content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def domain_str_to_labels(domain_name):
"""Return a list of domain name labels, in reverse-DNS order."""
labels = domain_name.rstrip(".").split(".")
labels.reverse()
return labels
|
63743ac059f20d0bdda7a5ada54605cdeb50bc98
| 63,082
|
def check_match(list1, list2):
"""
Check whether two lists of sites contain the same sites between the two lists
Args:
:param list1: (List) list of sites
:param list2: (List) list of sites
:return: (boolean) whether list1 and list2 have the same sites within them
"""
if set(list1) == set(list2):
return True
else:
return False
|
7d8b8533ff96ec50cf3c14be3535d8ce01fb8371
| 63,083
|
def format_rest_framework_validation_errors(errors):
"""Format error messages for response.
Args:
errors (dict): Dictionary of rest framework validation errors.
Returns:
dict: {field: error message}
"""
if isinstance(errors, list):
return ". ".join(str(e) for e in errors)
elif isinstance(errors, dict):
error = ""
for key, value in errors.items():
if key != "non_field_errors":
error += f"{key}: "
if isinstance(value, list):
error += ". ".join(str(v) for v in value)
else:
error += str(value)
error += "\n"
return error.rstrip("\n")
else:
return str(errors)
|
6ce2439428e6a8198bc8cd6806d395507fb66514
| 63,084
|
from typing import Union
def median(nums: list) -> Union[int, float]:
"""
Find median of a list of numbers.
Wiki: https://en.wikipedia.org/wiki/Median
>>> median([0])
0
>>> median([4, 1, 3, 2])
2.5
>>> median([2, 70, 6, 50, 20, 8, 4])
8
Args:
nums: List of nums
Returns:
Median.
"""
sorted_list = sorted(nums)
length = len(sorted_list)
mid_index = length >> 1
return (
(sorted_list[mid_index] + sorted_list[mid_index - 1]) / 2
if length % 2 == 0
else sorted_list[mid_index]
)
|
4f289718103f39e69257b3185d7f72242a47d928
| 63,089
|
def filter_dictionary(function, dictionary, by="keys"):
"""Filter a dictionary by conditions on keys or values.
Args:
function (callable): Function that takes one argument and returns True or False.
dictionary (dict): Dictionary to be filtered.
Returns:
dict: Filtered dictionary
Examples:
>>> filter_dictionary(lambda x: "bla" in x, {"bla": 1, "blubb": 2})
{'bla': 1}
>>> filter_dictionary(lambda x: x <= 1, {"bla": 1, "blubb": 2}, by="values")
{'bla': 1}
"""
if by == "keys":
keys_to_keep = set(filter(function, dictionary))
out = {key: val for key, val in dictionary.items() if key in keys_to_keep}
elif by == "values":
out = {}
for key, val in dictionary.items():
if function(val):
out[key] = val
else:
raise ValueError(f"by must be 'keys' or 'values', not {by}")
return out
|
90677661923f6c2a4ed5ad5e0b119c700ef42282
| 63,098
|
def _remove_trailing_hr_tag(*, markdown: str) -> str:
"""
Remove a trailing `<hr>` tag from a specified markdown string.
Parameters
----------
markdown : str
Target markdown string.
Returns
-------
markdown : str
Result markdown string.
"""
markdown = markdown.strip()
hr_tag: str = '<hr>'
if markdown.endswith(hr_tag):
markdown = markdown[:-len(hr_tag)]
markdown = markdown.strip()
return markdown
|
9698c8fc98710e106008164879726ae37db13f88
| 63,100
|
def sort_unique(alist):
""" Sorts and de-dupes a list
Args:
list: a list
Returns:
list: a sorted de-duped list
"""
return sorted(list(set(alist)))
|
32685421cd1b7a708447b173bb03ee6bbcad32f0
| 63,104
|
def _Backward2b_P_hs(h, s):
"""Backward equation for region 2b, P=f(h,s)
Parameters
----------
h : float
Specific enthalpy [kJ/kg]
s : float
Specific entropy [kJ/kgK]
Returns
-------
P : float
Pressure [MPa]
References
----------
IAPWS, Revised Supplementary Release on Backward Equations for Pressure
as a Function of Enthalpy and Entropy p(h,s) for Regions 1 and 2 of the
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of
Water and Steam, http://www.iapws.org/relguide/Supp-PHS12-2014.pdf, Eq 4
Examples
--------
>>> _Backward2b_P_hs(2800,6)
4.793911442
>>> _Backward2b_P_hs(3600,6)
83.95519209
>>> _Backward2b_P_hs(3600,7)
7.527161441
"""
I = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6,
6, 6, 7, 7, 8, 8, 8, 8, 12, 14]
J = [0, 1, 2, 4, 8, 0, 1, 2, 3, 5, 12, 1, 6, 18, 0, 1, 7, 12, 1, 16, 1,
12, 1, 8, 18, 1, 16, 1, 3, 14, 18, 10, 16]
n = [0.801496989929495e-1, -0.543862807146111, 0.337455597421283,
0.890555451157450e1, 0.313840736431485e3, 0.797367065977789,
-0.121616973556240e1, 0.872803386937477e1, -0.169769781757602e2,
-0.186552827328416e3, 0.951159274344237e5, -0.189168510120494e2,
-0.433407037194840e4, 0.543212633012715e9, 0.144793408386013,
0.128024559637516e3, -0.672309534071268e5, 0.336972380095287e8,
-0.586634196762720e3, -0.221403224769889e11, 0.171606668708389e4,
-0.570817595806302e9, -0.312109693178482e4, -0.207841384633010e7,
0.305605946157786e13, 0.322157004314333e4, 0.326810259797295e12,
-0.144104158934487e4, 0.410694867802691e3, 0.109077066873024e12,
-0.247964654258893e14, 0.188801906865134e10, -0.123651009018773e15]
nu = h/4100
sigma = s/7.9
suma = 0
for i, j, ni in zip(I, J, n):
suma += ni * (nu-0.6)**i * (sigma-1.01)**j
return 100*suma**4
|
66f5fab41d001dc5e47671ec8731d3a383eafaaf
| 63,106
|
from typing import Dict
from typing import Any
def build_config(config : Dict[str, Any]) -> Dict[str, str]:
"""Will build the actual config for Jinja2, based on SDK config.
