content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def page_not_found(e): """Return a custom 404 error.""" return '앗! 이 주소엔 아무것도 없어요.', 404
94bf86f104603dca0b7c0ffebfb3a25087165b01
71,713
def get_pagination_readable_message(page: int, limit: int) -> str: """ Gets a readable output message for commands with pagination. Args: page (int): The page used in the command. limit (int): The limit used in the command. Returns: str: The message that describes the pagination. """ return f'Current page size: {limit}\n Showing page {page} out of others that may exist.'
589e385e1a4e152625b13a62c2f5c0fbc98b8618
71,715
from typing import Union from datetime import datetime def ensure_datetime(value: Union[str, datetime]): """Makes sure that the value is in the right format and return a datetime object. Raises TypeError if format is wrong.""" if isinstance(value, datetime): return value try: parsed_date = datetime.strptime(value, "%Y-%m-%d") except: raise TypeError(f"{value} must be in format %Y-%m-%d") return parsed_date
4aef505fe13c8605df3cad7aa1b630f414c07fdf
71,722
def random_background_template_with_FWHM(background_dataset, FWHM, cosmic=0): """ Parameters: ----------- background_dataset : dataframe contains the background template data FWHM : float Desired FWHM parameter cosmic : bool (optional) Choice to include cosmic radiation Returns: -------- random_background_spectrum : vector The full background spectrum template """ background_choices = background_dataset[ (background_dataset['fwhm'] == FWHM) & (background_dataset['cosmic'] == cosmic)] random_background = background_choices.sample() random_background_spectrum = random_background.values[0][3:] return random_background_spectrum
dc53f185068f794318c799f0018d16c99a34caea
71,723
def pro_rata_monthly_charge(monthly_charge: float, days: int) -> float: """ The monthly or annual charges shall be calculated pro rata having regard to the number of days in the billing cycle that supply was connected (days) and one-twelfth of 365.25 days (to allow for leap years). monthly_charge: The monthly charge days: The number of days in the billing period """ daily_charge = (monthly_charge * 12) / 365.25 return daily_charge * days
06acff7d4e7892f97bd0855e26cf941eb2e2c113
71,733
def read_lines_from_file(filename): """ Function to read lines from file :param filename: The text file to be read. :return: content: A list of strings """ with open(filename) as f: content = f.readlines() content = [x.strip() for x in content] return content
788a59d42cdae0830021274baa57964972f57ce6
71,739
def namespaces(labels): """ Converts fully-qualified names to a list of namespaces. namespaces(['clojure.core/map']) => ['clojure.core'] """ return list(map(lambda label: label.split('/')[0], labels))
ebfdaad6dee6e82188d7c3fff9d0f58032d619b1
71,740
def WrappedJoin(items, separator=' | ', width=80): """Joins the items by the separator, wrapping lines at the given width.""" lines = [] current_line = '' for index, item in enumerate(items): is_final_item = index == len(items) - 1 if is_final_item: if len(current_line) + len(item) <= width: current_line += item else: lines.append(current_line.rstrip()) current_line = item else: if len(current_line) + len(item) + len(separator) <= width: current_line += item + separator else: lines.append(current_line.rstrip()) current_line = item + separator lines.append(current_line) return lines
576e9991c3e66226b32e2f14b2c08e933cf36aa0
71,743
def _new_entry(ctime, mtime, profiler=None): """Create a new entry.""" return { 'create_time': ctime, 'update_time': mtime, 'summary_files': 0, 'lineage_files': 0, 'explain_files': 0, 'graph_files': 0, 'profiler': profiler }
ebeb72a53407c8740ef6d4659cb68740511d7b4b
71,747
def select_option(lb, ub): """Returns the selected integer type option between lb and ub. Otherwise shows an error message. Parameters: lb (lower bound): Lower limit of the integer type for options. ub (upper bound): Upper limit of the integer type for options. """ while True: option = input("Insert option: ") if option.isnumeric() and (int(option) in range(lb, ub + 1)): break else: print("You put invalid option, insert number between {} and {}".format(lb, ub)) return int(option)
c9f141b8c9e55814097df4744b5b7b088dfdfc65
71,748
def get_obj_type(obj): """ returns the type of an object """ return type(obj)
f5be4b7c8fde997a05f48dd4c35097decefc1967
71,749
def determine_benchmark_machine(coreclr_args): """ Determine the name of the benchmark machine to use Args: coreclr_args (CoreclrArguments): parsed args Return: (str) : name of the benchmnark machine """ if coreclr_args.arch == "x64": if coreclr_args.host_os == "windows": # return "aspnet-perf-win" return "aspnet-citrine-win" elif coreclr_args.host_os == "Linux": return "aspnet-perf-lin" else: raise RuntimeError("Invalid OS for x64.") elif coreclr_args.arch == "arm64": if coreclr_args.host_os == "Linux": return "aspnet-citrine-arm" else: raise RuntimeError("Invalid OS for arm64.") else: raise RuntimeError("Invalid arch.")
