content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def _apply_function(args): """ Calls an apply function on a DataFrame with a set of parameters Parameters ---------- args: dict Parameters for functon Returns ------- data.apply : Function The result of the apply function """ df_data, function, kwargs = args return df_data.apply(function, **kwargs)
ec473ad36bde641fe97cb2bc363abcb9121b6e66
72,025
def parsedefaultmarker(text): """given a text 'abc (DEFAULT: def.ghi)', returns (b'abc', (b'def', b'ghi')). Otherwise return None""" if text[-1:] == b')': marker = b' (DEFAULT: ' pos = text.find(marker) if pos >= 0: item = text[pos + len(marker) : -1] return text[:pos], item.split(b'.', 2)
4fdf8a96715105b7eb456ea50d996ad6e64ff7a7
72,026
def table_data() -> str: """Fake table data with mean/std columns, units, and non-numerical data types.""" header = "x~Mean (lbs),y~Mean (lbs),z~Mean (lbs),z~Std (lbs), pets~Mean\n" row1 = "1.0,0.0,10.0,1.0,dog\n" row2 = "0.0,1.0,5.0,0.5,cat" return header + row1 + row2
cf42bfd21bfb2b23d5625d30205477e8a7ec4e01
72,029
def reversemap(obj): """ Invert mapping object preserving type and ordering. """ return obj.__class__(reversed(item) for item in obj.items())
d33347646de75cd883dbf642049970e78b5a2f74
72,031
import json def json_from_file(file_name): """Read data from file and return as dict, if any exception occurs - return empty dict :param file_name: filepath to dump data to :type file_name: str :return: dictionary with data from json file :rtype: dict """ data = {} with open(file_name, "r", encoding="utf-8") as f_in: data = json.load(f_in) return data
34a23560cffc4e8ea2c77d3baaca005f01690613
72,035
def extract_name(data): """ Extracts the full name, first name, and last name from a LinkedIn user's profile Parameters ---------- data: the dictionary representation of a LinkedIn user's profile Returns ------- The user's full name, first name, and last name """ full_name = data['personal_info']['name'] if ' ' in full_name: first_name = full_name[:full_name.index(' ')] last_name = full_name[full_name.rindex(' ') + 1:] else: first_name = '' last_name = '' return full_name, first_name, last_name
d1cd55fed4c6e307d44ee71596d199d68c5a3473
72,047
def _update_partition(this: dict, other: dict): """ given two dicts of lists (this and other), extends the list of `this` with the contents of `other` NOTE: they must have exactly the same keys or will raise an assertion error NOTE: not done in place (returns a copy of the dict) """ this = dict(this) for key in this: assert key in other assert isinstance(this[key], list) assert isinstance(other[key], list) # this[key].update(other[key]) this[key].extend(other[key]) return this
edf5151a1c8e4c2a65c1a45a075a46deffd60e55
72,048
def retriever(cont, tag): """Function retrieving the data from the container (here a dictionary) """ return cont[tag]
8688e07131a249d53139a277fb69dc1c608f72cd
72,053
def prediction_to_vad_label( prediction, frame_size: float = 0.032, frame_shift: float = 0.008, threshold: float = 0.5, ): """Convert model prediction to VAD labels. Args: prediction (List[float]): predicted speech activity of each **frame** in one sample e.g. [0.01, 0.03, 0.48, 0.66, 0.89, 0.87, ..., 0.72, 0.55, 0.20, 0.18, 0.07] frame_size (float): frame size (in seconds) that is used when extarcting spectral features frame_shift (float): frame shift / hop length (in seconds) that is used when extarcting spectral features threshold (float): prediction values that are higher than `threshold` are set to 1, and those lower than or equal to `threshold` are set to 0 Returns: vad_label (str): converted VAD label e.g. "0.31,2.56 2.6,3.89 4.62,7.99 8.85,11.06" NOTE: Each frame is converted to the timestamp according to its center time point. Thus the converted labels may not exactly coincide with the original VAD label, depending on the specified `frame_size` and `frame_shift`. See the following exmaple for more detailed explanation. Examples: >>> label = parse_vad_label("0.31,0.52 0.75,0.92") >>> prediction_to_vad_label(label) '0.31,0.53 0.75,0.92' """ frame2time = lambda n: n * frame_shift + frame_size / 2 speech_frames = [] prev_state = False start, end = 0, 0 end_prediction = len(prediction) - 1 for i, pred in enumerate(prediction): state = pred > threshold if not prev_state and state: # 0 -> 1 start = i elif not state and prev_state: # 1 -> 0 end = i speech_frames.append( "{:.2f},{:.2f}".format(frame2time(start), frame2time(end)) ) elif i == end_prediction and state: # 1 -> 1 (end) end = i speech_frames.append( "{:.2f},{:.2f}".format(frame2time(start), frame2time(end)) ) prev_state = state return " ".join(speech_frames)
993491314fd1b92402701996ce94c10f8dcf59e2
72,059
def lt_pre_release(self, other): """ Check to see if one SemVer's pre_release version is less than that of another. From the SemVer spec: Pre-release versions have a lower precedence than the associated normal version. """ if self.pre_release and other.pre_release: return self.pre_release < other.pre_release elif self.pre_release and not other.pre_release: return True return False
314a12ad9681fa517fdb5a61c845d90cdaa16ab1
72,060
import csv def get_X_y(data_file): """Read the log file and turn it into X/y pairs. Add an offset to left images, remove from right images.""" X, y = [], [] steering_offset = 0.4 with open(data_file) as fin: for _, left_img, right_img, steering_angle, _, _, speed in csv.reader(fin): if float(speed) < 20: continue # throw away low-speed samples X += [left_img.strip(), right_img.strip()] y += [float(steering_angle) + steering_offset, float(steering_angle) - steering_offset] return X, y
82329371eaa6100d99aed599707bf28cb83f025e
72,062
def listify(to_select): """Utitlity function to handle both single and list inputs """ if not isinstance(to_select, list): to_select = [to_select] return to_select
8f476b1c48272d209408df86ccb47d259be72738
72,064
def get_all_dict_words(dict_): """ This function gets all the word entries of the dictionary. :param dict_: Dictionary words and their definitions. :type dict_: dict :return: All the word entries. :rtype: list """ words = set([]) for k, v in dict_.items(): for lev, meaning_words in v.items(): words = words.union(meaning_words) return list(words)
