content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def type_id(id): """ Returns an OCD identifier's type ID. """ return id.rsplit(':', 1)[1]
14e2d42b7f3cf2fa8b2a749e07fa0f8ab57a3aaa
70,771
def parse(sentence): """ Removes everything but alpha characters and spaces, transforms to lowercase :param sentence: the sentence to parse :return: the parsed sentence """ # re.sub(r'([^\s\w]|_)+', '', sentence) # return sentence.lower()#.encode('utf-8') # re.sub("^[a-zA-Z ]*$", '', sentence.lower().replace("'", "")) whitelist = set('abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ') return ''.join(filter(whitelist.__contains__, sentence)).lower()
112bfd1048e9df97fcdcf400b261c260f2d76881
70,772
from typing import Dict from typing import Set def build_dependants(dependencies: Dict[str, Set[str]]) -> Dict[str, Set[str]]: """ Given a dependencies mapping, return the reversed dependants dictionary. """ dependants = {name: set() for name in dependencies.keys()} for child, parents in dependencies.items(): for parent in parents: dependants[parent].add(child) return dependants
054860b29e73980860fcd244ec50b34fdd322a09
70,773
def process_csv(csv): """ Normalize and select usefull columns ** return (Tuple (numpy array, numpy array, numpy array)) ** *train_features.shape : (n, 5) *train_targets.shape : (n) *test_features.shape : (n, 5) With n the numbers of rows """ # Replace None value by 0 csv = csv.fillna('Age', 0).fillna('Fare', 0) # Translate sex values with binary value (0 or 1) csv["sex"] = csv["Sex"].apply(lambda v : 1 if v == "male" else 0) # Normalize the age columns csv["age_normalize"] = (csv["Age"] - csv["Age"].mean()) /csv["Age"].std() # Normalize the faire columns csv["fare"] = (csv["Fare"] - csv["Fare"].mean()) /csv["Fare"].std() # We select the Survived columns and export it as a numpy array train_targets = csv[csv["type"] == "train"].select_columns(['Survived']).to_numpy() # We do the same for the features. For training features and for testing features train_features = csv[csv["type"] == "train"].select_columns(['sex', 'age_normalize', 'fare', 'SibSp', 'Parch']).to_numpy() test_features = csv[csv["type"] == "test"].select_columns(['sex', 'age_normalize', 'fare', 'SibSp', 'Parch']).to_numpy() return train_features, train_targets[:], test_features
bf748eedf916392f3c5889fee73a254dd3e9c038
70,774
def _parameters_exists_in_docstring(docstring: str) -> bool: """ Get boolean of whether Parater part exists in docstring or not. Parameters ---------- docstring : str Docstring to be checked. Returns ------- result_bool : bool If exists, True will be set. """ is_in: bool = 'Parameters\n ---' in docstring if not is_in: return False return True
d8aa9a6851218282b700e3d37921bf17a27ba5d7
70,778
def cats_game(board): """Checks if the any of the values in the board list has not been used""" if board[0][0] == 1 or board[0][1] == 2 or board[0][2] == 3 or \ board[1][0] == 4 or board[1][1] == 5 or board[1][2] == 6 or \ board[2][0] == 7 or board[2][1] == 8 or board[2][2] == 9: return False else: return True
a1b029fea65d05c6c3b26c6c2cce151ca7aa4517
70,779
def new_mdecl_wrapper_t__getitem__(self,index): """Provide access to declaration. If passed a standard index, then return contained decl. Else call the getitem method of the contained decls. """ if isinstance(index, (int, slice)): return self.declarations[index] else: return self.__getattr__("__getitem__")(index)
134b22dcc18362d4564ea3895492baa51e9d6405
70,784
def get_batch_inds(batch_size, idx, N): """ Generates an array of indices of length N :param batch_size: the size of training batches :param idx: data to split into batches :param N: Maximum size :return batchInds: list of arrays of data of length batch_size """ batchInds = [] idx0 = 0 toProcess = True while toProcess: idx1 = idx0 + batch_size if idx1 >= N: idx1 = N toProcess = False batchInds.append(idx[idx0:idx1]) idx0 = idx1 return batchInds
780ec20e98ec30141eaace50191983d610482545
70,790
def format_cdr_properties( geometries, densities, id_col_name="tower_id", density_col_name="density" ): """ Converts the format of additional CDR properties from being in a DataFrame to being in a dictionary indexed by the tower node id Args: geometries (dict): object where the keys are the node id and the value is an object with the geometry and the area. densities (Pandas.DataFrame): DataFrame with column with node id and corresponding density of visitors at that node id_col_name (string): Name of the densities DataFrame column for node id density_col_name (string): Name of the densities DataFrame column for density. Returns: (dict): object with a key for each tower node id and a value that is an object with values for area and density of that node """ props = {} ids = densities[id_col_name].unique() for tower_id in ids: area = None tower_id = str(int(tower_id)) if tower_id in geometries: area = geometries[tower_id]['area'] density = None densities[id_col_name] = densities[id_col_name].apply(int).apply(str) if area is not None and area > 0: densities[density_col_name] = densities[density_col_name] / area maximum = densities[density_col_name].max() densities[density_col_name] = densities[density_col_name] / maximum first_match = densities[densities[id_col_name] == tower_id].head(1) if not first_match.empty: density = first_match[density_col_name].iloc[0] props[tower_id] = {'area': area, 'density': density} return props
23c92dacd6eb8c329167429946c2d6550027e08c
70,791
def simplify_edge_attribute_name(G, key, name_list, simple_name): """ Simplify an arbitrary list of name values for a given key into one. Parameters ---------- G : networkx Graph/DiGraph/MultiGraph/MultiDiGraph/... Graph where we want to simplify an attribute. key : str Name of the edges' attributes. name_list : list List of values for the given attribute we want to merge into one. simple_name : str Name for the fusion of every values in the given list. Returns ------- G : networkx Graph/DiGraph/MultiGraph/MultiDiGraph/... Graph with the modified attribute. """ G = G.copy() for edge in G.edges: if key in list(G.edges[edge].keys()): if G.edges[edge][key] in name_list: G.edges[edge][key] = simple_name return G
