a4f3f
82,961
def _normalize_percent_rgb(value): """ Internal normalization function for clipping percent values into the permitted range (0%-100%, inclusive). """ percent = value.split(u'%')[0] percent = float(percent) if u'.' in percent else int(percent) return u'0%' if percent < 0 \ else u'100%' if percent > 100 \ else u'{}%'.format(percent)
7e5dffccd94a95d491ab945aeb5e3d8313208897
82,963
def option_dict(options): """ Return a dictionary mapping option names to Option instances. """ d = {} for option in options: d[option.name] = option return d
32bd0b6085b491c3d4517ebdaf8abe7055b8f1d4
82,970
def agg_var_num(dataframe, group_var, dict_agg, prefix): """ Aggregates the numeric values in a dataframe. This can be used to create features for each instance of the grouping variable. Parameters -------- dataframe (dataframe): the dataframe to calculate the statistics on group_var (string): the variable by which to group df df_name (string): the variable used to rename the columns Return -------- agg (dataframe): a dataframe with the statistics aggregated for all numeric columns. Each instance of the grouping variable will have some statistics (mean, min, max, sum ...) calculated. The columns are also renamed to keep track of features created. """ # Remove id variables other than grouping variable for col in dataframe: if col != group_var and 'SK_ID' in col: dataframe = dataframe.drop(columns=col) group_ids = dataframe[group_var] numeric_df = dataframe.select_dtypes('number') numeric_df[group_var] = group_ids # Group by the specified variable and calculate the statistics agg = numeric_df.groupby(group_var).agg(dict_agg) # Ajout suffix mean, sum... agg.columns = ['_'.join(tup).strip().upper() for tup in agg.columns.values] # Ajout du prefix bureau_balance pour avoir une idée du fichier agg.columns = [prefix + '_' + col if col != group_var else col for col in agg.columns] agg.reset_index(inplace=True) return agg
9f5d92d932ce966160825a5c9a9dfd678a162645
82,972
def get_factory_name(factory): """ Returns a factory name, given the factory. This ensure that something will be displayed (id or name of the factory) even if no name has been specified for the factory """ name = factory.name.strip() if len(name) != 0: return name else: return factory.id
e3c626097c77f34dacab947072186582596bab0a
82,973
from typing import Dict from typing import Tuple def add_ascii_keys(data) -> Dict[Tuple[int, ...], str]: """Update the data with ascii keys >>> data = add_ascii_keys({}) >>> assert data[(48,)] == '0' >>> assert data[(66,)] == 'B' >>> assert data[(99,)] == 'c' """ # See previous function for previous key, value pairs for i in range(32): data[(i + 1,)] = f"Ctrl {chr( ord('A') + i)}" for i in range(32, 127): data[(i,)] = f"{chr(i)}" return data
1adb6da5e184f82f258eb3b58698e61b420a8516
82,974
import yaml def read_params(config_path: str ='config/params.yaml')->dict: """Responsible for reading the yaml file Args: config_path (str): Path of the Yaml file . Defaults to 'config/params.yaml' Returns: dict: Return the details of the yaml file """ with open(config_path, 'r') as f: return yaml.safe_load(f)
2c5c7ceaaca0d44f3f68481e4940b71d2df10c72
82,975
def symRatio(m1, m2): """Compute symmetric mass ratio from component masses""" return m1*m2/(m1+m2)/(m1+m2)
9eb56c46bf8ba3c149a759d85e5f8e030d5dfe1d
82,978
def create_headers(bearer_token): """Twitter function for auth bearer token Args: bearer_token (string): bearer token from twitter api Returns: headers """ headers = {"Authorization": "Bearer {}".format(bearer_token)} return headers
6850559a1d44b85a0b7f8dba01b32aef1710ac05
82,982
def put_allowed_class_names(doc): """ Get the names of all the parsed classes endpoints in a given HydraDoc object """ allowed_classes = list() for parsed_class in doc.parsed_classes.values(): for operation in parsed_class['class'].supportedOperation: if operation.method == 'PUT': allowed_classes.append(parsed_class['class'].title) return allowed_classes