"""
result = config.copy()
# Manage the classifier stable/beta
is_stable = result.pop("is_stable", False)
if is_stable:
result["classifier"] = "Development Status :: 5 - Production/Stable"
else:
result["classifier"] = "Development Status :: 4 - Beta"
# Manage the nspkg
package_name = result["package_name"]
result["package_nspkg"] = result.pop(
"package_nspkg",
package_name[:package_name.rindex('-')]+"-nspkg"
)
# ARM?
result['is_arm'] = result.pop("is_arm", True)
# Do I need msrestazure for this package?
result['need_msrestazure'] = result.pop("need_msrestazure", True)
# Pre-compute some Jinja variable that are complicated to do inside the templates
package_parts = result["package_nspkg"][:-len('-nspkg')].split('-')
result['nspkg_names'] = [
".".join(package_parts[:i+1])
for i in range(len(package_parts))
]
result['init_names'] = [
"/".join(package_parts[:i+1])+"/__init__.py"
for i in range(len(package_parts))
]
# Return result
return result
|
4e3189443d7638a1b290666d52675f6874c19ab6
| 63,110
|
import unicodedata
def character_categories(text, normalize=None):
"""Return the list of unicode categories for each character in text
If normalize is not None, apply the specified normalization before
extracting the categories.
"""
if normalize is not None:
text = unicodedata.normalize(normalize, text)
return [unicodedata.category(c) for c in text]
|
b5d85425bc65951bccf9fe578918905b522c6801
| 63,114
|
def getDepthError(depth):
"""
Return the absolute error in a depth value from a TrueDepth sensor, which
varies depending on the depth value. These are OBSERVED values from my
experimentation in phase 2 data collection.
Parameters
----------
depth : number
The depth value reported by the TrueDepth sensor, in cm
Returns
-------
error : float
Error n, in the format n +/- cm
"""
if depth <= 45:
return 0.115470054
elif 45 < depth <= 55:
return 0.081649658
elif 55 < depth <= 65:
return 0.141421356
elif 65 < depth <= 75:
return 0.203442594
elif 75 < depth <= 85:
return 0.324893145
elif 85 < depth <= 95:
return 0.37155828
else:
return 0.37859389
|
7d84cd7eff740efc98d53f01cca71782c1a89d91
| 63,115
|
def get_camera_info_from_image_topic(topic):
"""
Returns the camera info topic given an image topic from that camera
"""
topic_split = topic.split('/')
info_topic = topic_split[:-1]
info_topic.append('camera_info')
info_topic = '/'.join(info_topic)
return info_topic
|
3f3cce68dc8fa467ad2bb740f3dbc937d3825c5d
| 63,117
|
def charLimit(min: int, max: int, char, string):
"""Ensure that the count of occurrences of char in string lies between min and max"""
if max < min:
raise(ValueError('max less than min.'))
total = string.count(char)
return total <= max and total >= min
|
8dd0e91673f2b3bd587a86df7aac7fa0abc22148
| 63,118
|
def solution(resources, args):
"""Problem 1 - Version 3
Use a formula to determine the additional sum 15 integers at a
time, then use the iterative approach for any remaining integers
in the range.
Parameters:
args.number The upper limit of the range of numbers over
which the sum will be taken
Return:
Sum of all numbers in range [1, args.number) that are divisible
by 3 or 5.
"""
retval = 0
repeats = [3, 5, 6, 9, 10, 12, 15]
i = 0
n = args.number - 1
while n > 15:
retval += sum(repeats)
retval += 15*len(repeats)*i
n -= 15
i += 1
while n >= 3:
if n % 3 == 0 or n % 5 == 0:
retval += 15*i + n
n -= 1
return retval
|
94a3b457d68e010c235a43e6e287821f5831d8ce
| 63,120
|
import itertools
def ranges_overlap(ranges):
"""Test if ranges overlap
Args:
ranges (list): Iterable of pairs (min, max)
Returns:
bool: True if ranges overlap each other, False otherwise
"""
for r1, r2 in itertools.combinations(ranges, 2):
if r1[1] > r2[0] and r1[0] < r2[1]:
return True
return False
|
742825a4abd53a14d9eb5a62375620aa335aee50
| 63,121
|
def grad_rescale(grads, k):
"""scale the gradient by a factor of k"""
y = grads.deepcopy()
for item in y:
item[:] = item * k
return y
|
a69570888e5924de87714f6c355e4c854b8b647f
| 63,122
|
def seq(start, stop, step=1):
"""Generate a list of values between start and stop every step
:param start: The starting value
:param stop: The ending values
:param step: The step size
:return: List of steps
"""
n = int(round((stop - start) / float(step)))
if n > 1:
return [start + step * i for i in range(n + 1)]
else:
return []
|
9471500a1dc13cde41beaad31092f7b00c771cca
| 63,125
|
import re
def preprocess(text, to_lower=True, remove_tags=True, digits=True, special_chars=True):
"""
Takes a text object as input and performs a sequence of processing
operations: lowercases , removes html tags and special characters
Parameters
----------
text: str
Text to be cleaned.
to_lower: bool (default=True)
Whether to convert text to lower case.
remove_tags: bool (default=True)
Whether to remove content form within html <> tags.
digits: bool (default=True)
Whether to remove numbers.
special_chars: bool (default=True)
Whether to remove special characters.
Returns
-------
text: str
cleaned text
"""
if to_lower:
text = text.lower()
if remove_tags:
text = re.sub("</?.*?>", " <> ", text)
if digits:
text = re.sub('\\d+', '', text)
if special_chars:
text = re.sub('\\W+', ' ', text)
text = text.strip()
return text
|
086d6bc4918e9ad39d9eed3f512ed661b90da6c8
| 63,126
|
def get_the_number_of_pages(total_data, limit_size):
"""根据数据总数和每页显示数据数计算分页数
Args:
total_data 数据总数
limit_size 每页显示数据条数
"""
quotient, remainder = divmod(total_data, limit_size)
if remainder > 0:
quotient = quotient + 1
return quotient
|
0d3ff3de0c6355e623d091d71a3ab9dc3c085d01
| 63,135
|
def s3_download(s3_bucket, file_key, output_path):
"""Download a file from S3."""
print(f"downloading [{file_key}] from [{s3_bucket.name}] to [{output_path.resolve().as_posix()}]")
s3_bucket.download_file(file_key, output_path.resolve().as_posix())
return output_path
|
8a966b6f0230ffe037d054d798e05ff462036dbd
| 63,139
|
def x2cx(x, e):
"""Transform from *x* value to column *x* index value, using the
*e.css('cw')* (column width) as column measure."""
