content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
|---|---|---|
def get_version(diff_file, ix=True):
"""Determine the product version from the diff file name.
param ix denotes if the diff file was generated by APIx or CLIx
"""
split_ver = diff_file.split("/")[-1].split("-")
if "-comp.yaml" in diff_file:
return split_ver[0]
else:
return f"{split_ver[0]}-to{split_ver[2]}"
|
a1d899abdea8ee59c76b6103bd27cb0b40e100cd
| 49,022
|
from typing import Optional
from typing import Union
from typing import cast
from typing import Dict
def validate_axis(axis: Optional[Union[int, str]] = 0, none_axis: int = 0) -> int:
"""Check the given axis is valid."""
# convert to numeric axis
axis = cast(
Dict[Optional[Union[int, str]], int], {None: none_axis, "index": 0, "columns": 1}
).get(axis, axis)
if axis in (none_axis, 0, 1):
return cast(int, axis)
else:
raise ValueError("No axis named {0}".format(axis))
|
654cd35d1ddd4ff27c0a37635a211ddfca710c6e
| 49,024
|
import torch
def so3_log_abs_det_jacobian(x):
"""
Return element wise log abs det jacobian of exponential map
:param x: Algebra tensor of shape (..., 3)
:return: Tensor of shape (..., 3)
Removable pole: (2-2 cos x)/x^2 -> 1-x^2/12 as x->0
"""
x_norm = x.double().norm(dim=-1)
mask = x_norm > 1e-10
x_norm = torch.where(mask, x_norm, torch.ones_like(x_norm))
ratio = torch.where(
mask, (2 - 2 * torch.cos(x_norm)) / x_norm ** 2, 1 - x_norm ** 2 / 12
)
return torch.log(ratio).to(x.dtype)
|
82d22cef96578a90d677d4d631dfb2ed7c783d05
| 49,029
|
def a1(row_index, column_index):
"""Get an A1 notation for a cell specified by its row index
and column index"""
ord_first = ord('A')
ord_last = ord('Z')
letters_count = ord_last - ord_first + 1
level, letter_index = divmod(column_index, letters_count)
letter = chr(ord_first + letter_index) * (1 + level)
number = row_index + 1
return '{letter}{number}'.format(letter=letter, number=number)
|
d319600fcdddfbe7c0a715b56e8d00b6b9198d84
| 49,031
|
def get_E2K_lookup_dict(the_dict, main_key, sub_key):
"""Returns a lookup dictionary specified by main_key
and sub_key, returning an empty dictionary if any is missing.
This is for use in the post-processing functions."""
subdict = the_dict[main_key].get(sub_key, {}) \
if the_dict.get(main_key) else {}
if subdict:
return {v.get('ID'): k for k, v in subdict.items() if v.get('ID')}
|
56dbb81592a00e873dc5bda1234377a48bde9e94
| 49,032
|
def make_feat_paths(feat_path):
"""
Make a feature path into a list.
Args:
feat_path (str): feature path
Returns:
paths (list): list of paths
"""
if feat_path is not None:
paths = [feat_path]
else:
paths = None
return paths
|
6a7960c86a7f97afbe7b248970fd7f7f8efeda1e
| 49,034
|
def annuity_factor(n, i):
"""
Calculate annuity factor
Args:
n: depreciation period (40 = 40 years)
i: interest rate (0.06 = 6%)
Returns:
annuity factor derived by formula (1+i)**n * i / ((1+i)**n - 1)
"""
return (1 + i) ** n * i / ((1 + i) ** n - 1)
|
9efb7062c609c260482a3f870350148518dba5d9
| 49,036
|
def trim_to_preferred_protocols(hosts_and_urls):
""" remove all but http and ftp URLs,
and if both http and ftp are offered,
leave only http. Return [(hostid, url), ...] """
results = []
try_protocols = ('https', 'http', 'ftp')
for (hostid, hcurls) in hosts_and_urls:
protocols = {}
url = None
for hcurl in hcurls:
for p in try_protocols:
if hcurl.startswith(p+':'):
protocols[p] = hcurl
for p in try_protocols:
if p in protocols:
url = protocols[p]
break
if url is not None:
results.append((hostid, url))
return results
|
c4e108e4a650431a39d3a689153f516c1b711143
| 49,039
|
def is_invalid_schema(schema, test_value):
"""
Checks schema against tests with dictionary nesting
>>> is_invalid_schema({"valid_key": "some_value"}, {"valid_key": "some_value"})
False
>>> is_invalid_schema({"invalid_key": "some_value"}, {"valid_key": "some_value"})
True
>>> is_invalid_schema(
... {"nested": {"valid_key": "some_value", "another_key": "some_value"}},
... {"nested": {"valid_key": "some_value"}}
... )
False
>>> is_invalid_schema(
... {"nested": {"invalid_key": "some_value", "another_key": "some_value"}},
... {"nested": {"valid_key": "some_value"}}
... )
True
>>> is_invalid_schema(
... {"nested": {"valid_key": "some_invalid_value", "another_key": "some_value"}},
... {"nested": {"valid_key": "some_value"}}
... )
True
>>> is_invalid_schema(
... {"nested": {"double": {"valid_key": "some_value", "another_key": "some_value"}}},
... {"nested": {"double": {"valid_key": "some_value"}}}
... )
False
>>> is_invalid_schema(
... {"nested": {"double": {"valid_key": "some_value", "another_key": "some_value"}}},
... {"nested": {"double": {"valid_key": "some_value"}, "some_key": "no_value"}}
... )
True
"""
if isinstance(test_value, dict):
return any(
is_invalid_schema(schema[k], test_value[k]) if k in schema else True
for k in test_value.keys()
)
return schema != test_value
|
894109fc9910fc708d9a8800e1169d6e00876e0d
| 49,040
|
def formed_bond_keys(tra):
""" keys for bonds that are formed in the transformation
"""
#print('tra test:', len(tra), tra)
#if len(tra) == 1:
# frm_bnd_keys = tra
#else:
frm_bnd_keys, _ = tra
return frm_bnd_keys
|
7190e308c86f3c453696379e5b914c9665e8b482
| 49,046
|
import re
def handle_lambda(call, line, file):
"""
Resolve calls that point to <lambda>. Finds the lambda definition in the file/line
pointed to by the `call` and extracts the name of the variable that gets assigned
the lambda.