672f902fce8aaf0370fb56da38515d7861f66c09
71,751
def iso7816_4_pad(message, total_len): """ Pads a message according as specified in ISO 7816-4: - Append byte 0x80 - Pad the message to requested length with NULL bytes """ if len(message) >= total_len: raise ValueError( f'Padded message is at least {len(message) + 1} bytes long' ) return (message + b'\x80').ljust(total_len, b'\x00')
a7d59f0a7246c8edd1a32fbd7c71838d6726e368
71,759
def get_and_remove_or_default(dict, key, default): """ Get an item from a dictionary, then deletes the item from the dictionary. If the item is not found, return a default value. :return: The value corresponding to the key in the dictionary, or the default value if it wasn't found. """ if key in dict: ret = dict[key] del dict[key] return ret else: return default
402be98aa112010abfffa1e3dcb2ae9686a12a62
71,762
def cigar_has_insertion(cigar): """Check if cigarstring has an I in it. Return boolean""" has_insertion = False if cigar is not None: if 'I' in cigar: has_insertion = True return has_insertion
995f0ce7262cb5bb7f5eb2b0c5b0a24631103e00
71,763
def get_feedstock_name_from_meta(meta): """Resolve the feedtstock name from the parsed meta.yaml.""" if "feedstock-name" in meta.meta["extra"]: return meta.meta["extra"]["feedstock-name"] elif "parent_recipe" in meta.meta["extra"]: return meta.meta["extra"]["parent_recipe"]["name"] else: return meta.name()
1706bf74005730139f6783e4bb6c68c725be4f0b
71,765
def get_models_deployed(api, project_id): """ Gets the list of models deployed Arguments : api : object, API object to access CloudML Engine project_id : string, project id of the project Returns : list_of_models : list, List of the models deployed """ model_response = api.projects().models().list(parent=project_id).execute() return [a['name'] for a in model_response['models']]
28256c1f33f7f09e3cbb45d8c9f5911e4f456a19
71,767
def read(name, opener=open): """Load file contents as a bytestring.""" with opener(name, "rb") as f: return f.read()
e44870cf7232a5e21300825efc44e2537497e0d1
71,770
def get_object_columns(df): """ Return all columns with dtype object Parameters ---------- df : Pandas dataframe Returns ------- Dataframe with columns of dtype object """ return df.select_dtypes(include=['object'])
f7ffd1ee1b22f48ec82e185ba13c6e3096312800
71,774
def dictRemove(dict, keys): """ Remove dict values who has a key in keys""" for key in keys: dict.pop(key) return dict
e18531fece9051fcaf78c498aa7e9d45431a628b
71,776
def epoch_difference(M, b_prd, e_prd): """ Compute difference between two epochs accounting for end of horizon circling :param M: Model :param b_prd: global start period :param e_prd: global end period :return: end - start + 1 (+ n_prds_per_cycle if spans end of horizon) """ if e_prd >= b_prd: return e_prd - b_prd + 1 else: return M.n_prds_per_cycle + e_prd - b_prd + 1
74ab249e1741007a1d26ba97464be8f94c54e342
71,779
import torch def compute_target( value_final: torch.Tensor, rewards: torch.Tensor, masks: torch.Tensor, gamma: float, ) -> torch.Tensor: """ Compute target (sum of total discounted rewards) for rollout. Parameters ----------- value_final: torch.Tensor state values from final time step of rollout, size (num_env,) rewards: torch.Tensor rewards across rollout, size (rollout_steps, num_env) masks: torch.Tensor masks for episode end states, 0 if end state, 1 otherwise, size (rollout_steps, num_env) gamma: float discount factor for rollout Returns ------- torch.Tensor: targets, size (rollout_steps, num_env) """ G = value_final T = rewards.shape[0] targets = torch.zeros(rewards.shape) for i in range(T - 1, -1, -1): G = rewards[i] + gamma * G * masks[i] targets[i] = G return targets
51a60839df16fb3db0b93e4db37d4ec7982df511
71,780
def is_price_good_for_ps(price:float, ps:list)->bool: """ Decides if the given price can be used as the trading price for the given PS. >>> is_price_good_for_ps(5, [9, -3]) True >>> is_price_good_for_ps(5, [9, -7]) False >>> is_price_good_for_ps(5, [4, -3]) False """ for i in range(len(ps)): if ps[i] >= 0 and price > ps[i]: return False # price too high for a buyer elif ps[i] <= 0 and -price > ps[i]: return False # price too low for a seller return True
cdbd60c7b5b9b81e7529f577a326bfe823c569ed
71,781
def setup_parser(parser): """ Setup argument parser. :param parser: argument parser :return: configured parser """ parser.add_argument('--chunksize', type=int, required=False, help="Use chunking for large files. N as size of chunk.") parser.add_argument('--samplesize', type=int, required=False, help="Use sampling. N as first rows read") return parser
db1287a99b030d9e9d4da7e1aa34dc10aaf3b612
71,786
from typing import List from typing import Any def group_items_in_batches(items: List[Any], items_per_batch: int = 0, fill: Any = None) -> List[List[Any]]: """ Responsible for grouping items in batch taking into account the quantity of items per batch e.g. >>> group_items_in_batches(items=[1,2,3,4], items_per_batch=3) [[1, 2, 3], [4]] >>> group_items_in_batches(items=[1,2,3,4], items_per_batch=3, fill=0) [[1, 2, 3], [4, 0, 0]] :param items: list of any values :param items_per_batch: number of items per batch :param fill: fill examples when items is not divisible by items_per_batch, default is None :return: """ items_length = len(items) if not isinstance(items_per_batch, int): raise TypeError(f"Value for items_per_batch is not valid. Please send integer.") if items_per_batch < 0 or items_per_batch > len(items): raise ValueError(f"Value for items_per_batch is not valid. I need a number integer between 0 and {len(items)}") if items_per_batch == 0: return items if fill is not None: missing = items_per_batch - items_length % items_per_batch items += missing * [fill] batches = [] for i in range(0, items_length, items_per_batch): batch = [group for group in items[i:i + items_per_batch]] batches.append(batch) return batches
