content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def get_historical_time(data_point):
"""Returns the time of a DATA_POINT"""
try:
return data_point['begins_at'][11:16]
except:
return None
|
412ed21e7e2591075cc71f911304faa4af959176
| 53,582
|
def _extract_problem_info(source):
"""Split the logpath to identify test problem, data set, etc.
Args:
source (Cockpit or str): ``Cockpit`` instance, or string containing the
path to a .json log produced with ``Cockpit.write``, where
information will be fetched from.
Returns:
[dict]: Dictioniary of logpath, testproblem, optimizer, etc.
"""
if isinstance(source, str):
# Split logpath if possible
try:
dicty = {
"logpath": source + ".json",
"optimizer": source.split("/")[-3],
"testproblem": source.split("/")[-4],
"dataset": source.split("/")[-4].split("_", 1)[0],
"model": source.split("/")[-4].split("_", 1)[1],
}
except Exception:
dicty = {
"logpath": source + ".json",
"optimizer": "",
"testproblem": "",
"dataset": "",
"model": "",
}
else:
# Source is Cockpit instance
dicty = {
"logpath": "",
"optimizer": source._optimizer_name,
"testproblem": "",
"dataset": "",
"model": "",
}
return dicty
|
a88c8dbc7a1175957c3c57a12b780892f36eea46
| 53,583
|
def BHS_standard(err):
"""
Computes the BHS Standard metric
Arguments:
err {array} -- array of absolute error
Returns:
tuple -- tuple of percentage of samples with <=5 mmHg, <=10 mmHg and <=15 mmHg error
"""
leq5 = 0
leq10 = 0
leq15 = 0
for i in range(len(err)):
if(abs(err[i])<=5):
leq5 += 1
leq10 += 1
leq15 += 1
elif(abs(err[i])<=10):
leq10 += 1
leq15 += 1
elif(abs(err[i])<=15):
leq15 += 1
return (leq5*100.0/len(err), leq10*100.0/len(err), leq15*100.0/len(err))
|
a2a71a5fea63c7bc6965d54a7d7dcae7333e1838
| 53,596
|
def find_biggest_box(length: int, width: int) -> int:
"""
>>> find_biggest_box(1, 1)
1
>>> find_biggest_box(1680, 640)
80
>>> find_biggest_box(640, 1680)
80
"""
if length < width:
length, width = width, length
rest = length % width
if not rest:
return width
return find_biggest_box(width, rest)
|
316eec7579436188127d83a5bd2bf8b66ab684b9
| 53,605
|
from typing import List
def extract_masks(mask) -> List:
"""
Выделяет бинарные маски из монолитной серой маски
:param mask: серая маска в которой значение пикселя соответствует классу
:return: список бинарных масок
"""
masks = []
classes = set()
for row in mask:
for v in row:
classes.add(v)
classes.remove(0) # удаляем фон
for c in classes:
m = mask.copy()
m[m != c] = 0
m[m == c] = 255
masks.append(m)
return masks
|
316fcc118d5732aae37d24a16c89d0adc09c96fc
| 53,606
|
from typing import Iterable
from typing import List
import re
def filter_filenames(filenames: Iterable[str], pattern: str) -> List[str]:
"""Filters filenames according to a regex pattern."""
filtered_filenames = []
for filename in filenames:
if re.search(pattern, filename):
filtered_filenames.append(filename)
return filtered_filenames
|
45787d263c8869a1fdc99273f535257ec3d513fd
| 53,608
|
def asProj4Str(epsg):
""" convert EPSG code to *proj4* ``+init=epsg:<code>`` notation """
return "+init=epsg:%d" % int(epsg)
|
1e6d9066a245389e7ee61abade3889e55a62aa93
| 53,611
|
async def enclose_tags_in_spoilers(tags):
"""
Encloses the tags in spoilers and returns the resultant string.
"""
tags = tags.split(", ")
tags = [tag.strip("[]'") for tag in tags]
tags = map(lambda str: "||" + str + "||", tags)
tags = ",".join(tags)
return tags
|
3e8f3e0a2a92ec1518635cd6bb39d082bc924c8d
| 53,613
|
def cli(ctx, name, synopsis, description="", type="unrestricted", remote_repository_url="", homepage_url="", category_ids=""):
"""Create a new repository in a Tool Shed.
Output:
a dictionary containing information about the new repository.
For example::
{"deleted": false,
"deprecated": false,
"description": "new_synopsis",
"homepage_url": "https://github.com/galaxyproject/",
"id": "8cf91205f2f737f4",
"long_description": "this is some repository",
"model_class": "Repository",
"name": "new_repo_17",
"owner": "qqqqqq",
"private": false,
"remote_repository_url": "https://github.com/galaxyproject/tools-devteam",
"times_downloaded": 0,
"type": "unrestricted",
"user_id": "adb5f5c93f827949"}
"""
return ctx.gi.repositories.create_repository(name, synopsis, description=description, type=type, remote_repository_url=remote_repository_url, homepage_url=homepage_url, category_ids=category_ids)
|
bc5e5da0a72faf28e47d880c1d6485bbc91b698c
| 53,616
|
def extract(v):
"""
提取张量(Tensor)存储在 storage 中的数据部分,并将数据存储到列表(list)中
:param v: 张量
:return: 将数据存储到列表(list),并返回
"""
# .storage(): 返回底层数据
# .tolist(): 将 torch.Tensor 转换为 python 的 list(列表) 类型
return v.data.storage().tolist()
|
d9cb4d68c201c6582b3fe0b429e23a36487623b7
| 53,624
|
def time_feature_engineering_function(dataframe, time_column):
"""
Args: dataframe and the timeseries column called time_column
Assumption: time_column already has the hour day month year information
Logic: generate 8 possible combinations of the time_column column
Returns: The original dataframe with the new feature engineered columns + names of those columns
"""
# Then use the above column to split up into respective time components
# in which there might be seasonality
dataframe['hour'] = dataframe[time_column].dt.hour
dataframe['dayofweek'] = dataframe[time_column].dt.dayofweek
dataframe['dayofmonth'] = dataframe[time_column].dt.day
dataframe['dayofyear'] = dataframe[time_column].dt.dayofyear
dataframe['weekofyear'] = dataframe[time_column].dt.weekofyear
dataframe['quarter'] = dataframe[time_column].dt.quarter
dataframe['month'] = dataframe[time_column].dt.month
dataframe['year'] = dataframe[time_column].dt.year
new_col_name_list = ['hour','dayofweek','dayofmonth','dayofyear','weekofyear','quarter','month','year']
return dataframe, new_col_name_list
|
8407a6f22583a2a02e225493ab358dd3eb355a9e
| 53,627
|
from typing import Optional
def form_profile_value(accesskey: str, url: Optional[str] = None) -> str:
"""Form the profile value with accesskey (and url).
Arguments:
accesskey: The accesskey to TensorBay.
url: The TensorBay url.
Returns:
The formed profile value.