:param call: call dictionary
:param line: line dictionary
:param file: file dictionary of the file pointed to by the call
:return: updated call dictionary
"""
if call['entry_point'] == '<lambda>':
if line['line_number'] == call['line_number']:
return {}
num = call['line_number']
# file the name of the variable defined in file['lines'][num-1]
m = re.search(r'(?<=\s)(\w*)(?=\s*=\s*lambda)', file['lines'][num-1]['code'])
if m is not None:
call['entry_point'] = m.group(0)
return call
|
ff9c99f123596d7554bebdeb8c607fd8864ef1a4
| 49,047
|
import collections
def get_month_most_posts(dates):
"""Receives a list of datetimes and returns the month (format YYYY-MM)
that occurs most"""
c = collections.Counter()
for d in dates:
c[str(d.year) + '-' + str(d.month).zfill(2)] += 1
return c.most_common(1)[0][0]
|
6c71301657e45529706688cdb51e4bbe43284d41
| 49,049
|
import math
def get_data_file(lon, lat):
"""
Returns the correct HGT data file to get elevation from.
Credit: Aatish Neupane
Link: https://librenepal.com/article/reading-srtm-data-with-python/
:param lat: The latitude of the desired point.
:param lon: The longitude of the desired point.
:return: The name of the data file.
:raise: ValueError: If lat/lon are not within supported bounds.
"""
if 48 <= math.floor(lat) < 60 and 110 < math.floor(lon) <= 121:
return "N{}W{}.hgt".format(math.floor(lat), math.floor(lon))
else:
raise ValueError("Point does not fall within supported bounds")
|
c454df12af58fc1174fec591d5d32b3b97f85118
| 49,053
|
def initialDataLists(D):
""" Initialize grid, scalars, and vectors lists used in convertToVtk function. """
grid = []; # simple
scalars = [list(x) for x in [()]*len(D["scalar"].keys())]; # more complicated
vectors = [list(x) for x in [()]*len(D["vector"].keys())]; # more complicated
return [grid, scalars, vectors];
|
96dab994f29c79d874fd4be55cc96757a3b7c8f4
| 49,055
|
def get_list_of_new_entries(device_entries: list, file_entries: list) -> list:
"""
Compares log entries from the local logfile with the log entries from the device
Args:
device_entries (list): List of LogEntry Objects, fetched from the device
file_entries (list): List of LogEntry Objects, fetched from the local logfile
Raises:
N/A
Returns:
new_entries (list): List of LogEntry objects from the device
which are not yet present in the local logfile
"""
new_entries = []
# if there are no log entries in the local log file or it does not exist yet,
# simply return the log entries from the device
if not file_entries:
return device_entries
# if there are no log entries on the device, return empty list
if not device_entries:
return new_entries
# otherwise, add the latest log entries from the device until
# we reach a log entry already present in the local log file
while device_entries[-1].timestamp > file_entries[-1].timestamp:
new_entries.append(device_entries.pop())
# sort by timestamp so the log entries are in the correct order (new entries last)
new_entries.sort(key=lambda entry: entry.timestamp)
return new_entries
|
baa16c9999f42e6d71a1d6bc62305f42239b61b0
| 49,058
|
def get_region_start(region: str) -> int:
"""Return the start position of the region string."""
if ":" not in region:
return 1
contig, start_end = region.split(":")
start, end = start_end.split("-")
return int(start)
|
4dc1392815560d6e3886addaef7837ecf21069ba
| 49,059
|
def instjoin(*instnames):
"""Return hierarchical instance names from instance name components
>>> instjoin('I1','VS')
'I1.VS'
>>> instjoin('','VS')
'VS'
"""
return '.'.join([part for part in instnames if len(part) > 0])
|
3bd842de4bc6026d41d36267d2cca1b6d9d4b575
| 49,066
|
def _records_match(old_ttl, old_record_data, new_ttl, new_record_data):
"""Checks to see if original and new TTL and values match."""
matches = True
if old_ttl != new_ttl:
matches = False
if old_record_data != new_record_data:
matches = False
return matches
|
982f8d5b9f6c72b95a5d6b76d4909eb89906e3df
| 49,074
|
def htmlDataset(dataset = {}, title=""):
""" Utility function to generate HTML Table from a Dataset"""
content = "<TABLE cellpadding=5> <caption align=top>" + title + " </caption><TR></TR><TR></TR>"
for row in dataset['DATA']:
content += "<TR>"
for col in dataset['DATA'][row]:
if row==0:
content += "<TH align=left bgcolor=#BBDB88>"
else:
content += "<TD align=left bgcolor=#FFFAB2>"
content += col
if row==0:
content += "</TH>"
else:
content += "</TD>"
content += "</TR>"
content += "</TABLE>"
return content
|
871c44487fadacdb8c255389a57065b0887df1c6
| 49,075
|
def clamp(n, lower, upper):
"""
:param n: Number to clamp
:param lower: Lower bound
:param upper: Upper bound
:return: Clamped number
"""
return max(lower, min(n, upper))
|
df283f640cfee371b44d8ab33c90ac959f3601e2
| 49,078
|
import six
def GetLabels(args, client, instance_properties=False):
"""Gets labels for the instance message."""
labels_value = client.messages.Instance.LabelsValue
if instance_properties:
labels_value = client.messages.InstanceProperties.LabelsValue
if args.labels:
return labels_value(additionalProperties=[
labels_value.AdditionalProperty(
key=key, value=value)
for key, value in sorted(six.iteritems(args.labels))
])
return None
|
f32e135a211c151d97062e5535e7b0149f081ea9
| 49,080
|
def get_video_parts(video_path):
"""Given a full path to a video, return its parts."""
