content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def cf_ni_ratio(cf_df, financials_df): """Checks if the latest reported Operating CF (Cashflow) is larger than the latest reported NI (Net Income). cf_df = Cashflow Statement of the specified company financials_df = Financial Statement of the specified company """ cf = cf_df.iloc[cf_df.index.get_loc("Total Cash From Operating Activities"),0] net_income = financials_df.iloc[financials_df.index.get_loc("Net Income"),0] if (cf > net_income): return True else: return False
f0997b38950e4fadcd2a9bb8d1da7e648c970bc9
49,330
def retrieve_files(s3, short_name, date_str): """Retrieve a list of files from S3 bucket. Parameters ---------- s3: S3FileSystem reference to S3 bucket to retrieve data from short_name: string short name of collection date_str: str string date and time to search for Returns ------- list: list of strings """ files = s3.glob(f"podaac-ops-cumulus-protected/{short_name}/{date_str}*.nc") return files
e362b1be22f56dae4c17280038eb2f5ff1315ae4
49,334
from typing import List from typing import Dict def get_readme_download_url(files: List[Dict[str, str]]) -> str: """ Takes in a response from the github api that lists the files in a repo and returns the url that can be used to download the repo's README file. """ for file in files: if file["name"].lower().startswith("readme"): return file["download_url"] return ""
5c394d247b0ab06099b3d3a540fa2f5101b385e6
49,338
import threading def _start_thread(target, *args, **kwargs) -> threading.Thread: """Helper to simplify starting a thread.""" thread = threading.Thread(target=target, args=args, kwargs=kwargs) thread.start() return thread
a5d9e1feb1b02ee9b1ec3aaa46758cd3d27e1880
49,340
def count_trees(data, route): """ >>> count_trees([ ... [False, False, True, True, False, False, False, False, False, False, False], ... [True, False, False, False, True, False, False, False, True, False, False], ... [False, True, False, False, False, False, True, False, False, True, False], ... [False, False, True, False, True, False, False, False, True, False, True], ... [False, True, False, False, False, True, True, False, False, True, False], ... [False, False, True, False, True, True, False, False, False, False, False], ... [False, True, False, True, False, True, False, False, False, False, True], ... [False, True, False, False, False, False, False, False, False, False, True], ... [True, False, True, True, False, False, False, True, False, False, False], ... [True, False, False, False, True, True, False, False, False, False, True], ... [False, True, False, False, True, False, False, False, True, False, True] ... ], (3, 1)) 7 """ dx, dy = route height = len(data) width = len(data[0]) x = 0 y = 0 trees = 0 while y < height: if data[y][x]: trees += 1 x = (x + dx) % width y += dy return trees
1a81a8ccb3b7dd87f04b7713d08370297cb7b5fa
49,342
def combination_of_two_lists(lst1, lst2): """ ["f", "m"] and ["wb", "go", "re"] => ["f_wb", "f_go", "f_re", "m_wb", "m_go", "m_re"] """ return [e1 + "_" + e2 for e1 in lst1 for e2 in lst2]
3f966ff5bb535d95c232162f76705b2b9f6311c6
49,344
def letter_for(label): """Return the letter for a given label.""" return "ABCDEFGHIJ"[label]
6c0692f7451db6fd45141339f702665ba3ac2bb4
49,352
def read_coverages(input_file): """Return coverage values.""" coverages = [] with open(input_file, 'r') as input_handle: for line in input_handle: coverages.append(float(line.rstrip())) return coverages
6820da83d0ecb24cdad1169b0521505d59d3dcbf
49,353
def bgr01(r, g, b): """Rescales BGR to a 0-1 scale.""" return (b / 255.0, g / 255.0, r / 255.0)
c7d9d5cecfec3311ad8f5d3b2baf619b5bbe83cf
49,357
def to_world_canvas(world_point, canvas_extents, world_extents): """Transforms a point from world coord system to world canvas coord system.""" x = int(world_point[0] / world_extents[0] * canvas_extents[0]) y = int(canvas_extents[1] - 1 - world_point[1] / world_extents[1] * canvas_extents[1]) return (x, y)
5dec7f87fae35542b5798f88b0353c9b593e88fb
49,369
import struct def py_int2byte(val): """ Converts Python int value to byte. """ return struct.pack('B', val)
d6ab7467c615a23ccb416db2d1150a3909d9f1ff
49,372
def flatten_dict(dd, separator='.', prefix=''): """Recursive subroutine to flatten nested dictionaries down into a single-layer dictionary. Borrowed from https://www.geeksforgeeks.org/python-convert-nested-dictionary-into-flattened-dictionary/ Parameters ---------- dd : dict dictionary to flatten separator : str, optional separator character used in constructing flattened dictionary key names from multiple recursive elements. Default value is '.' prefix : str, optional flattened dictionary key prefix. Default value is an empty string (''). Returns ------- a version of input dictionary *dd* that has been flattened by one layer """ return {prefix + separator + k if prefix else k: v for kk, vv in dd.items() for k, v in flatten_dict(vv, separator, kk).items() } if isinstance(dd, dict) else {prefix: dd}
f0b356aa0c516b88e83d8c8820fc53f4db69623d
49,376
def known_mismatch(hashes1, hashes2): """Returns a string if this is a known mismatch.""" def frame_0_dup_(h1, h2): # asymmetric version return ((h1[0] == h2[0]) and (h1[2:] == h2[2:]) and (h1[1] != h2[1] and h2[1] == h1[0])) def frame_0_dup(h1, h2): return frame_0_dup_(h1, h2) or frame_0_dup_(h2, h1) def frame_0_missing(h1, h2): return (h1[1:] == h2[:-1]) or (h2[:1] == h1[:-1]) for func in [frame_0_dup, frame_0_missing]: if func(hashes1, hashes2): return func.__name__ return None
dfd3985a26e53147147b2485203964863db8600c
49,377
def to_unicode(s): """Return the parameter as type which supports unicode, possibly decoding it. In Python2, this is the unicode type. In Python3 it's the str type. """ if isinstance(s, bytes): # In Python2, this branch is taken for both 'str' and 'bytes'. # In Python3, this branch is taken only for 'bytes'. return s.decode('utf-8') return s
34353f67dedad93220cf1b567c739dccba610ecf
49,384
def time_check(message): """ check if the duration for the quick search preference is a valid input """ time = 0 try: time = int(message) except Exception as e: return False if time < 1 or time > 8: return False return True