0e5a95c7c39d300eb51434eb66148331c4037a66
70,792
def myfuncPrimeSieve(n): """ This function generates and returns prime numbers from 2 up to n via the Sieve of Eratosthenes algorithm. Example of usage: getAns = myfuncPrimeSieve( 20 ) print(getAns) """ thelist = list(range(3, n, 2)) #generates odd numbers starting from 3 theprimes = [2] while thelist: # True as long as list thelist has elements temp = thelist.pop(0) theprimes = theprimes + [temp] if (temp*temp > n): theprimes = theprimes + thelist thelist = [] else: for x in thelist: if (x % temp) == 0: thelist.remove(x) return theprimes
abef8a3d3f3c921840caa17bdf9b900cc230a617
70,793
def create_regular_grid(area_defn, tile_size, stride=None): """ Defines a regular grid of (overlapping) tiles. :param area_defn: dictionary, defines one or multiple rectangularly-shaped geographic regions from which DSM patches will be sampled. The dictionary is composed of the following key-value pairs: x_extent: list of n tuples, where n denotes the number of rectangular regions (stripes). Each tuple defines the upper-left and lower-right x-coordinate of a rectangular region (stripe). y_extent: list of n tuples, where n denotes the number of rectangular regions (stripes). Each tuple defines the upper-left and lower-right y-coordinate of a rectangular region (stripe). Assumption: The i.th tuple of x_extent and i.th tuple of y_extent define a geographically rectangular region (stripe). :param tile_size: int, tile size in pixels :param stride: int, stride in pixels (if None: stride equals tile_size) :return tile_position: list of tuples, i.th tuple (uly, ulx) specifies the upper-left image coordinates of the i.th tile (w.r.t. the full raster) :return region_wo_overlap: list of tuples, i.th tuple (uly, ulx, lry, lrx) specifies the pixels of the i.th tile that do not overlap with any other tile """ if stride is None: stride = tile_size tile_position = [] region_wo_overlap = [] # Number of regions specified in area_defn num_regions = len(area_defn['x_extent']) # Iterate over each region for i in range(num_regions): # Extent of the i.th region x = area_defn['x_extent'][i] y = area_defn['y_extent'][i] # Upper-left coordinates of the tile (w.r.t. full raster) uly = y[0] lry = y[0] # Initialization border_uly = 0 border_lry = stride - 1 # Split the i.th region into a grid of regular tiles while lry < y[1]: # Initialization ulx = x[0] lrx = x[0] border_ulx = 0 border_lrx = stride - 1 # Compute the lower-right y-coordinate of the tile lry = uly + tile_size - 1 # Check if the tile overlaps the region (in y-direction): if yes, shift the tile upwards such that its # lower border coincides with the lower border of the region if lry >= y[1]: border_uly += lry - y[1] lry = y[1] uly = y[1] - tile_size + 1 border_lry = tile_size - 1 while lrx < x[1]: # Compute lower-right x-coordinate of the tile lrx = ulx + tile_size - 1 # Check if the tile overlaps the area (in x-direction): if yes, shift the tile to the left such that # its right border coincides with the right border of the region if lrx >= x[1]: border_ulx += lrx - x[1] lrx = x[1] ulx = x[1] - tile_size + 1 border_lrx = tile_size - 1 # Save the upper-left corner coordinates of the tile tile_position.append((int(uly), int(ulx))) # Save the pixels of the tile that do not overlap with any other tile region_wo_overlap.append((int(border_uly), int(border_ulx), int(border_lry), int(border_lrx))) ulx += stride border_ulx = tile_size - stride uly += stride border_uly = tile_size - stride return tile_position, region_wo_overlap
9ca35a48b882243ba50e68c2bf0c9e50099fb2ef
70,796
import torch def sum_hessian(loss, hidden): """Given scalar tensor 'loss' and [b, d] batch of hidden activations 'hidden', computes [d, d] size sum of hessians for all entries in the batch. We make use of the fact that grad^2(f) = grad(grad(f)) and that sum of grads = grad of sum. So, sum(grad^2(f)) is computed as grad(sum(grad(f))). """ d = hidden.size(1) grad = torch.autograd.grad(loss, hidden, retain_graph=True, create_graph=True)[0] sum_grad = torch.sum(grad, dim=0) hessian = hidden.new_zeros(d, d) for i in range(d): hessian[i, :] = torch.autograd.grad(sum_grad[i], hidden, retain_graph=True)[0].sum(dim=0) return hessian
3e8ec30561568652cf403ab10ec2d353708370c2
70,798
def standard_codec_name(name: str) -> str: """ Map a codec name to the preferred standardized version. The preferred names were taken from this list published by IANA: U{http://www.iana.org/assignments/character-sets/character-sets.xhtml} @param name: Text encoding name, in lower case. """ if name.startswith("iso8859"): return "iso-8859" + name[7:] return { "ascii": "us-ascii", "euc_jp": "euc-jp", "euc_kr": "euc-kr", "iso2022_jp": "iso-2022-jp", "iso2022_jp_2": "iso-2022-jp-2", "iso2022_kr": "iso-2022-kr", }.get(name, name)
e9f30c9cb9da065f300900923e9b9ce5bac255e9
70,801
def price_change_color_red_green(val: str) -> str: """Add color tags to the price change cell Parameters ---------- val : str Price change cell Returns ------- str Price change cell with color tags """ val_float = float(val.split(" ")[0]) if val_float > 0: return f"[green]{val}[/green]" return f"[red]{val}[/red]"
dedfaff32d88141af69d70e636c84191ebf24707
70,803
def minimize_attachment(attachment, doc_id): """ Takes an attachment obtained from a document in an experiment object and strips it down to a subset of desired fields. The document @id, given by doc_id, is prepended to the attachment href. """ minimized_attachment = {} for key in ('md5sum', 'href'): if key in attachment: if key == 'href': minimized_attachment[key]=doc_id + attachment[key] elif key == 'md5sum': minimized_attachment[key] = attachment[key] return minimized_attachment
7e6b8dfbf53f840e6b46a2aa8acb1b7e1017fa46