# Gutter
gw = e.gw
cw = e.css('cw', 0)
# Check on division by 0
if cw + gw:
return (x - e.parent.pl) / (cw + gw)
return 0
|
f2ac3a87589ded75e22c5aadfd5a95767c1d038e
| 63,140
|
import re
def get_iter_num(fname):
"""Extracts the iteration number from the filename"""
matches = re.match(r"^iter_(\d+).csv$", fname)
if matches is None:
return None
return matches.group(1)
|
a150aad1333bb61fd6bb01e37aee00df6d28b542
| 63,141
|
import re
from datetime import datetime
def format_date(row):
""" Extracts the unix timestamp from the string and converts it to a datetime object, best if used with map
:param row: row from a dataframe """
row=str(row)
unix = [int(s) for s in re.findall(r'-?\d+\.?\d*', row)]
dt_object = datetime.fromtimestamp(unix[0]/1000)
return(dt_object)
|
b9c3fc5445e7e9985b62ace145faece86576dd25
| 63,144
|
def adapt_dbm_reset_ast(dbm_reset_ast):
"""Transforms the expression ast of a reset into a clock reset ast.
Args:
dbm_reset_ast: The reset expression ast.
Returns:
The clock reset ast.
"""
clock = dbm_reset_ast["expr"]["left"]
val = dbm_reset_ast["expr"]["right"]
return {"clock": clock, "val": val, "astType": "ClockReset"}
|
7614c2a4edfa3c6c4b7b728de1604f8ca6e81553
| 63,148
|
def convert_words_to_string(paragraph_words):
"""
Convert the resulting list of words aka a paragraph into a string
"""
word_texts = []
for paragraph_word in paragraph_words:
word_texts.append(''.join([
symbol.text for symbol in paragraph_word.symbols
]))
return ' '.join(word_texts)
|
59e2485a7c03027d697a91928a67a079cba26f18
| 63,150
|
def is_palindrome(s):
"""Returns boolean test of whether s is a palindrome."""
for i in range(len(s)):
if s[i] == s[len(s) - 1 - i]:
continue
else:
return False
return True
|
1371e62988a9e1d5754d40e5a2e85e48ff9d9a2d
| 63,152
|
def check_format(path):
"""Check if a file is an Tripos MOL2.
Check for "@<TRIPOS>"
Parameters
----------
path : str or Path
"""
result = True
with open(path, "r") as fd:
for line in fd:
line = line.strip()
if "@<TRIPOS>" in line:
result = True
break
return result
|
1fc8ab1f5669bf0a9d6a38063bd2ddf03a5bdcef
| 63,158
|
import time
def get_timestamp() -> int:
"""
Return the current millisecond timestamp.
Return
------
ts : number
milliseconds since the epoc
"""
ts = int(time.time() * 1000)
return ts
|
663945a97a418bb54850ad913a72b7955f5dbff0
| 63,160
|
def nonNullIntersection(dataList):
"""
Takes a list of dataframes and returns the list of dataframes with rows that contain a null value in
any dataframe removed. This is so that the row can be used for training ML Powerflow
Input:
dataList: a list of pandas dataframes of the same number of rows
Output:
dataListIntersection: a list of pandas dataframes with the rows that contain a null values
in any row missing.
"""
masks = []
for data in dataList:
mask = data.isna().any(axis=1)
masks.append(~mask)
finalMask = masks[0]
for mask in masks[1:]:
finalMask = finalMask & mask
dataListIntersection = []
for x in range(len(dataList)):
dataListIntersection.append(dataList[x][finalMask])
return dataListIntersection
|
845d153a0f3df1bd3e00a1c61c12b66eef3f3cfa
| 63,163
|
def sum_multiples(num1,num2,limit):
"""take two numbers and find the sum of their multiples from 1 to some upper limit. this DOES NOT double-count numbers which are multiples of BOTH num1 and num2."""
sum = 0
if num1 > limit and num2 > limit:
return sum
for i in range(1,(limit+1)):
if i % num1 == 0 or i % num2 == 0:
sum += i
return sum
|
0966730d3ac650bf46914b6a5b76df62edd93a24
| 63,164
|
import binascii
def unhexlify(text):
"""Unhexlify raw text, return unhexlified text."""
return binascii.unhexlify(text).decode('utf-8')
|
81927f86c07e77894a9f47bb9e444caad0ef75b5
| 63,165
|
def find_duplicates(iterable):
"""Find duplicate elements in an iterable.
Parameters
----------
iterable : iterable
Iterable to be searched for duplicates (i.e., elements that are
repeated).
Returns
-------
set
Repeated elements in `iterable`.
"""
# modified from qiita.qiita_db.util.find_repeated
# https://github.com/biocore/qiita
# see licenses/qiita.txt
seen, repeated = set(), set()
for e in iterable:
if e in seen:
repeated.add(e)
else:
seen.add(e)
return repeated
|
b5d5bc6b85cd2cfafe3bd0f88ef2daa0e28e538e
| 63,166
|
import re
def find_substring(substring, string):
"""
Find a substring inside a string and return it.
If there is no match, return 0.
Args:
substring (str): Substring to find (supports regex)
string (str): String to search
Returns:
match (str): The first occurence of the substring inside the string,
or 0 if there is no match
"""
try:
match = re.findall(substring, string)[0]
except IndexError:
match = '0'
return match
|
dd3e8d2187454aa69e9c4d59404a5a87b6d813f8
| 63,167
|
def isPrime(n: int)->bool:
"""
Give an Integer 'n'. Check if 'n' is Prime or Not
:param n:
:return: bool - True or False
A no. is prime if it is divisible only by 1 & itself.
1- is neither Prime nor Composite
We will use Naive approach.
. Check Divisibity of n with all numbers smaller than n. within range 2 to sqrt(n).
All divisors of n comes as pairs. Thus if n is not divisible by any no. within range 2 to sqrt(n), then it is Prime.
WE reduce range from 2 to n to 2 to sqrt(n)
"""
if n==1 :
return False
i = 2
while (i * i <= n ):
if ( n % i ==0):
return False
i = i+1
return True
|
57eddd0aba0d53faa6ee1f4f5ff566a1c3b3ef85
| 63,172
|
def overlaps(tupl1, tupl2):
"""
Takes two ranges as tuples and returns a boolean
determining if they overlap inclusively
Parameters:
r1, r2 - a tuple range
"""
return (tupl1[0] <= tupl2[0] <= tupl1[1]) or (tupl1[0] <= tupl2[1] <= tupl1[0])
|
145cbf7a75ae619e848427169377752532735861
| 63,174
|
def cols_to_drop(statistic, threshold, greater):
"""
Compiles a list of columns to be dropped by drop_cols(), using the given
summary statistics.