745bcc45986d2b149b062d4864ae9cf8eb060901
49,387
def _same_side(pos, p, q, a, b): """Indicates whether the points a and b are at the same side of segment p-q""" dx = pos[p][0] - pos[q][0] dy = pos[p][1] - pos[q][1] dxa = pos[a][0] - pos[p][0] dya = pos[a][1] - pos[p][1] dxb = pos[b][0] - pos[p][0] dyb = pos[b][1] - pos[p][1] return (dy*dxa - dx*dya > 0) == (dy*dxb - dx*dyb > 0)
e8635b29322a53d6928677fb9379a04440ef6e0e
49,389
def apply_opcode4(code_list, opcode_loc, parameter_mode_dict): """When you've determined that the opcode is 4 - which means to return a value in the location of its only parameter as an output - you can use this function to adjust code_list. Parameters ---------- code_list : list The opcode opcode_loc : int The index of the opcode in code_list parameter_mode_dict : dict A dictionary indicating for the following value after an opcode of 3 whether they should be considered in position (0) or immediate (1) modes Returns ------- code_list : list The whole programme output : int The value in the location determined by the parameter of the opcode """ opcode, param1 = code_list[opcode_loc:opcode_loc+2] # If the mode is 1 then the parameter should be interpreted as it stands. # If the mode is 0 then we need to get the value at that location in the # code list if parameter_mode_dict[1] == '0': param1 = code_list[param1] # Return that value as an output output = param1 return code_list, output
52b9e57185f7eb6fc01266b91d1cfea86f048a43
49,390
def sz_to_ind(sz, charge, nsingle): """ Converts :math:`S_{z}` to a list index. Parameters ---------- sz : int Value :math:`S_{z}` of a spin projection in the z direction. charge : int Value of the charge. nsingle : int Number of single particle states. Returns ------- int Value of the list index corresponding to sz. """ szmax = min(charge, nsingle-charge) return int((szmax+sz)/2)
c6016a5f21f4a4e9904046260b94b1f4d6d397ba
49,391
def map_activity_model(raw_activity): """ Maps request data to the fields defined for the Activity model """ return { 'activity_id': raw_activity['key'], 'description': raw_activity['activity'], 'activity_type': raw_activity['type'], 'participants': raw_activity['participants'], 'accessibility': raw_activity['accessibility'], 'price': raw_activity['price'], 'link': raw_activity['link'] }
080370bc0ddbc3c7487e0c6789612c7bc5298258
49,392
import math def wrap_to_pi(angle): """ Wrap the given angle to pi: -pi <= angle <= pi. :param angle: float, Angle to wrap in rads :return: float, Wrapped angle """ while angle > math.pi: angle -= 2 * math.pi while angle < -math.pi: angle += 2 * math.pi return angle
613c81b3404ece1326e19639bc8684cafdd4a990
49,394
def check_module( mymodule, indent='' ): """ Returns a string describing the version number, import path and other administrative information contained in a given module. :Parameters: mymodule: Python module The module to be checked. It must already have been imported. indent: str, optional, default='' A string used to pad the left side of the report for indentation :Returns: moduleinfo: str A string describing the module. """ _strg = "%s%s" % (indent, repr(mymodule)) if hasattr(mymodule, '__name__'): _strg += "\n%s - name: %s" % (indent, str(mymodule.__name__)) if hasattr(mymodule, '__project__'): _strg += "\n%s - project: %s" % (indent, str(mymodule.__project__)) if hasattr(mymodule, '__package__'): _strg += "\n%s - package: %s" % (indent, str(mymodule.__package__)) if hasattr(mymodule, '__author__'): _strg += "\n%s - author: %s" % (indent, str(mymodule.__author__)) if hasattr(mymodule, '__version__'): _strg += "\n%s - version: %s" % (indent, str(mymodule.__version__)) if hasattr(mymodule, '__path__'): _strg += "\n%s - imported from: %s" % \ (indent, str(mymodule.__path__)) if hasattr(mymodule, '__file__'): _strg += "\n%s - initialised from: %s" % \ (indent, str(mymodule.__file__)) if hasattr(mymodule, '__all__'): nall = len(mymodule.__all__) _strg += "\n%s - length of _all_ list: %d" % (indent, nall) if hasattr(mymodule, '__doc__'): if mymodule.__doc__ is not None: _strg += "\n%s - (%d character doc string)" % \ (indent, len(mymodule.__doc__)) else: _strg += "\n%s - (null doc string)" % indent else: _strg += "\n%s - (no doc string)" % indent return _strg
d86b87d1b031bed13610605c1b82920b28f31c23
49,397
def get_bytes_used(current_time, process_durations): """ Return bytes used at given time. >>> get_bytes_used(12, [2, 3, 4]) 13 >>> get_bytes_used(14, [2, 3, 4]) 14 :type current_time: int :param current_time: Array index :type process_durations: list :param process_durations: List containing process durations to exhaust 1 byte. :return: bytes_used :rtype: int """ bytes_used = 0 for p_time in process_durations: if p_time > current_time: # Since the array is sorted we can break early # and avoid unnecessary calculations. break bytes_used += current_time // p_time return bytes_used
b87e4bc1f7050904a58ef6124beded518fda3094
49,400
def solutionClosed(n: int, p: float) -> float: """ A closed-form solution to solutionRecursive's recurrence relation. Derivation: Let q = (-2p + 1). h[0] = 1, h[n] = q h[n-1] + p. By iterating, h[1] = q + p, h[2] = q (q + p) + p = q^2 + pq + p, h[3] = q (q^2 + pq + p) + p = q^3 + pq^2 + pq + p, h[n] = q^n + p(q^(n-1) + q^(n-2) + ... + q^0). Because the term p(q^(n-1) + q^(n-2) + ... + q^0) is a geometric series, h[n] = q^n + p(1 - q^n)/(1 - q). Substituting q = (-2p + 1) and simplifying, h[n] = ((-2p + 1)^n + 1)/2. """ return ((-2*p + 1)**n + 1)/2
2f3bac0cd6981989dac4570180a215e20966dc11
49,407
def has_lower_letters(password): """Return True if password has at least one lower letter.""" return any(char.islower() for char in password)
d55a37e994e289886efdce6e815a430777572b97
49,410
import yaml def load(file: str = "lang/en_US.yaml") -> dict: """Loads the language file and returns it""" global lang with open(file, encoding="utf-8") as f: lang = yaml.safe_load(f) return lang
a34cb9d9561b2edf1597f542a07d50b683a8fbff
49,411
def extract_property_from_uri(uri: str) -> str: """ 从property uri中提取出property name :param uri: 如 <http://www.kg.com/kg/ontoligies/ifa#createTime> :return: 如 'createTime' """ separator_idx = uri.rfind('#') if separator_idx == -1: raise ValueError return uri[separator_idx + 1:]