8ee38aea161894b664e1db4e392b1cd78be48ff9
82,983
import collections def wer_details_by_speaker(details_by_utterance, utt2spk): """Compute word error rate and another salient info grouping by speakers. Arguments --------- details_by_utterance : list See the output of wer_details_by_utterance utt2spk : dict Map from utterance id to speaker id Returns ------- dict Maps speaker id to a dictionary of the statistics, with keys: * "speaker": Speaker id, * "num_edits": (int) Number of edits in total by this speaker. * "insertions": (int) Number insertions by this speaker. * "dels": (int) Number of deletions by this speaker. * "subs": (int) Number of substitutions by this speaker. * "num_scored_tokens": (int) Number of scored reference tokens by this speaker (a missing hypothesis might still have been scored with 'all' scoring mode). * "num_scored_sents": (int) number of scored utterances by this speaker. * "num_erraneous_sents": (int) number of utterance with at least one error, by this speaker. * "num_absent_sents": (int) number of utterances for which no hypotheses was found, by this speaker. * "num_ref_sents": (int) number of utterances by this speaker in total. """ # Build the speakerwise details: details_by_speaker = {} for dets in details_by_utterance: speaker = utt2spk[dets["key"]] spk_dets = details_by_speaker.setdefault( speaker, collections.Counter( { "speaker": speaker, "insertions": 0, "dels": 0, "subs": 0, "num_scored_tokens": 0, "num_scored_sents": 0, "num_edits": 0, "num_erraneous_sents": 0, "num_absent_sents": 0, "num_ref_sents": 0, } ), ) utt_stats = collections.Counter() if dets["hyp_absent"]: utt_stats.update({"num_absent_sents": 1}) if dets["scored"]: utt_stats.update( { "num_scored_sents": 1, "num_scored_tokens": dets["num_ref_tokens"], "insertions": dets["insertions"], "dels": dets["deletions"], "subs": dets["substitutions"], "num_edits": dets["num_edits"], } ) if dets["num_edits"] > 0: utt_stats.update({"num_erraneous_sents": 1}) spk_dets.update(utt_stats) # We will in the end return a list of normal dicts # We want the output to be sortable details_by_speaker_dicts = [] # Now compute speakerwise summary details for speaker, spk_dets in details_by_speaker.items(): spk_dets["speaker"] = speaker if spk_dets["num_scored_sents"] > 0: spk_dets["WER"] = ( 100.0 * spk_dets["num_edits"] / spk_dets["num_scored_tokens"] ) spk_dets["SER"] = ( 100.0 * spk_dets["num_erraneous_sents"] / spk_dets["num_scored_sents"] ) else: spk_dets["WER"] = None spk_dets["SER"] = None details_by_speaker_dicts.append(spk_dets) return details_by_speaker_dicts
442cf123e07cb9163bb29e1c09179fa41ca837c5
82,985
def sign_of_sequence_fast(sequence: list) -> int: """ Sign of sequence equals to (-1)**(sequence inversions). Sequence must contain elements from 0 to len(sequence). """ sign = 1 elements_to_check = [True for _ in range(len(sequence))] for i in range(len(sequence)): if elements_to_check[i]: current_element = sequence[i] while current_element != i: elements_to_check[current_element] = False sign = -sign current_element = sequence[current_element] return sign
d0eb0907da09f6909633c247b4614b7057f1b428
82,987
import json import base64 def to_base64_encoded_json(obj) -> str: """Encode a Python object as a base64-endoded JSON string. When embedding JSON inline inside HTML, serialize it to a JSON string in Python and base64 encode that string to escape it so that it's safe to render inside HTML. Then on the JS side, base64 decode it and parse it as JSON. Args: obj: any Python object serializable to JSON Returns: base64-encoded string of JSON """ json_string = json.dumps(obj) return base64.b64encode(json_string.encode('utf-8')).decode('utf-8')
c977bf3ed634a967fccde2e7989f1a565ff45161
82,993