Parameters:
_________________
statisic: Statistic to use for feature evaluation; should have
<lr_model>.summary.<statistic>
threshold: (float) Number used as the threshold for feature evaluation
greater: (bool) If true, dop columns which are greater than the
given threshold; otherwise, drop columns which are less
than the given threshold
Returns:
_________________
cols_list: (list) list of columns to be dropped by drop_cols()
"""
cols_list = []
if greater:
for val in range(len(statistic)):
if statistic[val] >= threshold:
cols_list.append("X{}".format(val+1))
else:
for val in range(len(statistic)):
if statistic[val] <= threshold:
cols_list.append("X{}".format(val+1))
return cols_list
|
70f6b225950affbc5156d4d25f531d62e60cb8e0
| 63,177
|
def mix_string (str):
"""Convert all string to lowercase letters, and replaces spaces with '_' char"""
return str.replace(' ', '_').lower()
|
5e07f99b0222cd9d31b692aadb638878a9b502a6
| 63,178
|
def precision_at(k):
"""Returns a function operating on a data frame, which calculates P@k"""
return lambda s: s[:k].sum() / s[:k].count()
|
089bbb9e10a1025faa195ae8411ad5fb0f3f1eb4
| 63,186
|
from textwrap import dedent
def skip_comment(line):
"""Return True if a comment line should be skipped based on contents."""
line = dedent(line)
return not line or "to_remove" in line or "uncomment" in line.lower()
|
beda4e72faee0b062ddf6a12b3d449c884554127
| 63,191
|
def device_settings(string):
"""Convert string with SoapySDR device settings to dict"""
if not string:
return {}
settings = {}
for setting in string.split(','):
setting_name, value = setting.split('=')
settings[setting_name.strip()] = value.strip()
return settings
|
ef16df671bea6247be35b1256b13951cda91290a
| 63,192
|
def v_equil(alpha, cli, cdi):
"""Calculate the equilibrium glide velocity.
Parameters
----------
alpha : float
Angle of attack in rad
cli : function
Returns Cl given angle of attack
cdi : function
Returns Cd given angle of attack
Returns
-------
vbar : float
Equilibrium glide velocity
"""
den = cli(alpha)**2 + cdi(alpha)**2
return 1 / den**(.25)
|
16bd758f7349dd7c79a8441118191155730b1644
| 63,194
|
def gcd(a, b):
""" Find greatest common divisior using euclid algorithm."""
assert a >= 0 and b >= 0 and a + b > 0
while a > 0 and b > 0:
if a >= b:
a = a % b
else:
b = b % a
return max(a, b)
|
33be26cdb143df526ade519a0f0e3a216e9d3529
| 63,195
|
import math
def dwpf(tmpf, relh):
"""
Compute the dewpoint in F given a temperature and relative humidity
"""
if tmpf is None or relh is None:
return None
tmpk = 273.15 + (5.00 / 9.00 * (tmpf - 32.00))
dwpk = tmpk / (1 + 0.000425 * tmpk * -(math.log10(relh / 100.0)))
return int(float((dwpk - 273.15) * 9.00 / 5.00 + 32))
|
49031b6fb76f0311ec2554aae01671b2b935eaf7
| 63,198
|
def normalize_TPU_addr(addr):
"""
Ensure that a TPU addr always has the form grpc://.*:8470
:param addr:
:return:
"""
if not addr.startswith("grpc://"):
addr = "grpc://" + addr
if not addr.endswith(":8470"):
addr = addr + ":8470"
return addr
|
a3b7dfb0fd603b7fd4a7f665f66c7465f5738e53
| 63,210
|
from typing import Union
def convert_indent(text: str, old_indent: Union[int, str], new_indent: Union[int, str]) -> str:
"""
Changes the indent of the lines in a text.
Note: empty lines will be unaffected.
Args:
text: The text to be processed.
old_indent: The indent to remove, given either as a number of columns, or a specific string
new_indent: The indent to add, given either as a number of columns, or a specific string
Returns:
The text with the indent replaced.
"""
if isinstance(old_indent, int):
old_indent = ' ' * old_indent
if isinstance(new_indent, int):
new_indent = ' ' * new_indent
def _convert_line(line):
if line == '' or line == '\n':
return line
assert line.startswith(old_indent), "All text should start with the same indent sequence"
return new_indent + line[len(old_indent):]
return ''.join(_convert_line(line) for line in text.splitlines(True))
|
9829c96447daf99b2d7ac458ed64ef28b4c5a07f
| 63,217
|
def load_urls(username: str, location: str = "./Resources/url_blueprints.txt") -> list:
"""
Loads the urls from the specified blueprint file and sets the username as well
:param username
:param location
:return: lisitfied urls with added usernames
"""
final_list = []
with open(location) as file:
for line in file.readlines():
if "{}" in line:
line = line.format(username)
final_list.append(line.strip("\n"))
file.close()
return final_list
|
40ad91207cfaa19f18f74cf1a61f6c68603658c3
| 63,221
|
def get_filename(path):
"""
a helper function to get the filename of an image.
This function splits a path provided by the argument by '/'
and returns the last element of the result
"""
return path.split('/')[-1]
|
8a1a600216f45035dcd5b249df9511a303da634d
| 63,222
|
def args_to_tuple(*args):
"""Combine args into a tuple."""
return tuple(args)
|
571367c75f0a77d8a40c7383bb075c05acc6307c
| 63,226
|
def is_hex_digits(entry, count):
"""
Checks if a string is the given number of hex digits. Digits represented by
letters are case insensitive.
:param str entry: string to be checked
:param int count: number of hex digits to be checked for
:returns: **True** if the given number of hex digits, **False** otherwise
"""
try:
if len(entry) != count:
return False
int(entry, 16) # attempt to convert it as hex
return True
except (ValueError, TypeError):
return False
|
78df1fb5fca790967de9a94c7cd76143f7ecc23b
| 63,228
|
def weight(edge, modifiers):
"""
Gets the modified weight of the edge.
Args:
edge (DirectedEdge): Edge to get weight from.
modifiers (list): A list of objects that modify the edge weight.
These objects must support get_multiplier(edge).