70,804
def is_container(obj): """Check if `object` is a list or a tuple. Args: obj: Returns: True if it is a *container*, otherwise False """ return isinstance(obj, (list, tuple))
09db5b1d136b6db1969097d19f7d63d1750971ab
70,805
import re def is_uid(string): """Return true if string is a valid DHIS2 Unique Identifier (UID)""" return re.compile('^[A-Za-z][A-Za-z0-9]{10}$').match(string)
9e1c1d8dc2697a8535018b15662a69edfdbc8eaf
70,821
def split_list_with_len(lst: list, length: int): """ return a list of sublists with len == length (except the last one) """ return [lst[i:i + length] for i in range(0, len(lst), length)]
1133a7948e0ff37e3c1652ddeb266a9e8eb94f79
70,822
import json def read_json(json_file="json_file_not_specified.json"): """ Reads a json file and it returns its object representation, no extra checks are performed on the file so, in case anything happens, the exception will reach the caller :param json_file: path to the file in json format to read :return: an object representation of the data in the json file """ with open(json_file) as jf: return json.load(jf)
a75a97bac175ff05d648f9c32cd066529be6906c
70,828
from typing import List import re def board_is_nrf(content: List[str]) -> bool: """Check if board is nRF based. Args: content: DT file content as list of lines. Returns: True if board is nRF based, False otherwise. """ for line in content: m = re.match(r'^#include\s+(?:"|<).*nrf.*(?:>|").*', line) if m: return True return False
c8b83127d142c5512b4e8129beecd6410f6bbce3
70,829
def get_jvm_class(cl): """Builds JVM class name from Python class """ return 'org.apache.{}.{}'.format(cl.__module__[2:], cl.__name__)
7569f5be6768f87a347c7b84fb358f3e7fd9ef38
70,838
def client(app, db): """Return a Web client, used for testing, bound to a DB session.""" return app.test_client()
da1265c0a693316e9892a098be1ebb1043860902
70,839
def index(item, seq): """Helper function that returns -1 for non-found index value of a seq""" if item in seq: return seq.index(item) else: return -1
85b50e1e66c050f5072ce834672b130c7a7f0a46
70,840
from typing import Dict import requests def get_json(url: str) -> Dict: """Get JSON from remote URL. """ response = requests.get(url) return response.json()
7a62fd2417a1b80979dc8eccebce41dc4d9cc2e1
70,843
def get_span(tag): """Returns a (start, end) extent for the given extent tag.""" return tag.attrib['start'], tag.attrib['end']
06f16e78b60b98065012cf3fdc19bfccf3625fb8
70,847
import getpass def host_username() -> str: """Get the current username from the OS.""" return getpass.getuser()
cc2eac760d30f61832349568eec27e339602f093
70,849
def borehole_thermal_resistance(pipe, m_flow_borehole, cp_f): """ Evaluate the effective borehole thermal resistance. Parameters ---------- pipe : pipe object Model for pipes inside the borehole. m_flow_borehole : float Fluid mass flow rate (in kg/s) into the borehole. cp_f : float Fluid specific isobaric heat capacity (in J/kg.K) Returns ------- R_b : float Effective borehole thermal resistance (m.K/W). """ # Coefficient for T_{f,out} = a_out*T_{f,in} + [b_out]*[T_b] a_out = pipe.coefficients_outlet_temperature( m_flow_borehole, cp_f, nSegments=1)[0].item() # Coefficient for Q_b = [a_Q]*T{f,in} + [b_Q]*[T_b] a_Q = pipe.coefficients_borehole_heat_extraction_rate( m_flow_borehole, cp_f, nSegments=1)[0].item() # Borehole length H = pipe.b.H # Effective borehole thermal resistance R_b = -0.5*H*(1. + a_out)/a_Q return R_b
36d3c0c484d892843ccd56750c0d7fa95468abe0
70,852
import re def getidtype(identifier): """ try and determine the type of identifier given """ # is the string an inchikey? m = re.search('^[A-Z]{14}-[A-Z]{10}-[A-Z]$', identifier) if m: return "inchikey" # is the string an inchi? n = re.search('^InChI=1S?/', identifier) if n: return "inchi" # is the string a CASRN? o = re.search('^[0-9]{2,7}-[0-9]{2}-[0-9]$', identifier) if o: return "casrn" # is the string a ChEMBL ID? p = re.search('^CHEMBL[0-9]+$', identifier) if p: return "chemblid" # is the string a DSSTOX ID? q = re.search('^DTXSID[0-9]+$', identifier) if q: return "dsstox" return "other"
f853d512029b0034e9657a7260b233f3b9a9303e
70,855
def compute_metrics(outputs, targets, metrics, ids=None): """ Computes the evaluation metrics for the given list of output and target images. :param outputs: list of output images :param targets: list of gold standard images :param metrics: dictionary containing each metric as {metric_name: metric_function}, the metric function must have two arguments as ``metric_function(output, target)``. :param ids: (Optional) list of image identifiers :return: list of dictionaries containing the metrics for each given sample :Example: >>> outs = [np.asarray([[0, 1, 0, 1]]), np.asarray([[0, 0, 1, 1]])] >>> tgts = [np.asarray([[0, 0, 1, 1]]), np.asarray([[0, 0, 1, 1]])] >>> compute_metrics(outs, tgts, metrics={'dsc': niclib.metrics.dsc, 'acc': niclib.metrics.accuracy}) [{'id': '0', 'dsc': 0.5, 'acc': 0.5}, {'id': '1', 'dsc': 1.0, 'acc': 1.0}] """ assert len(outputs) == len(targets), 'len(outputs):{} != len(targets):{}'.format(len(outputs), len(targets)) assert isinstance(metrics, dict), 'Provide metrics as a dictionary containing {metric_name: metric_function}' all_metrics = [] for n, (output, target) in enumerate(zip(outputs, targets)): case_metrics = {'id': str(n) if ids is None else ids[n]} for metric_name, metric_func in metrics.items(): case_metrics.update({metric_name: metric_func(output, target)}) all_metrics.append(case_metrics) return all_metrics
348b26b71e36701cbd319a18db5bc2d1597beee7
70,856
def get_file_contents_as_string(filepath): """ Read a file and returns its contents as one big string. """ ret = [] with open(filepath, 'r') as infile: for line in infile.readlines(): ret.append(line) ret = "".join(ret) return ret
9370958576a10cb4c2cd0efd98045bd2d7b156bc
70,857
def mkpad(items): """ Find the length of the longest element of a list. Return that value + two. """ pad = 0 stritems = [str(e) for e in items] # cast list to strings for e in stritems: index = stritems.index(e) if len(stritems[index]) > pad: pad = len(stritems[index]) pad += 2 return pad
