content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def vowel_count(string: str) -> int: # I refactored
""" Returns the number of vowels in the input string """
if not isinstance(string, str):
raise ValueError("The input to this function must be a string.")
vowels = ["a", "e", "i", "o", "u"]
return sum(1 for ch in string.lower() if ch in vowels)
|
daa413680a8d02d89d488d07383eac9707890872
| 70,460
|
def get_class_labels(f_labels):
"""
Return name list (i.e., class labels).
:param f_labels: file of labels to read in
:return: class labels (i.e., contents of f_labels)
"""
with open(f_labels) as fid:
labels = fid.readlines()
def clean_labels(x):
return x.rstrip()
return list(map(clean_labels, labels))
|
d820271ce78291cf23c95277d56be1207de3e62c
| 70,469
|
def ensure_pymongo(obj):
"""If obj is wrapped by motor, return the internal pymongo object
:param obj:
a pymongo or motor client, database, or collection
:returns:
pymongo client, database, or collection
"""
if obj.__class__.__module__.startswith("pymongo."):
return obj
if obj.delegate.__class__.__module__.startswith("pymongo."):
return obj.delegate
raise TypeError("Neither a pymongo nor a motor object")
|
d617b8db535cd3f8bf882da8a2c31f37dc922af6
| 70,470
|
def get_book_rating_count(soup):
""" Return book rating count """
return soup.find('span', attrs={'class', 'value-title'}).get_text()
|
154ea79dc949eb6c7c6f7d33e7ac359e155eca63
| 70,471
|
import textwrap
def normalize(string: str) -> str:
"""
Normalizes whitespace.
Strips leading and trailing blank lines, dedents, and removes trailing
whitespace from the result.
"""
string = string.replace("\t", " ")
lines = string.split("\n")
while lines and (not lines[0] or lines[0].isspace()):
lines.pop(0)
while lines and (not lines[-1] or lines[-1].isspace()):
lines.pop()
for i, line in enumerate(lines):
lines[i] = line.rstrip()
string = "\n".join(lines)
string = textwrap.dedent(string)
return string
|
b999f200b59f9d0418000d32e2b7577d35347b8c
| 70,473
|
import getpass
def getsecret(prompt):
"""
Prompt and read secret value without echo
"""
return getpass.getpass(prompt)
|
9286e5b36dcc9d8dfc8e45ddf588a1b8950448c1
| 70,475
|
import random
def sometimesish(fn):
"""
Has a 50/50 chance of calling a function
"""
def wrapped(*args, **kwargs):
if random.randint(1, 2) == 1:
return fn(*args, **kwargs)
return wrapped
|
7135966da571db1aa7af7fd9f9b44e5a52715468
| 70,477
|
def process_covid_json_data(local_json: dict, national_json: dict) -> dict:
"""Returns a dictionary of specified metrics based on the JSON files of local and national COVID data
The specified metrics are: total cumulative deaths, current hospital cases, the 7-day infection rate for the
national data set, and the 7-day infection rate for the local data set
"""
deaths_total = None
hospitalCases = None
national_7day_infections = 0
local_7day_infections = 0
counter = 0
skipped_first_day = False
for date in national_json.keys():
current_data = national_json[date]
# For cumDeaths and hospitalCases, find the first non-empty cells and use these values
if current_data["cumDeaths"] is not None and deaths_total is None:
deaths_total = current_data["cumDeaths"]
if current_data["hospitalCases"] is not None and hospitalCases is None:
hospitalCases = current_data["hospitalCases"]
# Add up all the non-empty rows of 'newCases' until we have 7 (ie a week's worth of data)
if current_data["newCases"] is not None and counter < 7:
# Skip first day of COVID data as it is incomplete
if skipped_first_day:
national_7day_infections += current_data["newCases"]
counter += 1
else:
skipped_first_day = True
counter = 0
skipped_first_day = False
for date in local_json.keys():
current_data = local_json[date]
if current_data["newCases"] is not None and counter < 7:
if skipped_first_day:
local_7day_infections += current_data["newCases"]
counter += 1
else:
skipped_first_day = True
covid_data_dictionary = {
"local_7day_infections": local_7day_infections, # local case total in the last 7 days
"national_7day_infections": national_7day_infections, # national case total in the last 7 days
"hospitalCases": hospitalCases, # current amount of hospitalised cases
"deaths_total": deaths_total, # current amount of cumulative deaths
}
return covid_data_dictionary
|
0940f0ed82a9b0df39c7d32c0156ac3cd7a058f0
| 70,478
|
def is_locked(lock):
""" The multiprocessing.Lock class does not have a locked()
method, so we simulate it here by trying to acquire the lock
without blocking.
"""
if lock.acquire(block=False):
lock.release()
return False
else:
return True
|
3f0bf2dbb496c0a0fba0a96eaa92f236b6917d9f
| 70,480
|
def top_n_correlated_features(data_df, sensitive_feature, n):
"""returns the n features most correlated to the sensitive feature"""
corr_df = data_df.corr()
sex_corrs = corr_df.reindex(corr_df[sensitive_feature].abs().sort_values(ascending=False).index)[sensitive_feature]
return sex_corrs.iloc[:n]
|
6233785e623cccb8aaa1d3d9a66a37483d7bc1a5
| 70,481
|
def create_dynamic_model(keyspace, classname, baseclass):
"""Create a dynamic ORM class with a custom keyspace/class/table.
Given a keyspace, a camelcase class name, and a base class
derived from Base, create a dynamic model that adopts a
table name based on a lower-cased version of the class name,
then create the table in the keyspace if it doesn't already exist.
If the baseclass already has __tablename__ or __keyspace__ set, those
will take precedence. Set those to None to use keyspace/classname here.
"""
# The comma after baseclass belongs there! Tuple of length 1.
model = type(
classname, (baseclass,), {
'__tablename__': baseclass.__tablename__ or classname.lower(),
'__keyspace__': baseclass.__keyspace__ or keyspace})
model.table_create()
return model
|
229b1f8d6dfcc5d5d56d2ce59041d49962efd03d
| 70,485
|
def buffer_size(size):
"""
Function that uses the concept of currying to help the .map()
method take more than one argument. The function uses the input
'size' and call a nested function to create a buffer around the
centroid of the feature parsed by the .map() method.The geometry
of the parsed feature is modified in place.