video_path = video_path.replace('\\','/') # Adapt for win
parts = video_path.split('/')
filename = parts[3]
filename_no_ext = filename.split('.')[0]
classname = parts[2]
train_or_test = parts[1]
return train_or_test, classname, filename_no_ext, filename
|
9f514909f398b0abf5b929c5ca384971168a268e
| 49,084
|
def find_cal_by_type(standards, std_type):
"""
:param standards: list, of CalEvent objects
:param std_type: string, in ['high', 'mid', 'low']
:return: returns the first CalEvent in the list with the matching standard type
"""
return next((ce for ce in standards if ce.standard_used == std_type), None)
|
f87e011534e6aa16c1c508bcafd334d7886f5568
| 49,085
|
import re
def match_mm3_angle(mm3_label):
"""Matches MM3* label for angles."""
return re.match('[\sa-z]2', mm3_label)
|
bb9d3a41e9b0aabb6efe36efc251ceb83c134911
| 49,086
|
from typing import Any
def _float_val(col: Any) -> float:
"""Convert marker data to float values so we can put them in a
typed np.array. The marker column has type float if it has a 0.0
value, and would only have type str for a marker value."""
if isinstance(col, str):
return 1.0
return float(col)
|
8bd8636a21bb7e72eb6f585702462a34a63575a5
| 49,090
|
def __collatz_recursivo(numero: int, pasos: list) -> list:
"""Calcula recursivamente la conjetura de Collatz, devuelve los pasos realizados"""
pasos.append(numero)
if numero == 1:
return pasos
if numero % 2 == 0:
return __collatz_recursivo(numero // 2, pasos)
return __collatz_recursivo(numero * 3 + 1, pasos)
|
249a5de371528e5fe0f3aee247a0ce525461ca32
| 49,092
|
def get_multiple_ranges(service, spreadsheet_id, range_names):
"""
Get multiple ranges from Google Sheets.
:param service: Authenticated sheets service object
:param spreadsheet_id: Id of the spreadsheet
:param range_names: Ranges to get
:return: Results of the query
"""
result = service.spreadsheets().values().batchGet(
spreadsheetId=spreadsheet_id,
ranges=range_names
).execute()
ranges = result.get('valueRanges', [])
return ranges
|
36bf548fe3d444909854317490379e5c64a0da33
| 49,094
|
def payload_satisfies(pred):
"""This wraps a predicate so it is applied to the payloads of intervals.
The output function expects one or more Intervals as input (depending on
how many arguments ``pred`` expects) and applies the predicate to the
payloads of the Intervals instead of the Intervals themselves.
Arg:
pred: The predicate to wrap.
Returns:
An output function that applies ``pred`` to payloads.
"""
def new_pred(*interval_args):
return pred(*[i.payload for i in interval_args])
return new_pred
|
8d758587d9a361740cfcb88c9ea29b7bea6f1ff7
| 49,096
|
def get_eso_file_version(raw_version):
"""Return eso file version as an integer (i.e.: 860, 890)."""
version = raw_version.strip()
start = version.index(" ")
return int(version[(start + 1) : (start + 6)].replace(".", ""))
|
d456ce65585a8aad0c08d9e53b6aeb77132a0d49
| 49,109
|
def have_readme(answer):
"""Check if project has a readme"""
return answer['check_readme']
|
47e963d36a18211e40580dae26e1c44b82f12375
| 49,111
|
def int_to_bytes(x, length):
"""Converts bigendian integer to byte array with fixed length."""
res = bytearray(length)
for i in range(length):
res[length - i - 1] = int(x) % 256
x = int(x) // 256
return res
|
f8cfceca1c51483115c7d2d877b9d4a6c7c5fef9
| 49,117
|
def strip_linebreaks(s):
""" Strip excess line breaks from a string """
return u"\n".join([c for c in s.split(u'\n') if c])
|
537b835608e8697da4d9c05f1983fe39ef09b980
| 49,119
|
def find_output_node(nodetree):
"""
Get first output node that has incoming links.
"""
for n in nodetree.nodes:
if n.type.startswith('OUTPUT'):
for inp in n.inputs:
if inp.is_linked:
return n
return None
|
f3dafd1873baacdc1568a3ab6d7d8d70602127ec
| 49,120
|
import socket
def is_unused_port(port, protocol):
"""
Check whether the port is unused
Args:
port (int): port
protocol (str): application protocol (tcp or udp)
Return:
bool: whether the port is unused
"""
protocols = {
'udp': socket.SOCK_DGRAM,
'tcp': socket.SOCK_STREAM,
}
sock = socket.socket(family=socket.AF_INET, type=protocols[protocol])
try:
sock.bind(('127.0.0.1', port))
sock.close()
return True
except socket.error:
return False
|
6a40d4a1b9882d1f8cf2d9bfa56b59e2f81c7737
| 49,121
|
def _make_rv_params_variable(rv, **params):
"""
Wraps the random variable rv, allowing it
to accept time-dependent parameters.
"""
if any(callable(x) for x in params.values()):
return lambda t: rv(
**{k: (x(t) if callable(x) else x)
for k, x in params.items()})
else:
return rv(**params)
|
a497962b67f88a9bc01855e695d17a0aceaa8958
| 49,124
|
def _call_initialize(klass):
"""Call `_initialize` when the class is created"""
klass._initialize()
return klass
|
367642e8c53bf1bf4d7e8625dbe60938a5b0d7ff
| 49,126
|
import torch
def tsp_get_min_dist(dist_matrix):
"""
Takes a distance matrix dist_matrix of shape (n,n) or (bs,n,n)
Returns the mean minimal distance between two distinct nodes for each of the *bs* instances
"""
if not isinstance(dist_matrix,torch.Tensor):
try:
dist_matrix = torch.tensor(dist_matrix)
except Exception:
raise ValueError(f"Type {type(dist_matrix)} could not be broadcasted to torch.Tensor")
solo=False
if len(dist_matrix.shape)==2:
solo=True
dist_matrix = dist_matrix.unsqueeze(0)
bs,n,_ = dist_matrix.shape
max_dist = torch.max(dist_matrix)
eye_mask = torch.zeros_like(dist_matrix)
eye_mask[:] = torch.eye(n)
dist_modif = dist_matrix + max_dist*eye_mask
min_dist = torch.min(dist_modif,dim=-1).values
min_mean = torch.mean(min_dist,dim=-1)
if solo:
min_mean = min_mean[0]
return min_mean
|
1eea80f43b062567b58d9938016e6dce6c46e731
| 49,127
|
def get_size_and_path(line):
"""From a 'ls -l' line, return columns 4 (size) and 8 (path)."""