"""
values = ["", accesskey]
if url:
values.append(url)
return "\n".join(values)
|
c12c8d29f607d0ad00948f1b797dd0dc509a8ff7
| 53,634
|
def _bits_to_float(bits, lower=-90.0, middle=0.0, upper=90.0):
"""Convert GeoHash bits to a float."""
for i in bits:
if i:
lower = middle
else:
upper = middle
middle = (upper + lower) / 2
return middle
|
f059e217f86c23485c58e24ca2328a26e371ad53
| 53,638
|
import re
def sourceSplit(source):
"""sourceSplit(source) -> str, str, str
Split the given source into it's parts.
source must be of the form: nick!ident@host
Example:
>>> nick, ident, host, = sourceSplit("Joe!Blogs@localhost")
"""
m = re.match(
"(?P<nick>[^!].*)!(?P<ident>.*)@(?P<host>.*)",
source)
if m is not None:
d = m.groupdict()
return d["nick"], d["ident"], d["host"]
else:
return source, None, None
|
3ee0a816085ad5d568800262ab05f0b08ef15d6f
| 53,643
|
def has_path(data_product):
"""
Given a data product in the form of an `~astropy.table.Row` returns
True if it's mission supports cloud access, False if not.
"""
return data_product['dataURI'].lower().startswith("mast:hst/product") or \
data_product['dataURI'].lower().startswith("mast:tess/product") or \
data_product['dataURI'].lower().startswith("mast:kepler")
|
d46e73f3fa825bdda43d9608d20e480f386df8b7
| 53,649
|
def from_c_bytes(c_data, c_data_len):
"""Takes a byte pointer and a length and converts it into a python bytes
value.
"""
# pylint: disable=invalid-slice-index
return bytes(c_data[:c_data_len.value])
|
34ebb3043cb0b16673d60ccf2009733931e32581
| 53,652
|
def create_processor_uid_mapping(mapping_cache):
"""
Create dictionary that maps processor name to uid
:param mapping_cache: mapping_cache built in LqnBuilder
:return: mapping for processor to uid
"""
processor_uid_mapping = {}
# Get uid mappings from mapping_cache
branch_mapping = mapping_cache["branch_mapping"]
loop_uid_mapping = mapping_cache["loop_uid_mapping"]
composite_uid_mapping = mapping_cache["composite_uid_mapping"]
# Add mappings to processor_uid_mapping
for branch_id, processor_dict in branch_mapping.items():
processor_uid_mapping.update(processor_dict)
processor_uid_mapping.update(loop_uid_mapping)
processor_uid_mapping.update(composite_uid_mapping)
return processor_uid_mapping
|
d9773db091fc8b68b9dcf422ad7a03b2ede34243
| 53,654
|
def print_multi_list(list_ch_info=None, sep=";"):
"""Print the summary of downloaded claims from multiple channels.
This is meant to be used with the returned list from
`ch_download_latest_multi`.
Parameters
----------
list of lists of dicts
A list of lists, where each internal list represents one channel,
and this internal list has as many dictionaries as downloaded claims.
The information in each dictionary represents the standard output
of the `lbrynet_get` command for each downloaded claim.
If the download fails, then the corresponding item in the list
may be `False`, in which case no claim information is printed.
sep: str, optional
It defaults to `;`. It is the separator character between
the data fields in the printed summary. Since the claim name
can have commas, a semicolon `;` is used by default.
Returns
-------
bool
It returns `True` if the information was read and printed
without problems.
If there is a problem or no list of items, it will return `False`.
"""
if not list_ch_info or not isinstance(list_ch_info, (list, tuple)):
print("Print information from a list of lists from multiple "
"channels obtained from `ch_download_latest_multi`.")
return False
if len(list_ch_info) < 1:
print("Empty list.")
return False
# flat_list = [item for sublist in list_ch_info for item in sublist]
flat_list = []
for sublist in list_ch_info:
if not sublist:
flat_list.append(None)
continue
for item in sublist:
if not item:
flat_list.append(None)
continue
flat_list.append(item)
n_items = len(flat_list)
print("Summary of downloads")
out_list = []
for it, item in enumerate(flat_list, start=1):
out = "{:2d}/{:2d}".format(it, n_items) + f"{sep} "
if not item:
out += "empty item. Failure establishing server connection?"
out_list.append(out)
continue
if "claim_id" in item:
out += "{}".format(item["claim_id"]) + f"{sep} "
out += "{:3d}/{:3d}".format(item["blobs_completed"],
item["blobs_in_stream"]) + f"{sep} "
out += '"{}"'.format(item["channel_name"])
out += f"{sep} "
out += '"{}"'.format(item["claim_name"])
out_list.append(out)
elif "error" in item:
out_list.append(out + '"{}"'.format(item["error"]))
else:
out_list.append(out + "not downloaded")
print("\n".join(out_list))
return True
|
51aefe169399561e5d0e0f6c21576c9ec8e4813f
| 53,655
|
def fix(series):
""" fix the series to match the model API
Args:
series (pd.Series): the series to reshape
Return:
series with shape (n_samples, n_features)
"""
return series.values.reshape((-1, 1))
|
e61392f0bcfcec59ff52f96cd65e2627b35ab8dd
| 53,660
|
def division(numerator, denominator):
""" if d = 0 return 0, otherwise return n/d """
return numerator/denominator if denominator else 0
|
7d46e6a0c58373df5475f4a4a7aaaa7bfa5b9d4d
| 53,661
|
def string_to_elements(string):
"""
:string: elements separated by colon as in s1:s2:s3
Return list of elements
"""
ss = string.split(':')
elements = []
for s in ss:
if s:
elements.append(bytes.fromhex(s))
return elements
|
e1fe186d0e4b8f4b5ebc7fcc548a24be734189d9
| 53,663
|
def psa_want_symbol(name: str) -> str:
"""Return the PSA_WANT_xxx symbol associated with a PSA crypto feature."""
if name.startswith('PSA_'):
return name[:4] + 'WANT_' + name[4:]
else:
raise ValueError('Unable to determine the PSA_WANT_ symbol for ' + name)
|
dfee9a4d1ad2f38fd9e9927050545af6b144591e
| 53,665
|
def uses_only(word, letters):
"""return true if word only use a set letters"""
letters = letters.lower()
for letter in word:
if letter.lower() not in letters:
return False
return True
|
c0118b10e90bb61186419c68fa710353425c081c
| 53,673
|
def enter_qty(oFieldsReporter, FieldQuantityString):
"""
Enter a field quantity into the Fields Calculator.
Parameters
----------
oFieldsReporter : pywin32 COMObject
An HFSS "FieldsReporter" module
FieldQuantityString : str
The field quantity to be entered onto the stack.
Returns
-------
None
"""
return oFieldsReporter.EnterQty(FieldQuantityString)
|
91ae74757d9832e0deffcb1e19df81711ea27697
| 53,674
|
def column(results):
"""
Get a list of values from a single-column ResultProxy.