ea0e336f20a2d51b72ca13c77f5696e3bf896039
72,071
def update_parameters(params, grads, alpha): """ Updates model parameters using gradient descent. Arguments: params -- dictionary containing model parameters grads -- dictionary with gradients, output of L_model_backward() Returns: params -- dictionary with updated parameters params['w' + str(l)] = ... params['b' + str(l)] = ... """ n_layers = len(params) // 2 for i in range(n_layers): params['w%s' % (i+1)] = ( params['w%s' % (i+1)] - alpha * grads['dw%s' % (i+1)]) params['b%s' % (i+1)] = ( params['b%s' % (i+1)] - alpha * grads['db%s' % (i+1)]) return params
45acda1cf5b69c289c4e124a827749f2966c98c8
72,073
def get_value_from_dict(key_path, input_dict): """ Returns the value of a key in input_dict key_path must be given in string format with dots Example: result.dir """ if not isinstance(key_path, str) or not isinstance(input_dict, dict): return None for key in key_path.split('.'): input_dict = input_dict.get(key) if not input_dict: return None return input_dict
c76ed21bcf4aa8a9884d6660a235ff92ebeae1ac
72,076
def update_rbac_assignment( self, username: str, roles: str = "null", asset: str = "null", ) -> bool: """Create or update rbac assignment .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - rbacAssignment - POST - /rbac/assignment :param username: Username for assignment :type username: str :param roles: Comma separated list of roles. Required if asset value is not provided, e.g. "role1, role2, role3", defaults to "null" :type roles: str, optional :param asset: Appliance access group or asset name. Required if roles value is not provided, e.g. "group1", defaults to "null" :type asset: str, optional :return: Returns True/False based on successful call :rtype: bool :raises ValueError: Both optional parameters cannot be value of "null" """ if roles == "null" and asset == "null": raise ValueError("Roles and asset variables cannot both be 'null' ") data = { "username": username, "roles": roles, "asset": asset, } return self._post( "/rbac/assignment", data=data, return_type="bool", )
53bfa4adb35ba8c50762b06b614de97f59aca63e
72,080
def get_relative_freqs(type2freq): """ Calculates the relative frequency (proportion) of each type in a system Parameters ---------- type2freq: dict Keys are types of a system and values are frequencies of those types Returns ------- type2p: dict Keys are types and values are relative (normalized) frequencies """ n = sum(type2freq.values()) type2p = {t: s / n for t, s in type2freq.items()} return type2p
15c33e0ed235543430e9c1925593916135d96615
72,084
def mat311mod(a, b): """ Compute moduli of a 3x1 matrix. Parameters ---------- a : tuple of float 3x1 matrix b : float modulus Returns ------- res : tuple of float 3x1 matrix """ res = [0, 0, 0] r3 = range(3) for i in r3: res[i] = int(a[i] - int(a[i]/b)*b) return res
275a509a4f53785c4702151811c63e5009d999c4
72,087
from typing import Union import math def convert_heading(degree: Union[int, float]) -> Union[int, float]: """ Convert heading to other convention and unit Args: degree: Starting north increasing clockwise Returns: object (Union[int, float]): Heading angle in rad starting east increasing anti-clockwise and conversion """ if not (isinstance(degree, float) or isinstance(degree, int)): raise TypeError("input must be a float or int") float_degree = float(degree) if float_degree == 0: temp_degree: float = 0 else: temp_degree = 360 - float_degree temp_degree = temp_degree + 90 return math.radians(temp_degree)
5be4925fa9316377a6b873e3f05601eda0e0211a
72,088
import io def slurp(path, encoding='UTF-8'): """ Reads file `path` and returns the entire contents as a unicode string By default assumes the file is encoded as UTF-8 Parameters ---------- path : str File path to file on disk encoding : str, default `UTF-8`, optional Encoding of the file Returns ------- The txt read from the file as a unicode string """ with io.open(path, 'r', encoding=encoding) as f: return f.read()
1a0697b7c2858308a2ad4844d92620d3e7206a02
72,098
def earliest_bus( notes ): """ Setup: All buses depart at 0 mins. Trip duration of each bus = bus ID in minutes. i.e., every 'ID' mins, the bus with that ID departs from the starting point. Thus, if the time is divisible by the bus ID, that bus will start its departure. Method: The remainder between current time and bus ID denotes the time in mins to the previous departure of each bus. Subtracting this value from the bus ID gives the time in mins to the next departure of each bus. Task: Given the time and available buses, this function returns the product of ID of next earliest bus and minutes to wait to catch that bus. """ time = notes[ 'time' ] buses = notes[ 'buses' ] deltas = [ bus - ( time % bus ) for bus in buses ] wait_time = min( deltas ) next_bus = buses[ deltas.index( wait_time ) ] return wait_time * next_bus
736e5b1b124fb9acd1f825becec14c3958be1249
72,101
import threading def makeThreadSafe(function, lock=None): """ Call with a function you want to make thread safe Call without lock to make the function thread safe using one lock per function. Call with existing lock object if you want to make several functions use same lock, e.g. all functions that change same data structure. @param function: function to make thread safe @param lock: threading.Lock instance or None @rtype: function @return: function decorated with locking """ if lock is None: lock = threading.Lock() def decorated(*args, **kw): lock.acquire() try: return function(*args, **kw) finally: lock.release() return decorated
dde480d751b867e442fcef4263d6d5e5b9da1f37
72,102
def check_items(items, expiry): """ Check for old deployments that have files that can be deleted and prune old deployments from the item list. The algorithm finds all deployments older than the expiry and keeps only the newest of them. Returns a set containing the remaining items and a list of files to be deleted. """ deployments = list(set([i.time for i in items])) deployments_old = sorted([i for i in deployments if i < expiry]) if len(deployments_old) <= 1: return items, [] delete_older_than = deployments_old[-1] keep_files = list(set([i.filename for i in items if i.time >= delete_older_than])) delete_files = list( set( [ i.filename for i in items if i.time < delete_older_than and i.filename not in keep_files ] ) ) return [i for i in items if i.time >= delete_older_than], delete_files