Parameters
----------
size : int
Distance of the buffering in meters
Returns
-------
ee.element.Element
Feature with a buffer of 'size' around its centroid
"""
def create_buffer(feature):
"""Child function that creates the buffer of 'size' meters"""
return feature.buffer(size)
return create_buffer
|
6b472d0f43190c2701941567d90e7a7fd8f942d4
| 70,486
|
def translate_weather_code(weather_code):
"""
translate weather code into a character
"""
if weather_code == 1:
return 'S' # Sunny
elif weather_code == 2:
return 'R' # Rainy
elif weather_code == 3:
return 'L' # Cloudy
elif weather_code == 4:
return 'W' # Snowy
else:
return '-'
|
d9399f5b09db95ffa96706751aa3461a9bacd968
| 70,487
|
def truncate(n):
"""
Removes trailing zeros.
Args:
n: The number to truncate.
This number should be in the following form:
(..., '.', int, int, int, ..., 0)
Returns:
n with all trailing zeros removed
>>> truncate((9, 9, 9, '.', 9, 9, 9, 9, 0, 0, 0, 0))
(9, 9, 9, '.', 9, 9, 9, 9)
>>> truncate(('.',))
('.',)
"""
count = 0
for digit in n[-1::-1]:
if digit != 0:
break
count += 1
return n[:-count] if count > 0 else n
|
51834c7a667c303d6dfe6505829556b3ab56748d
| 70,489
|
def count_unique_licenses(matches):
"""
Return a count of unique license expression
"""
return len(set(m.rule.license_expression for m in matches))
|
97619c8313b309aa981b970555911deb34c60718
| 70,496
|
def get_basis(vectors, vector_num, vector_len):
"""Get vectors basis
Args:
vectors (:obj:`list` of :obj:`int`): The list of
vectors.
vector_num (int): The number of vectors in the list.
vector_len (int): The length of vectors in the list.
Returns:
:rtype: (:obj:`list` of :obj:`int`, int): The list of
basis vectors and the rank of the basis.
"""
# Initial rank equals to the current full rank
rank = min(vector_len, vector_num)
for r in range(rank):
vectors = sorted(vectors, reverse=True)
index = len(bin(vectors[r])[2:]) - 1
for i in range(vector_num):
if (vectors[i] & 1 << index) and (i != r):
vectors[i] ^= vectors[r]
basis = [vectors[i] for i in range(rank) if vectors[i]]
# The final rank equals to the number of rows in basis matrix
rank = len(basis)
return (basis, rank)
|
cc769816faabdcc832c75c483b67c610b0294af3
| 70,506
|
def divides(a, b):
"""
Given two integers `a` (!= 0) and `b`, returns a boolean value
indicating whether a divides b.
"""
assert a != 0
return b % a == 0
|
a699cf4890cf0d6bcde8a7cbdef48b7f80382241
| 70,508
|
def nrow(self):
""" return the number of rows
This is faster than self.shape[0] """
return len(self.index)
|
eea2085ab02c8962430de2643e7452e7cda40775
| 70,514
|
import pickle
def load_word_array(filename):
"""
Load integer word array and dictionary saved by save_word_array()
:param filename: Same filename used with save_word_array()
:return: 2-tuple
0) Numpy word array of integers (document representation)
1) Word -> int dictionary
Note: no unit test coverage
"""
with open(filename + '.p', 'rb') as f:
word_array_dict = pickle.load(f)
return word_array_dict['word_array'], word_array_dict['dictionary'], word_array_dict['num_lines'], \
word_array_dict['num_words'], word_array_dict['num_unique_words']
|
9c536ed09168c8cd1eff0e07afa72a0237646163
| 70,516
|
def read_from_occ_translation_dict(occupation, tdict):
"""map an original occupation to HISCO code using the dictionary of unique occupations"""
hisco = tdict[occupation]
return hisco
|
8089d42143c2e7012ac31cdf1a5ee214347c7fe3
| 70,518
|
def sha256_key(sha256):
""" Create key from sha256
:param sha256: hashval
:return: path to return
:rtype: str
"""
try:
path = "%s%s/%s%s/%s%s/%s%s/%s" % (
sha256[0], sha256[1], sha256[2], sha256[3], sha256[4],
sha256[5], sha256[6], sha256[7], sha256)
except IndexError:
return sha256
return path
|
cbe04b21a8a89a98f1cc6f4ab15086a8f2f61468
| 70,527
|
def get_info(tag, label, how):
"""Get information from a tag.
Parameters
----------
tag : bs4.element.Tag
The data object to find the information from.
label : str
The name of the tag to get information from.
how : {'raw', 'all' , 'txt', 'str'}
Method to use to get the information.
raw - get an embedded tag
str - get text and convert to string
all - get all embedded tags
all-str - get all embedded tags, and convert to string
all-list - get all embedded tags, and collect into a list
Returns
-------
{bs4.element.Tag, bs4.element.ResultSet, unicode, str, None}
Requested data from the tag. Returns None is requested tag is unavailable.
"""
if how not in ['raw', 'str', 'all', 'all-str', 'all-list']:
raise ValueError('Value for how is not understood.')
# Use try to be robust to missing tag
try:
if how == 'raw':
return tag.find(label)
elif how == 'str':
return tag.find(label).text
elif how == 'all':
return tag.find_all(label)
elif how == 'all-str':
return ' '.join([part.text for part in tag.find_all(label)])
elif how == 'all-list':
return [part.text for part in tag.find_all(label)]
except AttributeError:
return None
|
e1c35cb296cdeb749c1660528d16792938b5a6fb
| 70,528
|
import re
def chop(path,depth=2):
"""
Chop an MDSplus path up into a list of substrings
Parameters
----------
path : string
an MDSplus path
depth : integer, optional
How many of the initial substrings to throw out. The default is 2.
Returns
-------
list of substrings
"""
delimiters = ".","::",":"
regexPattern = '|'.join(map(re.escape, delimiters))
return re.split(regexPattern, path)[depth:]
|
454357afde83f26995f202bed9d4090e0a7aa8cb
| 70,530
|
def calcCppp(crpp, face):
""" coupon payments per period """
return crpp * face
|
2f69fb0e44ef062e5d41f59b82cd3315cdd08e98
| 70,531
|
from typing import Dict
def expand_vars_in_text(text: str, variables: Dict[str, str]) -> str:
"""
Expand all variables in a given string.
For the moment, variables must not contain variable references.
"""
for var, value in variables.items():
var = "§{" + var + "}"
text = text.replace(var, value)
return text
|
9019c7b0100ed271955a8f8458259d44501cfe4c
| 70,532
|
import random
import string
def gen_rand_str(length=8):
"""
@brief Generates a random lowercase string.
@param[in] length Desired length of the returned string.
@returns a random string of the given length.
"""
return ''.join(random.choice(string.ascii_lowercase) for i in range(length))
|
10b724e4335561b8e87daebddaed1460a0b83fe0
| 70,533
|
def getattrrec(object, name, *default):
"""Extract the underlying data from an onion of wrapper objects.