"""
return [x for x, in results]
|
352a604eb9bb863c8bf71c7c96df6c2cbcd226c8
| 53,677
|
def int_to_gast(node):
"""
Handles int to gast for positive and negative whole numbers
"""
if len(node.prefix_operators) > 0 and node.prefix_operators[0] == "-":
return {"type": "num", "value": int(node.value) * -1}
return {"type": "num", "value": int(node.value)}
|
f304b36a78b3a705322f7247a57473ee5d396ab7
| 53,683
|
def ScaleData(data, old_min, old_max, new_min, new_max):
"""Scale the input data so that the range old_min-old_max maps to
new_min-new_max.
"""
def ScalePoint(x):
if x is None:
return None
return scale * x + translate
if old_min == old_max:
scale = 1
else:
scale = (new_max - new_min) / float(old_max - old_min)
translate = new_min - scale * old_min
return list(map(ScalePoint, data))
|
3d9748fc18ba9fd34e3f018c8f717ca4267d486b
| 53,686
|
def to_base36(value):
"""Returns a base36 version of an integer"""
buf = []
while value:
value, i = divmod(value, 36)
buf.append(u'0123456789abcdefghijklmnopqrstuvwxyz'[i])
return u''.join(reversed(buf)) or u'0'
|
f2b8d35b486a7356027d858f43bfc22bcdad7936
| 53,690
|
def rgb_to_tk(rgb):
"""
Converts rgb values to tkinter color codes.
:param rgb: Tuple of 3 ints.
:return: tk color code string
"""
return "#%02x%02x%02x" % rgb
|
3e04c03427cdc495ef45fb44865fac35a0fbd991
| 53,693
|
def match_feature(pairs, feature_mapping):
"""
Match the pairs of cards on it's group_id. Based on symbol_mapping or shades_mapping.
ex. match 'a' -> [{'a', 'A', '@'}, {'h', 'H', '#'}, {'s', 'S', '$'}]
should get 'a' in the first sets. so the group_id should be '0'.
:params: pairs - list of cards
:params: feature_mapping - Either symbol_mapping or shades_mapping.
:return: match_result - list of int (group_id)
"""
match_result = []
for color, feature in pairs:
for index, group in enumerate(feature_mapping):
if feature[0] in group:
match_result.append(index)
break
return match_result
|
3ee0113ed1be58b2d0d41d1680b41fbb143b733f
| 53,695
|
from pathlib import Path
def file_extension(path: str) -> str:
"""
Extracts canonical file extension from path (no leading dot and all lowercase)
e.g. mp4, avi, jpeg, ts
"""
return Path(path).suffix[1:].lower()
|
a085044a19de507844412ea4027fda32c0f2f979
| 53,696
|
def return_mock_token(_, _a):
"""Return a mock token."""
return "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
|
54343f92d8439ab0a0b7cdfafe110949f82cc74e
| 53,701
|
import re
def endsWith(self, field, term):
"""endsWith returns true if the value of the identifier ends with
the string argument; otherwise, it returns false.
"""
expression = "%s$" % term
return self.compareBase(field=field, expression=expression, func=re.match)
|
12a050492952964f5455c82dd86347ef651bc0bd
| 53,702
|
def parse_imsi(imsi):
"""This method verifies that the input is a valid imsi,
ie. it is 14 or 15 digits. It will also strip the prefix "IMSI".
"""
imsi = imsi[4:] if 'IMSI' in imsi else imsi
if not str(imsi).isdecimal():
raise TypeError('IMSI not decimal: %s' % imsi)
if len(str(imsi)) not in [14, 15]:
raise ValueError('len(IMSI) invalid')
return imsi
|
8b6044727f04e680de7e0521f222714e9fd53e69
| 53,706
|
import sqlite3
def open_db(database):
""" Helper functiom to open a database connection
:param db: database file
:return: connection object and cursor
"""
# Make connection to storage database
conn = sqlite3.connect(database)
c = conn.cursor()
return conn, c
|
5718a9c1b74382aa7412067ebd0e8c2387be1a09
| 53,708
|
def BinaryTree(r):
"""Create a new binary tree."""
return [r, [], []]
|
409e19ec24576db6b97bee5bac8d65f727c6c1b7
| 53,712
|
import random
def create_random_datetime(from_date, to_date, rand_type="uniform"):
"""
Create random date within timeframe.
Parameters
----------
from_date : datetime object
to_date : datetime object
rand_type : {'uniform'}
Examples
--------
>>> random.seed(28041990)
>>> create_random_datetime(datetime(1990, 4, 28), datetime(2000, 12, 31))
datetime.datetime(1998, 12, 13, 23, 38, 0, 121628)
>>> create_random_datetime(datetime(1990, 4, 28), datetime(2000, 12, 31))
datetime.datetime(2000, 3, 19, 19, 24, 31, 193940)
"""
delta = to_date - from_date
if rand_type == "uniform":
rand = random.random()
else:
raise NotImplementedError(f"Unknown random mode '{rand_type}'")
return from_date + rand * delta
|
ec80ce4498f70c4682e0210db8b4ffab09296a5e
| 53,713
|
def slicex(df, values, keep_margins=True):
"""
Return an index-wise slice of df, keeping margins if desired.
Assuming a Quantipy-style view result this function takes an index
slice of df as indicated by values and returns the result.
Parameters
----------
df : pandas.DataFrame
The dataframe that should be sliced along the index.
values : list-like
A list of index values that should be sliced from df.
keep_margins : bool, default=True
If True and the margins index row exists, it will be kept.
Returns
-------
df : list
The sliced dataframe.
"""
# If the index is from a frequency then the rule
# should be skipped
if df.index.levels[1][0]=='@':
return df
name_x = df.index.levels[0][0]
slicer = [(name_x, value) for value in values]
if keep_margins and (name_x, 'All') in df.index:
slicer = [(name_x, 'All')] + slicer
df = df.loc[slicer]
return df
|
6719eba7824b04b2e1d5735fd699412190a8811e
| 53,718
|
import re
def GuessSlugFromTitle(title):
"""Return an automatically generated slug from title. Turn spaces into dashes,
lowercase everything, limit length."""
def IsValidChar(c):
return c.isalnum() or c == '-'
lower = title.lower()
slug = lower.replace(' ', '-')
slug = ''.join([c for c in slug if IsValidChar(c)])
slug = re.sub("-+", "-", slug)
return slug
|
6073e087c8d200034f099335b8e9b3468e165a1d
| 53,725
|
import itertools
def flatten(list_of_list):
"""Flatten one layer of nesting.
Usage::
>>> flatten([[0, 1], [2, 3]]
[0, 1, 2, 3]
"""
return itertools.chain.from_iterable(list_of_list)
|
9a46469ae3e1ed99584c0da1994fa2c6cd56b6d5
| 53,726
|
def colorToTagIndex(col):
"""Convert an MColor value to a tag index."""
r = hex(int(round(col.r*255.0)))[::-1]
while len(r) < 4: r += '0'
r = r[::-1]
g = hex(int(round(col.g*255.0)))[::-1]
while len(g) < 4: g += '0'
g = g[::-1]
return int('0x%s%s'%(g[g.find('x')+1::], r[r.find('x')+1::]), 16)
|
6fbbe61316dd22f4abca3b9225276bb22008e18c
| 53,727
|
from typing import List
def tokenize(equation_string: str) -> List[str]:
"""
Tokenize an equation string, including spaces around each token for reversibility.