"""
weight = edge.weight
for modifier in modifiers:
weight *= modifier.get_multiplier(edge)
return weight
|
6ec9bc1fff3ea74cfcea5401c6f33376180f8830
| 63,232
|
import time
def wait_for_victim_pg(manager):
"""Return a PG with some data and its acting set"""
# wait for some PG to have data that we can mess with
victim = None
while victim is None:
stats = manager.get_pg_stats()
for pg in stats:
size = pg['stat_sum']['num_bytes']
if size > 0:
victim = pg['pgid']
acting = pg['acting']
return victim, acting
time.sleep(3)
|
49b1977f6032ce883fffa8402760e7eb83e90b4a
| 63,233
|
def bfs_shortest_path_print(graph, x, y):
"""Return shortest path between nodes x and y."""
visited = []
q = [[x]]
while q:
path = q.pop(0)
node = path[-1]
if node not in visited:
for adjacent in graph[node]:
new_path = list(path)
new_path.append(adjacent)
if adjacent == y:
return new_path
q.append(new_path)
visited.append(node)
return f'No path from {x} to {y}.'
|
65c6b276cf09b6d37de69c317a8c012eb82ffe89
| 63,236
|
def fedoralink_streams(obj):
"""
Return an iterator of tuples (field, instance of TypedStream or UploadedFile)
that were registered (via setting an instance of these classes
to any property) with the object.
:param obj: an instance of FedoraObject
:return: iterator of tuples
"""
return getattr(obj, '__streams', {}).items()
|
98442702798d1f152e98f165104890d5329078c3
| 63,241
|
def sumTuple(tList, index):
"""This function takes in the list of tuples, and the index of the tuple
It then returns the sum of all of this numbers in that specific tuple index"""
_allNums = [x[index] for x in tList]
return sum(_allNums)
|
b680c7cd43226a01dd19608a346fecbeed31baac
| 63,243
|
def get_key_to_hash(prefix, *args, **kwargs):
"""Return key to hash for *args and **kwargs."""
key_to_hash = prefix
# First args
for i in args:
key_to_hash += ":%s" % i
# Attach any kwargs
for key in sorted(kwargs.keys()):
key_to_hash += ":%s" % kwargs[key]
return key_to_hash
|
08577a67e377e2ed5fdb067e54ca4ec56ec3c0b9
| 63,247
|
def check_tr_id_full_coverage(tr_id, trid2exc_dic, regid2nc_dic,
pseudo_counts=False):
"""
Check if each exon of a given transcript ID is covered by > 0 reads.
If so return True, else False.
>>> trid2exc_dic = {"t1" : 2, "t2" : 2, "t3" : 1}
>>> regid2nc_dic = {"t1_e1": 0.4, "t1_e2": 1.2, "t2_e1": 0.4, "t2_e2": 0.0, "t3_e1": 1.6}
>>> check_tr_id_full_coverage("t1", trid2exc_dic, regid2nc_dic)
True
>>> check_tr_id_full_coverage("t2", trid2exc_dic, regid2nc_dic)
False
>>> check_tr_id_full_coverage("t3", trid2exc_dic, regid2nc_dic)
True
"""
min_ex_cov = 0
if pseudo_counts:
min_ex_cov = 1
for i in range(trid2exc_dic[tr_id]):
ex_nr = i + 1
ex_id = tr_id + "_e" + str(ex_nr)
ex_cov = regid2nc_dic[ex_id]
if ex_cov == min_ex_cov:
return False
return True
|
7f8ec307a6faf09b6d22c9d0d1c63b1d0a181c8e
| 63,248
|
def _range_exhausted(i, values, steps, stops):
"""
Check if a range at i is exhausted.
"""
return steps[i] * (values[i] - stops[i]) >= 0
|
e5d6f781f5f005c248ece87dff3c26c7e10cbd22
| 63,249
|
def send_email(service, user_id, message):
"""
Send an email via Gmail API
:service: (googleapiclient.discovery.Resource) authorized Gmail API service instance
:user_id: (str) sender's email address, used for special "me" value (authenticated Gmail account)
:message: (base64) message to be sent
"""
try:
message = (service.users().messages().send(userId=user_id, body=message).execute())
return message
except Exception as e:
print("err: problem sending email")
print(e)
|
e80aeb05d0d5a43b54a892a49b496ffb007f6879
| 63,260
|
def convert_to_type(value, value_type, default_value=None):
"""
Try to convert 'value' to type
:param value: The value to convert
:param value_type: The type to convert to eg: int, float, bool
:param default_value: The default returned value if the conversion fails
:return:
"""
try:
return value_type(value)
except ValueError:
return default_value
|
828ed0d60dcdfd4f134a1e9c2377c921424bacce
| 63,262
|
from typing import Sequence
from typing import Union
import re
def _parse_problem_sizes(argument: str) -> Sequence[Union[int, Sequence[int]]]:
"""Parse a problem size argument into a possibly nested integer sequence.
Examples:
64,128 -> [64, 128]
32,32,[1,1] -> [32, 32, [1, 1]]
"""
problem_sizes = []
while argument:
# Match size.
match = re.match(r"""[,]?\d+""", argument)
if match:
problem_sizes.append(int(match.group().lstrip(',')))
argument = argument[match.end():]
continue
# Match nested sizes.
match = re.match(r"""[,]?\[[0-9,]+\]""", argument)
if match:
nested = match.group().lstrip(',')[1:-1]
problem_sizes.append([int(elem) for elem in nested.split(',')])
argument = argument[match.end():]
continue
raise ValueError()
return problem_sizes
|
9ac8055a4cfb26d11d19cba2de58d1b797fc2125
| 63,263
|
def extract_eyeid_diameters(pupil_datum):
"""Extract data for a given pupil datum
Returns: tuple(eye_id, confidence, diameter_2d, and diameter_3d)
"""
return (
pupil_datum["id"],
pupil_datum["confidence"],
pupil_datum["diameter"],
pupil_datum.get("diameter_3d", 0.0),
)
|
bb935b2c7280e3f30a274d4cd7ba22f5a5f80c2c
| 63,264
|
def property_initialization(property_type, name):
"""Generate the property initialization for __init__()."""
return f' self._{name} = {property_type}()\n'
|
44ed1ae42f153890a0ab8559b279fea700ab462c
| 63,267
|
import re
def sanitize_file_path(file):
"""
Replaces backslashes with forward slashes and removes leading / or drive:/.
:param file: Relative or absolute filepath
:return: Relative or absolute filepath with leading / or drive:/ removed
"""
# Sanitize all backslashes (\) with forward slashes (/)
file_key = file.replace('\\', '/').replace('//', '/')
# If Mac/Linux full path
if re.search(r'^/.+$', file):
file_key = file.split('/', 1)[1]
# If Windows full path
elif re.search(r'^\D:/.+$', file_key):
file_key = file_key.split(':/', 1)[1]
return file_key
|
73694f4365c7cdf12b13d3b4841438562fa0bd40
| 63,268
|
def index_bisect(inlist, el):
"""
Return the index where to insert item el in inlist.
inlist is assumed to be sorted and a comparison function (lt or cmp)
must exist for el and the other elements of the list.