95fcae0d130d80f17623ee556ca7e933e7e5681b
72,104
def roundf(x, precision=0): """Like round but works with large exponents in floats and high precision Based on http://stackoverflow.com/a/6539677/623735 >>> 234042163./(2**24) 13.94999998807... >>> roundf(234042163./(2**24), 5) 13.95 >>> roundf(1234.1234e-123, 5) 1.2341e-120 >>> roundf(1234.1234e-123, 3) 1.23e-120 >>> roundf(1234123.1234, 5) 1234100.0 >>> roundf(1234123.1234, 3) 1230000.0 """ if precision > 0: return float("{:.{}e}".format(x, precision - 1)) return x
53899bf858c95ef3d7041d5eb29301b8c1aec311
72,110
def get_cell(sheet, index): """Return cell object for sheet and index (of the form "A1")""" return sheet[index]
1f44e2d17eb17bd336e80e553be9476e4f797405
72,112
def ports_from_output_port_acts(output_port_acts): """Return unique port numbers from OFPActionOutput actions. Args: list of ryu.ofproto.ofproto_v1_3_parser.OFPActionOutput: output to port actions. Returns: set of port number ints. """ return {output_port_act.port for output_port_act in output_port_acts}
0548a57f9cdf8a0ddef863e82ce5d44bbbf8cb3f
72,118
def parse_int(val, name): """Parse a number to an integer if possible""" if val is None: return val try: return int(val) except ValueError: raise ValueError( f"Please provide a number for {name}, instead of {val}" )
fa6e50de45e92df0c75a37910e55a17dda57588f
72,120
def read_kaldi_mapfile(path): """ Read any Kaldi mapping file - like text, .scp files, etc. """ m = {} with open(path, 'r') as f: for line in f: line = line.strip() sp_pos = line.find(' ') key = line[:sp_pos] val = line[sp_pos+1:] m[key] = val return m
f966d81a757d49ee72f2a4e50c64221e574f2e05
72,122
import functools import operator def product(seq): """Product of a sequence.""" return functools.reduce(operator.mul, seq, 1)
f9a0cf3c699537632e8e9917f69ef37c393af456
72,124
import itertools def interleave(a, b): """Interleaves the contents of two iterables.""" return itertools.chain.from_iterable(zip(a, b))
2e378307880aebb51fd15b335b92ec5ee0764a22
72,130
from typing import Iterable def build_vocab(items, add_unk=True, add_pad=True): """ build vocabularies from a item list Args: items: list of items add_unk: bool. Whether to add unk >>> build_vocab(["a","b","b"], add_unk=False, add_pad=True) {'a': 1, 'b': 2, '<PAD>': 1e+20} """ assert isinstance(items, Iterable), "input 'items' is not iterable" dic = {} for item in items: dic[item] = dic.get(item, 0) + 1 if add_pad: dic['<PAD>'] = 1e20 if add_unk: dic['<UNK>'] = 1e10 return dic
1a2e6df1ba4b4066073e3bc39cd6b7e28a9c50e9
72,131
def to_list(a, diag_val=None): """ Convert array to list of lists More or less np .tolist() method but can set diag values as a convenience """ ll = a.tolist() n = len(ll[0]) if diag_val is not None: for i in range(n): ll[i][i] = diag_val return ll
1f6d5188e6e597d15a89be8a0cbc19fa35df9a24
72,134
def BFS_search(gr, u, v): """ Find the shortest path between two nodes (source and target) using the Breadth-First Search (BFS) algorithm. @type gr: tlp.Graph @param gr: Tulip graph @type u: tlp.node @param u: first node of interest (source) @type v: tlp.node @param v: Second node of interest (target) """ explored = [] queue = [] queue.append([u]) while queue : path = queue.pop(0) node = path[-1] if node not in explored: for n in gr.getInOutNodes(node): new_path = list(path) new_path.append(n) queue.append(new_path) if n == v: new_path.pop() del new_path[0] return new_path explored.append(node)
9349ee5d4869b572d360644b4895ca6acc47f3d0
72,135
def _long_to_wide(data, data_type, date_col="date", other_data_types_to_drop=[], sort_by=None): """Convert a dataframe from long format to wide format. Parameters: data (pandas.DataFrame): The dataframe to convert. data_type (str): The name of the data type to keep when we pivot. date_col (str, optional): The name of the column with the dates in it. Default "date". other_data_types_to_drop (list of str, optional): A list of other data_type columns that may exist in the table, which will be dropped. Note that if data_type is included in this list, it will actually not be dropped. sort_by (str, optional): The name of one of the indexing columns to sort the dataframe by before returning it. Default of None causes no extra sorting to be performed. Returns: pandas.DataFrame: The dataframe in wide format. """ # If there are multiple data type columns, only keep the one specified cols_to_drop = [col for col in other_data_types_to_drop if col != data_type and col in data.columns] data = data.drop(columns=cols_to_drop) # Spread the table, a la tidyr id_cols = [col for col in data.columns if col != data_type] data = data.set_index(id_cols) # Putting these in the index keeps them from being spread data = data.unstack(level=date_col, fill_value=0) data.columns = data.columns.droplevel(0) data.columns.name = None if sort_by is not None: data = data.sort_index(level=sort_by) data = data.reset_index() # Take the saved columns out of the index return data
ed26fca4c96d95063492e7b3e5fc27dbbb982a52
72,136
from datetime import datetime def convert_date_to_fns_format(date_db: datetime) -> str: """Convert datetime from database to FNS format.""" return date_db.strftime('%Y-%m-%dT%H:%M')
60445e51032efe4548b6cd59fe53baf6c53c6f1c
72,139
def component_unit_dimension(h5): """ Return the unit dimension tuple """ return tuple(h5.attrs['unitDimension'])
36f239667dd1c75f0312bb1fb7dd9ac8e57c720f
72,141