``r = object.name``, and then get ``r.name`` recursively, as long as
it exists. Return the final result.
The ``default`` parameter acts as in ``getattr``.
See also ``setattrrec``.
"""
o = getattr(object, name, *default)
while hasattr(o, name):
o = getattr(o, name, *default)
return o
|
a847b7f54d2a737ac31226807c2f28ca58d1ef72
| 70,536
|
def process_mol_type(mol_type: str) -> str:
"""
Convert potential mol_type strings into valid mol_type strings.
Args:
mol_type: Unprocessed mol type.
Returns:
'pybel' or 'rdkit'.
"""
mol_type_new = mol_type.lower()
if mol_type_new in {'pybel', 'babel', 'obabel', 'openbabel'}:
return 'pybel'
elif mol_type_new == 'rdkit':
return 'rdkit'
else:
raise ValueError(f'Invalid molecule type "{mol_type}"')
|
52a541fe2bb123632883865fae9bdc93df02d080
| 70,543
|
def find_meta_property(obj, name):
"""
Return a named (`name`) `QMetaProperty` of a `QObject` instance `obj`.
If a property by taht name does not exist raise an AttributeError.
"""
meta = obj.metaObject()
index = meta.indexOfProperty(name)
if index == -1:
raise AttributeError(
"%s does no have a property named %r." % (meta.className(), name)
)
return meta.property(index)
|
e741ecf5fb9b40e379238479e6d2e5b161fa1a36
| 70,545
|
def is_target_pr(queue_url, pr_number) -> bool:
"""
Returns True if the queue was deployed for this PR number.
:param str queue_url: The queue URL
:param str pr_number: The PR number
:return bool:
"""
return str(queue_url).endswith(pr_number)
|
967adde6cdcc8e9f1fc63628c12fa83c6ecabf76
| 70,546
|
def SqlExportContext(sql_messages, uri, database=None, table=None):
"""Generates the ExportContext for the given args, for exporting to SQL.
Args:
sql_messages: module, The messages module that should be used.
uri: The URI of the bucket to export to; the output of the 'uri' arg.
database: The list of databases to export from; the output of the
'--database' flag.
table: The list of tables to export from; the output of the '--table' flag.
Returns:
ExportContext, for use in InstancesExportRequest.exportContext.
"""
return sql_messages.ExportContext(
uri=uri,
databases=database or [],
fileType='SQL',
sqlExportOptions=sql_messages.ExportContext.SqlExportOptionsValue(
tables=table or []))
|
59005fe32cf70cac9c6b0f1e402221eff833d0d9
| 70,547
|
def access_list_list(config_list):
"""extracts access-lists from provided configuration list ie.config_list.
returns access-lists lines in a list
"""
return [line.rstrip() for line in config_list if line.startswith("access-list ")]
|
cd6f9b4482bcfb5ed4af0c8cc3c2ae42d94ae52a
| 70,550
|
import hashlib
def generate_password(original_password):
"""
加密函数,使用sha256对密码进行加密处理
:param original_password: 原密码
:return: 加密后的二进制字符串
"""
salt = 'intelligent' # 加盐
sha256 = hashlib.sha256() # 创建sha256对象
sha256.update((original_password + salt).encode('utf-8')) # 加载密码
return sha256.hexdigest()
|
d3de4b51d96339182049d88af443708a19c6bd68
| 70,551
|
def attach_tz_if_none(dt, tz):
"""
Makes a naive timezone aware or returns it if it is already aware.
Attaches the timezone tz to the datetime dt if dt has no tzinfo. If
dt already has tzinfo set, return dt.
:type dt: datetime
:param dt: A naive or aware datetime object.
:type tz: pytz timezone
:param tz: The timezone to add to the datetime
:rtype: datetime
:returns: An aware datetime dt with tzinfo set to tz. If dt already had
tzinfo set, dt is returned unchanged.
"""
return tz.localize(dt) if dt.tzinfo is None else dt
|
cab689ed38574b028bb837c520c017b251b405e9
| 70,556
|
def int_or_none(value):
"""Casts to integer if the value is not None
"""
if value is not None:
return int(value)
return None
|
0ba314bae70a75335ce86988ea17ea06d6e35680
| 70,561
|
import re
def get_stopm(s):
"""Return nonsense mutations from a list of amino acid changes."""
stopms = [ i for i in s if bool(re.search('_[A-Z]\d+\*',i))]
out = ','.join(stopms)
return out
|
9851e868b092c1085da8408e593f19b84ec8d2f8
| 70,562
|
import inspect
def _remove_hints_from_signature(signature):
"""Remove hint annotation from a signature."""
params = []
for name, param in signature.parameters.items():
params.append(param.replace(annotation=inspect.Parameter.empty))
return signature.replace(
parameters=params, return_annotation=inspect.Signature.empty
)
|
aae4d361f093e16ba8b672cfe3bf6f18a25931bb
| 70,564
|
def cluster_tweets_by_text(api, cluster_size):
"""
:param api: an api instance
:param cluster_size: Only messages that appear more than this parameter
Will be considered
:return: list of dictionaries, each dictionary has 2 keys: 'text' and
(number of) 'occurrences'
"""
res = api.get_similar(cluster_size)
return res
|
133b312acae992cc9be793a4939e077d93873526
| 70,567
|
def standard(timezones):
"""
Given a list of timezones (either strings of timezone objects),
return a list of choices with
* values equal to what was passed in
* display strings as the timezone name without underscores
"""
choices = []
for tz in timezones:
tz_str = str(tz)
choices.append((tz, tz_str.replace('_', ' ')))
return choices
|
b2b997e8203508be7ac10091f37b0a5c938d89fa
| 70,575
|
def dictincr(dictionary, element):
"""
Increments `element` in `dictionary`,
setting it to one if it doesn't exist.
"""
dictionary.setdefault(element, 0)
dictionary[element] += 1
return dictionary[element]
|
51e7944e04240dc260daa6ccd4ad240b92fd3405
| 70,577
|
def least_significant_bit_set(mask: int) -> int:
"""Return the least significant bit set
The index is 0-indexed.