If el already appears in the list, inlist.insert(el) will
insert just before the leftmost el already there.
"""
lo = 0
hi = len(inlist)
while lo < hi:
mid = (lo+hi)//2
if inlist[mid] < el: lo = mid+1
else: hi = mid
return lo
|
e3db6d444706dcd6f7bd5002479dbfe9cfe6bffc
| 63,269
|
def plane_edge_point_of_intersection(plane, n, p0, p1):
"""
Finds the point of intersection between a box plane and
a line segment connecting (p0, p1).
The plane is assumed to be infinite long.
Args:
plane: tensor of shape (4, 3) of the coordinates of the vertices defining the plane
n: tensor of shape (3,) of the unit direction perpendicular on the plane
(Note that we could compute n but since it's computed in the main
body of the function, we save time by feeding it in. For the purpose
of this function, it's not important that n points "inside" the shape.)
p0, p1: tensors of shape (3,), (3,)
Returns:
p: tensor of shape (3,) of the coordinates of the point of intersection
a: scalar such that p = p0 + a*(p1-p0)
"""
# The point of intersection can be parametrized
# p = p0 + a (p1 - p0) where a in [0, 1]
# We want to find a such that p is on plane
# <p - v0, n> = 0
v0, v1, v2, v3 = plane
a = -(p0 - v0).dot(n) / (p1 - p0).dot(n)
p = p0 + a * (p1 - p0)
return p, a
|
8737be3bde6fd81299b869d3dd12406b6382230f
| 63,270
|
import functools
def keep_tc_pos(func):
"""
Cache text cursor position and restore it when the wrapped
function exits.
This decorator can only be used on modes or panels.
:param func: wrapped function
"""
@functools.wraps(func)
def wrapper(editor, *args, **kwds):
""" Decorator """
sb = editor.verticalScrollBar()
spos = sb.sliderPosition()
pos = editor.textCursor().position()
retval = func(editor, *args, **kwds)
text_cursor = editor.textCursor()
text_cursor.setPosition(pos)
editor.setTextCursor(text_cursor)
sb.setSliderPosition(spos)
return retval
return wrapper
|
446ef8a684925c8dd209085ed91315a62d6462f1
| 63,273
|
def _rng_zero(x):
"""Return zero scalar, according to sensitivity_transform."""
return 0
|
6c8c805b37391b4577349cf1d9aaceacbba06b11
| 63,284
|
import re
def remove_version(code):
""" Remove any version directive """
pattern = r'\#\s*version[^\r\n]*\n'
regex = re.compile(pattern, re.MULTILINE | re.DOTALL)
return regex.sub('\n', code)
|
0072e85aaa8787db0728131b3038d62d899d2e38
| 63,287
|
import random
def ShuffleList(feature, label):
"""
Shuffle list
:param feature: the feature to train model, which is a list
:param label: the label of the feature, which is a list
:return: the shuffled feature and label
"""
randIndex = [a for a in range(len(feature))]
random.shuffle(randIndex)
featureShuffle = [feature[ind] for ind in randIndex]
labelShuffle = [label[ind] for ind in randIndex]
return featureShuffle, labelShuffle
|
291b5e5741f1a837c9777feba1622ef332818abb
| 63,288
|
def replace_repeated_characters(text):
"""Replaces every 3+ repetition of a character with a 2-repetition."""
if not text:
return text
res = text[0]
c_prev = text[0]
n_reps = 0
for c in text[1:]:
if c == c_prev:
n_reps += 1
if n_reps < 2:
res += c
else:
n_reps = 0
res += c
c_prev = c
return res
|
15d11aa94d6da43f1d3f17c7077cda883b788780
| 63,291
|
def whatis(seizure):
"""
Détermine si une entrée est un montant, une date ou un mode de paiement.
"""
seizure = seizure.replace(" ", "") # pour reconnaître le montant si il contient un espace
try:
seizure = float(seizure)
return "amount"
except ValueError:
try:
seizure.index("/")
return "date"
except ValueError:
return "mode"
|
ccbb5a3feda0b4d8542fdca7cadce2e9240e485b
| 63,292
|
def metabase_metadata_db_alias() -> str:
"""The db alias of the Metabase metadata database"""
return 'metabase-metadata'
|
b7ec73635633b1294b6548fec21bafa787869510
| 63,293
|
def wrap_filter(hook, filter_fn):
"""
takes in a hook and only applies it when the given filter function
returns a truthy value
"""
def wrap_filter_inner(hs):
if filter_fn(hs):
return hook(hs)
else:
return hs()
return wrap_filter_inner
|
63048037dd1dc865de2cb98eda972191d6c14ff5
| 63,299
|
from typing import List
from typing import Dict
def gen_header(head: List[str]) -> Dict:
"""
This is a helper function meant to generate a dictionary that contains parsing information
for csvs. I.e. it stores how to manage datetimes, integers and floats. Strings are pretty much
ignored.
>>> gen_header(["date~%m/%d/%Y","sentiment_value~float"])
{'date': "datetime.strptime(row[0],'%m/%d/%Y')", 'sentiment_value': 'float(row[1])'}
"""
final = {}
for val in head:
val = val.split('~')
final[val[0]] = val[1]
return final
|
314bf2e2b7451ab7a83352fb4edb947bf5bf2c21
| 63,301
|
def pivot_bulk_data(data, values='log2_rpkm'):
"""
take long format expression data and pivot to a wider (subject x region) x gene dataframe
data: long format dataframe (gene x region x subject) x rpkm
values: metric of interest to create a (region x subject) x gene matrix of metrics
returns:
table_data: wide format dataframe
"""
# select data
selected_data = data.loc[:,['symbol', 'sample', 'region', 'age', values]]
# pivot
table_data = selected_data.pivot_table(index=['sample', 'region', 'age'], columns='symbol', values=values)
table_data = table_data.reset_index()
return table_data
|
7c72d1ad87649d3a541f2559266964581662c7e3
| 63,312
|
def get_cal_name(cal_id, service, http):
"""
Retrieve the name (summary) for a calendar.
@param cal_id: str, calendar id
@return: str, calendar name
"""
response = service.calendars().get(calendarId=cal_id).execute(http=http)
return response['summary']
|
a57a0ea045914abcf3840bf82f0ecccf2ff540fb
| 63,314
|
def _text(e):
""" Try to get the text content of this element """
try:
text = e.text_content()
except AttributeError:
text = e
return text.strip()
|
f447c9e189a587aab61ec1ae1d6437d0a607e381
| 63,315
|
def diff_identifiers(a, b):
"""Return list of tuples where identifiers in datasets differ.