def compute_max_vapor_velocity(C_sbf, sigma, rho_L, rho_V, F_F, A_ha): """ Return the maximum allowable vapor velocity through the net area of flow before flooding [U_f; in m/s]. Parameters ---------- C_sbf : Maximum Capacity Parameter (m/s) sigma : Liquid surface tension (dyn/cm) rho_L : Liquid density rho_V : Vapor density F_F : Foaming factor A_ha : Ratio of open area, A_h, to active area, A_a Notes ----- The max vapor velocity is given by [3]_. See source code for details. """ F_ST = (sigma/20)**0.2 # Surface tension factor # Working area factor if A_ha >= 0.1 and A_ha <= 1: F_HA = 1 elif A_ha >= 0.06: F_HA = 5*A_ha + 0.5 else: raise ValueError("ratio of open to active area, 'A', must be between 0.06 and 1") return C_sbf * F_HA * F_ST * ((rho_L-rho_V)/rho_V)**0.5
50fa395f7a094103940dbfc46996e9aba8c8e8ab
72,144
def has_any_in(chances, possibilities): """ >>> has_any_in(range(5), range(3, 6)) True >>> has_any_in(range(5), range(6, 10)) False >>> has_any_in(range(5), range(5)) True """ return any([x for x in chances if x in possibilities])
98990dad0bb91dfdd56d9d2f653d00429ca04b86
72,148
def pipe_to_underscore(pipelist): """Converts an AFF pipe-seperated list to a CEDSCI underscore-seperated list""" return pipelist.replace("|", "_")
94d29e07d2c01be5afffab71cc26f9e91646bd9b
72,155
def write_file(file_to_write, text): """Write a file specified by 'file_to_write' and returns (True,NOne) in case of success or (False, <error message>) in case of failure""" try: f = open(file_to_write, 'w') f.write(text) f.close() except Exception as e: return (False, str(e)) return (True, None)
5bed72cf333eb908ecfa4951ac4ed1da91ee842c
72,156
def get_index_bucket(oval_id): """The current repository schema protects against having too many files in a single directory by creating subdirectories based on the index portion of the OVALID that limits the number of files to 1000. This function determines the proper bucket based on the OVALID @type oval_id: string @param oval_id: The OVALID @rtype: int @return: an integer representing the proper subdirectory for this OVALID, or 0 if it could not be computed. """ if not oval_id or oval_id is None: return None # Get the numeric index from the end of the OVAL ID position = oval_id.rfind(':') if position < 0: return None try: position = position + 1 index = int(oval_id[position:]) if index < 1000: return "0000" # Apply the modulus function to determine which bucket it belongs to return str(int(index/1000) * 1000) # Or another way to do it: # sequence = int(index) # mod = sequence % 1000 # return sequence - mod + 1000 except Exception: return None
15cdd00dba8c3cc1d19f3159d6d9d9559ada778e
72,157
def _str_formatter(x): """Format a string""" return repr(x)
8c469a0ba078348448c32d9f6d18cbf508b8781c
72,158
def github_split_owner_project(url): """ Parses the owner and project name out of a GitHub URL Examples -------- >>> github_split_owner_project("https://github.com/intel/dffml") ('intel', 'dffml') """ return dict( zip( ("owner", "project"), tuple("/".join(url.split("/")[-2:]).split("/")), ) )
ea3d788f92c0936babf48000c51eba3ec2c1ac73
72,159
def get_subs_tes_chp(chp_ratio, v_tes, tes_invest, p_nom): """ Calculate KWKG subsidy for TES in combination with CHP Parameters ---------- chp_ratio : chp_heat/total_heat per year v_tes : tes volume in liter tes_invest p_nom : el. power in kW Returns ------- kwkg_subs_tes : amount of subsidy """ kwkg_subs_tes = 0 # TES volume in m3 v_m3 = v_tes/1000 # subsidy applies only for systems with ratio of chp heat per year higher than 50% if chp_ratio >= 0.5: if 1.0 <= v_m3 <= 50.0: kwkg_subs_tes = 250 * v_m3 elif v_m3 > 50: kwkg_subs_tes = 0.3 * tes_invest else: if v_m3 >= 0.3 * p_nom: kwkg_subs_tes = 250 * v_m3 return kwkg_subs_tes
e4c5c675cc7bda27a25610b3907e33aafaff94a3
72,160
import json import logging def get_message_from_json(body): """Parses JSON from request body. Returns parsed JSON object if JSON is valid and the represented object is a dictionary, otherwise returns None. """ try: message = json.loads(body) if isinstance(message, dict): return message logging.warning('Expected dictionary message' + ', request=' + body) return None except Exception as e: logging.warning('JSON load error from BindPage: error=' + str(e) + ', request=' + body) return None
f6e45f5ac3b2a85260de2b0819bb83fc1e9a141c
72,161
import requests from bs4 import BeautifulSoup import re def pr_names(link): """ Returns all the contributors involved in every PR. Parameters: link (url): Url of the Pull Request Returns: name (list) : List containing the contributors. """ name=[] r=requests.get(url=link) soup=BeautifulSoup(r.content,'html.parser') div_tags=soup.findAll('div',class_="participation") for _,i in enumerate(div_tags): for a in i.findAll('a'): name.append(re.sub('/' ,"",a['href'])) return name
20916134dfe3b4addd7f28abbb7ed7f7e2bf19c8
72,163
from pathlib import Path from typing import Any import hashlib def recursive_sha256(path: Path, hashsum: Any = None) -> str: """ Calculates sha256 hash of the file contents recursively. Args: path (Path): Parent path of contents hashsum (Optional[hashlib._HASH]): Current checksum of files if any Returns: str: Accumulated digest hex number string with lowercase letters like "03e93aae89012a2b06b77d5684f34bc2e27cd64e42108175338f20bec11c770a" Raises: ValueError: When `path` does not exist in the system """ if not path.exists(): raise ValueError("Path does not exist") hashsum = hashlib.sha256() if not hashsum else hashsum if path.is_dir(): for item in path.iterdir(): recursive_sha256(item, hashsum) else: hashsum.update(path.read_bytes()) return str(hashsum.hexdigest())
d8388793f50419536bba864bd24f54fc2f361e2c
72,169
from typing import Type def is_subclass(obj, base_cls: Type) -> bool: """Check if `obj` is a sub-class of `base_cls`""" cls = obj if isinstance(obj, type) else type(obj) return issubclass(cls, base_cls)
ad149693020d487c95ae688fd971623207a7e322
72,172
def markup_line(text, offset, marker='>>!<<'): """Insert `marker` at `offset` into `text`, and return the marked line. .. code-block:: python >>> markup_line('0\\n1234\\n56', 3) 1>>!<<234 """ begin = text.rfind('\n', 0, offset) begin += 1 end = text.find('\n', offset) if end == -1: end = len(text) return text[begin:offset] + marker + text[offset:end]
40910a2f686e48465fa9d52e0a7c028ce359780b
72,176
def approx(f, eps=0.001): """Returns an "approximate" value of `f`, within `eps`. This is useful if you want to quantize floats into bins. """ return int(f/eps + 0.5) * eps