Returns -1 is no bit is set
>>> least_significant_bit_set(0b0000_0001)
0
>>> least_significant_bit_set(0b0001_0000)
4
>>> least_significant_bit_set(0b0000_0000)
-1
"""
return (mask & -mask).bit_length() - 1
|
ffb19c9c0d7aaa0fada462871db75eb5a4e106df
| 70,579
|
def log_evidence_from(
*,
chi_squared: float,
regularization_term: float,
log_curvature_regularization_term: float,
log_regularization_term: float,
noise_normalization: float,
) -> float:
"""
Returns the log evidence of an inversion's fit to a dataset, where the log evidence includes a number of terms which
quantify the complexity of an inversion's reconstruction (see the `LEq` module):
Log Evidence = -0.5*[Chi_Squared_Term + Regularization_Term + Log(Covariance_Regularization_Term) -
Log(Regularization_Matrix_Term) + Noise_Term]
Parameters
----------
chi_squared
The chi-squared term of the inversion's fit to the dataset.
regularization_term
The regularization term of the inversion, which is the sum of the difference between reconstructed
flux of every pixel multiplied by the regularization coefficient.
log_curvature_regularization_term
The log of the determinant of the sum of the curvature and regularization matrices.
log_regularization_term
The log of the determinant o the regularization matrix.
noise_normalization
The normalization noise_map-term for the dataset's noise-map.
"""
return float(
-0.5
* (
chi_squared
+ regularization_term
+ log_curvature_regularization_term
- log_regularization_term
+ noise_normalization
)
)
|
57050c8ab9a309de7a5261449602cad7b0a651c9
| 70,580
|
import requests
def download(torrent: dict) -> bool:
"""Download a nyaa.si torrent from the web (also retrives its original name)
Args:
torrent (dict): The dictionary returned by the NyaaPy.search() method.
Returns:
bool: True if the transfer was successful, False otherwise.
"""
try:
with requests.get(torrent["download_url"]) as response, open(
torrent["name"] + ".torrent", "wb"
) as out_file:
out_file.write(response.content)
except requests.Timeout:
return False
return True
|
f08774bee8a46588f1b1c3dd91c2c52f52d57d50
| 70,585
|
def decode(commands):
"""
decodes given commands to plain buffer of unpacked bytes
Parameters
----------
commands : dictionary list
commands to unpack
Returns
-------
buffer : list of ints
unpacked bytes list.
"""
buffer = []
for com in commands:
if com["method"] == "rle":
buffer += com["chunk"] * com["len"]
elif com["method"] == "lz":
lz_offs = com["offs"]
lz_len = com["len"]
# for lz outbound copy
cyclic_buffer = buffer + buffer[lz_offs:] * lz_len
buffer += cyclic_buffer[lz_offs: lz_offs+lz_len]
else: # raw copy
buffer += com["data"]
return buffer
|
9726bac51b747ffbd59088e57abff3fd7de6afa0
| 70,587
|
def get_bit(data, shift):
"""Get the flag information from data
:param data: 32-bit number, containing info about flags for 1 page
:param shift: bit offset for certain flag checking
:return: 0 or 1 (ex. 1 if page present : 0 if swapped for shift=26)
:rtype: Int
"""
return (data >> shift) & 1
|
49cbbf08e133933f1dc3d6b71b150d51dc8fb51c
| 70,589
|
from typing import Iterable
def make_var_name(label):
""" Generate correct variable name from text label (or iterable array of labels)
>>> make_var_name("Test text ji*((i_i")
'var_testtextjiii'
>>> make_var_name(['Haul', 'Date', 'Operation'])
['var_haul', 'var_date', 'var_operation']
"""
if isinstance(label, str):
return "var_" + "".join(c.lower() for c in label if c.isalnum())
elif isinstance(label, Iterable):
labels = label
return [make_var_name(label) for label in labels]
|
15ae406aca848950ac3ed0326f5c5f538e9d6d1b
| 70,592
|
import csv
def readCSV(_filename, _columnName):
"""
functions to read csv file
:param _filename: a given file with the extension csv
:param _columnName: string name of the column to read
:return: a list
"""
_list = []
with open(_filename, 'r') as csvFile:
r = csv.DictReader(csvFile)
for row in r:
_list.append(row[_columnName])
return _list
|
6cbc8561123dcccf7a416d24aa600665f84f01e2
| 70,603
|
def absolute(data):
"""
Calculate the abolute values of the data.
Args:
data (list): values.
Returns the absolute values of the data.
"""
return [abs(d) for d in data]
|
03840c79fa100886cb5a182c062bdb53fc2adea5
| 70,609
|
from typing import Any
def is_view_object(input_object: Any) -> bool:
"""Returns a boolean whether an object is a view object or not.
Args:
input_object (object): an object that is to be tested whether or
not it is a View object.
Returns:
True if it is a View object, False otherwise.
"""
if not hasattr(input_object, 'lazyload_data'):
return False
if not hasattr(input_object, 'query_dsl'):
return False
if not hasattr(input_object, 'name'):
return False
if not hasattr(input_object, 'query_filter'):
return False
return True
|
34405b882be8dc6b82cfc19ebef427a3943d73a0
| 70,611
|
import importlib
def import_stringified_func(funcstring):
"""
Import a string that represents a module and function, e.g. {module}.{funcname}.
Given a function f, import_stringified_func(stringify_func(f)) will return the same function.
:param funcstring: String to try to import
:return: callable
"""
if not isinstance(funcstring, str):
raise TypeError("Argument must be a string")
modulestring, funcname = funcstring.rsplit(".", 1)
mod = importlib.import_module(modulestring)
func = getattr(mod, funcname)
return func
|
deb1a7e55dccd3d4686148bae3d441072b556d4d
| 70,612
|
def euler(f, x0, y0, xn, n):
"""
Forward Euler's Method for a single linear equation.
Parameters
----------
f : function
linear equation.
x0 : float
initial x value.
y0 : float
initial f(x) value.
xn : float
x-value at which to estimate f.
n : integer
number of iterations.
Returns
-------
x_values : array
list of x values.
y_estimate : array
list of f(x) values.
"""
y_estimate = [y0]
x_values = [x0]
h = abs((xn - x0)/n)
for i in range(n):
y_estimate.append(y_estimate[i] + h*f(x_values[i], y_estimate[i]))
x_values.append(x_values[i] + h)
return x_values, y_estimate
|
149cc66738abf433ce897d5a988989eebad96ea6
| 70,615
|
def obter_pos_l(p):
"""
Seletor linha.
Devolve a componente linha l da posicao p.
:param p: tuple, posicao do tabuleiro de jogo.
:return: string, linha da posicao.
"""
return p[1]
|
571d4e0a0310ceb167556bbd7bc84d1f1ae6295f
| 70,616
|
def get_source_tweet(tweet):
"""
If the tweet is a retweet or a quote tweet, then retrieve the original tweet.