8c9d69431116827d2bd0eaac72d1c54a3997c890
70,858
def DFToXY(dataframe): """ Divide a dataframe producted by BuildDataFrames methode between features and labels Parameters ---------- dataframe : pandas DataFrame dataframe with features and labels Returns ------- x : pandas DataFrame dataframe of features. y : pandas Series labels """ y = dataframe["Label"] x = dataframe.drop("Label", axis = 1) return x, y
f74680438f2e31c1ad581b3ae31fd713cbfce0aa
70,861
def get_assignment_detail(assignments): """ Iterate over assignments detail from response. :param assignments: assignments detail from response. :return: list of assignment elements. """ return [{ 'ID': assignment.get('id', ''), 'FirstName': assignment.get('firstName', ''), 'LastName': assignment.get('lastName', ''), 'ReceiveEmails': assignment.get('receiveEmails', ''), 'Email': assignment.get('email', ''), 'Username': assignment.get('username', '') } for assignment in assignments]
a0e61908386c3972cae84912d5eb3c181b6b7ed5
70,862
import hashlib def make_password(service_provider_id, service_provider_password, timestamp): """ Build a time-sensitive password for a request. """ return hashlib.md5( service_provider_id + service_provider_password + timestamp).hexdigest()
eb68df2bdc5aac51f84341df085bf9320057eebb
70,864
def PyMapping_Items(space, w_obj): """On success, return a list of the items in object o, where each item is a tuple containing a key-value pair. On failure, return NULL. This is equivalent to the Python expression o.items().""" return space.call_function(space.w_list, space.call_method(w_obj, "items"))
dec1501c5a1632e49bb7cddafa6a8cbe4802b3d9
70,871
def is_present(marks, text): """ return True, if all marks present in given text """ return all([mark in text for mark in marks])
0ea198520b1e46f1c9b26a9533e0785140348776
70,873
import csv def read_csv(f, Model): """ Given a CSV file with a header, read rows through `Model` function. Returns generator function. """ reader = csv.reader(f, dialect="excel") next(reader, None) # skip the header row return (Model(row) for row in reader)
e7b247947aa882ba5feb317898d4629b9a420752
70,875
def is_2d(fs): """Tests wether a function space is 2D or 3D""" return fs.mesh().geometric_dimension() == 2
24dadb7ff6f6810a0ee9cfbc496bf41050270425
70,879
def indent_lines(s, indent=4, skip=0): """Indents the lines in the given string. Args: s: the string indent (4): the number of spaces to indent skip (0): the number of lines to skip before indenting Returns: the indented string """ lines = s.split("\n") skipped_lines = lines[:skip] if skipped_lines: skipped = "\n".join(skipped_lines) else: skipped = None indent_lines = lines[skip:] if indent_lines: indented = "\n".join((" " * indent) + l for l in indent_lines) else: indented = None if skipped is not None and indented is not None: return skipped + "\n" + indented if skipped is not None: return skipped if indented is not None: return indented return s
f21d1cbff97c1d45a5ab46e6521a403539225440
70,880
import numbers def discrete_signal(signal, step_size): """Discretize signal Parameters ---------- signal: pd.Series Signals for betting size ranged [-1, 1] step_size: float Discrete size Returns ------- pd.Series """ if isinstance(signal, numbers.Number): signal = round(signal / step_size) * step_size signal = min(1, signal) signal = max(-1, signal) else: signal = (signal / step_size).round() * step_size signal[signal > 1] = 1 signal[signal < -1] = -1 return signal
183af7cf6ca30daaebb44b0d41c860b001109136
70,887
def compute_strati_ratio(T, S, alpha, beta, grid): """ Compute the stratification ratio R = (alpha * dT/dz + beta * dS/dz) / (alpha * dT/dz - beta * dS/dz) """ dT_dz = -grid.derivative( T, axis="Z", boundary="extend" ) # - sign to take z in the right direction dS_dz = -grid.derivative(S, axis="Z", boundary="extend") R = (alpha * dT_dz + beta * dS_dz) / (alpha * dT_dz - beta * dS_dz) return R
ead5554c467a9dd876aa15914f806993c888d06f
70,889
def readfile(openedfile): """Read the contents of a file.""" openedfile.seek(0) return str(openedfile.read())
c8be0033794c5316381045a492c666fb90fdc378
70,891
import itertools def Flatten(x: list) -> list: """Flatten a list.""" return list(itertools.chain.from_iterable(x))
e7504a7f85eed2b81609c7fbfd46c45555ce7118
70,892
def dotproduct(X, Y): """Return the sum of the element-wise product of vectors X and Y.""" return sum(x * y for x, y in zip(X, Y))
8c2f515c63cae018e4065c2913b610045c9e0f00
70,898
def seconds_to_MMSS_colon_notation(sec): """Convert integer seconds into MM:SS colon format. If sec=121, then return '02:01'. """ assert isinstance(sec, int) and sec <= 99*60 + 59 and sec >= 0 return '%02d:%02d' % (int(sec/60.0), sec % 60)
6716dea4c3c9885fc056bf61d2d3366f7e13c7d3
70,906
def parse_fasta(fh): """Parses a RefSeq fasta file. Fasta headers are expected to be like: >NR_165790.1 Tardibacter chloracetimidivorans strain JJ-A5 16S ribosomal RNA, partial sequence Args: fh: filehandle to the fasta file Returns: A fasta_dict like {'name': ['seq1', 'seq2'], etc. } """ fasta_dict = {} current_header = '' for line in fh: line = line.strip() if line.startswith('>'): # it's a header line current_header = line[1:] # Add current species to dict if it doesn't exist if not current_header in fasta_dict: fasta_dict[current_header] = [''] else: # add a new entry for this species fasta_dict[current_header].append('') else: # Sequence line fasta_dict[current_header][-1] += line return fasta_dict
22340a0c526085ef3280d460f654d0914f08b7b2
70,907
def max_available_power_rule(mod, prj, tmp): """ **Constraint Name**: GenVarStorHyb_Max_Available_Power_Constraint **Enforced Over**: GEN_VAR_STOR_HYB_OPR_TMPS Power provision plus upward services cannot exceed available power, which is equal to the available capacity multiplied by the capacity factor plus the net power from storage. """ return mod.GenVarStorHyb_Provide_Power_MW[prj, tmp] \ + mod.GenVarStorHyb_Upward_Reserves_MW[prj, tmp] \ <= mod.GenVarStorHyb_Available_Power_MW[prj, tmp] \ + mod.GenVarStorHyb_Discharge_MW[prj, tmp] \ - mod.GenVarStorHyb_Charge_MW[prj, tmp]