def process_data(piece): """ python preprocess.py --num_workers 8 --name kks --in_dir .\datasets\kks --out_dir .\data\kks output : "./datasets/son/audio/NB10584578.0000.wav": "오늘부터 뉴스룸 2부에서는 그날의 주요사항을 한마디의 단어로 축약해서 앵커브리핑으로 풀어보겠습니다", input : 1/1_0000.wav|그는 괜찮은 척하려고 애쓰는 것 같았다.|그는 괜찮은 척하려고 애쓰는 것 같았다.|그는 괜찮은 척하려고 애쓰는 것 같았다.|3.5|He seemed to be pretending to be okay. """ _content_path = "./datasets/kss/audio/" + piece.split("|")[0] _content = piece.split("|")[3] return _content_path, _content
32283168245a8ba4407832d75208366ec434bd51
82,994
def agg_concat(group): """Concatenate the group into a string of unique values.""" group = [g for g in group if g] return '|'.join(set(group))
bb899af80de172a926e500686d9acef780c5b808
83,001
def is_better(ori_value, comparing_value, is_greater): """ This module compare the two values based on what we are looking for (Min or Max). :param ori_value: Original value. :type ori_value: number :param comparing_value: New value to compare with. :type comparing_value: number :param is_greater: True if you want to know b > a, else False if you want to check b < a. :return: If b is better than a or not. :rtype: bool """ if ori_value is not None: if (is_greater and comparing_value <= ori_value) or \ (not is_greater and comparing_value >= ori_value): return False return True
753da70ed60302fd431755def5e760c0ffb85678
83,003
import torch def random_z(num: int, min_height: float, max_height: float, device: str) -> torch.Tensor: """Returns sampled height of the goal object.""" z = torch.rand(num, dtype=torch.float, device=device) z = (max_height - min_height) * z + min_height return z
d24b40cbbe08c1753fc4b9304fba7ba2e26373ec
83,010
def clip(number, min_nb, max_nb): """ Clip a number between min and max inclusively """ return max(min_nb, min(number, max_nb))
83a3c1d8904e1bbabebf65fa1c99337659feb8ed
83,012
import re def format_mile_info(n_str): """Format the mileage information extracted from the description. Args: n_str (str): extracted miles information from description in one line of the dataframe. Returns: str: formatted string to be converted in float """ if(n_str[-1] == 'k' or n_str[-1] == 'K'): n_str = n_str[:-1] + '000' n_str = re.sub('[,.]', '', n_str) return n_str
5e68acdb7fe7605fa40a02ac95d28190220b678e
83,020
def parse_indices(in_: str) -> list: """Parse indices from comma-separated and ranged index string.""" comps = in_.split(',') indices = set() for comp in comps: if '-' in comp: low, high = comp.split('-') indices.update(range(int(low), int(high) + 1)) else: indices.add(int(comp)) return sorted(indices)
eb0fd9daf3ea705f250f7164176522a7d2c269d1
83,021
def sorted_dict(d, key=None, reverse=False): """ Return dictionary sorted using key. If no key provided sorted by dict keys. """ if key is None: return dict(sorted(d.items(), key=lambda e: e[0], reverse=reverse)) return dict(sorted(d.items(), key=key, reverse=reverse))
97b08901c1cd39a2fb17ae6db0cfd088e8366e70
83,022
def lookup(obj, key, default=None): """Looks up a property within an object using a dotted path as key. If the property isn't found, then return the default value. """ keys = key.split(".") value = default for key in keys: value = obj.get(key) if value is None: return default obj = value return value
7b5841b9d092a3c68fd6343fccd523353bf650fe
83,037
import re def keyword_found_in_text(keyword, line_text): """Returns true if the given keyword is matched anywhere in the text.""" if (re.search(keyword, line_text, re.IGNORECASE)) is not None: return True return False
7718b896ff38980cde59b583c44672ceb5aa5e24
83,039
def p_n(nnx, nn): """ Computes the probability of the term x occurs in NEGATIVE news Args: nnx (int): number of NEGATIVE news with the term x nn (int): number of NEGATIVE news Returns: float: p(x|not(Y)) """ return float(nnx) / nn
d4596f836eaac0f173ab4109ecac1fc0791645aa
83,042
def url_tabele(n: int) -> str: """Vrne tabelo z rezultati n-tega EGMO.""" return f"https://www.egmo.org/egmos/egmo{n}/scoreboard/"
3b35eff6ab0ab55a7fc0b1600887c61d6e83dca5
83,045