93e0ed857e0637ea84d52d42c951fdebec2c79e7
72,179
def get_set_of_tuples(df): """ Converts DataFrame to set of tuples. Set conversion ensures that order does not matter anymore. """ set_of_tuples = set(tuple(line) for line in df.values) return set_of_tuples
c5fb16aa5f9ecc87eeb873b5d33d78cb151795da
72,183
def _make_params_string(params): """Convert list of parameters to string""" p_str = '&'.join(['{}={}'.format(f, params[f]) for f in params.keys()]) return p_str
db94c55492d506a364b6064bda3638995caf546f
72,185
def get_section_from_chunk(chunk, sectionname): """Extract a named section of a chunk""" section = [] in_section = False for line in chunk: if line == sectionname: in_section = True continue if in_section: if line == "": # We've reached the end of the section break else: section.append(line) return section
d2e40c599545f5c770a50f260ce0ac858814a80e
72,187
def first_of(value, arg=10): """ Only returns first X of list """ if not value: return value count = int(arg) if len(value) > arg: return value[:arg] else: return value
7d41904612a8c772ddab87e2f808c14ae899bab1
72,189
def aviso_tll(tll): """Mensaje de tiempo de llegada.""" return 'El tiempo de llegada del siguiente cliente es: ' + str(tll)
adfe7664d2af82afb61a380b2a34f9b0ed75b5b5
72,193
import requests def get_cover_path(title): """ Return the cover path of the given movie :param title: the title of the movie :return: the cover path """ base_url = "https://api.themoviedb.org/3/search/movie?api_key={}&query={}" apikey = "4ca2b1ac7501d2a20234b56f7edcfe88" url = base_url.format(apikey, title) response = requests.get(url) cover = response.json()['results'][0] return "http://image.tmdb.org/t/p/w500/" + cover['poster_path']
6ee156fe8d67b890559fbaa347c0c3161d621f31
72,201
def color_percent(p): """Return the adapted color for `p` percent achievement. `0` percent will be dark red, `100` percent will be dark gren. A linear interpolation is returned beetween these extrema but a coefficient increases the luminosity around the midle `50`. TESTS: >>> color_percent(0) (180, 0, 0) >>> color_percent(50) (180, 180, 0) >>> color_percent(83) (41, 200, 0) >>> color_percent(100) (0, 180, 0) """ coef = 2.0 - (max([p-50, 50-p]) / 50.0) # coef = 1 r = coef*180*(1 - (p/100.0)) g = coef*180*(p/100.0) b = 0 return (int(r), int(g), int(b))
4b7f5f7bad4ea16bb40f2ed902b0f7ad4256c1a6
72,206
def trained_unit(object_ids, before_tech): """Returns matches where only *1* of the object ids is played prior to before_tech.""" query = """ select oi.match_id, oi.initial_player_number as number, (case when count(distinct initial_object_id) = 1 then true else false end) as value from object_instances as oi join ({sq}) as sq on oi.match_id=sq.id where initial_class_id=70 and initial_object_id=any(:object_ids) and created > '00:01:00' and created < (select finished from research where match_id=oi.match_id and player_number=oi.initial_player_number and technology_id=:before_tech) group by oi.match_id, oi.initial_player_number having (case when count(distinct initial_object_id) = 1 then true else false end)=true """ return ( query, dict(object_ids=object_ids, before_tech=before_tech) )
71b897ab5652ca7b4d6cbf4aa12866b91c1386e6
72,207
def _taxa_prefix_to_taxa(taxa_prefix: str) -> str: """Turns the taxa prefix letter into the taxa Args: taxa_prefix (str): The taxa prefix that will be converted to taxa. Returns: (str): The Taxa """ taxa_dic = {"A": "Alveolata", "B": "Bryophyta", "C": "Bacillariophyta", "D": "Amoebozoa", "E": "Euglenozoa", "F": "Fungi", "G": "Chlorophyta", "H": "Rhodophyta", "I": "Phaeophyceae", "L": "Marchantiophyta", "M": "Metazoa", "O": "Oomycota", "P": "Haptophyceae", "Q": "Raphidophyceae", "R": "Rhizaria", "S": "Synurophyceae", "T": "Tracheophyta", "U": "Eustigmatophyceae", "ALL": "All"} taxa_choice = taxa_dic[taxa_prefix] return taxa_choice
ac76688c5e2fbefeba7280057cb88fe09e8d0fda
72,208
def get_cdxj_line_closest_to(datetime_target, cdxj_lines): """ Get the closest CDXJ entry for a datetime and URI-R """ smallest_diff = float('inf') # math.inf is only py3 best_line = None datetime_target = int(datetime_target) for cdxj_line in cdxj_lines: dt = int(cdxj_line.split(' ')[1]) diff = abs(dt - datetime_target) if diff < smallest_diff: smallest_diff = diff best_line = cdxj_line return best_line
35c6b1a374e153982abe6edf2d2e6625cf8e8937
72,211
import requests def init_session(proxy=None): """Creates a new requests session with sensible defaults.""" session = requests.Session() session.headers[ "User-Agent" ] = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.92 Safari/537.36" if proxy is not None: session.proxies = { "http": proxy, "https": proxy, } return session
c7ce8ff7b690ca29fb29bbf637ff6146dd539797
72,212
def _is_int(string): """Returns true or false depending on whether or not the passed in string can be converted to an int""" result = False try: value = int(string) result = True except ValueError: result = False return result
6e46f8eccc1a9ec60c7ab3d276e9b84fd2cf591c
72,214
def reverse_hex(hex_str): """Reverse a hex foreground string into its background version.""" hex_str = "".join([hex_str[i : i + 2] for i in range(0, len(hex_str), 2)][::-1]) return hex_str
370ef63d7c1e2d78397b593cdfbdfc72440b3c69
72,217
def dummy(inp): """Dummy fct to test process_map.""" return inp
b36a6cc1f5f9cb16580331363892bfaf95fcd247
72,226
import re def validate_title(title): """ Returns True if a valid title is provided """ title = re.sub(' +', ' ', title.strip()) regexp = re.compile(r"^[a-zA-Z0-9-' ]*$") if regexp.search(title): return True return False
5ed3598a78585c531f832a901bea82cc86da141a
72,227
def constant(s): """Constant pumping.""" return 1.0 / s
7b494ad1d38e38b1daafed7fc7d81f0b7588a69d
72,228
def format_val(val: float) -> str: """Format float and return as str. Rules are round to two decimal places, then remove any trailing 0s and decimal point if necessary. Args: val (float): Number to format. Returns: str: Number rounded to two decimal places with trailing '0' and '.' removed. """ return f'{val:.4f}'.rstrip('0').rstrip('.')