6c0902a954a247c7c843f15be6e3d98bf3a3721f
49,416
def is_supported_value_type(value): """ checks if the given value type is supported. Supported Types: - strings - bytes - numbers - tuples - lists - dicts - sets - booleans - None """ if ( isinstance(value, (str, bytes, int, float, bool)) or value is None ): return True if isinstance(value, tuple): for sub_value in value: if not is_supported_value_type(sub_value): return False return True if isinstance(value, list): for sub_value in value: if not is_supported_value_type(sub_value): return False return True if isinstance(value, dict): for sub_key, sub_value in value.items(): if not is_supported_value_type(sub_key): return False if not is_supported_value_type(sub_value): return False return True if isinstance(value, set): for sub_value in value: if not is_supported_value_type(sub_value): return False return True return False
fa9d8ae96dcde739e73d8108cfeefef8bd88451b
49,419
import six def _is_possible_token(token, token_length=6): """Determines if given value is acceptable as a token. Used when validating tokens. Currently allows only numeric tokens no longer than 6 chars. :param token: token value to be checked :type token: int or str :param token_length: allowed length of token :type token_length: int :return: True if can be a candidate for token, False otherwise :rtype: bool >>> _is_possible_token(123456) True >>> _is_possible_token(b'123456') True >>> _is_possible_token(b'abcdef') False >>> _is_possible_token(b'12345678') False """ if not isinstance(token, bytes): token = six.b(str(token)) return token.isdigit() and len(token) <= token_length
186447c08cb64178e1f99fabc5523f2a92762ca5
49,420
def add_releaseyear(dataframe): """extract release year from release date""" dataframe['release_year'] = dataframe['release_date'].apply(lambda x: str(x)[:4]) return dataframe
b679361ec35d99611ca64207afd24b542868f179
49,422
def interpolate_grids(data2, interpolation_scheme): """ Interpolate all variables in data to a different grid. Possible interpolations are: T -> U; T -> V; U -> V; V -> U. Parameter --------- data : xarray.Dataset Dataset containing 4D ('time_counter','x','y','z') and 3D ('time_counter','x','y','z') variables. interpolation_scheme: strings Valied values are: t2u, t2v, u2v, v2u Returns ------- xarray.Dataset """ data = data2.copy() if interpolation_scheme not in ["t2u", "t2v", "u2v", "v2u"]: raise ValueError('Interpolation scheme is unknown. Valid values are:\ t2u, t2v, u2v, v2u') if interpolation_scheme == "t2v": for v in data.data_vars: data[v] = (data[v] + data[v].shift(y=-1)) * 0.5 if interpolation_scheme == "t2u": for v in data.data_vars: data[v] = (data[v] + data[v].shift(x=-1)) * 0.5 if interpolation_scheme == "u2v": for v in data.data_vars: data[v] = (data[v] + data[v].shift(x=1) + data[v].shift(y=-1) + data[v].shift(x=1, y=-1)) * 0.25 if interpolation_scheme == "v2u": for v in data.data_vars: data[v] = (data[v] + data[v].shift(x=-1) + data[v].shift(y=1) + data[v].shift(x=-1, y=1)) * 0.25 return data
11d340e701a74fcd74d898501a57a192aca3ccb4
49,423
import unicodedata def maketrans_remove(accents=("COMBINING ACUTE ACCENT", "COMBINING GRAVE ACCENT")): """ Makes a translation for removing accents from a string. """ return str.maketrans("", "", "".join([unicodedata.lookup(a) for a in accents]))
516114526f6d7d36b2b454cd07e40302bd7a83f7
49,424
import struct def unpackbyte(b): """ Given a one-byte long byte string, returns an integer. Equivalent to struct.unpack("B", b) """ (ret,) = struct.unpack("B", b) return ret
8d4a79bda22554604637e1ca934a85b3a6f71cdb
49,426
import math def slurm_format_memory(n): """Format memory in bytes for use with slurm.""" if n >= 10 * (1024 ** 3): return "%dG" % math.ceil(n / (1024 ** 3)) if n >= 10 * (1024 ** 2): return "%dM" % math.ceil(n / (1024 ** 2)) if n >= 10 * 1024: return "%dK" % math.ceil(n / 1024) return "1K"
7a454fee5754503ad30d3b0cb8e8261adac7d19f
49,427
import time from datetime import datetime def base_record() -> dict: """ Return a basic record with the audit flags we use in all records. Args: None Returns: (dict): dict with audit fields populated. """ return {"time": time.time(), "time_str": datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")}
49a16ac37947ccff482a1400c054f87abfb2553b
49,431
from typing import List def reverse(data: List[int]) -> List[int]: """Given a list of integers, returns the same list in reverse order. Initialize empty List Reversed While there are Numbers in Data: Remove last Number in Data Append Number to Reversed Return Reversed """ _reversed = [] while data: current = data.pop() _reversed.append(current) return _reversed
595a6815c1823141875d7cac7e5cdb5a2bb8b934
49,432
def get_non_hidden_fields(form): """ Returns all the visible fields of the form. """ return form.visible_fields()
a7003b12f1ca89414db299114a06bd819b3f4932
49,435
def is_namedtuple_cls(cls): """Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple""" try: if issubclass(cls, tuple): bases = getattr(cls, "__bases__", []) or [None] module = getattr(cls, "__module__", None) return module == "torch.return_types" or ( bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields") ) except TypeError: pass return False
73698f8836b902405241df045aa01800173414c8
49,437
def sort_rat(name_list: list, ratings: list, reverse: bool = True): """ Sort ratings associated with names. The sort is stable. :param name_list: The list of names to be associated with the ratings respectively :param ratings: The list of ratings to sort :param reverse: Descending by default. False means ascending. :return: The sorted list of names and their ratings and rankings """ if len(name_list) != len(ratings): raise ValueError("# of names %d does not equal to # of ratings %d" % (len(name_list), len(ratings))) result = list() for i, name in enumerate(name_list): result.append((name, ratings[i])) def compare(name_rat): return name_rat[1] result.sort(key=compare, reverse=reverse) return [(r[0], r[1], i + 1) for i, r in enumerate(result)]
cfb944d067c41f45c4e558fdeb55905de0ec01b4
49,438
def sigmoid(x): """ Sigmoid(x) = 1 / (1+e^-x) """ return 1 / (1 + (-x).exp())