17f6c9ff570b15bafc49272599cfbe5832b8e62d
70,910
def reward(total_reward, percentage): """ Reward for a problem with total_reward done to percentage. Since the first a few test cases are generally very easy, a linear approach will be unfair. Thus, the reward is given in 20:80 ratio. The first 50% gives 20% of the reward, and the last 50% gives 80% of the reward. Thus, if percentage <= 0.5, then the percentage of reward given is: 0.2 * (percentage / 0.5) = 0.4 * percentage And if percentage >= 0.5, then the weighed percentage is: 0.2 + 0.8 * ((percentage - 0.5) / 0.5)) = 1.6 * percentage - 0.6 """ percentage /= 100 if percentage <= 0.5: weighed_percentage = 0.4 * percentage else: weighed_percentage = 1.6 * percentage - 0.6 return round(total_reward * weighed_percentage)
957b0248d44c8033ceaf852e2780224f3fb379f9
70,918
def load_dat(filename: str) -> list: """ Loads the contents of the DAT data file into a list with each line of the file into an element of the list. """ with open(file = f'{filename}.dat', mode = u'r') as dat_file: return dat_file.read().split(u'\n')
25f13fedb8bb0d2927e794b20691c648b8502bc5
70,920
def bps_mbps(val: float) -> float: """ Converts bits per second (bps) into megabits per second (mbps). Args: val (float): The value in bits per second to convert. Returns: float: Returns val in megabits per second. Examples: >>> bps_mbps(1000000) 1.0 >>> bps_mbps(1129000) 1.13 """ return round(float(val) / 1000000, 2)
13520e00c393a647ccdc2ba0021445970e169fd2
70,921
def check_consistency_names_grounding_dict(grounding_dict, names_map): """Check that a grounding dict and names map have consistent names """ groundings = {grounding for grounding_map in grounding_dict.values() for grounding in grounding_map.values() if grounding != 'ungrounded'} return groundings == set(names_map.keys())
a406225485d4d121da86eada198a913724d22bec
70,923
def checkNoneOption(value): """ Check if a given option has been set to the string 'None' and return None if so. Otherwise return the value unchanged """ if value is None: return value if value == 'None': return None if isinstance(value, list): if len(value) == 1 and value[0] == 'None': return None return value
5ba1c9da12ecdb3f6d9562bac4017934c66393a3
70,925
import re def get_jinja_variables(text): """Gets jinja variables Args: line (string): text to get jinja variables Returns: [list]: returns list of jinja variables """ variables = [] regex_pattern = regex_pattern = re.compile( "(\\{{)((.|\n)*?)(\\}})", re.MULTILINE) for line in regex_pattern.finditer(text): variables.append(line.group(2)) return variables
2a68851ff318a2de8072466e14305caf64d7d65b
70,928
def true_s2l(value: float) -> float: """Convert SRGB gamma corrected component to linear""" if value <= 0.04045: return value / 12.92 return ((value + 0.055) / 1.055) ** 2.4
0e0a4123589397a0ee246b1bc12ccaaf550aaea4
70,931
def freeze(obj): """Freeze a state (dict), for memoizing.""" if isinstance(obj, dict): return frozenset({k: freeze(v) for k, v in obj.items()}.items()) if isinstance(obj, list): return tuple([freeze(v) for v in obj]) return obj
0cd224d292dbf2f5835b4154d894755ca652be13
70,933
def get_item(dictionary, index): """Returns a value from a dictionary""" return dictionary.get(index)
5134ab38a3d33f995a9f6358aa1949865c0c820c
70,935
def dist(p1, p2): """Distance between p1 and p2""" return abs(p2 - p1)
6b59fd1354b1f01cfe67bf73ca1d9db3aa7689af
70,939
import torch def _convert_boxes_to_roi_format(boxes): """ Convert rois into the torchvision format. :param boxes: The roi boxes as a native tensor[B, K, 4]. :return: The roi boxes in the format that roi pooling and roi align in torchvision require. Native tensor[B*K, 5]. """ concat_boxes = boxes.view((-1, 4)) ids = torch.full_like(boxes[:, :, :1], 0) for i in range(boxes.shape[0]): ids[i, :, :] = i ids = ids.view((-1, 1)) rois = torch.cat([ids, concat_boxes], dim=1) return rois
72ce30f5d7a92b3a09eb692c88f610da26b1edeb
70,941
async def get(spfy, session, url): """ Makes a request to the Spotify API with the appropriate OAuth headers. :return: the json object for the response """ headers = { **spfy._auth_headers(), "Content-type": "application/json" } async with session.get(url, headers=headers) as resp: response = await resp.json() return response
e56486f0a85ada9c090439bd7a30503e47d33488
70,942
def _get_favorites(request): """ Gets the favorite articles' ids from request.user Input: request @return: <list> List of article ids """ # rows = [{'id': 2}, {'id': 4} ... ] (A list of article ids) rows = request.user.favorite_article.values('id') # favorites = [2, 4, ...] using list comprehension favorites = [row['id'] for row in rows] return favorites
42a8025aeb0c5b2847344c21c66a17f3c386ab70
70,949
def read_igor_J_gene_parameters(params_file_name): """Load raw genJ from file. genJ is a list of genomic J information. Each element is a list of three elements. The first is the name of the J allele, the second is the genomic sequence trimmed to the CDR3 region for productive sequences, and the last is the full germline sequence. For this 'raw genJ' the middle element is an empty string to be filled in later. Parameters ---------- params_file_name : str File name for a IGOR parameter file. Returns ------- genJ : list List of genomic J information. """ with open(params_file_name, 'r') as params_file: J_gene_info = {} in_J_gene_sec = False for line in params_file: if line.startswith('#GeneChoice;J_gene;'): in_J_gene_sec = True elif in_J_gene_sec: if line[0] == '%': split_line = line[1:].split(';') J_gene_info[split_line[0]] = [split_line[1], int(split_line[2])] else: break genJ = [[]]*len(list(J_gene_info.keys())) for J_gene in list(J_gene_info.keys()): genJ[J_gene_info[J_gene][1]] = [J_gene, '', J_gene_info[J_gene][0]] return genJ