"""
tokens = equation_string.replace("(", " ( ").replace(")", " ) ").strip().split()
return [" " + token + " " for token in tokens]
|
0c2f09488358980a25ad27f6b9555f3e2113173d
| 53,728
|
def rev_bits(x: int, width: int = 0) -> int:
"""Return the given integer but with the bits reversed.
Params:
x - integer to reverse
width - width of the integer (in bits)
Returns:
The reversed integer.
"""
if not width:
width = x.bit_length()
rev = 0
for i in range(width):
bit = x & (1 << i)
if bit: rev |= (1 << (width - i - 1))
return rev
|
1650abb6be76aefd293e8801b8a0398947da78d9
| 53,733
|
def is_sum_of_extended_pdfs(model) -> bool:
"""Checks if the input model is a sum of extended models.
Args:
model: the input model/pdf
Returns:
True if the model is a sum of extended models, False if not.
"""
if not hasattr(model, "get_models"):
return False
return all(m.is_extended for m in model.get_models())
|
a3f6e7ce9db495296b01c0d350e63a5ae448e334
| 53,734
|
import torch
def nms(boxes: torch.Tensor, scores: torch.Tensor, iou_threshold: float) -> torch.Tensor:
"""Perform non-maxima suppression (NMS) on a given tensor of bounding boxes according to the intersection-over-
union (IoU).
Args:
boxes: tensor containing the encoded bounding boxes with the shape :math:`(N, (x_1, y_1, x_2, y_2))`.
scores: tensor containing the scores associated to each bounding box with shape :math:`(N,)`.
iou_threshold: the throshold to discard the overlapping boxes.
Return:
A tensor mask with the indices to keep from the input set of boxes and scores.
Example:
>>> boxes = torch.tensor([
... [10., 10., 20., 20.],
... [15., 5., 15., 25.],
... [100., 100., 200., 200.],
... [100., 100., 200., 200.]])
>>> scores = torch.tensor([0.9, 0.8, 0.7, 0.9])
>>> nms(boxes, scores, iou_threshold=0.8)
tensor([0, 3, 1])
"""
if len(boxes.shape) != 2 and boxes.shape[-1] != 4:
raise ValueError(f"boxes expected as Nx4. Got: {boxes.shape}.")
if len(scores.shape) != 1:
raise ValueError(f"scores expected as N. Got: {scores.shape}.")
if boxes.shape[0] != scores.shape[0]:
raise ValueError(f"boxes and scores mus have same shape. Got: {boxes.shape, scores.shape}.")
x1, y1, x2, y2 = boxes.unbind(-1)
areas = (x2 - x1) * (y2 - y1)
_, order = scores.sort(descending=True)
keep = []
while order.shape[0] > 0:
i = order[0]
keep.append(i)
xx1 = torch.max(x1[i], x1[order[1:]])
yy1 = torch.max(y1[i], y1[order[1:]])
xx2 = torch.min(x2[i], x2[order[1:]])
yy2 = torch.min(y2[i], y2[order[1:]])
w = torch.clamp(xx2 - xx1, min=0.)
h = torch.clamp(yy2 - yy1, min=0.)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = torch.where(ovr <= iou_threshold)[0]
order = order[inds + 1]
if len(keep) > 0:
return torch.stack(keep)
return torch.tensor(keep)
|
e4f61faf23959d9b72cd425c1603117d7b297c23
| 53,737
|
def padl(l):
"""
Return amount of padding needed for a 4-byte multiple.
"""
return 4 * ((l + 3) // 4) - l
|
264cb5a0776d4f314711d539ad786a3ae9b35221
| 53,739
|
def filter_bonds(bonds, pocket_indices):
"""Get the bond list of bonds between atoms in the target's pocket."""
# Keep only the bonds in the processed bonds list that are in the
# target's pocket.
filtered_bonds = [
entry
for entry in bonds
if entry[0] in pocket_indices and entry[2] in pocket_indices
]
# Remap the entry indices to be between 0-number of atoms remaining,
# to correspond to their positions in the coordinates array.
index_mapping = dict(zip(pocket_indices, range(1, len(pocket_indices) + 1)))
return [
[index_mapping[entry[0]], entry[1], index_mapping[entry[2]]]
for entry in filtered_bonds
]
|
eed3b2a545a3e2a17df3d491b9c0b93e5f7d818b
| 53,741
|
def is_content_authored_by(content, user):
"""
Return True if the author is this content is the passed user, else False
"""
try:
return int(content.get('user_id')) == user.id
except (ValueError, TypeError):
return False
|
9a6846b04bce0066973aac3e3a5dfda2db2b1663
| 53,742
|
def prefix_handlers(endpoint, handlers):
"""Prepends each handlers route with the given endpoint.
eg.
Given:
endpoint = /sweet+service/1.0
handlers[0] = (r"/people, PeopleHandler)
------
Result:
handlers[0] = (r"/sweet+service/1.0/people", PeopleHandler)
"""
if not endpoint:
endpoint = '/'
for i, handler in enumerate(handlers):
path = handler[0]
if path[0] == '/':
path = path[1:]
handlers[i] = (endpoint+path,)+handler[1:]
return handlers
|
6694dfebafd87b0bc26730ac8c021ca8096cd020
| 53,743
|
import functools
import time
def python_profile(func):
"""Decorator for profiling MXNet operation.
Uses Python's time module to collect execution time information
of the operation.
Parameters
----------
func:
Operation to be executed and timed.
Returns
-------
res, timing output. res being result returned after operator execution.
profiler output is a dictionary with summary of operation execution.
Example output : { "add": [{"avg_time_add": 0.4053089120425284,
"inputs": {
"lhs": [1024, 1024],
"rhs": [1024,1024]
}]
}
"""
@functools.wraps(func)
def python_profile_it(*args, **kwargs):
start_time = time.perf_counter() # 1
res = func(*args, **kwargs)
end_time = time.perf_counter() # 2
run_time = end_time - start_time # 3
# NOTE : same as cpp_profile_it
if len(args) > 0:
operator_name = args[0].__name__
elif 'block' in kwargs:
operator_name = kwargs['block']._op_name
else:
raise ValueError("Unable to identify operator name to extract profiler output!")
profiler_output = {'avg_time_'+str(operator_name): run_time}
return res, profiler_output
return python_profile_it
|
373ef98127e20074cf72c2b49a7c40175fceec15
| 53,745
|
def random_integer_list(
lowest_number: int,
highest_number: int,
numbers_required: int,
no_repetitions: bool = False,
seed : int = 0,
slope : int = 11,
y_intercept : int = 13,
) -> list:
"""Random number generation using linear congruential generation.
Check out the following link for more information:
https://en.wikipedia.org/wiki/Linear_congruential_generator
Args:
lowest_number: The lower-bound on the value of the random number.
highest_number: The upper-bound on the value of the random number.
numbers_required: The number of random numbers to be generated.
no_repetitions: If the values in the list cannot be repeated.
seed: The initial seed of the generator.
slope: The multiplier to the piecewise linear function.
y_intercept: The addition to the piece-wise line.