:param tweet: a JSON tweet object
:return: original tweet as a JSON object
:return: the author's username of the original tweet
"""
if hasattr(tweet, "quoted_status"):
quote_tweet = tweet.quoted_status
if hasattr(quote_tweet, 'user') and quote_tweet.user is not None:
if hasattr(quote_tweet.user, "screen_name") and quote_tweet.user.screen_name is not None:
return quote_tweet, quote_tweet.user.screen_name
elif hasattr(tweet, "retweeted_status"):
retweet = tweet.retweeted_status
if hasattr(retweet, 'user') and hasattr(retweet.user, "screen_name") and retweet.user is not None:
if retweet.user.screen_name is not None:
return retweet, retweet.user.screen_name
else:
return tweet, tweet.user.screen_name
|
fa2224d1b484d7721800df927808702daaf780e5
| 70,620
|
def get_last_name(full_name: str) -> str:
"""Get the last name from full name.
Args:
full_name: The full official name.
Return:
The last name in title case format.
"""
return full_name.split(' ')[-1].title()
|
1edb6b466184a4c29c74d00af36e0195012cd143
| 70,621
|
def without_fixed_suffix(form, suffix_length):
""" Return a new form with ``suffix_length`` chars removed from right """
word, tag, normal_form, score, methods_stack = form
return (word[:-suffix_length], tag, normal_form[:-suffix_length],
score, methods_stack)
|
595aee4886208992f0d0f784a5bdb5c9e29911cb
| 70,626
|
from typing import Dict
def universal_detection_loss_weights(
loss_segmentation_word: float = 1e0,
loss_inst_dist: float = 1e0,
loss_mask_id: float = 1e-4,
loss_pq: float = 3e0,
loss_para: float = 1e0) -> Dict[str, float]:
"""A function that returns a dict for the weights of loss terms."""
return {
"loss_segmentation_word": loss_segmentation_word,
"loss_inst_dist": loss_inst_dist,
"loss_mask_id": loss_mask_id,
"loss_pq": loss_pq,
"loss_para": loss_para,
}
|
89996ea9be93748608ef84e5715b32d90c243d65
| 70,627
|
def so_port(request):
"""Fixture that returns --so-port option value"""
return request.config.getoption("--so-port")
|
97b0bf797423f34b50dc14aa8a1390d93d578abf
| 70,640
|
from typing import Dict
from typing import Tuple
def create_default_domain_param_map_wambic() -> Dict[int, Tuple[str, str]]:
"""
Create the default mapping from indices to domain parameters (as used in the `BayRn` algorithm).
:return: dict where the key is the index and the value is a tuple of domain parameter and the associated domain
distribution parameter
"""
return {
0: ("cup_scale", "mean"),
1: ("cup_scale", "std"),
2: ("rope_length", "mean"),
3: ("rope_length", "std"),
4: ("ball_mass", "mean"),
5: ("ball_mass", "std"),
6: ("rope_damping", "mean"),
7: ("rope_damping", "halfspan"),
8: ("joint_1_damping", "mean"),
9: ("joint_1_damping", "halfspan"),
10: ("joint_2_damping", "mean"),
11: ("joint_2_damping", "halfspan"),
12: ("joint_3_damping", "mean"),
13: ("joint_3_damping", "halfspan"),
14: ("joint_4_damping", "mean"),
15: ("joint_4_damping", "halfspan"),
16: ("joint_5_damping", "mean"),
17: ("joint_5_damping", "halfspan"),
18: ("joint_6_damping", "mean"),
19: ("joint_6_damping", "halfspan"),
20: ("joint_7_damping", "mean"),
21: ("joint_7_damping", "halfspan"),
22: ("joint_1_dryfriction", "mean"),
23: ("joint_1_dryfriction", "halfspan"),
24: ("joint_2_dryfriction", "mean"),
25: ("joint_2_dryfriction", "halfspan"),
26: ("joint_3_dryfriction", "mean"),
27: ("joint_3_dryfriction", "halfspan"),
28: ("joint_4_dryfriction", "mean"),
29: ("joint_4_dryfriction", "halfspan"),
30: ("joint_5_dryfriction", "mean"),
31: ("joint_5_dryfriction", "halfspan"),
32: ("joint_6_dryfriction", "mean"),
33: ("joint_6_dryfriction", "halfspan"),
34: ("joint_7_dryfriction", "mean"),
35: ("joint_7_dryfriction", "halfspan"),
}
|
f42f2e6c01256269f5ca967bafd3f1116c04e43d
| 70,642
|
import csv
import io
def csv_to_dict(csv_str, separator=","):
""" From a csv string, returns a list of dictionnaries
>>> csv_to_dict("a,b,c\\n1,2,3")
[{'a': '1', 'b': '2', 'c': '3'}]
>>> csv_to_dict("a,b,c\\n1,2,3\\n4,5,6")
[{'a': '1', 'b': '2', 'c': '3'}, {'a': '4', 'b': '5', 'c': '6'}]
>>> csv_to_dict("a;b;c\\n1;2;3", separator=";")
[{'a': '1', 'b': '2', 'c': '3'}]"""
reader = csv.DictReader(io.StringIO(csv_str), delimiter=separator)
# By default, DictReader returns OrderedDict => convert to dict:
return list(map(dict, reader))
|
6b9654adcb0269ccc8ff8e7fbff496036c844831
| 70,645
|
import re
def get_min_max_instances(results_df, min_requests, max_requests):
"""
Calculates recommendations for autoscaling
Based on the maximum requests handled by each endpoint, this function
calculates and returns the optimal instance count and type for an
autoscaling configuration.
Inputs:
results_df: pandas data frame with instance types and their maximum rps
min_requests: minimum number of requests per second required for the application
max_requests: maximum number of requests per second required for the application
Output:
Recommended instance type and count for optimal costs
"""
if max_requests < min_requests:
print("Minimum requests should be less than or equal to the maximum number of requests per second. Exiting..")
return
# calculate min and max number of instance required for each instance type
# to serve the min and max rps, and calculate the corresponding prices
results_df = results_df.copy(deep=True)
results_df['Min Instances'] = results_df['Max Requests per Second'].apply(lambda x: round(min_requests / x))
results_df['Pricing'] = results_df.apply(lambda x: x['Price per Hour'] * x['Min Instances'], axis=1)
results_df = results_df.sort_values(['Pricing'])
results_df = results_df[results_df['Min Instances'] > 0]
results_df['Max Instances'] = results_df['Max Requests per Second'].apply(lambda x: round(max_requests / x))
# recommended type is the top row of the sorted data frame
recommended_type = results_df.head(1).index.values[0]
recommended_type = re.sub(r'.x[0-9]', '', recommended_type)
recommended_min = results_df.head(1)['Min Instances'].values[0]
recommended_max = results_df.head(1)['Max Instances'].values[0]
recommended_dict = [
{"instance_type": recommended_type, "instance_count": int(recommended_min)},
{"instance_type": recommended_type, "instance_count": int(recommended_max)}
]
return recommended_dict
|
ccf6907536dd435054a6881a5df9744ccfaab292
| 70,646
|
def prune_nones(d: dict) -> dict:
"""Remove all None values in d."""
return {
key: value
for key, value in d.items()
if value is not None
}
|
6577555ab454486d600c1fcf282b55b6c98c3376
| 70,648
|
def grid(*, grid_alpha=0.2, grid_linestyle="solid"):
"""Adjust the grid-style."""
return {
# Update the linestyle of the grid
# (it shares a color with the frame, and needs to be distinguishable)
"grid.linestyle": grid_linestyle,
"grid.alpha": grid_alpha,
}
|
8fe92744a90b6a218ce9e127e3feeda3221cb664
| 70,649
|
def cli(ctx, job_id):
"""Get dataset outputs produced by a job.