0337db588992018c5af73ce00504e565f2eaca60
72,229
def poly_mul(coefs1, coefs2, zero): """ Multiplies two polynomials whose coefficients are given in coefs1 and coefs2. Zero value of the underlying ring is required on the input zero. """ coefs3 = [zero] * (len(coefs1) + len(coefs2) - 1) for i in range(len(coefs1)): for j in range(len(coefs2)): coefs3[i + j] += coefs1[i] * coefs2[j] return coefs3
e9ff21a914e8a6546d7a7f9e336c43e8d5d7d845
72,230
def rotations(t): """ Return list of rotations of input string t """ tt = t * 2 return [tt[i:i + len(t)] for i in range(0, len(t))]
6240e3fb1e06057958eff7cf529115e28afc08ce
72,233
def find_boundaries(boundaries, ecs, monomer, multimer, symmetric): """ Identify axis boundaries for contact map plots Parameters ---------- boundaries : {"union", "intersection", "ecs", "structure"} or tuple or list(tuple, tuple) Set axis range (min/max) of contact map as follows: * "union": Positions either in ECs or 3D structure * "intersection": Positions both in ECs and 3D structure * "ecs": Positions in ECs * "structure": Positions in 3D structure * tuple(float, float): Specify upper/lower bound manually * [(float, float), (float, float)]: Specify upper/lower bounds for both x-axis (first tuple) and y-axis (second tuple) ecs : pandas.DataFrame Table of evolutionary couplings to plot (using columns "i" and "j") monomer : evcouplings.compare.distances.DistanceMap Monomer distance map (intra-chain distances) multimer : evcouplings.compare.distances.DistanceMap Multimer distance map (multimeric inter-chain distances) symmetric : bool Sets if distance maps and ECs are symmetric (intra-chain or homomultimer), or not (inter-chain). Returns ------- (min_x, max_x) : (float, float) First and last position on x-axis (min_y, max_y) : (float, float) First and last position on y-axis """ def _find_pos(axis): """ Find first and last index along a single contact map axis """ # determine what sets of positions are for ECs/contact maps ec_pos = set() monomer_pos = set() multimer_pos = set() # need to merge i and j here if symmetric if ecs is not None: if symmetric: ec_pos = set(ecs.i.astype(int)).union(ecs.j.astype(int)) else: ec_pos = set(getattr(ecs, axis).astype(int)) if monomer is not None: monomer_pos = set( getattr(monomer, "residues_" + axis).id.astype(int) ) if multimer is not None: multimer_pos = set( getattr(multimer, "residues_" + axis).id.astype(int) ) structure_pos = monomer_pos.union(multimer_pos) # maximum ranges spanned by structure or ECs # if any of the sets is not given, revert to # the other set of positions in else case # (in these cases, union and intersection will # be trivially the one set that is actually defined) if len(ec_pos) > 0: min_ec, max_ec = min(ec_pos), max(ec_pos) else: min_ec, max_ec = min(structure_pos), max(structure_pos) if len(structure_pos) > 0: min_struct, max_struct = min(structure_pos), max(structure_pos) else: min_struct, max_struct = min(ec_pos), max(ec_pos) # determine and set plot boundaries if boundaries == "union": min_val = min(min_ec, min_struct) max_val = max(max_ec, max_struct) elif boundaries == "intersection": min_val = max(min_ec, min_struct) max_val = min(max_ec, max_struct) elif boundaries == "ecs": min_val = min_ec max_val = max_ec elif boundaries == "structure": min_val = min_struct max_val = max_struct else: raise ValueError( "Not a valid value for boundaries: {}".format( boundaries ) ) return min_val, max_val # check first if range is specified manually if isinstance(boundaries, tuple): if len(boundaries) != 2: raise ValueError( "boundaries must be a tuple with 2 elements (min, max)." ) min_x, max_x = boundaries min_y, max_y = boundaries elif isinstance(boundaries, list): if len(boundaries) != 2 or len(boundaries[0]) != 2 or len(boundaries[1]) != 2: raise ValueError( "boundaries must be a list of 2 tuples with 2 elements " "[(min_x, max_x), (min_y, max_y)]." ) min_x, max_x = boundaries[0] min_y, max_y = boundaries[1] else: min_x, max_x = _find_pos("i") min_y, max_y = _find_pos("j") return (min_x, max_x), (min_y, max_y)
c4490a7236e107c4a32659bc31d6bdb3f6058a52
72,234
from datetime import datetime def get_year(mat_date): """ Calc year from matlab's date format Parameters ---------- mat_date : matlab's datenum Date to be converted Return ---------- year : int Year from matlab datenum """ temp = int(mat_date) year = datetime.fromordinal(max(temp - 366, 1)).year return year
bd2ce95b391c4ece79e501a00e122148926eda45
72,236
def get_titgroup_type_from_titgroup(group): """Given a titratable group unique id e.g. (A:0112:CTERM), return the titgroup type (CTERM)""" return group.split(':')[-1]
02402efd882cf47e2d757214dcca5928096f9f1f
72,242
def _strigify_val(val): """ Stringify a value. Here stringify means: * If it's a string, surround it with double quotes (so '"' + val '"') * If it's a callable or a type (class, etc.), then get it's __name__ * If not, just return "{}".format(val) See an example of use in enhanced_docstr function. :param val: value to be stringified :return: """ if isinstance(val, str): return '"' + val + '"' elif callable(val) or isinstance(val, type): return val.__name__ else: return "{}".format(val)
64a41c7bbad1fb2dd7053e96eaf1014546842a4e
72,250
def format_minsep(minsep): """ Returns string representation of the minsep """ string = '' for key, value in minsep.items(): if isinstance(value, (list, tuple)): string += f'{key}={value[0]:.2f}-{value[1]:.2f} ' else: string += f'{key}={value:.2f} ' return string
4f406c18d3658bb553a116fa0c6ebb2a37473386
72,252