def _decimal_year_to_mjd2000_simple(decimal_year): """ Covert decimal year to Modified Julian Date 2000. """ return (decimal_year - 2000.0) * 365.25
d616b2bf8bae92118d69ef84b195162f43ecd684
83,046
def find_str_in_dict( term, class_mapping): """Finds all key, value in class_mapping s.t key is a substring of term.""" all_matched_classes = [] for k, v in class_mapping.items(): if k in term.lower(): all_matched_classes.append((v, k)) return all_matched_classes
68137a0f5f1df7bce282ff32b0f10728534e734c
83,048
import csv def load_settings (filename): """Load the settings file """ settings = {} data_reader = csv.reader(open(filename, 'rU'), delimiter='\t') # Ignore header header = next(data_reader) # Process each line for row in data_reader: if len(row) == len(header): sample = row[0] sample_data = {} for el_idx, el in enumerate(header[1:]): sample_data[el] = row[el_idx+1] settings[sample] = sample_data return settings
e454ec658316468bc97d24adcf927721d09bd863
83,049
def _get_deep(properties, *keys): """Get a final key among a list of keys (each with its own sub-dict).""" for key in keys: properties = properties[key] return properties
cde02079deb2f6f744739e337993bb658a8a1be6
83,052
def latlon_decimaldegrees(nmealat, latchar, nmealon, lonchar): """ Converts the nmea lat & lon into decimal degrees Note: West (of prime meridian) longitude as negative East (of prime meridian) longitude as positive North (of the equator) latitude is positive South (of the equator) latitude is negative Args: nmealat(str): latitude latchar(str): N or S nmealon(str): longitude lonchar(str): E or W Returns: latdeg(float): the latitude in decimal degrees londeg(float): the longitude in decimal degrees """ nmealon = float(nmealon) nmealat = float(nmealat) londegwhole = int(nmealon/100) londecdeg = (nmealon - londegwhole * 100)/60 londeg = londegwhole + londecdeg if lonchar == 'W': londeg = (-1)*londeg latdegwhole = int(nmealat/100) latdecdeg = (nmealat - latdegwhole * 100)/60 latdeg = latdegwhole + latdecdeg if latchar == 'S': latdeg = (-1)*latdeg return latdeg, londeg
423bb3cb50e9eb4485adf564b66161167dc47496
83,053
def int_enum_to_int(context, builder, fromty, toty, val): """ Convert an IntEnum member to its raw integer value. """ return context.cast(builder, val, fromty.dtype, toty)
98637f77d357b3c9660ac7a9abc51b3e6bdb84fb
83,054
def _column_tup_to_str(ind): """ Convert tuple of MultiIndex to string. Parameters ---------- ind : tuple ind[0]: either 'sleep' or 'activity' ind[1]: int that is the day number ind[2]: bool, True being light, False being dark Returns ------- output : str Conversion to a single string represnting info in tuple. E.g., ('activity', 6, True) gets converted to 'total seconds of activity in day 6'. """ if ind[0] == 'activity': string = 'total seconds of activity in ' elif ind[0] == 'sleep': string = 'total minutes of sleep in ' elif ind[0] == 'latency': string = 'minutes of sleep latency in ' else: raise RuntimeError('%s is invalid MultiIndex' % ind[0]) if ind[2]: return string + 'day ' + str(ind[1]) else: return string + 'night ' + str(ind[1])
088b5c341a4c7e520e445d359d985a180e96a4da
83,055
def get_bamboo_plan_shortname(client, plan_id): """Get shortName of a Bamboo plan based on plan_id""" plan = client.get_plan(plan_id) if plan["shortName"]: plan_name = plan["shortName"] else: plan_name = plan["master"]["shortName"] return plan_name
9ce0d0734ae8053b0ed2f69222fd23d13296bf66
83,056
import click def split_issues(ctx, param, value): """ Split issue arguments into number and URL components. """ def _split_one(value): parts = [x.strip() for x in value.split(':', 1) if x.strip()] if len(parts) < 1: raise click.BadParameter( 'Invalid issue format, should be issue_number or ' 'issue_number:issue_url') elif len(parts) < 2: parts = parts + ['ISSUE_URL_HERE'] return tuple(parts) return [_split_one(v) for v in value]
bade19c0992b9a051bf36a686a469e7bd94e4838
83,057