1d60e8061e239b4de471ae4a38eb337365f498b5
49,441
def copy_df(df): """ DESCRIPTION ----------- Deep copy a pandas dataframe. PARAMETERS ---------- df : pd.DataFrame A pandas dataframe instance RETURNS ------- A deep copy of a given pandas dataframe MODIFICATIONS ------------- Created : 4/26/19 """ return df.copy(deep=True)
a130830820a9aef0c2419580a2493bb1f14111df
49,447
def strip_locals(data): """Returns a dictionary with all keys that begin with local_ removed. If data is a dictionary, recurses through cleaning the keys of that as well. If data is a list, any dictionaries it contains are cleaned. Any lists it contains are recursively handled in the same way. """ if isinstance(data, dict): return {key: strip_locals(value) for key, value in data.items() if not (isinstance(key, str) and key.startswith('local_'))} elif isinstance(data, list): data = [strip_locals(item) for item in data] return data
92fb36a2f3bb618b7b706dd33a3347666d0fa07e
49,448
def budget_equalities(sequence:str, price_vars:list, budget_vars:list)->list: """ Given a picking-sequence, create symbolic equalities determining that the total price of each agent's bundle equals the agent's budget. Currently works only for 2 agents. :param sequence: a string determining the picking-sequence, e.g. "ABA". :param price_vars: a list of symbols, e.g. symbols('p3,p2,p1') :param budgets: a list of symbols, e.g. symbols('a,b') :return: a list of constraints, as expressions that should be equal to 0. >>> budgets = symbols("a,b") >>> price_vars = symbols('p5,p4,p3,p2,p1') >>> budget_equalities("ABABA", price_vars, budgets) [a - p1 - p3 - p5, b - p2 - p4] >>> budget_equalities("AABBB", price_vars, budgets) [a - p4 - p5, b - p1 - p2 - p3] """ num_agents = len(budget_vars) if num_agents!=2: raise ValueError("Currently only 2 agents are supported") price_equality_a = budget_vars[0] price_equality_b = budget_vars[1] for i in range(len(sequence)): picker = sequence[i] if picker=="A": price_equality_a -= price_vars[i] elif picker=="B": price_equality_b -= price_vars[i] else: raise ValueError("Found picker {} but only two agents are supported".format(picker)) return [price_equality_a,price_equality_b]
ead48548766afc53e7583b65d88bfc8a10906382
49,450
def get_recipes_in_node(node): """Gets the name of all recipes present in the run_list of a node""" recipes = [] for elem in node.get('run_list'): if elem.startswith("recipe"): recipe = elem.split('[')[1].split(']')[0] recipes.append(recipe) return recipes
9d2cc0aac4b819428a5984e3852035650afeedf4
49,453
from pathlib import Path from typing import Tuple from datetime import datetime def parse_dates_from_filename(file: Path) -> Tuple[datetime, datetime]: """ Extracts the start and end time from an existing file. :param file: :return: tuple of start and end time """ split_names = file.stem.split("__") if len(split_names) < 4: raise ValueError(f"Cannot extract datetimes from file name: {file.name}") start_time = split_names[2] end_time = split_names[3].replace("_temp", "") start_time = datetime.strptime(start_time, "%Y_%m_%dT%H_%M_%SZ") end_time = datetime.strptime(end_time, "%Y_%m_%dT%H_%M_%SZ") return start_time, end_time
a03212ed2df9826cc631cda9e63157d6675f82a8
49,456
def weekend_init(M, i, t): """ Determines days to treat as weekend using midnight threshold parameters :param M: Model :param i: period :param t: tour type :return: list of ints; either [1, 7] or [6, 7] """ result = [] lens = [M.lengths[k] for k in M.tt_length_x[t]] max_len = max(lens) if i + max_len - 1 >= M.midnight_thresh[t]: result.append(6) else: result.append(1) result.append(7) return result
59e049e4d22f03e042aafa1799fe9f4e199babb4
49,457
import json def canonical_json(o): """ Dumps an object as canonical JSON string. Canonical JSON does not contain an space (except in strings) and have all the keys sorted. Args: o: The object to dump. Return: The canonical JSON string. """ return json.dumps(o, sort_keys=True)
74a6e880987cc1aaccd19a3d68f63ecf0d9835d3
49,458
def _count_trailing_zeros(mask: int) -> int: """count the trailing zeros of a bit mask. Used for shifting. Args: mask (int): bit mask, eg 0b00111000 Returns: int: number of trailing zeros """ if mask == 0: raise ValueError("mask is all zeros") count = 0 for i in range(mask.bit_length()): if mask & 1: return count count += 1 mask >>= 1 return count
3f8ce2c9a5a5143715e2fe52aabdeed3ae692f17
49,465
def relative_x(xarr, yarr, *args): """First value in xarr is subtracted from each x """ return (xarr - xarr[0], yarr) + args
8c8310b41b6de8a3d9a1846bda2e23a3d67474c8
49,473
def get_state(person): """Feed a person dict return the state only""" return person['state']
b670382b80ccd5f14d6ff2b6cd98ef28330f3c76
49,478
def kwargsGet(kwargs, key, replacement): """As kwargs.get but uses replacement if the value is None.""" if key not in kwargs: return replacement elif key in kwargs and kwargs[key] is None: return replacement else: return kwargs[key]
bcb5da19757f685d6ba5b7669c474e5cbc9a13f0
49,479
def set_creo_version(client, version): """Set the version of Creo you are running. This function only needs to be called once per creoson session. This function must be called if you are doing certain functions in Creo 7 due to deprecated config options. Needed for functions: familytable_replace file_assemble file_regenerate feature_delete feature_resume feature_suppress Args: client (obj): creopyson Client. version (int): Creo version. Returns: None. """ data = {"version": int(version)} return client._creoson_post("creo", "set_creo_version", data)
ddedcbb614f9fd545538804ba306b375f26bb1c8
49,483
def rank_items(items): """ Get a rank for each item that is computed by price/weight """ for item in items: item['rank'] = (item['price'] * 1.0) / (item['weight'] * 1.0) # I use 1.0 to get floats return items
2237664c7822afc76ddb6b32923e5fd98630b885
49,485
from typing import List from typing import Dict def get_entities_fields(entity_title: str, entities: List[str]) -> List[Dict]: """ Builds an entity from given entity title and entities list Args: entity_title (str): Title of the entity. entities (List[str]): List of the entities. Returns: (List[Dict]): List of dict containing the entity. List is needed because it is the expected format by Slack API. """ return [{ "title": f'{entity_title}', "value": '\n'.join(entities), "short": False }]