cols = line.split()
size, path = (int(cols[4]), cols[8])
return size, path
|
73d1d66b6d759b2e238b4140ca91581c5e303724
| 49,137
|
def _as_float(string, default: float = 0.0):
"""Return first sequence as float."""
return float(string.strip().partition(" ")[0] or default)
|
e0d199ab8e71f9e87174f4fb78cdd351ccfc69d0
| 49,139
|
def legendre_symbol(a, p):
"""
Computes the Legendre symbol
:param a: number
:param p: prime number
:return: Returns 1 if `a` has a square root modulo p, -1 otherwise.
"""
ls = pow(a, (p - 1) // 2, p)
if ls == p - 1:
return -1
return ls
|
8a0238b2a4e89c36b1bd0f6a5a99d656c3a52eab
| 49,141
|
def FE_concatenate_multiple_columns(df, cols, filler=" ", drop=True):
"""
This handy function combines multiple string columns into a single NLP text column.
You can do further pre-processing on such a combined column with TFIDF or BERT style embedding.
Inputs
---------
df: pandas dataframe
cols: string columns that you want to concatenate into a single combined column
filler: string (default: " "): you can input any string that you want to combine them with.
drop: default True. If True, drop the columns input. If False, keep the columns.
Outputs:
----------
df: there will be a new column called ['combined'] that will be added to your dataframe.
"""
df = df.copy(deep=True)
df['combined'] = df[cols].apply(lambda row: filler.join(row.values.astype(str)), axis=1)
if drop:
df = df.drop(cols, axis=1)
return df
|
35d77da9562ee40e20d049d45a548e71c454a18b
| 49,142
|
def turning(player_data, p, t):
"""
>>> player_data = {}
>>> player_data['a'] = pd.DataFrame({'tick':[4,5],'angle':[10,10]}, [4,5])
>>> turning(player_data, 'a', 5)
False
>>> turning(player_data, 'a', 6)
False
>>> player_data['a'] = pd.DataFrame({'tick':[4,5],'angle':[10,11]}, [4,5])
>>> turning(player_data, 'a', 5)
True
"""
if not (t in player_data[p]['tick']) or not ((t-1) in player_data[p]['tick']):
return False
if abs(player_data[p].loc[t,'angle'] - player_data[p].loc[t-1,'angle']) > 1e-8:
return True
return False
|
45edcfd85799e4204c08af0fc4910794981f118c
| 49,145
|
def get_nlat_nlon(n_nodes, lonlat_ratio):
"""Calculate the width (longitudes) and height (latitude) of an equiangular grid provided in 1D.
Parameters
----------
lonlat_ratio : int
lonlat_ratio = H // W = n_longitude rings / n_latitude rings
Aspect ratio to reshape the input 1D data to a 2D image.
A ratio of 2 means the equiangular grid has the same resolution
in latitude and longitude.
"""
# ratio = n_lon/n_lat (width/height)
n_lat = int((n_nodes / lonlat_ratio) ** 0.5)
n_lon = int((n_nodes * lonlat_ratio) ** 0.5)
if n_lat * n_lon != n_nodes: # Try to correct n_lat or n_lon if ratio is wrong
if n_nodes % n_lat == 0:
n_lon = n_nodes // n_lat
if n_nodes % n_lon == 0:
n_lat = n_nodes // n_lon
assert n_lat * n_lon == n_nodes, f'Unable to unpack nodes: {n_nodes}, lonlat_ratio: {lonlat_ratio}'
return n_lat, n_lon
|
644b11b2439c503840580c634e994014bf3812e0
| 49,150
|
def list2str(l):
"""
Convert list to a string
:param l: list
:returns: list <string>
"""
s = ''
for i in range(len(l)):
s = s + str(l[i])
return s
|
94e70d371f4c81c08dbdd7d2a583b9c2e68500a8
| 49,152
|
def is_valid_color(color, threshold):
""" Return True if each component of the given color (r, g, b, a) is
above threshold
"""
if color[0] > threshold and color[1] > threshold and color[2] > threshold:
return True
return False
|
3391779e0977225f7340f50a823610b4dd22876b
| 49,158
|
import csv
def readCSV(path2File):
"""
returns a list of links to pdfs.
Assumes the first column of the csv file corresponds to the links
"""
pdfFileLinks = []
with open(path2File, newline='') as csvfile:
data = csv.reader(csvfile)
for row in data:
pdfFileLinks.append(row[0])
return pdfFileLinks
|
0918fbbaf580cdf4221551b7cac58e4add129c76
| 49,159
|
import asyncio
def run_in_loop(future):
"""Run a co-routine in the default event loop"""
try:
result = asyncio.get_event_loop().run_until_complete(future)
except Exception as ex:
print("Exception: {}".format(ex))
raise
return result
|
7bc36ae9d406a20bb3d8aaa0bd34356c98251ad3
| 49,160
|
def fun(s):
"""Determine if the passed in email address is valid based on the following rules:
It must have the username@websitename.extension format type.
The username can only contain letters, digits, dashes and underscores [a-z], [A-Z], [0-9], [_-].
The website name can only have letters and digits [a-z][A-Z][0-9]
The extension can only contain letters [a-z][A-Z].
The maximum length of the extension is 3.
Args:
s (str): Email address to check
Returns:
(bool): Whether email is valid or not
"""
if s.count("@") == 1:
if s.count(".") == 1:
user, domain = s.split("@")
website, extension = domain.split(".")
if user.replace("-", "").replace("_", "").isalnum():
if website.isalnum():
if extension.isalnum():
if len(extension) <= 3:
return True
return False
|
d5a3e4de4010bf71b646270d901f87b526fb92e9
| 49,162
|
import base64
def decode_bytes(s: str) -> bytes:
"""Decode the bytes.