Output:
Outputs of the given job
"""
return ctx.gi.jobs.get_outputs(job_id)
|
07ae08ce1b7518429445c8df55caa90dcccd688d
| 70,651
|
def glob_to_sql(string: str) -> str:
"""Convert glob-like wildcards to SQL wildcards
* becomes %
? becomes _
% becomes \%
\\ remains \\
\* remains \*
\? remains \?
This also adds a leading and trailing %, unless the pattern begins with
^ or ends with $
"""
# What's with the chr(1) and chr(2) nonsense? It's a trick to
# hide \* and \? from the * and ? substitutions. This trick
# depends on the substitutions being done in order. chr(1)
# and chr(2) were picked because I know those characters
# almost certainly won't be in the input string
table = (
(r"\\", chr(1)),
(r"\*", chr(2)),
(r"\?", chr(3)),
(r"%", r"\%"),
(r"?", "_"),
(r"*", "%"),
(chr(1), r"\\"),
(chr(2), r"\*"),
(chr(3), r"\?"),
)
for (a, b) in table:
string = string.replace(a, b)
string = string[1:] if string.startswith("^") else "%" + string
string = string[:-1] if string.endswith("$") else string + "%"
return string
|
bf3ca7bf522292c17c418ccdf75aca21e4f2bc69
| 70,654
|
def lrelu(x, leak=0.2):
""" Performs a leaky ReLU operation. """
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
|
c7f627585b4fce56b6caf76c6e6bb8357ea43dd0
| 70,655
|
import requests
def get_file_content(url, in_bytes=False):
"""Download file on given `url` and returns in bytes or text with `in_bytes`."""
r = requests.get(url)
if r.status_code != 200:
return
content = r.content
if in_bytes:
return content
return content.decode("utf-8").strip()
|
e222815cbd8c10e364d12eca7c693d2d5290dd68
| 70,657
|
def add_intercept(X):
"""Add all 1's column to predictor matrix"""
X['intercept'] = [1]*X.shape[0]
return X
|
3ddc9baae14d87eeac29060c34428ed53a922477
| 70,658
|
from typing import Tuple
def get_message_box_size(term_height: int, term_width: int, message_lines: list) -> Tuple[int, int, int, int]:
"""
Given a message box list with each item being a message box line/row,
this method find the right size and position of the message box for
the given terminal size
Parameters:
term_height (int) : Number of rows/lines in terminal
term_width (int) : Number of columns in terminal
message_lines (list) : Lines of text in each list item
Returns:
box_height (int) : Height of message box (rows/lines)
box_width (int) : Width of message box (columns)
box_y (int) : Vertical position of box in terminal
box_x (int) : Horizontal position of box in terminal
"""
box_height = len(message_lines) + 4
box_width = int(term_width / 1.5) # Alternative: len(max(message_lines, key=len)) + 12
box_y = term_height // 2 - box_height // 2
box_x = term_width // 2 - box_width // 2
return box_height, box_width, box_y, box_x
|
f2c6a33c8b092f544cff3785ab7f018325bda7bb
| 70,660
|
def joinbytes(iterable):
"""Joins an iterable of bytes and/or integers into a single byte string"""
return b''.join((bytes((x,)) if isinstance(x,int) else x) for x in iterable)
|
0d1f3ff40e6b982f1dd8e708e27b71a665756d36
| 70,662
|
def has_duplicate_values(tmp_list):
"""
Checks to see if a given list has any duplicate value.
:returns: False if tmp_list has no duplicate values.
:returns: True if tmp_list has duplicate values.
"""
set_of_elements = set()
for elem in tmp_list:
if elem in set_of_elements:
return True
else:
set_of_elements.add(elem)
return False
|
b60fa4f6378602341b83fe73b8633c78d403bef1
| 70,664
|
def get_tenant_id(req):
"""Returns the tenant ID in the HTTP request header.
:param req: HTTP request object.
"""
return req.get_header('X-TENANT-ID')
|
cf3af2ea387b13cbabcfe7451e226a3d6e5e2f9d
| 70,666
|
def cubem_to_cubef(cubem):
"""Converts cube metre to cube feet"""
return cubem * 35.315
|
29888ea58021cbe006aae1dec08177d9280e0cd7
| 70,669
|
def _get_fingerprints_in_trust_db(trustdb_path):
"""Get fingerprints (and associated trust levels) in a trustdb file"""
with open(trustdb_path, "r") as fi:
trustdb = fi.readlines()
fingerprints_in_db = [
entry.strip() # remove comments, whitespace, and newlines from trustdb
for entry in trustdb
if not entry.startswith("#")
]
return fingerprints_in_db
|
7520003777d37a0b4966a64d9bd7de16e67c784a
| 70,670
|
def url_format_asn(asn):
"""Format an ASN for inclusing in a URL."""
return str(asn).replace(":", "-")
|
5a4165108d8dcb33012c73cb3fbdc36c83773d85
| 70,671
|
def is_child(child, parent):
"""
Check if the child class is inherited from the parent.
Args:
child: child class
parent: parent class
Returns:
boolean
"""
for base in child.__bases__:
if base is parent:
return True
for base in child.__bases__:
if is_child(base, parent):
return True
return False
|
df72d8e754dab6db2f0d2edc0f399ab23b2cb6d1
| 70,672
|
from typing import List
def iter_counts(X: List[List[str]]):
"""
Given lists of words, return vocabularies with counts. This is useful
for the VariableVocabKMeans model that expects this input.