201702971b3bb58285f3adf10e492a6b83f62d27
49,486
def ZhangJohnson(tokens, index, history): """ These features were taken from Zhang and Johnson (2003). They correspond to the combination B+D+E+F in their paper. Feature 'C' was not included, since CRFsuite cannot handle 2nd order CRFS (which can use the i-1 and (i-2)th labels) or features of the form label_(i-1) & tok_i. Feature 'G' (part-of-speech tags), feature 'H' (chunking tags) and features 'I' & 'J' (dictionaries and gazetteers specific to the CONLL 2003 shared task) are not included. References ---------- - Turian J, Rativ L, Bengio Y. Word representations: a simple and general method for semi-supervised learning. Proceedings of the 48th annual meeting of the association for computational linguistics. Association for Computational Linguistics, 2010. - Zhang, T. and Johnson D. A robust risk minimization based named entity recognition system. Proceedings of the seventh conference on natural language learning at HLT-NAACL 2003-Volume 4, Association for Computational Linguistics, 2003. """ start_pad2 = ('[START2]', '[START2]','[START2]') start_pad1 = ('[START1]', '[START1]','[START1]') end_pad2 = ('[END2]', '[END2]','[END2]') end_pad1 = ('[END1]', '[END1]','[END1]') tokens = [start_pad2, start_pad1] + list(tokens) + [end_pad1, end_pad2] history = ['[START2]', '[START1]'] + history index += 2 # Shift index to accommodate padding in front of list. # Feature set 'B': Tokens in a window of 2 word = tokens[index][0] prevword = tokens[index - 1][0] prev2word = tokens[index - 2][0] nextword = tokens[index + 1][0] next2word = tokens[index + 2][0] # Feature set 'D': Initial capitalization of tokens in a window of 2 capitalized = word[0] == word.capitalize()[0] prevcapitalized = prevword[0] == prevword.capitalize()[0] prev2capitalized = prev2word[0] == prev2word.capitalize()[0] nextcapitalized = nextword[0] == nextword.capitalize()[0] next2capitalized = next2word[0] == next2word.capitalize()[0] # Feature set 'E': All capitalization, all digitals, or digitals containing # punctuation (for center word only). allcaps = word.isupper() #word == word.upper() all_digits = word.isdigit() all_letters = word.isalpha() # NOTE: Zhang and Johnson use say "digitals containing punctuations"; we # interpret this in the same way as Turian, Ratinov and Bengio (2010) # to mean "all non-letters" # Feature set 'F': Token prefix (lengths 3 & 4), and suffix (1 - 4) prefix3 = word[:3] prefix4 = word[:4] suffix1 = word[-1:] suffix2 = word[-2:] suffix3 = word[-3:] suffix4 = word[-4:] features = { 'word': word, 'prevword': prevword, 'prev2word': prev2word, 'nextword': nextword, 'next2word': next2word, 'capitalized': capitalized, 'prevcapitalized': prevcapitalized, 'prev2capitalized': prev2capitalized, 'nextcapitalized': nextcapitalized, 'next2capitalized': next2capitalized, 'allcaps': allcaps, 'all_digits': all_digits, 'all_letters': all_letters, 'prefix3': prefix3, 'prefix4': prefix4, 'suffix1': suffix1, 'suffix2': suffix2, 'suffix3': suffix3, 'suffix4': suffix4, } return features
f63f22692a8198bba05091b8fdd62cd22f714159
49,488
import json import requests def download_rail_route(rr_file, verbose=False): """ Downloads rail route data from railrouter.sg repo. Source: https://github.com/cheeaun/railrouter-sg params ------ rr_file (str): filename in the data directory in the repo verbose (bool): print downloaded route and pattern info returns ------- rr_data (dict): the core component from the raw data patterns (list): a list of patterns """ url = 'https://raw.githubusercontent.com/' \ 'cheeaun/railrouter-sg/master/data/v2/' rr_data = json.loads(requests.get(url + rr_file).text)['routes'][0] patterns = rr_data['patterns'] if verbose: print("[Downloaded]") print("Route:", rr_data['name']) print("Patterns:") print('\n'.join( [(str(i) + ': ' + p['name']) for i, p in enumerate(patterns)])) return rr_data, patterns
93d5d16a5b7ba1afb11fc26c3d8a9df4a301dafa
49,490
import re def valid_uniprot_ac_pattern(uniprot_ac): """ Checks whether Uniprot AC is formally correct according to https://www.uniprot.org/help/accession_numbers This is no check whether it actually exists. :param uniprot_ac: Accession code to be checked """ ac_pat = "[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}" if re.match(ac_pat, uniprot_ac): return True else: return False
8478f998d1b8ff2b7f8343317056a9c2c0b36021
49,504
def AIC(params, log_likelihood_fun, data): """Calculates the AIC (akaike criterion) Parameters _________ params : tuple MLE parameters for distribution log_likelihood_fun : function calculates the log likelihood for the desired distribution data : array empirical dataset to calculate log likelihood with respect to Returns _________ output : float AIC value """ L = log_likelihood_fun(params, data); return -2*(L) + 2*len(params)
48f812b68fa44320f83032ec927c4d900ae44620
49,507
def five_options_around(page): """ Create five page numbers around current page for discovery pagination. """ if page.number <= 3: return list(range(1, min(5, page.paginator.num_pages) + 1)) elif page.number >= (page.paginator.num_pages - 2): return list(range(max((page.paginator.num_pages - 4), 1), page.paginator.num_pages + 1)) else: return list(range(max(1, (page.number - 2)), min((page.number + 2), page.paginator.num_pages) + 1))
b65b635df3fe0abd4c5674b5b8c41b47a5630f79
49,515
import base64 def parse_authorization_header(auth_header): """ Parse auth header and return (login, password) """ auth_str = auth_header.split(' ')[1] # Remove 'Basic ' part auth_str = base64.b64decode(auth_str).decode() # Decode from base64 auth_str = auth_str.split(':') return auth_str[0], auth_str[1]
cc2db762ddf7b4ce0669a81f24bce9517785350a
49,516
def calc_kcorrected_properties(frequency, redshift, time): """ Perform k-correction :param frequency: observer frame frequency :param redshift: source redshift :param time: observer frame time :return: k-corrected frequency and source frame time """ time = time / (1 + redshift) frequency = frequency * (1 + redshift) return frequency, time