75642f1159e1470e568746521ccf62ecb8642c7a
71,787
import copy def get_value(obj, attr, default=None): """Gets a copy of the value from a nested dictionary of an object with nested attributes. Parameters ---------- obj : An object or a dictionary attr : Attributes as a string seprated by dot(.) default : Default value to be returned if attribute is not found. Returns ------- Any: A copy of the attribute value. For dict or list, a deepcopy will be returned. """ keys = attr.split(".") val = default for key in keys: if hasattr(obj, key): val = getattr(obj, key) elif hasattr(obj, "get"): val = obj.get(key, default) else: return default obj = val return copy.deepcopy(val)
30187ff4b2977717688ccee82817b1ded108cefe
71,791
def fibonacci_loop(n): """Calculate the nth Fibonacci number using a loop""" nn = n - 2 #Already done 1st and second vals fib = [1, 1] while nn > 0: tmp = fib[0] fib[0] = fib[1] fib[1] +=tmp nn -= 1 #If even, return the first val, else, the second return fib[n%2]
5356a1a904cc45621a8165065d4733a7961fb518
71,795
def lin(pos, goal, x, n_steps): """ Returns the y value of a linear function based which goes from y=pos on x=0 to y=goal on x=n_steps. """ return pos + (1/(n_steps-1) * (goal-pos))*x
852f1b21bfd17baaa82b1c23a2316d04d97586d3
71,796
def annuity_factor(n, i): """ Calculates the annuity factor derived by formula (1+i)**n * i / ((1+i)**n - 1) :param n: depreciation period (40 = 40 years) :type n: int :param i: interest rate (0.06 = 6%) :type i: float :returns: - **a**: annuity factor :rtype: float """ a = (1 + i) ** n * i / ((1 + i) ** n - 1) return a
3b01acde0cd044d98e63835c64094ff471d79b19
71,797
def is_even(number:int): """ This function verifies if the number is even or not Returns: True if even false other wise """ return number % 2 == 0
dfc0e77f90075d1b77be2218f7f5d1c7e1265b29
71,799
def runner(app): """Return a cli test fixture with app context.""" return app.test_cli_runner()
266fba4e87237783c79fbf65106778bab3816a4e
71,803
def load_process_rules(process_rules_file_name): """ Load process rules file to rule list. :param process_rules_file_name: :return: a list containing rules like: [ (grapheme:string, phones:list, modified_phone:string), (grapheme:string, phones:list, modified_phone:string), ..., (grapheme:string, phones:list, modified_phone:string), ] """ rule_list = [] with open(process_rules_file_name) as process_rules_file: while 1: lines = process_rules_file.readlines(10000) if not lines: break for line in lines: if line.startswith("##"): continue grapheme, phones, modified_phone, adm_len_diff, adm_silent_error = line.strip().split("\t") phones = phones.split(" ") rule_list.append((grapheme, phones, modified_phone, adm_len_diff, adm_silent_error)) pass pass pass return rule_list
1520fe21d662aba9db12ba0491e4cb85fb5ec520
71,807
import math def calculate_num_Grover_iters(n, k): """ Calculate optimal number of Grover search iterations n: number of qubits k: number of solutions """ num_iters = (math.pi / 4) * math.sqrt(2 ** n / k) return math.floor(num_iters)
d4e99e2bddf7182187197f41fdde85659af58cc8
71,808
import json def load_from_json(file): """ Load a json file into a dictionary. :param file: the .json file (with path) """ with open(file, "r") as json_file: contents = json.load(json_file) return contents
7b6f6c2d0afe6b43f06ceacb53ac4f0551857481
71,812
def _is_valid_module_args(parsed_args, required_args): """ Validate that parsed args have required args, and no values are None or empty strings """ return len([x for x in required_args if x not in parsed_args.keys()]) == 0 and \ len([x for x in parsed_args.values() if not x]) == 0
f89567489744454390db275585decd7a33910448
71,813
def isDummy(a): """True if atom is a dummy atom. False otherwise.""" return (a.mass == 0 and a.atnum == 0 and a.charge == 0.0 and a.sigma == 0.0 and a.epsilon == 0.0)
658dae81ab22804c98b80053d905f3545fc87034
71,825
def makeVector(dim, initValue): """ Return a list of dim copies of initValue """ return [initValue]*dim
2d5d77c21ae24eb59ae70fbd6d4024bf446507c6
71,831
def filter_tests_by_attribute(tests_dict, attribute, value): """ Returns tests that have `attribute` == `value` """ filtered_tests = {} for test_name, test_data_dict in tests_dict.items(): if test_data_dict[attribute] == value: filtered_tests[test_name] = test_data_dict return filtered_tests
ef50e7267a913d842ad099e171e1522842c640ab
71,834
import secrets def generate_random_token(nbytes: int = 32) -> str: """Generate a securely random token. Random 32 bytes - default value here - is believed to be sufficiently secure for practically all purposes: https://docs.python.org/3/library/secrets.html#how-many-bytes-should-tokens-use """ return secrets.token_urlsafe(nbytes)
4c87c5ae88cb1b38e1b812dba65fa271f28c3648
71,835
from typing import List def min_candies(n: int, ratings: List[int]) -> int: """ Return the minimum amount of candies to give to students. Candies are assigned using the following rules: 1. Every student gets at least 1 candy 2. If 2 students are next to each other, the one with the higher rating must receive at least one more candy. 3. The candies given should be minimized. :time: O(n) where n is the amount of students :space: O(n) """ candies = [1] * n for i, (r1, r2) in enumerate(zip(ratings, ratings[1:])): if r2 > r1: candies[i + 1] = candies[i] + 1 ratings, candies = ratings[::-1], candies[::-1] for i, (r1, r2) in enumerate(zip(ratings, ratings[1:])): if r2 > r1 and candies[i + 1] <= candies[i]: candies[i + 1] = candies[i] + 1 return sum(candies)
656b4a8fd1754d51795b4e80cca0a42a7dab46b7