b853081955db529c8f7b7db9491f7631902deb23
70,951
def import_class(model_name): """ Imports a predefined detection class by class name. Args: model_name: str Name of the detection model class (example: "MmdetDetectionModel") Returns: class_: class with given path """ module = __import__("sahi.model", fromlist=[model_name]) class_ = getattr(module, model_name) return class_
cd4a8d4fd29e8977e3800d64487dabd0158363d5
70,952
def _join_codes(fg, bg): """Join `fg` and `bg` with ; and surround with correct esc sequence.""" colors = ';'.join(filter(lambda c: len(c) > 0, (fg, bg))) if colors: return '\x1b[' + colors + 'm' return ''
88e8bc886f100113dcf2221b5827f0acf5c76845
70,954
import math def identityProbability(gs: int, mr: float = 1e-08) -> float: """Return the probabilty for a sequence to not change over n generations of evolution. **Keyword arguments:** gs -- number of generations mr -- mutation rate (default is 1e-08) """ return math.pow(1-mr, gs)
c8be5ef9c459e709482b69c0f4d7ace64364b639
70,958
def RegionPack(region_id, center=None, verts=None): """ This function packs a region_id and the constructor overrides for that Region into a tuple. Only center or verts can be overridden currently and only one of those per Region. The resulting tuple looks like: (region_id, {region_constructor_args}) """ region_args = {} if center != None: assert verts is None region_args['center'] = center if verts != None: assert center is None region_args['verts'] = verts return (region_id, region_args)
cdf023f41b877c1ab213552a3bc8c7a38bc1a7ec
70,959
from typing import Callable def pushcall(call: Callable, from_other_thread: bool = False) -> None: """pushcall(call: Callable, from_other_thread: bool = False) -> None Pushes a call onto the event loop to be run during the next cycle. Category: General Utility Functions This can be handy for calls that are disallowed from within other callbacks, etc. This call expects to be used in the game thread, and will automatically save and restore the ba.Context to behave seamlessly. If you want to push a call from outside of the game thread, however, you can pass 'from_other_thread' as True. In this case the call will always run in the UI context on the game thread. """ return None
b56b8d63bd265010e5daf94ee46e59bd194c13bf
70,961
def splitIntoSingleMutations(mutation): """ split multiple mutation into single mutation list, e.g. 'A:N25R/A:N181D' -> ['A:N25R', 'A:N181D'] """ single_mutations = [] start = 0 for i in range( len(mutation) ): if mutation[i] == '/': single_mutations.append(mutation[start:i]) start = i+1 single_mutations.append(mutation[start:]) return single_mutations
33edaa51b99b50d7b8b74c7f55157a4389db4a2f
70,969
import re def freeze_vars(variables, pattern): """Removes backbone+fpn variables from the input. Args: variables: all the variables in training pattern: a reg experession such as ".*(efficientnet|fpn_cells).*". Returns: var_list: a list containing variables for training """ if pattern: variables = [v for v in variables if not re.match(pattern, v.name)] return variables
23de336ea09e2b054930c575f5c99af0fbcd82b6
70,970
from typing import AsyncGenerator from typing import Optional from typing import Callable from typing import List async def async_list( gen: AsyncGenerator, filter: Optional[Callable] = None) -> List: """Turn an async generator into a here and now list, with optional filter.""" results = [] async for x in gen: if filter and not filter(x): continue results.append(x) return results
f9b984fd27fc33fa907738c8cd9dfd7c2d86c05c
70,978
def scale_census_variables(census): """ Function to scale Men, Women, Employed and Citizen variables in census by TotalPop to get a percentage. Input: dataframe of census data. Output: dataframe of census data scaled to population (%). """ census.Men = 100*census.Men/census.TotalPop census.Women = 100*census.Women/census.TotalPop census.Citizen = 100*census.Citizen/census.TotalPop census.Employed = 100*census.Employed/census.TotalPop return census
39dae100f2121732fe5f0d91f47a598dbfef092c
70,980
def make_tag_dict(tag_list): """Returns a dictionary of existing tags. Args: tag_list (list): a list of tag dicts. Returns: dict: A dictionary where tag names are keys and tag values are values. """ return {i["Key"]: i["Value"] for i in tag_list}
3432db43ac28c19d3abb0b8de03e0ad229a761a0
70,981
def create_translation_fieldname(translation): """ Description: Generates a unique fieldname based on a given Translation instance Args: translation (Translation): Translation instance from our Translation model Returns: str: The generated field name """ field = translation.item.field.name language = translation.language.name fieldname = "{} in {} (id={})".format(field, language, translation.id) return fieldname
de567834d710469c5b05f7427b8c6cc678f463ee
70,982
def shift_within_range(value, min, max, reverse=False): """Shift numeric value within range.""" values = range(min, max + 1) if reverse: index = values.index(value) - 1 else: index = values.index(value) + 1 return values[index % len(values)]
a8ffb3abfa7fb598e28359b5e38ac56859e3b551
70,983
def default_error_handler(exc: Exception) -> str: """Default string formatting exception handler.""" return str(exc)
89df06d69055fdf9704ff573f141aba40dc39d58
70,984
def tcp_encode(string: str) -> bytes: """Encode string to TCP message.""" return string.encode() + b'\r\n'
66715f6547b883394fbfea80edfde6b48b060825
70,989
def buildNameCountry(cfile): """ Take an open .csv file with format country, username and create a dictionary indexed by username with value country """ retDict = {} for [country, username] in cfile: retDict[username] = country return retDict
dbaf6b343b896c405aeb36b958cd2cdcad64c712
70,990
def number_split(num): """ 12345678 => 12,345,678 :param num: the number needs to be formulated :return: the string converted from formulated number """ return '{:,}'.format(int(num))
a7cc03733d6ef9ae031d4fa8f2094c04260bd94c