3a7c151a6777a0e11022e38e73ded45fc7a6706c
49,518
def tokenize_options(options_from_db, option_name, option_value): """ This function will tokenize the string stored in database e.g. database store the value as below key1=value1, key2=value2, key3=value3, .... This function will extract key and value from above string Args: options_from_db: Options from database option_name: Option Name option_value: Option Value Returns: Tokenized options """ options = [] if options_from_db is not None: option_str = options_from_db.split(',') for fdw_option in option_str: k, v = fdw_option.split('=', 1) options.append({option_name: k, option_value: v}) return options
88127c5e693064ef0c3c087b18bbf213c8a6184f
49,521
def check_int(num): """Check if arguement is integer. Arg: num (int): The only arguement. Returns: bool: The return value. True if num is indeed an integer, False otherwise. """ if num is not None: try: int(num) return True except ValueError: return False else: return False
556bc91dbdece439bd66f7f8fa2182d2f9683c67
49,522
def find_min_max(shape): """Finds min/max coordinates for a given shape and returns a tuple of the form (minx, maxx, miny, maxy) shape: list with points""" minx = miny = 1000 maxx = maxy = -1000 for x, y in shape: if x < minx: minx = x if x > maxx: maxx = x if y < miny: miny = y if y > maxy: maxy = y return (minx, maxx, miny, maxy)
133bc42b9193a950869a784a5cf74b960e79eda1
49,523
def create_dict(breadcrumbs, value=None): """ Created a dict out of the breadcrumbs in a recursive manner. each entry in the breadcrumb should be a valid dictionary key. If value is None, the last string within' the breadcrumbs becomes the final value. :param breadcrumbs: :param value: :return: """ if value is not None: if not breadcrumbs: return value elif len(breadcrumbs) == 1: return breadcrumbs[0] return {breadcrumbs[0]: create_dict(breadcrumbs[1:], value)}
f2f4d2be32aa96b31703cc548edff3999bd42bd3
49,525
from typing import Dict from typing import Any from typing import List async def get_sorted_agenda_items( agenda_items: Dict[int, Dict[str, Any]] ) -> List[Dict[str, Any]]: """ Returns all sorted agenda items by id first and then weight, resulting in ordered items, if some have the same weight. """ return sorted( sorted(agenda_items.values(), key=lambda item: item["id"]), key=lambda item: item["weight"], )
d661488d7e508e86a974d98ec558856f5810a3e4
49,527
def _melt_keep_index(df, value_name="value"): """ Fully melt a dataframe keeping index, setting new index as all but `value` """ id_vars = df.index.names return ( df.reset_index() .melt(id_vars=id_vars, value_name=value_name) .set_index([*id_vars, df.columns.name]) )
94bfc7f663d62db2c36f15bc9f09a078cc978174
49,529
def findall_text(node, path): """Find all n.text elements from a path. """ return [n.text for n in node.findall(path)]
2a40b2442e50e58a64320539153e27acfde15a8f
49,533
import struct def add(text: str) -> str: """ Add surrogate pairs to characters in the text. This makes the indices match how most platforms calculate string length when formatting texts using offset-based entities. Args: text: The text to add surrogate pairs to. Returns: The text with surrogate pairs. """ return "".join( "".join(chr(y) for y in struct.unpack("<HH", x.encode("utf-16le"))) if (0x10000 <= ord(x) <= 0x10FFFF) else x for x in text )
ffcaa7216686d2da09fae65719ed1a244a755f94
49,534
import torch def tsn_sample(num_tokens, num_samples, training): """ num_tokens >= num_samples args: num_tokens: int, num of total tokens num_samples: int, num of sampled tokens training: bool returns: indexes: tensor, sampled indexes of frames """ if num_samples == 1: return torch.tensor([0], dtype=torch.long) base = torch.floor( (num_tokens - 1) * torch.arange(0, num_samples).to(torch.float) / (num_samples - 1)) if training: offset_range = base[1:] - base[:-1] base[:-1] += torch.rand((offset_range.size()[0],)) * offset_range indexes = torch.floor(base) else: indexes = base return indexes.to(torch.long)
8821aa111e17c231a8ffc61afd43c9fd71e3efcc
49,535
def getCacheThumbName(path): """ Returns a thumb cache filename. :param path: string or unicode -- path to file Example:: thumb = xbmc.getCacheThumbName('f:\videos\movie.avi') """ return str()
f3b467d542842ab011bbbf22cee86399cf80d1e6
49,537
import torch def mae(predictions, actuals): """ computes mean absolute error - predictions: predictions computed from call to model.forward(...) (Tensor) - actuals: actual values (labels) (Tensor) @returns: computed mae = sum(abs(predictions - actuals)) / actuals.size(0) """ diff = actuals - predictions mae_err = torch.mean(torch.abs(diff)) return mae_err.detach().numpy()
00cb15d83a06427947bcabb85e48ef4ffa0d2677
49,539
def split_path(path): """//foo/bar/baz -> ['foo', 'bar', 'baz']""" return [x for x in path.split('/') if x != '']
13376639f9597d598c2b69a844e232a7c059fc3a
49,540
def s2b(s): """portable way to convert string to bytes. In 3.x socket.send and recv require bytes""" return s.encode()
92a2b6301858c80d856d80e1200f00b17e2e2327
49,542
from typing import Optional def distribute_about_center(index: int, size: int, max_loc: float = 1.0, max_size: Optional[int] = None): """ Get the coordinate from between 0 and 1 of an item given its index in a collection. :param index: The 0-based index of the item in its collection. :param size: The number of items in the item's collection. :param max_loc: The maximum location of an item. :param max_size: The maximum number of items that can appear in any collection. Use if all items in all collections should be equally spaced. Leave as None to give each collection its own spacing. """ if max_size is None: max_size = size spacing = max_loc / (max_size - 1 if max_size > 1 else 1) min_loc = (max_loc / 2) - ((size - 1) * spacing) / 2 return min_loc + index * spacing
4dfae63fc3b7639c08f37ece62e8afad352f8d23
49,543
import fnmatch def _matches(file, glob): """ check if file matches a glob""" return fnmatch.fnmatch(file, glob)
5a104720f76910bcb280350c440d4bea8d156b81
49,548
from datetime import datetime import re def get_date_from_string(date_string): """Transforms the specified date string into a proper datetime object. """ format_string = '%Y-%m-%dT%H:%M:%S%z' regexp = r"(\+\d{1,2})(:)(\d{1,2})" data = datetime \ .strptime(re.sub(regexp, r"\1\3", date_string), format_string) \ .replace(tzinfo=None) return data