71,836
def int_or_none(x, limit): """Returns `int(x)` if `x` is a valid `int` or `None` otherwise. `x` is valid if `1 <= x <= limit`. """ try: value = int(x) if 1 <= value <= limit: return value else: return None except ValueError: return None
ef2039911d77b69304538d48218263f95524b933
71,840
def find_previous(element, l): """ find previous element in a sorted list >>> find_previous(0, [0]) 0 >>> find_previous(2, [1, 1, 3]) 1 >>> find_previous(0, [1, 2]) >>> find_previous(1.5, [1, 2]) 1 >>> find_previous(3, [1, 2]) 2 """ length = len(l) for index, current in enumerate(l): # current is the last element if length - 1 == index: return current # current is the first element if index == 0: if element < current: return None if current <= element < l[index+1]: return current
38e557061224215648b341e0cfe533c040eaabd3
71,841
import functools def _deepgetattr(obj, name, default=None): """Recurses through an attribute chain to get the ultimate value.""" try: return functools.reduce(getattr, name.split('.'), obj) except AttributeError: return default
b03887865b9594cb806bc6bc72c54eba010dcae8
71,843
def __pagination_handler(query_set, model, params): """ Handle user-provided pagination requests. Args: query_set: SQLAlchemy query set to be paginated. model: Data model from which given query set is generated. params: User-provided filter params, with format {"offset": <int>, "limit": <int>, ...}. Returns: A query set with user-provided pagination applied. """ # Offset offset = params.get("offset") if offset!=None: query_set = query_set.offset(offset) # Limit limit = params.get("limit") if limit!=None: query_set = query_set.limit(limit) return query_set
b12ea353caf62e39d5c09d2ad0581520ed6de43e
71,845
def xstr(s): """Sane string conversion: return an empty string if s is None.""" return '' if s is None else str(s)
5a9856c6d61ac3a83729f685a5b89e00026ee64d
71,852
def sg_or_pl(number): """Return 's' if number is greater than 1. Return '' if number is 1.""" if number > 1: return 's' elif number == 1: return ''
bb24c349327a31681ea72cfae792e8946b3e21a4
71,853
import json def load_json(fname: str): """ Loads an object from a JSON file. Args: fname: the name of the file to load from. Returns: the JSON object. """ return json.load(open(fname, 'r'))
15cea574ff50e4cfb1af008321f7e8e7005558fe
71,858
import requests import json def _post_req(url, email, password): """ Posts non-graphql requests to ThreatPlaybook API Server. Currently used for: * Create User * Login :param url: ThreatPlaybook API URL :param email: E-mail of the User :param password: Password set by the User :return: Returns with response """ headers = {'content-type': 'application/json'} auth = {"email": email, "password": password} try: r = requests.post(url=url, headers=headers, data=json.dumps(auth)) if r.status_code == 500: return {'error': 'Server Error'} return r.json() except ConnectionError: return {'error': 'Unable to contact Threatplaybook API server'}
a35046c699193a9a8132ef4b155eb922a70a88a1
71,860
from typing import Dict def add_collection_info_to_data( pk: int, collection: str, result_data: Dict[int, dict] ) -> Dict[int, dict]: """Add collection info to product data. This functions adds info about collection to dict with product data. If some collection info already exists in data, collection slug is added to set with other values. It returns updated product data. """ if collection: header = "collections__slug" if header in result_data[pk]: result_data[pk][header].add(collection) # type: ignore else: result_data[pk][header] = {collection} return result_data
77074d9a87c8289515de1df2f1bd7b65e3805c4d
71,861
def mean(iterable, length=None): """ Returns the arithmetic mean of the values in the given iterable or iterator. """ if length is None: if not hasattr(iterable, "__len__"): iterable = list(iterable) length = len(iterable) return sum(iterable) / float(length or 1)
40111ca3f0cb63c9eda7169244c43f33c1316cf2
71,863
def fill_missing_data(df): """Return dataframe with missing values filled in and numeric columns as integers.""" # fix top row df.iloc[0, :] = df.iloc[0, :].fillna(0) # fill missing values df = df.fillna(method="ffill") df.iloc[:, 1:] = df.iloc[:, 1:].astype(int) return df
312392cd2e8ff7e5cdbbc9c1911506e817e37e18
71,866
import time def date_to_TS(date, format='%y-%m-%d %H:%M:%S'): """ Convert date to timestamp. Parameters ---------- date : int, str or date Date to convert to timestamp format : str Format of input date. Return ------ int Timestamp of the date. """ if isinstance(date, int): return date elif isinstance(date, str): return time.mktime(time.strptime(date, format)) else: print('Date format not allowed') raise ValueError('Unknow format', type(date))
d68ddba720dbb46a14079d384c3090c4e3c354c2
71,867
import torch def concat_mean_stats(inputs): """Add mean statistics to discriminator input. GANs often run into mode collapse since the discriminator sees every sample in isolation. I.e., it cannot detect whether all samples in a batch do look alike. A simple way to allow the discriminator to have access to batch statistics is to simply concatenate the mean (across batch dimension) of all discriminator samples to each sample. Args: inputs: The input batch to the discriminator. Returns: The modified input batch. """ stats = torch.mean(inputs, 0, keepdim=True) stats = stats.expand(inputs.size()) return torch.cat([stats, inputs], dim=1)
cfc96450c355e0de6a4c9af0066a6881cbb0ba92
71,868
def unique_based_on_id(data): """ returns a list with only unique items, where the uniqueness is determined from the id of the items. This can be useful in the case where the items cannot be hashed and a set can thus not be used. """ result, seen = [], set() for item in data: if id(item) not in seen: result.append(item) seen.add(id(item)) return result