def initialize_engine_object(engine, endpoint, apikey=None, username=None, password=None): """ Initialize a DatasetEngine object from a string that points at the engine class. """ # Derive import parts from engine string engine_split = engine.split('.') module_string = '.'.join(engine_split[:-1]) engine_class_string = engine_split[-1] # Import module = __import__(module_string, fromlist=[engine_class_string]) EngineClass = getattr(module, engine_class_string) # Create Engine Object engine_instance = EngineClass(endpoint=endpoint, apikey=apikey, username=username, password=password) return engine_instance
4e9dfdfc8d282ff0aec2d70cf17cf1ea75499b0a
83,058
def wrapPos(angDeg): """Returns the angle (in degrees) wrapped into the range [0, 360)""" res = angDeg % 360.0 # First wrap into [0, 360]; result is 360 if ctrAng < 0 but so near 0 that adding 360 rounds it if res == 360.0: return 0.0 return res
c87d73d9155cc6b65ff64f92f635162d9c25c913
83,062
from typing import Callable from typing import Any import locale def get_currency_format() -> Callable[[Any], str]: """Return currency function. Returns: Callable[[Any], str]: function from current locale. """ return locale.currency
9ae4f50e48b8c13465f76e95a459f24e5cf300be
83,064
def scale_range(x, x_min, x_max, y_min, y_max): """ Scales the entries in x which have a range between x_min and x_max to the range defined between y_min and y_max. """ # y = a*x + b # a = deltaY/deltaX # b = y_min - a*x_min (or b = y_max - a*x_max) y = (y_max - y_min) / (x_max - x_min) * x + (y_min*x_max - y_max*x_min) / (x_max - x_min) return y
88d1b9b98c4e5f59ac93f4efd322e584ebf1c08d
83,065
from urllib.request import urlopen def read_file_from_url(url, return_type="list", encoding="utf-8"): """Reads a file from a URL. Args: url (str): The URL of the file. return_type (str, optional): The return type, can either be string or list. Defaults to "list". encoding (str, optional): The encoding of the file. Defaults to "utf-8". Raises: ValueError: The return type must be either list or string. Returns: str | list: The contents of the file. """ if return_type == "list": return [line.decode(encoding).rstrip() for line in urlopen(url).readlines()] elif return_type == "string": return urlopen(url).read().decode(encoding) else: raise ValueError("The return type must be either list or string.")
3f35ff64103081b6ed1bc921ffc055f9321f8474
83,067
def parse_section(section): """ Works out the component and section from the "Section" field. Sections like `python` or `libdevel` are in main. Sections with a prefix, separated with a forward-slash also show the component. It returns a list of strings in the form [component, section]. For example, `non-free/python` has component `non-free` and section `python`. ``section`` Section name to parse. """ if '/' in section: return section.split('/') else: return ['main', section]
ce868969488ad007c14e909378a58c0a2bc4e7fb
83,069
def bvid2aid(bvid: str): """ BV 号转 AV 号。 Args: bvid (str): BV 号。 Returns: int: AV 号。 """ table = 'fZodR9XQDSUm21yCkr6zBqiveYah8bt4xsWpHnJE7jL5VG3guMTKNPAwcF' tr = {} for i in range(58): tr[table[i]] = i s = [11, 10, 3, 8, 4, 6] xor = 177451812 add = 8728348608 def dec(x): r = 0 for i in range(6): r += tr[x[s[i]]] * 58 ** i return (r - add) ^ xor return dec(bvid)
71ec7e7ee26408120b8b6cc61c25be1bb68a2de9
83,072
def make_link(base, url): """Make URL from absolute or relative `url`""" if '://' in url: return url return base + url
af5c5811915c4d57bbd0529de2179fa1e1b6278c
83,075
def simplify_fasttext_label(label: str) -> str: """Simplifies fasttext-like label representation Args: label (str): Raw fasttext-like label (with `__label__` prefix). Examples: >>> simplify_fasttext_label('__label__NORMAL') 'normal' Returns: str: Simplified label. """ prefix = '__label__' if label.startswith(prefix): return label[len(prefix):].lower() return label
a5654ba52b27bb7bce34aff31883463d391f0f93
83,077