Args:
s: Encoded binary content.
Returns:
Decoded binary data.
Raises:
binascii.Error: If the data isn't valid.
"""
return base64.b64decode(s[1:])
|
d8572387012e51d7eb230b3d09a1e6bfdabcaac0
| 49,165
|
def ctof(temp_c):
"""Convert temperature from celsius to fahrenheit"""
return temp_c * (9/5) + 32
|
4357cb6d355d14c11b21bfe0bd4efc5c1e3b4703
| 49,167
|
def rename_cols(data):
"""Rename columns of a DataFrame by capitalizing them."""
return data.rename(columns=str.capitalize)
|
b6aced2882b12feeed5dc3494125b4c8e68d2fc5
| 49,168
|
import re
def is_esemble_id(name):
"""
It returns True if name is an stable Ensembl ID.
Stable IDs are created in the form
ENS[species prefix][feature type prefix][a unique eleven digit number].
"""
return re.match("ENS.*G[0-9]{11}", name) is not None
|
ec96712499d064a19b0aa719e504f3317fc1fcac
| 49,172
|
def addouter(C, b, factor=1):
"""Add in place `factor` times outer product of vector `b`,
without any dimensional consistency checks.
"""
for i in range(C.shape[0]):
for j in range(C.shape[1]):
C[i,j] += factor * b[i] * b[j]
return C
|
ded8354eb180fe50bd6aab9f03f3128f27889deb
| 49,176
|
def product_rule(u, v, du, dv):
"""The product rule of calculus, d/dx uv = u dv v du."""
return u * dv + v * du
|
7f5861e2c6d081f51b2949b272b04c4161eac0d2
| 49,178
|
def rgb(red, green, blue):
"""
Make a tkinter compatible RGB color.
"""
return "#%02x%02x%02x" % (red, green, blue)
|
e33394c24728847d420991d5633a239b8684bdb8
| 49,182
|
def transform_dict(d, xformer):
"""
Transform elements of the dict d using the xformer (also a dict,
where the keys match the keys in d and the values of d are transformed
by invoking the corresponding values in xformer.
"""
for k, v in xformer.items():
if k in d:
d[k] = v(d[k])
return d
|
f38fc198671a8bf706fed6a57ecda07c8ab08321
| 49,186
|
def float_else_zero(sstring):
"""Return converted string to float. If conversion fail, return zero.
:param sstring: String to be converted
:return: ``float(sstrinq)`` if ``sstring`` can be converted to float
(e.g. ``"3.14"``), else ``0``
"""
try:
return float(sstring)
except ValueError:
return 0
|
6c51c811574664ef2e19e4f6978075c2f92da9e1
| 49,187
|
def _local_name(element):
"""Strip namespace from the XML element's name"""
if element.tag and element.tag[0] == '{':
return element.tag.rpartition('}')[2]
return element.tag
|
0cf7b7d2aa3571679e49a4a5fb18c7e7a4193683
| 49,188
|
def build_event_info(info, time):
"""Adds created_at time to event info dict."""
return {**info, 'created_at': time}
|
a7faa2d3798d2692310af16e84099d7b86fa84f0
| 49,192
|
def aggregate(sequence, func, seed=None):
"""
Applies accumulator function over a sequence.
Args:
sequence: iterable
Sequence of items to go through.
func: callable
Accumulator function expecting two arguments (res, next).
seed: any
Initial aggregation value. If set to None, the first item is
used.
Returns:
any
"""
res = seed
for i, item in enumerate(sequence):
if i == 0 and seed is None:
res = item
continue
res = func(res, item)
return res
|
30318589a7073226d547d9131754a44b3d20f0f7
| 49,193
|
import re
def sanitize_license_plate(number):
"""Sanitize a license plate number to [A-Z0-9]+, no dashes/spaces."""
number = re.sub(r'[ -]', '', number.strip().upper())
return number if re.match(r'^[A-Z0-9]+$', number) else None
|
f2c89d3bfffd9056a74cfcd4e7aef8892a7eb8f9
| 49,197
|
def with_last_multiplicity(template_layers_config, multiplicity):
"""
Change the multiplicity of the last layer in a layered micro-service
application, while keeping the average service time for a user request
constant.
"""
layers_config = [
layer_config for
layer_config in template_layers_config]
layers_config[-1] = \
layers_config[-1]._replace(
average_work=layers_config[-1].average_work/multiplicity,
multiplicity=multiplicity)
return layers_config
|
ab27b4dd2f6d329cbe3275310ceb806dc7c95a47
| 49,199
|
def greater_than_previous_counter(iterable: list) -> int:
"""
Return a count of the number of times the i + 1 > i
"""
ctr = int()
for i, j in zip(iterable, iterable[1:]):
if int(j) > int(i):
ctr += 1
return ctr
|
f5f34dbdf0779c4e1a695a9d31431a3513ace40c
| 49,202
|
import struct
def bytes_to_fp32(bytes_data, is_big_endian=False):
"""
bytes to float
:param bytes_data: bytes
:param is_big_endian: is big endian or not,default is False.
:return: fp32
"""
return struct.unpack('>f' if is_big_endian else '<f', bytes_data)[0]
|
a2b22a6bedcc060b63d160482bdadbe042fbdda2
| 49,206
|
def load_attribute_from_file(file_path: str):
"""
Loads attribute from file.
:param file_path: path to file
:return: list of attributes
"""
attributes = []
with open(file_path) as f:
for line in f:
attributes.append(list(map(float, line.split())))
return attributes
|
cc98cf28ab41c6c06a358fb833dda071aaa7688f
| 49,207
|
def mph(mps):
"""
Meters per second to miles per hour
"""
mpsToMph = 3600.0 / (0.0254 * 12.0 * 5280.0)
return mps * mpsToMph
|
93ab7c27e55b16587cfa1315c77a453c5487889d
| 49,208
|
import zlib
def adler32(filepath,blocksize=2**20):
"""
Return the ader32 of a file as an 8-byte hex number
`blocksize` adjusts how much of the file is read into memory at a time.