Parameters
----------
X
A list of lists of words (str)
Example
-------
>>> X = [
... ["one", "two"],
... ["one", "four"],
... ["one", "zero"],
... ["four", "two"],
... ["four", "four"],
... ["four", "zero"]
... ]
>>> for i, vocab in enumerate(stream.iter_counts(X)):
... print(vocab)
... {'one': 1, 'two': 1}
... {'one': 1, 'four': 1}
... {'one': 1, 'zero': 1}
... {'four': 1, 'two': 1}
... {'four': 2}
... {'four': 1, 'zero': 1}
"""
# Convert to counts (vocabulary)
counts = []
for words in X:
vocab = {}
for word in words:
if word not in vocab:
vocab[word] = 0
vocab[word] += 1
counts.append(vocab)
return counts
|
4c76e83ab013450c9c9e7cecee46ab1508300c0c
| 70,676
|
def ConfigName(deployment, name):
"""Returns the name of the config.
Args:
deployment: the name of the deployment.
name: the "tag" used to differentiate this config from others.
Returns:
The name of the config.
"""
return "{}-config-{}".format(deployment, name)
|
8354e776d913ddf88aec02b1e72845a45669c3c3
| 70,684
|
def rgb_to_hex(rgb):
"""convert a RGB/RGBA tuple to the matching hex code as a string
((255,255,255) -> '#FFFFFF')"""
str = "#" + "%02x" * len(rgb)
return (str % rgb).upper()
|
26ff680467cf9feffad9c8ff36b2915f80014d68
| 70,686
|
def read_tokenized_src_file(path, remove_eos=True):
"""
read tokenized source text file and convert them to list of list of words
:param path:
:param remove_eos: concatenate the words in title and content
:return: data, a 2d list, each item in the list is a list of words of a src text, len(data) = num_lines
"""
data = []
with open(path) as f:
for line in f:
if remove_eos:
title_and_context = line.strip().split('<eos>')
if len(title_and_context) == 1: # it only has context without title
[context] = title_and_context
word_list = context.strip().split(' ')
elif len(title_and_context) == 2:
[title, context] = title_and_context
word_list = title.strip().split(' ') + context.strip().split(' ')
else:
raise ValueError("The source text contains more than one title")
else:
word_list = line.strip().split(' ')
data.append(word_list)
return data
|
6fba6bf1c913e828b02d67c10f56c2d8e2fb083b
| 70,687
|
from typing import OrderedDict
def parse_inp_section_config(raw_conf):
"""
normalize the config information in the YAML
:return:
>>> from swmmio.defs import INP_OBJECTS
>>> conds_config = INP_OBJECTS['CONDUITS']
>>> parse_inp_section_config(conds_config)
OrderedDict([('columns', ['Name', 'InletNode', 'OutletNode', 'Length', 'ManningN', 'InOffset', 'OutOffset', 'InitFlow', 'MaxFlow'])])
>>> parse_inp_section_config(INP_OBJECTS['LOSSES'])
OrderedDict([('columns', ['Link', 'Inlet', 'Outlet', 'Average', 'Flap Gate', 'SeepageRate'])])
"""
conf = OrderedDict()
if isinstance(raw_conf, list):
# has a simple list, assumed to be columns
conf['columns'] = raw_conf
elif isinstance(raw_conf, (dict, OrderedDict)):
if 'keys' in raw_conf:
# object is special case like OPTIONS
conf.update(raw_conf)
conf['columns'] = ['Key', 'Value']
else:
conf.update(raw_conf)
return conf
|
18516fabd8a4f7c4a085fb2fae1ac58a86474935
| 70,688
|
import json
def parse_as_list(input_text):
"""Parse given input as JSON or comma-separated list."""
try:
return json.loads(input_text)
except json.decoder.JSONDecodeError:
return [s.strip() for s in input_text.split(',')]
|
79fa9d43bd144b3ca1689adc8fb94ce30b7f4659
| 70,691
|
def get_job_id(client, task):
"""
construct job id
:param client: client object
:param task: task object
:return: job id
"""
return '%s-%s-%s' % (client.name, task.project, task.spider)
|
40003b2868615c97e94ffc08ec5a388dd7325221
| 70,692
|
def get_nested_keys(obj, key_list):
"""
Expects dict object and list of keys in respective order, returns tuple
>>> get_nested_keys({ 'a': { 'b': { 'c': 1 } }, 'd': 2 }, ['a', 'b', 'c'])
('c', 1)
"""
if len(key_list) == 1:
return (key_list[0], obj[key_list[0]],)
elif len(key_list) > 1:
return get_nested_keys(obj[key_list[0]], key_list[1:])
|
b4e8efa61140c9919310f108b8fed727f2991808
| 70,694
|
def _get_identifier(obj):
"""
Gets the name of the identifier defined by an object with either an 'identifier' attribute or
a 'typed_identifier' attribute.
"""
if hasattr(obj, 'identifier'):
return obj.identifier
if hasattr(obj, 'typed_identifier'):
return obj.typed_identifier
raise AttributeError(
f"Object of type '{type(obj).__name__}' has no 'identifier' or 'typed_identifier'.")
|
dee249361e96e784047df57efb07e18688abaadf
| 70,700
|
def unnormalize(tensor, mean, std):
"""
Reverts image normalization transformation using mean and std.
"""
for t, m, s in zip(tensor, mean, std):
t.mul_(s).add_(m)
return tensor
|
2fb723176cde7ad60d210934e7682a392efbf96d
| 70,706
|
import unittest
import platform
def skip_if_windows(cls):
"""Skip a test if run on windows"""
decorator = unittest.skipIf(
platform.system() == 'Windows',
"Not supported on Windows",
)
return decorator(cls)
|
c3e719aa3b3577468e0e00fcf23c9c60a8de438f
| 70,707
|
import math
def no_of_combinations(set_size, n_draws):
"""
Returns the number of combinations by drawing n_draws times from a set of size set_size w/o
replacement.
"""
return math.factorial(set_size) / (math.factorial(n_draws) * math.factorial(set_size -
n_draws))
|
f2fea0be00ae45fb137d02bd0886614fff3a1d19
| 70,713
|
def convert_color(image, from_color, to_color):
"""
Converts pixels of value @from_color to @to_color in @image.
Args:
image: a 3-dim numpy array represents a RGB image
from_color: a list of length 3 representing a color
to_color: a list of length 3 representing a color
"""
image = image.copy()
red, green, blue = image[:, :, 0], image[:, :, 1], image[:, :, 2]
if from_color is None:
from_red, from_green, from_blue = (
image[:, :, 0].max(),
image[:, :, 1].max(),
image[:, :, 2].max(),
)
mask = (red == from_red) & (green == from_green) & (blue == from_blue)
else:
mask = (
(red == from_color[0]) & (green == from_color[1]) & (blue == from_color[2])
)
image[:, :, :3][mask] = to_color
return image
|
1dd4baca1b6aa1777cef67a7097b6e2679d56dab
| 70,716
|
import torch
def get_target_tensor(target_sequences):
"""
Flattens a batch of target sequences into one long tensor (length: number_sequences * sequence_length)
"""
target_tensors = [torch.tensor(s) for s in target_sequences]
if torch.cuda.is_available():
return torch.stack(target_tensors).flatten().cuda()
else:
return torch.stack(target_tensors).flatten()
|
75fda0b1aca4329b04b486de4339f64541f112cc
| 70,718
|
import yaml
def get_current_context_name(kube_config) -> str:
"""
Get current-context from kubeconfig.