Returns:
List of random numbers.
"""
random_numbers = []
assert slope > 0 and slope < highest_number, "The multiplier `slope` must be positive and less than the `modulus`"
assert y_intercept > 0 and y_intercept <= highest_number, ""
assert seed >= 0 and seed < highest_number
seed %= numbers_required
while len(random_numbers) < numbers_required:
seed = (seed * slope + y_intercept) % highest_number
if not(no_repetitions and seed in random_numbers):
random_numbers.append(seed + lowest_number - 1)
return random_numbers
|
c94ac98fb6ab5fd4312032fe4e63424cd71adf81
| 53,747
|
def construct_dict_from_source(fields, source):
"""
Construct a new dict from a source dict and catch all KeyErrors, using predefined functions to extract desired
values from a source dictionary.
:param fields: Dictionary with fields in the the target dict as keys and functions to extract their desired value .
for these fields from the source dict
:type fields: dict
:param source: Source dictionary.
:type source: dict
:return: Target dictionary.
:rtype: dict
"""
new_dict = {}
for field_name, getter_func in fields.items():
try:
new_dict[field_name] = getter_func(source)
except KeyError:
pass
return new_dict
|
5e98709090a22dc69a4fb2e003b2e628fc39bf32
| 53,749
|
def invalid_name(entity):
"""Generate invalid name template."""
base = "is an invalid %s name." % entity
return "%(value)s " + base + " Expected %(expected)s."
|
f24d7bcd1b59d3d5f05dd49a7b440cf208094233
| 53,752
|
def dd2dms(dd):
"""
Convert a decimal to degrees, minutes, seconds.
Parameters
----------
dd : numeric
The decimal to convert
Returns
-------
d,m,s : list
List of the integer degrees, integer minutes, and float seconds
"""
d = int(dd)
dm = (dd - d)*60
m = int(dm)
s = float((dm - m)*60)
return d,m,s
|
58aea6935bd37520a274b99c1e142333d82bd393
| 53,754
|
def sanitize_sample_id(sample_id):
"""Replaces slashes with underscores, so KBase refs could be used as sample IDs"""
return sample_id.replace('/', '_')
|
f3e81531b1e8d9fddb61c1a901a0652e082bedda
| 53,755
|
import torch
def onehot(size, target):
"""
Translate scalar targets to one hot vectors
"""
vec = torch.zeros(size, dtype=torch.float32)
vec[target] = 1.
return vec
|
2bfdb8437011e7cd8c291cc59564da0ffce3f7d3
| 53,767
|
def eqvalue(x):
"""
Checks whether all values of the iterable `x` are identical and returns
that value if true, and otherwise raises a `ValueError` exception.
>>> eqvalue([1, 1, 1])
1
"""
items = iter(x)
first = next(items)
for item in items:
if item != first:
raise ValueError("Values are not identical: {}, {}".format(first, item))
return first
|
15f4b6fa61bb23400345fd15217626338c030066
| 53,769
|
import torch
def find_best_match_indices(search_for, search_in, less_or_equal=False, greater_or_equal=False):
"""For each element of `search_for`, find the index of closest element in `search_in`.
Parameters
----------
search_for: torch.tensor
search_in: torch.tensor
less_or_equal: bool
If True, searches for an element which is less or equal than the reference from `search_for`
greater_or_equal: bool
If True, searches for an element which is greater or equal than the reference from `search_for`
Returns
-------
indices: torch.Tensor
Shape: `search_for.shape`
If the required neighbour was not found, -1 value is used instead of true indices.
"""
assert search_for.ndim <= 1, "search_for should be a scalar or 1D tensor."
assert search_in.ndim == 1, "search_in should be a 1D tensor."
diff = search_for.float().view(-1, 1) - search_in.float().view(1, -1)
if less_or_equal:
diff[diff < 0] = torch.tensor(float('inf')).to(search_in.device) # pylint: disable=not-callable
if greater_or_equal:
diff[diff > 0] = torch.tensor(float('inf')).to(search_in.device) # pylint: disable=not-callable
diff = torch.abs(diff)
res = torch.argmin(diff, dim=1)
if less_or_equal or greater_or_equal:
res[torch.all(diff == float('inf'), dim=1)] = -1
return res if search_for.ndim else res.squeeze()
|
a3ca4a5a3b31e04331bcd33d80552948da5b50b7
| 53,774
|
def find_beamwidth(the_wavel,dish_size):
"""
find the beamwidth using Stulll eq. 8.13
Parameters
----------
the_wavel : wavelength (float)
units (cm)
dish_size : antenna dish diameter (float)
units (m)
Returns
-------
beamwidth : beamwidth angle
units (degrees)
"""
#
# Stull eq. 8.13
#
### BEGIN SOLUTION
a = 71.6 #constant (degrees)
the_wavel = the_wavel/100. #convert cm to m
beamwidth = a*the_wavel/dish_size #beamwitdh in degrees
return beamwidth
### END SOLUTION
|
06096b78eab965625120050ba1e205dc99ae170f
| 53,776
|
def _GetFailedRevisionFromResultsDict(results_dict):
"""Finds the failed revision from the given dict of revisions.
Args:
results_dict: (dict) A dict that maps revisions to their results. For
example:
{
'rev1': 'passed',
'rev2': 'passed',
'rev3': 'failed',
}
Note results_dict is expected only to have one failed revision which
will be the one to be returned.
Returns:
The revision corresponding to a failed result, if any.
"""
for revision, result in results_dict.iteritems():
if result.lower() == 'failed':
return revision
return None
|
cecdf11c21b0851d0b61e08983dfe3eb3fed1c7a
| 53,779
|
def create_node(kind=None, args=None):
"""Create a kind, args Celery Script node."""
node = {}
node['kind'] = kind
node['args'] = args
return node
|
84bd6de0182f16b93e04a76769f88896db3a657b
| 53,789
|
def pair_wise_flip_flopping(W):
"""Determine if a unique walk matrix demonstrates pair-wise flip-flopping.
Pair-wise flip-flopping is defined as:
For every pair of classes C[i] and C[j], there exist walk lengths L[x]
and L[y], such that C[i] has more closed walks of length L[x] than
C[j] and vice versa.
Parameters
----------
W : Numpy Matrix
Unique walk matrix as returned by `walk_classes`
Returns
-------
boolean
True if pair-wise flip-flopping holds for `W`
"""
# Work with an ndarray representation of W
w = W.getA()
# Get the number of rows and columns in W
num_rows, num_cols = w.shape
# Generate all possible pairs of classes and k-walks
# A single pair is held as a tuple (x, y)
classes, walks = ([
(i, j)
for i in range(0, num)
for j in range(i + 1, num)
] for num in [num_rows, num_cols])
# Iterate over all pairs of classes
for cls1, cls2 in classes:
# Whether these two classes flip-flop at any point
flip_flops = False
# Iterate over all pairs of walks
for w1, w2 in walks:
# Comparison of classes for k-walk 1
n1 = w[cls1][w1] - w[cls2][w1]
# Comparison of classes for k-walk 2
n2 = w[cls1][w2] - w[cls2][w2]
# Check to see if the classes flip-flopped
if (n1 > 0 and n2 < 0) or (n1 < 0 and n2 > 0):
flip_flops = True
break
# If the classes don't flip-flop, return false immediately
if not flip_flops:
return False
# Return true if no counter examples are found
return True
|
e40216b665beceb88bfd9149f296cfbf2d0d1c9f
| 53,790
|
from typing import List
from typing import Dict
import requests
def fetch_stories(story_count: int) -> List[Dict[str, str]]:
"""
Fetches summaries and links to Spotlight PA stories from Spotlight PA story feed.