6a5c5f9714e3a145824df9ca42799986cc191d94
71,869
def dict_merge(*dicts): """ Merge all provided dicts into 1 dict. *dicts : `dict` dictionaries to merge """ merged = {} for d in dicts: merged.update(d) return merged
574d031463e108b17b7fddc947af52431bc9ddb9
71,872
from typing import Tuple def _get_physical_coordinates_of_z_plane(zrange: Tuple[float, float]): """Calculate the midpoint of the given zrange.""" physical_z = (zrange[1] - zrange[0]) / 2 + zrange[0] return physical_z
5db61f6cfb60c34fb00bd65905f7150f4a9fa727
71,877
def get_file_offset(vfp: int) -> int: """Convert a block compressed virtual file pointer to a file offset.""" address_mask = 0xFFFFFFFFFFFF return vfp >> 16 & address_mask
fbbca6bcf9fdcc95867d59a63ac6dbab877723f2
71,878
import struct import socket def ip_to_int(addr): """ Converts a ip address (string) to it's numeric representation (int) Example: >>> ip_to_int('127.0.0.1') 2130706433 """ return struct.unpack("!I", socket.inet_aton(addr))[0]
60068feeb0092a984972c32382df14a32533fa15
71,885
import binascii def _bytearray_to_b64_str(arr: bytearray) -> str: """Converts a bytearray to a base64 string.""" return binascii.b2a_base64(bytearray(arr)).strip().decode()
5019ff8fbcee41f9d302d549b06e95ff01f36817
71,893
def _temperature(temperature_register, farenheight=False): """Return the temperature in Celsius given the raw temperature register value. If farenheight is True, return the temperature in Farenheight. """ temp = (0xFF & (temperature_register >> 8)) + ((0x7 & (temperature_register >> 5)) / 8.0) if farenheight: temp = (((9 * temp) / 5.0) + 32) return temp
6d70f12bf76a6bab1d19c8668941f569954d3282
71,900
def _gaps_from(intervals): """ From a list of intervals extract a list of sorted gaps in the form of [(g,i)] where g is the size of the ith gap. """ sliding_window = zip(intervals, intervals[1:]) gaps = [b[0] - a[1] for a, b in sliding_window] return gaps
b3be47684d992c3828bbf03444b1d8bb4fb1e84e
71,904
def create_features(data): """Function that creates features for the model from the image. # Args data: Image (observation, height, width) # Returns Pixels on the radius of the images. """ data_features = data[:, 100, 100:201] return data_features
267339e300971b9f87d4dce21e86f86eb9910f1f
71,911
def get_string(data): """Get string ending with '\0'. Args: data: Data containing string. Returns: String without '\0'. """ ret = '' for c in data: if '\x00' == c: break ret += c return ret
97f66c89d4f1c282539c63bf31f83aa8e668925b
71,912
def get_summary_table(valid): """Optimize the summary table we potentially use. Args: valid (datetime with time zone): Datetime Returns: str table to query """ if valid is None: return "summary" if (valid.month == 12 and valid.day >= 30) or ( valid.month == 1 and valid.day < 3 ): return "summary" return f"summary_{valid.year}"
476950b7c1b2a03f3624a50ceb7450073550066b
71,915
def get_chain_tasks(chain_instance): """Get chain tasks Return list of tasks in chain """ return chain_instance.tasks
f41af29455260a2b4fcb306448cab32750e4c3b8
71,917
from pathlib import Path def is_directory_empty(dir_path: Path) -> bool: """Check if a directory is empty. Args: dir_path (Path): path to directory Returns: bool: True if empty, False otherwise """ assert ( dir_path.exists() ), f"The provided directory does not exist: '{dir_path}'." assert dir_path.is_dir(), f"Provide a directory path, not '{dir_path}'." return not any(Path(dir_path).iterdir())
09e4a1a9d1536b2d081ba7e5776e0b1f03cf1d25
71,919
def str_to_hexstr(s): """Convert a string into an hexadecimal string representation""" if type(s) is not str: s = chr(s) return ":".join("{:02x}".format(ord(c)) for c in s)
c3deb58d3c8951c45faf728240b418b4f78e151e
71,920
def _process_box(df): """ Perform basic processing on a box score - common to both methods Args: df (DataFrame): the raw box score df Returns: DataFrame: processed box score """ df.columns = list(map(lambda x: x[1], list(df.columns))) df.rename(columns = {'Starters': 'PLAYER'}, inplace=True) if 'Tm' in df: df.rename(columns = {'Tm': 'TEAM'}, inplace=True) reserve_index = df[df['PLAYER']=='Reserves'].index[0] df = df.drop(reserve_index).reset_index().drop('index', axis=1) return df
9a5bd3468dcc4aba303faffcd00a1504ce9d1750
71,923
def split_competition_name(long_name): """ Split a verbose competition name as a competition name and a weight. Return value ------------ (str, str) """ (name, weight) = long_name.rsplit(": ", 2) return ( name.rstrip(), weight[:-1].strip() )
75db6331c652f4a49417436628cefaf212e815e6
71,924
def as_key(key): """Strips any / prefix and/or suffix from a supplied key (path) string. Most uses of the asset path as a key (other than validation by is_path_allowed) expect any leading and trailing / URL path separators have been removed. """ return key.lstrip('/').rstrip('/')
a7f0518ace628eb23208a7838c6fa10a5ad94260
71,926
def check_indent(cdline): """ to check the indent of a given code line to get the number of starting blank chars, e.t. blankspaces and \t \t will be interpreted as 4 single blankspaces, e.t. '\t'=' ' Args: cdline(str) : a single line of code from the source file Returns: int : the indent of the number of interpreted blankspaces """ indent = 0 for c in cdline: if c == '\t': indent += 4 elif c == ' ': indent += 1 if c != ' ' and c != '\t': break return indent
2daddedd56aae5efa0622682643601da05dc4332
71,929
def extract_suffixed_keys(dictionary, suffix): """Returns a dictionary with all keys from :obj:`dictionary` that are suffixed with :obj:`suffix`. """ sub_dict = {} for key, value in dictionary.items(): if key.endswith(suffix): original_key = key[:-len(suffix)] sub_dict[original_key] = value return sub_dict