:param kube_config: absolute path to kubeconfig
:return: str
"""
with open(kube_config) as conf:
dep = yaml.safe_load(conf)
return dep['current-context']
|
7572a0f7347459976a39ece90a1741f111911277
| 70,722
|
def calculate_error(dataclasses: list):
"""
calculates the error rate, = misclassified_data / total data
:param dataclasses: a 1-dimensional list containg the orignal and predicted class of each instance in data
:return: error rate ( <=1.0)
"""
wrong = 0
correct = 0
for d in dataclasses:
if d[0] == d[1]:
correct += 1
else:
wrong += 1
return wrong / (wrong+correct)
|
531f3f127ce23a34a7cb58f14e644ee5a4658323
| 70,726
|
def retrieve_tweet_text(tweet):
"""
Retrieves the text that appears in the tweet object
:param tweet: a JSON tweet object
:return: the text of the tweet all in lowercase
"""
if hasattr(tweet, 'extended_tweet'):
return tweet.extended_tweet['full_text'].lower()
else:
return tweet.text.lower()
|
dc9bc42e352070d5aa7d64d837ce32c300012f44
| 70,728
|
def backfill_append(listobject, index, item):
"""Returns a newlist with `item` inserted at `index`.
Inserts None between last used index of `listobject` and
`index` at which `item` is inserted::
>>> backfill_append(['1', '2'], 5, '6')
['1', '2', None, None, None, '6']
"""
temp_list = listobject[:]
if index >= len(temp_list):
difference = index - len(temp_list)
backfill = [None for x in range(difference)]
backfill.append(item)
temp_list.extend(backfill)
else:
temp_list[index] = item
return temp_list
|
7f20587e3872a1a555e124deec381e100173f5e5
| 70,730
|
def corrected_buckets(buckets, noise_probability=.05):
"""Returns a map of conversion bits --> corrected counts
buckets: A map from integer conversion metadata to conversion counts.
note, this needs to include buckets with 0 counts.
noise_probability: The probability the metadata was randomly selected
"""
total_records = sum(buckets.values())
num_conversion_buckets = len(buckets)
# |noise_probability| of the reports are noised and uniformly distributed
# among the conversion buckets so one can calculate how many values have
# were from noised, per bucket.
noised_values_per_bucket = total_records * noise_probability / num_conversion_buckets
# Subtract the reports added to each bucket due to noise, and rescale to
# account for the reports that were shifted due to the initial noise.
corrected_buckets = {
bucket: (v - noised_values_per_bucket) / (1 - noise_probability)
for bucket, v in buckets.items()
}
return corrected_buckets
|
74f9093bea97c28db12d5a9f7c5bc0958111c688
| 70,734
|
def omit_empty_items(sequence):
"""
Filters out sequence items which are :const:`None` or empty. If argument is
:const:`None` than the return value is :const:`None` too, but if argument
is an empty sequence, another empty sequence is returned.
>>> list(omit_empty_items([]))
[]
>>> list(omit_empty_items(["", "1", "", "23"]))
['1', '23']
"""
return None if sequence is None \
else filter(lambda x: (x is not None) and (len(x) != 0), sequence)
|
5273712d0d3ff09f9cad1fcff2e4420cf0502008
| 70,737
|
def get_hs_extent(xarr, is_color_image=False):
"""
Read the "XY" coordinates of an xarray.DataArray to set extent of image for
imshow.
Parameters
----------
xarr : xarray.DataArray
DataArray being viewed with hyperslicer
is_color_image : bool, default False
Whether the individual images of the hyperstack are color images.
Returns
-------
extent : list
Extent argument for imshow. [d0_min, d0_max, d1_min, d1_max]
"""
if not is_color_image:
dims = xarr.dims[-2:]
else:
dims = xarr.dims[-3:-1]
extent = []
for d in dims:
vals = xarr[d].values
extent.append(vals.min())
extent.append(vals.max())
return extent
|
bc215d1da790245591cc438901a89fbc40bf51ae
| 70,742
|
def saturation_correlate(M, Q):
"""
Returns the *saturation* correlate :math:`s`.
Parameters
----------
M : numeric
*Colourfulness* correlate :math:`M`.
Q : numeric
*Brightness* correlate :math:`C`.
Returns
-------
numeric
*Saturation* correlate :math:`s`.
Examples
--------
>>> M = 0.108842175669
>>> Q = 195.371325966
>>> saturation_correlate(M, Q) # doctest: +ELLIPSIS
2.3603053...
"""
s = 100 * (M / Q) ** 0.5
return s
|
8606c9c4804a6cc042e21cac25aa1bacc728ffbd
| 70,746
|
def create_colour_cycle(
base_colours, total_colours, inidividual_colour_length=1):
"""Creates a list of colours which cycles through the base set of colours.
:param base_colours: the base set of colours which will be repeated in
the returned list of colours.
:param total_colours: the total number of colours which should appear in
the returned list of colours.
:param inidividual_colour_length: the number of LEDs used by an individual
colour.
:return: a list of colours containing the set of colours in base_colours
repeated cyclically.
"""
return [
base_colours[
i / inidividual_colour_length % len(base_colours)
] for i in range(0, total_colours)]
|
a3a908f79c3c669bf4cd1ec751673bd7218d03ac
| 70,750
|
def _TargetTranslation(rdata, origin):
"""Returns the qualified target of the given rdata.
Args:
rdata: Rdata, The data to be translated.
origin: Name, The origin domain name.
Returns:
str, The qualified target of the given rdata.
"""
return rdata.target.derelativize(origin).to_text()
|
7964e667da54e12c6690402cc2b94fbedee48b03
| 70,761
|
def parse_gprs_reason(reason):
"""Finds the uploaded and downloaded bytes from a GPRS UE reason attribute.
Args:
reason: a UsageEvent.reason from a 'gprs' kind of UE, e.g. "gprs_usage: 184
bytes uploaded, 0 bytes downloaded"
Returns:
(uploaded_bytes, downloaded_bytes) as integers
"""
try:
up = int(reason.split()[1])
down = int(reason.split()[4])
except IndexError:
# Reason is an empty string.
up, down = 0, 0
return up, down
|
ddcd79cdab26977fd605ca09a0f6b66312eb22b0
| 70,769
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.