Args:
story_count (int): Number of stories to return
Returns:
List[Dict[str, str]]: Spotlight PA stories
"""
url = "https://www.spotlightpa.org/news/feed-summary.json"
r = requests.get(url)
stories = r.json()["items"][0:story_count]
return stories
|
78df5872f9cbbd4f032aec750c335e8d84a23533
| 53,792
|
def sort_diclist(undecorated, sort_on):
"""
Sort a list of dictionaries by the value in each
dictionary for the sorting key
Parameters
----------
undecorated : list of dicts
sort_on : str, numeric
key that is present in all dicts to sort on
Returns
---------
ordered list of dicts
Examples
---------
>>> lst = [{'key1': 10, 'key2': 2}, {'key1': 1, 'key2': 20}]
>>> sort_diclist(lst, 'key1')
[{'key2': 20, 'key1': 1}, {'key2': 2, 'key1': 10}]
>>> sort_diclist(lst, 'key2')
[{'key2': 2, 'key1': 10}, {'key2': 20, 'key1': 1}]
"""
decorated = [(len(dict_[sort_on]) if hasattr(dict_[sort_on], '__len__') else dict_[
sort_on], index) for (index, dict_) in enumerate(undecorated)]
decorated.sort()
return[undecorated[index] for (key, index) in decorated]
|
678d818d5eed43d14d922b0a727e90ec71d0e352
| 53,798
|
import copy
import random
def generate_training_sets(dataset, percentage, copies):
"""Resample from separated training sets to generate smaller training sets.
No instance will present in one new training set more than once.
Mechanism is to shuffle, then pick the first percentage% instances.
Args:
dataset (list): List of vectors (features + label)
percentage (number that supports __mul__ and __floordiv__):
This decides the size of new training set generated related to the
population.
copies (int): The number of new training sets required.
Returns:
list: list of new training datasets
list of list of vectors
"""
training_sets = []
i = copies
while i > 0:
population = copy.deepcopy(dataset)
random.shuffle(population)
training_sets.append(population[:len(population) * percentage // 100])
i -= 1
return training_sets
|
129fe8231e28dfc1c3352f5466f2667c2a204508
| 53,800
|
import importlib
def has_module (name):
"""Test if given module can be imported.
@return: flag if import is successful
@rtype: bool
"""
try:
importlib.import_module(name)
return True
except (OSError, ImportError):
# some modules (for example HTMLtidy) raise OSError
return False
|
dc0ca9fd3cc5c162625625d5656bf704c907ceb3
| 53,808
|
def analyse_storage(cid):
"""
Parse the num_blocks and content_size info from cid_storage.txt
:param cid: cid of the object
:return: number of blocks and the size of the content
"""
size = 0
num_blocks = -1
with open(f'{cid}_storage.txt', 'r') as stdin:
for line in stdin.readlines():
# The output of the ipfs dag stat <cid> command is in the form of "Size: 152361, NumBlocks: 1\n"
if "Size" in line:
line = line.split(",")
size = line[0].split(" ")[1]
num_blocks = line[1].split(" ")[2]
num_blocks = num_blocks.split("\n")[0]
return num_blocks, size
|
d1fdacdd926458c8b2a0710651a6c649a2ac0b68
| 53,814
|
from xml.sax.saxutils import quoteattr
def xmlattrstr(attrs):
"""Construct an XML-safe attribute string from the given attributes
"attrs" is a dictionary of attributes
The returned attribute string includes a leading space, if necessary,
so it is safe to use the string right after a tag name.
"""
# XXX Should this be using
s = ''
names = attrs.keys()
names.sort() # dump attrs sorted by key, not necessary but is more stable
for name in names:
s += ' %s=%s' % (name, quoteattr(str(attrs[name])))
return s
|
4b341f6b3b8b80162440f8562cb54ae32bb56c76
| 53,817
|
import random
def owo(chat, match):
"""Respond to OwO appropriately"""
owo = ['whats this??', '*notices ur buldge*', '>//w//<', '*pounces on u*', '*sneaks in your bed and cuddles u*',
'*nozzles u*', '*pounces on u and sinks his nozzle inside your fluffy fur*', '*scratches ur ears* x3']
return chat.send_text(random.choice(owo))
|
b1bc21f1e95e64ac5a58f1356be6b05e57b3de09
| 53,821
|
def append_tag(image_tag, append_str):
"""
Appends image_tag with append_str
:param image_tag: str, original image tag
:param append_str: str, string to be appended
"""
return f"{image_tag}-{append_str}"
|
b35ad32be77d473237ff6c47afba253400a031b2
| 53,826
|
from datetime import datetime
def get_entry_date(entry):
"""
Get the last modified date from the file metadata.
"""
return datetime.fromtimestamp(entry.stat().st_mtime)
|
c14973154b9814faffe07dd62d9119543bb72a8c
| 53,828
|
def generate_parentheses(n):
"""
generate all the different ways you can have n parentheses
- nested
- adjacent
- mixture
each of the combos is a str
return an array of all the strings
good case of backtracking
n = 3
two unique chars to wrry abouyt = '(' and ')'
1st -
for _ in n,
add an opener
for _ in n,
add a closer
((()))
2 options - add the next pair of parentheses adj, or nest it
BUT we always add the open/close togetther!