Tuple structure:
(identifier, present in a, present in b)
:param a: first :class:`dtoolcore.DataSet`
:param b: second :class:`dtoolcore.DataSet`
:returns: list of tuples where identifiers in datasets differ
"""
a_ids = set(a.identifiers)
b_ids = set(b.identifiers)
difference = []
for i in a_ids.difference(b_ids):
difference.append((i, True, False))
for i in b_ids.difference(a_ids):
difference.append((i, False, True))
return difference
|
5e08802654ed6da8bfb4f2850a8733c5548f9d75
| 63,317
|
def GetLiteral(parser, name):
"""Returns the literal with the given name, removing any single quotes if they exist"""
value = parser.literalNames[name]
if value.startswith("'"):
value = value[1:]
if value.endswith("'"):
value = value[:-1]
return value
|
2299d22db9cfd4f2734ca3e8890c2748c288c7fe
| 63,319
|
import math
def _radians_to_angle(rad):
"""
Convert radians into angle
:param rad:
:return: angle
"""
return rad * 180 / math.pi
|
f88aa0a2da9f0dd31a0576afcd1ffd80ba9eafc8
| 63,320
|
import re
def clean_whitespace(text: str) -> str:
"""
Replace all contiguous whitespace with single space character,
strip leading and trailing whitespace.
"""
text = str(text or '')
stripped = text.strip()
sub = re.sub(r'\s+', ' ', stripped, )
return sub
|
1744f4ea82dfc538b2e095e66a2260368c5c09ac
| 63,322
|
def min_approx(x1, x2, x3, y1, y2, y3):
"""
Get the x-value of the minimum of the parabola through the points (x1,y1), ...
:param x1: x-coordinate point 1
:param x2: x-coordinate point 2
:param x3: x-coordinate point 3
:param y1: y-coordinate point 1
:param y2: y-coordinate point 2
:param y3: y-coordinate point 3
:return: x-location of the minimum
"""
#
div = (2.*(x3*(y1 - y2) + x1*(y2 - y3) + x2*(-y1 + y3)))
return (x3**2*(y1 - y2) + x1**2*(y2 - y3) + x2**2*(-y1 + y3))/div
|
c557478554df7143b2fe193927bf9b8933ba30e7
| 63,324
|
def generate_transition_trigram_probabilities(transition_bigram_counts, transition_trigram_counts):
"""Takes in the bigram and trigram count matrices.
Creates dictionary containing the transition trigram
probabilities in the following format:
{(tag[i-2], tag[i-1], tag[i]) : probability}
where the probability is calculated by the following formula:
probability((tag[i-2], tag[i-1], tag[i])) = count((tag[-2], tag[i-1], tag[i]))/count((tag[i-2], tag[i-1]))
"""
transition_trigram_probabilities = dict()
for tag_trigram in transition_trigram_counts:
transition_trigram_probabilities[tag_trigram] = float(transition_trigram_counts[tag_trigram])/transition_bigram_counts[(tag_trigram[0], tag_trigram[1])]
return transition_trigram_probabilities
|
38790b31a4f15f0efaadee87e7ba6badc4249820
| 63,325
|
def get_result_from_input_values(input, result):
"""Check test conditions in scenario results input.
Check whether the input parameters of a behave scenario results record from
testapi match the input parameters of the latest test. In other words,
check that the test results from testapi come from a test done under the
same conditions (frame size, flow count, rate, ...)
Args:
input: input dict of a results dict of a behave scenario from testapi
result: dict of nfvbench params used during the last test
Returns:
True if test conditions match, else False.
"""
# Select required keys (other keys can be not set or unconsistent between scenarios)
required_keys = ['duration_sec', 'frame_sizes', 'flow_count', 'rate']
if 'user_label' in result:
required_keys.append('user_label')
if 'flavor_type' in result:
required_keys.append('flavor_type')
subset_input = dict((k, input[k]) for k in required_keys if k in input)
subset_result = dict((k, result[k]) for k in required_keys if k in result)
return subset_input == subset_result
|
421fac0d76bf0ec9a861b137db7ea6ceaf3cc92a
| 63,332
|
def convert_dm_ref_zp_flux_to_nanoJansky(flux, dm_ref_zp=27):
"""Convert the listed DM coadd-reported flux values to nanoJansky.
Eventually this function should be a no-op. But presently
The processing of Run 1.1, 1.2 to date (2019-02-17) have
calibrated flux values with respect to a reference ZP=27 mag
The reference catalog is on an AB system.
Re-check dm_ref_zp if calibration is updated.
Eventually we will get nJy from the final calibrated DRP processing.
"""
AB_mag_zp_wrt_Jansky = 8.90 # Definition of AB
AB_mag_zp_wrt_nanoJansky = 2.5 * 9 + AB_mag_zp_wrt_Jansky # 9 is from nano=10**(-9)
calibrated_flux_to_nanoJansky = 10**((AB_mag_zp_wrt_nanoJansky - dm_ref_zp)/2.5)
return calibrated_flux_to_nanoJansky * flux
|
b3eb1828a1f8621bc76bf6d8a4da2ede58b5cf2b
| 63,333
|
def compress(nparray, newMax=1, newMin=0):
"""compress an numpy array, default is from range 0 to 1"""
minimum = min(nparray)
maximum = max(nparray)
if(maximum - minimum) == 0:
return nparray
return (((nparray - minimum)/ ( max(nparray) - minimum)) * newMax + newMin)
|
99c67c099ee4ffc3399731674a0c376a2a8b5af2
| 63,342
|
def create_tsv(df, filename=None):
"""Convert pandas DataFrame to text-based table for SISSO.
Args:
df (pandas DataFrame): Dataframe of samples and features.
filename: Path for writing file (optional).
Returns (if filename==None):
table (string)
"""
table = df.to_string()
lines = table.splitlines()
index_name = lines.pop(1).strip()
lines[0] = index_name + lines[0][len(index_name):]
table = '\n'.join(lines)
if filename is not None:
with open(filename, 'w') as f:
f.write(table)
else:
return table
|
c43372835837922f21fd5131f421d295eb7298c6
| 63,343
|
from typing import Tuple
def _ingresar_coordenadas() -> Tuple[int, int]:
"""Ingreso de coordenadas.
:return: Coordenadas x e y
:rtype: Tuple[int, int]
"""
x = int(input("x: "))
y = int(input("y: "))
return x, y
|
2e1f3d122ac68a6ed7f8785291f2d2310af198c9
| 63,345
|
import importlib
def _object_from_name(object_name):
"""Creates an object from its name as a python string.
Args:
object_name: the name of the object to be created as a string.