def get_mers(seq, size): """ Get X-mers from seq. Example ------- >>> get_mers('MEAIKHD', 3) {'MEA', 'EAI', 'AIK', 'KHD'} """ mers = [] mersa = mers.append for i in range(len(seq) - (size - 1)): mersa(seq[i:i + size]) return set(mers)
516b9afa3ba38ff918e2025a4aed709c18711e3a
72,253
import requests def enumerate_a_by_view(cookies, url_root, view_name): """Given a view name, return all A records that are contained in that view.""" url = url_root + "/wapi/v2.9.1/record:a" params = { "view": view_name, } try: response = requests.get(url, params=params, cookies=cookies, verify=False) try: response.raise_for_status() except requests.exceptions.HTTPError: # Whoops it wasn't a 200 print("ERROR: Infoblox reported an error %s." %(response.status_code)) print(response.text) return False except requests.exceptions.RequestException: # A serious problem happened, like an SSLError or InvalidURL print("WARN: Unable to communicate with Infoblox.") return False return response.json()
58842f84c495a8b9ad00699444c12c80bbe51b2a
72,256
def _greedily_extract(a, s): """Greedily calculate extractive fragments. Exactly follows figure 3 in https://aclweb.org/anthology/N18-1065. Args: a: tokenized documents. s: tokenized summary. Returns: extractive fragments. """ fs = [] i = j = 0 while i < len(s): f = [] while j < len(a): if s[i] == a[j]: ii, jj = i, j while ii < len(s) and jj < len(a) and s[ii] == a[jj]: ii, jj = ii + 1, jj + 1 if len(f) < (ii - i): f = s[i:ii] j = jj else: j += 1 i, j = i + max(len(f), 1), 0 if f: fs.append(f) return fs
da41a72830fb0486f746f36c18f985550a6ad58a
72,258
import random def _PickRandomBuilder(builders): """Randomly select one builder to do a full build for. This selects one of the builders and uses the relative age of the newest build (in revisions) for each cache as its weight for random selection, favoring the caches that are older. """ for b in builders: b['newest_build'] = max( b['cache_stats'].full_build_commit_positions.values() or [0]) # Do `or 1000` to avoid zero weight choices when the cache is new. Any # number greater than zero would work. newest_build = max([b['newest_build'] for b in builders]) or 1000 for b in builders: b['cache_age'] = newest_build - b['newest_build'] # Weighted random selection weight_sum = sum(b['cache_age'] for b in builders) r = random.uniform(0, weight_sum) for b in builders: # pragma: no branch if r <= b['cache_age']: return b r -= b['cache_age']
923bf7e1079d978e9a7405ddaf341eb503beff39
72,265
from typing import Callable def change_pokemons_to_utf8(jsonify: Callable, pokemons: list) -> dict: """ Gets the pokemons list and changes it to a serialized object Args: jsonify (function): function do generates a serialized information pokemons (list): the pokemons that will have the information serialized Returns: dict: a dictionary containing all the serialized information """ result = [] for pokemon in pokemons: result.append(pokemon.serialize()) return jsonify(result)
5594d321e1767fdf715bbf22137fd1f5847c943d
72,268
def lagopus_job_id(name, driver, time): """ Generate a unique job ID based on the job name. ID conforms to DNS-1123 restrictions so it can be used as the name for k8s resources without modification. :name: job name as provided by user :driver: fuzzing driver :time: arbitrary time value; should be the creation time, to provide uniqueness when the user provides multiple jobs with the same name :rtype: str :return: job ID """ return "{}.{}.{}".format(name, driver.lower(), time.strftime("%Y-%m-%d-%H-%M-%S"))
75befd29bbf1a375ad5d8f6714138d16724c8ed3
72,270
def resolve_task_field(task, field): """ Get task field from root or 'data' sub-dict """ if field.startswith('data.'): result = task['data'].get(field[5:], None) else: result = task.get(field, None) return result
569fc153f83b08c8428b9b74ef79c94e7389c164
72,271
def parse_forum_response(resp): """ Prepare forum json object from forum response :param resp: forum response :return: required forum json object """ name = resp.get('name', '') hostname = resp.get('hostname', '') tags_list = [tag['name'] for tag in resp['tags']] tags_value = ', '.join(tags_list) forum_details = { 'Name': name, 'Hostname': hostname, 'Tags': tags_value } return forum_details
0df711647f94f3c5ad632e39fc687bc8547b0c67
72,273
def quote_string(prop): """ RedisGraph strings must be quoted, quote_string wraps given prop with quotes incase prop is a string. """ if not isinstance(prop, str): return prop if prop[0] != '"': prop = '"' + prop if prop[-1] != '"': prop = prop + '"' return prop
19cd16de31568ebdf140196c5b6d0db41cc2f260
72,274
def hot1_get(seqs_1hot, pos): """ hot1_get Return the nucleotide corresponding to the one hot coding of position "pos" in the Lx4 array seqs_1hot. """ if seqs_1hot[pos, 0] == 1: nt = 'A' elif seqs_1hot[pos, 1] == 1: nt = 'C' elif seqs_1hot[pos, 2] == 1: nt = 'G' elif seqs_1hot[pos, 3] == 1: nt = 'T' else: nt = 'N' return nt
488db94f3a99aea51392a61bf19b130c88397187
72,275
def cp_cmtsolution2structure(py, cmtsolution_directory, base_directory): """ cp cmtsolution files in cmtsolution_directory to the simulation structure. """ script = f"ibrun -n 1 {py} -m seisflow.scripts.source_inversion.cp_cmtsolution2structure --cmtsolution_directory {cmtsolution_directory} --base_directory {base_directory}; \n" return script
1291dc1b30fded8baf0492412ba3a813c002d867
72,282
def get_dns_stream(flows_stream): """ Filter to get only flows containing DNS information. :param flows_stream: Input flows :return: Flows with DNS information """ return flows_stream \ .filter(lambda flow_json: "ipfix.DNSName" in flow_json.keys())
610e104d6683d9bba59ec5c92e9e856ea0f041aa
72,283
def check_dict_has_kv(dictionary: dict, key, value) -> bool: """ Check if `dictionary` has entry `key` with value `value`. """ if key in list(dictionary.keys()) and dictionary[key] == value: return True return False