(())()
Call Tree = n is the depth of the Tree
1st adj()
/ \
2nd nest() adj() = '(())()'
/ \ /\
3rd nest() adj() nest() adj()
'((()))' '(()())
'((()))
Helper functions:
1. nest() - adds inside the one we just added to the stack
2. adj() - adds to the end of the string of the permutation
n = is the var to use in ther logic
base case:
n = 0
- pre: added all the ()
- post: added the permutation to the output
recursive case:
- n > 0:
add another () by adj()
- recurse
add another by nest()
- recurse
decrement n
# Assume n > 1
"""
global output
def add_adj(permutation, parentheses_left): # '()'
# find the last ')' char
for index_char in range(len(permutation) - 1, -1, -1):
char = permutation[index_char]
if char == ")":
# add the new '()' next to it
new_permutation = "".join(
[permutation[: index_char + 1], "()", permutation[index_char + 1 :]]
)
generate_permutations(new_permutation, parentheses_left - 1)
# return new_permutation
def add_nested(permutation):
# find the index of the last ')' char
# '(())'
# ic = 3
# last_closer_index = 3
# c = 2
# ci = 1
# oi = 0
for index_char in range(len(permutation) - 1, -1, -1):
char = permutation[index_char]
if char == ")":
last_closer_index = index_char
# while the index of the matching opener
closers = 1
closers_index = index_char - 1
while closers_index > 0:
if permutation[closers_index] == ")":
closers += 1
closers_index -= 1
else:
break
# find the index of the matching opening parenthesis
opening_index = last_closer_index - (2 * closers) + 1
# wrap the () in a new pair of parentheses
new_permutation = (
permutation[:opening_index]
+ "("
+ permutation[opening_index : last_closer_index + 1]
)
new_permutation += ")"
return new_permutation
def generate_permutations(permutation, parentheses_left):
# base case: added n ()'s
if parentheses_left == 0: # and len(permutation) == required_length:
# append to the output
if permutation not in output:
output.add(permutation)
return
# recursive case:
while parentheses_left > 0:
# add another by nest(), then recurse
nested_permutation = add_nested(permutation)
generate_permutations(nested_permutation, parentheses_left - 1)
# add another () by adj(), and do so recursively
adj_permutation = add_adj(permutation, parentheses_left)
# generate_permutations(adj_permutation, parentheses_left - 1)
# decrement n
parentheses_left -= 1
if parentheses_left == 0:
return
# init the output of all the permutations
output = set()
if n > 0:
# save the required length in a global variable
global required_length
required_length = 2 * n
# add the first parentheses
permutation = "()"
n -= 1
generate_permutations(permutation, n)
# return all the permutations
return list(output)
|
ff602cbf278e92d16cb5f338257e0a4373660a7f
| 53,829
|
def bytes_fmt(value):
"""Format a byte value human readable.
Args:
value (float): value of bytes
Returns:
str: formated value with unit
"""
for unit in ['', 'K', 'M', 'G']:
if abs(value) < 1024.0:
return '{:3.2}f{}B'.format(value, unit)
value /= 1024.0
return '{:3.2}fTB'.format(value, 'G')
|
37be4030ccc7699d657c4fc908547241698b3e5f
| 53,831
|
def get_length(string):
"""Returns the length of a string."""
try:
string = string.split()
return len(string)
except:
print("Error encountered!")
|
1a63adda111891aa76f9189645699a4f9c51af9d
| 53,834
|
import torch
def scale_oodom(x: torch.Tensor) -> torch.Tensor:
"""
Scales the given input with a constant of 255 such that it can be considered out-of-domain.
"""
return x * 255
|
441abb095ea9d45ca6b1647b0bc05e8285b93677
| 53,838
|
def _get_vm_prop(vm, attributes):
"""Safely get a property or return None"""
result = vm
for attribute in attributes:
try:
result = getattr(result, attribute)
except (AttributeError, IndexError):
return None
return result
|
d563e7cf677c9668566b0dd5ebf9224a3d2af1c4
| 53,840
|
def calculate_precision(total_correct: int, total_found: int) -> float:
"""
Calculate precision as the ratio of correct acronyms to the found acronyms.
:param total_correct:
:param total_found:
:return:
"""
return total_correct / total_found if total_found != 0 else 0
|
c512e2d3d2ae964b76cc1fba836f05f8070f42af
| 53,843
|
from typing import Set
from typing import FrozenSet
def remove_incomplete(schedules: Set[FrozenSet[str]]) -> Set[FrozenSet[str]]:
"""
Removes all incomplete schedules from schedules, returning
the remaining set of schedules.
"""
return set(schedule for schedule in schedules if not schedule == "incomplete")
|
03a042578a6986706e0fd60747ed2ca36e70217b
| 53,849
|
def prefix_matcher(*prefixes):
"""Return a module match func that matches any of the given prefixes."""
assert prefixes
def match(name, module):
for prefix in prefixes:
if name.startswith(prefix):
return True
else:
return False
return match
|
90266470befc923aeb0020af32dd3a0dc636e9e1
| 53,851
|
def format_duration(secs):
"""
Format a duration in seconds as minutes and seconds.
"""
secs = int(secs)
if abs(secs) > 60:
mins = abs(secs) / 60
secs = abs(secs) - (mins * 60)
return '%s%im %02is' % ('-' if secs < 0 else '', mins, secs)
return '%is' % secs
|
1e228c7ce20b2598531dcb72213641736c26d882
| 53,854
|
def _escape(s):
"""
Escape HTML characters and return an escaped string.
"""
s = s.replace('&', '&')
s = s.replace('<', '<')
s = s.replace('>', '>')
return s
|
7c89520512deca71c9615274dff69db88f5ee250
| 53,855
|
def crop(img, box):
"""
Crop regoin of box in image.
Input:
img: np.array
box: (left, top, width, height), int
Return:
croped_img: np.array
"""
croped_img = img[box[1]:(box[1]+box[3]), box[0]:(box[0]+box[2])]
return croped_img
|
56e1497245c265d2bdca76ed683414996cbf41eb
| 53,860
|
def inside_circle(cx, cy, r):
"""
Return a function that checks whether a point is in a circle with center
(*cx*, *cy*) and radius *r*.
The returned function has the signature::
f(xy: Tuple[float, float]) -> bool
"""
r2 = r ** 2
def _f(xy):
x, y = xy
return (x - cx) ** 2 + (y - cy) ** 2 < r2
return _f
|
aea8b7c852c8f103c796137f0cbc3be7a06fa9cc
| 53,861
|
import itertools
def build_full_factorial(factor_count):
"""Builds a full 2^K factorial design.
The resulting design will contain every combination of -1 and +1 for the
number of factors given.
"""
factor_data = []
for run in itertools.product([-1, 1], repeat=factor_count):
factor_data.append(list(run))
return factor_data
|
ade9b7d5f834e8f8065610284de80332e7db0117
| 53,862
|
def barabasi_diff(k, t, m=2):
"""
Returns the differential value of a node of degree value k at time t.
Parameters:
k : float = Current degree of the node
t : int = Current time
Returns:
float = Difference
"""
return k / (m * t)
|
43579b65783df89f6ecf9bfcfa3159efac4845b8
| 53,863
|
import string
def remove_stop_words(word_list):
""" Takes a list of words and returns a copy with all stop words removed """
f = open('../stop_words.txt')
stop_words = f.read().split(',')
f.close()
# add single-letter words
stop_words.extend(list(string.ascii_lowercase))
return [w for w in word_list if not w in stop_words]
|
e516c9b0c0175b3486de817f497ebb201d00da61
| 53,864
|
from typing import Dict
def get_input_data(input_section: Dict) -> str:
"""Gets playbook single input item - support simple and complex input.
Args:
input_section (dict): playbook input item.
Returns:
(str): The playbook input item's value.
"""
default_value = input_section.get('value')
if isinstance(default_value, str):
return default_value
if default_value:
complex_field = default_value.get('complex')
if complex_field:
return f"{complex_field.get('root')}.{complex_field.get('accessor')}"
return default_value.get('simple')
return ''
|
a1d7d3fb4d5d3cd0e5ce46f7d1c685495c71981f
| 53,868
|
def retrieve_train_test_instances(cases, train_indices, test_indices):
"""
Retrieves training and test cases from indices for hpo.