f6e6d713cecef451b226e57ddae550fccc91cae8
49,553
def shieldsio_markdown_badge_generator(badge_label=None, badge_hover=None, badge_link=None, metric='count', badge_color=None, badge_style='flat-square'): """Generates badge generator for a badge hosted on shields.io. Params: badge_label - the label in the badge itself. For example "algorithms". this label is displayed in the left box of the badge. badge_hover - the hover text displayed when going over the badge. Used in the Markdown markup for the badge. badge_link - the link of the badge (in the markup). metric - the name of the property in the saved JSON that contains the data that should be displayed in the right box of the badge. badge_color - the color of the badge. badge_style - badge style. May be: 'plastic', 'flat', 'flat-square'. """ def _get_badge_url(data_url): url = 'https://img.shields.io/badge/dynamic/json?' params = { 'label': badge_label, 'query': metric, 'url': data_url, 'color': badge_color, 'style': badge_style, } for param, value in params.items(): if value is not None: url += '&' + '{key}={value}'.format(key=param, value=value) return url def _get_markup(hover, badge_url): hover = badge_hover or hover return '[![{hover}]({badge_url})]({badge_link})'.format( hover=hover, badge_url=badge_url, badge_link=badge_link) def _generator(value): url = _get_badge_url(value['data_url']) return { 'provider': 'https://shields.io', 'url': url, 'markup': _get_markup(hover=value['label'], badge_url=url) } return _generator
2401eb53f0725b3594274b4b258e3dfe2c04b2d5
49,555
def convert_twos_compliment(bin_str): """ Converts a string of binary numbers to their two's compliment integer representation """ length = len(bin_str) if(bin_str[0] == '0'): return int(bin_str, 2) else: return int(bin_str, 2) - (1 << length)
b5b62eb0f74aecd35de880d11470855e189fd713
49,567
import re def clean_text(text): """去掉文本的空白字符、标点符号""" return re.sub(r'[? 、;!,。“”?.~…,$\r\n《》——]|(<.*>)', '', text.strip())
b5da8949a30ccf1216508b94b1088c0a3dd8f547
49,568
import random def random_choice(bucket): """Safely get a random choice from a list. If the list is zero-length, this just returns an empty string rather than raise an exception. Parameters: bucket (list): A list to randomly choose from. Returns: str: The random choice. Blank string if the list was empty. """ if len(bucket) == 0: return "" return random.choice(bucket)
2b781ede8fff9c2f455eebab9bf64cdf01717bee
49,572
import torch def mul(input, other, *args, **kwargs): """ Multiplies each element of the input ``input`` with the scalar ``other`` and returns a new resulting tensor. Examples:: >>> import torch >>> import treetensor.torch as ttorch >>> ttorch.mul( ... ttorch.tensor([1, 2, 3]), ... ttorch.tensor([3, 5, 11]), ... ) tensor([ 3, 10, 33]) >>> ttorch.mul( ... ttorch.tensor({ ... 'a': [1, 2, 3], ... 'b': {'x': [[3, 5], [9, 12]]}, ... }), ... ttorch.tensor({ ... 'a': [3, 5, 11], ... 'b': {'x': [[31, -15], [13, 23]]}, ... }) ... ) <Tensor 0x7f11b139ca58> ├── a --> tensor([ 3, 10, 33]) └── b --> <Tensor 0x7f11b139cb00> └── x --> tensor([[ 93, -75], [117, 276]]) """ return torch.mul(input, other, *args, **kwargs)
027789f0ef85cb68e374994065a4eb19f815eb52
49,573
def add_entry_list_strings(list_string, entry): """ add a new entry to a list of strings, including some newlines """ list_string.append(entry) list_string.append('\n') return list_string
49e5beafa3748adfae397c8f44d5ef6abcdaef78
49,574
def interval_intersection_width(a, b, c, d): """returns the width of the intersection of intervals [a,b] and [c,d] (thinking of these as intervals on the real number line)""" return max(0, min(b, d) - max(a, c))
fc913c1d2510e9141ab40f4d56f4ce952f3d7d04
49,577
def filter_dict(data, keys): """Filter dict :data by given :keys""" result = {} for key in keys: if key in data: result[key] = data[key] return result
80cc8a7226c8b7929588191a48a5d3f1ce07bbbd
49,584
def format_schema_errors(e): """Format FlaskJsonSchema validation errors""" return { "error": e.message, "errors": [validation_err.message for validation_err in e.errors], }
9197f83adc03d031681ed097dbc96206dbdd8ac9
49,586
import hashlib def _make_stmt_name(func): """ Create the prepared query name which is a string up-to 63 characters made up of - an underscore - the md5 hash of the <module.function> name - an underscore - up-to 29 characters of the function name """ m = hashlib.md5() func_name = func.__name__ fully_qualified_name = f"{func.__module__}.{func.__name__}" m.update(bytes(fully_qualified_name, encoding="utf-8")) stmt_name = "_" stmt_name += m.hexdigest() stmt_name += "_" + func_name[:29] return stmt_name
bad6f2530b7dbae2a814ab6eba030e6f0040a58f
49,592
def extract_headers(response): """Extract relevant headers from a response into a dictionary.""" result = {} for key in response.headers.keys(): if isinstance(key, bytes): key = key.decode('utf-8') value = response.headers.get(key) if isinstance(value, bytes): value = value.decode('utf-8') if key in ('Date', 'Content-Length', 'Etag','Last-Modified'): continue result[key] = value return result
fde2f4d9c4e449f95c57fcc20dae3d003ec6bc9b
49,596
from typing import Any from typing import Union def issubclass_( cls: Any, types: Union[type[Any], tuple[type[Any], ...]], ) -> bool: """Like `issubclass`, but do not raise error if value is not `type`.""" return isinstance(cls, type) and issubclass(cls, types)
f300d79f12a74ac549b6e7d66e1d865449b0eca9
49,599
def find_difference_sum_of_squares_and_square_of_sum(num: int) -> int: """Find the difference between sum of squares and square of sum for the first `num` natural numbers. Args: num (int): First natural numbers. Returns: int: Difference. """ sum_of_squares = sum(x ** 2 for x in range(1, num + 1, 1)) square_of_sum = sum(range(1, num + 1, 1)) ** 2 return square_of_sum - sum_of_squares
3f0d5fbc75451f8c883d0aedc3b5a91cbffb1a77
49,606
def hello(name): """ Function that returns a greeting for whatever name you enter. Usage: >>> hello('Emiel') 'Hello, Emiel!' """ return ''.join(["Hello, ", name, '!'])