70,991
def param_undefined_info(param_name, default_value): """ Returns info warning an undefined parameter. """ return "Parameter warning: the hyper-parameter " + \ "'{}' is not specified, will use default value '{}'" \ .format(param_name, default_value)
15334d816ad91f4a2b3a5a8c40cb4db8895d62ce
70,993
def greater_than(ds, value): """Return a boolean array with True where elements > value Parameters: ----------- ds: xarray Dataset The array to mask value: float, xarray Dataset The value(s) to use to mask ds """ return ds > value
9d634bb70fb5f4f6b6bdf13d56f9279e56e337ae
70,997
def has_next(seq, index): """ Returns true if there is at least one more item after the current index in the sequence """ next_index = index + 1 return len(seq) > next_index
607efe35930efaa2d37f0148629c65ec0d6f4fce
71,000
def mm2m(da): """Convert mm to m. Args: da (xarray.DataArray): Data in mm. Returns: xarray.DataArray: Data in m. """ return da / 1000.0
c7e0c8a9e0c5194a38f7e5e58e4fdb07355b3b23
71,009
def binary_printable(str): """Return a "hex" representation of of the bytes in STR.""" hex_dict = {"\x00":"00", "\x01":"01", "\x02":"02", "\x03":"03", "\x04":"04", "\x05":"05", "\x06":"06", "\x07":"07", "\x08":"08", "\x09":"09", "\x0a":"0a", "\x0b":"0b", "\x0c":"0c", "\x0d":"0d", "\x0e":"0e", "\x0f":"0f", "\x10":"10", "\x11":"11", "\x12":"12", "\x13":"13", "\x14":"14", "\x15":"15", "\x16":"16", "\x17":"17", "\x18":"18", "\x19":"19", "\x1a":"1a", "\x1b":"1b", "\x1c":"1c", "\x1d":"1d", "\x1e":"1e", "\x1f":"1f", "\x20":"20", "\x21":"21", "\x22":"22", "\x23":"23", "\x24":"24", "\x25":"25", "\x26":"26", "\x27":"27", "\x28":"28", "\x29":"29", "\x2a":"2a", "\x2b":"2b", "\x2c":"2c", "\x2d":"2d", "\x2e":"2e", "\x2f":"2f", "\x30":"30", "\x31":"31", "\x32":"32", "\x33":"33", "\x34":"34", "\x35":"35", "\x36":"36", "\x37":"37", "\x38":"38", "\x39":"39", "\x3a":"3a", "\x3b":"3b", "\x3c":"3c", "\x3d":"3d", "\x3e":"3e", "\x3f":"3f", "\x40":"40", "\x41":"41", "\x42":"42", "\x43":"43", "\x44":"44", "\x45":"45", "\x46":"46", "\x47":"47", "\x48":"48", "\x49":"49", "\x4a":"4a", "\x4b":"4b", "\x4c":"4c", "\x4d":"4d", "\x4e":"4e", "\x4f":"4f", "\x50":"50", "\x51":"51", "\x52":"52", "\x53":"53", "\x54":"54", "\x55":"55", "\x56":"56", "\x57":"57", "\x58":"58", "\x59":"59", "\x5a":"5a", "\x5b":"5b", "\x5c":"5c", "\x5d":"5d", "\x5e":"5e", "\x5f":"5f", "\x60":"60", "\x61":"61", "\x62":"62", "\x63":"63", "\x64":"64", "\x65":"65", "\x66":"66", "\x67":"67", "\x68":"68", "\x69":"69", "\x6a":"6a", "\x6b":"6b", "\x6c":"6c", "\x6d":"6d", "\x6e":"6e", "\x6f":"6f", "\x70":"70", "\x71":"71", "\x72":"72", "\x73":"73", "\x74":"74", "\x75":"75", "\x76":"76", "\x77":"77", "\x78":"78", "\x79":"79", "\x7a":"7a", "\x7b":"7b", "\x7c":"7c", "\x7d":"7d", "\x7e":"7e", "\x7f":"7f", "\x80":"80", "\x81":"81", "\x82":"82", "\x83":"83", "\x84":"84", "\x85":"85", "\x86":"86", "\x87":"87", "\x88":"88", "\x89":"89", "\x8a":"8a", "\x8b":"8b", "\x8c":"8c", "\x8d":"8d", "\x8e":"8e", "\x8f":"8f", "\x90":"90", "\x91":"91", "\x92":"92", "\x93":"93", "\x94":"94", "\x95":"95", "\x96":"96", "\x97":"97", "\x98":"98", "\x99":"99", "\x9a":"9a", "\x9b":"9b", "\x9c":"9c", "\x9d":"9d", "\x9e":"9e", "\x9f":"9f", "\xa0":"a0", "\xa1":"a1", "\xa2":"a2", "\xa3":"a3", "\xa4":"a4", "\xa5":"a5", "\xa6":"a6", "\xa7":"a7", "\xa8":"a8", "\xa9":"a9", "\xaa":"aa", "\xab":"ab", "\xac":"ac", "\xad":"ad", "\xae":"ae", "\xaf":"af", "\xb0":"b0", "\xb1":"b1", "\xb2":"b2", "\xb3":"b3", "\xb4":"b4", "\xb5":"b5", "\xb6":"b6", "\xb7":"b7", "\xb8":"b8", "\xb9":"b9", "\xba":"ba", "\xbb":"bb", "\xbc":"bc", "\xbd":"bd", "\xbe":"be", "\xbf":"bf", "\xc0":"c0", "\xc1":"c1", "\xc2":"c2", "\xc3":"c3", "\xc4":"c4", "\xc5":"c5", "\xc6":"c6", "\xc7":"c7", "\xc8":"c8", "\xc9":"c9", "\xca":"ca", "\xcb":"cb", "\xcc":"cc", "\xcd":"cd", "\xce":"ce", "\xcf":"cf", "\xd0":"d0", "\xd1":"d1", "\xd2":"d2", "\xd3":"d3", "\xd4":"d4", "\xd5":"d5", "\xd6":"d6", "\xd7":"d7", "\xd8":"d8", "\xd9":"d9", "\xda":"da", "\xdb":"db", "\xdc":"dc", "\xdd":"dd", "\xde":"de", "\xdf":"df", "\xe0":"e0", "\xe1":"e1", "\xe2":"e2", "\xe3":"e3", "\xe4":"e4", "\xe5":"e5", "\xe6":"e6", "\xe7":"e7", "\xe8":"e8", "\xe9":"e9", "\xea":"ea", "\xeb":"eb", "\xec":"ec", "\xed":"ed", "\xee":"ee", "\xef":"ef", "\xf0":"f0", "\xf1":"f1", "\xf2":"f2", "\xf3":"f3", "\xf4":"f4", "\xf5":"f5", "\xf6":"f6", "\xf7":"f7", "\xf8":"f8", "\xf9":"f9", "\xfa":"fa", "\xfb":"fb", "\xfc":"fc", "\xfd":"fd", "\xfe":"fe", "\xff":"ff"} new_str = "" for ch in str: new_str = new_str + hex_dict[ch] return new_str
e90727463e91d15974c1e0ca6064a9d5f0cd15c7
71,011
def reverse_dotted_decimals(ipaddress): """ Reverse the order of the decimals in the specified IP-address. E.g. "192.168.10" would become "10.168.192" """ return '.'.join(ipaddress.split('.')[::-1])
b86779437e92aa1c85a83ea9c6f9906e1a22e351
71,013
def get_Zb(k, l): """Return Z for k-l length suffix.""" assert 0 < k and 0 <= l <= k return pow(2, k-l) - 1*(l<k)
e90d4cc4fb98f9aa2580e11b93cef3624465e88a
71,016
import csv def input_performances(name): """ Generates from a .csv file the list of actions and the performance dictionary. :param name: Name of the .csv file which must contain on the first line the names of the actions, on the second line the names of the criteria and on the following lines the performance of each action against each criterion. :return A: List of strings corresponding to the names of the actions in the order in which they are given in the csv file. :return P: Dictionary in which the keys are the names of the actions and the values are sub-dictionary where the keys are the criteria and the values are the performances. """ A = [] C = [] P = {} with open(name, 'r', newline='') as P_csv: reader = csv.reader(P_csv, delimiter=',') line_count = 0 for row in reader: if line_count == 0: [A.append(item) for item in row] elif line_count == 1: [C.append(item) for item in row] else: perf_A = {} for j in range(len(row)): perf_A[C[j]] = float(row[j]) P[A[line_count-2]] = perf_A line_count += 1 return A, P