1d5eba2f6d79d35a1189bdb9d16642ba30f92452
71,934
def append_list_to_list_or_item(items1, items2): """ Append a list or a single item to a list or a single item :param items1: The list (or item) to append to :param items2: The list (or item) to be appended :return: The appended list """ if type(items1) is not list: items1 = [items1] if type(items2) is not list: items2 = [items2] return items1 + items2
9e3be44178e15348c527332e7d18bdefd05fc409
71,935
def get_path_lines(path_obj): """ return lines of text file from path obj """ with path_obj.open() as fh: lines = fh.readlines() return [line.rstrip() for line in lines]
165f14d9f4d36c6216537ce748848c7a64ca2c2e
71,941
import time def timed_message(message: str) -> str: """Adds time information before a message string. Args: message (str): Message string to print and wrap in time Returns: str: A time preceeded version of the message. """ t = time.localtime() now = time.strftime("%H:%M:%S", t) return f"{now} ---- {message}"
5f266e8b8c2797fbac5f6b1b5f904041f9575ec7
71,944
from typing import Sequence def reconstitute_einsum_formula(input_formulas: Sequence[str], output_formula: str) -> str: """Joins einsum input formulas and output formula into a complete formula.""" joined_input_formula = ','.join(input_formulas) return f'{joined_input_formula}->{output_formula}'
3a29212bf0130eaf10e964faf819b28cc35cf11a
71,946
def assign_y_height_per_read(df, phased=False, max_coverage=100): """Assign height of the read in the per read traces Gets a dataframe of read_name, posmin and posmax. Sorting by position, and optionally by phase block. Determines optimal height (y coordinate) for this read Returns a dictionary mapping read_name to y_coord """ if phased: dfs = df.sort_values(by=['HP', 'posmin', 'posmax'], ascending=[True, True, False]) else: dfs = df.sort_values(by=['posmin', 'posmax'], ascending=[True, False]) heights = [[] for i in range(max_coverage)] y_pos = dict() for read in dfs.itertuples(): for y, layer in enumerate(heights, start=1): if len(layer) == 0: layer.append(read.posmax) y_pos[read.Index] = y break if read.posmin > layer[-1]: layer.append(read.posmax) y_pos[read.Index] = y break return y_pos
d2723371fda2ccff7822b5a1cec7ed88f474c370
71,947
from datetime import datetime def find_weekday(time): """ find weekdays for time_two from time_one in weekday: day_one Arg: time: for example, 01/04/2010 Return: weekday: 1:Monday 2:Tuesday ... """ week=datetime.strptime(time,'%m/%d/%Y').weekday()+1 return (week)
e7b7176bd71bbed650d908edaac3af11ff649a7a
71,952
def sdss2decam(g_sdss, r_sdss, i_sdss, z_sdss): """ Converts SDSS magnitudes to DECam magnitudes Args: [griz]_sdss: SDSS magnitudes (float or arrays of floats) Returns: g_decam, r_decam, z_decam Note: SDSS griz are inputs, but only grz (no i) are output """ gr = g_sdss - r_sdss ri = r_sdss - i_sdss iz = i_sdss - z_sdss # - DESI-1788v1 equations 4-6 g_decals = g_sdss + 0.01684 - 0.11169*gr r_decals = r_sdss - 0.03587 - 0.14114*ri z_decals = z_sdss - 0.00756 - 0.07692*iz return g_decals, r_decals, z_decals
a0869eeb138c00eb30476dd34883eabe77066129
71,954
import glob def load_games(src): """ Takes a search string and returns a list of PNG string objects. Args: src (str): A search string that can be passed directly to ``glob.glob`` to return a list of files to open. e.g. ``data/*.pgn``. Returns: list: A list of string representations of the PGN files. """ all_games = [] filename_list = glob.glob(src) if len(filename_list) == 0: return None for filename in filename_list: with open(filename, "r") as f: all_games += [f.read()] return all_games
4f909c901391362e51121f00d30866a8572abcdc
71,958
def pairs2map( pairs, key_col=0, value_col=1): """Converts a list of key value pairs to a dictionary. @type pairs: array @param pairs: an array of key value paris, representing a map as a list of tuples. @type key_col: mixed @param key_col: the column that contains the key (default: 0) @type value_col: mixed @param value_col: the column that contains the value (default: 1) @rtype: dictionary @return: the key value pairs in pairs. """ m = {} for p in pairs: k = p[key_col] m[ k ] = p[value_col] return m
0e05988559669342eeaea3e68d3e6f329b6d36e8
71,963
from typing import Union def isfloat(val: Union[int, float, str]): """ Checks if the contents of a string is a float. :param val: String to parse :return: bool """ try: if isinstance(val, str): val.strip() float(val) return True except ValueError: return False
075bf2227d3620904a038a5462b0ae9797ec6aa5
71,964
def intersection(*args): """intersection prend en paramatre un nombre fini de listes. intersection fait l'intersection de listes python au sens des ensembles. exemple : intersection( [1,2,3], [2,3], [5,3,4]) == [3] #True intersection( [ (1,2), (3,4) ], [ (1,2), (2,2)] ) == [(1,2)] #True """ # On utilise les fonctions intersection et intersection_de_2 récursivement # pour faire faire l'intersection des n listes def intersection_de_2(l1, l2): """Fait l'intersection de deux listes python au sens des ensembles.""" resultat = [] for i in l1: if i in l2: resultat.append(i) return resultat if len(args) == 1: return args[0] elif len(args) == 2: return intersection_de_2(args[0], args[1]) return intersection(intersection_de_2(args[0], args[1]), *args[2:])
eacd713edb5487fddc765a5f720e3c62e8e60a57
71,969
def large_num_formatter(num, pos=None): """ Format large numbers using appropriate sufixes for powers of 1000 Parameters: num: (int): The tick value to be formatted pos: (int): Position of the ticker """ for unit in ['', 'mil', 'Mi.', 'Bi.']: if abs(num) < 1000.0: return "%3.1f %s" % (num, unit) num /= 1000.0 return "%.1f %s" % (num, 'Tri.')