Returns: the object that the string refers to, dynamically imported.
"""
module_name, top_name = object_name.rsplit('.', 1)
the_module = importlib.import_module(module_name)
return getattr(the_module, top_name)
|
8d5b88487c0cdac7ec6797030cdb0667e0399f97
| 63,349
|
def dist_to_conc(dist, r_min, r_max, rule="trapezoid"):
""" Converts a swath of a size distribution function to an actual number
concentration.
Aerosol size distributions are typically reported by normalizing the
number density by the size of the aerosol. However, it's sometimes more
convenient to simply have a histogram of representing several aerosol
size ranges (bins) and the actual number concentration one should expect
in those bins. To accomplish this, one only needs to integrate the size
distribution function over the range spanned by the bin.
Parameters
----------
dist : object implementing a ``pdf()`` method
the representation of the size distribution
r_min, r_max : float
the lower and upper bounds of the size bin, in the native units of ``dist``
rule : {'trapezoid', 'simpson', 'other'} (default='trapezoid')
rule used to integrate the size distribution
Returns
-------
float
The number concentration of aerosol particles the given bin.
Examples
--------
>>> dist = Lognorm(mu=0.015, sigma=1.6, N=850.0)
>>> r_min, r_max = 0.00326456461236 0.00335634401598
>>> dist_to_conc(dist, r_min, r_max)
0.114256210943
"""
pdf = dist.pdf
width = r_max - r_min
if rule == "trapezoid":
return width*0.5*(pdf(r_max) + pdf(r_min))
elif rule == "simpson":
return (width/6.)*(pdf(r_max) + pdf(r_min) + 4.*pdf(0.5*(r_max + r_min)))
else:
return width*pdf(0.5*(r_max + r_min))
|
5c6dedfa49842e32dcb246bdc1e9dfc445b304ec
| 63,350
|
def fmt_option_val(option):
"""Format a single option (just a value , no key)."""
if option is None:
return ""
return str(option)
|
410269228c0feb0a763edef8c0c7595ed4b22946
| 63,353
|
import json
def prepareJSONstring(message_type, data, signature=None, verification=None):
"""
Prepares the JSON message format to be sent to the Buyer
:param message_type: MENU/SESSION_KEY/DATA/DATA_INVOICE
:param data: Corresponding data
:param signature: Signed Data
:param verification: Address or the transaction ID in Tangle/Blockchain
:return: JSON dictionary
"""
json_data = {}
json_data['message_type'] = message_type
json_data['data'] = data
if signature:
json_data['signature'] = signature
else:
json_data['signature'] = ""
if verification:
json_data['verification'] = verification
else:
json_data['verification'] = ""
return json.dumps(json_data)
|
c0db35ccb80fa1c13457358c5889cb66bd90ac76
| 63,354
|
import math
def nCr(n: int, r: int) -> float:
"""Computes nCr
Args:
n: Total number
r: Number to sample
Returns:
nCr
"""
if r > n or n < 0 or r < 0:
return 0
f = math.factorial
return f(n) // f(r) // f(n - r)
|
fcdaa2db1a71644faa881e18c080e655ecbfd5c2
| 63,357
|
def climbStairs(n):
"""
LeetCode 70:爬楼梯
建模为斐波那契数列问题:f(n) = f(n-1) + f(n-2)
"""
dp = [1, 2]
if n < 3: return dp[n-1]
for i in range(3, n+1):
tmp = sum(dp)
dp = [dp[1], tmp]
return dp[1]
|
1f9b039a2996480cb0a6ca28d79d0076ab08eed7
| 63,358
|
def particao(a, b, N):
"""
Dados os pontos inicial $a$ e final $b$, e o número $N$
de subintervalos da partição regular desejada, esta função
retorna a partição regular com tais características, sob
a forma de uma lista
"""
lista = [a]
delta = (b - a)/N
for j in range(1, N+1):
lista += [a + j * delta]
return lista
|
e167870ffea5f45581d5f683e0d77b226ab53997
| 63,363
|
def get_compat_files(
file_paths,
compat_api_version):
"""Prepends compat/v<compat_api_version> to file_paths."""
return ["compat/v%d/%s" % (compat_api_version, f) for f in file_paths]
|
1974762e850e24d0ba1a00abefebe625a3243c84
| 63,364
|
def transformed_potential_energy(potential_energy, inv_transform, z):
"""
Given a potential energy `p(x)`, compute potential energy of `p(z)`
with `z = transform(x)` (i.e. `x = inv_transform(z)`).
:param potential_energy: a callable to compute potential energy of original
variable `x`.
:param ~numpyro.distributions.constraints.Transform inv_transform: a
transform from the new variable `z` to `x`.
:param z: new variable to compute potential energy
:return: potential energy of `z`.
"""
x, intermediates = inv_transform.call_with_intermediates(z)
logdet = inv_transform.log_abs_det_jacobian(z, x, intermediates=intermediates)
return potential_energy(x) - logdet
|
ec8f27658cd573bd28c77eebf34b68800f1962b4
| 63,365
|
def _hex_to_rgb(_hex):
""" Convert hex color code to RGB tuple
Args:
hex (str): Hex color string, e.g '#ff12ff' or 'ff12ff'
Returns:
(rgb): tuple i.e (123, 200, 155) or None
"""
try:
if '#' in _hex:
_hex = _hex.replace('#', "").strip()
if len(_hex) != 6:
return None
(r, g, b) = int(_hex[0:2], 16), int(_hex[2:4], 16), int(_hex[4:6], 16)
return (r, g, b)
except Exception:
return None
|
ff268246dd20aa50e2fdad711811784f5c1f5de5
| 63,370
|
from datetime import datetime
def generate_report_name(report_instance):
"""
Generate a filename for a report based on the current time and attributes of an
individual :model:`reporting.Report`. All periods and commas are removed to keep
the filename browser-friendly.
"""
def replace_chars(report_name):
return report_name.replace(".", "").replace(",", "")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
client_name = report_instance.project.client
assessment_type = report_instance.project.project_type
report_name = replace_chars(f"{timestamp}_{client_name}_{assessment_type}")
return report_name
|
f92d54d3bb14068526b292ce36061ede001c2e97
| 63,373
|
import math
def UTM_EPSG(longitude, latitude):
"""Find UTM EPSG code of a longitude, latitude point."""
zone = str((math.floor((longitude + 180) / 6) % 60) + 1)
epsg_code = 32600
epsg_code += int(zone)
if latitude < 0:
epsg_code += 100
return epsg_code
|
dfdfd1df086a400cece576a54a55f20ee72d494a
| 63,375
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.