366afa5736d700f717706db86037e2f400b70442
71,018
def get_selected_text(self): """ Return selected text from view. Parameters ---------- self : class view Returns ---------- str Selected text """ sel_text = self.view.sel() sel_text = self.view.substr(sel_text[0]) return sel_text
4b4ea7c7d90ffc42baa9655a3f888a1795c990e9
71,023
def apply_filtering(tag, text): """Alter certain metadata elements according to the specified rules.""" if tag == 'PubNumber': return text + '.pdf' elif tag == 'Keyword': return text.title() elif tag == 'DegreeCode': if text == "Ph.D.": return "Dissertation" else: return text
28a4fb49f4d1c83d27c8d3459e4415a9c1b773a3
71,026
def card_to_flds(card): """Create fields string fro the given card.""" parts = [card.word, card.info, card.transcription, '[sound:%s]' % card.sound if card.sound else ''] return '\x1f'.join(parts)
0b78487bcb230cb9aa20720683a56dc57116ac10
71,035
import math def calc_norm(k): """ Calculate the Euclidean norm on an n-dimensional Euclidean space Rn. """ c = 0 for i in range(len(k)): c += k[i] ** 2 x = math.sqrt(c) return x
006a3b863c8f4909dfa6fe47cdf0eda33958e051
71,036
import random def random_ip(pattern=None): """ Takes a pattern as a string in the format of #.#.#.# where a # is an integer, and a can be substituded with an * to produce a random octet. pattern = 127.0.0.* would return a random string between 127.0.0.1 and 127.0.0.254 """ if pattern is None: pattern = '*.*.*.*' num_asterisks = 0 for c in pattern: if c == '*': num_asterisks += 1 rand_list = [random.randint(1, 255) for i in range(0, num_asterisks)] for item in rand_list: pattern = pattern.replace('*', str(item), 1) return pattern
8246f38df9ce2c6ed71c1c088e8f27f888c33f4d
71,042
def invert_brackets(lhs: str) -> str: """ Helper function to swap brackets and parentheses in a string """ res = "" pairs = ["()", "[]", "{}", "<>", "/\\"] open_close = {x[0]: x[1] for x in pairs} close_open = {x[1]: x[0] for x in pairs} for char in lhs: if char in open_close: res += open_close[char] elif char in close_open: res += close_open[char] else: res += char return res
a264b24c083e3fec641d9dbb03dd2c8f743b76aa
71,045
import random def recommend_random(query, movies, k=10): """ Recommends a list of k random movie ids """ movies = movies.drop(index=query.keys()) list_ids = random.choices( movies.index, weights=None, cum_weights=None, k=k) return list_ids
96874c0177cb397c0725b1c837143536451a603e
71,050
def get_factors(x): """ This function takes a number and returns its factors""" listf = [] #print("The factors of",x,"are:") for i in range(1, x + 1): if x % i == 0: #print(i) listf.append(i) return listf
3156c5a48ccfdb4491f4043d26541d965e60c577
71,052
def get_exp_label(val) -> str: """ :param val: numeric label to format :return: label formatted in scientific notation Format a label in scientific notation, using Latex math font. For example, 10000 -> 10^4; """ # Get the power of 10 exp_val = 0 remaining_val = int(val) while (remaining_val % 10 == 0 and remaining_val > 0): exp_val += 1 remaining_val = remaining_val // 10 if remaining_val > 1: return r"$\mathdefault{" + str(remaining_val) + r"\!·\!{10}^" + str(exp_val) + r"}$" else: return r"$\mathdefault{" + r"{10}^" + str(exp_val) + r"}$"
189d36550feeb7389e9c60f8a512d96f09703cf8
71,054
def name_splitter(name: str): """Extract gig name & start time from string Args: name (str): name item from ParisCat GetStack Returns: str, str: title, start_time """ # Initialise Reponse Variables title = None start_time = None # Generally title & start time are provided in a single string split by either "//" or "/" start_name_split = [x.strip('/').strip() for x in name.split('/',1) if x != ''] if len(start_name_split) == 2: title = start_name_split[1] start_time = start_name_split[0] return start_time, title # Some names don't contain a start time & thus are length 1 elif len(start_name_split) == 1: title = start_name_split[0] start_time = None return start_time, title
07ab1e30ed1dce61c4188766578327f7ff940828
71,056
def get_type_from_path(path): """Get the "file type" from a path. This is just the last bit of text following the last ".", by definition. """ return path.split('.')[-1]
ecf59c13bc5bd5dc3a1749de0ff3ff01f40ad037
71,064
import torch def masked_accuracy(scores,targets,tgt_pad_index = 0): """ Calculate accuracy for a given scores and targets, ignoring it for padding_index @params scores(Tensor): output scores - shape(batch, tgt_seq_len-1, tgt_vocab_size) @params target(Tensor): gold target - shape(batch,tgt_seq_len) - Discard 1st time step @params tgt_pad_index(int): Target pad index for which loss is ignored @returns accuracy(Float): Accuracy """ with torch.no_grad(): targets = targets[:,1:] mask = (targets!=tgt_pad_index) num_words = mask.sum().float() preds = torch.argmax(scores, dim=-1) truths = (preds == targets)*mask accuracy = truths.sum()/num_words return accuracy
8975b4c0b6e7dfed7a5aefae38bb81e9acc4eb6c
71,065
def process_STATS_ASCII_data_line(line,nchan): """This processes one line of a STATS data file @param line : string One line from an ASCII STATS data file @param nchan : number of signal channels in the file @return: list of lists Lists of the means, rms, kurtoses and skews for the subchannels at one sampling time. """ data = line.split() mean = [] rms = [] skew = [] kurtosis = [] sec = int(data[0]) ms = int(data[1]) for i in range(2,2+4*nchan,4): mean.append(float(data[i])) rms.append(float(data[i+1])) kurtosis.append(float(data[i+2])) skew.append(float(data[i+3])) return (sec,ms,mean,rms,kurtosis,skew)
ee3f46ac18efc5ff66f97ba14900437e44d90697
71,070
def ord_to_str(ord_list): """ Convert list of character orders to string :param ord_list: list of character orders :type ord_list: int or list[int] :return: corresponding string :rtype: str """ if isinstance(ord_list, int): ord_list = [ord_list] s = '' for o in ord_list: s += chr(o) return s
3141f1130d7f105e93e1cce14d4e31a585d23c40
71,071