34e2918615d35365b78194eb34ab0b4aaacfb028
71,972
def _plot_ids(ax, x, y, size, marker='.', color=None, **kwargs): """Plot points, return the used color""" # plot is faster than scatter, go figure... return ax.plot(x, y, color=color, markersize=size, marker=marker, linestyle='None', **kwargs)[0].get_color()
7e4dda2315005f576aff6d2d2746dd4dc3f8f807
71,983
def seginfo(segment_marker): """Convert segment marker to dictionary of segment info. For example, b'\xff\xe1' is converted to a dictionary with these key/value pairs: name: 'APP1', has_data: True, has_meta: True has_data = whether this segment type has a data size in bytes 3-4 and a data payload starting at byte 5; if False, then this segment type is justa 2-byte segment marker (e.g., SOI/EOI) has_meta = whether this segment type contains metadata to be retrieved (i.e., Exif/JFIF/XMP/other metadata). Most of these segment types are defined in Exif 2.3, and some additional information on other segment types can be found here: http://www.ozhiker.com/electronics/pjmt/jpeg_info/app_segments.html """ segdata = {b'\xff\x01':{'name':'ff01', 'has_data':False, 'has_meta':False}, b'\xff\xe0':{'name':'APP0', 'has_data':True, 'has_meta':True}, b'\xff\xe1':{'name':'APP1', 'has_data':True, 'has_meta':True}, b'\xff\xe2':{'name':'APP2', 'has_data':True, 'has_meta':True}, b'\xff\xe3':{'name':'APP3', 'has_data':True, 'has_meta':True}, b'\xff\xe4':{'name':'APP4', 'has_data':True, 'has_meta':True}, b'\xff\xe5':{'name':'APP5', 'has_data':True, 'has_meta':True}, b'\xff\xe6':{'name':'APP6', 'has_data':True, 'has_meta':True}, b'\xff\xe7':{'name':'APP7', 'has_data':True, 'has_meta':True}, b'\xff\xe8':{'name':'APP8', 'has_data':True, 'has_meta':True}, b'\xff\xe9':{'name':'APP9', 'has_data':True, 'has_meta':True}, b'\xff\xea':{'name':'APP10', 'has_data':True, 'has_meta':True}, b'\xff\xeb':{'name':'APP11', 'has_data':True, 'has_meta':True}, b'\xff\xec':{'name':'APP12', 'has_data':True, 'has_meta':True}, b'\xff\xed':{'name':'APP13', 'has_data':True, 'has_meta':True}, b'\xff\xee':{'name':'APP14', 'has_data':True, 'has_meta':True}, b'\xff\xef':{'name':'APP15', 'has_data':True, 'has_meta':True}, b'\xff\xfe':{'name':'COM', 'has_data':True, 'has_meta':False}, b'\xff\xc4':{'name':'DHT', 'has_data':True, 'has_meta':False}, b'\xff\xdb':{'name':'DQT', 'has_data':True, 'has_meta':False}, b'\xff\xdd':{'name':'DRI', 'has_data':True, 'has_meta':False}, b'\xff\xd9':{'name':'EOI', 'has_data':False, 'has_meta':False}, b'\xff\xd0':{'name':'RST0', 'has_data':False, 'has_meta':False}, b'\xff\xd1':{'name':'RST1', 'has_data':False, 'has_meta':False}, b'\xff\xd2':{'name':'RST2', 'has_data':False, 'has_meta':False}, b'\xff\xd3':{'name':'RST3', 'has_data':False, 'has_meta':False}, b'\xff\xd4':{'name':'RST4', 'has_data':False, 'has_meta':False}, b'\xff\xd5':{'name':'RST5', 'has_data':False, 'has_meta':False}, b'\xff\xd6':{'name':'RST6', 'has_data':False, 'has_meta':False}, b'\xff\xd7':{'name':'RST7', 'has_data':False, 'has_meta':False}, b'\xff\xc0':{'name':'SOF0', 'has_data':True, 'has_meta':False}, b'\xff\xc2':{'name':'SOF2', 'has_data':True, 'has_meta':False}, b'\xff\xd8':{'name':'SOI', 'has_data':False, 'has_meta':False}, b'\xff\xda':{'name':'SOS', 'has_data':True, 'has_meta':False}} if segment_marker in segdata: return segdata[segment_marker] else: # unknown segment marker hexname = ''.join('{:02x}'.format(char) for char in segment_marker) return {'name': hexname + '?', 'has_data': False, 'has_meta': False}
ff4f9778b9e0191eabfd52bb76042ee6d7c0215e
71,988
def _cat(fs, bundle_name): """Dump the contents of a bundle :param fs: A Disdat file system handle. :param bundle_name: The name of the bundle :return: the presentable contents of the bundle, if such contents exists """ return fs.cat(bundle_name)
c038ff16adf752fe32fd49322e3477e0bbf663bc
71,989
def hex_distance(h1, h2): """Get hexagonal distance (manhattan distance) of two hexagon points given by the hexagonal coordinates h1 and h2 Parameters ---------- h1 : int, int Hexagonal coordinates of point 1. h2 : int, int Hexagonal coordinates of point 2. Returns ------- float distance """ a1, b1 = h1 a2, b2 = h2 c1 = -a1-b1 c2 = -a2-b2 return (abs(a1 - a2) + abs(b1 - b2) + abs(c1 - c2)) / 2
d9ed78ef2d93acfb74e0b1c69f4b4cf79da96976
71,992
import math def area_triangle_sss(side1, side2, side3): """Returns the area of a triangle, given the lengths of its three sides.""" # Use Heron's formula s = (side1 + side2 + side3)/2.0 return math.sqrt(s * (s-side1) * (s-side2) * (s-side3))
b4f0ffd1646cbea000f446297cf3465d7ea9cd95
71,993