fdbb5f064476c84966a2924dd67a48b51cb94ca7
72,285
def remove_additional_whitespace(tokens): """ Removes additional whitespaces :param tokens: A list of tokens :return: A comparable list of tokens to the input but with additional whitespaces removed """ cleaned_tokens = [] for token in tokens: token = token.replace(' ', '') cleaned_tokens.append(token) return cleaned_tokens
096f0ae0d88d21159d4bc7349fd1b7d8eb5ebfe7
72,286
def set_bit(number: int, position: int, value: bool) -> int: """ Returns number if you were to set the nth bit to "value". 0 refers to the LSB, aka 1s place. """ return ( (number | (1 << position)) if value else (number & ~(1 << position)) )
7bc15dae4031536f9bc3e41b640b0dbdd2f55e04
72,291
def create_points_list(lists): """Transforms two lists values into a list of couple of values""" created = list() for i in range(len(lists[0])): #typically i in range(2) point = list() for l in lists: #for each coordinate point.append(l[i]) created.append(point) return created
3527c4f86cda19935ff48da94bda3de9a0bbe894
72,296
import math def earth_thickness(distance): """ Return the thickness of earth for a given distance""" EARTH_RADIUS = 6371 # km theta = distance / EARTH_RADIUS h = EARTH_RADIUS * (1 - math.cos(theta / 2)) msg = print("For", distance, "km, the earth thickness is ", round(h, 3), "km .") return h, msg
61a19420803c089b1267c176bb605d7dbba88485
72,304
def predict_epslogvar_from_xlogvar(*, x_logvar, logsnr): """Scale Var[x] by (1+exp(logsnr)) / (1+exp(-logsnr)) = exp(logsnr).""" return x_logvar + logsnr
05a20247a0e1f53e965111c44ebba5e0a21d96b2
72,307
def satoshi_to_tbtc(tbtc): """Function for converting satoshis to tBTC""" return round(tbtc * 0.000000000000000001, 5)
d7a3f251c729c2496d8bbbf4b67d050a710db7d6
72,310
def BET_radius(surface: float, surface_err: float, density: float): """ Estimate the radius of a nanoparticle based on the measurement of BET specific surface area analysis, assuming a spherical morphology of the nanoparticle. :param density: Density of the material (g/cm³). :param surface: BET specific surface area (m²/g). :param surface_err: ± Error in measurement of surface (m²/g). :return radius: Estimated radius (nm) """ def bet_formula(surface, density): return 3 / (density * surface * 1e-3) surface_low = surface - surface_err surface_high = surface + surface_err radius_low = bet_formula(surface_low, density) radius_high = bet_formula(surface_high, density) radius = (radius_high + radius_low) / 2.0 radius_err = abs(radius_high - radius) return radius, radius_err
5fb972e8412def6d4d6bdbf30613c86474135892
72,311
from typing import Union import torch def convert_dict_entries_to_tensors( loss_params: dict, device: Union[str, torch.device] ) -> dict: """Set scalars in loss to torch tensors for use with unsupervised losses. Args: loss_params: loss dictionary to loop over device: device to send floats and ints to Returns: dict with updated values """ for loss, params in loss_params.items(): for key, val in params.items(): if type(val) == float: loss_params[loss][key] = torch.tensor( val, dtype=torch.float, device=device ) if type(val) == int: loss_params[loss][key] = torch.tensor( val, dtype=torch.int, device=device ) return loss_params
3620a7a9858d14c0bb01319a92a406a6cf525946
72,317
def parse_addr(addr, port=20000): """ Parse IP addresses and ports. Works with: IPv6 address with and without port; IPv4 address with and without port. """ if addr == '': # no address given (default: localhost IPv4 or IPv6) return "", port, 0 elif ']:' in addr: # IPv6 address with port ip, port = addr.rsplit(':', 1) return ip.strip('[]'), int(port), 6 elif ']' in addr: # IPv6 address without port return addr.strip('[]'), port, 6 elif addr.count(':') > 1: # IPv6 address without port return addr, port, 6 elif ':' in addr: # IPv4 address with port ip, port = addr.split(':') return ip, int(port), 4 else: # IPv4 address without port return addr, port, 4
29fc5901907f81ed144c07532670077e11f69bb7
72,319
def team_name_to_group_name(team_name): """Return the Keycloak group name corresponding to `team_name`.""" return f"TEAM-{team_name}"
4996a3ee8dc092850a2031103cb85a137f748778
72,325
def parse_id_uri(uri): """Get the components of a given uri (with identifier at the last position). :param str uri: URI :returns: prefix (ex: http://rdf.wikipathways.org/...) :returns: prefix_namespaces: if there are many namespaces, until the penultimate (ex: .../Pathway/WP22_r97775/...) :returns: namespace: if there are many namespaces, the last (ex: .../Interaction/) :returns: identifier (ex: .../c562c/) :rtype: tuple[str,str,str,str] """ # Split the uri str by '/'. splitted_uri = uri.split('/') # Get the uri components into different variables. prefix = '/'.join(splitted_uri[0:3]) prefix_namespaces = '/'.join(splitted_uri[3:-2]) namespace = splitted_uri[-2] identifier = splitted_uri[-1] return prefix, prefix_namespaces, namespace, identifier
a128377708e0455e360bdcc83a3e9c1dcf2b6214
72,327
def get_filesystem(node): """ Get the file system information about this node :param Node node: engine node :rtype: dict """ hw = node.hardware_status all_status = [] for fs in hw.filesystem: all_status.append(fs._asdict()) for lg in hw.logging_subsystem: all_status.append(lg._asdict()) return all_status
82c8c6b615a72254b0b04b707ebf7703df6838e7
72,328
def reverse_match_odds(match, odds): """ Reverse match opponents and odds (away - home -> home - away) """ match = " - ".join(reversed(match.split(" - "))) odds.reverse() return match, odds
a7e77f2c0a4fbbbcf2fa1e68a930c9886f27eea3
72,329