ffbdf2ee0869b3fd20f0cb85eff8eae748e30d28
49,609
def merge(source, destination): """ Merges 2 dicts recursively. If leaves are lists, they are extended. If leaves are ints, floats, strs, they are concatenated into a string, if the leaves are not the same. """ for key, value in source.items(): if isinstance(value, dict): # get node or create one node = destination.setdefault(key, {}) merge(value, node) elif isinstance(value, list): destination[key] += value else: if destination[key] != value: destination[key] = f'{destination[key]},{value}' else: destination[key] = value return destination
7f771e83c5f89fa641fa79f863f4382ac5cc0ead
49,610
import re def filter_content(content): """Filter content to make sure it can be built into json object """ filtered_content = re.sub(r'[^\x00-\x7f]', r' ', content.strip("'"). replace("\n", "\\n"). replace("\r", ""). replace("\"", "'")) return filtered_content
267be82061ddc3614e8eb340a0eab065dd2a7b23
49,615
def cost_req_met(card, opponent_cost): """Check if a card meets cost requirements""" if card.intrigue: if (opponent_cost - card.cost) > 0: if (opponent_cost - card.cost) % card.intrigue == 0: return True else: if card.cost == opponent_cost: return True return False
8a6dfc891b338a4dadcc412b08ad1b16fdc14dce
49,621
import torch from typing import Optional def squash(inputs: torch.Tensor, dim: Optional[int] = -1) -> torch.Tensor: """ Apply `squash` non-linearity to inputs Args: inputs (T): input tensor which is to be applied squashing dim (int, optional): dimension to be applied squashing. Defaults to -1 Returns: T: squashed tensor """ # Calculate squared norm of inputs squared_norm = torch.sum(torch.pow(inputs, 2), dim=dim, keepdim=True) # Squash non-linearity to inputs return (squared_norm / (1 + squared_norm)) * (inputs / (torch.sqrt(squared_norm) + 1e-8))
91ee55ecedf0a8fac4098c37d9352775db85cc3c
49,625
def build_id(Z: int, A: int, state: str = "") -> int: """ Builds a canonical nuclide id from atomic number, atomic mass, and and energy state. Parameters ---------- Z : int Atomic number. A : int Atomic mass. state : str energy state. Returns ------- int Canonical nuclide id. Examples -------- >>> rd.utils.build_id(1,2) 10020000 >>> rd.utils.build_id(28,56,'m') 280560001 """ if state != "": if state == "m": state_int = 1 elif state == "n": state_int = 2 else: raise ValueError(state + " is not a valid energy state.") else: state_int = 0 canonical_id = (Z * 10000000) + (A * 10000) + state_int return canonical_id
6686ac4841e6272ff7a683b4d2b267f95e1615be
49,626
def read_expected_result(filename): """ Get the expected result from the given file. The expected outcome is the % message following after %Expected outcome: :param filename: The name of the file :return: The expected result.strip(). :rtype: str """ result = "" with open(filename) as f: reading = False for l in f: l = l.strip() if l.startswith('%Expected outcome:'): reading = True elif reading: if l.lower().startswith('% error'): return l[len('% error'):].strip() elif l.startswith('%'): result = result + "\n" + l[1:] else : reading = False return result.strip()
98522127ecfeb9a32b9bf429eab35fccd90cc849
49,631
def make_field(name, _values, **kwargs): """ specialization of make_parameters for parameters that define fields (aka color inputs). In this case the values is a list of name, type pairs where types must be one of 'rgb', 'lut', 'depth', 'value', or 'luminance' May also be given an set of valueRanges, which have min and max values for named 'value' type color selections. """ values = _values.keys() img_types = _values.values() valid_itypes = ['rgb', 'lut', 'depth', 'value', 'luminance', 'normals'] for i in img_types: if i not in valid_itypes: raise RuntimeError( "Invalid typechoice, must be one of %s" % str(valid_itypes)) default = kwargs['default'] if 'default' in kwargs else values[0] if default not in values: raise RuntimeError("Invalid default, must be one of %s" % str(values)) typechoice = 'hidden' label = kwargs['label'] if 'label' in kwargs else name properties = dict() properties['type'] = typechoice properties['label'] = label properties['values'] = values properties['default'] = default properties['types'] = img_types if 'valueRanges' in kwargs: properties['valueRanges'] = kwargs['valueRanges'] return properties
f5eb045d17b75e4fb315a43c1b5611a82827fda9
49,642
import logging def str_to_float(value: str) -> float: """ Return float from string or raise/log error. :param value: The string value. :return: The float value. """ try: int_val = float(value) return int_val except ValueError as e: logging.error(f"Cannot convert string value to float: {value=}") raise e
152be429a66cbf4062ef9b288e0d71d89b2f7352
49,658
def empty_cells(state): """ Each empty cell will be added into cells' list :param state: the state of the current board :return: a list of empty cells """ cells = [] for x, row in enumerate(state): for y, cell in enumerate(row): if cell == 0: cells.append([x, y]) return cells
b3e3944d9dd3c699ff2bfbffbd66407e1bda7d4a
49,659
def compute_best_test_losses(data, k, total_queries): """ Given full data from a completed nas algorithm, output the test error of the best architecture after every multiple of k """ results = [] for query in range(k, total_queries + k, k): test_losses = [d[-1] for d in data[:query]] best_test_loss = sorted(test_losses)[0] results.append((query, best_test_loss)) return results
024dc22fa93c6577193da484d6de499be4ecbf00
49,662