def get_diphone_wishlist(sentence_diphone_dict): """ get a wishlist of diphones in dictionary with diphone as key and number of occurrences as value :param sentence_diphone_dict: a dictionary with sentence key and diphones in that sentence :return: diphone_wishlist """ diphone_wishlist = {} # dictionary with diphones for k, v in sentence_diphone_dict.items(): for type in v: # making the wishlist for diphones if type in diphone_wishlist: diphone_wishlist[type] += 1 else: diphone_wishlist[type] = 1 return diphone_wishlist
e8712738d7699d1b3447119a48887289236d5113
71,994
import torch def cosine_similarity(feature): """ Input: feature: source points, [B, N, C] Output: dist: per-point cosine_similarity distance, [B, N, N] """ B, N, C = feature.shape feat = torch.matmul(feature, feature.permute(0, 2, 1)) # [B, N, N] norm = torch.sqrt(torch.sum(feature ** 2, -1)).view(B, N, 1) norm = torch.matmul(norm, norm.permute(0, 2, 1)) res = torch.div(feat, norm) return res
a32fb4a58633fc06a63b56bb3bfc88e9b859f05a
71,996
import math def R_coat(delta_coat, k_coat, radius, Theta): """ thermal resistance due to conduction through coating layer Parameters ---------- k_coat: float thermal conductivity of the coating in W/(mK) delta_coat: float thickness of the coating in m radius: float radius of drop in m Theta: float static contact angle in deg Returns ---------- R_coat: float thermal resistance due to conduction through coating layer in K/W """ R_coat = delta_coat / (k_coat*math.pi*radius**2*(math.sin(math.radians(Theta)))**2) return R_coat
fe60610ae93b41342fc107d471aa6aeb58e07797
72,001
def common_vector_root(vec1, vec2): """ Return common root of the two vectors. Args: vec1 (list/tuple): First vector. vec2 (list/tuple): Second vector. Usage example:: >>> common_vector_root([1, 2, 3, 4, 5], [1, 2, 8, 9, 0]) [1, 2] Returns: list: Common part of two vectors or blank list. """ root = [] for v1, v2 in zip(vec1, vec2): if v1 == v2: root.append(v1) else: return root return root
a272f2daaecdb2d79a803a1cf02fd0da5bb9e463
72,006
def get_channel_descriptions(model, channel_name=None): """ Returns a dictionary of channel descriptions for the given model :param model: the model :param channel_name: the channel name :return: dictionary of results, or None """ if not channel_name: return model.get_channel_descriptions() else: return model.get_channel_description(channel_name)
0018495b8d3275b3df8ea95c9b47a8a00c0617ac
72,010
import socket def scan_server(address, port): """Checks for a reachable port on an IP/host""" s = socket.socket() try: s.connect((address, port)) return True except socket.error: return False
8f484db99c5a49f105f449b6e0056589a57ac85f
72,013
import math def distance(ref_point_1, ref_point_2): """ Calculates straight line distance between two points (2d or 3d (tm)) Args: ref_point_1 (tm): Reference point 1 ref_point_2 (tm): Reference point 2 Returns: float: distance between points 1 and 2 """ try: d = math.sqrt((ref_point_2[0] - ref_point_1[0])**2 + (ref_point_2[1] - ref_point_1[1])**2 + (ref_point_2[2] - ref_point_1[2])**2) except: d = math.sqrt((ref_point_2[0] - ref_point_1[0])**2 + (ref_point_2[1] - ref_point_1[1])**2) return d
8a1d1881b2636a7686274675e78a8c15697af765
72,015
def encode_message(message, key = 4): """Encoding the message. Converts input string into a string containing Unicode code points. Parameters ---------- message : string String to be converted to code points key : int or float Number needed to encrpyt the message to a specific code point to later be accessed by another with the same key Return --------- encoded : string Result string containing the code points for input string. """ encoded = '' for character in message: unicodeVal = ord(character) unicodeVal = key+unicodeVal toReturn = chr(unicodeVal) encoded = encoded + toReturn return encoded
da5c0696836917f5d0f3a680144e48e75a3f04ee
72,018
def bit_read(data, position): """Returns the value of a single bit in a number. :param: data The number (bytearray) that contains the desired bit. :param: position The position of the bit in the number. :return: The bit value (True or False). """ byte_pos = int(position // 8) # byte position in number bit_pos = int(position % 8) # bit position in byte return bool((data[byte_pos] & (1 << bit_pos)) >> bit_pos)
1bc64d676bd9ee4786622d95141abd05a8266d8d
72,019
import torch def arap_R(Si): """ Given the covariance matrix Si, computes the ARAP rotation for point Pi Parameters ---------- Si : Tensor the (3,3,) tensor represeting the covariance matrix of point Pi Returns ------- Tensor a (3,3,) tensor representing the ARAP rotation matrix of point Pi """ U, _, V = torch.svd(Si) return torch.matmul(V, torch.t(U))
7d266f16d6ce46ce04c8bcb3b074d089800423b5
72,021
def scalar_pass_through(value): """Pass-through method for single scalar values. Parameters ---------- value: scalar Scalar cell value from a data frame row. Returns ------- scalar """ return value
d561b5b5a00c57cdf0a325204a346b77bc5a3e96
72,022