This is useful for large files.
2**20 = 1024 * 1024 = 1 mb
2**12 = 4 * 1024 = 4 kb
"""
csum = 1
with open(filepath, 'rb') as afile:
buf = afile.read(blocksize)
while len(buf) > 0:
csum = zlib.adler32(buf,csum)
buf = afile.read(blocksize)
# From the documentation:
# > Changed in version 3.0: Always returns an unsigned value.
# > To generate the same numeric value across all Python versions and
# > platforms, use crc32(data) & 0xffffffff.
csum = csum & 0xffffffff
return ('0'*8 + hex(csum)[2:])[-8:]
|
9e299e752664dc71a29a6393331751d49327ecc1
| 49,211
|
def make_batches(data, bsz):
"""Return a list of lists of size bsz given a list of examples."""
return [data[i:i + bsz] for i in range(0, len(data), bsz)]
|
cbbc388ba58074a22a4b94ec94c81ac303443054
| 49,215
|
import re
def api_result_to_release_format(api_df, id_lookup_dict=None, verbose=False):
"""
Reindex a PyCAP API result to an NCANDA release format.
REDCap API, when used with PyCAP, returns results as a DataFrame indexed by
NCANDA ID (study_id - X-00000-Y-0) and combined event + arm
(redcap_event_name)
On the other hand, release files are typically indexed by XNAT ID
(NCANDA_S0?????; mri_xnat_id in Redcap).
This function will:
1. Convert Redcap IDs to NCANDA SIDs using id_lookup_dict (as generated by
`get_id_lookup_from_demographics_file`) or the `mri_xnat_sid` column
(if present in api_df),
2. Drop Redcap IDs that cannot be converted in that way,
3. Separate event and arm to individual columns and make their names
release-compatible,
4. Return DataFrame indexed by release primary keys (subject, arm, visit).
"""
df = api_df.copy(deep=True)
df.reset_index(inplace=True)
if id_lookup_dict:
df['subject'] = df['study_id'].map(id_lookup_dict)
elif 'mri_xnat_sid' in df.columns:
df['subject'] = df['mri_xnat_sid']
else:
raise IndexError("You must supply id_lookup_dict, or api_df has to "
"have the mri_xnat_sid column")
nan_idx = df['subject'].isnull()
if verbose:
study_id_nans = df.loc[nan_idx, 'study_id'].tolist()
print ("Dropping study IDs without corresponding NCANDA SID: " +
", ".join(study_id_nans))
df = df[~nan_idx]
df[['visit', 'arm']] = (df['redcap_event_name']
.str.extract(r'^(\w+)_(arm_\d+)$'))
def clean_up_event_string(event):
"""
If possible, convert Redcap event name to NCANDA release visit name.
If conversion fails, return the original string.
Intended to be passed to pd.Series.map.
"""
# NOTE: Only accounts for full Arm 1 events
match = re.search(r'^(baseline|\dy)', event)
if not match:
return event
elif re.match('^\d', match.group(1)):
return "followup_" + match.group(1)
else:
return match.group(1)
df['visit'] = df['visit'].map(clean_up_event_string)
def clean_up_arm_string(arm):
"""
If possible, convert Redcap arm name to NCANDA release arm name.
If conversion fails, return the original string.
Intended to be passed to pd.Series.map.
"""
arm_dict = {'arm_1': 'standard',
'arm_2': 'recovery',
'arm_3': 'sleep',
'arm_4': 'maltreated'}
if arm not in arm_dict:
return arm
else:
return arm_dict[arm]
df['arm'] = df['arm'].map(clean_up_arm_string)
return df.set_index(['subject', 'arm', 'visit'])
|
aacdc5c177ff7026dea8bc399c67bd78287c7e4f
| 49,219
|
from typing import List
from typing import Tuple
def swap_rows(matrix: List[List[float]], rows: Tuple[int, int]) -> List[List[float]]:
"""
Mutate matrix by swapping rows[0] and rows[1].
Preconditions:
- len(matrix) > 0
- all(len(row) > 0 for row in matrix)
- sum([1 for i in range(1, len(matrix)) if len(matrix[i]) != len(matrix[0])]) == 0
- all([0 <= i < len(matrix) for i in rows])
"""
temp = matrix[rows[0]]
matrix[rows[0]] = matrix[rows[1]]
matrix[rows[1]] = temp
return matrix
|
666df5872d468086dc97614dfc39007e182cd7bc
| 49,220
|
def flatten_requirement(requirement):
"""
Return only the package name from a requirement.
Arguments:
requirement (pkg_resources.Requirement): A requirement object.
Returns:
string: Package name.
"""
return requirement.key
|
9a2e493a97763417aef41d18405c609e65e28875
| 49,224
|
from typing import Callable
from datetime import datetime
def parse_time(string: str, parser: Callable = datetime.strptime)->datetime:
"""
:param string: date and time as a string
:param parser: function to convert string to datetime
:return: datetime.datetime
"""
date_formats = ["%Y-%m-%dT%H:%M:%S.%fZ",
'%Y-%m-%dT%H:%M:%SZ']
for df in date_formats:
try:
return parser(string, df)
except ValueError:
pass
raise ValueError('Invalid time format in string %s' % string)
|
c8a937842cf8878a3442a53ae8fd5dc780404daf
| 49,225
|
import math
def betalambda(mass, freq, w):
"""Return value of beta*lambda of beam.
Arguments:
mass(double): mc^2 of beam particle in MeV
freq(double): frequency in MHz
w(double): Kinetic energy in MeV
"""
c = 2.99792458e8 # m/s
wavelength = c / (freq * 1.0e6)
gamma = 1.0 + w / mass
beta = math.sqrt(1.0 - 1/(gamma * gamma))
return beta * wavelength
|
75ac561912822bb28c6fbbefbf7a6ea930ad291f
| 49,227
|
def edits0(word):
"""
Return all strings that are zero edits away (i.e. the word itself).