Parameters
----------
cases : list of dicts, where single dict represents a case
Cases of the training set of the event log.
train_indices : list of ints
Indices of training cases for hpo.
test_indices : list of ints
Indices of test cases for hpo.
Returns
-------
train_cases : list of dicts, where single dict represents a case
Training cases for hpo.
test_cases : list of dicts, where single dict represents a case
Test cases for hpo.
"""
train_cases = []
test_cases = []
for idx in train_indices:
train_cases.append(cases[idx])
for idx in test_indices:
test_cases.append(cases[idx])
return train_cases, test_cases
|
e4309a9c50afa2ac76a9e9439f52af95fccb0c82
| 53,871
|
def google_map_view(context):
"""
Dependencies for google_map_view gizmo.
"""
return ('tethys_gizmos/vendor/farbtastic/farbtastic.css',
'tethys_gizmos/vendor/farbtastic/farbtastic.js',
'tethys_gizmos/js/tethys_google_map_view.js')
|
73a9633938ee2c20d8a0cfbcfe30ab6305e47882
| 53,873
|
def create_section_data_block(data_length):
"""Create a block of data to represend a section
Creates a list of the given size and returns it. The list will have every
byte set to 0xff. This is because reserved bits are normally set to 1
Arguments:
data_length -- amount of bytes needed for the data block
Returns:
A list of bytes of the desired length with zero in every byte
"""
data = [0xff] * data_length
return data
|
cffd8e28e7ad2d3ffd60901493f03fc7ef07741d
| 53,882
|
import re
def parse_hgvc_c(hgvs_c):
"""
Parses HGVS like c.4146T>A and returns a dictionary with the keys
pos, type, ref, alt
"""
if not hgvs_c.startswith("c.") or "?" in hgvs_c:
return {}
parts = re.split(r"([[_\.ACGT]+|[0-9]+|del|ins])", hgvs_c[2:])
bases = "ATCG"
pos = ctype = ref = alt = None
if parts[4] == ">":
# Substitution.
pos = parts[1]
ctype = "sub"
ref = parts[3]
alt = parts[5]
return {
"pos": pos,
"type": ctype,
"ref": ref or '',
"alt": alt or ''
}
|
2938bd1a0e98dd6e6c6bca4b6de132b86ad65a90
| 53,883
|
def is_internal_function_name(name: str) -> bool:
"""If the function name is internal.
Skips underscored functions but keeps special functions such as __init__.
"""
return name.startswith('_') and not (name.startswith('__') and name.endswith('__'))
|
e243027dba0651472ea7d498105ff10b22d842cc
| 53,884
|
def merge(s, t):
"""Merge dictionary t into s."""
for k, v in t.items():
if isinstance(v, dict):
if k not in s:
s[k] = v
continue
s[k] = merge(s[k], v)
continue
s[k] = v
return s
|
16d5f0e877cb68709ee296bd96aa39afd52580ba
| 53,886
|
import errno
def readlocal(path, offset=None, size=-1):
"""
Wrapper around open(path, 'rb') that returns the contents of the file as a string.
Will rethrow FileNotFoundError if it receives an IOError.
"""
try:
with open(path, 'rb') as f:
if offset:
f.seek(offset)
buf = f.read(size)
except IOError as e:
if e.errno == errno.ENOENT:
raise FileNotFoundError(e)
else:
raise
return buf
|
b4cf8912699fd158b910f0d45c492ae1221fc8f3
| 53,890
|
def format_hugo_date(dt):
"""Generate a Hugo formatted datestring from a
datetime object"""
d = dt.strftime("%Y-%m-%dT%H:%M:%S+00:00")
return(d)
|
7da182f0187cffaf43a584215b093232c7d0bf17
| 53,895
|
def inner(x, y):
""" Returns the inner product of two equal-length vectors. """
n = len(x)
assert len(y) == n
sum = 0
for i in range(0, n):
sum += x[i]*y[i]
return sum
|
36567d82c7c482311a40d9dab29b3ec80c772037
| 53,896
|
def line_as_comment(line):
"""Change a C code line to a comment by adding the prefix "// "
If the last character of the line is a backslash, certain
characters are appended. This silences some compiler warnings.
"""
line = "// " + line
if line[-2:] == "\\\n":
line = line[:-2] + "\\ //\n"
return line
|
285581c1cf2e6e7762a2227a4fc3a61f91b388bf
| 53,899
|
def get_comp_render_range(comp):
"""Return comp's start and end render range."""
comp_attrs = comp.GetAttrs()
start = comp_attrs["COMPN_RenderStart"]
end = comp_attrs["COMPN_RenderEnd"]
# Whenever render ranges are undefined fall back
# to the comp's global start and end
if start == -1000000000:
start = comp_attrs["COMPN_GlobalEnd"]
if end == -1000000000:
end = comp_attrs["COMPN_GlobalStart"]
return start, end
|
fe9f6c7522da941932d1957a65d2c8a6241ff1e9
| 53,902
|
def censys_ipv4_meta_extraction(raw: dict) -> dict:
"""
Extracts metadata from Censys IPv4 dicts
:param raw: Censys IPv4 dict
:return: Metadata part of common format dict
"""
_as = raw.get("autonomous_system", None) or dict()
return {
"ip": raw["ip"], # Program should fail if IP is not given
"as": {
"number": _as.get("asn", None),
"name": _as.get("name", None),
"location": _as.get("country_code", None),
"prefix": _as.get("routed_prefix", None),
},
}
|
1760282c9dee363968973e54c9b76410865e1c93
| 53,906
|
import collections
import six
def parseColumnDefs(defs, keyOrder=None):
"""
Translate a few different forms of column definitions into a single common format.
These formats are accepted for all methods which request column definitions (createTable,
checkTable, etc)
list of tuples: [(name, type, <constraints>), ...]
dict of strings: {name: type, ...}
dict of tuples: {name: (type, <constraints>), ...}
dict of dicts: {name: {'Type': type, ...}, ...}
Returns dict of dicts as the common format.
"""
if keyOrder is None:
keyOrder = ['Type', 'Constraints']
def isSequence(x):
return isinstance(x, list) or isinstance(x, tuple)
def toDict(args):
d = collections.OrderedDict()
for i,v in enumerate(args):
d[keyOrder[i]] = v
if i >= len(keyOrder) - 1:
break
return d
if isSequence(defs) and all(map(isSequence, defs)):
return collections.OrderedDict([(c[0], toDict(c[1:])) for c in defs])
if isinstance(defs, dict):
ret = collections.OrderedDict()
for k, v in defs.items():
if isSequence(v):
ret[k] = toDict(v)
elif isinstance(v, dict):
ret[k] = v
elif isinstance(v, six.string_types):
ret[k] = {'Type': v}
else:
raise Exception("Invalid column-list specification: %s" % str(defs))
return ret
else:
raise Exception("Invalid column-list specification: %s" % str(defs))
|
62625a9b8df80818b6d7596c87130b3a59e0a352
| 53,909
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.