"""
return{word}
|
06836ba7da2a02eb7d9e9d1a2d12d74fc10f95e8
| 49,235
|
def getTokenToTokenPrice(orfeed_i, tokenSrc, tokenDst, dex, amount_src_token=1):
"""Get the rate of swap tokenSrc to tokenDst in a given Dex
Args:
orfeed_i (OrFeed): The instance of OrFeed class
tokenSrc (Symbol): Symbol of src token
tokenDst (Symbol): Symbol of dst token
dex (str): The Dex where the rate is going to be requested
amount_src_token (int, optional): Amount of src token. Defaults to 1 src token unit.
Returns:
Dict: Return a dict containing all relevant infos about the request
"""
res = orfeed_i.getExchangeRate(tokenSrc, tokenDst, dex, amount_src_token)
return {
"tokenSrc": tokenSrc,
"tokenDst": tokenDst,
"tokenPair": tokenSrc + "-" + tokenDst,
"provider": dex,
"price": res,
}
|
1a0299f03a1e002f5c2a3a613a54443cd6ac4f07
| 49,243
|
def _replace_comments(s):
"""Replaces matlab comments with python arrays in string s."""
s = s.replace('%', '#')
return s
|
0420a4cc2f54fea3e2b3e35e185758cd826380c7
| 49,245
|
def get_indels_regions(read):
"""Get indel region start and end positions of a read."""
indels_blocks = []
aligned_regions = read.get_blocks()
start = read.reference_start; end = read.reference_end
indels_blocks.append((start, aligned_regions[0][0]))
for i in range(len(aligned_regions)-1):
indels_blocks.append((aligned_regions[i][1], aligned_regions[i+1][0]))
indels_blocks.append((aligned_regions[-1][1], end))
return indels_blocks
|
342c48d936d7c4264d087904eba0023dd4f0610d
| 49,246
|
def handle400error(ns, message):
"""
Function to handle a 400 (bad arguments code) error.
"""
return ns.abort(400, status=message, statusCode="400")
|
f7a0ae35337b38dfb49e6f197c8e67ab4508ead4
| 49,247
|
def group(merge_func, tokens):
"""
Group together those of the tokens for which the merge function returns
true. The merge function should accept two arguments/tokens and should
return a boolean indicating whether the strings should be merged or not.
Helper for tokenise(string, ..).
"""
output = []
if tokens:
output.append(tokens[0])
for token in tokens[1:]:
prev_token = output[-1]
if merge_func(prev_token, token):
output[-1] += token
else:
output.append(token)
return output
|
4912e4a20b2313b34617cd9dd23bd33fe5b9e4bc
| 49,257
|
def assign_scores(game):
"""Cleanup games without linescores to include team score
based on team totals."""
for team in game['team'].values():
if 'score' not in team and 'totals' in team:
team['score'] = team['totals']['source__B_R']
return game
|
87eb0d1d4453ab5734a7ce7c10d8d8828fc34071
| 49,259
|
def intersect(a, b):
"""
Identifies the elements in A that are in B.
"""
return list(set(a) & set(b))
|
3f704d653ed5f2b552a55f3eef95db7569718037
| 49,268
|
def getText(targetFile):
"""Return a string containing the contents of the target file"""
with open(targetFile, "rt", encoding="utf-8") as f:
return f.read()
|
90e70c5a7fc1796b0fd28fc4f52d602cf1c89b27
| 49,274
|
def get_centre(bounds):
"""
Get the centre of the object from the bounding box.
"""
if len(bounds) != 6:
return [None] * 6
return [bounds[i] - (bounds[i] - bounds[i - 1]) / 2.0 for i in range(1, len(bounds), 2)]
|
ffa873400eb35957c08da523abcc1a0fea3b664d
| 49,275
|
def delay_from_foffsets(df, dfd, dfdd, times):
"""
Return the delays in phase caused by offsets in
frequency (df), and two frequency derivatives (dfd, dfdd)
at the given times in seconds.
"""
f_delays = df * times
fd_delays = dfd * times**2 / 2.0
fdd_delays = dfdd * times**3 / 6.0
return (f_delays + fd_delays + fdd_delays)
|
1977b71f5bb5cafce55da7435141c6ff0db29e67
| 49,277
|
def get_pulsar_producer_stage(pipeline_builder, topic):
"""Create and return a Pulsar Producer origin stage depending on execution mode for the pipeline."""
pulsar_producer = pipeline_builder.add_stage('Pulsar Producer',
type='destination')
pulsar_producer.set_attributes(data_format='TEXT',
text_field_path='/text',
topic=topic)
return pulsar_producer
|
7e2aa226445dfa979cfdab043b67fbf32aedadd1
| 49,278
|
def incrementAtIndex(valueList, index, max):
"""Returns True if the value incremented."""
originalValue = valueList[index]
valueList[index] += 1 if valueList[index] < max else 0
return valueList[index] != originalValue
|
b835fe8e7078e5ea245f7115c639084412e928d5
| 49,282
|
def hack_ncbi_fasta_name(pipe_name):
"""Turn 'gi|445210138|gb|CP003959.1|' into 'CP003959.1' etc.
For use with NCBI provided FASTA and GenBank files to ensure
contig names match up.
Or Prokka's *.fna and *.gbk files, turning 'gnl|Prokka|contig000001'
into 'contig000001'
"""
if pipe_name.startswith("gi|") and pipe_name.endswith("|"):
return pipe_name.split("|")[3]
elif pipe_name.startswith("gnl|") and pipe_name.count("|")==2:
return pipe_name.split("|")[2]
else:
return pipe_name
|
3b384b101a63fc2babd2b7b26b603565d71a8496
| 49,283
|
def photo_pull(req, id_num, img_name):
"""
Creates path to image based on name and redMapper id number.
Args:
req: the http request
id_num: the redmapperID of the image galaxy
img_name: the name of the desired image
Returns:
Path to desired image
"""
path = "static/data/" + id_num + "/" + id_num + "-" + img_name
return path
|
0c35ea26385b408dbcf40445ec161c16f8cf9f69
| 49,288
|
def read_data(fname, ignore_docstart=False):
"""Read data from any files with fixed format.
Each line of file should be a space-separated token information,
in which information starts from the token itself.
Each sentence is separated by a empty line.
e.g. 'Apple NP (NP I-ORG' could be one line
Args:
fname (str): file path for reading data.
Returns:
sentences (list):
Sentences is a list of sentences.
Sentence is a list of token information.
Token information is in format: [token, feature_1, ..., feature_n, tag_label]
"""
sentences, prev_sentence = [], []
with open(fname) as f:
for line in f:
if not line.strip():
if prev_sentence and (not ignore_docstart or len(prev_sentence) > 1):
sentences.append(prev_sentence)
prev_sentence = []
continue
prev_sentence.append(list(line.strip().split()))
if prev_sentence != []:
sentences.append(prev_sentence)
return sentences
|
71be54b8b9e3a762f13ce9ba10e1f7a885032e2e
| 49,290
|
def seqs_dic_count_chars(seqs_dic):
"""
Given a dictionary with sequences, count how many times each character
appears.
>>> seqs_dic = {'s1': 'ABCC', 's2': 'ABCD'}
>>> seqs_dic_count_chars(seqs_dic)
{'A': 2, 'B': 2, 'C': 3, 'D': 1}
"""
assert seqs_dic, "given seqs_dic empty"
cc_dic = {}
for seq_id in seqs_dic:
seq = seqs_dic[seq_id]
for c in seq:
if c in cc_dic:
cc_dic[c] += 1
else:
cc_dic[c] = 1
assert cc_dic, "cc_dic empty"
return cc_dic
|
aafd059c4c100d755b3e3e10e99b4449eb9e360d
| 49,291
|
import pathlib
def unique_directories(files):
"""Returns a list of directories (pathlib.Path objects) for the files
passed without repetitions."""
return list({pathlib.Path(x).parent for x in files})
|
326ed8b251b21fb36f03c5ddc7edd0b18918e868
| 49,297
|
from typing import Any
from typing import Callable
def noop_decorator(*args: Any, **kwargs: Any) -> Any:
"""Return function decorated with no-op; invokable with or without args.
>>> @noop_decorator
... def func1(x): return x * 10
>>> @noop_decorator()
... def func2(x): return x * 10
>>> @noop_decorator(2, 3)
... def func3(x): return x * 10
>>> @noop_decorator(keyword=True)
... def func4(x): return x * 10
>>> check_eq(func1(1) + func2(1) + func3(1) + func4(1), 40)
"""
if len(args) != 1 or not callable(args[0]) or kwargs:
return noop_decorator # Decorator is invoked with arguments; ignore them.
func: Callable[[Any], Any] = args[0]
return func
|
16333bd7c21885ff894efc2a8fa6008bbbbc1b43
| 49,301
|
from typing import Mapping
from typing import List
from typing import Any
def transpose_dict_of_lists(dict_of_lists: Mapping[str, list], keys: List[str]) \
-> List[Mapping[str, Any]]:
"""Takes a dict of lists, and turns it into a list of dicts."""
return [{key: dict_of_lists[key][i] for key in keys}
for i in range(len(dict_of_lists[keys[0]]))]
|
b51323fcc31aa41ee8a5c333ad36e5d2fdae2b85
| 49,303
|
import math
def gauss_legendre_1(max_step):
"""Float number implementation of the Gauss-Legendre algorithm, for max_step steps."""
a = 1.
b = 1./math.sqrt(2)
t = 1./4.0
p = 1.
for i in range(max_step):
at = (a + b) / 2.0
bt = math.sqrt(a*b)
tt = t - p*(a-at)**2
pt = 2.0 * p
a, b, t, p = at, bt, tt, pt
my_pi = ((a+b)**2)/(4.0*t)
return my_pi
|
c48fb524c7c5b3aeb14fe247deaa4c329bc2b405
| 49,304
|
def parse_clan_file(clan_list):
"""
Parses a list of Rfam clan accessions
clan_list: A plain .txt file containing a list of Rfam Clan Accessions
return: A list of clan accessions
"""
fp = open(clan_list, 'r')
clan_accessions = [x.strip() for x in fp]
fp.close()
return clan_accessions
|
c5869235750902876f10408e73bbf675316d130c
| 49,312
|
def c2f(celsius):
""" Convert Celcius to Farenheit """
return 9.0/5.0 * celsius + 32
|
bbe693bf2fa529a3b50793796c2b7b89edb683a6
| 49,314
|
from pathlib import Path
def get_plot_folder(folder_path: str):
"""Creates a folder for plots, creating also parents directories if necessary"""
folder = Path(folder_path)
if not folder.exists():
folder.mkdir(parents=True)
return folder
|
dd95e7089a377f94593e0d4ead360f14a9268a7a
| 49,315
|
def source_location_to_tuple(locpb):
"""Converts a SourceLocation proto into a tuple of primitive types."""
if locpb is None:
return None
if not locpb.file() and not locpb.line() and not locpb.function_name():
return None
return locpb.file(), locpb.line(), locpb.function_name()
|
cac9f13bcdccab65eeaed94955e3fc5f48193f4b
| 49,316
|
def _data_types_from_dsp_mask(words):
"""
Return a list of the data types from the words in the data_type mask.
"""
data_types = []
for i, word in enumerate(words):
data_types += [j + (i * 32) for j in range(32) if word >> j & 1]
return data_types
|
a0c10a96ce8d6ca0af3156ee147de8571f605447
| 49,322
|
def get_expected_number_of_faces(off_file):
"""
Finds the expected number of faces in an OFF file. Used to check this matches the number of items in a pixel
mapping list.
:param off_file: The OFF file.
:return: The number of faces in the OFF file.
"""
for line in off_file.split("\n")[1:]:
if line[0] != "#":
return int(line.split()[1])
|
8486fa165f43d924c6dd17b2670d75f8091256d1
| 49,323
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.